Sample records for conventional analytical techniques

  1. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references.

  2. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review.

    PubMed

    Safina, Gulnara

    2012-01-27

    Carbohydrates (glycans) and their conjugates with proteins and lipids contribute significantly to many biological processes. That makes these compounds important targets to be detected, monitored and identified. The identification of the carbohydrate content in their conjugates with proteins and lipids (glycoforms) is often a challenging task. Most of the conventional instrumental analytical techniques are time-consuming and require tedious sample pretreatment and utilising various labeling agents. Surface plasmon resonance (SPR) has been intensively developed during last two decades and has received the increasing attention for different applications, from the real-time monitoring of affinity bindings to biosensors. SPR does not require any labels and is capable of direct measurement of biospecific interaction occurring on the sensing surface. This review provides a critical comparison of modern analytical instrumental techniques with SPR in terms of their analytical capabilities to detect carbohydrates, their conjugates with proteins and lipids and to study the carbohydrate-specific bindings. A few selected examples of the SPR approaches developed during 2004-2011 for the biosensing of glycoforms and for glycan-protein affinity studies are comprehensively discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Strain gage measurement errors in the transient heating of structural components

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1993-01-01

    Significant strain-gage errors may exist in measurements acquired in transient thermal environments if conventional correction methods are applied. Conventional correction theory was modified and a new experimental method was developed to correct indicated strain data for errors created in radiant heating environments ranging from 0.6 C/sec (1 F/sec) to over 56 C/sec (100 F/sec). In some cases the new and conventional methods differed by as much as 30 percent. Experimental and analytical results were compared to demonstrate the new technique. For heating conditions greater than 6 C/sec (10 F/sec), the indicated strain data corrected with the developed technique compared much better to analysis than the same data corrected with the conventional technique.

  4. Utility of the summation chromatographic peak integration function to avoid manual reintegrations in the analysis of targeted analytes

    USDA-ARS?s Scientific Manuscript database

    As sample preparation and analytical techniques have improved, data handling has become the main limitation in automated high-throughput analysis of targeted chemicals in many applications. Conventional chromatographic peak integration functions rely on complex software and settings, but untrustwor...

  5. Microextraction by packed sorbent: an emerging, selective and high-throughput extraction technique in bioanalysis.

    PubMed

    Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed

    2014-06-01

    Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Programmed Instruction in Secondary Education: A Meta-Analysis of the Impact of Class Size on Its Effectiveness.

    ERIC Educational Resources Information Center

    Boden, Andrea; Archwamety, Teara; McFarland, Max

    This review used meta-analytic techniques to integrate findings from 30 independent studies that compared programmed instruction to conventional methods of instruction at the secondary level. The meta-analysis demonstrated that programmed instruction resulted in higher achievement when compared to conventional methods of instruction (average…

  7. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    PubMed

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry.

    PubMed

    Byliński, Hubert; Gębicki, Jacek; Dymerski, Tomasz; Namieśnik, Jacek

    2017-07-04

    One of the major sources of error that occur during chemical analysis utilizing the more conventional and established analytical techniques is the possibility of losing part of the analytes during the sample preparation stage. Unfortunately, this sample preparation stage is required to improve analytical sensitivity and precision. Direct techniques have helped to shorten or even bypass the sample preparation stage; and in this review, we comment of some of the new direct techniques that are mass-spectrometry based. The study presents information about the measurement techniques using mass spectrometry, which allow direct sample analysis, without sample preparation or limiting some pre-concentration steps. MALDI - MS, PTR - MS, SIFT - MS, DESI - MS techniques are discussed. These solutions have numerous applications in different fields of human activity due to their interesting properties. The advantages and disadvantages of these techniques are presented. The trends in development of direct analysis using the aforementioned techniques are also presented.

  9. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems - A review.

    PubMed

    Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Aquino, Adriano; Cervantes, Cesar; Carrilho, Emanuel

    2016-09-07

    We present here a critical review covering conventional analytical tools of recombinant drug analysis and discuss their evolution towards miniaturized systems foreseeing a possible unique recombinant drug-on-a-chip device. Recombinant protein drugs and/or pro-drug analysis require sensitive and reproducible analytical techniques for quality control to ensure safety and efficacy of drugs according to regulatory agencies. The versatility of miniaturized systems combined with their low-cost could become a major trend in recombinant drugs and bioprocess analysis. Miniaturized systems are capable of performing conventional analytical and proteomic tasks, allowing for interfaces with other powerful techniques, such as mass spectrometry. Microdevices can be applied during the different stages of recombinant drug processing, such as gene isolation, DNA amplification, cell culture, protein expression, protein separation, and analysis. In addition, organs-on-chips have appeared as a viable alternative to testing biodrug pharmacokinetics and pharmacodynamics, demonstrating the capabilities of the miniaturized systems. The integration of individual established microfluidic operations and analytical tools in a single device is a challenge to be overcome to achieve a unique recombinant drug-on-a-chip device. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Brand, W. A.; Hayes, J. M.

    1994-01-01

    In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).

  11. An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets

    PubMed Central

    Hahn, Seung-yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet. PMID:20407595

  12. Multilevel Modeling and Policy Development: Guidelines and Applications to Medical Travel.

    PubMed

    Garcia-Garzon, Eduardo; Zhukovsky, Peter; Haller, Elisa; Plakolm, Sara; Fink, David; Petrova, Dafina; Mahalingam, Vaishali; Menezes, Igor G; Ruggeri, Kai

    2016-01-01

    Medical travel has expanded rapidly in recent years, resulting in new markets and increased access to medical care. Whereas several studies investigated the motives of individuals seeking healthcare abroad, the conventional analytical approach is limited by substantial caveats. Classical techniques as found in the literature cannot provide sufficient insight due to the nested nature of data generated. The application of adequate analytical techniques, specifically multilevel modeling, is scarce to non-existent in the context of medical travel. This study introduces the guidelines for application of multilevel techniques in public health research by presenting an application of multilevel modeling in analyzing the decision-making patterns of potential medical travelers. Benefits and potential limitations are discussed.

  13. Multilevel Modeling and Policy Development: Guidelines and Applications to Medical Travel

    PubMed Central

    Garcia-Garzon, Eduardo; Zhukovsky, Peter; Haller, Elisa; Plakolm, Sara; Fink, David; Petrova, Dafina; Mahalingam, Vaishali; Menezes, Igor G.; Ruggeri, Kai

    2016-01-01

    Medical travel has expanded rapidly in recent years, resulting in new markets and increased access to medical care. Whereas several studies investigated the motives of individuals seeking healthcare abroad, the conventional analytical approach is limited by substantial caveats. Classical techniques as found in the literature cannot provide sufficient insight due to the nested nature of data generated. The application of adequate analytical techniques, specifically multilevel modeling, is scarce to non-existent in the context of medical travel. This study introduces the guidelines for application of multilevel techniques in public health research by presenting an application of multilevel modeling in analyzing the decision-making patterns of potential medical travelers. Benefits and potential limitations are discussed. PMID:27252672

  14. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods.Reference: Evans NJ, McInnes BIA, McDonald B, Becker T, Vermeesch P, Danisik M, Shelley M, Marillo-Sialer E and Patterson D. An in situ technique for (U-Th-Sm)/He and U-Pb double dating. J Analytical Atomic Spectrometry, 30, 1636 - 1645.

  15. Quality assessment of internet pharmaceutical products using traditional and non-traditional analytical techniques.

    PubMed

    Westenberger, Benjamin J; Ellison, Christopher D; Fussner, Andrew S; Jenney, Susan; Kolinski, Richard E; Lipe, Terra G; Lyon, Robbe C; Moore, Terry W; Revelle, Larry K; Smith, Anjanette P; Spencer, John A; Story, Kimberly D; Toler, Duckhee Y; Wokovich, Anna M; Buhse, Lucinda F

    2005-12-08

    This work investigated the use of non-traditional analytical methods to evaluate the quality of a variety of pharmaceutical products purchased via internet sites from foreign sources and compared the results with those obtained from conventional quality assurance methods. Traditional analytical techniques employing HPLC for potency, content uniformity, chromatographic purity and drug release profiles were used to evaluate the quality of five selected drug products (fluoxetine hydrochloride, levothyroxine sodium, metformin hydrochloride, phenytoin sodium, and warfarin sodium). Non-traditional techniques, such as near infrared spectroscopy (NIR), NIR imaging and thermogravimetric analysis (TGA), were employed to verify the results and investigate their potential as alternative testing methods. Two of 20 samples failed USP monographs for quality attributes. The additional analytical methods found 11 of 20 samples had different formulations when compared to the U.S. product. Seven of the 20 samples arrived in questionable containers, and 19 of 20 had incomplete labeling. Only 1 of the 20 samples had final packaging similar to the U.S. products. The non-traditional techniques complemented the traditional techniques used and highlighted additional quality issues for the products tested. For example, these methods detected suspect manufacturing issues (such as blending), which were not evident from traditional testing alone.

  16. A New Correction Technique for Strain-Gage Measurements Acquired in Transient-Temperature Environments

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1996-01-01

    Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.

  17. POLLUTION PREVENTION AND ENHANCEMENT OF BIODEGRADABILITY VIA ISOMER ELIMINATION IN CONSUMER PRODUCTS

    EPA Science Inventory

    The purpose of this project is to develop novel methodologies for the analysis and detection of chiral environmental contaminants. Conventional analytical techniques do not discriminate between enantiomers. By using newly developed enantioselective methods, the environmental pers...

  18. Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring

    PubMed Central

    Orozco, Jahir; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia

    2010-01-01

    The particular analytical performance of ultramicroelectrode arrays (UMEAs) has attracted a high interest by the research community and has led to the development of a variety of electroanalytical applications. UMEA-based approaches have demonstrated to be powerful, simple, rapid and cost-effective analytical tools for environmental analysis compared to available conventional electrodes and standardised analytical techniques. An overview of the fabrication processes of UMEAs, their characterization and applications carried out by the Spanish scientific community is presented. A brief explanation of theoretical aspects that highlight their electrochemical behavior is also given. Finally, the applications of this transducer platform in the environmental field are discussed. PMID:22315551

  19. Evaluation of the matrix effect on gas chromatography--mass spectrometry with carrier gas containing ethylene glycol as an analyte protectant.

    PubMed

    Fujiyoshi, Tomoharu; Ikami, Takahito; Sato, Takashi; Kikukawa, Koji; Kobayashi, Masato; Ito, Hiroshi; Yamamoto, Atsushi

    2016-02-19

    The consequences of matrix effects in GC are a major issue of concern in pesticide residue analysis. The aim of this study was to evaluate the applicability of an analyte protectant generator in pesticide residue analysis using a GC-MS system. The technique is based on continuous introduction of ethylene glycol into the carrier gas. Ethylene glycol as an analyte protectant effectively compensated the matrix effects in agricultural product extracts. All peak intensities were increased by this technique without affecting the GC-MS performance. Calibration curves for ethylene glycol in the GC-MS system with various degrees of pollution were compared and similar response enhancements were observed. This result suggests a convenient multi-residue GC-MS method using an analyte protectant generator instead of the conventional compensation method for matrix-induced response enhancement adding the mixture of analyte protectants into both neat and sample solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Modern analytical methods for the detection of food fraud and adulteration by food category.

    PubMed

    Hong, Eunyoung; Lee, Sang Yoo; Jeong, Jae Yun; Park, Jung Min; Kim, Byung Hee; Kwon, Kisung; Chun, Hyang Sook

    2017-09-01

    This review provides current information on the analytical methods used to identify food adulteration in the six most adulterated food categories: animal origin and seafood, oils and fats, beverages, spices and sweet foods (e.g. honey), grain-based food, and others (organic food and dietary supplements). The analytical techniques (both conventional and emerging) used to identify adulteration in these six food categories involve sensory, physicochemical, DNA-based, chromatographic and spectroscopic methods, and have been combined with chemometrics, making these techniques more convenient and effective for the analysis of a broad variety of food products. Despite recent advances, the need remains for suitably sensitive and widely applicable methodologies that encompass all the various aspects of food adulteration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Performance Analysis of Blind Subspace-Based Signature Estimation Algorithms for DS-CDMA Systems with Unknown Correlated Noise

    NASA Astrophysics Data System (ADS)

    Zarifi, Keyvan; Gershman, Alex B.

    2006-12-01

    We analyze the performance of two popular blind subspace-based signature waveform estimation techniques proposed by Wang and Poor and Buzzi and Poor for direct-sequence code division multiple-access (DS-CDMA) systems with unknown correlated noise. Using the first-order perturbation theory, analytical expressions for the mean-square error (MSE) of these algorithms are derived. We also obtain simple high SNR approximations of the MSE expressions which explicitly clarify how the performance of these techniques depends on the environmental parameters and how it is related to that of the conventional techniques that are based on the standard white noise assumption. Numerical examples further verify the consistency of the obtained analytical results with simulation results.

  2. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Kenneth Paul

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonancemore » (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.« less

  3. Combining machine learning and matching techniques to improve causal inference in program evaluation.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2016-12-01

    Program evaluations often utilize various matching approaches to emulate the randomization process for group assignment in experimental studies. Typically, the matching strategy is implemented, and then covariate balance is assessed before estimating treatment effects. This paper introduces a novel analytic framework utilizing a machine learning algorithm called optimal discriminant analysis (ODA) for assessing covariate balance and estimating treatment effects, once the matching strategy has been implemented. This framework holds several key advantages over the conventional approach: application to any variable metric and number of groups; insensitivity to skewed data or outliers; and use of accuracy measures applicable to all prognostic analyses. Moreover, ODA accepts analytic weights, thereby extending the methodology to any study design where weights are used for covariate adjustment or more precise (differential) outcome measurement. One-to-one matching on the propensity score was used as the matching strategy. Covariate balance was assessed using standardized difference in means (conventional approach) and measures of classification accuracy (ODA). Treatment effects were estimated using ordinary least squares regression and ODA. Using empirical data, ODA produced results highly consistent with those obtained via the conventional methodology for assessing covariate balance and estimating treatment effects. When ODA is combined with matching techniques within a treatment effects framework, the results are consistent with conventional approaches. However, given that it provides additional dimensions and robustness to the analysis versus what can currently be achieved using conventional approaches, ODA offers an appealing alternative. © 2016 John Wiley & Sons, Ltd.

  4. Visualizing Molecular Diffusion through Passive Permeability Barriers in Cells: Conventional and Novel Approaches

    PubMed Central

    Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari

    2013-01-01

    Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically-inducible diffusion trap (C-IDT) for probing permeable barriers. PMID:23731778

  5. Continuous Optimization on Constraint Manifolds

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1988-01-01

    This paper demonstrates continuous optimization on the differentiable manifold formed by continuous constraint functions. The first order tensor geodesic differential equation is solved on the manifold in both numerical and closed analytic form for simple nonlinear programs. Advantages and disadvantages with respect to conventional optimization techniques are discussed.

  6. Measuring bio-oil upgrade intermediates and corrosive species with polarity-matched analytical approaches

    DOE PAGES

    Connatser, Raynella M.; Lewis, Sr., Samuel Arthur; Keiser, James R.; ...

    2014-10-03

    Integrating biofuels with conventional petroleum products requires improvements in processing to increase blendability with existing fuels. This work demonstrates analysis techniques for more hydrophilic bio-oil liquids that give improved quantitative and qualitative description of the total acid content and organic acid profiles. To protect infrastructure from damage and reduce the cost associated with upgrading, accurate determination of acid content and representative chemical compound analysis are central imperatives to assessing both the corrosivity and the progress toward removing oxygen and acidity in processed biomass liquids. Established techniques form an ample basis for bio-liquids evaluation. However, early in the upgrading process, themore » unique physical phases and varied hydrophilicity of many pyrolysis liquids can render analytical methods originally designed for use in petroleum-derived oils inadequate. In this work, the water solubility of the organic acids present in bio-oils is exploited in a novel extraction and titration technique followed by analysis on the water-based capillary electrophoresis (CE) platform. The modification of ASTM D664, the standard for Total Acid Number (TAN), to include aqueous carrier solvents improves the utility of that approach for quantifying acid content in hydrophilic bio-oils. Termed AMTAN (modified Total Acid Number), this technique offers 1.2% relative standard deviation and dynamic range comparable to the conventional ASTM method. Furthermore, the results of corrosion product evaluations using several different sources of real bio-oil are discussed in the context of the unique AMTAN and CE analytical approaches developed to facilitate those measurements.« less

  7. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    PubMed

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient

    PubMed Central

    Dongaonkar, R. M.; Laine, G. A.; Stewart, R. H.

    2011-01-01

    Microvascular permeability to water is characterized by the microvascular filtration coefficient (Kf). Conventional gravimetric techniques to estimate Kf rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate Kf estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce Kf from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to Kf and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of Kf in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique. PMID:21346245

  9. Implementing Operational Analytics using Big Data Technologies to Detect and Predict Sensor Anomalies

    NASA Astrophysics Data System (ADS)

    Coughlin, J.; Mital, R.; Nittur, S.; SanNicolas, B.; Wolf, C.; Jusufi, R.

    2016-09-01

    Operational analytics when combined with Big Data technologies and predictive techniques have been shown to be valuable in detecting mission critical sensor anomalies that might be missed by conventional analytical techniques. Our approach helps analysts and leaders make informed and rapid decisions by analyzing large volumes of complex data in near real-time and presenting it in a manner that facilitates decision making. It provides cost savings by being able to alert and predict when sensor degradations pass a critical threshold and impact mission operations. Operational analytics, which uses Big Data tools and technologies, can process very large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, and other relevant information. When combined with predictive techniques, it provides a mechanism to monitor and visualize these data sets and provide insight into degradations encountered in large sensor systems such as the space surveillance network. In this study, data from a notional sensor is simulated and we use big data technologies, predictive algorithms and operational analytics to process the data and predict sensor degradations. This study uses data products that would commonly be analyzed at a site. This study builds on a big data architecture that has previously been proven valuable in detecting anomalies. This paper outlines our methodology of implementing an operational analytic solution through data discovery, learning and training of data modeling and predictive techniques, and deployment. Through this methodology, we implement a functional architecture focused on exploring available big data sets and determine practical analytic, visualization, and predictive technologies.

  10. Technical Development and Application of Soft Computing in Agricultural and Biological Engineering

    USDA-ARS?s Scientific Manuscript database

    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...

  11. Development of Soft Computing and Applications in Agricultural and Biological Engineering

    USDA-ARS?s Scientific Manuscript database

    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...

  12. Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches.

    PubMed

    Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari

    2013-08-01

    Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Computer-Based Instruction and Health Professions Education: A Meta-Analysis of Outcomes.

    ERIC Educational Resources Information Center

    Cohen, Peter A.; Dacanay, Lakshmi S.

    1992-01-01

    The meta-analytic techniques of G. V. Glass were used to statistically integrate findings from 47 comparative studies on computer-based instruction (CBI) in health professions education. A clear majority of the studies favored CBI over conventional methods of instruction. Results show higher-order applications of computers to be especially…

  14. Use of Latent Profile Analysis in Studies of Gifted Students

    ERIC Educational Resources Information Center

    Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L.

    2016-01-01

    To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…

  15. Comparing the onset of maxillary infiltration local anaesthesia and pain experience using the conventional technique vs. the Wand in children.

    PubMed

    Kandiah, P; Tahmassebi, J F

    2012-11-01

    This prospective, randomised, parallel, controlled study was conducted firstly to compare the onset of local anaesthesia (LA) when using the conventional technique versus the Wand computer-controlled LA and secondly to assess the pain experience in children. Thirty children were randomly allocated to the treatment group (Wand) or the control group (conventional). Lidocaine 2% with adrenaline (1:80,000) was given as a buccal infiltration. The onset of pulpal anaesthesia was tested using an analytic electric pulp tester (EPT). The pain experience during the LA was recorded using a modified visual analogue score (VAS). Median time for the onset of LA was 6.30 minutes for the control and 7.25 minutes for the Wand group. Mean pain experience score for the control group was 9.78% as opposed to 8.46% in the Wand group. Statistical analysis showed that there was no statistically significant difference in the onset of LA (p = 0.486) and the pain experience (p = 0.713) between the two groups. When placing a buccal infiltration on upper first permanent molars, the onset of LA and the pain experience was no different using the Wand and the conventional technique.

  16. On-line focusing of flavin derivatives using Dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Britz-McKibbin, Philip; Otsuka, Koji; Terabe, Shigeru

    2002-08-01

    Simple yet effective methods to enhance concentration sensitivity is needed for capillary electrophoresis (CE) to become a practical method to analyze trace levels of analytes in real samples. In this report, the development of a novel on-line preconcentration technique combining dynamic pH junction and sweeping modes of focusing is applied to the sensitive and selective analysis of three flavin derivatives: riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Picomolar (pM) detectability of flavins by CE with laser-induced fluorescence (LIF) detection is demonstrated through effective focusing of large sample volumes (up to 22% capillary length) using a dual pH junction-sweeping focusing mode. This results in greater than a 1,200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (S/N = 3) of approximately 4.0 pM for FAD and FMN. Flavin focusing is examined in terms of analyte mobility dependence on buffer pH, borate complexation and SDS interaction. Dynamic pH junction-sweeping extends on-line focusing to both neutral (hydrophobic) and weakly acidic (hydrophilic) species and is considered useful in cases when either conventional sweeping or dynamic pH junction techniques used alone are less effective for certain classes of analytes. Enhanced focusing performance by this hyphenated method was demonstrated by greater than a 4-fold reduction in flavin bandwidth, as compared to either sweeping or dynamic pH junction, reflected by analyte detector bandwidths <0.20 cm. Novel on-line focusing strategies are required to improve sensitivity in CE, which may be applied toward more effective biochemical analysis methods for diverse types of analytes.

  17. Application of thin layer activation technique for surface wear studies in Zr based materials using charged particle induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Chowdhury, D. P.; Pal, Sujit; Parthasarathy, R.; Mathur, P. K.; Kohli, A. K.; Limaye, P. K.

    1998-09-01

    Thin layer activation (TLA) technique has been developed in Zr based alloy materials, e.g., zircaloy II, using 40 MeV α-particles from Variable Energy Cyclotron Centre at Calcutta. A brief description of the methodology of TLA technique is presented to determine the surface wear. The sensitivity of the measurement of surface wear in zircaloy material is found to be 0.22±0.05 μm. The surface wear is determined by TLA technique in zircaloy material which is used in pressurised heavy water reactor and the values have been compared with that obtained by conventional technique for the analytical validation of the TLA technique.

  18. Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder.

    PubMed

    Walker, Greg; Römann, Philipp; Poller, Bettina; Löbmann, Korbinian; Grohganz, Holger; Rooney, Jeremy S; Huff, Gregory S; Smith, Geoffrey P S; Rades, Thomas; Gordon, Keith C; Strachan, Clare J; Fraser-Miller, Sara J

    2017-12-04

    This study uses a multimodal analytical approach to evaluate the rates of (co)amorphization of milled drug and excipient and the effectiveness of different analytical methods in detecting these changes. Indomethacin and tryptophan were the model substances, and the analytical methods included low-frequency Raman spectroscopy (785 nm excitation and capable of measuring both low- (10 to 250 cm -1 ) and midfrequency (450 to 1800 cm -1 ) regimes, and a 830 nm system (5 to 250 cm -1 )), conventional (200-3000 cm -1 ) Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRPD). The kinetics of amorphization were found to be faster for the mixture, and indeed, for indomethacin, only partial amorphization occurred (after 360 min of milling). Each technique was capable of identifying the transformations, but some, such as low-frequency Raman spectroscopy and XRPD, provided less ambiguous signatures than the midvibrational frequency techniques (conventional Raman and FTIR). The low-frequency Raman spectra showed intense phonon mode bands for the crystalline and cocrystalline samples that could be used as a sensitive probe of order. Multivariate analysis has been used to further interpret the spectral changes. Overall, this study demonstrates the potential of low-frequency Raman spectroscopy, which has several practical advantages over XRPD, for probing (dis-)order during pharmaceutical processing, showcasing its potential for future development, and implementation as an in-line process monitoring method.

  19. Standard addition with internal standardisation as an alternative to using stable isotope labelled internal standards to correct for matrix effects-Comparison and validation using liquid chromatography-​tandem mass spectrometric assay of vitamin D.

    PubMed

    Hewavitharana, Amitha K; Abu Kassim, Nur Sofiah; Shaw, Paul Nicholas

    2018-06-08

    With mass spectrometric detection in liquid chromatography, co-eluting impurities affect the analyte response due to ion suppression/enhancement. Internal standard calibration method, using co-eluting stable isotope labelled analogue of each analyte as the internal standard, is the most appropriate technique available to correct for these matrix effects. However, this technique is not without drawbacks, proved to be expensive because separate internal standard for each analyte is required, and the labelled compounds are expensive or require synthesising. Traditionally, standard addition method has been used to overcome the matrix effects in atomic spectroscopy and was a well-established method. This paper proposes the same for mass spectrometric detection, and demonstrates that the results are comparable to those with the internal standard method using labelled analogues, for vitamin D assay. As conventional standard addition procedure does not address procedural errors, we propose the inclusion of an additional internal standard (not co-eluting). Recoveries determined on human serum samples show that the proposed method of standard addition yields more accurate results than the internal standardisation using stable isotope labelled analogues. The precision of the proposed method of standard addition is superior to the conventional standard addition method. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Gas composition of the January 1983 eruption of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Greenland, L.P.

    1984-01-01

    Gas collections were made from a ???900??C vent both by conventional evacuated-bottle/wet-chemical techniques and by manual pumping of flowthrough bottles. The complete analyses suggest an equilibrium assemblage quenched at 1,010??C, about midway between fountain and vent temperatures. I suggest that the very low C S ratio is due to degassing of CO2 during storage of the magma in a shallow reservoir before eruption. The two sampling techniques yielded analytical data in mutual agreement. ?? 1984.

  1. A close-range photogrammetric technique for mapping neotectonic features in trenches

    USGS Publications Warehouse

    Fairer, G.M.; Whitney, J.W.; Coe, J.A.

    1989-01-01

    Close-range photogrammetric techniques and newly available computerized plotting equipment were used to map exploratory trench walls that expose Quaternary faults in the vicinity of Yucca Mountain, Nevada. Small-scale structural, lithologic, and stratigraphic features can be rapidly mapped by the photogrammetric method. This method is more accurate and significantly more rapid than conventional trench-mapping methods, and the analytical plotter is capable of producing cartographic definition of high resolution when detailed trench maps are necessary. -from Authors

  2. Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review.

    PubMed

    Wieczerzak, M; Namieśnik, J; Kudłak, B

    2016-09-01

    For centuries, mankind has contributed to irreversible environmental changes, but due to the modern science of recent decades, scientists are able to assess the scale of this impact. The introduction of laws and standards to ensure environmental cleanliness requires comprehensive environmental monitoring, which should also meet the requirements of Green Chemistry. The broad spectrum of Green Chemistry principle applications should also include all of the techniques and methods of pollutant analysis and environmental monitoring. The classical methods of chemical analyses do not always match the twelve principles of Green Chemistry, and they are often expensive and employ toxic and environmentally unfriendly solvents in large quantities. These solvents can generate hazardous and toxic waste while consuming large volumes of resources. Therefore, there is a need to develop reliable techniques that would not only meet the requirements of Green Analytical Chemistry, but they could also complement and sometimes provide an alternative to conventional classical analytical methods. These alternatives may be found in bioassays. Commercially available certified bioassays often come in the form of ready-to-use toxkits, and they are easy to use and relatively inexpensive in comparison with certain conventional analytical methods. The aim of this study is to provide evidence that bioassays can be a complementary alternative to classical methods of analysis and can fulfil Green Analytical Chemistry criteria. The test organisms discussed in this work include single-celled organisms, such as cell lines, fungi (yeast), and bacteria, and multicellular organisms, such as invertebrate and vertebrate animals and plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Electrospray Modifications for Advancing Mass Spectrometric Analysis

    PubMed Central

    Meher, Anil Kumar; Chen, Yu-Chie

    2017-01-01

    Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented. PMID:28573082

  4. Biosensors and their applications in detection of organophosphorus pesticides in the environment.

    PubMed

    Hassani, Shokoufeh; Momtaz, Saeideh; Vakhshiteh, Faezeh; Maghsoudi, Armin Salek; Ganjali, Mohammad Reza; Norouzi, Parviz; Abdollahi, Mohammad

    2017-01-01

    This review discusses the past and recent advancements of biosensors focusing on detection of organophosphorus pesticides (OPs) due to their exceptional use during the last decades. Apart from agricultural benefits, OPs also impose adverse toxicological effects on animal and human population. Conventional approaches such as chromatographic techniques used for pesticide detection are associated with several limitations. A biosensor technology is unique due to the detection sensitivity, selectivity, remarkable performance capabilities, simplicity and on-site operation, fabrication and incorporation with nanomaterials. This study also provided specifications of the most OPs biosensors reported until today based on their transducer system. In addition, we highlighted the application of advanced complementary materials and analysis techniques in OPs detection systems. The availability of these new materials associated with new sensing techniques has led to introduction of easy-to-use analytical tools of high sensitivity and specificity in the design and construction of OPs biosensors. In this review, we elaborated the achievements in sensing systems concerning innovative nanomaterials and analytical techniques with emphasis on OPs.

  5. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    PubMed

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.

  6. Traceability of 'Limone di Siracusa PGI' by a multidisciplinary analytical and chemometric approach.

    PubMed

    Amenta, M; Fabroni, S; Costa, C; Rapisarda, P

    2016-11-15

    Food traceability is increasingly relevant with respect to safety, quality and typicality issues. Lemon fruits grown in a typical lemon-growing area of southern Italy (Siracusa), have been awarded the PGI (Protected Geographical Indication) recognition as 'Limone di Siracusa'. Due to its peculiarity, consumers have an increasing interest about this product. The detection of potential fraud could be improved by using the tools linking the composition of this production to its typical features. This study used a wide range of analytical techniques, including conventional techniques and analytical approaches, such as spectral (NIR spectra), multi-elemental (Fe, Zn, Mn, Cu, Li, Sr) and isotopic ((13)C/(12)C, (18)O/(16)O) marker investigations, joined with multivariate statistical analysis, such as PLS-DA (Partial Least Squares Discriminant Analysis) and LDA (Linear Discriminant Analysis), to implement a traceability system to verify the authenticity of 'Limone di Siracusa' production. The results demonstrated a very good geographical discrimination rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Review of methods used for identification of biothreat agents in environmental protection and human health aspects.

    PubMed

    Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Cieślik, Piotr; Michalski, Aleksander J; Niemcewicz, Marcin; Kocik, Janusz; Chomiczewski, Krzysztof

    2014-01-01

    Modern threats of bioterrorism force the need to develop methods for rapid and accurate identification of dangerous biological agents. Currently, there are many types of methods used in this field of studies that are based on immunological or genetic techniques, or constitute a combination of both methods (immuno-genetic). There are also methods that have been developed on the basis of physical and chemical properties of the analytes. Each group of these analytical assays can be further divided into conventional methods (e.g. simple antigen-antibody reactions, classical PCR, real-time PCR), and modern technologies (e.g. microarray technology, aptamers, phosphors, etc.). Nanodiagnostics constitute another group of methods that utilize the objects at a nanoscale (below 100 nm). There are also integrated and automated diagnostic systems, which combine different methods and allow simultaneous sampling, extraction of genetic material and detection and identification of the analyte using genetic, as well as immunological techniques.

  8. Sulphured Polyacrylonitrile Composite Analysed by in operando UV-Visible Spectroscopy and 4-electrode Swagelok Cell.

    PubMed

    Dominko, Robert; Patel, Manu U M; Bele, Marjan; Pejovnik, Stane

    2016-01-01

    The electrochemical characteristics of sulfurized polyacrylonitrile composite (PAN/S) cathodes were compared with the commonly used carbon/S-based composite material. The difference in the working mechanism of these composites was examined. Analytical investigations were performed on both kinds of cathode electrode composites by using two reliable analytical techniques, in-situ UV-Visible spectroscopy and a four-electrode Swagelok cell. This study differentiates the working mechanisms of PAN/S composites from conventional elemental sulphur/carbon composite and also sheds light on factors that could be responsible for capacity fading in the case of PAN/S composites.

  9. Input filter compensation for switching regulators

    NASA Technical Reports Server (NTRS)

    Lee, F. C.

    1984-01-01

    Problems caused by input filter interaction and conventional input filter design techniques are discussed. The concept of feedforward control is modeled with an input filter and a buck regulator. Experimental measurement and comparison to the analytical predictions is carried out. Transient response and the use of a feedforward loop to stabilize the regulator system is described. Other possible applications for feedforward control are included.

  10. A generic standard additions based method to determine endogenous analyte concentrations by immunoassays to overcome complex biological matrix interference.

    PubMed

    Pang, Susan; Cowen, Simon

    2017-12-13

    We describe a novel generic method to derive the unknown endogenous concentrations of analyte within complex biological matrices (e.g. serum or plasma) based upon the relationship between the immunoassay signal response of a biological test sample spiked with known analyte concentrations and the log transformed estimated total concentration. If the estimated total analyte concentration is correct, a portion of the sigmoid on a log-log plot is very close to linear, allowing the unknown endogenous concentration to be estimated using a numerical method. This approach obviates conventional relative quantification using an internal standard curve and need for calibrant diluent, and takes into account the individual matrix interference on the immunoassay by spiking the test sample itself. This technique is based on standard additions for chemical analytes. Unknown endogenous analyte concentrations within even 2-fold diluted human plasma may be determined reliably using as few as four reaction wells.

  11. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    NASA Astrophysics Data System (ADS)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any converter. This conceivably aids the sizing and design of output passive filters. An analytical estimation method has been presented to achieve this purpose for am IMC. Knowledge of the fundamental component in output voltage can be utilized to calculate its Total Harmonic Distortion (THD). The effectiveness of the proposed SVPWM algorithms and the analytical estimation technique is substantiated by simulations in MATLAB / Simulink and experiments on a laboratory prototype of the IMC. Proper comparison plots have been provided to contrast the performance of the proposed methods with the conventional SVPWM method. The behavior of output voltage distortion and CMV with variation in operating parameters like modulation index and output frequency has also been analyzed.

  12. Immuno Nanosensor for the Ultrasensitive Naked Eye Detection of Tuberculosis.

    PubMed

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Jaafar; Wasoh, Helmi; Md Noor, Siti Suraiya; Ahmad Raston, Nurul Hanun; Mohammad, Faruq

    2018-06-14

    In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions. For disease detection, the adapted protocol is based mainly on the conventional ELISA procedure that involves catalase-labeled antibodies, i.e., the enzymes consume hydrogen peroxide and further produce GNPs with the addition of gold (III) chloride. The amount of hydrogen peroxide remaining in the solution determines whether the GNPs solution is to be formed in the color blue or the color red, as it serves as a confirmation for the naked eye detection of TB analytes. However, the conventional ELISA method only shows tonal colors that need a high concentration of analyte to achieve high confidence levels for naked eye detection. Also, in this research, we proposed the incorporation of protein biomarker, Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10), as a means of TB detection using plasmonic ELISA. With the use of this technique, the CFP-10 detection limit can be lowered to 0.01 µg/mL by the naked eye. Further, our developed technique was successfully tested and confirmed with sputum samples from patients diagnosed with positive TB, thereby providing enough evidence for the utilization of our technique in the early diagnosis of TB disease.

  13. Hybrid perturbation methods based on statistical time series models

    NASA Astrophysics Data System (ADS)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  14. Nanotechnology and chip level systems for pressure driven liquid chromatography and emerging analytical separation techniques: a review.

    PubMed

    Lavrik, N V; Taylor, L T; Sepaniak, M J

    2011-05-23

    Pressure driven liquid chromatography (LC) is a powerful and versatile separation technique particularly suitable for differentiating species present in extremely small quantities. This paper briefly reviews main historical trends and focuses on more recently developed technological approaches in miniaturization and on-chip integration of LC columns. The review emphasizes enabling technologies as well as main technological challenges specific to pressure driven separations and highlights emerging concepts that could ultimately overcome fundamental limitations of conventional LC columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Multiclass Bayes error estimation by a feature space sampling technique

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.

    1979-01-01

    A general Gaussian M-class N-feature classification problem is defined. An algorithm is developed that requires the class statistics as its only input and computes the minimum probability of error through use of a combined analytical and numerical integration over a sequence simplifying transformations of the feature space. The results are compared with those obtained by conventional techniques applied to a 2-class 4-feature discrimination problem with results previously reported and 4-class 4-feature multispectral scanner Landsat data classified by training and testing of the available data.

  16. Laboratory Production of Lemon Liqueur (Limoncello) by Conventional Maceration and a Two-Syringe System to Illustrate Rapid Solid-Liquid Dynamic Extraction

    ERIC Educational Resources Information Center

    Naviglio, Daniele; Montesano, Domenico; Gallo, Monica

    2015-01-01

    Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…

  17. Method for improving accuracy in full evaporation headspace analysis.

    PubMed

    Xie, Wei-Qi; Chai, Xin-Sheng

    2017-05-01

    We report a new headspace analytical method in which multiple headspace extraction is incorporated with the full evaporation technique. The pressure uncertainty caused by the solid content change in the samples has a great impact to the measurement accuracy in the conventional full evaporation headspace analysis. The results (using ethanol solution as the model sample) showed that the present technique is effective to minimize such a problem. The proposed full evaporation multiple headspace extraction analysis technique is also automated and practical, and which could greatly broaden the applications of the full-evaporation-based headspace analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.

  19. Effect-Based Screening Methods for Water Quality Characterization Will Augment Conventional Analyte-by-Analyte Chemical Methods in Research As Well As Regulatory Monitoring

    EPA Science Inventory

    Conventional approaches to water quality characterization can provide data on individual chemical components of each water sample. This analyte-by-analyte approach currently serves many useful research and compliance monitoring needs. However these approaches, which require a ...

  20. [Enzymatic analysis of the quality of foodstuffs].

    PubMed

    Kolesnov, A Iu

    1997-01-01

    Enzymatic analysis is an independent and separate branch of enzymology and analytical chemistry. It has become one of the most important methodologies used in food analysis. Enzymatic analysis allows the quick, reliable determination of many food ingredients. Often these contents cannot be determined by conventional methods, or if methods are available, they are determined only with limited accuracy. Today, methods of enzymatic analysis are being increasingly used in the investigation of foodstuffs. Enzymatic measurement techniques are used in industry, scientific and food inspection laboratories for quality analysis. This article describes the requirements of an optimal analytical method: specificity, sample preparation, assay performance, precision, sensitivity, time requirement, analysis cost, safety of reagents.

  1. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    PubMed

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  2. New techniques for imaging and analyzing lung tissue.

    PubMed Central

    Roggli, V L; Ingram, P; Linton, R W; Gutknecht, W F; Mastin, P; Shelburne, J D

    1984-01-01

    The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D FIGURE 4. FIGURE 5. FIGURE 7. A FIGURE 7. B FIGURE 8. A FIGURE 8. B FIGURE 8. C FIGURE 9. A FIGURE 9. B FIGURE 10. PMID:6090115

  3. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines

    PubMed Central

    Zhang, Lei; Dou, Xiao-Wen; Zhang, Cheng; Logrieco, Antonio F.; Yang, Mei-Hua

    2018-01-01

    The presence of mycotoxins in herbal medicines is an established problem throughout the entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs) typically involves challenging sample pretreatment procedures and an efficient detection instrument. However, although numerous reviews have been published regarding the occurrence of mycotoxins in herbal medicines, few of them provided a detailed summary of related analytical methods for mycotoxin determination. This review focuses on analytical techniques including sampling, extraction, cleanup, and detection for mycotoxin determination in herbal medicines established within the past ten years. Dedicated sections of this article address the significant developments in sample preparation, and highlight the importance of this procedure in the analytical technology. This review also summarizes conventional chromatographic techniques for mycotoxin qualification or quantitation, as well as recent studies regarding the development and application of screening assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding the advanced research that has been done and closes with an indication of future demand for the emerging technologies. PMID:29393905

  4. Large-scale retrieval for medical image analytics: A comprehensive review.

    PubMed

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).

    PubMed

    Taylor, Carl; Lough, Fraser; Stanforth, Stephen P; Schwalbe, Edward C; Fowlis, Ian A; Dean, John R

    2017-07-01

    Listeria monocytogenes is a Gram-positive bacterium and an opportunistic food-borne pathogen which poses significant risk to the immune-compromised and pregnant due to the increased likelihood of acquiring infection and potential transmission of infection to the unborn child. Conventional methods of analysis suffer from either long turn-around times or lack the ability to discriminate between Listeria spp. reliably. This paper investigates an alternative method of detecting Listeria spp. using two novel enzyme substrates that liberate exogenous volatile organic compounds in the presence of α-mannosidase and D-alanyl aminopeptidase. The discriminating capabilities of this approach for identifying L. monocytogenes from other species of Listeria are investigated. The liberated volatile organic compounds (VOCs) are detected using an automated analytical technique based on static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS). The results obtained by SHS-MCC-GC-IMS are compared with those obtained by the more conventional analytical technique of headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results found that it was possible to differentiate between L. monocytogenes and L. ivanovii, based on their VOC response from α-mannosidase activity.

  6. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis.

    PubMed

    Hölscher, Dirk; Dhakshinamoorthy, Suganthagunthalam; Alexandrov, Theodore; Becker, Michael; Bretschneider, Tom; Buerkert, Andreas; Crecelius, Anna C; De Waele, Dirk; Elsen, Annemie; Heckel, David G; Heklau, Heike; Hertweck, Christian; Kai, Marco; Knop, Katrin; Krafft, Christoph; Maddula, Ravi K; Matthäus, Christian; Popp, Jürgen; Schneider, Bernd; Schubert, Ulrich S; Sikora, Richard A; Svatoš, Aleš; Swennen, Rony L

    2014-01-07

    The global yield of bananas-one of the most important food crops-is severely hampered by parasites, such as nematodes, which cause yield losses up to 75%. Plant-nematode interactions of two banana cultivars differing in susceptibility to Radopholus similis were investigated by combining the conventional and spatially resolved analytical techniques (1)H NMR spectroscopy, matrix-free UV-laser desorption/ionization mass spectrometric imaging, and Raman microspectroscopy. This innovative combination of analytical techniques was applied to isolate, identify, and locate the banana-specific type of phytoalexins, phenylphenalenones, in the R. similis-caused lesions of the plants. The striking antinematode activity of the phenylphenalenone anigorufone, its ingestion by the nematode, and its subsequent localization in lipid droplets within the nematode is reported. The importance of varying local concentrations of these specialized metabolites in infected plant tissues, their involvement in the plant's defense system, and derived strategies for improving banana resistance are highlighted.

  7. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.Q.; Hor, P.J.; Howe, D.

    1997-09-01

    There is an increasing requirement for controlled linear motion over short and long strokes, in the factory automation and packaging industries, for example. Linear brushless PM motors could offer significant advantages over conventional actuation technologies, such as motor driven cams and linkages and pneumatic rams--in terms of efficiency, operating bandwidth, speed and thrust control, stroke and positional accuracy, and indeed over other linear motor technologies, such as induction motors. Here, a finite element/analytical based technique for the prediction of cogging force in a novel topology of slotted linear brushless permanent magnet motor has been developed and validated. The various forcemore » components, which influence cogging are pre-calculated by the finite element analysis of some basic magnetic structures, facilitate the analytical synthesis of the resultant cogging force. The technique can be used to aid design for the minimization of cogging.« less

  8. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  9. Hyperspectral imaging for non-contact analysis of forensic traces.

    PubMed

    Edelman, G J; Gaston, E; van Leeuwen, T G; Cullen, P J; Aalders, M C G

    2012-11-30

    Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers significant potential for the detection, visualization, identification and age estimation of forensic traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical tool for forensic science. This paper provides an overview of the principles, instrumentation and analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI technology motivating forensic science applications, e.g. the development of portable and fast image acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of possible future applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Characterization of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis

    PubMed Central

    Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli (Lucy)

    2014-01-01

    Sweet basil, Ocimum basilicum., is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1 min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. PMID:24518341

  11. Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis.

    PubMed

    Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli Lucy

    2014-07-01

    Sweet basil, Ocimum basilicum, is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome.

    PubMed

    Chetwynd, Andrew J; David, Arthur; Hill, Elizabeth M; Abdul-Sada, Alaa

    2014-10-01

    Mass spectrometry (MS) profiling techniques are used for analysing metabolites and xenobiotics in biofluids; however, detection of low abundance compounds using conventional MS techniques is poor. To counter this, nanoflow ultra-high-pressure liquid chromatography-nanoelectrospray ionization-time-of-flight MS (nUHPLC-nESI-TOFMS), which has been used primarily for proteomics, offers an innovative prospect for profiling small molecules. Compared to conventional UHPLC-ESI-TOFMS, nUHPLC-nESI-TOFMS enhanced detection limits of a variety of (xeno)metabolites by between 2 and 2000-fold. In addition, this study demonstrates for the first time excellent repeatability and reproducibility for analysis of urine and plasma samples using nUHPLC-nESI-TOFMS, supporting implementation of this platform as a novel approach for high-throughput (xeno)metabolomics. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  14. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques.

    PubMed

    Kranz, Christine

    2014-01-21

    In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.

  15. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novelmore » analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.« less

  16. Multivariate Curve Resolution Applied to Infrared Reflection Measurements of Soil Contaminated with an Organophosphorus Analyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, Neal B.; Blake, Thomas A.; Gassman, Paul L.

    2006-07-01

    Multivariate curve resolution (MCR) is a powerful technique for extracting chemical information from measured spectra on complex mixtures. The difficulty with applying MCR to soil reflectance measurements is that light scattering artifacts can contribute much more variance to the measurements than the analyte(s) of interest. Two methods were integrated into a MCR decomposition to account for light scattering effects. Firstly, an extended mixture model using pure analyte spectra augmented with scattering ‘spectra’ was used for the measured spectra. And secondly, second derivative preprocessed spectra, which have higher selectivity than the unprocessed spectra, were included in a second block as amore » part of the decomposition. The conventional alternating least squares (ALS) algorithm was modified to simultaneously decompose the measured and second derivative spectra in a two-block decomposition. Equality constraints were also included to incorporate information about sampling conditions. The result was an MCR decomposition that provided interpretable spectra from soil reflectance measurements.« less

  17. UPb ages of zircon rims: A new analytical method using the air-abrasion technique

    USGS Publications Warehouse

    Aleinikoff, J.N.; Winegarden, D.L.; Walter, M.

    1990-01-01

    We present a new technique for directly dating, by conventional techniques, the rims of zircons. Several circumstances, such as a xenocrystic or inherited component in igneous zircon and metamorphic overgrowths on igneous cores, can result in grains with physically distinct age components. Pneumatic abrasion has been previously shown by Krogh to remove overgrowths and damaged areas of zircon, leaving more resistant and isotopically less disturbed parts available for analysis. A new abrader design, which is capable of very gently grinding only tips and interfacial edges of even needle-like grains, permits easy collection of abraded material for dating. Five examples demonstrate the utility of the "dust-collecting" technique, including two studies that compare conventional, ion microprobe and abrader data. Common Pb may be strongly concentrated in the outermost zones of many zircons and this Pb is not easily removed by leaching (even in weak HF). Thus, the benefit of removing only the outermost zones (and avoiding mixing of age components) is somewhat compromised by the much higher common Pb contents which result in less precise age determinations. A very brief abrasion to remove the high common Pb zones prior to collection of material for dating is selected. ?? 1990.

  18. Fundamentals and techniques of nonimaging optics research

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1987-07-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line or trumpet concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. Present efforts can be classed into two main areas: (1) classical geometrical nonimaging optics, and (2) logical extensions of nonimaging concepts to the physical optics domain.

  19. Fundamentals and techniques of nonimaging optics research at the University of Chicago

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1986-11-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. In the most recent phase, our efforts can be classed into two main areas; (a) ''classical'' geometrical nonimaging optics; and (b) logical extensions of nonimaging concepts to the physical optics domain.

  20. On the power spectral density of quadrature modulated signals. [satellite communication

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.

    1981-01-01

    The conventional (no-offset) quadriphase modulation technique suffers from the fact that hardlimiting will restore the frequency sidelobes removed by proper filtering. Thus, offset keyed quadriphase modulation techniques are often proposed for satellite communication with bandpass hardlimiting. A unified theory is developed which is capable of describing the power spectral density before and after the hardlimiting process. Using the in-phase and the quadrature phase channel with arbitrary pulse shaping, analytical results are established for generalized quadriphase modulation. In particular MSK, OPSK or the recently introduced overlapped raised cosine keying all fall into this general category. It is shown that for a linear communication channel, the power spectral density of the modulated signal remains unchanged regardless of the offset delay. Furthermore, if the in phase and the quadrature phase channel have identical pulse shapes without offset, the spectrum after bandpass hardlimiting will be identical to that of the conventional QPSK modulation. Numerical examples are given for various modulation techniques. A case of different pulse shapes in the in phase and the quadrature phase channel is also considered.

  1. Immunoanalysis Methods for the Detection of Dioxins and Related Chemicals

    PubMed Central

    Tian, Wenjing; Xie, Heidi Qunhui; Fu, Hualing; Pei, Xinhui; Zhao, Bin

    2012-01-01

    With the development of biotechnology, approaches based on antibodies, such as enzyme-linked immunosorbent assay (ELISA), active aryl hydrocarbon immunoassay (Ah-I) and other multi-analyte immunoassays, have been utilized as alternatives to the conventional techniques based on gas chromatography and mass spectroscopy for the analysis of dioxin and dioxin-like compounds in environmental and biological samples. These screening methods have been verified as rapid, simple and cost-effective. This paper provides an overview on the development and application of antibody-based approaches, such as ELISA, Ah-I, and multi-analyte immunoassays, covering the sample extraction and cleanup, antigen design, antibody preparation and immunoanalysis. However, in order to meet the requirements for on-site fast detection and relative quantification of dioxins in the environment, further optimization is needed to make these immuno-analytical methods more sensitive and easy to use. PMID:23443395

  2. Overcoming the challenges of conventional dispersive liquid-liquid microextraction: analysis of THMs in chlorinated swimming pools.

    PubMed

    Faraji, Hakim; Helalizadeh, Masoumeh; Kordi, Mohammad Reza

    2018-01-01

    A rapid, simple, and sensitive approach to the analysis of trihalomethanes (THMs) in swimming pool water samples has been developed. The main goal of this study was to overcome or to improve the shortcomings of conventional dispersive liquid-liquid microextraction (DLLME) and to maximize the realization of green analytical chemistry principles. The method involves a simple vortex-assisted microextraction step, in the absence of the dispersive solvent, followed by salting-out effect for the elimination of the centrifugation step. A bell-shaped device and a solidifiable solvent were used to simplify the extraction solvent collection after phase separation. Optimization of the independent variables was performed by using chemometric methods in three steps. The method was statistically validated based on authentic guidance documents. The completion time for extraction was less than 8 min, and the limits of detection were in the range between 4 and 72 ng L -1 . Using this method, good linearity and precision were achieved. The results of THMs determination in different real samples showed that in some cases the concentration of total THMs was more than threshold values of THMs determined by accredited healthcare organizations. This method indicated satisfactory analytical figures of merit. Graphical Abstract A novel green microextraction technique for overcoming the challenges of conventional DLLME. The proposed procedure complies with the principles of green/sustainable analytical chemistry, comprising decreasing the sample size, making easy automation of the process, reducing organic waste, diminishing energy consumption, replacing toxic reagents with safer reagents, and enhancing operator safety.

  3. Surface enhanced Raman spectroscopy (SERS) from a molecule adsorbed on a nanoscale silver particle cluster in a holographic plate

    NASA Astrophysics Data System (ADS)

    Jusinski, Leonard E.; Bahuguna, Ramen; Das, Amrita; Arya, Karamjeet

    2006-02-01

    Surface enhanced Raman spectroscopy has become a viable technique for the detection of single molecules. This highly sensitive technique is due to the very large (up to 14 orders in magnitude) enhancement in the Raman cross section when the molecule is adsorbed on a metal nanoparticle cluster. We report here SERS (Surface Enhanced Raman Spectroscopy) experiments performed by adsorbing analyte molecules on nanoscale silver particle clusters within the gelatin layer of commercially available holographic plates which have been developed and fixed. The Ag particles range in size between 5 - 30 nanometers (nm). Sample preparation was performed by immersing the prepared holographic plate in an analyte solution for a few minutes. We report here the production of SERS signals from Rhodamine 6G (R6G) molecules of nanomolar concentration. These measurements demonstrate a fast, low cost, reproducible technique of producing SERS substrates in a matter of minutes compared to the conventional procedure of preparing Ag clusters from colloidal solutions. SERS active colloidal solutions require up to a full day to prepare. In addition, the preparations of colloidal aggregates are not consistent in shape, contain additional interfering chemicals, and do not generate consistent SERS enhancement. Colloidal solutions require the addition of KCl or NaCl to increase the ionic strength to allow aggregation and cluster formation. We find no need to add KCl or NaCl to create SERS active clusters in the holographic gelatin matrix. These holographic plates, prepared using simple, conventional procedures, can be stored in an inert environment and preserve SERS activity after several weeks subsequent to preparation.

  4. Experiences with Probabilistic Analysis Applied to Controlled Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Giesy, Daniel P.

    2004-01-01

    This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.

  5. Determination of polybrominated diphenyl ethers (PBDEs) in dust samples collected in air conditioning filters of different usage - method development.

    PubMed

    Śmiełowska, M; Zabiegała, B

    2018-06-19

    This study presents the results of studies aimed at the development of an analytical procedure for separation, identification, and determination of PBDEs compounds in dust samples collected from automotive cabin air filters and samples collected from filters installed as part of the air purification system in academic facilities. Ultrasound-assisted dispersive solid phase extraction (UA-dSPE) was found to perform better in terms of extract purification than the conventional SPE technique. GC-EIMS was used for final determination of analytes. The concentrations of PBDEs in car filters ranged from < LOD to 688 ng/g while from < LOD to 247 ng/g in dust from air conditioning filters. BDE-47 and BDE-100 were reported the dominating congeners. The estimated exposure to PBDEs via ingestion of dust from car filters varied from 0.00022 to 0.012 ng/day in toddlers and from 0.000036 to 0.0029 ng/day in adults; dust from air conditioning filters: from 0.017 to 0.25 ng/day in toddlers and from 0.0029 to 0.042 ng/day. In addition, an attempt was made at extracting PBDEs from a dust samples using the matrix solid-phase dispersion (MSPD) technique as a promising alternative to conventional SPE separations. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Speckle-field propagation in 'frozen' turbulence: brightness function approach

    NASA Astrophysics Data System (ADS)

    Dudorov, Vadim V.; Vorontsov, Mikhail A.; Kolosov, Valeriy V.

    2006-08-01

    Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.

  7. Feasibility of motion laws for planar one degree of freedom linkage mechanisms at dead point configurations

    NASA Astrophysics Data System (ADS)

    Lores García, E.; Veciana Fontanet, J. M.; Jordi Nebot, L.

    2018-01-01

    This paper proposes an analytical solution of the Inverse Kinematics (IK) problem at dead point configurations for any planar one degree of freedom linkage mechanism, with regard to the continuity Cn of the motion law. The systems analyzed are those whose elements are linked with lower pairs and do not present redundancies. The study aims to provide the user with some rules to facilitate the design of feasible motion profiles to be reproduced by conventional electrical actuators at these configurations. During the last decades, several methods and techniques have been developed to study this specific configuration. However, these techniques are mainly focused on solving numerically the IK indeterminacy, rather than analyzing the motion laws that the mechanisms are able to perform at these particular configurations. The analysis presented in this paper has been carried out differentiating and applying l'Hôpital's rule to the system of constraint equations ϕ (q) of the mechanism. The study also considers the feasibility of the time-domain profiles to be reproduced with conventional electrical actuators (i.e. AC/DC motors, linear actuators, etc.). To show the usefulness and effectiveness of the method, the development includes the analytical application and numerical simulations for two common one degree of freedom systems: a slider-crank and a four linkage mechanisms. Finally, experimental results are presented on a four linkage mechanism test bed.

  8. Speckle-field propagation in 'frozen' turbulence: brightness function approach.

    PubMed

    Dudorov, Vadim V; Vorontsov, Mikhail A; Kolosov, Valeriy V

    2006-08-01

    Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.

  9. Experimental validation of spatial Fourier transform-based multiple sound zone generation with a linear loudspeaker array.

    PubMed

    Okamoto, Takuma; Sakaguchi, Atsushi

    2017-03-01

    Generating acoustically bright and dark zones using loudspeakers is gaining attention as one of the most important acoustic communication techniques for such uses as personal sound systems and multilingual guide services. Although most conventional methods are based on numerical solutions, an analytical approach based on the spatial Fourier transform with a linear loudspeaker array has been proposed, and its effectiveness has been compared with conventional acoustic energy difference maximization and presented by computer simulations. To describe the effectiveness of the proposal in actual environments, this paper investigates the experimental validation of the proposed approach with rectangular and Hann windows and compared it with three conventional methods: simple delay-and-sum beamforming, contrast maximization, and least squares-based pressure matching using an actually implemented linear array of 64 loudspeakers in an anechoic chamber. The results of both the computer simulations and the actual experiments show that the proposed approach with a Hann window more accurately controlled the bright and dark zones than the conventional methods.

  10. Photoacoustic spectroscopy of condensed matter

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.

    1978-01-01

    Photoacoustic spectroscopy is a new analytical tool that provides a simple nondestructive technique for obtaining information about the electronic absorption spectrum of samples such as powders, semisolids, gels, and liquids. It can also be applied to samples which cannot be examined by conventional optical methods. Numerous applications of this technique in the field of inorganic and organic semiconductors, biology, and catalysis have been described. Among the advantages of photoacoustic spectroscopy, the signal is almost insensitive to light scattering by the sample and information can be obtained about nonradiative deactivation processes. Signal saturation, which can modify the intensity of individual absorption bands in special cases, is a drawback of the method.

  11. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  12. Deriving and Analyzing Analytical Structures of a Class of Typical Interval Type-2 TS Fuzzy Controllers.

    PubMed

    Zhou, Haibo; Ying, Hao

    2017-09-01

    A conventional controller's explicit input-output mathematical relationship, also known as its analytical structure, is always available for analysis and design of a control system. In contrast, virtually all type-2 (T2) fuzzy controllers are treated as black-box controllers in the literature in that their analytical structures are unknown, which inhibits precise and comprehensive understanding and analysis. In this regard, a long-standing fundamental issue remains unresolved: how a T2 fuzzy set's footprint of uncertainty, a key element differentiating a T2 controller from a type-1 (T1) controller, affects a controller's analytical structure. In this paper, we describe an innovative technique for deriving analytical structures of a class of typical interval T2 (IT2) TS fuzzy controllers. This technique makes it possible to analyze the analytical structures of the controllers to reveal the role of footprints of uncertainty in shaping the structures. Specifically, we have mathematically proven that under certain conditions, the larger the footprints, the more the IT2 controllers resemble linear or piecewise linear controllers. When the footprints are at their maximum, the IT2 controllers actually become linear or piecewise linear controllers. That is to say the smaller the footprints, the more nonlinear the controllers. The most nonlinear IT2 controllers are attained at zero footprints, at which point they become T1 controllers. This finding implies that sometimes if strong nonlinearity is most important and desired, one should consider using a smaller footprint or even just a T1 fuzzy controller. This paper exemplifies the importance and value of the analytical structure approach for comprehensive analysis of T2 fuzzy controllers.

  13. First Order Reliability Application and Verification Methods for Semistatic Structures

    NASA Technical Reports Server (NTRS)

    Verderaime, Vincent

    1994-01-01

    Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored by conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments, its stress audits are shown to be arbitrary and incomplete, and it compromises high strength materials performance. A reliability method is proposed which combines first order reliability principles with deterministic design variables and conventional test technique to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety index expression. The application is reduced to solving for a factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and with the pace of semistatic structural designs.

  14. Development of lightweight aluminum compression panels reinforced by boron-epoxy infiltrated extrusions

    NASA Technical Reports Server (NTRS)

    Roy, P. A.; Mcelman, J. A.; Henshaw, J.

    1973-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiencies afforded by the selective reinforcement of conventional aluminum compression panels with unidirectional boron epoxy composite materials. A unique approach for selective reinforcement was utilized called boron/epoxy infiltration. This technique uses extruded metal sections with preformed hollow voids into which unidirectional boron filaments are drawn and subsequently infiltrated with resin to form an integral part. Simplified analytical models were developed to investigate the behavior of stiffener webs with reinforced flanges. Theoretical results are presented demonstrating the effects of transverse shear, of the reinforcement, flange eccentricity and torsional stiffness in such construction. A series of 55 tests were conducted on boron-infiltrated rods and extruded structural sections.

  15. Determination of finasteride and its metabolite in urine by dispersive liquid-liquid microextraction combined with field-enhanced sample stacking and sweeping.

    PubMed

    Chen, Chun-Hsien; Chao, Yu-Ying; Lin, Yi-Hui; Chen, Yen-Ling

    2018-04-27

    The on-line preconcentration technique of field-enhanced sample stacking and sweeping (FESS-sweeping) are combined with dispersive liquid-liquid microextraction (DLLME) to monitor the concentrations of finasteride, which is used in the treatment of androgenetic alopecia, and its metabolite, finasteride carboxylic acid (M3), in urine samples. DLLME is used to concentrate and eliminate the interferences of urine samples and uses chloroform as an extracting solvent and acetonitrile as a disperser solvent. A high conductivity buffer (HCB) was introduced into capillary and then sample plug (90.7% capillary length) was injected into capillary. After applying voltage, the sodium dodecyl sulfate (SDS) swept the analytes from the low conductivity sample solution into HCB. The analytes were concentrated on the field-enhanced sample stacking boundary. The limit of detection for the analytes is 20 ng mL -1 . The sensitivity enrichment of finasteride and M3 are 362-fold and 480-fold, respectively, compared with the conventional MEKC method. The on-line preconcentration technique of field-enhanced sample stacking and sweeping possess good selectivity because the endogenous steroid did not interfere the detection of finasteride and M3. The analytical technique is applied to investigate the concentrations in urine samples from patients who have been administered finasteride for the treatment of androgenetic alopecia; the amount of M3 detected in 12 h was 72.69 ± 4.18 μg. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis

    PubMed Central

    Hölscher, Dirk; Dhakshinamoorthy, Suganthagunthalam; Alexandrov, Theodore; Becker, Michael; Bretschneider, Tom; Buerkert, Andreas; Crecelius, Anna C.; De Waele, Dirk; Elsen, Annemie; Heckel, David G.; Heklau, Heike; Hertweck, Christian; Kai, Marco; Knop, Katrin; Krafft, Christoph; Maddula, Ravi K.; Matthäus, Christian; Popp, Jürgen; Schneider, Bernd; Schubert, Ulrich S.; Sikora, Richard A.; Svatoš, Aleš; Swennen, Rony L.

    2014-01-01

    The global yield of bananas—one of the most important food crops—is severely hampered by parasites, such as nematodes, which cause yield losses up to 75%. Plant–nematode interactions of two banana cultivars differing in susceptibility to Radopholus similis were investigated by combining the conventional and spatially resolved analytical techniques 1H NMR spectroscopy, matrix-free UV-laser desorption/ionization mass spectrometric imaging, and Raman microspectroscopy. This innovative combination of analytical techniques was applied to isolate, identify, and locate the banana-specific type of phytoalexins, phenylphenalenones, in the R. similis-caused lesions of the plants. The striking antinematode activity of the phenylphenalenone anigorufone, its ingestion by the nematode, and its subsequent localization in lipid droplets within the nematode is reported. The importance of varying local concentrations of these specialized metabolites in infected plant tissues, their involvement in the plant’s defense system, and derived strategies for improving banana resistance are highlighted. PMID:24324151

  17. An analytical method to simulate the H I 21-cm visibility signal for intensity mapping experiments

    NASA Astrophysics Data System (ADS)

    Sarkar, Anjan Kumar; Bharadwaj, Somnath; Marthi, Visweshwar Ram

    2018-01-01

    Simulations play a vital role in testing and validating H I 21-cm power spectrum estimation techniques. Conventional methods use techniques like N-body simulations to simulate the sky signal which is then passed through a model of the instrument. This makes it necessary to simulate the H I distribution in a large cosmological volume, and incorporate both the light-cone effect and the telescope's chromatic response. The computational requirements may be particularly large if one wishes to simulate many realizations of the signal. In this paper, we present an analytical method to simulate the H I visibility signal. This is particularly efficient if one wishes to simulate a large number of realizations of the signal. Our method is based on theoretical predictions of the visibility correlation which incorporate both the light-cone effect and the telescope's chromatic response. We have demonstrated this method by applying it to simulate the H I visibility signal for the upcoming Ooty Wide Field Array Phase I.

  18. SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping control.

    PubMed

    Parr, Maria Kristina; Wuest, Bernhard; Naegele, Edgar; Joseph, Jan F; Wenzel, Maxi; Schmidt, Alexander H; Stanic, Mijo; de la Torre, Xavier; Botrè, Francesco

    2016-09-01

    HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.

  19. Determination of trace level genotoxic impurities in small molecule drug substances using conventional headspace gas chromatography with contemporary ionic liquid diluents and electron capture detection.

    PubMed

    Ho, Tien D; Yehl, Peter M; Chetwyn, Nik P; Wang, Jin; Anderson, Jared L; Zhong, Qiqing

    2014-09-26

    Ionic liquids (ILs) were used as a new class of diluents for the analysis of two classes of genotoxic impurities (GTIs), namely, alkyl/aryl halides and nitro-aromatics, in small molecule drug substances by headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD). This novel approach using ILs as contemporary diluents greatly broadens the applicability of HS-GC for the determination of high boiling (≥ 130°C) analytes including GTIs with limits of detection (LOD) ranging from 5 to 500 parts-per-billion (ppb) of analytes in a drug substance. This represents up to tens of thousands-fold improvement compared to traditional HS-GC diluents such as dimethyl sulfoxide (DMSO) and dimethylacetamide (DMAC). Various ILs were screened to determine their suitability as diluents for the HS-GC/ECD analysis. Increasing the HS oven temperatures resulted in varying responses for alkyl/aryl halides and a significant increase in response for all nitroaromatic GTIs. Linear ranges of up to five orders of magnitude were found for a number of analytes. The technique was validated on two active pharmaceutical ingredients with excellent recovery. This simple and robust methodology offers a key advantage in the ease of method transfer from development laboratories to quality control environments since conventional validated chromatographic data systems and GC instruments can be used. For many analytes, it is a cost effective alternative to more complex trace analytical methodologies like LC/MS and GC/MS, and significantly reduces the training needed for operation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy

    USGS Publications Warehouse

    Meibom, A.; Stage, M.; Wooden, J.; Constantz, B.R.; Dunbar, R.B.; Owen, A.; Grumet, N.; Bacon, C.R.; Chamberlain, C.P.

    2003-01-01

    In thermodynamic equilibrium with sea water the Sr/Ca ratio of aragonite varies predictably with temperature and the Sr/Ca ratio in coral have thus become a frequently used proxy for past Sea Surface Temperature (SST). However, biological effects can offset the Sr/Ca ratio from its equilibrium value. We report high spatial resolution ion microprobe analyses of well defined skeletal elements in the reef-building coral Porites lutea that reveal distinct monthly oscillations in the Sr/Ca ratio, with an amplitude in excess of ten percent. The extreme Sr/Ca variations, which we propose result from metabolic changes synchronous with the lunar cycle, introduce variability in Sr/Ca measurements based on conventional sampling techniques well beyond the analytical precision. These variations can limit the accuracy of Sr/Ca paleothermometry by conventional sampling techniques to about 2??C. Our results may help explain the notorious difficulties involved in obtaining an accurate and consistent calibration of the Sr/Ca vs. SST relationship.

  1. Evaluation of purity with its uncertainty value in high purity lead stick by conventional and electro-gravimetric methods

    PubMed Central

    2013-01-01

    Background A conventional gravimetry and electro-gravimetry study has been carried out for the precise and accurate purity determination of lead (Pb) in high purity lead stick and for preparation of reference standard. Reference materials are standards containing a known amount of an analyte and provide a reference value to determine unknown concentrations or to calibrate analytical instruments. A stock solution of approximate 2 kg has been prepared after dissolving approximate 2 g of Pb stick in 5% ultra pure nitric acid. From the stock solution five replicates of approximate 50 g have been taken for determination of purity by each method. The Pb has been determined as PbSO4 by conventional gravimetry, as PbO2 by electro gravimetry. The percentage purity of the metallic Pb was calculated accordingly from PbSO4 and PbO2. Results On the basis of experimental observations it has been concluded that by conventional gravimetry and electro-gravimetry the purity of Pb was found to be 99.98 ± 0.24 and 99.97 ± 0.27 g/100 g and on the basis of Pb purity the concentration of reference standard solutions were found to be 1000.88 ± 2.44 and 1000.81 ± 2.68 mg kg-1 respectively with 95% confidence level (k = 2). The uncertainty evaluation has also been carried out in Pb determination following EURACHEM/GUM guidelines. The final analytical results quantifying uncertainty fulfills this requirement and gives a measure of the confidence level of the concerned laboratory. Conclusions Gravimetry is the most reliable technique in comparison to titremetry and instrumental method and the results of gravimetry are directly traceable to SI unit. Gravimetric analysis, if methods are followed carefully, provides for exceedingly precise analysis. In classical gravimetry the major uncertainties are due to repeatability but in electro-gravimetry several other factors also affect the final results. PMID:23800080

  2. Evaluation of purity with its uncertainty value in high purity lead stick by conventional and electro-gravimetric methods.

    PubMed

    Singh, Nahar; Singh, Niranjan; Tripathy, S Swarupa; Soni, Daya; Singh, Khem; Gupta, Prabhat K

    2013-06-26

    A conventional gravimetry and electro-gravimetry study has been carried out for the precise and accurate purity determination of lead (Pb) in high purity lead stick and for preparation of reference standard. Reference materials are standards containing a known amount of an analyte and provide a reference value to determine unknown concentrations or to calibrate analytical instruments. A stock solution of approximate 2 kg has been prepared after dissolving approximate 2 g of Pb stick in 5% ultra pure nitric acid. From the stock solution five replicates of approximate 50 g have been taken for determination of purity by each method. The Pb has been determined as PbSO4 by conventional gravimetry, as PbO2 by electro gravimetry. The percentage purity of the metallic Pb was calculated accordingly from PbSO4 and PbO2. On the basis of experimental observations it has been concluded that by conventional gravimetry and electro-gravimetry the purity of Pb was found to be 99.98 ± 0.24 and 99.97 ± 0.27 g/100 g and on the basis of Pb purity the concentration of reference standard solutions were found to be 1000.88 ± 2.44 and 1000.81 ± 2.68 mg kg-1 respectively with 95% confidence level (k = 2). The uncertainty evaluation has also been carried out in Pb determination following EURACHEM/GUM guidelines. The final analytical results quantifying uncertainty fulfills this requirement and gives a measure of the confidence level of the concerned laboratory. Gravimetry is the most reliable technique in comparison to titremetry and instrumental method and the results of gravimetry are directly traceable to SI unit. Gravimetric analysis, if methods are followed carefully, provides for exceedingly precise analysis. In classical gravimetry the major uncertainties are due to repeatability but in electro-gravimetry several other factors also affect the final results.

  3. Familiarity Vs Trust: A Comparative Study of Domain Scientists' Trust in Visual Analytics and Conventional Analysis Methods.

    PubMed

    Dasgupta, Aritra; Lee, Joon-Yong; Wilson, Ryan; Lafrance, Robert A; Cramer, Nick; Cook, Kristin; Payne, Samuel

    2017-01-01

    Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems.

  4. Micropowder collecting technique for stable isotope analysis of carbonates.

    PubMed

    Sakai, Saburo; Kodan, Tsuyoshi

    2011-05-15

    Micromilling is a conventional technique used in the analysis of the isotopic composition of geological materials, which improves the spatial resolution of sample collection for analysis. However, a problem still remains concerning the recovery ratio of the milled sample. We constructed a simple apparatus consisting of a vacuum pump, a sintered metal filter, electrically conductive rubber stopper and a stainless steel tube for transferring the milled powder into a reaction vial. In our preliminary experiments on carbonate powder, we achieved a rapid recovery of 5 to 100 µg of carbonate with a high recovery ratio (>90%). This technique shortens the sample preparation time, improves the recovery ratio, and homogenizes the sample quantity, which, in turn, improves the analytical reproducibility. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Underground Mining Method Selection Using WPM and PROMETHEE

    NASA Astrophysics Data System (ADS)

    Balusa, Bhanu Chander; Singam, Jayanthu

    2018-04-01

    The aim of this paper is to represent the solution to the problem of selecting suitable underground mining method for the mining industry. It is achieved by using two multi-attribute decision making techniques. These two techniques are weighted product method (WPM) and preference ranking organization method for enrichment evaluation (PROMETHEE). In this paper, analytic hierarchy process is used for weight's calculation of the attributes (i.e. parameters which are used in this paper). Mining method selection depends on physical parameters, mechanical parameters, economical parameters and technical parameters. WPM and PROMETHEE techniques have the ability to consider the relationship between the parameters and mining methods. The proposed techniques give higher accuracy and faster computation capability when compared with other decision making techniques. The proposed techniques are presented to determine the effective mining method for bauxite mine. The results of these techniques are compared with methods used in the earlier research works. The results show, conventional cut and fill method is the most suitable mining method.

  6. Enhanced detectability of fluorinated derivatives of N,N-dialkylamino alcohols and precursors of nitrogen mustards by gas chromatography coupled to Fourier transform infrared spectroscopy analysis for verification of chemical weapons convention.

    PubMed

    Garg, Prabhat; Purohit, Ajay; Tak, Vijay K; Dubey, D K

    2009-11-06

    N,N-Dialkylamino alcohols, N-methyldiethanolamine, N-ethyldiethanolamine and triethanolamine are the precursors of VX type nerve agents and three different nitrogen mustards respectively. Their detection and identification is of paramount importance for verification analysis of chemical weapons convention. GC-FTIR is used as complimentary technique to GC-MS analysis for identification of these analytes. One constraint of GC-FTIR, its low sensitivity, was overcome by converting the analytes to their fluorinated derivatives. Owing to high absorptivity in IR region, these derivatives facilitated their detection by GC-FTIR analysis. Derivatizing reagents having trimethylsilyl, trifluoroacyl and heptafluorobutyryl groups on imidazole moiety were screened. Derivatives formed there were analyzed by GC-FTIR quantitatively. Of these reagents studied, heptafluorobutyrylimidazole (HFBI) produced the greatest increase in sensitivity by GC-FTIR detection. 60-125 folds of sensitivity enhancement were observed for the analytes by HFBI derivatization. Absorbance due to various functional groups responsible for enhanced sensitivity were compared by determining their corresponding relative molar extinction coefficients ( [Formula: see text] ) considering uniform optical path length. The RSDs for intraday repeatability and interday reproducibility for various derivatives were 0.2-1.1% and 0.3-1.8%. Limit of detection (LOD) was achieved up to 10-15ng and applicability of the method was tested with unknown samples obtained in international proficiency tests.

  7. Theoretical considerations on the optogalvanic detection of laser induced fluorescence in atmospheric pressure atomizers

    NASA Astrophysics Data System (ADS)

    Omenetto, N.; Smith, B. W.; Winefordner, J. D.

    1989-01-01

    Several theoretical considerations are given on the potential and practical capabilities of a detector of fluorescence radiation whose operating principle is based on a multi-step excitation-ionization scheme involving the fluorescence photons as the first excitation step. This detection technique, which was first proposed by MATVEEVet al. [ Zh. Anal Khim.34, 846 (1979)], combines two independent atomizers, one analytical cell for the excitation of the sample fluorescence and one cell, filled with pure analyte atomic vapor, acting as the ionization detector. One laser beam excites the analyte fluorescence in the analytical cell and one (or two) laser beams are used to ionize the excited atoms in the detector. Several different causes of signal and noise are evaluated, together with a discussion on possible analytical atom reservoirs (flames, furnaces) and laser sources which could be used with this approach. For properly devised conditions, i.e. optical saturation of the fluorescence and unity ionization efficiency, detection limits well below pg/ml in solution and well below femtograms as absolute amounts in furnaces can be predicted. However, scattering problems, which are absent in a conventional laser-enhanced ionization set-up, may be important in this approach.

  8. The acoustics of ducted propellers

    NASA Astrophysics Data System (ADS)

    Ali, Sherif F.

    The return of the propeller to the long haul commercial service may be rapidly approaching in the form of advanced "prop fans". It is believed that the advanced turboprop will considerably reduce the operational cost. However, such aircraft will come into general use only if their noise levels meet the standards of community acceptability currently applied to existing aircraft. In this work a time-marching boundary-element technique is developed, and used to study the acoustics of ducted propeller. The numerical technique is developed in this work eliminated the inherent instability suffered by conventional approaches. The methodology is validated against other numerical and analytical results. The results show excellent agreement with the analytical solution and show no indication of unstable behavior. For the ducted propeller problem, the propeller is modeled by a rotating source-sink pairs, and the duct is modeled by rigid annular body of elliptical cross-section. Using the model and the developed technique, the effect of different parameters on the acoustic field is predicted and analyzed. This includes the effect of duct length, propeller axial location, and source Mach number. The results of this study show that installing a short duct around the propeller can reduce the noise that reaches an observer on a side line.

  9. Analytical Strategies to Disclose Repeated Consumption of New Psychoactive Substances by Hair Analysis.

    PubMed

    Rotolo, Maria C; Klein, Julia; Pacifici, Roberta; Busardo, Francesco Paolo; Pichini, Simona; Marchei, Emilia

    2017-01-01

    New psychoactive substances (NPS) are a heterogenic group of substances with different chemical structures and psychotropic effects. Many pharmacotoxicological laboratories performing drug testing in conventional and nonconventional biological matrices for clinical and forensic purposes do not include screening procedures for NPS in their routine protocols. This is mainly due to the continued entry in the market of newly synthesized products, the low availability of reference standards, in particular of their metabolites, the low availability of immunochemical kits, etc. Moreover, many of the new compounds are very potent, and low doses ingested will lead to low concentrations in biological matrices, especially in hair. Hair analysis has become a powerful tool for detecting chronic drug use and has become a routine technique in forensic toxicology laboratories. The aim of this study was to set up analytical strategies to identify repeated consumption of NPS by hair analysis. Although UHPLC-MS/MS may represent the elective technique in studying NPS, a combination of both GC-MS and UHPLC-MS/MS techniques is useful in creating a complete toxicological image. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Increasing productivity for the analysis of trace contaminants in food by gas chromatography-mass spectrometry using automated liner exchange, backflushing and heart-cutting.

    PubMed

    David, Frank; Tienpont, Bart; Devos, Christophe; Lerch, Oliver; Sandra, Pat

    2013-10-25

    Laboratories focusing on residue analysis in food are continuously seeking to increase sample throughput by minimizing sample preparation. Generic sample extraction methods such as QuEChERS lack selectivity and consequently extracts are not free from non-volatile material that contaminates the analytical system. Co-extracted matrix constituents interfere with target analytes, even if highly sensitive and selective GC-MS/MS is used. A number of GC approaches are described that can be used to increase laboratory productivity. These techniques include automated inlet liner exchange and column backflushing for preservation of the performance of the analytical system and heart-cutting two-dimensional GC for increasing sensitivity and selectivity. The application of these tools is illustrated by the analysis of pesticides in vegetables and fruits, PCBs in milk powder and coplanar PCBs in fish. It is demonstrated that considerable increase in productivity can be achieved by decreasing instrument down-time, while analytical performance is equal or better compared to conventional trace contaminant analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Verification and Validation of Autonomy Software at NASA

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles

    2000-01-01

    Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.

  12. Verification and Validation of Autonomy Software at NASA

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles

    2000-01-01

    Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohimer, J.P.

    The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified.

  14. Assessment of Fiber Chromatic Dispersion Based on Elimination of Second-Order Harmonics in Optical OFDM Single Sideband Modulation Using Mach Zehnder Modulator

    NASA Astrophysics Data System (ADS)

    Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.

    2016-07-01

    This work addresses the analytical and numerical investigations of the transmission performance of an optical Single Sideband (SSB) modulation technique generated by a Mach Zehnder Modulator (MZM) with a 90° and 120° hybrid coupler. It takes into account the problem of chromatic dispersion in single mode fibers in Passive Optical Networks (PON), which severely degrades the performance of the system. Considering the transmission length of the fiber, the SSB modulation generated by maintaining a phase shift of π/2 between the two electrodes of the MZM provides better receiver sensitivity. However, the power of higher-order harmonics generated due to the nonlinearity of the MZM is directly proportional to the modulation index, making the SSB look like a quasi-double sideband (DSB) and causing power fading due to chromatic dispersion. To eliminate one of the second-order harmonics, the SSB signal based on an MZM with a 120° hybrid coupler is simulated. An analytical model of conventional SSB using 90° and 120° hybrid couplers is established. The latter suppresses unwanted (upper/lower) first-order and second-order (lower/upper) sidebands. For the analysis, a varying quadrature amplitude modulation (QAM) Orthogonal Frequency Division Multiplexing (OFDM) signal with a data rate of 5 Gb/s is upconverted using both of the SSB techniques and is transmitted over a distance of 75 km in Single Mode Fiber (SMF). The simulation results show that the SSB with 120° hybrid coupler proves to be more immune to chromatic dispersion as compared to the conventional SSB technique. This is in tandem with the theoretical analysis presented in the article.

  15. Emerging Trends in Microwave Processing of Spices and Herbs.

    PubMed

    Rahath Kubra, Ismail; Kumar, Devender; Jagan Mohan Rao, Lingamallu

    2016-10-02

    Today, spices are integral part of our food as they provide sensory attributes such as aroma, color, flavour and taste to food. Further their antimicrobial, antioxidant, pharmaceutical and nutritional properties are also well known. Since spices are seasonal so their availability can be extended year round by adopting different preservation techniques. Drying and extraction are most important methods for preservation and value addition to spices. There are different techniques for drying of spices with their own advantages and limitations. A novel, non-conventional technique for drying of spices is use of microwave radiation. This technique proved to be very rapid, and also provide a good quality product. Similarly, there are a number of non-conventional extraction methods in use that are all, in principle, solid-liquid extractions but which introduce some form of additional energy to the process in order to facilitate the transfer of analytes from sample to solvent. This paper reviews latest advances in the use of microwave energy for drying of spices and herbs. Also, the review describes the potential application of microwave energy for extraction of essential oil/bioactive components from spices and herbs and the advantages of microwave-assisted process over the other extraction processes generally employed for extraction. It also showcases some recent research results on microwave drying/extraction from spices and herbs.

  16. Can cloud point-based enrichment, preservation, and detection methods help to bridge gaps in aquatic nanometrology?

    PubMed

    Duester, Lars; Fabricius, Anne-Lena; Jakobtorweihen, Sven; Philippe, Allan; Weigl, Florian; Wimmer, Andreas; Schuster, Michael; Nazar, Muhammad Faizan

    2016-11-01

    Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is characterized by a phase separation of non-ionic surfactants dispersed in an aqueous solution when the respective cloud point temperature is exceeded. In this context, the feature article raises the following question: May CPE in future studies serve as a key tool (i) to enrich and extract nanoparticles (NPs) from complex environmental matrices prior to analyses and (ii) to preserve the colloidal status of unstable environmental samples? With respect to engineered NPs, a significant gap between environmental concentrations and size- and element-specific analytical capabilities is still visible. CPE may support efforts to overcome this "concentration gap" via the analyte enrichment. In addition, most environmental colloidal systems are known to be unstable, dynamic, and sensitive to changes of the environmental conditions during sampling and sample preparation. This delivers a so far unsolved "sample preparation dilemma" in the analytical process. The authors are of the opinion that CPE-based methods have the potential to preserve the colloidal status of these instable samples. Focusing on NPs, this feature article aims to support the discussion on the creation of a convention called the "CPE extractable fraction" by connecting current knowledge on CPE mechanisms and on available applications, via the uncertainties visible and modeling approaches available, with potential future benefits from CPE protocols.

  17. Meta-Analysis for Sociology – A Measure-Driven Approach

    PubMed Central

    Roelfs, David J.; Shor, Eran; Falzon, Louise; Davidson, Karina W.; Schwartz, Joseph E.

    2013-01-01

    Meta-analytic methods are becoming increasingly important in sociological research. In this article we present an approach for meta-analysis which is especially helpful for sociologists. Conventional approaches to meta-analysis often prioritize “concept-driven” literature searches. However, in disciplines with high theoretical diversity, such as sociology, this search approach might constrain the researcher’s ability to fully exploit the entire body of relevant work. We explicate a “measure-driven” approach, in which iterative searches and new computerized search techniques are used to increase the range of publications found (and thus the range of possible analyses) and to traverse time and disciplinary boundaries. We demonstrate this measure-driven search approach with two meta-analytic projects, examining the effects of various social variables on all-cause mortality. PMID:24163498

  18. Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.

    1992-01-01

    The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.

  19. Enabling the High Level Synthesis of Data Analytics Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino

    Conventional High Level Synthesis (HLS) tools mainly tar- get compute intensive kernels typical of digital signal pro- cessing applications. We are developing techniques and ar- chitectural templates to enable HLS of data analytics appli- cations. These applications are memory intensive, present fine-grained, unpredictable data accesses, and irregular, dy- namic task parallelism. We discuss an architectural tem- plate based around a distributed controller to efficiently ex- ploit thread level parallelism. We present a memory in- terface that supports parallel memory subsystems and en- ables implementing atomic memory operations. We intro- duce a dynamic task scheduling approach to efficiently ex- ecute heavilymore » unbalanced workload. The templates are val- idated by synthesizing queries from the Lehigh University Benchmark (LUBM), a well know SPARQL benchmark.« less

  20. Single-tube analysis of DNA methylation with silica superparamagnetic beads.

    PubMed

    Bailey, Vasudev J; Zhang, Yi; Keeley, Brian P; Yin, Chao; Pelosky, Kristen L; Brock, Malcolm; Baylin, Stephen B; Herman, James G; Wang, Tza-Huei

    2010-06-01

    DNA promoter methylation is a signature for the silencing of tumor suppressor genes. Most widely used methods to detect DNA methylation involve 3 separate, independent processes: DNA extraction, bisulfite conversion, and methylation detection via a PCR method, such as methylation-specific PCR (MSP). This method includes many disconnected steps with associated losses of material, potentially reducing the analytical sensitivity required for analysis of challenging clinical samples. Methylation on beads (MOB) is a new technique that integrates DNA extraction, bisulfite conversion, and PCR in a single tube via the use of silica superparamagnetic beads (SSBs) as a common DNA carrier for facilitating cell debris removal and buffer exchange throughout the entire process. In addition, PCR buffer is used to directly elute bisulfite-treated DNA from SSBs for subsequent target amplifications. The diagnostic sensitivity of MOB was evaluated by methylation analysis of the CDKN2A [cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4); also known as p16(INK4a)] promoter in serum DNA of lung cancer patients and compared with that of conventional methods. Methylation analysis consisting of DNA extraction followed by bisulfite conversion and MSP was successfully carried out within 9 h in a single tube. The median pre-PCR DNA yield was 6.61-fold higher with the MOB technique than with conventional techniques. Furthermore, MOB increased the diagnostic sensitivity in our analysis of the CDKN2A promoter in patient serum by successfully detecting methylation in 74% of cancer patients, vs the 45% detection rate obtained with conventional techniques. The MOB technique successfully combined 3 processes into a single tube, thereby allowing ease in handling and an increased detection throughput. The increased pre-PCR yield in MOB allowed efficient, diagnostically sensitive methylation detection.

  1. Dual-angle technique for simultaneous measurement of refractive index and temperature based on a surface plasmon resonance sensor.

    PubMed

    Luo, Wei; Chen, Sheng; Chen, Lei; Li, Hualong; Miao, Pengcheng; Gao, Huiyi; Hu, Zelin; Li, Miao

    2017-05-29

    We describe a theoretical model to analyze temperature effects on the Kretschmann surface plasmon resonance (SPR) sensor, and describe a new double-incident angle technique to simultaneously measure changes in refractive index (RI) and temperature. The method uses the observation that output signals obtained from two different incident angles each have a linear dependence on RI and temperature, and are independent. A proof-of-concept experiment using different NaCl concentration solutions as analytes demonstrates the ability of the technique. The optical design is as simple and robust as conventional SPR detection, but provides a way to discriminate between RI-induced and temperature-induced SPR changes. This technique facilitates a way for traditional SPR sensors to detect RI in different temperature environments, and may lead to better design and fabrication of SPR sensors against temperature variation.

  2. A stochastic method for Brownian-like optical transport calculations in anisotropic biosuspensions and blood

    NASA Astrophysics Data System (ADS)

    Miller, Steven

    1998-03-01

    A generic stochastic method is presented that rapidly evaluates numerical bulk flux solutions to the one-dimensional integrodifferential radiative transport equation, for coherent irradiance of optically anisotropic suspensions of nonspheroidal bioparticles, such as blood. As Fermat rays or geodesics enter the suspension, they evolve into a bundle of random paths or trajectories due to scattering by the suspended bioparticles. Overall, this can be interpreted as a bundle of Markov trajectories traced out by a "gas" of Brownian-like point photons being scattered and absorbed by the homogeneous distribution of uncorrelated cells in suspension. By considering the cumulative vectorial intersections of a statistical bundle of random trajectories through sets of interior data planes in the space containing the medium, the effective equivalent information content and behavior of the (generally unknown) analytical flux solutions of the radiative transfer equation rapidly emerges. The fluxes match the analytical diffuse flux solutions in the diffusion limit, which verifies the accuracy of the algorithm. The method is not constrained by the diffusion limit and gives correct solutions for conditions where diffuse solutions are not viable. Unlike conventional Monte Carlo and numerical techniques adapted from neutron transport or nuclear reactor problems that compute scalar quantities, this vectorial technique is fast, easily implemented, adaptable, and viable for a wide class of biophotonic scenarios. By comparison, other analytical or numerical techniques generally become unwieldy, lack viability, or are more difficult to utilize and adapt. Illustrative calculations are presented for blood medias at monochromatic wavelengths in the visible spectrum.

  3. Enhance your team-based qualitative research.

    PubMed

    Fernald, Douglas H; Duclos, Christine W

    2005-01-01

    Qualitative research projects often involve the collaborative efforts of a research team. Challenges inherent in teamwork include changes in membership and differences in analytical style, philosophy, training, experience, and skill. This article discusses teamwork issues and tools and techniques used to improve team-based qualitative research. We drew on our experiences in working on numerous projects of varying, size, duration, and purpose. Through trials of different tools and techniques, expert consultation, and review of the literature, we learned to improve how we build teams, manage information, and disseminate results. Attention given to team members and team processes is as important as choosing appropriate analytical tools and techniques. Attentive team leadership, commitment to early and regular team meetings, and discussion of roles, responsibilities, and expectations all help build more effective teams and establish clear norms. As data are collected and analyzed, it is important to anticipate potential problems from differing skills and styles, and how information and files are managed. Discuss analytical preferences and biases and set clear guidelines and practices for how data will be analyzed and handled. As emerging ideas and findings disperse across team members, common tools (such as summary forms and data grids), coding conventions, intermediate goals or products, and regular documentation help capture essential ideas and insights. In a team setting, little should be left to chance. This article identifies ways to improve team-based qualitative research with more a considered and systematic approach. Qualitative researchers will benefit from further examination and discussion of effective, field-tested, team-based strategies.

  4. Reliable dual-redundant sensor failure detection and identification for the NASA F-8 DFBW aircraft

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.; Desai, M. N.; Deyst, J. J., Jr.; Willsky, A. S.

    1978-01-01

    A technique was developed which provides reliable failure detection and identification (FDI) for a dual redundant subset of the flight control sensors onboard the NASA F-8 digital fly by wire (DFBW) aircraft. The technique was successfully applied to simulated sensor failures on the real time F-8 digital simulator and to sensor failures injected on telemetry data from a test flight of the F-8 DFBW aircraft. For failure identification the technique utilized the analytic redundancy which exists as functional and kinematic relationships among the various quantities being measured by the different control sensor types. The technique can be used not only in a dual redundant sensor system, but also in a more highly redundant system after FDI by conventional voting techniques reduced to two the number of unfailed sensors of a particular type. In addition the technique can be easily extended to the case in which only one sensor of a particular type is available.

  5. Analytical, Numerical, and Experimental Investigation on a Non-Contact Method for the Measurements of Creep Properties of Ultra-High-Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    Responsive access to space requires re-use of components such as rocket nozzles that operate at extremely high temperatures. For such applications, new ultra-hightemperature materials that can operate over 2,000 C are required. At the temperatures higher than the fifty percent of the melting temperature, the characterization of creep properties is indispensable. Since conventional methods for the measurement of creep is limited below 1,700 C, a new technique that can be applied at higher temperatures is strongly demanded. This research develops a non-contact method for the measurement of creep at the temperatures over 2,300 C. Using the electrostatic levitator in NASA MSFC, a spherical sample was rotated to cause creep deformation by centrifugal acceleration. The deforming sample was captured with a digital camera and analyzed to measure creep deformation. Numerical and analytical analyses have also been conducted to compare the experimental results. Analytical, numerical, and experimental results showed a good agreement with one another.

  6. Application of a Portable Multi-Analyte Biosensor for Organic Acid Determination in Silage.

    PubMed

    Pilas, Johanna; Yazici, Yasemen; Selmer, Thorsten; Keusgen, Michael; Schöning, Michael J

    2018-05-08

    Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at −21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at −21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media.

  7. Application of a Portable Multi-Analyte Biosensor for Organic Acid Determination in Silage

    PubMed Central

    Pilas, Johanna; Yazici, Yasemen; Selmer, Thorsten; Keusgen, Michael

    2018-01-01

    Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at −21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at −21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media. PMID:29738487

  8. Literature search of publications concerning the prediction of dynamic inlet flow distortion and related topics

    NASA Technical Reports Server (NTRS)

    Schweikhhard, W. G.; Chen, Y. S.

    1983-01-01

    Publications prior to March 1981 were surveyed to determine inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamics at the engine-inlet interface of conventional aircraft (excluding V/STOL). The sixty-five publications found are briefly summarized and tabulated according to topic and are cross-referenced according to content and nature of the investigation (e.g., predictive, experimental, analytical and types of tests). Three appendices include lists of references, authors, organizations and agencies conducting the studies. Also, selected materials summaries, introductions and conclusions - from the reports are included. Few reports were found covering methods for predicting the probable maximum distortion. The three predictive methods found are those of Melick, Jacox and Motycka. The latter two require extensive high response pressure measurements at the compressor face, while the Melick Technique can function with as few as one or two measurements.

  9. A method for rapid sampling and characterization of smokeless powder using sorbent-coated wire mesh and direct analysis in real time - mass spectrometry (DART-MS).

    PubMed

    Li, Frederick; Tice, Joseph; Musselman, Brian D; Hall, Adam B

    2016-09-01

    Improvised explosive devices (IEDs) are often used by terrorists and criminals to create public panic and destruction, necessitating rapid investigative information. However, backlogs in many forensic laboratories resulting in part from time-consuming GC-MS and LC-MS techniques prevent prompt analytical information. Direct analysis in real time - mass spectrometry (DART-MS) is a promising analytical technique that can address this challenge in the forensic science community by permitting rapid trace analysis of energetic materials. Therefore, we have designed a qualitative analytical approach that utilizes novel sorbent-coated wire mesh and dynamic headspace concentration to permit the generation of information rich chemical attribute signatures (CAS) for trace energetic materials in smokeless powder with DART-MS. Sorbent-coated wire mesh improves the overall efficiency of capturing trace energetic materials in comparison to swabbing or vacuuming. Hodgdon Lil' Gun smokeless powder was used to optimize the dynamic headspace parameters. This method was compared to traditional GC-MS methods and validated using the NIST RM 8107 smokeless powder reference standard. Additives and energetic materials, notably nitroglycerin, were rapidly and efficiently captured by the Carbopack X wire mesh, followed by detection and identification using DART-MS. This approach has demonstrated the capability of generating comparable results with significantly reduced analysis time in comparison to GC-MS. All targeted components that can be detected by GC-MS were detected by DART-MS in less than a minute. Furthermore, DART-MS offers the advantage of detecting targeted analytes that are not amenable to GC-MS. The speed and efficiency associated with both the sample collection technique and DART-MS demonstrate an attractive and viable potential alternative to conventional techniques. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Analysis of signal to noise enhancement using a highly selective modulation tracking filter

    NASA Technical Reports Server (NTRS)

    Haden, C. R.; Alworth, C. W.

    1972-01-01

    Experiments are reported which utilize photodielectric effects in semiconductor loaded superconducting resonant circuits for suppressing noise in RF communication systems. The superconducting tunable cavity acts as a narrow band tracking filter for detecting conventional RF signals. Analytical techniques were developed which lead to prediction of signal-to-noise improvements. Progress is reported in optimization of the experimental variables. These include improved Q, new semiconductors, improved optics, and simplification of the electronics. Information bearing signals were passed through the system, and noise was introduced into the computer model.

  11. Plant Ethylene Detection Using Laser-Based Photo-Acoustic Spectroscopy.

    PubMed

    Van de Poel, Bram; Van Der Straeten, Dominique

    2017-01-01

    Analytical detection of the plant hormone ethylene is an important prerequisite in physiological studies. Real-time and super sensitive detection of trace amounts of ethylene gas is possible using laser-based photo-acoustic spectroscopy. This Chapter will provide some background on the technique, compare it with conventional gas chromatography, and provide a detailed user-friendly hand-out on how to operate the machine and the software. In addition, this Chapter provides some tips and tricks for designing and performing physiological experiments suited for ethylene detection with laser-based photo-acoustic spectroscopy.

  12. First-order reliability application and verification methods for semistatic structures

    NASA Astrophysics Data System (ADS)

    Verderaime, V.

    1994-11-01

    Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored in conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments; stress audits are shown to be arbitrary and incomplete, and the concept compromises the performance of high-strength materials. A reliability method is proposed that combines first-order reliability principles with deterministic design variables and conventional test techniques to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety-index expression. The application is reduced to solving for a design factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this design factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and the development of semistatic structural designs.

  13. A multicriteria decision analysis of augmentative treatment of upper limbs in persons with tetraplegia.

    PubMed

    Hummel, J M Marjan; Snoek, Govert J; van Til, Janine A; van Rossum, Wouter; Ijzerman, Maarten J

    2005-01-01

    This study supported the evaluation by a rehabilitation team of the performance of two treatment options that improve the arm-hand function in subjects with sixth cervical vertebra (C6) level Motor Group 2 tetraplegia. The analytic hierarchy process, a technique for multicriteria decision analysis, was used by a rehabilitation team and potential recipients to quantitatively compare a new technology, Functional Elec trical Stimulation (FES), with conventional surgery. Perform-ance was measured by functional improvement, treatment load, risks, user-friendliness, and social outcomes. Functional improvement after FES was considered better than that after conventional surgery. However, the rehabilitation team's overall rating for conventional surgery was slightly higher than that for FES (57% vs 44%). Compared with the rehabilitation team, potential recipients gave greater weight to burden of treatment and less weight to functional improvement. This study shows that evaluation of new technology must be more comprehensive than the evaluation of functional improvement alone, and that patient preferences may differ from those of the rehabilitation team.

  14. Conventional and Accelerated-Solvent Extractions of Green Tea (Camellia sinensis) for Metabolomics-based Chemometrics

    PubMed Central

    Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.

    2018-01-01

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673

  15. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  16. Synthesis of a novel molecularly imprinted organic-inorganic hybrid polymer for the selective isolation and determination of fluoroquinolones in tilapia.

    PubMed

    Yang, Xun; Wang, Ruiling; Wang, Weihua; Yan, Hongyuan; Qiu, Mande; Song, Yanxue

    2014-01-15

    A novel molecularly imprinted organic-inorganic hybrid polymer (MI-MAA/APTS) based on a dummy molecular imprinting technique and an organic-inorganic hybrid material technique was synthesised and used as a sorbent in solid-phase extraction for the selective isolation and determination of ofloxacin (OFL), lomefloxacin (LOM), and ciprofloxacin (CIP) in tilapia samples. The MI-MAA/APTS sorbent was prepared from 3-aminopropyltriethoxysilanes (APTS) as an inorganic source and methacrylic acid (MAA) as an organic source and exhibited high mechanical strength and special affinities to the analytes. A comparison of MI-MAA/APTS with other conventional sorbents (C18 and HLB) showed that MI-MAA/APTS displayed good selectivity and affinity for OFL, LOM, and CIP, and the recoveries of the analytes at three spiked levels were in the range of 85.1-101.0%, with the relative standard deviations ≤5.1%. The presented MI-MAA/APTS-SPE-HPLC method could be potentially applied to the determination of fluoroquinolones (FQs) in complex fish samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Analytic cognitive style predicts religious and paranormal belief.

    PubMed

    Pennycook, Gordon; Cheyne, James Allan; Seli, Paul; Koehler, Derek J; Fugelsang, Jonathan A

    2012-06-01

    An analytic cognitive style denotes a propensity to set aside highly salient intuitions when engaging in problem solving. We assess the hypothesis that an analytic cognitive style is associated with a history of questioning, altering, and rejecting (i.e., unbelieving) supernatural claims, both religious and paranormal. In two studies, we examined associations of God beliefs, religious engagement (attendance at religious services, praying, etc.), conventional religious beliefs (heaven, miracles, etc.) and paranormal beliefs (extrasensory perception, levitation, etc.) with performance measures of cognitive ability and analytic cognitive style. An analytic cognitive style negatively predicted both religious and paranormal beliefs when controlling for cognitive ability as well as religious engagement, sex, age, political ideology, and education. Participants more willing to engage in analytic reasoning were less likely to endorse supernatural beliefs. Further, an association between analytic cognitive style and religious engagement was mediated by religious beliefs, suggesting that an analytic cognitive style negatively affects religious engagement via lower acceptance of conventional religious beliefs. Results for types of God belief indicate that the association between an analytic cognitive style and God beliefs is more nuanced than mere acceptance and rejection, but also includes adopting less conventional God beliefs, such as Pantheism or Deism. Our data are consistent with the idea that two people who share the same cognitive ability, education, political ideology, sex, age and level of religious engagement can acquire very different sets of beliefs about the world if they differ in their propensity to think analytically. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Pulse-compression ghost imaging lidar via coherent detection.

    PubMed

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-14

    Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

  19. Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry

    PubMed Central

    Pitt, James J

    2009-01-01

    Liquid chromatography-mass spectrometry (LC-MS) is now a routine technique with the development of electrospray ionisation (ESI) providing a simple and robust interface. It can be applied to a wide range of biological molecules and the use of tandem MS and stable isotope internal standards allows highly sensitive and accurate assays to be developed although some method optimisation is required to minimise ion suppression effects. Fast scanning speeds allow a high degree of multiplexing and many compounds can be measured in a single analytical run. With the development of more affordable and reliable instruments, LC-MS is starting to play an important role in several areas of clinical biochemistry and compete with conventional liquid chromatography and other techniques such as immunoassay. PMID:19224008

  20. State-of-the-art nanoplatform-integrated MALDI-MS impacting resolutions in urinary proteomics.

    PubMed

    Gopal, Judy; Muthu, Manikandan; Chun, Se-Chul; Wu, Hui-Fen

    2015-06-01

    Urine proteomics has become a subject of interest, since it has led to a number of breakthroughs in disease diagnostics. Urine contains information not only from the kidney and the urinary tract but also from other organs, thus urinary proteome analysis allows for identification of biomarkers for both urogenital and systemic diseases. The following review gives a brief overview of the analytical techniques that have been in practice for urinary proteomics. MALDI-MS technique and its current application status in this area of clinical research have been discussed. The review comments on the challenges facing the conventional MALDI-MS technique and the upgradation of this technique with the introduction of nanotechnology. This review projects nano-based techniques such as nano-MALDI-MS, surface-assisted laser desorption/ionization, and nanostructure-initiator MS as the platforms that have the potential in trafficking MALDI-MS from the lab to the bedside. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Adjustable bipod flexures for mounting mirrors in a space telescope.

    PubMed

    Kihm, Hagyong; Yang, Ho-Soon; Moon, Il Kweon; Yeon, Jeong-Heum; Lee, Seung-Hoon; Lee, Yun-Woo

    2012-11-10

    A new mirror mounting technique applicable to the primary mirror in a space telescope is presented. This mounting technique replaces conventional bipod flexures with flexures having mechanical shims so that adjustments can be made to counter the effects of gravitational distortion of the mirror surface while being tested in the horizontal position. Astigmatic aberration due to the gravitational changes is effectively reduced by adjusting the shim thickness, and the relation between the astigmatism and the shim thickness is investigated. We tested the mirror interferometrically at the center of curvature using a null lens. Then we repeated the test after rotating the mirror about its optical axis by 180° in the horizontal setup, and searched for the minimum system error. With the proposed flexure mount, the gravitational stress at the adhesive coupling between the mirror and the mount is reduced by half that of a conventional bipod flexure for better mechanical safety under launch loads. Analytical results using finite element methods are compared with experimental results from the optical interferometer. Vibration tests verified the mechanical safety and optical stability, and qualified their use in space applications.

  2. Light aircraft lift, drag, and moment prediction: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Smith, N. S.; Carden, R. K.

    1975-01-01

    The historical development of analytical methods for predicting the lift, drag, and pitching moment of complete light aircraft configurations in cruising flight is reviewed. Theoretical methods, based in part on techniques described in the literature and in part on original work, are developed. These methods form the basis for understanding the computer programs given to: (1) compute the lift, drag, and moment of conventional airfoils, (2) extend these two-dimensional characteristics to three dimensions for moderate-to-high aspect ratio unswept wings, (3) plot complete configurations, (4) convert the fuselage geometric data to the correct input format, (5) compute the fuselage lift and drag, (6) compute the lift and moment of symmetrical airfoils to M = 1.0 by a simplified semi-empirical procedure, and (7) compute, in closed form, the pressure distribution over a prolate spheroid at alpha = 0. Comparisons of the predictions with experiment indicate excellent lift and drag agreement for conventional airfoils and wings. Limited comparisons of body-alone drag characteristics yield reasonable agreement. Also included are discussions for interference effects and techniques for summing the results above to obtain predictions for complete configurations.

  3. Rapid detection of illegal colorants on traditional Chinese pastries through mass spectrometry with an interchangeable thermal desorption electrospray ionization source.

    PubMed

    Chao, Yu-Ying; Chen, Yen-Ling; Chen, Wei-Chu; Chen, Bai-Hsiun; Huang, Yeou-Lih

    2018-06-30

    Ambient mass spectrometry using an interchangeable thermal desorption/electrospray ionization source (TD-ESI) is a relatively new technique that has had only a limited number of applications to date. Nevertheless, this direct-analysis technique has potential for wider use in analytical chemistry (e.g., in the rapid direct detection of contaminants, residues, and adulterants on and in food) when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to a TD-ESI source from a conventional ESI source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants on traditional Chinese pastries (TCPs), as a proof-of-concept for the detection of illegal colorants. While TD-ESI can offer direct (i.e., without any sample preparation) qualitative screening analyses for TCPs with adequate sensitivity within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous matrices (e.g., tang yuan). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rapid Harmonic Analysis of Piezoelectric MEMS Resonators.

    PubMed

    Puder, Jonathan M; Pulskamp, Jeffrey S; Rudy, Ryan Q; Cassella, Cristian; Rinaldi, Matteo; Chen, Guofeng; Bhave, Sunil A; Polcawich, Ronald G

    2018-06-01

    This paper reports on a novel simulation method combining the speed of analytical evaluation with the accuracy of finite-element analysis (FEA). This method is known as the rapid analytical-FEA technique (RAFT). The ability of the RAFT to accurately predict frequency response orders of magnitude faster than conventional simulation methods while providing deeper insights into device design not possible with other types of analysis is detailed. Simulation results from the RAFT across wide bandwidths are compared to measured results of resonators fabricated with various materials, frequencies, and topologies with good agreement. These include resonators targeting beam extension, disk flexure, and Lamé beam modes. An example scaling analysis is presented and other applications enabled are discussed as well. The supplemental material includes example code for implementation in ANSYS, although any commonly employed FEA package may be used.

  5. Kinematic synthesis of adjustable robotic mechanisms

    NASA Astrophysics Data System (ADS)

    Chuenchom, Thatchai

    1993-01-01

    Conventional hard automation, such as a linkage-based or a cam-driven system, provides high speed capability and repeatability but not the flexibility required in many industrial applications. The conventional mechanisms, that are typically single-degree-of-freedom systems, are being increasingly replaced by multi-degree-of-freedom multi-actuators driven by logic controllers. Although this new trend in sophistication provides greatly enhanced flexibility, there are many instances where the flexibility needs are exaggerated and the associated complexity is unnecessary. Traditional mechanism-based hard automation, on the other hand, neither can fulfill multi-task requirements nor are cost-effective mainly due to lack of methods and tools to design-in flexibility. This dissertation attempts to bridge this technological gap by developing Adjustable Robotic Mechanisms (ARM's) or 'programmable mechanisms' as a middle ground between high speed hard automation and expensive serial jointed-arm robots. This research introduces the concept of adjustable robotic mechanisms towards cost-effective manufacturing automation. A generalized analytical synthesis technique has been developed to support the computational design of ARM's that lays the theoretical foundation for synthesis of adjustable mechanisms. The synthesis method developed in this dissertation, called generalized adjustable dyad and triad synthesis, advances the well-known Burmester theory in kinematics to a new level. While this method provides planar solutions, a novel patented scheme is utilized for converting prescribed three-dimensional motion specifications into sets of planar projections. This provides an analytical and a computational tool for designing adjustable mechanisms that satisfy multiple sets of three-dimensional motion specifications. Several design issues were addressed, including adjustable parameter identification, branching defect, and mechanical errors. An efficient mathematical scheme for identification of adjustable member was also developed. The analytical synthesis techniques developed in this dissertation were successfully implemented in a graphic-intensive user-friendly computer program. A physical prototype of a general purpose adjustable robotic mechanism has been constructed to serve as a proof-of-concept model.

  6. Mass Spectrometric and Synchrotron Radiation based techniques for the identification and distribution of painting materials in samples from paints of Josep Maria Sert

    PubMed Central

    2012-01-01

    Background Establishing the distribution of materials in paintings and that of their degradation products by imaging techniques is fundamental to understand the painting technique and can improve our knowledge on the conservation status of the painting. The combined use of chromatographic-mass spectrometric techniques, such as GC/MS or Py/GC/MS, and the chemical mapping of functional groups by imaging SR FTIR in transmission mode on thin sections and SR XRD line scans will be presented as a suitable approach to have a detailed characterisation of the materials in a paint sample, assuring their localisation in the sample build-up. This analytical approach has been used to study samples from Catalan paintings by Josep Maria Sert y Badía (20th century), a muralist achieving international recognition whose canvases adorned international buildings. Results The pigments used by the painter as well as the organic materials used as binders and varnishes could be identified by means of conventional techniques. The distribution of these materials by means of Synchrotron Radiation based techniques allowed to establish the mixtures used by the painter depending on the purpose. Conclusions Results show the suitability of the combined use of SR μFTIR and SR μXRD mapping and conventional techniques to unequivocally identify all the materials present in the sample and their localization in the sample build-up. This kind of approach becomes indispensable to solve the challenge of micro heterogeneous samples. The complementary interpretation of the data obtained with all the different techniques allowed the characterization of both organic and inorganic materials in the samples layer by layer as well as to establish the painting techniques used by Sert in the works-of-art under study. PMID:22616949

  7. Recent advances in analytical methods for the determination of 4-alkylphenols and bisphenol A in solid environmental matrices: A critical review.

    PubMed

    Salgueiro-González, N; Castiglioni, S; Zuccato, E; Turnes-Carou, I; López-Mahía, P; Muniategui-Lorenzo, S

    2018-09-18

    The problem of endocrine disrupting compounds (EDCs) in the environment has become a worldwide concern in recent decades. Besides their toxicological effects at low concentrations and their widespread use in industrial and household applications, these pollutants pose a risk for non-target organisms and also for public safety. Analytical methods to determine these compounds at trace levels in different matrices are urgently needed. This review critically discusses trends in analytical methods for well-known EDCs like alkylphenols and bisphenol A in solid environmental matrices, including sediment and aquatic biological samples (from 2006 to 2018). Information about extraction, clean-up and determination is covered in detail, including analytical quality parameters (QA/QC). Conventional and novel analytical techniques are compared, with their advantages and drawbacks. Ultrasound assisted extraction followed by solid phase extraction clean-up is the most widely used procedure for sediment and aquatic biological samples, although softer extraction conditions have been employed for the latter. The use of liquid chromatography followed by tandem mass spectrometry has greatly increased in the last five years. The majority of these methods have been employed for the analysis of river sediments and bivalve molluscs because of their usefulness in aquatic ecosystem (bio)monitoring programs. Green, simple, fast analytical methods are now needed to determine these compounds in complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhuang, Yu

    1997-01-01

    In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.

  9. High-definition X-ray fluorescence elemental mapping of paintings.

    PubMed

    Howard, Daryl L; de Jonge, Martin D; Lau, Deborah; Hay, David; Varcoe-Cocks, Michael; Ryan, Chris G; Kirkham, Robin; Moorhead, Gareth; Paterson, David; Thurrowgood, David

    2012-04-03

    A historical self-portrait painted by Sir Arthur Streeton (1867-1943) has been studied with fast-scanning X-ray fluorescence microscopy using synchrotron radiation. One of the technique's unique strengths is the ability to reveal metal distributions in the pigments of underlying brushstrokes, thus providing information critical to the interpretation of a painting. We have applied the nondestructive technique with the event-mode Maia X-ray detector, which has the capability to record elemental maps at megapixels per hour with the full X-ray fluorescence spectrum collected per pixel. The painting poses a difficult challenge to conventional X-ray analysis, because it was completely obscured with heavy brushstrokes of highly X-ray absorptive lead white paint (2PbCO(3)·Pb(OH)(2)) by the artist, making it an excellent candidate for the application of the synchrotron-based technique. The 25 megapixel elemental maps were successfully observed through the lead white paint across the 200 × 300 mm(2) scan area. The sweeping brushstrokes of the lead white overpaint contributed significant detrimental structure to the elemental maps. A corrective procedure was devised to enhance the visualization of the elemental maps by using the elastic X-ray scatter as a proxy for the lead white overpaint. We foresee the technique applied to the most demanding of culturally significant artworks where conventional analytical methods are inadequate.

  10. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.

    PubMed

    Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling

    2014-01-01

    The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Qualitative evaluation of maternal milk and commercial infant formulas via LIBS.

    PubMed

    Abdel-Salam, Z; Al Sharnoubi, J; Harith, M A

    2013-10-15

    This study focuses on the use of laser-induced breakdown spectroscopy (LIBS) for the evaluation of the nutrients in maternal milk and some commercially available infant formulas. The results of such evaluation are vital for adequate and healthy feeding for babies during lactation period. Laser-induced breakdown spectroscopy offers special advantages in comparison to the other conventional analytical techniques. Specifically, LIBS is a straightforward technique that can be used in situ to provide qualitative analytical information in few minutes for the samples under investigation without preparation processes. The samples studied in the current work were maternal milk samples collected during the first 3 months of lactation (not colostrum milk) and samples from six different types of commercially available infant formulas. The samples' elemental composition has been compared with respect to the relative abundance of the elements of nutrition importance, namely Mg, Ca, Na, and Fe using their spectral emission lines in the relevant LIBS spectra. In addition, CN and C2 molecular emission bands in the same spectra have been studied as indicators of proteins content in the samples. The obtained analytical results demonstrate the higher elemental contents of the maternal milk compared with the commercial formulas samples. Similar results have been obtained as for the proteins content. It has been also shown that calcium and proteins have similar relative concentration trends in the studied samples. This work demonstrates the feasibility of adopting LIBS as a fast, safe, less costly technique evaluating qualitatively the nutrients content of both maternal and commercial milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A review of modern instrumental techniques for measurements of ice cream characteristics.

    PubMed

    Bahram-Parvar, Maryam

    2015-12-01

    There is an increasing demand of the food industries and research institutes to have means of measurement allowing the characterization of foods. Ice cream, as a complex food system, consists of a frozen matrix containing air bubbles, fat globules, ice crystals, and an unfrozen serum phase. Some deficiencies in conventional methods for testing this product encourage the use of alternative techniques such as rheometry, spectroscopy, X-ray, electro-analytical techniques, ultrasound, and laser. Despite the development of novel instrumental applications in food science, use of some of them in ice cream testing is few, but has shown promising results. Developing the novel methods should increase our understanding of characteristics of ice cream and may allow online testing of the product. This review article discusses the potential of destructive and non-destructive methodologies in determining the quality and characteristics of ice cream and similar products. Copyright © 2015. Published by Elsevier Ltd.

  13. Hybrid dynamic radioactive particle tracking (RPT) calibration technique for multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Khane, Vaibhav; Al-Dahhan, Muthanna H.

    2017-04-01

    The radioactive particle tracking (RPT) technique has been utilized to measure three-dimensional hydrodynamic parameters for multiphase flow systems. An analytical solution to the inverse problem of the RPT technique, i.e. finding the instantaneous tracer positions based upon instantaneous counts received in the detectors, is not possible. Therefore, a calibration to obtain a counts-distance map is needed. There are major shortcomings in the conventional RPT calibration method due to which it has limited applicability in practical applications. In this work, the design and development of a novel dynamic RPT calibration technique are carried out to overcome the shortcomings of the conventional RPT calibration method. The dynamic RPT calibration technique has been implemented around a test reactor with 1foot in diameter and 1 foot in height using Cobalt-60 as an isotopes tracer particle. Two sets of experiments have been carried out to test the capability of novel dynamic RPT calibration. In the first set of experiments, a manual calibration apparatus has been used to hold a tracer particle at known static locations. In the second set of experiments, the tracer particle was moved vertically downwards along a straight line path in a controlled manner. The obtained reconstruction results about the tracer particle position were compared with the actual known position and the reconstruction errors were estimated. The obtained results revealed that the dynamic RPT calibration technique is capable of identifying tracer particle positions with a reconstruction error between 1 to 5.9 mm for the conditions studied which could be improved depending on various factors outlined here.

  14. Application of Interface Technology in Progressive Failure Analysis of Composite Panels

    NASA Technical Reports Server (NTRS)

    Sleight, D. W.; Lotts, C. G.

    2002-01-01

    A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.

  15. Methodology for the systems engineering process. Volume 3: Operational availability

    NASA Technical Reports Server (NTRS)

    Nelson, J. H.

    1972-01-01

    A detailed description and explanation of the operational availability parameter is presented. The fundamental mathematical basis for operational availability is developed, and its relationship to a system's overall performance effectiveness is illustrated within the context of identifying specific availability requirements. Thus, in attempting to provide a general methodology for treating both hypothetical and existing availability requirements, the concept of an availability state, in conjunction with the more conventional probability-time capability, is investigated. In this respect, emphasis is focused upon a balanced analytical and pragmatic treatment of operational availability within the system design process. For example, several applications of operational availability to typical aerospace systems are presented, encompassing the techniques of Monte Carlo simulation, system performance availability trade-off studies, analytical modeling of specific scenarios, as well as the determination of launch-on-time probabilities. Finally, an extensive bibliography is provided to indicate further levels of depth and detail of the operational availability parameter.

  16. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  17. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  18. Conformal Bootstrap in Mellin Space

    NASA Astrophysics Data System (ADS)

    Gopakumar, Rajesh; Kaviraj, Apratim; Sen, Kallol; Sinha, Aninda

    2017-02-01

    We propose a new approach towards analytically solving for the dynamical content of conformal field theories (CFTs) using the bootstrap philosophy. This combines the original bootstrap idea of Polyakov with the modern technology of the Mellin representation of CFT amplitudes. We employ exchange Witten diagrams with built-in crossing symmetry as our basic building blocks rather than the conventional conformal blocks in a particular channel. Demanding consistency with the operator product expansion (OPE) implies an infinite set of constraints on operator dimensions and OPE coefficients. We illustrate the power of this method in the ɛ expansion of the Wilson-Fisher fixed point by reproducing anomalous dimensions and, strikingly, obtaining OPE coefficients to higher orders in ɛ than currently available using other analytic techniques (including Feynman diagram calculations). Our results enable us to get a somewhat better agreement between certain observables in the 3D Ising model and the precise numerical values that have been recently obtained.

  19. Characterizing the spin orbit torque field-like term in in-plane magnetic system using transverse field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Feilong; Data Storage Institute, A*STAR Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608; Goolaup, Sarjoosing

    2016-08-28

    In this work, we present an efficient method for characterizing the spin orbit torque field-like term in an in-plane magnetized system using the harmonic measurement technique. This method does not require a priori knowledge of the planar and anomalous hall resistances and is insensitive to non-uniformity in magnetization, as opposed to the conventional harmonic technique. We theoretically and experimentally demonstrate that the field-like term in the Ta/Co/Pt film stack with in-plane magnetic anisotropy can be obtained by an in-plane transverse field sweep as expected, and magnetization non-uniformity is prevented by the application of fixed magnetic field. The experimental results aremore » in agreement with the analytical calculations.« less

  20. The design of a new concept chromatography column.

    PubMed

    Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew

    2011-12-21

    Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.

  1. Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols.

    PubMed Central

    Wegst, W; Tittmann, U; Eberspächer, J; Lingens, F

    1981-01-01

    Strain E of chloridazon-degrading bacteria, when grown on L-phenylalanine accumulates cis-2,3-dihydro-2,3-dihydroxyphenylalanine. In experiments with resting cells and during growth the bacterium converts the aromatic carboxylic acids phenylacetate, phenylpropionate, phenylbutyrate and phenyl-lactate into the corresponding cis-2,3-dihydrodiol compounds. The amino acids L-phenylalanine, N-acetyl-L-phenylalanine and t-butyloxycarbonyl-L-phenylalanine were also transformed into dihydrodiols. All seven dihydrodiols, thus obtained, were characterized both by conventional analytical techniques and by the ability to serve as substrates for a cis-dihydrodiol dehydrogenase. PMID:7306016

  2. Ionic liquids: solvents and sorbents in sample preparation.

    PubMed

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    PubMed

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  4. Size-exclusion chromatography using core-shell particles.

    PubMed

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Frequency Analyses of Prephonological Spellings as Predictors of Success in Conventional Spelling

    PubMed Central

    Kessler, Brett; Pollo, Tatiana Cury; Treiman, Rebecca; Cardoso-Martins, Cláudia

    2014-01-01

    The present study explored how children’s prephonological writing foretells differential learning outcomes in primary school. We asked Portuguese-speaking preschool children in Brazil (mean age 4 1/4 years) to spell 12 words. Monte Carlo tests were used to identify the 31 children whose writing was not based on spellings or sounds of the target words. 2 1/2 years later, the children took a standardized spelling test. The more closely the digram (2-letter sequence) frequencies in the preschool task correlated with those in children’s books, the better scores the children had in primary school; and the more preschoolers used letters from their own name, the lower their subsequent scores. Thus, preschoolers whose prephonological writing revealed attentiveness to the statistical properties of text subsequently performed better in conventional spelling. These analytic techniques may help in the early identification of children at risk for spelling difficulties. PMID:22798104

  6. Introducing the VRT gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Melconian, Jerry O.; Mostafa, Abdu A.; Nguyen, Hung Lee

    1990-01-01

    An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer model predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.

  7. DGT Passive Sampling for Quantitative in Situ Measurements of Compounds from Household and Personal Care Products in Waters.

    PubMed

    Chen, Wei; Li, Yanying; Chen, Chang-Er; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C

    2017-11-21

    Widespread use of organic chemicals in household and personal care products (HPCPs) and their discharge into aquatic systems means reliable, robust techniques to monitor environmental concentrations are needed. The passive sampling approach of diffusive gradients in thin-films (DGT) is developed here and demonstrated to provide in situ quantitative and time-weighted average (TWA) measurement of these chemicals in waters. The novel technique is developed for HPCPs, including preservatives, antioxidants and disinfectants, by evaluating the performance of different binding agents. Ultrasonic extraction of binding gels in acetonitrile gave good and consistent recoveries for all test chemicals. Uptake by DGT with HLB (hydrophilic-lipophilic-balanced) as the binding agent was relatively independent of pH (3.5-9.5), ionic strength (0.001-0.1 M) and dissolved organic matter (0-20 mg L -1 ), making it suitable for applications across a wide range of environments. Deployment time and diffusion layer thickness dependence experiments confirmed DGT accumulated chemicals masses are consistent with theoretical predictions. The technique was further tested and applied in the influent and effluent of a wastewater treatment plant. Results were compared with conventional grab-sampling and 24-h-composited samples from autosamplers. DGT provided TWA concentrations over up to 18 days deployment, with minimal effects from biofouling or the diffusive boundary layer. The field application demonstrated advantages of the DGT technique: it gives in situ analyte preconcentration in a simple matrix, with more quantitative measurement of the HPCP analytes.

  8. Automatic segmentation of the left ventricle in a cardiac MR short axis image using blind morphological operation

    NASA Astrophysics Data System (ADS)

    Irshad, Mehreen; Muhammad, Nazeer; Sharif, Muhammad; Yasmeen, Mussarat

    2018-04-01

    Conventionally, cardiac MR image analysis is done manually. Automatic examination for analyzing images can replace the monotonous tasks of massive amounts of data to analyze the global and regional functions of the cardiac left ventricle (LV). This task is performed using MR images to calculate the analytic cardiac parameter like end-systolic volume, end-diastolic volume, ejection fraction, and myocardial mass, respectively. These analytic parameters depend upon genuine delineation of epicardial, endocardial, papillary muscle, and trabeculations contours. In this paper, we propose an automatic segmentation method using the sum of absolute differences technique to localize the left ventricle. Blind morphological operations are proposed to segment and detect the LV contours of the epicardium and endocardium, automatically. We test the benchmark Sunny Brook dataset for evaluation of the proposed work. Contours of epicardium and endocardium are compared quantitatively to determine contour's accuracy and observe high matching values. Similarity or overlapping of an automatic examination to the given ground truth analysis by an expert are observed with high accuracy as with an index value of 91.30% . The proposed method for automatic segmentation gives better performance relative to existing techniques in terms of accuracy.

  9. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    PubMed

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  10. A Comparative Study of Single-pulse and Double-pulse Laser-Induced Breakdown Spectroscopy with Uranium-containing Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.

    Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulsemore » in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.« less

  11. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    PubMed

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by today's standards. Copyright © 2011 American Cancer Society.

  12. Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: A review.

    PubMed

    Su, Wen-Hao; He, Hong-Ju; Sun, Da-Wen

    2017-03-24

    Staple foods, including cereals, legumes, and root/tuber crops, dominate the daily diet of humans by providing valuable proteins, starch, oils, minerals, and vitamins. Quality evaluation of staple foods is primarily carried out on sensory (e.g. external defect, color), adulteration (e.g. species, origin), chemical (e.g. starch, proteins), mycotoxin (e.g. Fusarium toxin, aflatoxin), parasitic infection (e.g. weevil, beetle), and internal physiological (e.g. hollow heart, black heart) aspects. Conventional methods for the quality assessment of staple foods are always laborious, destructive, and time-consuming. Requirements for online monitoring of staple foods have been proposed to encourage the development of rapid, reagentless, and noninvasive techniques. Spectroscopic techniques, such as visible-infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, and spectral imaging, have been introduced as promising analytical tools and applied for the quality evaluation of staple foods. This review summarizes the recent applications and progress of such spectroscopic techniques in determining various qualities of staple foods. Besides, challenges and future trends of these spectroscopic techniques are also presented.

  13. Quantitative impedimetric monitoring of cell migration under the stimulation of cytokine or anti-cancer drug in a microfluidic chip

    PubMed Central

    Xiao, Xia; Lei, Kin Fong; Huang, Chia-Hao

    2015-01-01

    Cell migration is a cellular response and results in various biological processes such as cancer metastasis, that is, the primary cause of death for cancer patients. Quantitative investigation of the correlation between cell migration and extracellular stimulation is essential for developing effective therapeutic strategies for controlling invasive cancer cells. The conventional method to determine cell migration rate based on comparison of successive images may not be an objective approach. In this work, a microfluidic chip embedded with measurement electrodes has been developed to quantitatively monitor the cell migration activity based on the impedimetric measurement technique. A no-damage wound was constructed by microfluidic phenomenon and cell migration activity under the stimulation of cytokine and an anti-cancer drug, i.e., interleukin-6 and doxorubicin, were, respectively, investigated. Impedance measurement was concurrently performed during the cell migration process. The impedance change was directly correlated to the cell migration activity; therefore, the migration rate could be calculated. In addition, a good match was found between impedance measurement and conventional imaging analysis. But the impedimetric measurement technique provides an objective and quantitative measurement. Based on our technique, cell migration rates were calculated to be 8.5, 19.1, and 34.9 μm/h under the stimulation of cytokine at concentrations of 0 (control), 5, and 10 ng/ml. This technique has high potential to be developed into a powerful analytical platform for cancer research. PMID:26180566

  14. Strain expansion-reduction approach

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  15. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS

    PubMed Central

    Dong, Xiaoli; Cheng, Jinsheng; Li, Jinghong; Wang, Yinsheng

    2010-01-01

    Graphene was utilized for the first time as matrix for the analysis of low-molecular weight compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Polar compounds including amino acids, polyamines, anticancer drugs and nucleosides could be successfully analyzed. Additionally, nonpolar compounds including steroids could be detected with high resolution and sensitivity. Compared with conventional matrix, graphene exhibited high desorption/ionization efficiency for nonpolar compounds. The graphene matrix functions as substrate to trap analytes, and it transfers energy to the analytes upon laser irradiation, which allowed for the analytes to be readily desorbed/ionized and interference of intrinsic matrix ions to be eliminated. The use of graphene as matrix avoided the fragmentation of analytes and provided good reproducibility and high salt tolerance, underscoring the potential application of graphene as matrix for MALDI-MS analysis of practical samples in complex sample matrices. We also demonstrated that the use of graphene as adsorbent for the solid-phase extraction of squalene could improve greatly the detection limit. This work not only opens a new field for applications of graphene, but also offers a new technique for high-speed analysis of low-molecular weight compounds in areas such as metabolism research and natural products characterization. PMID:20565059

  16. Analytical and experimental studies of an optimum multisegment phased liner noise suppression concept

    NASA Technical Reports Server (NTRS)

    Sawdy, D. T.; Beckemeyer, R. J.; Patterson, J. D.

    1976-01-01

    Results are presented from detailed analytical studies made to define methods for obtaining improved multisegment lining performance by taking advantage of relative placement of each lining segment. Properly phased liner segments reflect and spatially redistribute the incident acoustic energy and thus provide additional attenuation. A mathematical model was developed for rectangular ducts with uniform mean flow. Segmented acoustic fields were represented by duct eigenfunction expansions, and mode-matching was used to ensure continuity of the total field. Parametric studies were performed to identify attenuation mechanisms and define preliminary liner configurations. An optimization procedure was used to determine optimum liner impedance values for a given total lining length, Mach number, and incident modal distribution. Optimal segmented liners are presented and it is shown that, provided the sound source is well-defined and flow environment is known, conventional infinite duct optimum attenuation rates can be improved. To confirm these results, an experimental program was conducted in a laboratory test facility. The measured data are presented in the form of analytical-experimental correlations. Excellent agreement between theory and experiment verifies and substantiates the analytical prediction techniques. The results indicate that phased liners may be of immediate benefit in the development of improved aircraft exhaust duct noise suppressors.

  17. An automated ranking platform for machine learning regression models for meat spoilage prediction using multi-spectral imaging and metabolic profiling.

    PubMed

    Estelles-Lopez, Lucia; Ropodi, Athina; Pavlidis, Dimitris; Fotopoulou, Jenny; Gkousari, Christina; Peyrodie, Audrey; Panagou, Efstathios; Nychas, George-John; Mohareb, Fady

    2017-09-01

    Over the past decade, analytical approaches based on vibrational spectroscopy, hyperspectral/multispectral imagining and biomimetic sensors started gaining popularity as rapid and efficient methods for assessing food quality, safety and authentication; as a sensible alternative to the expensive and time-consuming conventional microbiological techniques. Due to the multi-dimensional nature of the data generated from such analyses, the output needs to be coupled with a suitable statistical approach or machine-learning algorithms before the results can be interpreted. Choosing the optimum pattern recognition or machine learning approach for a given analytical platform is often challenging and involves a comparative analysis between various algorithms in order to achieve the best possible prediction accuracy. In this work, "MeatReg", a web-based application is presented, able to automate the procedure of identifying the best machine learning method for comparing data from several analytical techniques, to predict the counts of microorganisms responsible of meat spoilage regardless of the packaging system applied. In particularly up to 7 regression methods were applied and these are ordinary least squares regression, stepwise linear regression, partial least square regression, principal component regression, support vector regression, random forest and k-nearest neighbours. MeatReg" was tested with minced beef samples stored under aerobic and modified atmosphere packaging and analysed with electronic nose, HPLC, FT-IR, GC-MS and Multispectral imaging instrument. Population of total viable count, lactic acid bacteria, pseudomonads, Enterobacteriaceae and B. thermosphacta, were predicted. As a result, recommendations of which analytical platforms are suitable to predict each type of bacteria and which machine learning methods to use in each case were obtained. The developed system is accessible via the link: www.sorfml.com. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products.

    PubMed

    Inácio, Caio Teves; Chalk, Phillip Michael; Magalhães, Alberto M T

    2015-01-01

    Among the lighter elements having two or more stable isotopes (H, C, N, O, S), δ(15)N appears to be the most promising isotopic marker to differentiate plant products from conventional and organic farms. Organic plant products vary within a range of δ(15)N values of +0.3 to +14.6%, while conventional plant products range from negative to positive values, i.e. -4.0 to +8.7%. The main factors affecting δ(15)N signatures of plants are N fertilizers, biological N2 fixation, plant organs and plant age. Correlations between mode of production and δ(13)C (except greenhouse tomatoes warmed with natural gas) or δ(34)S signatures have not been established, and δ(2)H and δ(18)O are unsuitable markers due to the overriding effect of climate on the isotopic composition of plant-available water. Because there is potential overlap between the δ(15)N signatures of organic and conventionally produced plant products, δ(15)N has seldom been used successfully as the sole criterion for differentiation, but when combined with complementary analytical techniques and appropriate statistical tools, the probability of a correct identification increases. The use of organic fertilizers by conventional farmers or the marketing of organic produce as conventional due to market pressures are additional factors confounding correct identification. The robustness of using δ(15)N to differentiate mode of production will depend on the establishment of databases that have been verified for individual plant products.

  19. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    PubMed

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (<2 %) and human errors (<1 %) suggested that the system was sufficiently robust to be implemented in a network. With a median time-to-identification of 5 h and 11 min (78 min, min-max: 154-547), MALDI-TOF MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p < 0.0001). However, the limited clinical benefits of the chromogenic culture media do not support their extra cost. Our financial analysis also suggested that MALDI-TOF MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.

  20. Analytical techniques for steroid estrogens in water samples - A review.

    PubMed

    Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza

    2016-12-01

    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Functionality of empirical model-based predictive analytics for the early detection of hemodynamic instabilty.

    PubMed

    Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C

    2014-01-01

    Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patient’s pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (“SBM”), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or “QCP”) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patient’s physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patient’s condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. predictive analytics, hemodynamic, monitoring.

  2. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    PubMed

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Predictive momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Hatis, P. D.

    1986-01-01

    Space station control moment gyro momentum management is addressed by posing a deterministic optimization problem with a performance index that includes station external torque loading, gyro control torque demand, and excursions from desired reference attitudes. It is shown that a simple analytic desired attitude solution exists for all axes with pitch prescription decoupled, but roll and yaw coupled. Continuous gyro desaturation is shown to fit neatly into the scheme. Example results for pitch axis control of the NASA power tower Space Station are shown based on predictive attitude prescription. Control effector loading is shown to be reduced by this method when compared to more conventional momentum management techniques.

  4. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOEpatents

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  5. Heat-pump cool storage in a clathrate of freon

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  6. A critical review of inductively coupled plasma-mass spectrometry for geoanalysis, geochemistry and hydrology, Part 1. Analytical performance

    USGS Publications Warehouse

    Brenner, I.B.; Taylor, Howard E.

    1992-01-01

    Present-day inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation is described briefly. Emphasis is placed on performance characteristics for geoanalysis, geochemistry, and hydrology. Applications where ICP-MS would be indispensable are indicated. Determination of geochemically diagnostic trace elements (such as the rare earth elements [REE], U and Th), of isotope ratios for fingerprinting, tracer and other geo-isotope applications, and benchmark isotope dilution determinations are considered to be typical priority applications for ICP-MS. It is concluded that ICP-MS furnishes unique geoanalytical and environmental data that are not readily provided by conventional spectroscopic (emission and absorption) techniques.

  7. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    PubMed

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive technique which provides chemical information in both the mass spectra and chemical images. Published by Elsevier Ireland Ltd.

  8. A Development Strategy for Creating a Suite of Reference Materials for the in-situ Microanalysis of Non-conventional Raw Materials

    NASA Astrophysics Data System (ADS)

    Renno, A. D.; Merchel, S.; Michalak, P. P.; Munnik, F.; Wiedenbeck, M.

    2010-12-01

    Recent economic trends regarding the supply of rare metals readily justify scientific research into non-conventional raw materials, where a particular need is a better understanding of the relationship between mineralogy, microstructure and the distribution of key metals within ore deposits (geometallurgy). Achieving these goals will require an extensive usage of in-situ microanalytical techniques capable of spatially resolving material heterogeneities which can be key for understanding better resource utilization. The availability of certified reference materials (CRMs) is an essential prerequisite for (1) validating new analytical methods, (2) demonstrating data quality to the contracting authorities, (3) supporting method development and instrument calibration, and (4) establishing traceability between new analytical approaches and existing data sets. This need has led to the granting of funding by the European Union and the German Free State of Saxony for a program to develop such reference materials . This effort will apply the following strategies during the selection of the phases: (1) will use exclusively synthetic minerals, thereby providing large volumes of homogeneous starting material. (2) will focus on matrices which are capable of incorporating many ‘important’ elements while avoid exotic compositions which would not be optimal matrix matches. (3) will emphasise those phases which remain stable during the various microanalytical procedure. This initiative will assess the homogeneity of the reference materials at sampling sizes ranging between 50 and 1 µm; it is also intended to document crystal structural homogeneity too, as this too may potentially impact specific analytical methods. As far as possible both definitive methods as well as methods involving matrix corrections will be used for determining the compositions of the of the individual materials. A critical challenge will be the validation of the determination of analytes concentrations as sub-µg sampling masses. It is planned to cooperate with those who are interested in the development of such reference materials and we invite them to take part in round-robin exercises.

  9. Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography

    PubMed Central

    2011-01-01

    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C. PMID:21711666

  10. Structural investigation of Zn doped sodium bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, V., E-mail: vijetabhatia0712@gmail.com; Kumar, D.; Singh, D.

    2016-05-06

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na{sub 2}O:15Bi{sub 2}O{sub 3}:70B{sub 2}O{sub 3} (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained bymore » these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO{sub 3} & BO{sub 4} structural units) have been observed.« less

  11. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng

    2017-01-01

    The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.

  12. Structural characterization of thioether-bridged bacteriocins.

    PubMed

    Lohans, Christopher T; Vederas, John C

    2014-01-01

    Bacteriocins are a group of ribosomally synthesized antimicrobial peptides produced by bacteria, some of which are extensively post-translationally modified. Some bacteriocins, namely the lantibiotics and sactibiotics, contain one or more thioether bridges. However, these modifications complicate the structural elucidation of these bacteriocins using conventional techniques. This review will discuss the techniques and strategies that have been applied to determine the primary structures of lantibiotics and sactibiotics. A major challenge is to identify the topology of thioether bridges in these peptides (i.e., which amino-acid residues are involved in which bridges). Edman degradation, NMR spectroscopy and tandem MS have all been commonly applied to characterize these bacteriocins, but can be incompatible with the post-translational modifications present. Chemical modifications to the modified residues, such as desulfurization and reduction, make the treated bacteriocins more compatible to analysis by these standard peptide analytical techniques. Despite their differences in structure, similar strategies have proved useful to study the structures of both lantibiotics and sactibiotics.

  13. Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques.

    PubMed

    Oliveira, Gislene B; Alewijn, Martin; Boerrigter-Eenling, Rita; van Ruth, Saskia M

    2015-08-25

    Consumers' interest in the way meat is produced is increasing in Europe. The resulting free range and organic meat products retail at a higher price, but are difficult to differentiate from their counterparts. To ascertain authenticity and prevent fraud, relevant markers need to be identified and new analytical methodology developed. The objective of this pilot study was to characterize pork belly meats of different animal welfare classes by their fatty acid (Fatty Acid Methyl Ester-FAME), non-volatile compound (electrospray ionization-tandem mass spectrometry-ESI-MS/MS), and volatile compound (proton-transfer-reaction mass spectrometry-PTR-MS) fingerprints. Well-defined pork belly meat samples (13 conventional, 15 free range, and 13 organic) originating from the Netherlands were subjected to analysis. Fingerprints appeared to be specific for the three categories, and resulted in 100%, 95.3%, and 95.3% correct identity predictions of training set samples for FAME, ESI-MS/MS, and PTR-MS respectively and slightly lower scores for the validation set. Organic meat was also well discriminated from the other two categories with 100% success rates for the training set for all three analytical approaches. Ten out of 25 FAs showed significant differences in abundance between organic meat and the other categories, free range meat differed significantly for 6 out of the 25 FAs. Overall, FAME fingerprinting presented highest discrimination power.

  14. A micro-flow-batch analyzer with solenoid micro-pumps for the photometric determination of iodate in table salt.

    PubMed

    Lima, Marcelo B; Barreto, Inakã S; Andrade, Stéfani Iury E; Almeida, Luciano F; Araújo, Mário C U

    2012-10-15

    In this study, a micro-flow-batch analyzer (μFBA) with solenoid micro-pumps for the photometric determination of iodate in table salt is described. The method is based on the reaction of iodate with iodide to form molecular iodine followed by the reaction with N,N-diethyl-p-phenylenediamine (DPD). The analytical signal was measured at 520 nm using a green LED integrated into the μFBA built in the urethane-acrylate resin. The analytical curve for iodate was linear in the range of 0.01-10.0 mg L(-1) with a correlation coefficient of 0.997. The limit of detection and relative standard deviation were estimated at 0.004 mg L(-1) and<1.5% (n=3), respectively. The accuracy was assessed through recovery test (97.6-103.5%) and independent analysis by a conventional titrimetric method. Comparing this technique with the conventional method, no statistically significant differences were observed when applying the paired t-test at a 95% confidence level. The proposed microsystem using solenoid micro-pumps presented satisfactory robustness and high sampling rate (170 h(-1)), with a low reagents consumption and a low cost to build the device. The proposed microsystem is a new alternative for automatic determination of iodate in table salt, comparing satisfactory to the recently flow system. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques

    PubMed Central

    Oliveira, Gislene B.; Alewijn, Martin; Boerrigter-Eenling, Rita; van Ruth, Saskia M.

    2015-01-01

    Consumers’ interest in the way meat is produced is increasing in Europe. The resulting free range and organic meat products retail at a higher price, but are difficult to differentiate from their counterparts. To ascertain authenticity and prevent fraud, relevant markers need to be identified and new analytical methodology developed. The objective of this pilot study was to characterize pork belly meats of different animal welfare classes by their fatty acid (Fatty Acid Methyl Ester—FAME), non-volatile compound (electrospray ionization-tandem mass spectrometry—ESI-MS/MS), and volatile compound (proton-transfer-reaction mass spectrometry—PTR-MS) fingerprints. Well-defined pork belly meat samples (13 conventional, 15 free range, and 13 organic) originating from the Netherlands were subjected to analysis. Fingerprints appeared to be specific for the three categories, and resulted in 100%, 95.3%, and 95.3% correct identity predictions of training set samples for FAME, ESI-MS/MS, and PTR-MS respectively and slightly lower scores for the validation set. Organic meat was also well discriminated from the other two categories with 100% success rates for the training set for all three analytical approaches. Ten out of 25 FAs showed significant differences in abundance between organic meat and the other categories, free range meat differed significantly for 6 out of the 25 FAs. Overall, FAME fingerprinting presented highest discrimination power. PMID:28231211

  16. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography.

    PubMed

    Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock

    2016-11-10

    Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  17. ACCELERATING MR PARAMETER MAPPING USING SPARSITY-PROMOTING REGULARIZATION IN PARAMETRIC DIMENSION

    PubMed Central

    Velikina, Julia V.; Alexander, Andrew L.; Samsonov, Alexey

    2013-01-01

    MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which utilizes smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. PMID:23213053

  18. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  19. A new analytical solution solved by triple series equations method for constant-head tests in confined aquifers

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Chi; Yeh, Hund-Der

    2010-06-01

    The constant-head pumping tests are usually employed to determine the aquifer parameters and they can be performed in fully or partially penetrating wells. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The mathematical model describing the aquifer response to a constant-head test performed in a fully penetrating well can be easily solved by the conventional integral transform technique under the uniform Dirichlet-type condition along the rim of wellbore. However, the boundary condition for a test well with partial penetration should be considered as a mixed-type condition. This mixed boundary value problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the Laplace and finite Fourier transforms in conjunction with the triple series equations method. This approach provides analytical results for the drawdown in a partially penetrating well for arbitrary location of the well screen in a finite thickness aquifer. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.

  20. A variance-decomposition approach to investigating multiscale habitat associations

    USGS Publications Warehouse

    Lawler, J.J.; Edwards, T.C.

    2006-01-01

    The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.

  1. Equivalent reduced model technique development for nonlinear system dynamic response

    NASA Astrophysics Data System (ADS)

    Thibault, Louis; Avitabile, Peter; Foley, Jason; Wolfson, Janet

    2013-04-01

    The dynamic response of structural systems commonly involves nonlinear effects. Often times, structural systems are made up of several components, whose individual behavior is essentially linear compared to the total assembled system. However, the assembly of linear components using highly nonlinear connection elements or contact regions causes the entire system to become nonlinear. Conventional transient nonlinear integration of the equations of motion can be extremely computationally intensive, especially when the finite element models describing the components are very large and detailed. In this work, the equivalent reduced model technique (ERMT) is developed to address complicated nonlinear contact problems. ERMT utilizes a highly accurate model reduction scheme, the System equivalent reduction expansion process (SEREP). Extremely reduced order models that provide dynamic characteristics of linear components, which are interconnected with highly nonlinear connection elements, are formulated with SEREP for the dynamic response evaluation using direct integration techniques. The full-space solution will be compared to the response obtained using drastically reduced models to make evident the usefulness of the technique for a variety of analytical cases.

  2. Improved aqueous scrubber for collection of soluble atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Talbot, R. W.; Collins, V. G.

    1985-01-01

    A new concentration technique for the extraction and enrichment of water-soluble atmospheric trace gases has been developed. The gas scrubbing technique efficiently extracts soluble gases from a large volume flow rate of air sample into a small volume of refluxed trapping solution. The gas scrubber utilizes a small nebulizing nozzle that mixes the incoming air with an aqueous extracting solution to form an air/droplet mist. The mist provides excellent interfacial surface areas for mass transfer. The resulting mist sprays upward through the reaction chamber until it impinges upon a hydrophobic membrane that virtually blocks the passage of droplets but offers little resistance to the existing gas flow. Droplets containing the scrubbed gases coalesce on the membrane and drip back into the reservoir for further refluxing. After a suitable concentration period, the extracting solution containing the analyte can be withdrawn for analysis. The nebulization-reflex concentration technique is more efficient (maximum flow of gas through the minimum volume of extractant) than conventional bubbler/impinger gas extraction techniques and is offered as an alternative method.

  3. Development Of Antibody-Based Fiber-Optic Sensors

    NASA Astrophysics Data System (ADS)

    Tromberg, Bruce J.; Sepaniak, Michael J.; Vo-Dinh, Tuan

    1988-06-01

    The speed and specificity characteristic of immunochemical complex formation has encouraged the development of numerous antibody-based analytical techniques. The scope and versatility of these established methods can be enhanced by combining the principles of conventional immunoassay with laser-based fiber-optic fluorimetry. This merger of spectroscopy and immunochemistry provides the framework for the construction of highly sensitive and selective fiber-optic devices (fluoroimmuno-sensors) capable of in-situ detection of drugs, toxins, and naturally occurring biochemicals. Fluoroimmuno-sensors (FIS) employ an immobilized reagent phase at the sampling terminus of a single quartz optical fiber. Laser excitation of antibody-bound analyte produces a fluorescence signal which is either directly proportional (as in the case of natural fluorophor and "antibody sandwich" assays) or inversely proportional (as in the case of competitive-binding assays) to analyte concentration. Factors which influence analysis time, precision, linearity, and detection limits include the nature (solid or liquid) and amount of the reagent phase, the method of analyte delivery (passive diffusion, convection, etc.), and whether equilibrium or non-equilibrium assays are performed. Data will be presented for optical fibers whose sensing termini utilize: (1) covalently-bound solid antibody reagent phases, and (2) membrane-entrapped liquid antibody reagents. Assays for large-molecular weight proteins (antigens) and small-molecular weight, carcinogenic, polynuclear aromatics (haptens) will be considered. In this manner, the influence of a system's chemical characteristics and measurement requirements on sensor design, and the consequence of various sensor designs on analytical performance will be illustrated.

  4. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    PubMed

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  5. An experimental study to evaluate the technological limitations in the understanding of the haemodynamic change in pre-eclampsia.

    PubMed

    Sengupta

    1998-08-01

    BACKGROUND: Conventional indices could not define the pathogenesis of pre-eclampsia and its predictability. It has also not been possible to record these indices from the local uteroplacental system where the pathology lies. OBJECTIVE: To investigate the limitations of the currently available blood pressure-flow measuring indices and techniques commonly used in pregnancy.METHOD: Blood pressure and velocity profiles were obtained under various pathophysiological conditions for pregnant and non-pregnant animals and human subjects. The data were analysed using both conventional and computer-based spectral methods. RESULTS: Continuous monitoring of blood pressure and velocity together with their spectral analysis appeared to be a useful sensitive indicator in pregnancy beyond the commonly available conventional analytical method. In high-resistance flow such as in hypertension and in pre-eclampsia, the power amplitude was relatively low at low frequency. Power amplitude remained high at low frequency in normal low-resistance state of pregnancy. CONCLUSION: The results suggest the need to develop a highly sensitive instrumentation whereby any minute variation in mean arterial pressure that is of clinical significance can be measured. Alternatively, analytical advancement, such as use of power spectrum analysers, might prove to be useful and sensitive. Variability of heart rate is an important determinant of the underlying pathophysiology in pregnancy. It is concluded that the heart rate of pre-eclamptics and hypertensives has to increase in order to maintain a constant organic blood flow whereas in normal pregnancy bloow flow can rise even without an incrase in heart rate. Future research should be directed towards blood flow mapping, power spectral analysis and image processing of the blood pressure-flow profile obtained from local and systemic compartments under different pathophysiological conditions of pregnancy.

  6. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praphairaksit, Narong

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at ~70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W withmore » an outer gas flow rate of ~4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression of signal for even the most troublesome combination of light analyte and heavy matrix elements can be attenuated from 90-99% to only 2-10% for 2 mM matrix solutions with an ultrasonic nebulizer. The supplemental electron current can be adjusted to ''titrate'' out the matrix effects as desired.« less

  7. Recent Developments in Enzyme, DNA and Immuno-Based Biosensors.

    PubMed

    Asal, Melis; Özen, Özlem; Şahinler, Mert; Polatoğlu, İlker

    2018-06-13

    Novel sensitive, rapid and economical biosensors are being developed in a wide range of medical environmental and food applications. In this paper, we review some of the main advances in the field over the past few years by discussing recent studies from literature. A biosensor, which is defined as an analytical device consisting of a biomolecule, a transducer and an output system, can be categorized according to the type of the incorporated biomolecule. The biomolecules can be enzymes, antibodies, ssDNA, organelles, cells etc. The main biosensor categories classified according to the biomolecules are enzymatic biosensors, immunosensors and DNA-based biosensors. These sensors can measure analytes produced or reduced during reactions at lower costs compared to the conventional detection techniques. Numerous types of biosensor studies conducted over the last decade have been explored here to reveal their key applications in medical, environmental and food industries which provide comprehensive perspective to the readers. Overviews of the working principles and applications of the reviewed sensors are also summarized.

  8. Small Gas Turbine Combustor Primary Zone Study

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.

    1983-01-01

    A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.

  9. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment.

    PubMed

    Streby, Ashleigh; Mull, Bonnie J; Levy, Karen; Hill, Vincent R

    2015-05-01

    Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Foursuch assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices.

  10. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment

    PubMed Central

    Streby, Ashleigh; Mull, Bonnie J.; Levy, Karen

    2015-01-01

    Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Four such assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices. PMID:25855343

  11. Inline roasting hyphenated with gas chromatography-mass spectrometry as an innovative approach for assessment of cocoa fermentation quality and aroma formation potential.

    PubMed

    Van Durme, Jim; Ingels, Isabel; De Winne, Ann

    2016-08-15

    Today, the cocoa industry is in great need of faster and robust analytical techniques to objectively assess incoming cocoa quality. In this work, inline roasting hyphenated with a cooled injection system coupled to a gas chromatograph-mass spectrometer (ILR-CIS-GC-MS) has been explored for the first time to assess fermentation quality and/or overall aroma formation potential of cocoa. This innovative approach resulted in the in-situ formation of relevant cocoa aroma compounds. After comparison with data obtained by headspace solid phase micro extraction (HS-SPME-GC-MS) on conventional roasted cocoa beans, ILR-CIS-GC-MS data on unroasted cocoa beans showed similar formation trends of important cocoa aroma markers as a function of fermentation quality. The latter approach only requires small aliquots of unroasted cocoa beans, can be automatated, requires no sample preparation, needs relatively short analytical times (<1h) and is highly reproducible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. New solutions to the constant-head test performed at a partially penetrating well

    NASA Astrophysics Data System (ADS)

    Chang, Y. C.; Yeh, H. D.

    2009-05-01

    SummaryThe mathematical model describing the aquifer response to a constant-head test performed at a fully penetrating well can be easily solved by the conventional integral transform technique. In addition, the Dirichlet-type condition should be chosen as the boundary condition along the rim of wellbore for such a test well. However, the boundary condition for a test well with partial penetration must be considered as a mixed-type condition. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The model for such a mixed boundary problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the dual series equations and perturbation method. This approach provides analytical results for the drawdown in the partially penetrating well and the well discharge along the screen. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.

  13. A rapid method for estimation of Pu-isotopes in urine samples using high volume centrifuge.

    PubMed

    Kumar, Ranjeet; Rao, D D; Dubla, Rupali; Yadav, J R

    2017-07-01

    The conventional radio-analytical technique used for estimation of Pu-isotopes in urine samples involves anion exchange/TEVA column separation followed by alpha spectrometry. This sequence of analysis consumes nearly 3-4 days for completion. Many a times excreta analysis results are required urgently, particularly under repeat and incidental/emergency situations. Therefore, there is need to reduce the analysis time for the estimation of Pu-isotopes in bioassay samples. This paper gives the details of standardization of a rapid method for estimation of Pu-isotopes in urine samples using multi-purpose centrifuge, TEVA resin followed by alpha spectrometry. The rapid method involves oxidation of urine samples, co-precipitation of plutonium along with calcium phosphate followed by sample preparation using high volume centrifuge and separation of Pu using TEVA resin. Pu-fraction was electrodeposited and activity estimated using 236 Pu tracer recovery by alpha spectrometry. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 47-88% with a mean and standard deviation of 64.4% and 11.3% respectively. With this newly standardized technique, the whole analytical procedure is completed within 9h (one working day hour). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optics-Integrated Microfluidic Platforms for Biomolecular Analyses

    PubMed Central

    Bates, Kathleen E.; Lu, Hang

    2016-01-01

    Compared with conventional optical methods, optics implemented on microfluidic chips provide small, and often much cheaper ways to interrogate biological systems from the level of single molecules up to small model organisms. The optical probing of single molecules has been used to investigate the mechanical properties of individual biological molecules; however, multiplexing of these measurements through microfluidics and nanofluidics confers many analytical advantages. Optics-integrated microfluidic systems can significantly simplify sample processing and allow a more user-friendly experience; alignments of on-chip optical components are predetermined during fabrication and many purely optical techniques are passively controlled. Furthermore, sample loss from complicated preparation and fluid transfer steps can be virtually eliminated, a particularly important attribute for biological molecules at very low concentrations. Excellent fluid handling and high surface area/volume ratios also contribute to faster detection times for low abundance molecules in small sample volumes. Although integration of optical systems with classical microfluidic analysis techniques has been limited, microfluidics offers a ready platform for interrogation of biophysical properties. By exploiting the ease with which fluids and particles can be precisely and dynamically controlled in microfluidic devices, optical sensors capable of unique imaging modes, single molecule manipulation, and detection of minute changes in concentration of an analyte are possible. PMID:27119629

  15. Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics

    PubMed Central

    Fatou, Benoit; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2015-01-01

    Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications. PMID:26674367

  16. Plasmonic crystal based solid substrate for biomedical application of SERS

    NASA Astrophysics Data System (ADS)

    Morasso, Carlo F.; Mehn, Dora; Picciolini, Silvia; Vanna, Renzo; Bedoni, Marzia; Gramatica, Furio; Pellacani, Paola; Frangolho, Ana; Marchesini, Gerardo; Valsesia, Andrea

    2014-02-01

    Surface Enhanced Raman Spectroscopy is a powerful analytical technique that combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by the enhancement of the signal observed when a molecule is located on (or very close to) the surface of suitable nanostructured metallic materials. The availability of cheap, reliable and easy to use SERS substrates would pave the road to the development of bioanalytical tests that can be used in clinical practice. SERS, in fact, is expected to provide not only higher sensitivity and specificity, but also the simultaneous and markedly improved detection of several targets at the same time with higher speed compared to the conventional analytical methods. Here, we present the SERS activity of 2-D plasmonic crystals made by polymeric pillars embedded in a gold matrix obtained through the combination of soft-lithography and plasma deposition techniques on a transparent substrates. The use of a transparent support material allowed us to perform SERS detection from support side opening the possibility to use these substrates in combination with microfluidic devices. In order to demonstrate the potentialities for bioanalytical applications, we used our SERS active gold surface to detect the oxidation product of apomorphine, a well-known drug molecule used in Parkinson's disease which has been demonstrated being difficult to study by traditional HPLC based approaches.

  17. A surface plasmon resonance based biochip for the detection of patulin toxin

    NASA Astrophysics Data System (ADS)

    Pennacchio, Anna; Ruggiero, Giuseppe; Staiano, Maria; Piccialli, Gennaro; Oliviero, Giorgia; Lewkowicz, Aneta; Synak, Anna; Bojarski, Piotr; D'Auria, Sabato

    2014-08-01

    Patulin is a toxic secondary metabolite of a number of fungal species belonging to the genera Penicillium and Aspergillus. One important aspect of the patulin toxicity in vivo is an injury of the gastrointestinal tract including ulceration and inflammation of the stomach and intestine. Recently, patulin has been shown to be genotoxic by causing oxidative damage to the DNA, and oxidative DNA base modifications have been considered to play a role in mutagenesis and cancer initiation. Conventional analytical methods for patulin detection involve chromatographic analyses, such as HPLC, GC, and, more recently, techniques such as LC/MS and GC/MS. All of these methods require the use of extensive protocols and the use of expensive analytical instrumentation. In this work, the conjugation of a new derivative of patulin to the bovine serum albumin for the production of polyclonal antibodies is described, and an innovative competitive immune-assay for detection of patulin is presented. Experimentally, an important part of the detection method is based on the optical technique called surface plasmon resonance (SPR). Laser beam induced interactions between probe and target molecules in the vicinity of gold surface of the biochip lead to the shift in resonance conditions and consequently to slight but easily detectable change of reflectivity.

  18. A method for the direct injection and analysis of small volume human blood spots and plasma extracts containing high concentrations of organic solvents using revered-phase 2D UPLC/MS.

    PubMed

    Rainville, Paul D; Simeone, Jennifer L; Root, Dan S; Mallet, Claude R; Wilson, Ian D; Plumb, Robert S

    2015-03-21

    The emergence of micro sampling techniques holds great potential to improve pharmacokinetic data quality, reduce animal usage, and save costs in safety assessment studies. The analysis of these samples presents new challenges for bioanalytical scientists, both in terms of sample processing and analytical sensitivity. The use of two dimensional LC/MS with, at-column-dilution for the direct analysis of highly organic extracts prepared from biological fluids such as dried blood spots and plasma is demonstrated. This technique negated the need to dry down and reconstitute, or dilute samples with water/aqueous buffer solutions, prior to injection onto a reversed-phase LC system. A mixture of model drugs, including bromhexine, triprolidine, enrofloxacin, and procaine were used to test the feasibility of the method. Finally an LC/MS assay for the probe pharmaceutical rosuvastatin was developed from dried blood spots and protein-precipitated plasma. The assays showed acceptable recovery, accuracy and precision according to US FDA guidelines. The resulting analytical method showed an increase in assay sensitivity of up to forty fold as compared to conventional methods by maximizing the amount loaded onto the system and the MS response for the probe pharmaceutical rosuvastatin from small volume samples.

  19. The role of analytical chemistry in Niger Delta petroleum exploration: a review.

    PubMed

    Akinlua, Akinsehinwa

    2012-06-12

    Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  1. [Utilization of Big Data in Medicine and Future Outlook].

    PubMed

    Kinosada, Yasutomi; Uematsu, Machiko; Fujiwara, Takuya

    2016-03-01

    "Big data" is a new buzzword. The point is not to be dazzled by the volume of data, but rather to analyze it, and convert it into insights, innovations, and business value. There are also real differences between conventional analytics and big data. In this article, we show some results of big data analysis using open DPC (Diagnosis Procedure Combination) data in areas of the central part of JAPAN: Toyama, Ishikawa, Fukui, Nagano, Gifu, Aichi, Shizuoka, and Mie Prefectures. These 8 prefectures contain 51 medical administration areas called the second medical area. By applying big data analysis techniques such as k-means, hierarchical clustering, and self-organizing maps to DPC data, we can visualize the disease structure and detect similarities or variations among the 51 second medical areas. The combination of a big data analysis technique and open DPC data is a very powerful method to depict real figures on patient distribution in Japan.

  2. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.

    PubMed

    Radu, Tanja; Diamond, Dermot

    2009-11-15

    Past mining activities in the area of Silvermines, Ireland, have resulted in heavily polluted soils. The possibility of spreading pollution to the surrounding areas through dust blow-offs poses a potential threat for the local communities. Conventional environmental soil and dust analysis techniques are very slow and laborious and consequently there is a need for fast and accurate analytical methods, which can provide real-time in situ pollution mapping. Laboratory-based aqua regia acid digestion of the soil samples collected in the area followed by the atomic absorption spectrophotometry (AAS) analysis confirmed very high pollution, especially by Pb, As, Cu, and Zn. In parallel, samples were analyzed using portable X-ray fluorescence radioisotope and miniature tube powered (XRF) NITON instruments and their performance was compared. Overall, the portable XRF instrument gave excellent correlation with the laboratory-based reference AAS method.

  3. On-line concentration and determination of all-trans- and 13-cis- retinoic acids in rabbit serum by application of sweeping technique in micellar electrokinetic chromatography.

    PubMed

    Zhao, Yongxi; Kong, Yu; Wang, Bo; Wu, Yayan; Wu, Hong

    2007-03-30

    A simple and rapid micellar electrokinetic chromatography (MEKC) method with UV detection was developed for the simultaneous separation and determination of all-trans- and 13-cis-retinoic acids in rabbit serum by on-line sweeping concentration technique. The serum sample was simply deproteinized and centrifuged. Various parameters affecting sample enrichment and separation were systematically investigated. Under optimal conditions, the analytes could be well separated within 17min, and the relative standard deviations (RSD) of migration times and peak areas were less than 3.4%. Compared with the conventional MEKC injection method, the 18- and 19-fold improvements in sensitivity were achieved, respectively. The proposed method has been successfully applied to the determination of all-trans- and 13-cis-retinoic acids in serum samples from rabbits and could be feasible for the further pharmacokinetics study of all-trans-retinoic acid.

  4. Analyses of moisture in polymers and composites

    NASA Technical Reports Server (NTRS)

    Ryan, L. E.; Vaughan, R. W.

    1980-01-01

    A suitable method for the direct measurement of moisture concentrations after humidity/thermal exposure on state of the art epoxy and polyimide resins and their graphite and glass fiber reinforcements was investigated. Methods for the determination of moisture concentration profiles, moisture diffusion modeling and moisture induced chemical changes were examined. Carefully fabricated, precharacterized epoxy and polyimide neat resins and their AS graphite and S glass reinforced composites were exposed to humid conditions using heavy water (D20), at ambient and elevated temperatures. These specimens were fixtured to theoretically limit the D20 permeation to a unidirectional penetration axis. The analytical techniques evaluated were: (1) laser pyrolysis gas chromatography mass spectrometry; (2) solids probe mass spectrometry; (3) laser pyrolysis conventional infrared spectroscopy; and (4) infrared imaging thermovision. The most reproducible and sensitive technique was solids probe mass spectrometry. The fabricated exposed specimens were analyzed for D20 profiling after humidity/thermal conditioning at three exposure time durations.

  5. SRRF: Universal live-cell super-resolution microscopy.

    PubMed

    Culley, Siân; Tosheva, Kalina L; Matos Pereira, Pedro; Henriques, Ricardo

    2018-08-01

    Super-resolution microscopy techniques break the diffraction limit of conventional optical microscopy to achieve resolutions approaching tens of nanometres. The major advantage of such techniques is that they provide resolutions close to those obtainable with electron microscopy while maintaining the benefits of light microscopy such as a wide palette of high specificity molecular labels, straightforward sample preparation and live-cell compatibility. Despite this, the application of super-resolution microscopy to dynamic, living samples has thus far been limited and often requires specialised, complex hardware. Here we demonstrate how a novel analytical approach, Super-Resolution Radial Fluctuations (SRRF), is able to make live-cell super-resolution microscopy accessible to a wider range of researchers. We show its applicability to live samples expressing GFP using commercial confocal as well as laser- and LED-based widefield microscopes, with the latter achieving long-term timelapse imaging with minimal photobleaching. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The ERTS-1 investigation (ER-600). Volume 1: ERTS-1 agricultural analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Agriculture Analysis Team of the Johnson Space Center conducted a 1-year-long investigation of ERTS-1 multispectral data to evaluate how well features of agricultural importance could be detected, identified, and located; and their areal extent measured. Six study areas were selected in cooperation with the U.S. Department of Agriculture. Two basic analytical approaches were used to meet the objectives. The conventional image interpretation technique revealed that a particular color was an indication of the density of vegetative cover, not an indication of crop classification. Computer-aided techniques were used to classify crop types (i.e., small grains, truck farm crops, grasses, summer fallow) to accuracies as high as 95 percent on large (12 hectares or more) well-defined fields. A further breakdown into crop species (wheat, barley, soybeans, oats, corn) reduced the accuracy to 70 to 80 percent for single-date observations.

  7. Perfect transmission at oblique incidence by trigonal warping in graphene P-N junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Hui; Yang, Wen

    2018-01-01

    We develop an analytical mode-matching technique for the tight-binding model to describe electron transport across graphene P-N junctions. This method shares the simplicity of the conventional mode-matching technique for the low-energy continuum model and the accuracy of the tight-binding model over a wide range of energies. It further reveals an interesting phenomenon on a sharp P-N junction: the disappearance of the well-known Klein tunneling (i.e., perfect transmission) at normal incidence and the appearance of perfect transmission at oblique incidence due to trigonal warping at energies beyond the linear Dirac regime. We show that this phenomenon arises from the conservation of a generalized pseudospin in the tight-binding model. We expect this effect to be experimentally observable in graphene and other Dirac fermions systems, such as the surface of three-dimensional topological insulators.

  8. New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.

    2017-12-01

    Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.

  9. Can neutral analytes be concentrated by transient isotachophoresis in micellar electrokinetic chromatography and how much?

    PubMed

    Matczuk, Magdalena; Foteeva, Lidia S; Jarosz, Maciej; Galanski, Markus; Keppler, Bernhard K; Hirokawa, Takeshi; Timerbaev, Andrei R

    2014-06-06

    Transient isotachophoresis (tITP) is a versatile sample preconcentration technique that uses ITP to focus electrically charged analytes at the initial stage of CE analysis. However, according to the ruling principle of tITP, uncharged analytes are beyond its capacity while being separated and detected by micellar electrokinetic chromatography (MEKC). On the other hand, when these are charged micelles that undergo the tITP focusing, one can anticipate the concentration effect, resulting from the formation of transient micellar stack at moving sample/background electrolyte (BGE) boundary, which increasingly accumulates the analytes. This work expands the enrichment potential of tITP for MEKC by demonstrating the quantitative analysis of uncharged metal-based drugs from highly saline samples and introducing to the BGE solution anionic surfactants and buffer (terminating) co-ions of different mobility and concentration to optimize performance. Metallodrugs of assorted lipophilicity were chosen so as to explore whether their varying affinity toward micelles plays the role. In addition to altering the sample and BGE composition, optimization of the detection capability was achieved due to fine-tuning operational variables such as sample volume, separation voltage and pressure, etc. The results of optimization trials shed light on the mechanism of micellar tITP and render effective determination of selected drugs in human urine, with practical limits of detection using conventional UV detector. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Performance of high area ratio nozzles for a small rocket thruster

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Hermel, J.; Apfel, S.; Zydowicz, M.

    1986-01-01

    Theoretical estimates of supersonic nozzle performance have been compared to experimental test data for nozzles with an area ratio of 100:1 conical and 300:1 optimum contour, and 300:1 nozzles cut off at 200:1 and 100:1. These tests were done on a Hughes Aircraft Company 5 lbf monopropellant hydrazine thruster with chamber pressures ranging from 25 to 135 psia. The analytic method used is the conventional inviscid method of characteristic with correction for laminar boundary layer displacement and drag. Replacing the 100:1 conical nozzle with the 300:1 contoured nozzle resulted in an improvement in thrust performance of 0.74 percent at chamber pressure of 25 psia to 2.14 percent at chamber pressure of 135 psia. The data is significant because it is experimental verification that conventional nozzle design techniques are applicable even where the boundary layer is laminar and displaces as much as 35 percent of the flow at the nozzle exit plane.

  11. Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges.

    PubMed

    Cuevas, Francisco Julián; Moreno-Rojas, José Manuel; Ruiz-Moreno, María José

    2017-04-15

    A targeted approach using HS-SPME-GC-MS was performed to compare flavour compounds of 'Navelina' and 'Salustiana' orange cultivars from organic and conventional management systems. Both varieties of conventional oranges showed higher content of ester compounds. On the other hand, higher content of some compounds related with the geranyl-diphosphate pathway (neryl and geranyl acetates) and some terpenoids were found in the organic samples. Furthermore, the partial least square discriminant analysis (PLS-DA) achieved an effective classification for oranges based on the farming system using their volatile profiles (90 and 100% correct classification). To our knowledge, it is the first time that a comparative study dealing with farming systems and orange aroma profile has been performed. These new insights, taking into account local databases, cultivars and advanced analytical tools, highlight the potential of volatile composition for organic orange discrimination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Introducing the VRT gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melconian, J.O.; Mostafa, A.A.; Nguyen, H.L.

    An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer modelmore » predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.« less

  13. The prediction of nonlinear three dimensional combustion instability in liquid rockets with conventional nozzles

    NASA Technical Reports Server (NTRS)

    Powell, E. A.; Zinn, B. T.

    1973-01-01

    An analytical technique is developed to solve nonlinear three-dimensional, transverse and axial combustion instability problems associated with liquid-propellant rocket motors. The Method of Weighted Residuals is used to determine the nonlinear stability characteristics of a cylindrical combustor with uniform injection of propellants at one end and a conventional DeLaval nozzle at the other end. Crocco's pressure sensitive time-lag model is used to describe the unsteady combustion process. The developed model predicts the transient behavior and nonlinear wave shapes as well as limit-cycle amplitudes and frequencies typical of unstable motor operation. The limit-cycle amplitude increases with increasing sensitivity of the combustion process to pressure oscillations. For transverse instabilities, calculated pressure waveforms exhibit sharp peaks and shallow minima, and the frequency of oscillation is within a few percent of the pure acoustic mode frequency. For axial instabilities, the theory predicts a steep-fronted wave moving back and forth along the combustor.

  14. Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics.

    PubMed

    Mahato, Kuldeep; Maurya, Pawan Kumar; Chandra, Pranjal

    2018-03-01

    Among various problems faced by mankind, health-related concerns are prevailing since long which are commonly found in the form of infectious diseases and different metabolic disorders. The clinical cure and management of such abnormalities are greatly dependent on the availability of their diagnoses. The conventional diagnostics used for such purposes are extremely powerful; however, most of these are limited by time-consuming protocols and require higher volume of test sample, etc. A new evolving technology called "biosensor" in this context shows an enormous potential for an alternative diagnostic device, which constantly compliments the conventional diagnoses. In this review, we have summarized different kinds of biosensors and their fundamental understanding with various state-of-the-art examples. A critical examination of different types of biosensing mechanisms is also reported highlighting the advantages of electrochemical biosensors for its great potentials in next-generation commercially viable modules. In recent years, a number of nanomaterials are extensively used to enhance not only the performance of biosensing mechanism, but also obtain robust, cheap, and fabrication-friendly durable mechanism. Herein, we have summarized the importance of nanomaterials in biosensing mechanism, their syntheses as well as characterization techniques. Subsequently, we have discussed the probe fabrication processes along with various techniques for assessing its analytical performances and potentials for commercial viability.

  15. Visualization rhetoric: framing effects in narrative visualization.

    PubMed

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. © 2011 IEEE

  16. The use of various X-ray fluorescence analysis modalities for the investigation of historical paintings: The case study on the Late Gothic panel painting

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.

    2017-10-01

    The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.

  17. A shipboard comparison of analytic methods for ballast water compliance monitoring

    NASA Astrophysics Data System (ADS)

    Bradie, Johanna; Broeg, Katja; Gianoli, Claudio; He, Jianjun; Heitmüller, Susanne; Curto, Alberto Lo; Nakata, Akiko; Rolke, Manfred; Schillak, Lothar; Stehouwer, Peter; Vanden Byllaardt, Julie; Veldhuis, Marcel; Welschmeyer, Nick; Younan, Lawrence; Zaake, André; Bailey, Sarah

    2018-03-01

    Promising approaches for indicative analysis of ballast water samples have been developed that require study in the field to examine their utility for determining compliance with the International Convention for the Control and Management of Ships' Ballast Water and Sediments. To address this gap, a voyage was undertaken on board the RV Meteor, sailing the North Atlantic Ocean from Mindelo (Cape Verde) to Hamburg (Germany) during June 4-15, 2015. Trials were conducted on local sea water taken up by the ship's ballast system at multiple locations along the trip, including open ocean, North Sea, and coastal water, to evaluate a number of analytic methods that measure the numeric concentration or biomass of viable organisms according to two size categories (≥ 50 μm in minimum dimension: 7 techniques, ≥ 10 μm and < 50 μm: 9 techniques). Water samples were analyzed in parallel to determine whether results were similar between methods and whether rapid, indicative methods offer comparable results to standard, time- and labor-intensive detailed methods (e.g. microscopy) and high-end scientific approaches (e.g. flow cytometry). Several promising indicative methods were identified that showed high correlation with microscopy, but allow much quicker processing and require less expert knowledge. This study is the first to concurrently use a large number of analytic tools to examine a variety of ballast water samples on board an operational ship in the field. Results are useful to identify the merits of each method and can serve as a basis for further improvement and development of tools and methodologies for ballast water compliance monitoring.

  18. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  19. A Comparison of the Glass Meta-Analytic Technique with the Hunter-Schmidt Meta-Analytic Technique on Three Studies from the Education Literature.

    ERIC Educational Resources Information Center

    Hough, Susan L.; Hall, Bruce W.

    The meta-analytic techniques of G. V. Glass (1976) and J. E. Hunter and F. L. Schmidt (1977) were compared through their application to three meta-analytic studies from education literature. The following hypotheses were explored: (1) the overall mean effect size would be larger in a Hunter-Schmidt meta-analysis (HSMA) than in a Glass…

  20. EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rioja, M.; Dodson, R.; Malarecki, J.

    2011-11-15

    Space very long baseline interferometry (S-VLBI) observations at high frequencies hold the prospect of achieving the highest angular resolutions and astrometric accuracies, resulting from the long baselines between ground and satellite telescopes. Nevertheless, space-specific issues, such as limited accuracy in the satellite orbit reconstruction and constraints on the satellite antenna pointing operations, limit the application of conventional phase referencing. We investigate the feasibility of an alternative technique, source frequency phase referencing (SFPR), to the S-VLBI domain. With these investigations we aim to contribute to the design of the next generation of S-VLBI missions. We have used both analytical and simulationmore » studies to characterize the performance of SFPR in S-VLBI observations, applied to astrometry and increased coherence time, and compared these to results obtained using conventional phase referencing. The observing configurations use the specifications of the ASTRO-G mission for their starting point. Our results show that the SFPR technique enables astrometry at 43 GHz, using alternating observations with 22 GHz, regardless of the orbit errors, for most weathers and under a wide variety of conditions. The same applies to the increased coherence time for the detection of weak sources. Our studies show that the capability to carry out simultaneous dual frequency observations enables application to higher frequencies, and a general improvement of the performance in all cases, hence we recommend its consideration for S-VLBI programs.« less

  1. Stability and Curving Performance of Conventional and Advanced Rail Transit Vehicles

    DOT National Transportation Integrated Search

    1984-01-01

    Analytical studies are presented which compare the curving performance and speed capability of conventional rail transit trucks with self steering (cross-braced) and forced steering (linkages between carbody and wheelsets) radial trucks. Truck curvin...

  2. Comparison between a Direct-Flow SPR Immunosensor for Ampicillin and a Competitive Conventional Amperometric Device: Analytical Features and Possible Applications to Real Samples

    PubMed Central

    Tomassetti, Mauro; Merola, Giovanni; Martini, Elisabetta; Campanella, Luigi; Sanzò, Gabriella; Favero, Gabriele; Mazzei, Franco

    2017-01-01

    In this research, we developed a direct-flow surface plasmon resonance (SPR) immunosensor for ampicillin to perform direct, simple, and fast measurements of this important antibiotic. In order to better evaluate the performance, it was compared with a conventional amperometric immunosensor, working with a competitive format with the aim of finding out experimental real advantages and disadvantages of two respective methods. Results showed that certain analytical features of the new SPR immunodevice, such as the lower limit of detection (LOD) value and the width of the linear range, are poorer than those of a conventional amperometric immunosensor, which adversely affects the application to samples such as natural waters. On the other hand, the SPR immunosensor was more selective to ampicillin, and measurements were more easily and quickly attained compared to those performed with the conventional competitive immunosensor. PMID:28394296

  3. Analytical techniques and instrumentation: A compilation. [analytical instrumentation, materials performance, and systems analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information is presented covering the areas of: (1) analytical instrumentation useful in the analysis of physical phenomena; (2) analytical techniques used to determine the performance of materials; and (3) systems and component analyses for design and quality control.

  4. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the Fast-GC limit of detection with respect to monoterpenes was 4-5 ppt, and the agreement between Fast-GC and PTR-MS derived total monoterpene mixing ratios was consistent with previous GC/PTR-MS comparisons. The measurement uncertainties associated with the Fast-GC quantification of monoterpenes are ≤ 10%, while larger uncertainties (up to ~ 25%) are associated with the OBVOC and sesquiterpene measurements.

  5. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.

  6. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-04

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.

  7. Magnetic resonance imaging analyses of varved marine sedimentary records of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Briskin, Madeleine; Robins, Jon; Riedel, William R.; Booker, Ron

    1986-08-01

    Nuclear Magnetic Resonance Imaging used for the first time to analyze marine sedimentary records of the Gulf of California is a remarkable improvement over the more conventional X-ray technique in the identification of organic rich layers. Analytical results indicate that NMRI differentiates clearly between organic rich (light) and organic poor (dark) deposits. It also provides a fine resolution of sedimentary structures, laminae and stratigraphic subtleties. It may be made to yield a three-dimensional stratigraphy; the procedure is nondestructive. The organic vs. inorganic resolution provided by NMRI technology complemented by X-ray when needed should facilitate future studies of paleoceanographic, paleoclimatic and biogeochemical cycles recorded in the vast deposits of marine clays.

  8. Method for analyzing the mass of a sample using a cold cathode ionization source mass filter

    DOEpatents

    Felter, Thomas E.

    2003-10-14

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  9. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    PubMed

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  10. UltraSensitive Mycotoxin Detection by STING Sensors

    PubMed Central

    Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader

    2010-01-01

    Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024

  11. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.

  12. Development of a microcartridge technique for the measurement of atmospheric carbonyls and emissions from plants and a new analytical technique for the measurement of argon as a passive tracer

    NASA Astrophysics Data System (ADS)

    Skaggs, Rhonda Lynn

    A new cartridge sampling and derivatization technique was developed for the determination of aldehydes and ketones in air that allows measurement of sub-ppbv mixing ratios using sampling times of ten minutes or less. This thesis describes the development and evaluation of the analytical technique and a preliminary survey of carbonyl emissions from wounded plants. Also described is the development of an analytical technique for the measurement of argon, a passive biogeochemical tracer. Carbonyl compounds are sampled onto high pressure cartridges containing particles coated with 2,4- dinitrophenylhydrazine where they react to form hydrazones. The entire sample is eluted and transferred to the head of a high performance liquid chromatograph (HPLC) for separation and detection by UV absorbance. The method is demonstrated to be approximately two orders of magnitude more sensitive than the conventional DNPH technique in which only a small fraction of the hydrazones are transferred to the column. It was found that two calibration methods gave different sensitivities resulting from the formation of different ratios of syn and anti isomers of the hydrazones. These results suggest that many measurements of atmospheric carbonyls reported in the literature may have significant errors if syn and anti isomers were unresolved. A chamber method was used to study the emissions of aldehydes and ketones from a variety of wounded plants. 2-E-Hexenal and acetaldehyde were detected in the wound response emissions of all six plants examined. Enhanced concentrations of methylethyl ketone (MEK) in addition to acetaldehyde and 2-E-hexenal were detected following wounding of clover, and the emissions of 2-E-hexenal and MEK in response to wounding displayed different temporal release patterns. A novel application of a commercial photionization detector for the quantification of argon is described and applied to the headspace analysis of water. Argon is measured indirectly by its effect on an ionizable gas (nitric oxide) present in the detection cell. By varying the amount of nitric oxide added to the detection cell, two modes of operation were demonstrated: a competitive absorbance mode and a Penning ionization mode. Optimized Penning ionization detection with a nitric oxide concentration of ~940 ppmv was used to analyze air and the headspace of water samples. The limit of detection was determined to be 14 pmol Ar s-1.

  13. Digital Versus Conventional Impressions in Fixed Prosthodontics: A Review.

    PubMed

    Ahlholm, Pekka; Sipilä, Kirsi; Vallittu, Pekka; Jakonen, Minna; Kotiranta, Ulla

    2018-01-01

    To conduct a systematic review to evaluate the evidence of possible benefits and accuracy of digital impression techniques vs. conventional impression techniques. Reports of digital impression techniques versus conventional impression techniques were systematically searched for in the following databases: Cochrane Central Register of Controlled Trials, PubMed, and Web of Science. A combination of controlled vocabulary, free-text words, and well-defined inclusion and exclusion criteria guided the search. Digital impression accuracy is at the same level as conventional impression methods in fabrication of crowns and short fixed dental prostheses (FDPs). For fabrication of implant-supported crowns and FDPs, digital impression accuracy is clinically acceptable. In full-arch impressions, conventional impression methods resulted in better accuracy compared to digital impressions. Digital impression techniques are a clinically acceptable alternative to conventional impression methods in fabrication of crowns and short FDPs. For fabrication of implant-supported crowns and FDPs, digital impression systems also result in clinically acceptable fit. Digital impression techniques are faster and can shorten the operation time. Based on this study, the conventional impression technique is still recommended for full-arch impressions. © 2016 by the American College of Prosthodontists.

  14. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    NASA Technical Reports Server (NTRS)

    Stoner, Mary Cecilia; Hehir, Austin R.; Ivanco, Marie L.; Domack, Marcia S.

    2016-01-01

    This cost-benefit analysis assesses the benefits of the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. These preliminary, rough order-of-magnitude results report a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Production cost savings of 35 to 58 percent were reported over the composite manufacturing technique used in this study for comparison; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. A case study compared these three alternatives for manufacturing a cylinder of specified geometry, with particular focus placed on production costs and process complexity, with cost analyses performed by the analogy and parametric methods. Furthermore, a scalability study was conducted for three tank diameters to assess the highest potential payoff of the ANNST process for manufacture of large-diameter cryogenic tanks. The analytical hierarchy process (AHP) was subsequently used with a group of selected subject matter experts to assess the value of the various benefits achieved by the ANNST method for potential stakeholders. The AHP study results revealed that decreased final cylinder mass and quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.

  15. Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation spark-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Xiaoyong; Dong, Bo; Chen, Yuqi; Li, Runhua; Wang, Fujuan; Li, Jiaoyang; Cai, Zhigang

    2018-03-01

    In order to improve the analytical speed and performance of laser-ablation based atomic emission spectroscopy, high repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) was first developed. Magnesium and copper in aluminum alloys were analyzed with this technique. In the experiments, the fundamental output of an acousto-optically Q-switched Nd:YAG laser operated at 1 kHz repetition rate with low pulse energy and 120 ns pulse width was used to ablate the samples and the plasma emission was enhanced by spark discharge. The spectra were recorded with a compact fiber spectrometer with non-intensified charge-coupled device in non-gating mode. Different parameters relative with analytical performance, such as capacitance, voltage, laser pulse energy were optimized. Under current experimental conditions, calibration curves of magnesium and copper in aluminum alloys were built and limits of detection of them were determined to be 14.0 and 9.9 ppm by HRR LA-SIBS, respectively, which were 8-12 folds better than that achieved by HRR LA under similar experimental condition without spark discharge. The analytical sensitivities are close to those obtained with conventional LIBS but with improved analytical speed as well as possibility of using compact fiber spectrometer. Under high repetition rate operation, the noise level can be decreased and the analytical reproducibility can be improved obviously by averaging multiple measurements within short time. High repetition rate operation of laser-ablation spark-induced breakdown spectroscopy is very helpful for improving analytical speed. It is possible to find applications in fast elements analysis, especially fast two-dimension elemental mapping of solid samples.

  16. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  17. Green analytical chemistry--theory and practice.

    PubMed

    Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek

    2010-08-01

    This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.

  18. Evaluation of marginal gap of Ni-Cr copings made with conventional and accelerated casting techniques.

    PubMed

    Tannamala, Pavan Kumar; Azhagarasan, Nagarasampatti Sivaprakasam; Shankar, K Chitra

    2013-01-01

    Conventional casting techniques following the manufacturers' recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Experimental design, in vitro study, lab settings. Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. The mean marginal gap by conventional technique (34.02 μm) is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm). As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.

  19. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa.

    PubMed

    Manickum, Thavrin; John, Wilson

    2015-07-01

    The availability of national test centers to offer a routine service for analysis and quantitation of some selected steroid hormones [natural estrogens (17-β-estradiol, E2; estrone, E1; estriol, E3), synthetic estrogen (17-α-ethinylestradiol, EE2), androgen (testosterone), and progestogen (progesterone)] in wastewater matrix was investigated; corresponding internationally used chemical- and immuno-analytical test methods were reviewed. The enzyme-linked immunosorbent assay (ELISA) (immuno-analytical technique) was also assessed for its suitability as a routine test method to quantitate the levels of these hormones at a sewage/wastewater treatment plant (WTP) (Darvill, Pietermaritzburg, South Africa), over a 2-year period. The method performance and other relevant characteristics of the immuno-analytical ELISA method were compared to the conventional chemical-analytical methodology, like gas/liquid chromatography-mass spectrometry (GC/LC-MS), and GC-LC/tandem mass spectrometry (MSMS), for quantitation of the steroid hormones in wastewater and environmental waters. The national immuno-analytical ELISA technique was found to be sensitive (LOQ 5 ng/L, LOD 0.2-5 ng/L), accurate (mean recovery 96%), precise (RSD 7-10%), and cost-effective for screening and quantitation of these steroid hormones in wastewater and environmental water matrix. A survey of the most current international literature indicates a fairly equal use of the LC-MS/MS, GC-MS/MS (chemical-analytical), and ELISA (immuno-analytical) test methods for screening and quantitation of the target steroid hormones in both water and wastewater matrix. Internationally, the observed sensitivity, based on LOQ (ng/L), for the steroid estrogens E1, E2, EE2, is, in decreasing order: LC-MSMS (0.08-9.54) > GC-MS (1) > ELISA (5) (chemical-analytical > immuno-analytical). At the national level, the routine, unoptimized chemical-analytical LC-MSMS method was found to lack the required sensitivity for meeting environmental requirements for steroid hormone quantitation. Further optimization of the sensitivity of the chemical-analytical LC-tandem mass spectrometry methods, especially for wastewater screening, in South Africa is required. Risk assessment studies showed that it was not practical to propose standards or allowable limits for the steroid estrogens E1, E2, EE2, and E3; the use of predicted-no-effect concentration values of the steroid estrogens appears to be appropriate for use in their risk assessment in relation to aquatic organisms. For raw water sources, drinking water, raw and treated wastewater, the use of bioassays, with trigger values, is a useful screening tool option to decide whether further examination of specific endocrine activity may be warranted, or whether concentrations of such activity are of low priority, with respect to health concerns in the human population. The achievement of improved quantitation limits for immuno-analytical methods, like ELISA, used for compound quantitation, and standardization of the method for measuring E2 equivalents (EEQs) used for biological activity (endocrine: e.g., estrogenic) are some areas for future EDC research.

  20. Analytical Electrochemistry: Methodology and Applications of Dynamic Techniques.

    ERIC Educational Resources Information Center

    Heineman, William R.; Kissinger, Peter T.

    1980-01-01

    Reports developments involving the experimental aspects of finite and current analytical electrochemistry including electrode materials (97 cited references), hydrodynamic techniques (56), spectroelectrochemistry (62), stripping voltammetry (70), voltammetric techniques (27), polarographic techniques (59), and miscellany (12). (CS)

  1. Comparative Analysis Between Computed and Conventional Inferior Alveolar Nerve Block Techniques.

    PubMed

    Araújo, Gabriela Madeira; Barbalho, Jimmy Charles Melo; Dias, Tasiana Guedes de Souza; Santos, Thiago de Santana; Vasconcellos, Ricardo José de Holanda; de Morais, Hécio Henrique Araújo

    2015-11-01

    The aim of this randomized, double-blind, controlled trial was to compare the computed and conventional inferior alveolar nerve block techniques in symmetrically positioned inferior third molars. Both computed and conventional anesthetic techniques were performed in 29 healthy patients (58 surgeries) aged between 18 and 40 years. The anesthetic of choice was 2% lidocaine with 1: 200,000 epinephrine. The Visual Analogue Scale assessed the pain variable after anesthetic infiltration. Patient satisfaction was evaluated using the Likert Scale. Heart and respiratory rates, mean time to perform technique, and the need for additional anesthesia were also evaluated. Pain variable means were higher for the conventional technique as compared with computed, 3.45 ± 2.73 and 2.86 ± 1.96, respectively, but no statistically significant differences were found (P > 0.05). Patient satisfaction showed no statistically significant differences. The average computed technique runtime and the conventional were 3.85 and 1.61 minutes, respectively, showing statistically significant differences (P <0.001). The computed anesthetic technique showed lower mean pain perception, but did not show statistically significant differences when contrasted to the conventional technique.

  2. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.

    PubMed

    Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne

    2017-07-01

    The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  4. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications.

    PubMed

    Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael

    2018-05-01

    Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples.

    PubMed

    Xu, Hui; Liao, Ying; Yao, Jinrong

    2007-10-05

    A new sample pretreatment technique, ultrasound-assisted headspace liquid-phase microextraction was developed as mentioned in this paper. In the technique, the volatile analytes were headspace extracted into a small drop of solvent, which suspended on the bottom of a cone-shaped PCR tube instead of the needle tip of a microsyringe. More solvent could be suspended in the PCR tube than microsyringe due to the larger interfacial tension, thus the analysis sensitivity was significantly improved with the increase of the extractant volume. Moreover, ultrasound-assisted extraction and independent controlling temperature of the extractant and the sample were performed to enhance the extraction efficiency. Following the extraction, the solvent-loaded sample was analyzed by high-performance liquid chromatography. Chlorophenols (2-chlorophenol, 2,4-dichlorophenol and 2,6-dichlorophenol) were chosen as model analytes to investigate the feasibility of the method. The experimental conditions related to the extraction efficiency were systematically studied. Under the optimum experimental conditions, the detection limit (S/N=3), intra- and inter-day RSD were 6 ng mL(-1), 4.6%, 3.9% for 2-chlorophenol, 12 ng mL(-1), 2.4%, 8.8% for 2,4-dichlorophenol and 23 ng mL(-1), 3.3%, 5.3% for 2,6-dichlorophenol, respectively. The proposed method was successfully applied to determine chlorophenols in real aqueous samples. Good recoveries ranging from 84.6% to 100.7% were obtained. In addition, the extraction efficiency of our method and the conventional headspace liquid-phase microextraction were compared; the extraction efficiency of the former was about 21 times higher than that of the latter. The results demonstrated that the proposed method is a promising sample pretreatment approach, its advantages over the conventional headspace liquid-phase microextraction include simple setup, ease of operation, rapidness, sensitivity, precision and no cross-contamination. The method is very suitable for the analysis of trace volatile and semivolatile pollutants in real aqueous sample.

  6. Certification of the Uranium Isotopic Ratios in Nbl Crm 112-A, Uranium Assay Standard (Invited)

    NASA Astrophysics Data System (ADS)

    Mathew, K. J.; Mason, P.; Narayanan, U.

    2010-12-01

    Isotopic reference materials are needed to validate measurement procedures and to calibrate multi-collector ion counting detector systems. New Brunswick Laboratory (NBL) provides a suite of certified isotopic and assay standards for the US and international nuclear safeguards community. NBL Certified Reference Material (CRM) 112-A Uranium Metal Assay Standard with a consensus value of 137.88 for the 238U/235U ratio [National Bureau of Standards -- NBS, currently named National Institute for Standards and Technology, Standard Reference Material (SRM) 960 had been renamed CRM 112-A] is commonly used as a natural uranium isotopic reference material within the earth science community. We have completed the analytical work for characterizing the isotopic composition of NBL CRM 112-A Uranium Assay Standard and NBL CRM 145 (uranyl nitrate solution prepared from CRM 112-A). The 235U/238U isotopic ratios were characterized using the total evaporation (TE) and the modified total evaporation (MTE) methods. The 234U/238U isotope ratios were characterized using a conventional analysis technique and verified using the ratios measured in the MTE analytical technique. The analysis plan for the characterization work was developed such that isotopic ratios that are traceable to NBL CRM U030-A are obtained. NBL is preparing a certificate of Analysis and will issue a certificate for Uranium Assay and Isotopics. The results of the CRM 112-A certification measurements will be discussed. These results will be compared with the average values from Richter et al (2010). A comparison of the precision and accuracy of the measurement methods (TE, MTE and Conventional) employed in the certification will be presented. The uncertainties in the 235U/238U and 234U/238U ratios, calculated according to the Guide to the Expression of Uncertainty in Measurements (GUM) and the dominant contributors to the combined standard uncertainty will be discussed.

  7. A novel magnet focusing plate for matrix-assisted laser desorption/ionization analysis of magnetic bead-bound analytes.

    PubMed

    Gode, David; Volmer, Dietrich A

    2013-05-15

    Magnetic beads are often used for serum profiling of peptide and protein biomarkers. In these assays, the bead-bound analytes are eluted from the beads prior to mass spectrometric analysis. This study describes a novel matrix-assisted laser desorption/ionization (MALDI) technique for direct application and focusing of magnetic beads to MALDI plates by means of dedicated micro-magnets as sample spots. Custom-made MALDI plates with magnetic focusing spots were made using small nickel-coated neodymium micro-magnets integrated into a stainless steel plate in a 16 × 24 (384) pattern. For demonstrating the proof-of-concept, commercial C-18 magnetic beads were used for the extraction of a test compound (reserpine) from aqueous solution. Experiments were conducted to study focusing abilities, the required laser energies, the influence of a matrix compound, dispensing techniques, solvent choice and the amount of magnetic beads. Dispensing the magnetic beads onto the micro-magnet sample spots resulted in immediate and strong binding to the magnetic surface. Light microscope images illustrated the homogeneous distribution of beads across the surfaces of the magnets, when the entire sample volume containing the beads was pipetted onto the surface. Subsequent MALDI analysis of the bead-bound analyte demonstrated excellent and reproducible ionization yields. The surface-assisted laser desorption/ionization (SALDI) properties of the strongly light-absorbing γ-Fe2O3-based beads resulted in similar ionization efficiencies to those obtained from experiments with an additional MALDI matrix compound. This feasibility study successfully demonstrated the magnetic focusing abilities for magnetic bead-bound analytes on a novel MALDI plate containing small micro-magnets as sample spots. One of the key advantages of this integrated approach is that no elution steps from magnetic beads were required during analyses compared with conventional bead experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Comparison of hydrodynamically closed isotachophoresis-capillary zone electrophoresis with hydrodynamically open capillary zone electrophoresis hyphenated with tandem mass spectrometry in drug analysis: pheniramine, its metabolite and phenylephrine in human urine.

    PubMed

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Mikuš, Peter

    2014-09-05

    The advanced two dimensional isotachophoresis (ITP)-capillary zone electrophoresis (CZE) hyphenated with tandem mass spectrometry (MS/MS, here triple quadrupole, QqQ) was developed in this work to demonstrate analytical potentialities of this approach in the analysis of drugs in multicomponent ionic matrices. Pheniramine (PHM), phenylephrine (PHE), paracetamol (PCM) and their potential metabolic products were taken for the analysis by the ITP-CZE-ESI-QqQ technique working in hydrodynamically closed CE separation system and then a comparison with the conventional (hydrodynamically open) CZE-ESI-QqQ technique was made. The ITP-CZE-ESI-QqQ method was favorable in terms of obtainable selectivity (due to highly effective heart-cut analysis), concentration limits of detection (LOD at pgmL(-1) levels due to enhanced sample load capacity and ITP preconcentration), sample handling (on-line sample pretreatment, i.e. clean-up, preconcentration, preseparation), and, by that, possibilities for future automation and miniaturization. On the other hand, this experimental arrangement, in contrast to the CZE-ESI-QqQ arrangement supported by an electroosmotic flow, is principally limited to the analysis of uniformly (i.e. positively or negatively) charged analytes in one run without any possibilities to analyze neutral compounds (here, PCM and neutral or acidic metabolites of the drugs had to be excluded from the analysis). Hence, these general characteristics should be considered when choosing a proper analytical CE-MS approach for a given biomedical application. Here, the analytical potential of the ITP-CZE-ESI-QqQ method was demonstrated showing the real time profiles of excreted targeted drugs and metabolite (PHM, PHE, M-PHM) in human urine after the administration of one dose of Theraflu(®) to the volunteers. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia

    PubMed Central

    León, Cielo M.; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S.; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R.; Ramírez, Juan D.

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America. PMID:29046670

  10. Separation performance of cucurbit[7]uril in ionic liquid-based sol-gel coating as stationary phase for capillary gas chromatography.

    PubMed

    Wang, Xiaogang; Qi, Meiling; Fu, Ruonong

    2014-12-05

    Here we report the separation performance of a new stationary phase of cucurbit[7]uril (CB7) incorporated into an ionic liquid-based sol-gel coating (CB7-SG) for capillary gas chromatography (GC). The CB7-SG stationary phase showed an average polarity of 455, suggesting its polar nature. Abraham system constants revealed that its major interactions with analytes include H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The CB7-SG stationary phase achieved baseline separation for a wide range of analytes with symmetrical peak shapes and showed advantages over the conventional polar stationary phase that failed to resolve some critical analytes. Also, it exhibited different retention behaviors from the conventional stationary phase in terms of retention times and elution order. Most interestingly, in contrast to the conventional polar phase, the CB7-SG stationary phase exhibited longer retentions for analytes of lower polarity but relatively comparable retentions for polar analytes such as alcohols and phenols. The high resolving ability and unique retention behaviors of the CB7-SG stationary phase may stem from the comprehensive interactions of the aforementioned interactions and shape selectivity. Moreover, the CB7-SG column showed good peak shapes for analytes prone to peak tailing, good thermal stability up to 280°C and separation repeatability with RSD values in the range of 0.01-0.11% for intra-day, 0.04-0.41% for inter-day and 2.5-6.0% for column-to-column, respectively. As demonstrated, the proposed coating method can simultaneously address the solubility problem with CBs for the intended purpose and achieve outstanding GC separation performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia.

    PubMed

    León, Cielo M; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R; Ramírez, Juan D

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania . Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 10 1 and 1 × 10 -1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America.

  12. Automated Predictive Big Data Analytics Using Ontology Based Semantics.

    PubMed

    Nural, Mustafa V; Cotterell, Michael E; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A

    2015-10-01

    Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.

  13. Automated Predictive Big Data Analytics Using Ontology Based Semantics

    PubMed Central

    Nural, Mustafa V.; Cotterell, Michael E.; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A.

    2017-01-01

    Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology. PMID:29657954

  14. Radiochemical determination of 241Am and Pu(alpha) in environmental materials.

    PubMed

    Warwick, P E; Croudace, I W; Oh, J S

    2001-07-15

    Americium-241 and plutonium determinations will become of greater importance over the coming decades as 137Cs and 241Pu decay. The impact of 137Cs on environmental chronology has been great, but its potency is waning as it decays and diffuses. Having 241Am and Pu as unequivocal markers for the 1963 weapon fallout maximum is important for short time scale environmental work, but a fast and reliable procedure is required for their separation. The developed method described here begins by digesting samples using a lithium borate fusion although an aqua regia leachate is also effective in many instances. Isolation of the Am and Pu is then achieved using a combination of extraction chromatography and conventional anion exchange chromatography. The whole procedure has been optimized, validated, and assessed for safety. The straightforwardness of this technique permits the analysis of large numbers of samples and makes 241Am-based techniques for high-resolution sediment accumulation rate studies attractive. In addition, the technique can be employed for the sequential measurement of Pu and Am in environmental surveillance programs, potentially reducing analytical costs and turnround times.

  15. Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.

    PubMed

    Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T

    2006-03-10

    Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.

  16. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    PubMed Central

    Michalski, Rajmund; Szopa, Sebastian; Jabłońska, Magdalena; Łyko, Aleksandra

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices. PMID:22654649

  17. Assessment of Equipment for the Determination of Nutrients in Marine Waters: A Case Study of the Microplate Technique

    NASA Astrophysics Data System (ADS)

    Aminot, A.

    1996-09-01

    An essential prerequisite for quality assurance of the colorimetric determination of nutrients in seawater is the use of suitable photometric equipment. Based on a knowledge of the optical characteristics of a particular system and the absorption coefficient of the analyte, a statistical approach can be used to predict the limit of detection and the limit of quantitation for a given determinand. The microplate technique, widely used for bioassays, is applicable to colorimetric analysis in general, and its use for the determination of nutrients in seawater has been suggested. This paper reports a theoretical assessment of its capabilities in this context and a practical check on its performance, taking the determination of nitrite in seawater as typical. The conclusion is that short optical path length and insufficient repeatability of the absorbance measurement render it unsuitable for the determination of the low concentrations generally encountered in marine work, with the possible exception of nitrate. The perceived advantage of high-speed analysis is a secondary consideration in the overall process of determining nutrients, and the microplate technique's small scale of operation is a definite disadvantage as this increases the risk of exposure to contamination problems, in comparison with conventional techniques.

  18. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique.

    PubMed

    Adhikari, Aniruddha; Eliason, Jeffrey K; Sun, Jingya; Bose, Riya; Flannigan, David J; Mohammed, Omar F

    2017-01-11

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.

  19. Axially and radially viewed inductively coupled plasmas — a critical review

    NASA Astrophysics Data System (ADS)

    Brenner, I. B.; Zander, A. T.

    2000-08-01

    The present status of axially viewed inductively coupled plasmas (ICP) is reviewed with special emphasis placed on the analytical performance of currently available systems. Descriptions are given of the various designs of the plasma-spectrometer configuration. Conventional figures of merit such as limits of detection, background behavior, interferences due to easily ionized elements (EIE), Ca and acids, and the Mg II 280.270 nm/Mg I 285.213 nm intensity ratio, are used to compare the performance of axially viewed and radially viewed ICPs. Various modes of sample introduction, including conventional pneumatic and ultrasonic nebulization (USN), thermospray and a direct injection probe will be described. For axially viewed ICPs, limits of detection (LOD) are improved by factors varying from approximately 2 to 30. Additional improvements by factors of 2-20 can be obtained using USN. The improvement factors generally depend on energy potentials of the spectral lines and the element. Although limits of detection in the presence of Ca and Na are degraded relative to an aqueous solution 10-30-fold, USN LODs using an axially viewed ICP are improved relative to those obtained using a pneumatic nebulizer for solutions containing Ca and Na. With normal aerosol load and under robust plasma conditions (as evidenced by Mg II/Mg I intensity ratios >8), EIE, Ca and mineral acid induced interferences are relatively small and are similar in axial and conventional radial configurations. However, interferences due to Ca are larger than those caused by Na due to the larger amount of energy required to dissociate the matrix. Matrix effects increase considerably when an USN is employed. For robust plasmas, ICP operating conditions and performance for multi-element quantitative analysis do not differ significantly from those of conventional radial configurations. In cases where robustness decreases, matrix interferences should be taken into account when establishing optimum conditions for operation. In robust axially viewed ICPs, a single internal standard can compensate for ionic line intensity suppression due to Na. However, owing to the variable influence of Ca on spectral response, more than one internal standard is required to compensate for these matrix effects. In this situation, linear energy potential-interference functions can be used to improve accuracy using spectral lines varying over wide ranges of energy potentials. In axially viewed ICPs, Mg II/ Mg I ratios vary widely as a function of applied RF power, aerosol flow rates and load, diameter of the central torch injector, and composition of the aspirated solution. The highest values of 9-13 have been observed for a pure aqueous solution using conventional nebulization and argon carrier flow rates (0.5-0.7 ml min -1) and forward powers of 1.2-1.5 kW. Mg II/Mg I ratios decrease when the RF power decreases, when Na and Ca are added to the plasma, and when the aerosol load is increased. A low value of 2 was obtained when the carrier gas flow rate was high and when the aerosol load was high using an USN. The use of a copper metal skimmer below the analytical observation zone to isolate the axial channel of the ICP and to deflect the outer cool fringe results in 5-20 times improvement of the LODs compared to those obtained using a conventional configuration (a normal radially viewed ICP). A direct He purged plasma-spectrometer interface for end-on detection of the vacuum UV (VUV) emission from the axial region of an ICP allows the determination of Cl, Br and other analytes in the μg l -1 range. The characteristics of a secondary discharge at the orifice of a Cu cone when the axial channel of the ICP is extracted into a vacuum chamber will be discussed. The characteristics of the emission in the Mach disk region extracted from the axial column will be surveyed. Several applications and techniques are described: determination of major, minor and trace elements in geological, environmental and biological materials, analysis of brines, nuclear materials and organic solvents and solutions. Several unique techniques are described: elemental speciation, determination of the halides and other analytes with VUV spectral lines using a He purged direct plasma-spectrometer interface. Direct solids analysis using slurries, laser and spark ablation and direct solids insertion further extends the scope of axially viewed ICPs.

  20. Analysis of environmental contamination resulting from catastrophic incidents: part 2. Building laboratory capability by selecting and developing analytical methodologies.

    PubMed

    Magnuson, Matthew; Campisano, Romy; Griggs, John; Fitz-James, Schatzi; Hall, Kathy; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Silvestri, Erin; Smith, Terry; Willison, Stuart; Ernst, Hiba

    2014-11-01

    Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity. However, the same techniques discussed could also have application to catastrophes resulting from other incidents, such as natural disasters or industrial accidents. Further, the high sample throughput enabled by the techniques discussed could be employed for conventional environmental studies and compliance monitoring, potentially decreasing costs and/or increasing the quantity of data available to decision-makers. Published by Elsevier Ltd.

  1. Comparison of commercial analytical techniques for measuring chlorine dioxide in urban desalinated drinking water.

    PubMed

    Ammar, T A; Abid, K Y; El-Bindary, A A; El-Sonbati, A Z

    2015-12-01

    Most drinking water industries are closely examining options to maintain a certain level of disinfectant residual through the entire distribution system. Chlorine dioxide is one of the promising disinfectants that is usually used as a secondary disinfectant, whereas the selection of the proper monitoring analytical technique to ensure disinfection and regulatory compliance has been debated within the industry. This research endeavored to objectively compare the performance of commercially available analytical techniques used for chlorine dioxide measurements (namely, chronoamperometry, DPD (N,N-diethyl-p-phenylenediamine), Lissamine Green B (LGB WET) and amperometric titration), to determine the superior technique. The commonly available commercial analytical techniques were evaluated over a wide range of chlorine dioxide concentrations. In reference to pre-defined criteria, the superior analytical technique was determined. To discern the effectiveness of such superior technique, various factors, such as sample temperature, high ionic strength, and other interferences that might influence the performance were examined. Among the four techniques, chronoamperometry technique indicates a significant level of accuracy and precision. Furthermore, the various influencing factors studied did not diminish the technique's performance where it was fairly adequate in all matrices. This study is a step towards proper disinfection monitoring and it confidently assists engineers with chlorine dioxide disinfection system planning and management.

  2. Optofluidic plasmonic onchip nanosensor array for biodetection

    NASA Astrophysics Data System (ADS)

    Huang, Min

    Surface plasmon resonance (SPR) sensing has been demonstrated in the past decade to be the gold standard technique for biochemical interaction analysis, and plays an important role in drug discovery and biomedical research. The technique circumvents the need of fluorescence/radioactive tagging or enzymatic detection, enables ultrasensitive remote sensing, and quantitatively monitors bio-interaction in real time. Although SPR has these attractive features that can satisfy most research/clinic requirements, there still exist problems that limit its applications. First, the reflection geometry of the prism coupling scheme adds limitations for high throughput screening application. Additionally, SPR instrumentations are bulky and not suitable for point-of-care settings. Moreover, the SPR sensor is embedded in conventional micro-fluidic cells, in which the sensor performance is limited by inefficient analyte transport. Suspended plasmonic nanohole array (PNA) offers an opportunity to overcome these limitations. A collinear excitation/collection coupling scheme combined with the small footprint of PNA provides unique platform for multiplexing and system minimization. The suspended nanohole structure also offers a unique configuration to integrate nano-photonics with nano-fluidics. This thesis focuses on developing a lab-on-a-chip PNA platform for point-of-care bio-detection. To achieve this, we first demonstrate that the figure-of-merit of our PNA sensor surpasses that of the prism coupled SPR. We also show that the ultrasensitive label-free PNA sensor is able to directly detect intact viruses from biological media at clinically relevant concentrations with little sample preparation. We then present a plasmonic microarray with over one million PNA sensors on a microscope slide for high throughput screening applications. A dual-color filter imaging method is introduced to increase the accuracy, reliability, and signal-to-noise ratio in a highly multiplexed manner. Finally, we present a nanoplasmonic-nanofluidic platform enabling active delivery of analyte to the sensor. Sensor response time is reduced by an order of magnitude compared to the conventional flow scheme. A dynamic range spanning 5 orders of magnitude from 103 to 107 particles/mL is shown on this platform corresponding to analyte concentration sufficient for clinical applications. The proposed approach opens up opportunities of a lab-on-a-chip bio-detection system for drug screening, disease diagnostic as well as clinic studies.

  3. The contribution of Raman spectroscopy to the analytical quality control of cytotoxic drugs in a hospital environment: eliminating the exposure risks for staff members and their work environment.

    PubMed

    Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette

    2014-08-15

    The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ultrastructural characterization of tooth-biomaterial interfaces prepared with broad and focused ion beams.

    PubMed

    Coutinho, E; Jarmar, T; Svahn, F; Neves, A A; Verlinden, B; Van Meerbeek, B; Engqvist, H

    2009-11-01

    Current available techniques for transmission electron microscopy (TEM) of tooth-biomaterial interfaces are mostly ineffective for brittle phases and impair integrated chemical and morphological characterization. The aims of this study were (1) to determine the applicability of new focused ion beam (FIB) and broad ion beam (BIB) techniques for TEM preparation of tooth-biomaterial interfaces; (2) to characterize the interfacial interaction with enamel and dentin of a conventional glass-ionomer (Chemfil Superior, DeTrey Dentsply, Germany), a 2-step self-etch (Clearfil SE, Kuraray, Japan) and a 3-step etch-and-rinse (OptiBond FL, Kerr, USA) adhesives; and (3) to characterize clinically relevant interfaces obtained from actual Class-I cavities. After bonding to freshly extracted human third molars, non-demineralized and non-stained sections were obtained using the FIB/BIB techniques and examined under TEM. The main structures generally disclosed in conventional ultramicrotomy samples were recognized in FIB/BIB-based ones. There were not any major differences between FIB and BIB concerning the resulting ultrastructural morphology. FIB/BIB-sections enabled to clearly resolve sub-micron hydroxyapatite crystals on top of hard tissues and the interface between matrix and filler in all materials, even at nano-scale. Some investigated interfaces disclosed areas with a distinct "fog" or "melted look", which is probably an artifact due to surface damage caused by the high-energy beam. Interfaces with enamel clearly disclosed the distinct "keyhole" shape of enamel rods sectioned at 90 degrees , delimited by a thin electron-lucent layer of inter-rod enamel. At regions where enamel crystals ran parallel with the interface, we observed a lack of interaction and some de-bonding along with interfacial void formation. The FIB/BIB methods are viable and reliable alternatives to conventional ultramicrotomy for preparation of thin sections of brittle and thus difficult to cut biomaterial-hard tissue interfaces. They disclose additional ultrastructural information about both substrates and are more suitable for advanced analytic procedures.

  5. An iterative analytical technique for the design of interplanetary direct transfer trajectories including perturbations

    NASA Astrophysics Data System (ADS)

    Parvathi, S. P.; Ramanan, R. V.

    2018-06-01

    An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.

  6. Biomechanical comparison of the double-push technique and the conventional skate skiing technique in cross-country sprint skiing.

    PubMed

    Stöggl, Thomas; Müller, Erich; Lindinger, Stefan

    2008-09-01

    The aims of the study were to: (1) adapt the "double-push" technique from inline skating to cross-country skiing; (2) compare this new skiing technique with the conventional skate skiing cross-country technique; and (3) test the hypothesis that the double-push technique improves skiing speed in a short sprint. 13 elite skiers performed maximum-speed sprints over 100 m using the double-push skate skiing technique and using the conventional "V2" skate skiing technique. Pole and plantar forces, knee angle, cycle characteristics, and electromyography of nine lower body muscles were analysed. We found that the double-push technique could be successfully transferred to cross-country skiing, and that this new technique is faster than the conventional skate skiing technique. The double-push technique was 2.9 +/- 2.2% faster (P < 0.001), which corresponds to a time advantage of 0.41 +/- 0.31 s over 100 m. The double-push technique had a longer cycle length and a lower cycle rate, and it was characterized by higher muscle activity, higher knee extension amplitudes and velocities, and higher peak foot forces, especially in the first phase of the push-off. Also, the foot was more loaded laterally in the double-push technique than in the conventional skate skiing technique.

  7. Biosensor for detection of dissolved chromium in potable water: A review.

    PubMed

    Biswas, Puja; Karn, Abhinav Kumar; Balasubramanian, P; Kale, Paresh G

    2017-08-15

    The unprecedented deterioration rate of the environmental quality due to rapid urbanization and industrialization causes a severe global health concern to both ecosystem and humanity. Heavy metals are ubiquitous in nature and being used extensively in industrial processes, the exposure to excessive levels could alter the biochemical cycles of living systems. Hence the environmental monitoring through rapid and specific detection of heavy metal contamination in potable water is of paramount importance. Various standard analytical techniques and sensors are used for the detection of heavy metals include spectroscopy and chromatographic methods along with electrochemical, optical waveguide and polymer based sensors. However, the mentioned techniques lack the point of care application as it demands huge capital cost as well as the attention of expert personnel for sample preparation and operation. Recent advancements in the synergetic interaction among biotechnology and microelectronics have advocated the biosensor technology for a wide array of applications due to its characteristic features of sensitivity and selectivity. This review paper has outlined the overview of chromium toxicity, conventional analytical techniques along with a particular emphasis on electrochemical based biosensors for chromium detection in potable water. This article emphasized porous silicon as a host material for enzyme immobilization and elaborated the working principle, mechanism, kinetics of an enzyme-based biosensor for chromium detection. The significant characteristics such as pore size, thickness, and porosity make the porous silicon suitable for enzyme entrapment. Further, several schemes on porous silicon-based immobilized enzyme biosensors for the detection of chromium in potable water are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Advances in analytical technologies for environmental protection and public safety.

    PubMed

    Sadik, O A; Wanekaya, A K; Andreescu, S

    2004-06-01

    Due to the increased threats of chemical and biological agents of injury by terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat chemical and biochemical toxins. In addition to the right mix of policies and training of medical personnel on how to recognize symptoms of biochemical warfare agents, the major success in combating terrorism still lies in the prevention, early detection and the efficient and timely response using reliable analytical technologies and powerful therapies for minimizing the effects in the event of an attack. The public and regulatory agencies expect reliable methodologies and devices for public security. Today's systems are too bulky or slow to meet the "detect-to-warn" needs for first responders such as soldiers and medical personnel. This paper presents the challenges in monitoring technologies for warfare agents and other toxins. It provides an overview of how advances in environmental analytical methodologies could be adapted to design reliable sensors for public safety and environmental surveillance. The paths to designing sensors that meet the needs of today's measurement challenges are analyzed using examples of novel sensors, autonomous cell-based toxicity monitoring, 'Lab-on-a-Chip' devices and conventional environmental analytical techniques. Finally, in order to ensure that the public and legal authorities are provided with quality data to make informed decisions, guidelines are provided for assessing data quality and quality assurance using the United States Environmental Protection Agency (US-EPA) methodologies.

  9. Some new features of Direct Analysis in Real Time mass spectrometry utilizing the desorption at an angle option.

    PubMed

    Chernetsova, Elena S; Revelsky, Alexander I; Morlock, Gertrud E

    2011-08-30

    The present study is a first step towards the unexplored capabilities of Direct Analysis in Real Time (DART) mass spectrometry (MS) arising from the possibility of the desorption at an angle: scanning analysis of surfaces, including the coupling of thin-layer chromatography (TLC) with DART-MS, and a more sensitive analysis due to the preliminary concentration of analytes dissolved in large volumes of liquids on glass surfaces. In order to select the most favorable conditions for DART-MS analysis, proper positioning of samples is important. Therefore, a simple and cheap technique for the visualization of the impact region of the DART gas stream onto a substrate was developed. A filter paper or TLC plate, previously loaded with the analyte, was immersed in a derivatization solution. On this substrate, owing to the impact of the hot DART gas, reaction of the analyte to a colored product occurred. An improved capability of detection of DART-MS for the analysis of liquids was demonstrated by applying large volumes of model solutions of coumaphos into small glass vessels and drying these solutions prior to DART-MS analysis under ambient conditions. This allowed the introduction of, by up to more than two orders of magnitude, increased quantities of analyte compared with the conventional DART-MS analysis of liquids. Through this improved detectability, the capabilities of DART-MS in trace analysis could be strengthened. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Inspection method for the identification of TBT-containing antifouling paints.

    PubMed

    Senda, Tetsuya; Miyata, Osamu; Kihara, Takeshi; Yamada, Yasujiro

    2003-04-01

    In order to ensure the effectiveness of the international convention which will prohibit the use of organotin compounds in antifouling paints applied to ships, it is essential to establish an inspection system to determine the presence of the prohibited compounds in the paint. In the present study, a method for the identification of organotin containing antifouling paints using a two-stage analysis process is investigated. Firstly, X-ray fluorescence analysis (XRF) is utilized, which could be used at the place of ship surveys or port state control. Using a portable XRF instrument customized for ship inspection, analysis is automatically executed and determines whether tin is present or not. If the presence of tin is confirmed by XRF, the sample is subsequently examined at an analytical laboratory using more rigorous analytical techniques, such as gas chromatograph mass spectrometry (GC-MS). A sampling device has been designed. It is a disc of approximately 10 mm diameter and has abrasive paper pasted to one of its flat surfaces. The device is pressed onto and then slid along a ship hull to lightly scrape off fragments of paint onto the abrasive paper. Preliminary field tests have revealed that sampling from a ship in dock yields successful collection of the paint for XRD analysis and that the resultant damage caused to the antifouling paint surface by the sampling technique was found to be negligible.

  11. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS.

    PubMed

    Wang, Bo-Shian; You, Chen-Feng; Huang, Kuo-Fang; Wu, Shein-Fu; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Lin, Pei-Ying

    2010-09-15

    An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a 'micro-sublimation' technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the 'pseudo internal' normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the delta(11)B of the reference coral JCp-1 was 24.22+/-0.28 per thousand, corresponding to seawater pH based on the coral delta(11)B-pH function. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Manual-slide-engaged paper chip for parallel SERS-immunoassay measurement of clenbuterol from swine hair.

    PubMed

    Zheng, Tingting; Gao, Zhigang; Luo, Yong; Liu, Xianming; Zhao, Weijie; Lin, Bingcheng

    2016-02-01

    Clenbuterol (CL), as a feed additive, has been banned in many countries due to its potential threat to human health. In detection of CL, a fast, low-cost technique with high accuracy and specificity would be ideal for its administrative on-field inspections. Among the attempts to pursue a reliable detection tool of CL, a technique that combines surface enhanced Raman spectroscopy (SERS) and immunoassay, is close to meet the requirements as above. However, multiple steps of interactions between CL analyte, antibody, and antigen are involved in this method, and under conventional setup, the operation of SERS/immunoassay were unwieldy. In this paper, to facilitate a more manageable sample manipulation for SERS-immunoassay measurement, a 3D paper chip was suggested. A switch-on-chip multilayered (abbreviated as SoCM-) microfluidic paper-based analysis device (μPad) was fabricated to provide operators with manual switches on the interactions between different microfluids. Besides, on a detection slip we made on the main body of our SoCM-μPad, antigen was anchored in pattern. With this architecture, multistep interactions between the CL analyte in swine hair extract and the SERS probe-modified antibody and antigen, were managed for on-chip SERS-immunoassay detection. This would be very attractive for fast, cheap, accurate, and on-site specific detection of CL from real samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  14. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    PubMed

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  15. A Simplified Technique for Implant-Abutment Level Impression after Soft Tissue Adaptation around Provisional Restoration

    PubMed Central

    Kutkut, Ahmad; Abu-Hammad, Osama; Frazer, Robert

    2016-01-01

    Impression techniques for implant restorations can be implant level or abutment level impressions with open tray or closed tray techniques. Conventional implant-abutment level impression techniques are predictable for maximizing esthetic outcomes. Restoration of the implant traditionally requires the use of the metal or plastic impression copings, analogs, and laboratory components. Simplifying the dental implant restoration by reducing armamentarium through incorporating conventional techniques used daily for crowns and bridges will allow more general dentists to restore implants in their practices. The demonstrated technique is useful when modifications to implant abutments are required to correct the angulation of malpositioned implants. This technique utilizes conventional crown and bridge impression techniques. As an added benefit, it reduces costs by utilizing techniques used daily for crowns and bridges. The aim of this report is to describe a simplified conventional impression technique for custom abutments and modified prefabricated solid abutments for definitive restorations. PMID:29563457

  16. Warpgroup: increased precision of metabolomic data processing by consensus integration bound analysis

    PubMed Central

    Mahieu, Nathaniel G.; Spalding, Jonathan L.; Patti, Gary J.

    2016-01-01

    Motivation: Current informatic techniques for processing raw chromatography/mass spectrometry data break down under several common, non-ideal conditions. Importantly, hydrophilic liquid interaction chromatography (a key separation technology for metabolomics) produces data which are especially challenging to process. We identify three critical points of failure in current informatic workflows: compound specific drift, integration region variance, and naive missing value imputation. We implement the Warpgroup algorithm to address these challenges. Results: Warpgroup adds peak subregion detection, consensus integration bound detection, and intelligent missing value imputation steps to the conventional informatic workflow. When compared with the conventional workflow, Warpgroup made major improvements to the processed data. The coefficient of variation for peaks detected in replicate injections of a complex Escherichia Coli extract were halved (a reduction of 19%). Integration regions across samples were much more robust. Additionally, many signals lost by the conventional workflow were ‘rescued’ by the Warpgroup refinement, thereby resulting in greater analyte coverage in the processed data. Availability and implementation: Warpgroup is an open source R package available on GitHub at github.com/nathaniel-mahieu/warpgroup. The package includes example data and XCMS compatibility wrappers for ease of use. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: nathaniel.mahieu@wustl.edu or gjpattij@wustl.edu PMID:26424859

  17. Qualitative and quantitative detection of T7 bacteriophages using paper based sandwich ELISA.

    PubMed

    Khan, Mohidus Samad; Pande, Tripti; van de Ven, Theo G M

    2015-08-01

    Viruses cause many infectious diseases and consequently epidemic health threats. Paper based diagnostics and filters can offer attractive options for detecting and deactivating pathogens. However, due to their infectious characteristics, virus detection using paper diagnostics is more challenging compared to the detection of bacteria, enzymes, DNA or antigens. The major objective of this study was to prepare reliable, degradable and low cost paper diagnostics to detect viruses, without using sophisticated optical or microfluidic analytical instruments. T7 bacteriophage was used as a model virus. A paper based sandwich ELISA technique was developed to detect and quantify the T7 phages in solution. The paper based sandwich ELISA detected T7 phage concentrations as low as 100 pfu/mL to as high as 10(9) pfu/mL. The compatibility of paper based sandwich ELISA with the conventional titre count was tested using T7 phage solutions of unknown concentrations. The paper based sandwich ELISA technique is faster and economical compared to the traditional detection techniques. Therefore, with proper calibration and right reagents, and by following the biosafety regulations, the paper based technique can be said to be compatible and economical to the sophisticated laboratory diagnostic techniques applied to detect pathogenic viruses and other microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Depth-resolved monitoring of analytes diffusion in ocular tissues

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ghosn, Mohamad G.; Tuchin, Valery V.

    2007-02-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique with high in-depth resolution. We employed OCT technique for monitoring and quantification of analyte and drug diffusion in cornea and sclera of rabbit eyes in vitro. Different analytes and drugs such as metronidazole, dexamethasone, ciprofloxacin, mannitol, and glucose solution were studied and whose permeability coefficients were calculated. Drug diffusion monitoring was performed as a function of time and as a function of depth. Obtained results suggest that OCT technique might be used for analyte diffusion studies in connective and epithelial tissues.

  19. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination,more » "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.« less

  20. New Approach to a Practical Quartz Crystal Microbalance Sensor Utilizing an Inkjet Printing System

    PubMed Central

    Fuchiwaki, Yusuke; Tanaka, Masato; Makita, Yoji; Ooie, Toshihiko

    2014-01-01

    The present work demonstrates a valuable approach to developing quartz crystal microbalance (QCM) sensor units inexpensively for reliable determination of analytes. This QCM sensor unit is constructed by inkjet printing equipment utilizing background noise removal techniques. Inkjet printing equipment was chosen as an alternative to an injection pump in conventional flow-mode systems to facilitate the commercial applicability of these practical devices. The results demonstrate minimization of fluctuations from external influences, determination of antigen-antibody interactions in an inkjet deposition, and quantification of C-reactive protein in the range of 50–1000 ng(x000B7)mL−1. We thus demonstrate a marketable application of an inexpensive and easily available QCM sensor system. PMID:25360577

  1. Combined micro-droplet and thin-film-assisted pre-concentration of lead traces for on-line monitoring using anodic stripping voltammetry.

    PubMed

    Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N

    2003-02-01

    An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.

  2. NOTE: Solving the ECG forward problem by means of a meshless finite element method

    NASA Astrophysics Data System (ADS)

    Li, Z. S.; Zhu, S. A.; He, Bin

    2007-07-01

    The conventional numerical computational techniques such as the finite element method (FEM) and the boundary element method (BEM) require laborious and time-consuming model meshing. The new meshless FEM only uses the boundary description and the node distribution and no meshing of the model is required. This paper presents the fundamentals and implementation of meshless FEM and the meshless FEM method is adapted to solve the electrocardiography (ECG) forward problem. The method is evaluated on a single-layer torso model, in which the analytical solution exists, and tested in a realistic geometry homogeneous torso model, with satisfactory results being obtained. The present results suggest that the meshless FEM may provide an alternative for ECG forward solutions.

  3. Behavior of fluorine and chlorine in Spanish coal fired power plants with pulverized coal boilers and fluidized bed boiler.

    PubMed

    López-Vilariño, J M; Fernández-Martínez, G; Turnes-Carou, I; Muinategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2003-06-01

    Behavior and contents of fluorine and chlorine in coal feedstock, combustion wastes (slag and fly ash) and emissions were studied in five conventional coal fired power plants and in a fluidized bed coal power plant. The halide levels found in the used coal were quite low. Mass balances and emission factors were calculated. The volatility of these elements makes the gaseous emission the main target between the residues. The influence of combustion parameters is not clearly established. Several analytical techniques (ion selective electrodes, capillary electrophoresis and ion chromatography) are employed to determinate the halide concentration in the different samples taken in the power plants studied (coal, slag, fly ash and flue gases).

  4. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    PubMed

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-08

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.

  5. Silver-modified mobile phase for normal-phase liquid chromatographic determination of prostaglandins and their 5,6-trans isomers in prostaglandin bulk drugs and triacetin solutions.

    PubMed

    Kissinger, L D; Robins, R H

    1985-03-15

    A silver-modified, normal-phase, high-performance liquid chromatographic system has been developed for prostaglanding bulk drugs and triacetin solutions. Silver nitrate present in the mobile phase results in high selectivity for cis/trans isomers with conventional silica columns. Prostaglandins were esterified with alpha-bromo-2'-acetonaphthone prior to chromatography to provide high detectability at 254 nm. For dilute triacetin solutions, a sample preparation scheme based on gravity-flow chromatography with silica columns was developed to isolate the prostaglandin from triacetin prior to derivatization. The analytical technique was applied to triacetin solutions containing as little as 10 micrograms/ml arbaprostil [15-(R)-methyl-PGE2].

  6. Mode Profiles in Waveguide-Coupled Resonators

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Cameron, Tom; Saw, John C. B.; Kim, Yoonkee

    1993-01-01

    Surface acoustic wave (SAW) waveguide-coupled resonators are of considerable interest for narrow-band filter applications, though to date there has been very little published on the acoustic details of their operation. As in any resonator, one must fully understand its mode structure and herein we study the SAW mode profiles in these devices. Transverse mode profiles in the resonant cavity of the device were measured at various frequencies of interest using a knife-edge laser probe. In addition we predict the mode profiles for the device structure by two independent methods. One is a stack-matrix approach adapted from integrated optics and the other is a conventional analytical eigenmode analysis of the Helmholtz equation. Both modeling techniques are in good agreement with the measured results.

  7. Antioxidant Activity of Essential Oil Extracted by SC-CO₂ from Seeds of Trachyspermum ammi.

    PubMed

    Singh, Aarti; Ahmad, Anees

    2017-07-11

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO₂) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi . A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO₂ flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO₂ methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w , respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC 50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL -1 , respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO₂ method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity.

  8. Semi-Analytic Reconstruction of Flux in Finite Volume Formulations

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2006-01-01

    Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.

  9. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater.

    PubMed

    Su, Cheng-Kuan; Peng, Pei-Jin; Sun, Yuh-Chang

    2015-07-07

    In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications.

  10. Authentication of meat and meat products.

    PubMed

    Ballin, N Z

    2010-11-01

    In recent years, interest in meat authenticity has increased. Many consumers are concerned about the meat they eat and accurate labelling is important to inform consumer choice. Authentication methods can be categorised into the areas where fraud is most likely to occur: meat origin, meat substitution, meat processing treatment and non-meat ingredient addition. Within each area the possibilities for fraud can be subcategorised as follows: meat origin-sex, meat cuts, breed, feed intake, slaughter age, wild versus farmed meat, organic versus conventional meat, and geographic origin; meat substitution-meat species, fat, and protein; meat processing treatment-irradiation, fresh versus thawed meat and meat preparation; non-meat ingredient addition-additives and water. Analytical methods used in authentication are as diverse as the authentication problems, and include a diverse range of equipment and techniques. This review is intended to provide an overview of the possible analytical methods available for meat and meat products authentication. In areas where no authentication methods have been published, possible strategies are suggested. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  11. Nuclear Forensics and Attribution: A National Laboratory Perspective

    NASA Astrophysics Data System (ADS)

    Hall, Howard L.

    2008-04-01

    Current capabilities in technical nuclear forensics - the extraction of information from nuclear and/or radiological materials to support the attribution of a nuclear incident to material sources, transit routes, and ultimately perpetrator identity - derive largely from three sources: nuclear weapons testing and surveillance programs of the Cold War, advances in analytical chemistry and materials characterization techniques, and abilities to perform ``conventional'' forensics (e.g., fingerprints) on radiologically contaminated items. Leveraging that scientific infrastructure has provided a baseline capability to the nation, but we are only beginning to explore the scientific challenges that stand between today's capabilities and tomorrow's requirements. These scientific challenges include radically rethinking radioanalytical chemistry approaches, developing rapidly deployable sampling and analysis systems for field applications, and improving analytical instrumentation. Coupled with the ability to measure a signature faster or more exquisitely, we must also develop the ability to interpret those signatures for meaning. This requires understanding of the physics and chemistry of nuclear materials processes well beyond our current level - especially since we are unlikely to ever have direct access to all potential sources of nuclear threat materials.

  12. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    NASA Astrophysics Data System (ADS)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  13. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrante, Marco, E-mail: marco.ferrante@lngs.infn.it; De Angelis, Francesco, E-mail: francesco.deangelis@univaq.it; Nisi, Stefano, E-mail: stefano.nisi@lngs.infn.it

    2015-08-17

    An analytical method is presented to reduce the amount of {sup 40}K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate {sup 40}K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detectionmore » limit of radio nuclides such as {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 137}Cs, {sup 134}Cs, {sup 133}I, {sup 134}I, {sup 60}Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.« less

  14. Direct /sup 125/I-radioligand assays for serum progesterone compared with assays involving extraction of serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliffe, W.A.; Corrie, J.E.; Dalziel, A.H.

    1982-06-01

    Researchers compared two direct radioimmunoassays for progesterone in 50 microL of unextracted serum or plasma with assays involving extraction of serum. The direct assays include the use of either danazol at pH 7.4 or 8-anilino-1-naphthalenesulfonic acid at pH 4.0 to displace progesterone from serum binding-proteins. Progesterone is then assayed by using an antiserum to a progesterone 11 alpha hemisuccinyl conjugate and the radioligand /sup 125/I-labeled progesterone 11 alpha-glucuronyl tyramine, with separation by double-antibody techniques. Direct assays with either displacing agent gave good analytical recovery of progesterone added to human serum, and progesterone values for patients' specimens correlated well (r greatermore » than 0.96) with results of assays involving extraction of serum. Precision was similar with each displacing agent over the working range 2.5-100 nmol/L and superior to that of extraction assays. Researchers conclude that these direct assays of progesterone are analytically valid and more robust, precise, and technically convenient than many conventional methods involving extraction of serum.« less

  15. Direct /sup 125/I-radioligand assays for serum progesterone compared with assays involving extraction of serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliffe, W.A.; Corrie, J.E.T.; Dalziel, A.H.

    1982-06-01

    Two direct radioimmunoassays for progesterone in 50 ..mu..L of unextracted serum or plasma with assays involving extraction of serum were compared. The direct assays include the use of either danazol at pH 7.4 or 8-anilino-1-naphthalenesulfonic acid at pH 4.0 to displace progesterone from serum binding-proteins. Progesterone is then assayed by using an antiserum to a progesterone 11..cap alpha..-hemisuccinyl conjugate and the radioligand /sup 125/I-labeled progesterone 11..cap alpha..-glucuronyl tyramine, with separation by double-antibody techniques. Direct assays with either displacing agent gave good analytical recovery of progesterone added to human serum, and progesterone values for patients' specimens correlated well (r > 0.96)more » with results of assays involving extraction of serum. Precision was similar with each displacing agent over the working range 2.5-100 nmol/L and superior to that of extraction assays. We conclude that these direct assays of progesterone are analytically valid and more robust, precise, and technically convenient than many conventional methods involving extraction of serum.« less

  16. Ultra-high performance size-exclusion chromatography in polar solvents.

    PubMed

    Vancoillie, Gertjan; Vergaelen, Maarten; Hoogenboom, Richard

    2016-12-23

    Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2μm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evaluation of the Accuracy of Conventional and Digital Impression Techniques for Implant Restorations.

    PubMed

    Moura, Renata Vasconcellos; Kojima, Alberto Noriyuki; Saraceni, Cintia Helena Coury; Bassolli, Lucas; Balducci, Ivan; Özcan, Mutlu; Mesquita, Alfredo Mikail Melo

    2018-05-01

    The increased use of CAD systems can generate doubt about the accuracy of digital impressions for angulated implants. The aim of this study was to evaluate the accuracy of different impression techniques, two conventional and one digital, for implants with and without angulation. We used a polyurethane cast that simulates the human maxilla according to ASTM F1839, and 6 tapered implants were installed with external hexagonal connections to simulate tooth positions 17, 15, 12, 23, 25, and 27. Implants 17 and 23 were placed with 15° of mesial angulation and distal angulation, respectively. Mini cone abutments were installed on these implants with a metal strap 1 mm in height. Conventional and digital impression procedures were performed on the maxillary master cast, and the implants were separated into 6 groups based on the technique used and measurement type: G1 - control, G2 - digital impression, G3 - conventional impression with an open tray, G4 - conventional impression with a closed tray, G5 - conventional impression with an open tray and a digital impression, and G6 - conventional impression with a closed tray and a digital impression. A statistical analysis was performed using two-way repeated measures ANOVA to compare the groups, and a Kruskal-Wallis test was conducted to analyze the accuracy of the techniques. No significant difference in the accuracy of the techniques was observed between the groups. Therefore, no differences were found among the conventional impression and the combination of conventional and digital impressions, and the angulation of the implants did not affect the accuracy of the techniques. All of the techniques exhibited trueness and had acceptable precision. The variation of the angle of the implants did not affect the accuracy of the techniques. © 2018 by the American College of Prosthodontists.

  18. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.

    PubMed

    Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. © 2017 Elsevier Inc. All rights reserved.

  19. CHAPTER 7: Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages

    PubMed Central

    Zhu, Rui; Zacharias, Lauren; Wooding, Kerry M.; Peng, Wenjing; Mechref, Yehia

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins while automated software tools started replacing manual processing to improve the reliability and throughout of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. PMID:28109440

  20. Development and Application of a Fast Chromatography Technique for Analysis of Biogenic Volatile Organic Compounds in Plant Emissions

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Yamazakii, S.; Kajii, Y. J.

    2011-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetation constitute the largest fraction (>90 %) of total global non-methane VOC supplied to the atmosphere, yet the chemical complexity of these emissions means that achieving comprehensive measurements of BVOCs, and in particular the less volatile terpenes, is not straightforward. As such, there is still significant uncertainty associated with the contribution of BVOCs to the tropospheric oxidation budget, and to atmospheric secondary organic aerosol (SOA) formation. The rate of BVOC emission from vegetation is regulated by environmental conditions such as light intensity and temperature, and thus can be highly variable, necessitating high time-resolution BVOC measurements. In addition, the numerous monoterpene and sesquiterpene isomers, which are indistinguishable by some analytical techniques, have greatly varying lifetimes with respect to atmospheric oxidants, and as such quantification of each individual isomer is fundamental to achieving a comprehensive characterisation of the impact of BVOCs upon the atmospheric oxidation capacity. However, established measurement techniques for these trace gases typically offer a trade-off between sample frequency and the level of speciation; detailed information regarding chemical composition may be obtained, but with reduced time resolution, or vice versa. We have developed a Fast-GC-FID technique for quantification of a range of monoterpene, sesquiterpene and oxygenated C10 BVOC isomers, which retains the separation capability of conventional gas chromatography, yet offers considerably improved sample frequency. Development of this system is ongoing, but currently a 20 m x 0.18 mm i.d resistively heated metal column is employed to achieve chromatographic separation of thirteen C10-C15 BVOCs, within a total cycle time of ~15 minutes. We present the instrument specifications and analytical capability, together with the first application of this Fast-GC technique for BVOC analysis, monitoring BVOC emissions from white spruce (Picea glauca) during plant chamber studies.

  1. Simulation and statistics: Like rhythm and song

    NASA Astrophysics Data System (ADS)

    Othman, Abdul Rahman

    2013-04-01

    Simulation has been introduced to solve problems in the form of systems. By using this technique the following two problems can be overcome. First, a problem that has an analytical solution but the cost of running an experiment to solve is high in terms of money and lives. Second, a problem exists but has no analytical solution. In the field of statistical inference the second problem is often encountered. With the advent of high-speed computing devices, a statistician can now use resampling techniques such as the bootstrap and permutations to form pseudo sampling distribution that will lead to the solution of the problem that cannot be solved analytically. This paper discusses how a Monte Carlo simulation was and still being used to verify the analytical solution in inference. This paper also discusses the resampling techniques as simulation techniques. The misunderstandings about these two techniques are examined. The successful usages of both techniques are also explained.

  2. High resolution ID-ICP-MS certification of an estuary water reference material (LGC 6016) and analysis of matrix induced polyatomic interferences.

    PubMed

    Evans, P; Fairman, B

    2001-10-01

    Reliable trace metal analysis of environmental samples is dependent upon the availability of high accuracy, matrix reference standards. Here, we present Cd, Cu, Ni, Pb and Zn isotope dilution determination for an estuary water certified reference material (LGC 6016). This work highlights the need for high-accuracy techniques in the development of trace element CRMs rather than conventional inter-laboratory trials. Certification of the estuary water LGC6016 was initially determined from a consensus mean from 14 laboratories but this was found to be unsatisfactory due to the large discrepancies in the reported concentrations. The material was re-analysed using isotope dilution ICP-MS techniques. Pb and Cd were determined using a conventional quadrupole ICP-MS (Elan 5000). Cu, Zn and Ni were determined using a magnetic sector ICP-MS (Finnigan Element), which allowed significant polyatomic interferences to be overcome. Using the magnetic sector instrument, precise mass calibration to within 0.02 amu permitted identification of the interferences. Most interferences derived from the sample matrix. For example, the high Na content causes interferences on 63Cu, due to the formation of 40Ar23Na and 23Na2 16O1H, which in a conventional quadrupole instrument would relate to an erroneous increase in signal intensity by up to 20%. For each analyte a combined uncertainty calculation was performed following the Eurachem/GTAC and ISO guideline. For each element a combined uncertainty of 2-3% was found, which represents a 10-fold improvement compared to certification by inter-laboratory comparison. Analysis of the combined uncertainty budget indicates that the majority of systematic uncertainty derives from the instrumental isotope ratio measurements.

  3. R. S. Peters: The Reasonableness of Ethics

    ERIC Educational Resources Information Center

    Haynes, Felicity

    2013-01-01

    This article will begin by examining the extent to which R. S. Peters merited the charge of analytic philosopher. His background in social psychology allowed him to become more pragmatic and grounded in social conventions and ordinary language than the analytic philosophers associated with empiricism, and his gradual shift from requiring internal…

  4. Analytical Techniques and Pharmacokinetics of Gastrodia elata Blume and Its Constituents.

    PubMed

    Wu, Jinyi; Wu, Bingchu; Tang, Chunlan; Zhao, Jinshun

    2017-07-08

    Gastrodia elata Blume ( G. elata ), commonly called Tianma in Chinese, is an important and notable traditional Chinese medicine (TCM), which has been used in China as an anticonvulsant, analgesic, sedative, anti-asthma, anti-immune drug since ancient times. The aim of this review is to provide an overview of the abundant efforts of scientists in developing analytical techniques and performing pharmacokinetic studies of G. elata and its constituents, including sample pretreatment methods, analytical techniques, absorption, distribution, metabolism, excretion (ADME) and influence factors to its pharmacokinetics. Based on the reported pharmacokinetic property data of G. elata and its constituents, it is hoped that more studies will focus on the development of rapid and sensitive analytical techniques, discovering new therapeutic uses and understanding the specific in vivo mechanisms of action of G. elata and its constituents from the pharmacokinetic viewpoint in the near future. The present review discusses analytical techniques and pharmacokinetics of G. elata and its constituents reported from 1985 onwards.

  5. Enhancement of ionization efficiency of mass spectrometric analysis from non-electrospray ionization friendly solvents with conventional and novel ionization techniques.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2015-10-15

    Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Environmental epigenomics: Current approaches to assess epigenetic effects of endocrine disrupting compounds (EDC's) on human health.

    PubMed

    Tapia-Orozco, Natalia; Santiago-Toledo, Gerardo; Barrón, Valeria; Espinosa-García, Ana María; García-García, José Antonio; García-Arrazola, Roeb

    2017-04-01

    Environmental Epigenomics is a developing field to study the epigenetic effect on human health from exposure to environmental factors. Endocrine disrupting chemicals have been detected primarily in pharmaceutical drugs, personal care products, food additives, and food containers. Exposure to endocrine-disrupting chemicals (EDCs) has been associated with a high incidence and prevalence of many endocrine-related disorders in humans. Nevertheless, further evidence is needed to establish a correlation between exposure to EDC and human disorders. Conventional detection of EDCs is based on chemical structure and concentration sample analysis. However, substantial evidence has emerged, suggesting that cell exposure to EDCs leads to epigenetic changes, independently of its chemical structure with non-monotonic low-dose responses. Consequently, a paradigm shift in toxicology assessment of EDCs is proposed based on a comprehensive review of analytical techniques used to evaluate the epigenetic effects. Fundamental insights reported elsewhere are compared in order to establish DNA methylation analysis as a viable method for assessing endocrine disruptors beyond the conventional study approach of chemical structure and concentration analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rapid and green analytical method for the determination of quinoline alkaloids from Cinchona succirubra based on Microwave-Integrated Extraction and Leaching (MIEL) prior to high performance liquid chromatography.

    PubMed

    Fabiano-Tixier, Anne-Sylvie; Elomri, Abdelhakim; Blanckaert, Axelle; Seguin, Elisabeth; Petitcolas, Emmanuel; Chemat, Farid

    2011-01-01

    Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids.

  8. Rapid and Green Analytical Method for the Determination of Quinoline Alkaloids from Cinchona succirubra Based on Microwave-Integrated Extraction and Leaching (MIEL) Prior to High Performance Liquid Chromatography

    PubMed Central

    Fabiano-Tixier, Anne-Sylvie; Elomri, Abdelhakim; Blanckaert, Axelle; Seguin, Elisabeth; Petitcolas, Emmanuel; Chemat, Farid

    2011-01-01

    Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids. PMID:22174637

  9. Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra.

    PubMed

    Do, Thanh Nhut; Gelin, Maxim F; Tan, Howe-Siang

    2017-10-14

    We derive general expressions that incorporate finite pulse envelope effects into a coherent two-dimensional optical spectroscopy (2DOS) technique. These expressions are simpler and less computationally intensive than the conventional triple integral calculations needed to simulate 2DOS spectra. The simplified expressions involving multiplications of arbitrary pulse spectra with 2D spectral response function are shown to be exactly equal to the conventional triple integral calculations of 2DOS spectra if the 2D spectral response functions do not vary with population time. With minor modifications, they are also accurate for 2D spectral response functions with quantum beats and exponential decay during population time. These conditions cover a broad range of experimental 2DOS spectra. For certain analytically defined pulse spectra, we also derived expressions of 2D spectra for arbitrary population time dependent 2DOS spectral response functions. Having simpler and more efficient methods to calculate experimentally relevant 2DOS spectra with finite pulse effect considered will be important in the simulation and understanding of the complex systems routinely being studied by using 2DOS.

  10. Ceramic matrix composite behavior -- Computational simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamis, C.C.; Murthy, P.L.N.; Mital, S.K.

    Development of analytical modeling and computational capabilities for the prediction of high temperature ceramic matrix composite behavior has been an ongoing research activity at NASA-Lewis Research Center. These research activities have resulted in the development of micromechanics based methodologies to evaluate different aspects of ceramic matrix composite behavior. The basis of the approach is micromechanics together with a unique fiber substructuring concept. In this new concept the conventional unit cell (the smallest representative volume element of the composite) of micromechanics approach has been modified by substructuring the unit cell into several slices and developing the micromechanics based equations at themore » slice level. Main advantage of this technique is that it can provide a much greater detail in the response of composite behavior as compared to a conventional micromechanics based analysis and still maintains a very high computational efficiency. This methodology has recently been extended to model plain weave ceramic composites. The objective of the present paper is to describe the important features of the modeling and simulation and illustrate with select examples of laminated as well as woven composites.« less

  11. A Comparative Evaluation of the Effect of Double Casting Technique Using Functionally Generated Path and Conventional Single Casting with Respect to Functional Articulation, Patient Satisfaction and Chair Side Time, in Single Unit Molar Teeth: An In Vivo Study.

    PubMed

    Memon, Sarfaraz

    2014-12-01

    A stable centric occlusal position that shows no evidence of occlusal disease should not be altered. Confirmative restorative dentistry deals with making restorations that are in harmony with existing jaw relations. Conventional techniques for construction have been unsuccessful in producing a prosthesis that can be inserted without minor intraoral occlusal adjustment. This study was conducted to evaluate the benefits of the double casting technique with FGP over the conventional casting technique. Ten patients with root canal treated maxillary molar were selected for the fabrication of metal crown. Two techniques, one involving the conventional fabrication and other using functionally generated path with double casting were used to fabricate the prosthesis. A comparison based on various parameters which was done between the two techniques. The change in the height of castings for the double casting group was less compared to the conventional group and was highly statistically significant (P < 0.001). The time taken for occlusal correction was significantly lower in double casting group than the conventional group (P < 0.001). The patient satisfaction (before occlusal correction) indicated better satisfaction for double casting group compared to conventional (P < 0.01). The functionally generated path with double casting technique resulted in castings which had better dimensional accuracy, less occlusal correction and better patient satisfaction compared to the conventional castings.

  12. Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities.

    PubMed

    Hicks, Michael B; Regalado, Erik L; Tan, Feng; Gong, Xiaoyi; Welch, Christopher J

    2016-01-05

    Supercritical fluid chromatography (SFC) has long been a preferred method for enantiopurity analysis in support of pharmaceutical discovery and development, but implementation of the technique in regulated GMP laboratories has been somewhat slow, owing to limitations in instrument sensitivity, reproducibility, accuracy and robustness. In recent years, commercialization of next generation analytical SFC instrumentation has addressed previous shortcomings, making the technique better suited for GMP analysis. In this study we investigate the use of modern SFC for enantiopurity analysis of several pharmaceutical intermediates and compare the results with the conventional HPLC approaches historically used for analysis in a GMP setting. The findings clearly illustrate that modern SFC now exhibits improved precision, reproducibility, accuracy and robustness; also providing superior resolution and peak capacity compared to HPLC. Based on these findings, the use of modern chiral SFC is recommended for GMP studies of stereochemistry in pharmaceutical development and manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Capillary electrophoresis with laser-induced fluorescence detection: a sensitive method for monitoring extracellular concentrations of amino acids in the periaqueductal grey matter.

    PubMed

    Bergquist, J; Vona, M J; Stiller, C O; O'Connor, W T; Falkenberg, T; Ekman, R

    1996-03-01

    The use of capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the analysis of microdialysate samples from the periaqueductal grey matter (PAG) of freely moving rats is described. By employing 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde (CBQCA) as a derivatization agent, we simultaneously monitored the concentrations of 8 amino acids (arginine, glutamine, valine, gamma-amino-n-butyric acid (GABA), alanine, glycine, glutamate, and aspartate), with nanomolar and subnanomolar detection limits. Two of the amino acids (GABA and glutamate) were analysed in parallel by conventional high-performance liquid chromatography (HPLC) in order to directly compare the two analytical methods. Other CE methods for analysis of microdialysate have been previously described, and this improved method offers greater sensitivity, ease of use, and the possibility to monitor several amino acids simultaneously. By using this technique together with an optimised form of microdialysis technique, the tiny sample consumption and the improved detection limits permit the detection of fast and transient transmitter changes.

  14. Characterization of new drug delivery nanosystems using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.

    2015-01-01

    Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.

  15. Correlation study of theoretical and experimental results for spin tests of a 1/10 scale radio control model

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.

    1976-01-01

    A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.

  16. Point-of-care rare cell cancer diagnostics.

    PubMed

    Issadore, David

    2015-01-01

    The sparse cells that are shed from tumors into peripheral circulation are an increasingly promising resource for noninvasive monitoring of cancer progression, early diagnosis of disease, and serve as a tool for improving our understanding of cancer metastasis. However, the extremely sparse concentration of circulating tumor cells (CTCs) in blood (~1-100 CTC in 7.5 mL of blood) as well as their heterogeneous biomarker expression has limited their detection using conventional laboratory techniques. To overcome these challenges, we have developed a microfluidic chip-based micro-Hall detector (μHD), which can directly measure single, immunomagnetically tagged cells in whole blood. The μHD can detect individual cells even in the presence of vast numbers of blood cells and unbound reactants, and does not require any washing or purification steps. Furthermore, this cost-effective, single-cell analytical technique is well suited for miniaturization into a mobile platform for low-cost point-of-care use. In this chapter, we describe the methodology used to design, fabricate, and apply these chips to cancer diagnostics.

  17. Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan

    PubMed Central

    Suzuki, Shigeru

    2014-01-01

    The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891

  18. Comparison of digital and conventional impression techniques: evaluation of patients' perception, treatment comfort, effectiveness and clinical outcomes.

    PubMed

    Yuzbasioglu, Emir; Kurt, Hanefi; Turunc, Rana; Bilir, Halenur

    2014-01-30

    The purpose of this study was to compare two impression techniques from the perspective of patient preferences and treatment comfort. Twenty-four (12 male, 12 female) subjects who had no previous experience with either conventional or digital impression participated in this study. Conventional impressions of maxillary and mandibular dental arches were taken with a polyether impression material (Impregum, 3 M ESPE), and bite registrations were made with polysiloxane bite registration material (Futar D, Kettenbach). Two weeks later, digital impressions and bite scans were performed using an intra-oral scanner (CEREC Omnicam, Sirona). Immediately after the impressions were made, the subjects' attitudes, preferences and perceptions towards impression techniques were evaluated using a standardized questionnaire. The perceived source of stress was evaluated using the State-Trait Anxiety Scale. Processing steps of the impression techniques (tray selection, working time etc.) were recorded in seconds. Statistical analyses were performed with the Wilcoxon Rank test, and p < 0.05 was considered significant. There were significant differences among the groups (p < 0.05) in terms of total working time and processing steps. Patients stated that digital impressions were more comfortable than conventional techniques. Digital impressions resulted in a more time-efficient technique than conventional impressions. Patients preferred the digital impression technique rather than conventional techniques.

  19. Iontophoresis and Flame Photometry: A Hybrid Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Sharp, Duncan; Cottam, Linzi; Bradley, Sarah; Brannigan, Jeanie; Davis, James

    2010-01-01

    The combination of reverse iontophoresis and flame photometry provides an engaging analytical experiment that gives first-year undergraduate students a flavor of modern drug delivery and analyte extraction techniques while reinforcing core analytical concepts. The experiment provides a highly visual demonstration of the iontophoresis technique and…

  20. Evaluation of the marginal fit of metal copings fabricated on three different marginal designs using conventional and accelerated casting techniques: an in vitro study.

    PubMed

    Vaidya, Sharad; Parkash, Hari; Bhargava, Akshay; Gupta, Sharad

    2014-01-01

    Abundant resources and techniques have been used for complete coverage crown fabrication. Conventional investing and casting procedures for phosphate-bonded investments require a 2- to 4-h procedure before completion. Accelerated casting techniques have been used, but may not result in castings with matching marginal accuracy. The study measured the marginal gap and determined the clinical acceptability of single cast copings invested in a phosphate-bonded investment with the use of conventional and accelerated methods. One hundred and twenty cast coping samples were fabricated using conventional and accelerated methods, with three finish lines: Chamfer, shoulder and shoulder with bevel. Sixty copings were prepared with each technique. Each coping was examined with a stereomicroscope at four predetermined sites and measurements of marginal gaps were documented for each. A master chart was prepared for all the data and was analyzed using Statistical Package for the Social Sciences version. Evidence of marginal gap was then evaluated by t-test. Analysis of variance and Post-hoc analysis were used to compare two groups as well as to make comparisons between three subgroups . Measurements recorded showed no statistically significant difference between conventional and accelerated groups. Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.

  1. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison.

    PubMed

    Ashraf, Muhammad; Akram, Nudrat Aisha

    2009-01-01

    The last century has witnessed a substantial improvement in yield potential, quality and disease resistance in crops. This was indeed the outcome of conventional breeding, which was achieved with little or no knowledge of underlying physiological and biochemical phenomena related to a trait. Also the resources utilized on programs involving conventional breeding were not of great magnitude. Plant breeders have also been successful during the last century in producing a few salt-tolerant cultivars/lines of some potential crops through conventional breeding, but this again has utilized modest resources. However, this approach seems now inefficient due to a number of reasons, and alternatively, genetic engineering for improving crop salt tolerance is being actively followed these days by the plant scientists, world-over. A large number of transgenic lines with enhanced salt tolerance of different crops can be deciphered from the literature but up to now only a very few field-tested cultivars/lines are known despite the fact that considerable resources have been expended on the sophisticated protocols employed for generating such transgenics. This review analytically compares the achievements made so far in terms of producing salt-tolerant lines/cultivars through conventional breeding or genetic engineering.

  2. Comparative Evaluation of Conventional and Accelerated Castings on Marginal Fit and Surface Roughness.

    PubMed

    Jadhav, Vivek Dattatray; Motwani, Bhagwan K; Shinde, Jitendra; Adhapure, Prasad

    2017-01-01

    The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. The results of the t -test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness.

  3. Extraction and isotopic analysis of medium molecular weight hydrocarbons from Murchison using supercritical carbon dioxide

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Pillinger, Colin

    1993-01-01

    The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.

  4. Extraction and isotopic analysis of medium molecular weight hydrocarbons from Murchison using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Gilmour, Iain; Pillinger, Colin

    1993-03-01

    The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.

  5. Ash formation, deposition, corrosion, and erosion in conventional boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, S.A.; Jones, M.L.

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustionmore » and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.« less

  6. Giant Linear Nonreciprocity, Zero Reflection, and Zero Band Gap in Equilibrated Space-Time-Varying Media

    NASA Astrophysics Data System (ADS)

    Taravati, Sajjad

    2018-06-01

    This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general periodic space-time permittivity- and permeability-modulated media is proportional to the absolute difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution for investigation of wave propagation and scattering from general periodic space-time permittivity- and permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media, equilibrated space-time media exhibit different phase and group velocities for forward and backward harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and permeability-modulated media is presented, which is based on the finite-difference time-domain technique. Our analytical and numerical results provide insights into general space-time refractive-index-modulated media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic frequency generators.

  7. ELISA-type assays of trace biomarkers using microfluidic methods.

    PubMed

    Dong, Jinhua; Ueda, Hiroshi

    2017-09-01

    Recently, great progress has been achieved for analytical technologies for biological substances. Traditionally, detection methods for analytes mainly rely on large instrumental analyses. These methods require costly equipment, skilled operators and long measurement time despite their generally low sensitivity. In contrast, immunoassays are becoming more and more popular for it is powerful, inexpensive, and convenient nature. Immunoassay has a range of applications, because it employs antibody, a protein produced by plasma cells in the acquired immune system to identify and neutralize diverse pathogens and other exogenous substances. However, the sensitivity of conventional immunoassays so far is limited by their reaction principles and detection methods. The microfluidics technology is the one that manipulates small volumes of fluid and flow, which has the potential to miniaturize many laboratory procedures. Immunoassays on microfluidic devices have been studied extensively and have gained significant attention owing to intrinsic advantages offered by the assay platforms. The techniques have allowed the miniaturization of conventional immunoassay and bring the advantages such as small volumes of samples and reagents as well as the decrease of contamination, which results in the decline of false-positive results. Ultimately, the combination of immunoassays with microfluidics affords a promising platform for multiple, sensitive, and automatic point-of-care diagnostics. Recent achievements on microfluidic devices and immunoassay detection systems including digital assay employing single molecule will be introduced in detail and the strategies for faster and more sensitive configurations in microfluidic immunosensors will be highlighted. WIREs Nanomed Nanobiotechnol 2017, 9:e1457. doi: 10.1002/wnan.1457 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  8. A Move-Analytic Contrastive Study on the Introductions of American and Philippine Master's Theses in Architecture

    ERIC Educational Resources Information Center

    Lintao, Rachelle B.; Erfe, Jonathan P.

    2012-01-01

    This study purports to foster the understanding of profession-based academic writing in two different cultural conventions by examining the rhetorical moves employed by American and Philippine thesis introductions in Architecture using Swales' 2004 Revised CARS move-analytic model as framework. Twenty (20) Master's thesis introductions in…

  9. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.

    PubMed

    Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz

    2009-07-15

    The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.

  11. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes

    PubMed Central

    2014-01-01

    Background The purpose of this study was to compare two impression techniques from the perspective of patient preferences and treatment comfort. Methods Twenty-four (12 male, 12 female) subjects who had no previous experience with either conventional or digital impression participated in this study. Conventional impressions of maxillary and mandibular dental arches were taken with a polyether impression material (Impregum, 3 M ESPE), and bite registrations were made with polysiloxane bite registration material (Futar D, Kettenbach). Two weeks later, digital impressions and bite scans were performed using an intra-oral scanner (CEREC Omnicam, Sirona). Immediately after the impressions were made, the subjects’ attitudes, preferences and perceptions towards impression techniques were evaluated using a standardized questionnaire. The perceived source of stress was evaluated using the State-Trait Anxiety Scale. Processing steps of the impression techniques (tray selection, working time etc.) were recorded in seconds. Statistical analyses were performed with the Wilcoxon Rank test, and p < 0.05 was considered significant. Results There were significant differences among the groups (p < 0.05) in terms of total working time and processing steps. Patients stated that digital impressions were more comfortable than conventional techniques. Conclusions Digital impressions resulted in a more time-efficient technique than conventional impressions. Patients preferred the digital impression technique rather than conventional techniques. PMID:24479892

  12. Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities.

    PubMed

    Cho, Il-Hoon; Ku, Seockmo

    2017-09-30

    The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.

  13. An evaluation of student and clinician perception of digital and conventional implant impressions.

    PubMed

    Lee, Sang J; Macarthur, Robert X; Gallucci, German O

    2013-11-01

    The accuracy and efficiency of digital implant impressions should match conventional impressions. Comparisons should be made with clinically relevant data. The purpose of this study was to evaluate the difficulty level and operator's perception between dental students and experienced clinicians when making digital and conventional implant impressions. Thirty experienced dental professionals and 30 second-year dental students made conventional and digital impressions of a single implant model. A visual analog scale (VAS) and multiple-choice questionnaires were used to assess the participant's perception of difficulty, preference, and effectiveness. Wilcoxon signed-rank test within the groups and Wilcoxon rank-sum test between the groups were used for statistical analysis (α=.05). On a 0 to 100 VAS, the student group scored a mean difficulty level of 43.1 (±18.5) for the conventional impression technique and 30.6 (±17.6) for the digital impression technique (P=.006). The clinician group scored a mean (standard deviation) difficulty level of 30.9 (±19.6) for conventional impressions and 36.5 (±20.6) for digital impressions (P=.280). Comparison between groups showed a mean difficulty level with the conventional impression technique significantly higher in the student group (P=.030). The digital impression was not significantly different between the groups (P=.228). Sixty percent of the students preferred the digital impression and 7% the conventional impression; 33% expressed no preference. In the clinician group, 33% preferred the digital impression and 37% the conventional impression; 30% had no preference. Seventy-seven percent of the student group felt most effective with digital impressions, 10% with conventional impressions, and 13% with either technique, whereas 40% of the clinician group chose the digital impression as the most effective technique, 53% the conventional impression, and 7% either technique. The conventional impression was more difficult to perform for the student group than the clinician group; however, the difficulty level of the digital impression was the same in both groups. It was also determined that the student group preferred the digital impression as the most efficient impression technique, and the clinician group had an even distribution in the choice of preferred and efficient impression techniques. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  14. Gas pressure assisted microliquid-liquid extraction coupled online to direct infusion mass spectrometry: a new automated screening platform for bioanalysis.

    PubMed

    Raterink, Robert-Jan; Witkam, Yoeri; Vreeken, Rob J; Ramautar, Rawi; Hankemeier, Thomas

    2014-10-21

    In the field of bioanalysis, there is an increasing demand for miniaturized, automated, robust sample pretreatment procedures that can be easily connected to direct-infusion mass spectrometry (DI-MS) in order to allow the high-throughput screening of drugs and/or their metabolites in complex body fluids like plasma. Liquid-Liquid extraction (LLE) is a common sample pretreatment technique often used for complex aqueous samples in bioanalysis. Despite significant developments that have been made in automated and miniaturized LLE procedures, fully automated LLE techniques allowing high-throughput bioanalytical studies on small-volume samples using direct infusion mass spectrometry, have not been matured yet. Here, we introduce a new fully automated micro-LLE technique based on gas-pressure assisted mixing followed by passive phase separation, coupled online to nanoelectrospray-DI-MS. Our method was characterized by varying the gas flow and its duration through the solvent mixture. For evaluation of the analytical performance, four drugs were spiked to human plasma, resulting in highly acceptable precision (RSD down to 9%) and linearity (R(2) ranging from 0.990 to 0.998). We demonstrate that our new method does not only allow the reliable extraction of analytes from small sample volumes of a few microliters in an automated and high-throughput manner, but also performs comparable or better than conventional offline LLE, in which the handling of small volumes remains challenging. Finally, we demonstrate the applicability of our method for drug screening on dried blood spots showing excellent linearity (R(2) of 0.998) and precision (RSD of 9%). In conclusion, we present the proof of principe of a new high-throughput screening platform for bioanalysis based on a new automated microLLE method, coupled online to a commercially available nano-ESI-DI-MS.

  15. Big data analytics in hyperspectral imaging for detection of microbial colonies on agar plates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yoon, Seung-Chul; Park, Bosoon; Lawrence, Kurt C.

    2017-05-01

    Various types of optical imaging techniques measuring light reflectivity and scattering can detect microbial colonies of foodborne pathogens on agar plates. Until recently, these techniques were developed to provide solutions for hypothesis-driven studies, which focused on developing tools and batch/offline machine learning methods with well defined sets of data. These have relatively high accuracy and rapid response time because the tools and methods are often optimized for the collected data. However, they often need to be retrained or recalibrated when new untrained data and/or features are added. A big-data driven technique is more suitable for online learning of new/ambiguous samples and for mining unknown or hidden features. Although big data research in hyperspectral imaging is emerging in remote sensing and many tools and methods have been developed so far in many other applications such as bioinformatics, the tools and methods still need to be evaluated and adjusted in applications where the conventional batch machine learning algorithms were dominant. The primary objective of this study is to evaluate appropriate big data analytic tools and methods for online learning and mining of foodborne pathogens on agar plates. After the tools and methods are successfully identified, they will be applied to rapidly search big color and hyperspectral image data of microbial colonies collected over the past 5 years in house and find the most probable colony or a group of colonies in the collected big data. The meta-data, such as collection time and any unstructured data (e.g. comments), will also be analyzed and presented with output results. The expected results will be novel, big data-driven technology to correctly detect and recognize microbial colonies of various foodborne pathogens on agar plates.

  16. Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods

    DOE PAGES

    Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.; ...

    2016-07-05

    Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less

  17. Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.

    Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less

  18. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  19. Selective mixed-bed solid phase extraction of atrazine herbicide from environmental water samples using molecularly imprinted polymer.

    PubMed

    Zarejousheghani, Mashaalah; Fiedler, Petra; Möder, Monika; Borsdorf, Helko

    2014-11-01

    A novel approach for the selective extraction of organic target compounds from water samples has been developed using a mixed-bed solid phase extraction (mixed-bed SPE) technique. The molecularly imprinted polymer (MIP) particles are embedded in a network of silica gel to form a stable uniform porous bed. The capabilities of this method are demonstrated using atrazine as a model compound. In comparison to conventional molecularly imprinted-solid phase extraction (MISPE), the proposed mixed-bed MISPE method in combination with gas chromatography-mass spectrometry (GC-MS) analysis enables more reproducible and efficient extraction performance. After optimization of operational parameters (polymerization conditions, bed matrix ingredients, polymer to silica gel ratio, pH of the sample solution, breakthrough volume plus washing and elution conditions), improved LODs (1.34 µg L(-1) in comparison to 2.25 µg L(-1) obtained using MISPE) and limits of quantification (4.5 µg L(-1) for mixed-bed MISPE and 7.5 µg L(-1) for MISPE) were observed for the analysis of atrazine. Furthermore, the relative standard deviations (RSDs) for atrazine at concentrations between 5 and 200 µg L(-1) ranged between 1.8% and 6.3% compared to MISPE (3.5-12.1%). Additionally, the column-to-column reproducibility for the mixed-bed MISPE was significantly improved to 16.1%, compared with 53% that was observed for MISPE. Due to the reduced bed-mass sorbent and at optimized conditions, the total amount of organic solvents required for conditioning, washing and elution steps reduced from more than 25 mL for conventional MISPE to less than 2 mL for mixed-bed MISPE. Besides reduced organic solvent consumption, total sample preparation time of the mixed-bed MISPE method relative to the conventional MISPE was reduced from more than 20 min to less than 10 min. The amount of organic solvent required for complete elution diminished from 3 mL (conventional MISPE) to less than 0.4 mL with the mixed-bed technique shows its inherent potential for online operation with an analytical instrument. In order to evaluate the selectivity and matrix effects of the developed mixed-bed MISPE method, it was applied as an extraction technique for atrazine from environmental wastewater and river water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens.

    PubMed

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R; Mudalige, Thilak K; Linder, Sean W

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r 2 > 0.995) with acceptable variations (≤25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r 2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  1. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens

    NASA Astrophysics Data System (ADS)

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R.; Mudalige, Thilak K.; Linder, Sean W.

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤ 25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  2. Efficient Execution Methods of Pivoting for Bulk Extraction of Entity-Attribute-Value-Modeled Data

    PubMed Central

    Luo, Gang; Frey, Lewis J.

    2017-01-01

    Entity-attribute-value (EAV) tables are widely used to store data in electronic medical records and clinical study data management systems. Before they can be used by various analytical (e.g., data mining and machine learning) programs, EAV-modeled data usually must be transformed into conventional relational table format through pivot operations. This time-consuming and resource-intensive process is often performed repeatedly on a regular basis, e.g., to provide a daily refresh of the content in a clinical data warehouse. Thus, it would be beneficial to make pivot operations as efficient as possible. In this paper, we present three techniques for improving the efficiency of pivot operations: 1) filtering out EAV tuples related to unneeded clinical parameters early on; 2) supporting pivoting across multiple EAV tables; and 3) conducting multi-query optimization. We demonstrate the effectiveness of our techniques through implementation. We show that our optimized execution method of pivoting using these techniques significantly outperforms the current basic execution method of pivoting. Our techniques can be used to build a data extraction tool to simplify the specification of and improve the efficiency of extracting data from the EAV tables in electronic medical records and clinical study data management systems. PMID:25608318

  3. Stokes-Mueller matrix polarimetry technique for circular dichroism/birefringence sensing with scattering effects.

    PubMed

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-04-01

    A surface plasmon resonance (SPR)-enhanced method is proposed for measuring the circular dichroism (CD), circular birefringence (CB), and degree of polarization (DOP) of turbid media using a Stokes–Mueller matrix polarimetry technique. The validity of the analytical model is confirmed by means of numerical simulations. The simulation results show that the proposed detection method enables the CD and CB properties to be measured with a resolution of 10 ? 4 refractive index unit (RIU) and 10 ? 5 ?? RIU , respectively, for refractive indices in the range of 1.3 to 1.4. The practical feasibility of the proposed method is demonstrated by detecting the CB/CD/DOP properties of glucose–chlorophyllin compound samples containing polystyrene microspheres. It is shown that the extracted CB value decreases linearly with the glucose concentration, while the extracted CD value increases linearly with the chlorophyllin concentration. However, the DOP is insensitive to both the glucose concentration and the chlorophyllin concentration. Consequently, the potential of the proposed SPR-enhanced Stokes–Mueller matrix polarimetry method for high-resolution CB/CD/DOP detection is confirmed. Notably, in contrast to conventional SPR techniques designed to detect relative refractive index changes, the SPR technique proposed in the present study allows absolute measurements of the optical properties (CB/CD/DOP) to be obtained.

  4. Comparative Evaluation of Conventional and Accelerated Castings on Marginal Fit and Surface Roughness

    PubMed Central

    Jadhav, Vivek Dattatray; Motwani, Bhagwan K.; Shinde, Jitendra; Adhapure, Prasad

    2017-01-01

    Aims: The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. Settings and Design: This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. Materials and Methods: A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. Statistical Analysis Used: The results of the t-test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. Results: For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Conclusions: Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness. PMID:29042726

  5. Experimental and Analytical Seismic Studies of a Four-Span Bridge System with Innovative Materials

    NASA Astrophysics Data System (ADS)

    Cruz Noguez, Carlos Alonso

    As part of a multi-university project utilizing the NSF Network for Earthquake Engineering Simulation (NEES), a quarter-scale model of a four-span bridge incorporating plastic hinges with different advanced materials was tested to failure on the three shake table system at the University of Nevada, Reno (UNR). The bridge was the second test model in a series of three 4-span bridges, with the first model being a conventional reinforced-concrete (RC) structure. The purpose of incorporating advanced materials was to improve the seismic performance of the bridge with respect to two damage indicators: (1) column damage and (2) permanent deformations. The goals of the study presented in this document were to (1) evaluate the seismic performance of a 4-span bridge system incorporating SMA/ECC and built-in rubber pad plastic hinges as well as post-tensioned piers, (2) quantify the relative merit of these advanced materials and details compared to each other and to conventional reinforced concrete plastic hinges, (3) determine the influence of abutment-superstructure interaction on the response, (4) examine the ability of available elaborate analytical modeling techniques to model the performance of advanced materials and details, and (5) conduct an extensive parametric study of different variations of the bridge model to study several important issues in bridge earthquake engineering. The bridge model included six columns, each pair of which utilized a different advanced detail at bottom plastic hinges: shape memory alloys (SMA), special engineered cementitious composites (ECC), elastomeric pads embedded into columns, and post-tensioning tendons. The design of the columns, location of the bents, and selection of the loading protocol were based on pre-test analyses conducted using computer program OpenSees. The bridge model was subjected to two-horizontal components of simulated earthquake records of the 1994 Northridge earthquake. Over 340 channels of data were collected. The test results showed the effectiveness of the advanced materials in reducing damage and permanent displacements. The damage was minimal in plastic hinges with SMA/ECC and those with built-in elastomeric pads. Conventional RC plastic hinges were severely damaged due to spalling of concrete and rupture of the longitudinal and transverse reinforcement. Extensive post-test analytical studies were conducted and it was determined that a computational model of the bridge that included bridge-abutment interaction using OpenSees was able to provide satisfactory estimations of key structural parameters such as superstructure displacements and base shears. The analytical model was also used to conduct parametric studies on single-column and bridge-system response under near-fault ground motions. The effects of vertical excitations and transverse shear-keys at the bridge abutments on the superstructure displacement and column drifts were also explored.

  6. Comparison of the fit of cast gold crowns fabricated from the digital and the conventional impression techniques

    PubMed Central

    Jeon, Young-Chan; Jeong, Chang-Mo

    2017-01-01

    PURPOSE The purpose of this study was to compare the fit of cast gold crowns fabricated from the conventional and the digital impression technique. MATERIALS AND METHODS Artificial tooth in a master model and abutment teeth in ten patients were restored with cast gold crowns fabricated from the digital and the conventional impression technique. The forty silicone replicas were cut in three sections; each section was evaluated in nine points. The measurement was carried out by using a measuring microscope and I-Soultion. Data from the silicone replica were analyzed and all tests were performed with α-level of 0.05. RESULTS 1. The average gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. 2. In marginal and internal axial gap of cast gold crowns, no statistical differences were found between the two impression techniques. 3. The internal occlusal gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. CONCLUSION Both prostheses presented clinically acceptable results with comparing the fit. The prostheses fabricated from the digital impression technique showed more gaps, in respect of occlusal surface. PMID:28243386

  7. Analytical Chemistry: A Literary Approach.

    ERIC Educational Resources Information Center

    Lucy, Charles A.

    2000-01-01

    Provides an anthology of references to descriptions of analytical chemistry techniques from history, popular fiction, and film which can be used to capture student interest and frame discussions of chemical techniques. (WRM)

  8. A study of digital gyro compensation loops. [data conversion routines and breadboard models

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility is discussed of replacing existing state-of-the-art analog gyro compensation loops with digital computations. This was accomplished by designing appropriate compensation loops for the dry turned TDF gyro, selecting appropriate data conversion and processing techniques and algorithms, and breadboarding the design for laboratory evaluation. A breadboard design was established in which one axis of a Teledyne turned-gimbal TDF gyro was caged digitally while the other was caged using conventional analog electronics. The digital loop was designed analytically to closely resemble the analog loop in performance. The breadboard was subjected to various static and dynamic tests in order to establish the relative stability characteristics and frequency responses of the digital and analog loops. Several variations of the digital loop configuration were evaluated. The results were favorable.

  9. [Clinical and analytical toxicology of opiate, cocaine and amphetamine].

    PubMed

    Feliu, Catherine; Fouley, Aurélie; Millart, Hervé; Gozalo, Claire; Marty, Hélène; Djerada, Zoubir

    2015-01-01

    In several circumstances, determination and quantification of illicit drugs in biological fluids are determinant. Contexts are varied such as driving under influence, traffic accident, clinical and forensic toxicology, doping analysis, chemical submission. Whole blood is the favoured matrix for the quantification of illicit drugs. Gas chromatography coupled with mass spectrometry (GC-MS) is the gold standard for these analyses. All methods developed must be at least equivalent to gas chromatography coupled with a mass spectrometer. Nowadays, new technologies are available to biologists and clinicians: liquid chromatography coupled with a mass spectrometry (LC/MS) or coupled with a tandem mass spectrometer (LC/MS/MS). The aim of this paper is to describe the state of the art regarding techniques of confirmation by mass spectrometry used for quantification of conventional drugs except cannabis.

  10. Fabricating microfluidic valve master molds in SU-8 photoresist

    NASA Astrophysics Data System (ADS)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  11. Relationship between mathematical abstraction in learning parallel coordinates concept and performance in learning analytic geometry of pre-service mathematics teachers: an investigation

    NASA Astrophysics Data System (ADS)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2018-05-01

    As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.

  12. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    DOE PAGES

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  13. Analytical Strategies Involved in the Detailed Componential Characterization of Biooil Produced from Lignocellulosic Biomass

    PubMed Central

    Li, Guo-Sheng; Wei, Xian-Yong

    2017-01-01

    Elucidation of chemical composition of biooil is essentially important to evaluate the process of lignocellulosic biomass (LCBM) conversion and its upgrading and suggest proper value-added utilization like producing fuel and feedstock for fine chemicals. Although the main components of LCBM are cellulose, hemicelluloses, and lignin, the chemicals derived from LCBM differ significantly due to the various feedstock and methods used for the decomposition. Biooil, produced from pyrolysis of LCBM, contains hundreds of organic chemicals with various classes. This review covers the methodologies used for the componential analysis of biooil, including pretreatments and instrumental analysis techniques. The use of chromatographic and spectrometric methods was highlighted, covering the conventional techniques such as gas chromatography, high performance liquid chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectrometry. The combination of preseparation methods and instrumental technologies is a robust pathway for the detailed componential characterization of biooil. The organic species in biooils can be classified into alkanes, alkenes, alkynes, benzene-ring containing hydrocarbons, ethers, alcohols, phenols, aldehydes, ketones, esters, carboxylic acids, and other heteroatomic organic compounds. The recent development of high resolution mass spectrometry and multidimensional hyphenated chromatographic and spectrometric techniques has considerably elucidated the composition of biooils. PMID:29387086

  14. Detection of lead in brass by laser-induced breakdown spectroscopy combined with laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Goueguel, Christian; Laville, Stéphane; Loudyi, Hakim; Chaker, Mohamed; Sabsabi, Mohamad; Vidal, François

    2008-06-01

    Laser-Induced Breakdown Spectroscopy (LIBS) technique combined with Laser-Induced Fluorescence (LIF) is known to be a high sensitivity and high selectivity analytical technique. Although sub-ppm limits of detection (LoD) have already been demonstrated, there is still a constant and urgent need to reach lower LoDs. Here, we report results obtained for the detection of lead trace in brass samples. The plasma was produced by a Q-switched Nd:YAG laser at 1064 nm and then re-excited by a nanosecond optical parametric oscillator (OPO) laser tuned at 283.31 nm. Emission from Pb atoms was then observed at 405.78 nm. The experiments were performed in air at atmospheric pressure. We found out that the optimal conditions were obtained for an ablation fluence of 2-3 J/cm2 and inter-pulse delay of 8-10 μs. Also, excitation energy of about 200 μJ was required to maximize the Pb(I) 405.78 nm emission. Using the LIBS-LIFS technique, the LoD was estimated to be about 180 ppb over 100 laser shots, which corresponds to an improvement of about two orders of magnitude with that obtained using conventional LIBS.

  15. Carbon Nanotubes Application in the Extraction Techniques of Pesticides: A Review.

    PubMed

    Jakubus, Aleksandra; Paszkiewicz, Monika; Stepnowski, Piotr

    2017-01-02

    Carbon nanotubes (CNTs) are currently one of the most promising groups of materials with some interesting properties, such as lightness, rigidity, high surface area, high mechanical strength in tension, good thermal conductivity or resistance to mechanical damage. These unique properties make CNTs a competitive alternative to conventional sorbents used in analytical chemistry, especially in extraction techniques. The amount of work that discusses the usefulness of CNTs as a sorbent in a variety of extraction techniques has increased significantly in recent years. In this review article, the most important feature and different applications of solid-phase extraction (SPE), including, classical SPE and dispersive SPE using CNTs for pesticides isolation from different matrices, are summarized. Because of high number of articles concerning the applicability of carbon materials to extraction of pesticides, the main aim of proposed publication is to provide updated review of the latest uses of CNTs by covering the period 2006-2015. Moreover, in this review, the recent papers and this one, which are covered in previous reviews, will be addressed and particular attention has been paid on the division of publications in terms of classes of pesticides, in order to systematize the available literature reports.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  17. CALM: Complex Adaptive System (CAS)-Based Decision Support for Enabling Organizational Change

    NASA Astrophysics Data System (ADS)

    Adler, Richard M.; Koehn, David J.

    Guiding organizations through transformational changes such as restructuring or adopting new technologies is a daunting task. Such changes generate workforce uncertainty, fear, and resistance, reducing morale, focus and performance. Conventional project management techniques fail to mitigate these disruptive effects, because social and individual changes are non-mechanistic, organic phenomena. CALM (for Change, Adaptation, Learning Model) is an innovative decision support system for enabling change based on CAS principles. CALM provides a low risk method for validating and refining change strategies that combines scenario planning techniques with "what-if" behavioral simulation. In essence, CALM "test drives" change strategies before rolling them out, allowing organizations to practice and learn from virtual rather than actual mistakes. This paper describes the CALM modeling methodology, including our metrics for measuring organizational readiness to respond to change and other major CALM scenario elements: prospective change strategies; alternate futures; and key situational dynamics. We then describe CALM's simulation engine for projecting scenario outcomes and its associated analytics. CALM's simulator unifies diverse behavioral simulation paradigms including: adaptive agents; system dynamics; Monte Carlo; event- and process-based techniques. CALM's embodiment of CAS dynamics helps organizations reduce risk and improve confidence and consistency in critical strategies for enabling transformations.

  18. [Analysis of triterpenoids in Ganoderma lucidum by microwave-assisted continuous extraction].

    PubMed

    Lu, Yan-fang; An, Jing; Jiang, Ye

    2015-04-01

    For further improving the extraction efficiency of microwave extraction, a microwave-assisted contijuous extraction (MACE) device has been designed and utilized. By contrasting with the traditional methods, the characteristics and extraction efficiency of MACE has also been studied. The method was validated by the analysis of the triterpenoids in Ganoderma lucidum. The extraction conditions of MACE were: using 95% ethanol as solvent, microwave power 200 W and radiation time 14.5 min (5 cycles). The extraction results were subsequently compared with traditional heat reflux extraction ( HRE) , soxhlet extraction (SE), ultrasonic extraction ( UE) as well as the conventional microwave extraction (ME). For triterpenoids, the two methods based on the microwaves (ME and MACE) were in general capable of finishing the extraction in 10, 14.5 min, respectively, while other methods should consume 60 min and even more than 100 min. Additionally, ME can produce comparable extraction results as the classical HRE and higher extraction yield than both SE and UE, however, notably lower extraction yield than MASE. More importantly, the purity of the crud extract by MACE is far better than the other methods. MACE can effectively combine the advantages of microwave extraction and soxhlet extraction, thus enabling a more complete extraction of the analytes of TCMs in comparison with ME. And therefore makes the analytic result more accurate. It provides a novel, high efficient, rapid and reliable pretreatment technique for the analysis of TCMs, and it could potentially be extended to ingredient preparation or extracting techniques of TCMs.

  19. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A "green" technique.

    PubMed

    Beilke, Michael C; Beres, Martin J; Olesik, Susan V

    2016-03-04

    A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Background Signal as an in Situ Predictor of Dopamine Oxidation Potential: Improving Interpretation of Fast-Scan Cyclic Voltammetry Data.

    PubMed

    Meunier, Carl J; Roberts, James G; McCarty, Gregory S; Sombers, Leslie A

    2017-02-15

    Background-subtracted fast-scan cyclic voltammetry (FSCV) has emerged as a powerful analytical technique for monitoring subsecond molecular fluctuations in live brain tissue. Despite increasing utilization of FSCV, efforts to improve the accuracy of quantification have been limited due to the complexity of the technique and the dynamic recording environment. It is clear that variable electrode performance renders calibration necessary for accurate quantification; however, the nature of in vivo measurements can make conventional postcalibration difficult, or even impossible. Analyte-specific voltammograms and scaling factors that are critical for quantification can shift or fluctuate in vivo. This is largely due to impedance changes, and the effects of impedance on these measurements have not been characterized. We have previously reported that the background current can be used to predict electrode-specific scaling factors in situ. In this work, we employ model circuits to investigate the impact of impedance on FSCV measurements. Additionally, we take another step toward in situ electrode calibration by using the oxidation potential of quinones on the electrode surface to accurately predict the oxidation potential for dopamine at any point in an electrochemical experiment, as both are dependent on impedance. The model, validated both in adrenal slice and live brain tissue, enables information encoded in the shape of the background voltammogram to determine electrochemical parameters that are critical for accurate quantification. This improves data interpretation and provides a significant next step toward more automated methods for in vivo data analysis.

  1. Weak-value amplification and optimal parameter estimation in the presence of correlated noise

    NASA Astrophysics Data System (ADS)

    Sinclair, Josiah; Hallaji, Matin; Steinberg, Aephraim M.; Tollaksen, Jeff; Jordan, Andrew N.

    2017-11-01

    We analytically and numerically investigate the performance of weak-value amplification (WVA) and related parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a general measurement strategy that involves sorting data into separate subsets based on the outcome of a second "partitioning" measurement. Using a simplified correlated noise model that can be analyzed exactly together with optimal statistical estimators, we compare WVA to a conventional measurement method. We find that WVA indeed yields a much lower variance of the parameter of interest than the conventional technique does, optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis that employs partitioning measurements, incorporating all partitioned results and their known correlations, is found to yield an improvement—typically slight—over the noise reduction achieved by WVA. This result occurs because the simple WVA technique is not tailored to any specific noise environment and therefore does not make use of correlations between the different partitions. We also compare WVA to traditional background subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets or errors in calibration. Surprisingly, for the cases we consider, background subtraction turns out to be a special case of the optimal partitioning approach, possessing a similar typically slight advantage over WVA. These results give deeper insight into the role of partitioning measurements (with or without postselection) in enhancing measurement precision, which some have found puzzling. They also resolve previously made conflicting claims about the usefulness of weak-value amplification to precision measurement in the presence of correlated noise. We finish by presenting numerical results to model a more realistic laboratory situation of time-decaying correlations, showing that our conclusions hold for a wide range of statistical models.

  2. Antioxidant Activity of Essential Oil Extracted by SC-CO2 from Seeds of Trachyspermum ammi

    PubMed Central

    Singh, Aarti; Ahmad, Anees

    2017-01-01

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO2) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi. A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO2 flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO2 methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w, respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL−1, respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO2 method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity. PMID:28930268

  3. Standard Errors of Equating for the Percentile Rank-Based Equipercentile Equating with Log-Linear Presmoothing

    ERIC Educational Resources Information Center

    Wang, Tianyou

    2009-01-01

    Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…

  4. Advances in biosensors and optical assays for diagnosis and detection of malaria.

    PubMed

    Ragavan, K V; Kumar, Sanni; Swaraj, Shiva; Neethirajan, Suresh

    2018-05-15

    Vector-borne diseases are a major concern for human health globally, especially malaria in densely populated, less developed, tropical regions of the world. Malaria causes loss of human life and economic harm, and may spread through travelers to new regions. Though there are sufficient therapeutics available for the effective treatment and cure of malaria, it infects millions of people and claims several thousand lives every year. Early diagnosis of the infection can potentially prevent the spread of disease, save lives, and mitigate the financial impact. Conventional analytical techniques are being widely employed for malaria diagnosis, but with low sensitivity and selectivity. Due to the poor-resource settings where malaria outbreaks often occur, most conventional diagnostic methods are not affordable and hence not effective in detection and controlling the spread of the infection. However, biosensors have improved the scope for affordable malaria diagnosis. Advances in biotechnology and nanotechnology have provided novel recognition materials and transducer elements, discoveries which allow the fabrication of affordable biosensor platforms with improved attributes. The present work covers the advancement in biosensors with an introduction to malaria, followed by conventional methods of malaria diagnosis, malaria markers, novel recognition elements and the biosensor principle. Finally, a proactive role and a perspective on developed biosensor platforms are discussed with potential biomedical applications. Copyright © 2018. Published by Elsevier B.V.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatt, A.

    The 60th anniversary of the discovery of neutron activation analysis (NAA) by Hevesy and Levi is being celebrated in 1996. With the availability of nuclear reactors capable of producing fluxes of the order of 10{sup 12} to 10{sup 14} n/cm{sup 2}s, the development of high-resolution and high-efficiency conventional and anticoincidence gamma-ray detectors, multichannel pulse-height analyzers, and personal computer-based softwares, NAA has become an extremely valuable analytical technique, especially for the simultaneous determinations of multielement concentrations. This technique can be used in a number of ways, depending on the nature of the matrix, the major elements in the sample, and onmore » the elements of interest. In most cases, several elements can be determined without any chemical pretreatment of the sample; the technique is then called instrumental NAA (INAA). In other cases, an element can be concentrated from an interfering matrix prior to irradiation; the technique is then termed preconcentration NAA (PNAA). In opposite instances, the irradiation is followed by a chemical separation of the desired element; the technique is then called radiochemical NAA (RNAA). All three forms of NAA can provide elemental concentrations of high accuracy and precision with excellent sensitivity. The number of research reactors in developing countries has increased steadily from 17 in 1955 through 71 in 1975 to 89 in 1995. Low flux reactors such as SLOWPOKE and the Chinese MNSR are primarily used for NAA.« less

  6. The application of emulation techniques in the analysis of highly reliable, guidance and control computer systems

    NASA Technical Reports Server (NTRS)

    Migneault, Gerard E.

    1987-01-01

    Emulation techniques can be a solution to a difficulty that arises in the analysis of the reliability of guidance and control computer systems for future commercial aircraft. Described here is the difficulty, the lack of credibility of reliability estimates obtained by analytical modeling techniques. The difficulty is an unavoidable consequence of the following: (1) a reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Use of emulation techniques for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques is then discussed. Finally several examples of the application of emulation techniques are described.

  7. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp).

    PubMed

    Brighenti, Virginia; Pellati, Federica; Steinbach, Marleen; Maran, Davide; Benvenuti, Stefania

    2017-09-05

    The present work was aimed at the development and validation of a new, efficient and reliable technique for the analysis of the main non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) inflorescences belonging to different varieties. This study was designed to identify samples with a high content of bioactive compounds, with a view to underscoring the importance of quality control in derived products as well. Different extraction methods, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical-fluid extraction (SFE) were applied and compared in order to obtain a high yield of the target analytes from hemp. Dynamic maceration for 45min with ethanol (EtOH) at room temperature proved to be the most suitable technique for the extraction of cannabinoids in hemp samples. The analysis of the target analytes in hemp extracts was carried out by developing a new reversed-phase high-performance liquid chromatography (HPLC) method coupled with diode array (UV/DAD) and electrospray ionization-mass spectrometry (ESI-MS) detection, by using an ion trap mass analyser. An Ascentis Express C 18 column (150mm×3.0mm I.D., 2.7μm) was selected for the HPLC analysis, with a mobile phase composed of 0.1% formic acid in both water and acetonitrile, under gradient elution. The application of the fused-core technology allowed us to obtain a significant improvement of the HPLC performance compared with that of conventional particulate stationary phases, with a shorter analysis time and a remarkable reduction of solvent usage. The analytical method optimized in this study was fully validated to show compliance with international requirements. Furthermore, it was applied to the characterization of nine hemp samples and six hemp-based pharmaceutical products. As such, it was demonstrated to be a very useful tool for the analysis of cannabinoids in both the plant material and its derivatives for pharmaceutical and nutraceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Analytical Applications of Monte Carlo Techniques.

    ERIC Educational Resources Information Center

    Guell, Oscar A.; Holcombe, James A.

    1990-01-01

    Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)

  9. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Intraosseous anesthesia with solution injection controlled by a computerized system versus conventional oral anesthesia: a preliminary study.

    PubMed

    Beneito-Brotons, Rut; Peñarrocha-Oltra, David; Ata-Ali, Javier; Peñarrocha, María

    2012-05-01

    To compare a computerized intraosseous anesthesia system with the conventional oral anesthesia techniques, and analyze the latency and duration of the anesthetic effect and patient preference. A simple-blind prospective study was made between March 2007 and May 2008. Each patient was subjected to two anesthetic techniques: conventional and intraosseous using the Quicksleeper® system (DHT, Cholet, France). A split-mouth design was adopted in which each patient underwent treatment of a tooth with one of the techniques, and treatment of the homologous contralateral tooth with the other technique. The treatments consisted of restorations, endodontic procedures and simple extractions. The study series comprised 12 females and 18 males with a mean age of 36.8 years. The 30 subjects underwent a total of 60 anesthetic procedures. Intraosseous and conventional oral anesthesia caused discomfort during administration in 46.3% and 32.1% of the patients, respectively. The latency was 7.1±2.23 minutes for the conventional technique and 0.48±0.32 for intraosseous anesthesia--the difference being statistically significant. The depth of the anesthetic effect was sufficient to allow the patients to tolerate the dental treatments. The duration of the anesthetic effect in soft tissues was 199.3 minutes with the conventional technique versus only 1.6 minutes with intraosseous anesthesia--the difference between the two techniques being statistically significant. Most of the patients (69.7%) preferred intraosseous anesthesia. The described intraosseous anesthetic system is effective, with a much shorter latency than the conventional technique, sufficient duration of anesthesia to perform the required dental treatments, and with a much lesser soft tissue anesthetic effect. Most of the patients preferred intraosseous anesthesia.

  11. Computer-assisted versus conventional free fibula flap technique for craniofacial reconstruction: an outcomes comparison.

    PubMed

    Seruya, Mitchel; Fisher, Mark; Rodriguez, Eduardo D

    2013-11-01

    There has been rising interest in computer-aided design/computer-aided manufacturing for preoperative planning and execution of osseous free flap reconstruction. The purpose of this study was to compare outcomes between computer-assisted and conventional fibula free flap techniques for craniofacial reconstruction. A two-center, retrospective review was carried out on patients who underwent fibula free flap surgery for craniofacial reconstruction from 2003 to 2012. Patients were categorized by the type of reconstructive technique: conventional (between 2003 and 2009) or computer-aided design/computer-aided manufacturing (from 2010 to 2012). Demographics, surgical factors, and perioperative and long-term outcomes were compared. A total of 68 patients underwent microsurgical craniofacial reconstruction: 58 conventional and 10 computer-aided design and manufacturing fibula free flaps. By demographics, patients undergoing the computer-aided design/computer-aided manufacturing method were significantly older and had a higher rate of radiotherapy exposure compared with conventional patients. Intraoperatively, the median number of osteotomies was significantly higher (2.0 versus 1.0, p=0.002) and the median ischemia time was significantly shorter (120 minutes versus 170 minutes, p=0.004) for the computer-aided design/computer-aided manufacturing technique compared with conventional techniques; operative times were shorter for patients undergoing the computer-aided design/computer-aided manufacturing technique, although this did not reach statistical significance. Perioperative and long-term outcomes were equivalent for the two groups, notably, hospital length of stay, recipient-site infection, partial and total flap loss, and rate of soft-tissue and bony tissue revisions. Microsurgical craniofacial reconstruction using a computer-assisted fibula flap technique yielded significantly shorter ischemia times amidst a higher number of osteotomies compared with conventional techniques. Therapeutic, III.

  12. Intraosseous anesthesia with solution injection controlled by a computerized system versus conventional oral anesthesia: A preliminary study

    PubMed Central

    Beneito-Brotons, Rut; Peñarrocha-Oltra, David; Ata-Ali, Javier

    2012-01-01

    Objective: To compare a computerized intraosseous anesthesia system with the conventional oral anesthesia techniques, and analyze the latency and duration of the anesthetic effect and patient preference. Design: A simple-blind prospective study was made between March 2007 and May 2008. Each patient was subjected to two anesthetic techniques: conventional and intraosseous using the Quicksleeper® system (DHT, Cholet, France). A split-mouth design was adopted in which each patient underwent treatment of a tooth with one of the techniques, and treatment of the homologous contralateral tooth with the other technique. The treatments consisted of restorations, endodontic procedures and simple extractions. Results: The study series comprised 12 females and 18 males with a mean age of 36.8 years. The 30 subjects underwent a total of 60 anesthetic procedures. Intraosseous and conventional oral anesthesia caused discomfort during administration in 46.3% and 32.1% of the patients, respectively. The latency was 7.1±2.23 minutes for the conventional technique and 0.48±0.32 for intraosseous anesthesia – the difference being statistically significant. The depth of the anesthetic effect was sufficient to allow the patients to tolerate the dental treatments. The duration of the anesthetic effect in soft tissues was 199.3 minutes with the conventional technique versus only 1.6 minutes with intraosseous anesthesia – the difference between the two techniques being statistically significant. Most of the patients (69.7%) preferred intraosseous anesthesia. Conclusions: The described intraosseous anesthetic system is effective, with a much shorter latency than the conventional technique, sufficient duration of anesthesia to perform the required dental treatments, and with a much lesser soft tissue anesthetic effect. Most of the patients preferred intraosseous anesthesia. Key words:Anesthesia, intraosseous, oral anesthesia, infiltrating, mandibular block, Quicksleeper®. PMID:22143722

  13. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    NASA Technical Reports Server (NTRS)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone and isopropanol molecules in aqueous solution has been previously reported for chalcogenide fiber optic sensors. The sol-gel film was produced using a mixture of ethyltriethoxysilane and tetraethoxysilane and the surface modification was carried out using trimethylchlorosilane. We have demonstrated that this film concentrates the target polar analytes from aqueous solution in the region probed by the evanescent wave to improve detection limits by as much as a factor of 450.

  14. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H [Concord, MA

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  15. Enabling Analytics on Sensitive Medical Data with Secure Multi-Party Computation.

    PubMed

    Veeningen, Meilof; Chatterjea, Supriyo; Horváth, Anna Zsófia; Spindler, Gerald; Boersma, Eric; van der Spek, Peter; van der Galiën, Onno; Gutteling, Job; Kraaij, Wessel; Veugen, Thijs

    2018-01-01

    While there is a clear need to apply data analytics in the healthcare sector, this is often difficult because it requires combining sensitive data from multiple data sources. In this paper, we show how the cryptographic technique of secure multi-party computation can enable such data analytics by performing analytics without the need to share the underlying data. We discuss the issue of compliance to European privacy legislation; report on three pilots bringing these techniques closer to practice; and discuss the main challenges ahead to make fully privacy-preserving data analytics in the medical sector commonplace.

  16. Variables Affecting University Academic Achievement in a Distance- versus a Conventional Education Setting.

    ERIC Educational Resources Information Center

    Darwazeh, Afnan N.

    The aim of this study was to investigate some of the learner variables that may have an influence on university academic achievement in a distance versus a conventional education setting. Descriptive and analytical statistics were used to analyze data by using "Pearson r," and "F-test." Results revealed that the university…

  17. Hall versus conventional stainless steel crown techniques: in vitro investigation of marginal fit and microleakage using three different luting agents.

    PubMed

    Erdemci, Zeynep Yalçınkaya; Cehreli, S Burçak; Tirali, R Ebru

    2014-01-01

    This study's purpose was to investigate microleakage and marginal discrepancies in stainless steel crowns (SSCs) placed using conventional and Hall techniques and cemented with three different luting agents. Seventy-eight human primary maxillary second molars were randomly assigned to two groups (N=39), and SSCs were applied either with the Hall or conventional technique. These two groups were further subgrouped according to the material used for crown cementation (N=13 per group). Two specimens in each group were processed for scanning electron microscopy investigation. The extent of microleakage and marginal fit was quantified in millimeters on digitally photographed sections using image analysis software. The data were compared with a two-way independent and a two-way mixed analysis of variance (P=.05). The scores in the Hall group were significantly worse than those in the conventional technique group (P<.05). In both groups, resin cement displayed the lowest extent of microleakage, followed by glass ionomer and polycarboxylate cements (P<.05). Stainless steel crowns applied using the Hall technique displayed higher microleakage scores than those applied using the conventional technique, regardless of the cementation material. When the interaction of the material and technique was assessed, resin cement presented as the best choice for minimizing microleakage in both techniques.

  18. Accuracy of selected techniques for estimating ice-affected streamflow

    USGS Publications Warehouse

    Walker, John F.

    1991-01-01

    This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.

  19. Accuracy of ringless casting and accelerated wax-elimination technique: a comparative in vitro study.

    PubMed

    Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V

    2014-02-01

    The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p < 0.05) than those castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.

  20. Analytical methods in multivariate highway safety exposure data estimation

    DOT National Transportation Integrated Search

    1984-01-01

    Three general analytical techniques which may be of use in : extending, enhancing, and combining highway accident exposure data are : discussed. The techniques are log-linear modelling, iterative propor : tional fitting and the expectation maximizati...

  1. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  2. Collisionless stellar hydrodynamics as an efficient alternative to N-body methods

    NASA Astrophysics Data System (ADS)

    Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard

    2013-01-01

    The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.

  3. [The anesthetic effects of Gow-Gates technique of inferior alveolar nerve block in impacted mandibular third molar extraction].

    PubMed

    Yang, Jieping; Liu, Wei; Gao, Qinghong

    2013-08-01

    To evaluate the anesthetic effects and safety of Gow-Gates technique of inferior alveolar nerve block in impacted mandibular third molar extraction. A split-mouth study was designed. The bilateral impacted mandibular third molar of 32 participants were divided into Gow-Gates technique of inferior alveolar nerve block (Gow-Gates group) and conventional technique of inferior alveolar nerve block (conventional group) randomly with third molar extracted. The anesthetic effects and adverse events were recorded. All the participants completed the research. The anesthetic success rate was 96.9% in Gow-Gates group and 90.6% in conventional group with no statistical difference ( P= 0.317); but when comparing the anesthesia grade, Gow-Gates group had a 96.9% of grade A and B, and conventional group had a rate of 78.1% (P = 0.034). And the Gow-Gates group had a much lower withdrawn bleeding than conventional group (P = 0.025). Two groups had no hematoma. Gow-Gates technique had a reliable anesthesia effects and safety in impacted mandibular third molar extraction and could be chosen as a candidate for the conventional inferior alveolar nerve block.

  4. Acoustic emission source location in composite structure by Voronoi construction using geodesic curve evolution.

    PubMed

    Gangadharan, R; Prasanna, G; Bhat, M R; Murthy, C R L; Gopalakrishnan, S

    2009-11-01

    Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.

  5. MALDI matrices for low molecular weight compounds: an endless story?

    PubMed

    Calvano, Cosima Damiana; Monopoli, Antonio; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-04-23

    Since its introduction in the 1980s, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has gained a prominent role in the analysis of high molecular weight biomolecules such as proteins, peptides, oligonucleotides, and polysaccharides. Its application to low molecular weight compounds has remained for long time challenging due to the spectral interferences produced by conventional organic matrices in the low m/z window. To overcome this problem, specific sample preparation such as analyte/matrix derivatization, addition of dopants, or sophisticated deposition technique especially useful for imaging experiments, have been proposed. Alternative approaches based on second generation (rationally designed) organic matrices, ionic liquids, and inorganic matrices, including metallic nanoparticles, have been the object of intense and continuous research efforts. Definite evidences are now provided that MALDI MS represents a powerful and invaluable analytical tool also for small molecules, including their quantification, thus opening new, exciting applications in metabolomics and imaging mass spectrometry. This review is intended to offer a concise critical overview of the most recent achievements about MALDI matrices capable of specifically address the challenging issue of small molecules analysis. Graphical abstract An ideal Book of matrices for MALDI MS of small molecules.

  6. Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Tsujimoto, Yutaka

    2016-07-01

    We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.

  7. Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses.

    PubMed

    Kiyono, Ken; Tsujimoto, Yutaka

    2016-07-01

    We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.

  8. Management of thyroid cytological material, pre-analytical procedures and bio-banking.

    PubMed

    Bode-Lesniewska, Beata; Cochand-Priollet, Beatrix; Straccia, Patrizia; Fadda, Guido; Bongiovanni, Massimo

    2018-06-09

    Thyroid nodules are common and increasingly detected due to recent advances in imaging techniques. However, clinically relevant thyroid cancer is rare and the mortality from aggressive thyroid cancer remains constant. FNAC (Fine Needle Aspiration Cytology) is a standard method for diagnosing thyroid malignancy and the discrimination of malignant nodules from goiter. As the examined nodules on thyroid FNAC are often small incidental findings, it is important to maintain a low rate of undetermined diagnoses requiring further clinical work up or surgery. The most important factors determining the accuracy of the cytological diagnosis and suitability for biobanking of thyroid FNACs are the quality of the sample and availability of adequate tissue for auxiliary studies. This article analyses technical aspects (pre-analytics) of performing thyroid FNACs, including image guidance and rapid on slide evaluation (ROSE), sample collection methods (conventional slides, liquid based methods (LBC), cell blocks) and storage (bio-banking). The spectrum of the special studies (immunocytochemistry on direct slides or LBC, immunohistochemistry on cell blocks and molecular methods) required for improving the precision of the cytological diagnosis of the thyroid nodules is discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigmamore » STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.« less

  10. Intensity correction for multichannel hyperpolarized 13C imaging of the heart.

    PubMed

    Dominguez-Viqueira, William; Geraghty, Benjamin J; Lau, Justin Y C; Robb, Fraser J; Chen, Albert P; Cunningham, Charles H

    2016-02-01

    Develop and test an analytic correction method to correct the signal intensity variation caused by the inhomogeneous reception profile of an eight-channel phased array for hyperpolarized (13) C imaging. Fiducial markers visible in anatomical images were attached to the individual coils to provide three dimensional localization of the receive hardware with respect to the image frame of reference. The coil locations and dimensions were used to numerically model the reception profile using the Biot-Savart Law. The accuracy of the coil sensitivity estimation was validated with images derived from a homogenous (13) C phantom. Numerical coil sensitivity estimates were used to perform intensity correction of in vivo hyperpolarized (13) C cardiac images in pigs. In comparison to the conventional sum-of-squares reconstruction, improved signal uniformity was observed in the corrected images. The analytical intensity correction scheme was shown to improve the uniformity of multichannel image reconstruction in hyperpolarized [1-(13) C]pyruvate and (13) C-bicarbonate cardiac MRI. The method is independent of the pulse sequence used for (13) C data acquisition, simple to implement and does not require additional scan time, making it an attractive technique for multichannel hyperpolarized (13) C MRI. © 2015 Wiley Periodicals, Inc.

  11. A reference web architecture and patterns for real-time visual analytics on large streaming data

    NASA Astrophysics Data System (ADS)

    Kandogan, Eser; Soroker, Danny; Rohall, Steven; Bak, Peter; van Ham, Frank; Lu, Jie; Ship, Harold-Jeffrey; Wang, Chun-Fu; Lai, Jennifer

    2013-12-01

    Monitoring and analysis of streaming data, such as social media, sensors, and news feeds, has become increasingly important for business and government. The volume and velocity of incoming data are key challenges. To effectively support monitoring and analysis, statistical and visual analytics techniques need to be seamlessly integrated; analytic techniques for a variety of data types (e.g., text, numerical) and scope (e.g., incremental, rolling-window, global) must be properly accommodated; interaction, collaboration, and coordination among several visualizations must be supported in an efficient manner; and the system should support the use of different analytics techniques in a pluggable manner. Especially in web-based environments, these requirements pose restrictions on the basic visual analytics architecture for streaming data. In this paper we report on our experience of building a reference web architecture for real-time visual analytics of streaming data, identify and discuss architectural patterns that address these challenges, and report on applying the reference architecture for real-time Twitter monitoring and analysis.

  12. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Jakubek, J.; Kroupa, M.; Hradil, D.; Hradilova, J.; Mislerova, H.

    2011-01-01

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of cultural heritage.

  13. WE-EF-207-01: FEATURED PRESENTATION and BEST IN PHYSICS (IMAGING): Task-Driven Imaging for Cone-Beam CT in Interventional Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gang, G; Stayman, J; Ouadah, S

    2015-06-15

    Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and amore » wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within a patient-specific anatomical model to optimize image acquisition and reconstruction techniques, thereby improving imaging performance beyond that achievable with conventional approaches. 2R01-CA-112163; R01-EB-017226; U01-EB-018758; Siemens Healthcare (Forcheim, Germany)« less

  14. Standard deviations of composition measurements in atom probe analyses-Part II: 3D atom probe.

    PubMed

    Danoix, F; Grancher, G; Bostel, A; Blavette, D

    2007-09-01

    In a companion paper [F. Danoix, G. Grancher, A. Bostel, D. Blavette, Surf. Interface Anal. this issue (previous paper).], the derivation of variances of the estimates of measured composition, and the underlying hypotheses, have been revisited in the the case of conventional one dimensional (1D) atom probes. In this second paper, we will concentrate on the analytical derivation of the variance when the estimate of composition is obtained from a 3D atom probe. As will be discussed, when the position information is available, compositions can be derived either from constant number of atoms, or from constant volume, blocks. The analytical treatment in the first case is identical to the one developed for conventional 1D instruments, and will not be discussed further in this paper. Conversely, in the second case, the analytical treatment is different, as well as the formula of the variance. In particular, it will be shown that the detection efficiency plays an important role in the determination of the variance.

  15. A novel methanol sensor based on gas-penetration through a porous polypyrrole-coated polyacrylonitrile nanofiber mat.

    PubMed

    Jun, Tae-Sun; Ho, Thi Anh; Rashid, Muhammad; Kim, Yong Shin

    2013-09-01

    In this work, we propose a novel chemoresistive gas sensor operated under a vertical analyte flow passing through a permeable sensing membrane. Such a configuration is different from the use of a planar sensor implemented under a conventional horizontal flow. A highly porous core-shell polyacrylonitrile-polypyrrole (PAN@PPy) nanofiber mat was prepared as the sensing element via electrospinning and two-step vapor-phase polymerization (VPP). Various analysis methods such as SEM, TEM, FT-IR and XPS measurements were employed in order to characterize structural features of the porous sensing mat. These analyses confirmed that very thin (ca. 10 nm) conductive PPy sheath layers were deposited by VPP on electrospun PAN nanofibers with an average diameter of 258 nm. Preliminary results revealed that the gas penetration-type PAN@PPy sensor had a higher sensor response and shorter detection and recovery times upon exposure to methanol analyte when compared with a conventional horizontal flow sensor due to efficient and fast analyte transfer into the sensing layer.

  16. Conventional and conformal technique of external beam radiotherapy in locally advanced cervical cancer: Dose distribution, tumor response, and side effects

    NASA Astrophysics Data System (ADS)

    Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.

    2017-08-01

    The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG consensus guidelines.

  17. RAY-RAMSES: a code for ray tracing on the fly in N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, Alexandre; Llinares, Claudio; Bose, Sownak

    2016-05-01

    We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementationmore » using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.« less

  18. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  19. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  20. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    NASA Astrophysics Data System (ADS)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  1. Helminth ova control in wastewater and sludge for advanced and conventional sanitation.

    PubMed

    Jiménez, B; Maya, C; Galván, M

    2007-01-01

    Worldwide, the most important reuse of wastewater, in volume, is agricultural irrigation. Therefore, there is a need to properly treat wastewater for such purpose, considering the removal of pathogens while leaving suitable amounts of nutrients and other compounds to increase productivity. Helminth ova are one of the main targeted pathogens in the new guidelines for water reuse in agriculture and aquaculture issued in 2006 by the World Health Organization. However, relatively little research has been done recently on how to remove and inactivate helminth ova from wastewater and sludge and recommendations given several decades ago are still used, but when put into practice, particularly in developing countries, produce unsatisfactory results. One problem is that these criteria were developed using inaccurate analytical techniques and the other is the large number and variety of helminth ova species found in wastewater and sludge from the developing world. In fact, the few technological options to remove and inactivate helminth ova come from research performed using wastewater and sludge with low helminth ova content, and refer almost only to Ascaris (one type of helminth). This paper summarises recent research work and results from practical experience concerning helminth ova control for advanced and conventional sanitation.

  2. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: A comparative in vitro study.

    PubMed

    Ullattuthodi, Sujana; Cherian, Kandathil Phillip; Anandkumar, R; Nambiar, M Sreedevi

    2017-01-01

    This in vitro study seeks to evaluate and compare the marginal and internal fit of cobalt-chromium copings fabricated using the conventional and direct metal laser sintering (DMLS) techniques. A master model of a prepared molar tooth was made using cobalt-chromium alloy. Silicone impression of the master model was made and thirty standardized working models were then produced; twenty working models for conventional lost-wax technique and ten working models for DMLS technique. A total of twenty metal copings were fabricated using two different production techniques: conventional lost-wax method and DMLS; ten samples in each group. The conventional and DMLS copings were cemented to the working models using glass ionomer cement. Marginal gap of the copings were measured at predetermined four points. The die with the cemented copings are standardized-sectioned with a heavy duty lathe. Then, each sectioned samples were analyzed for the internal gap between the die and the metal coping using a metallurgical microscope. Digital photographs were taken at ×50 magnification and analyzed using measurement software. Statistical analysis was done by unpaired t -test and analysis of variance (ANOVA). The results of this study reveal that no significant difference was present in the marginal gap of conventional and DMLS copings ( P > 0.05) by means of ANOVA. The mean values of internal gap of DMLS copings were significantly greater than that of conventional copings ( P < 0.05). Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.

  3. Microfabricated Genomic Analysis System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve; Elms, Rene

    2005-01-01

    Genetic sequencing and many genetic tests and assays require electrophoretic separation of DNA. In this technique, DNA fragments are separated by size as they migrate through a sieving gel under the influence of an applied electric field. In order to conduct these analyses on-orbit, it is essential to acquire the capability to efficiently perform electrophoresis in a microgravity environment. Conventional bench top electrophoresis equipment is large and cumbersome and does not lead itself to on-orbit utilization. Much of the previous research regarding on-orbit electrophoresis involved altering conventional electrophoresis equipment for bioprocessing, purification, and/or separation technology applications. A new and more efficient approach to on-orbit electrophoresis is the use of a microfabricated electrophoresis platform. These platforms are much smaller, less expensive to produce and operate, use less power, require smaller sample sizes (nanoliters), and achieve separation in a much shorter distance (a few centimeters instead of 10 s or 100 s of centimeters.) In contrast to previous applications, this platform would be utilized as an analytical tool for life science/medical research, environmental monitoring, and medical diagnoses. Identification of infectious agents as well as radiation related damage are significant to NASA s efforts to maintain, study, and monitor crew health during and in support of near-Earth and interplanetary missions. The capability to perform genetic assays on-orbit is imperative to conduct relevant and insightful biological and medical research, as well as continuing NASA s search for life elsewhere. This technology would provide an essential analytical tool for research conducted in a microgravity environment (Shuttle, ISS, long duration/interplanetary missions.) In addition, this technology could serve as a critical and invaluable component of a biosentinel system to monitor space environment genotoxic insults to include radiation.

  4. Evaluating biological variation in non-transgenic crops: executive summary from the ILSI Health and Environmental Sciences Institute workshop, November 16-17, 2009, Paris, France.

    PubMed

    Doerrer, Nancy; Ladics, Gregory; McClain, Scott; Herouet-Guicheney, Corinne; Poulsen, Lars K; Privalle, Laura; Stagg, Nicola

    2010-12-01

    The International Life Sciences Institute Health and Environmental Sciences Institute Protein Allergenicity Technical Committee hosted an international workshop November 16-17, 2009, in Paris, France, with over 60 participants from academia, government, and industry to review and discuss the potential utility of "-omics" technologies for assessing the variability in plant gene, protein, and metabolite expression. The goal of the workshop was to illustrate how a plant's constituent makeup and phenotypic processes can be surveyed analytically. Presentations on the "-omics" techniques (i.e., genomics, proteomics, and metabolomics) highlighted the workshop, and summaries of these presentations are published separately in this supplemental issue. This paper summarizes key messages, as well as the consensus points reached, in a roundtable discussion on eight specific questions posed during the final session of the workshop. The workshop established some common, though not unique, challenges for all "-omics" techniques, and include (a) standardization of separation/extraction and analytical techniques; (b) difficulty in associating environmental impacts (e.g., planting, soil texture, location, climate, stress) with potential alterations in plants at genomic, proteomic, and metabolomic levels; (c) many independent analytical measurements, but few replicates/subjects--poorly defined accuracy and precision; and (d) bias--a lack of hypothesis-driven science. Information on natural plant variation is critical in establishing the utility of new technologies due to the variability in specific analytes that may result from genetic differences (crop genotype), different crop management practices (conventional high input, low input, organic), interaction between genotype and environment, and the use of different breeding methods. For example, variations of several classes of proteins were reported among different soybean, rice, or wheat varieties or varieties grown at different locations. Data on the variability of allergenic proteins are important in defining the risk of potential allergenicity. Once established as a standardized assay, survey approaches such as the "-omics" techniques can be considered in a hypothesis-driven analysis of plants, such as determining unintended effects in genetically modified (GM) crops. However, the analysis should include both the GM and control varieties that have the same breeding history and exposure to the same environmental conditions. Importantly, the biological relevance and safety significance of changes in "-omic" data are still unknown. Furthermore, the current compositional assessment for evaluating the substantial equivalence of GM crops is robust, comprehensive, and a good tool for food safety assessments. The overall consensus of the workshop participants was that many "-omics" techniques are extremely useful in the discovery and research phases of biotechnology, and are valuable for hypothesis generation. However, there are many methodological shortcomings identified with "-omics" approaches, a paucity of reference materials, and a lack of focused strategy for their use that currently make them not conducive for the safety assessment of GM crops. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. An Example of a Hakomi Technique Adapted for Functional Analytic Psychotherapy

    ERIC Educational Resources Information Center

    Collis, Peter

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is a model of therapy that lends itself to integration with other therapy models. This paper aims to provide an example to assist others in assimilating techniques from other forms of therapy into FAP. A technique from the Hakomi Method is outlined and modified for FAP. As, on the whole, psychotherapy…

  6. Investigation of the feasibility of an analytical method of accounting for the effects of atmospheric drag on satellite motion

    NASA Technical Reports Server (NTRS)

    Bozeman, Robert E.

    1987-01-01

    An analytic technique for accounting for the joint effects of Earth oblateness and atmospheric drag on close-Earth satellites is investigated. The technique is analytic in the sense that explicit solutions to the Lagrange planetary equations are given; consequently, no numerical integrations are required in the solution process. The atmospheric density in the technique described is represented by a rotating spherical exponential model with superposed effects of the oblate atmosphere and the diurnal variations. A computer program implementing the process is discussed and sample output is compared with output from program NSEP (Numerical Satellite Ephemeris Program). NSEP uses a numerical integration technique to account for atmospheric drag effects.

  7. Almost analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2017-11-01

    We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).

  8. Retention of denture bases fabricated by three different processing techniques – An in vivo study

    PubMed Central

    Chalapathi Kumar, V. H.; Surapaneni, Hemchand; Ravikiran, V.; Chandra, B. Sarat; Balusu, Srilatha; Reddy, V. Naveen

    2016-01-01

    Aim: Distortion due to Polymerization shrinkage compromises the retention. To evaluate the amount of retention of denture bases fabricated by conventional, anchorized, and injection molding polymerization techniques. Materials and Methods: Ten completely edentulous patients were selected, impressions were made, and master cast obtained was duplicated to fabricate denture bases by three polymerization techniques. Loop was attached to the finished denture bases to estimate the force required to dislodge them by retention apparatus. Readings were subjected to nonparametric Friedman two-way analysis of variance followed by Bonferroni correction methods and Wilcoxon matched-pairs signed-ranks test. Results: Denture bases fabricated by injection molding (3740 g), anchorized techniques (2913 g) recorded greater retention values than conventional technique (2468 g). Significant difference was seen between these techniques. Conclusions: Denture bases obtained by injection molding polymerization technique exhibited maximum retention, followed by anchorized technique, and least retention was seen in conventional molding technique. PMID:27382542

  9. Evolutionary neural networks for anomaly detection based on the behavior of a program.

    PubMed

    Han, Sang-Jun; Cho, Sung-Bae

    2006-06-01

    The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.

  10. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE PAGES

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    2017-03-29

    A successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Furthermore, problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development ofmore » pregnancy related problems at the molecular level. Here, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  11. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy relatedmore » problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  12. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    A successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Furthermore, problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development ofmore » pregnancy related problems at the molecular level. Here, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  13. A Direct Approach to In-Plane Stress Separation using Photoelastic Ptychography

    NASA Astrophysics Data System (ADS)

    Anthony, Nicholas; Cadenazzi, Guido; Kirkwood, Henry; Huwald, Eric; Nugent, Keith; Abbey, Brian

    2016-08-01

    The elastic properties of materials, either under external load or in a relaxed state, influence their mechanical behaviour. Conventional optical approaches based on techniques such as photoelasticity or thermoelasticity can be used for full-field analysis of the stress distribution within a specimen. The circular polariscope in combination with holographic photoelasticity allows the sum and difference of principal stress components to be determined by exploiting the temporary birefringent properties of materials under load. Phase stepping and interferometric techniques have been proposed as a method for separating the in-plane stress components in two-dimensional photoelasticity experiments. In this paper we describe and demonstrate an alternative approach based on photoelastic ptychography which is able to obtain quantitative stress information from far fewer measurements than is required for interferometric based approaches. The complex light intensity equations based on Jones calculus for this setup are derived. We then apply this approach to the problem of a disc under diametrical compression. The experimental results are validated against the analytical solution derived by Hertz for the theoretical displacement fields for an elastic disc subject to point loading.

  14. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions.

    PubMed

    Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A

    2008-10-01

    Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.

  15. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement.

    PubMed

    Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui

    2017-02-06

    Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.

  16. A Direct Approach to In-Plane Stress Separation using Photoelastic Ptychography

    PubMed Central

    Anthony, Nicholas; Cadenazzi, Guido; Kirkwood, Henry; Huwald, Eric; Nugent, Keith; Abbey, Brian

    2016-01-01

    The elastic properties of materials, either under external load or in a relaxed state, influence their mechanical behaviour. Conventional optical approaches based on techniques such as photoelasticity or thermoelasticity can be used for full-field analysis of the stress distribution within a specimen. The circular polariscope in combination with holographic photoelasticity allows the sum and difference of principal stress components to be determined by exploiting the temporary birefringent properties of materials under load. Phase stepping and interferometric techniques have been proposed as a method for separating the in-plane stress components in two-dimensional photoelasticity experiments. In this paper we describe and demonstrate an alternative approach based on photoelastic ptychography which is able to obtain quantitative stress information from far fewer measurements than is required for interferometric based approaches. The complex light intensity equations based on Jones calculus for this setup are derived. We then apply this approach to the problem of a disc under diametrical compression. The experimental results are validated against the analytical solution derived by Hertz for the theoretical displacement fields for an elastic disc subject to point loading. PMID:27488605

  17. A field-deployable GC-EI-HRTOF-MS for in situ characterization of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Herndon, S. C.; Yacovitch, T. I.; Roscioli, J. R.; Fortner, E.; Knighton, W. B.; Sueper, D.; Isaacman-VanWertz, G. A.; Jayne, J. T.; Worsnop, D. R.

    2017-12-01

    Previous authors have demonstrated the value of coupling conventional gas chromatograph (GC) separation techniques with the new generation of electron-impact high-resolution time-of-flight mass spectrometry (EI-HR-ToF-MS) detectors for the measurement of halocarbons and semi-volatile organic species. Here, we present new instrumentation, analytical techniques and field data from the deployment of a GC-EI-HR-ToF-MS system in the mini Aerodyne mobile laboratory to sites upwind and downwind of San Antonio, Texas in May 2017. The instrument employed a multi-component adsorbent trap pre-concertation system followed by single-column separation. We will show results from the field work, including inter-comparison with other VOC measurements and characterization of C5-C10 hydrocarbon mixing ratios to distinguish urban and oil/gas emission sources in characterized air. We will discuss practical aspects of deployment of the GC-EI-HRTOF-MS in a mobile laboratory and system performance in the field. Will we also present further development of Aerodyne's TERN software package for chromatographic data analysis to processing of HRTOF-MS datasets.

  18. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis.

    PubMed

    Türker-Kaya, Sevgi; Huck, Christian W

    2017-01-20

    Plant cells, tissues and organs are composed of various biomolecules arranged as structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge about those constituents with their localization in such complexity is very crucial for both basic and applied plant sciences. In this context, infrared imaging techniques have advantages over conventional methods to investigate heterogeneous plant structures in providing quantitative and qualitative analyses with spatial distribution of the components. Thus, particularly, with the use of proper analytical approaches and sampling methods, these technologies offer significant information for the studies on plant classification, physiology, ecology, genetics, pathology and other related disciplines. This review aims to present a general perspective about near-infrared and mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities of these methodologies with their advantages and limitations. With regard to the organization of the document, the first section will introduce the respective underlying principles followed by instrumentation, sampling techniques, sample preparations, measurement, and an overview of spectral pre-processing and multivariate analysis. The last section will review selected applications in the literature.

  19. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging.

    PubMed

    Burnum-Johnson, Kristin E; Baker, Erin S; Metz, Thomas O

    2017-12-01

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy related problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes. Copyright © 2017 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.

  20. FEA of the clinching process of short fiber reinforced thermoplastic with an aluminum sheet using LS-DYNA

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Grbic, N.

    2016-10-01

    A structural concept in multi-material design is used in the automotive industry with the aim of achieving significant weight reductions of conventional car bodies. In this respect, the use of aluminum and short fiber reinforced plastics represents an interesting material combination. A wide acceptance of such a material combination requires a suitable joining technique. Among different joining techniques, clinching represents one of the most appealing alternative for automotive applications. This contribution deals with the FE simulation of the clinching process of two representative materials PA6GF30 and EN AW 5754 using the FE software LS-DYNA. With regard to the material modelling of the aluminum sheet, an isotropic material model based on the von Mises plasticity implemented in LS-DYNA was chosen. Analogous to aluminum, the same material model is used for modelling the short fiber reinforced thermoplastic. Additionally, a semi-analytical model for polymers (SAMP-1) also available in LS-DYNA was taken. Finally, the FEA of clinching process is carried out and the comparison of the simulation results is presented above.

  1. Characteristics of Aspergillus fumigatus in Association with Stenotrophomonas maltophilia in an In Vitro Model of Mixed Biofilm

    PubMed Central

    Melloul, Elise; Luiggi, Stéphanie; Anaïs, Leslie; Arné, Pascal; Costa, Jean-Marc; Fihman, Vincent; Briard, Benoit; Dannaoui, Eric; Guillot, Jacques; Decousser, Jean-Winoc; Beauvais, Anne; Botterel, Françoise

    2016-01-01

    Background Biofilms are communal structures of microorganisms that have long been associated with a variety of persistent infections poorly responding to conventional antibiotic or antifungal therapy. Aspergillus fumigatus fungus and Stenotrophomonas maltophilia bacteria are examples of the microorganisms that can coexist to form a biofilm especially in the respiratory tract of immunocompromised patients or cystic fibrosis patients. The aim of the present study was to develop and assess an in vitro model of a mixed biofilm associating S. maltophilia and A. fumigatus by using analytical and quantitative approaches. Materials and Methods An A. fumigatus strain (ATCC 13073) expressing a Green Fluorescent Protein (GFP) and an S. maltophilia strain (ATCC 13637) were used. Fungal and bacterial inocula (105 conidia/mL and 106 cells/mL, respectively) were simultaneously deposited to initiate the development of an in vitro mixed biofilm on polystyrene supports at 37°C for 24 h. The structure of the biofilm was analysed via qualitative microscopic techniques like scanning electron and transmission electron microscopy, and fluorescence microscopy, and by quantitative techniques including qPCR and crystal violet staining. Results Analytic methods revealed typical structures of biofilm with production of an extracellular matrix (ECM) enclosing fungal hyphae and bacteria. Quantitative methods showed a decrease of A. fumigatus growth and ECM production in the mixed biofilm with antibiosis effect of the bacteria on the fungi seen as abortive hyphae, limited hyphal growth, fewer conidia, and thicker fungal cell walls. Conclusion For the first time, a mixed A. fumigatus—S. maltophilia biofilm was validated by various analytical and quantitative approaches and the bacterial antibiosis effect on the fungus was demonstrated. The mixed biofilm model is an interesting experimentation field to evaluate efficiency of antimicrobial agents and to analyse the interactions between the biofilm and the airways epithelium. PMID:27870863

  2. Surfactant assisted pulsed two-phase electromembrane extraction followed by GC analysis for quantification of basic drugs in biological samples.

    PubMed

    Zahedi, Pegah; Davarani, Saied Saeed Hosseiny; Moazami, Hamid Reza; Nojavan, Saeed

    2016-01-05

    In this work, a simple and efficient surfactant assisted pulsed two-phase electromembrane extraction (SA-PEME) procedure combined with gas chromatography (GC) has been developed for the determination of alfentanil, sufentanil and methadone in various samples. It has been found that the addition of anionic surfactant causes the accumulation of the cationic analytes at the SLM/solution interface resulting in an easier transfer of the analytes into the organic phase. The method was accomplished with 1-octanol as the acceptor phase and supported liquid membrane (SLM) by means of an 80 V pulsed electrical driving force and the extraction time of 20 min. The model analytes were extracted from 3.0 mL sample solution (pH 4.0) containing 0.02% w/v surfactant (sodium dodecyl sulfate). The duty cycle of 92% and frequency of 0.357 Hz gave the best performance. Extraction recoveries in the range of 70.5-95.2% and satisfactory repeatability (7.6

  3. Quantification of trans-1,4-polyisoprene in Eucommia ulmoides by fourier transform infrared spectroscopy and pyrolysis-gas chromatography/mass spectrometry.

    PubMed

    Takeno, Shinya; Bamba, Takeshi; Nakazawa, Yoshihisa; Fukusaki, Eiichiro; Okazawa, Atsushi; Kobayashi, Akio

    2008-04-01

    Commercial development of trans-1,4-polyisoprene from Eucommia ulmoides Oliver (EU-rubber) requires specific knowledge on selection of high-rubber-content lines and establishment of agronomic cultivation methods for achieving maximum EU-rubber yield. The development can be facilitated by high-throughput and highly sensitive analytical techniques for EU-rubber extraction and quantification. In this paper, we described an efficient EU-rubber extraction method, and validated that the accuracy was equivalent to that of the conventional Soxhlet extraction method. We also described a highly sensitive quantification method for EU-rubber by Fourier transform infrared spectroscopy (FT-IR) and pyrolysis-gas chromatography/mass spectrometry (PyGC/MS). We successfully applied the extraction/quantification method for study of seasonal changes in EU-rubber content and molecular weight distribution.

  4. Differential detection of Gaussian MSK in a mobile radio environment

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Wang, C. C.

    1984-01-01

    Minimum shift keying with Gaussian shaped transmit pulses is a strong candidate for a modulation technique that satisfies the stringent out-of-band radiated power requirements of the mobil radio application. Numerous studies and field experiments have been conducted by the Japanese on urban and suburban mobile radio channels with systems employing Gaussian minimum-shift keying (GMSK) transmission and differentially coherent reception. A comprehensive analytical treatment is presented of the performance of such systems emphasizing the important trade-offs among the various system design parameters such as transmit and receiver filter bandwidths and detection threshold level. It is shown that two-bit differential detection of GMSK is capable of offering far superior performance to the more conventional one-bit detection method both in the presence of an additive Gaussian noise background and Rician fading.

  5. The effect of ring distortions on buckling of blunt conical shells. [Viking mission aeroshell

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Anderson, M. S.; Stephens, W. B.

    1975-01-01

    A rigorous analytical study of cones stiffened by many thin-gage, open-section rings is presented. The results are compared with data previously obtained from uniform pressure tests of the Viking mission flight aeroshell and of the Viking structural prototype aeroshells. A conventional analysis, in which the rings are modeled as discrete rigid cross sections, is shown to lead to large, unconservative strength predictions. A more sophisticated technique of modeling the rings as shell branches leads to much more realistic strength predictions and more accurately predicts the failure modes. It is also shown that if a small initial imperfection proportional to the shape of the buckling mode is assumed, the critical buckling modes from analysis and test are in agreement. However, the reduction in buckling strength from the perfect-shell predictions is small.

  6. Differential detection of Gaussian MSK in a mobile radio environment

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Wang, C. C.

    1984-11-01

    Minimum shift keying with Gaussian shaped transmit pulses is a strong candidate for a modulation technique that satisfies the stringent out-of-band radiated power requirements of the mobil radio application. Numerous studies and field experiments have been conducted by the Japanese on urban and suburban mobile radio channels with systems employing Gaussian minimum-shift keying (GMSK) transmission and differentially coherent reception. A comprehensive analytical treatment is presented of the performance of such systems emphasizing the important trade-offs among the various system design parameters such as transmit and receiver filter bandwidths and detection threshold level. It is shown that two-bit differential detection of GMSK is capable of offering far superior performance to the more conventional one-bit detection method both in the presence of an additive Gaussian noise background and Rician fading.

  7. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.

    PubMed

    von Olshausen, Philipp; Rohrbach, Alexander

    2013-10-15

    Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.

  8. Drude conductivity exhibited by chemically synthesized reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Younas, Daniyal; Javed, Qurat-ul-Ain; Fatima, Sabeen; Kalsoom, Riffat; Abbas, Hussain; Khan, Yaqoob

    2017-09-01

    Electrical conductance in graphene layers having Drude like response due to massless Dirac fermions have been well explained theoretically as well as experimentally. In this paper Drude like electrical conductivity response of reduced graphene oxide synthesized by chemical route is presented. A method slightly different from conventional methods is used to synthesize graphene oxide which is then converted to reduced graphene oxide. Various analytic techniques were employed to verify the successful oxidation and reductions in the process and were also used to measure various parameters like thickness of layers and conductivity. Obtained reduced graphene oxide has very thin layers of thickness around 13 nm on average and reduced graphene oxide has average thickness below 20 nm. Conductivity of the reduced graphene was observed to have Drude like response which is explained on basis of Drude model for conductors.

  9. An Active Micro Vibration Isolator with Zero-Power Controlled Magnetic Suspension Technology

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Emdadul; Takasaki, Masaya; Ishino, Yuji; Suzuki, Hirohisa; Mizuno, Takeshi

    In this paper, a three-degree-of-freedom vibration isolation system using active zero-power controlled magnetic suspension is presented in order to isolate vibrations transmitted from the ground and to attenuate the effect of direct disturbances on the table. The zero-compliance of the isolator for direct disturbances was realized by connecting a conventional mechanical spring in series with a negative spring produced by an active magnetic suspension mechanism. In this work, each degree-of-freedom-of-motion of the vibration isolator is treated analytically and it is shown that the developed system is capable to generate infinite stiffness in each mode. Experimental studies have been conducted as well to measure the effectiveness of the isolator under both types of disturbances. Further improvements for the developed system as well as the control techniques are also discussed.

  10. Side effects and complications of intraosseous anesthesia and conventional oral anesthesia.

    PubMed

    Peñarrocha-Oltra, David; Ata-Ali, Javier; Oltra-Moscardó, María-José; Peñarrocha-Diago, María; Peñarrocha, Miguel

    2012-05-01

    To analyze the side effects and complications following intraosseous anesthesia (IA), comparing them with those of the conventional oral anesthesia techniques. A simple-blind, prospective clinical study was carried out. Each patient underwent two anesthetic techniques: conventional (local infiltration and locoregional anesthetic block) and intraosseous, for respective dental operations. In order to allow comparison of IA versus conventional anesthesia, the two operations were similar and affected the same two teeth in opposite quadrants. Heart rate was recorded in all cases before injection of the anesthetic solution and again 30 seconds after injection. The complications observed after anesthetic administration were recorded. A total of 200 oral anesthetic procedures were carried out in 100 patients. Both IA and conventional anesthesia resulted in a significant increase in heart rate, though the increase was greater with the latter technique. Incidents were infrequent with either anesthetic technique, with no significant differences between them. Regarding the complications, there were significant differences in pain at the injection site, with more intense pain in the case of IA (x2=3.532, p=0.030, Φ2=0.02), while the limitation of oral aperture was more pronounced with conventional anesthesia (x2=5.128, p<0.05, Φ2=0.014). Post-anesthetic biting showed no significant differences (x2=4.082, p=0.121, Φ2=0.009). Both anesthetic techniques significantly increased heart rate, and IA caused comparatively more pain at the injection site, while limited oral aperture was more frequent with conventional anesthesia. Post-anesthetic biting showed no significant differences between the two techniques.

  11. A Retrospective Comparison of Conventional versus Transverse Mini-Incision Technique for Carpal Tunnel Release

    PubMed Central

    Gülşen, İsmail; Ak, Hakan; Evcılı, Gökhan; Balbaloglu, Özlem; Sösüncü, Enver

    2013-01-01

    Background. In this retrospective study, we aimed to compare the results of two surgical techniques, conventional and transverse mini-incision. Materials and Methods. 95 patients were operated between 2011 and 2012 in Bitlis State Hospital. 50 patients were operated with conventional technique and 45 of them were operated with minimal transverse incision. Postoperative complications, incision site problems, and the time of starting to use their hands in daily activities were noted. Results. 95 patients were included in the study. The mean age was 48. 87 of them were female and 8 were male. There was no problem of incision site in both of the two surgical techniques. Only in one patient, anesthesia developed in minimal incision technique. The time of starting to use their hands in daily activities was 22,2 days and 17 days in conventional and minimal incision technique, respectively. Conclusion. Two surgical techniques did not show superiority to each other in terms of postoperative complications and incision site problems except the time of starting to use their hands in daily activities. PMID:24396607

  12. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Treesearch

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  13. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    PubMed

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  14. Comparison of three different adenoidectomy techniques in children - has the conventional technique been surpassed?

    PubMed

    Ferreira, Mayra Soares; Mangussi-Gomes, João; Ximendes, Roberta; Evangelista, Anne Rosso; Miranda, Eloá Lumi; Garcia, Leonardo Bomediano; Stamm, Aldo C

    2018-01-01

    Pharyngeal tonsil hyperplasia is the most frequent cause of nasal obstruction and chronic mouth breathing during childhood. Adenoidectomy is the procedure of choice for the resolution of these symptoms. It is not yet known, however, whether the conventional technique ("blind curettage") has been surpassed by more modern adenoidectomy techniques (video-assisted, with the aid of instruments). This study aimed to compare the conventional adenoidectomy technique with two other emerging techniques, performed in a reference otorhinolaryngology center. This is a prospective and observational study of 33 children submitted to adenoidectomy using 3 different techniques that were followed up for a period of 3 months after surgery. The patients were divided into 3 different groups, according to the adenoidectomy technique: Group A (conventional technique - "blind curettage"); Group B (video-assisted adenoidectomy with microdebrider); Group C (video-assisted adenoidectomy with radiofrequency - Coblation ® ). The surgical time of each procedure was measured, being considered from the moment of insertion of the mouth gag until complete hemostasis was achieved. The questionnaire for quality of life OSA-18 was applied to all caregivers on the day of the surgery and 30-90 days after the procedure. Postoperative complications were also analyzed. For the entire patient sample, there was an improvement in quality of life after the surgery (p < 0.05). When analyzing the evolution of OSA-18 index, all groups showed statistically significant improvement, for all assessed domains. There were no statistically significant differences between the 3 techniques assessed for quality of life improvement after the surgery (p > 0.05). Regarding the duration of the procedure, the conventional technique showed the shortest surgical time when compared to the others (p < 0.05). No postoperative complications were noted, for any patient. The adenoidectomy resulted in improvement of quality of life, and there were no major postoperative complications, for all operated children, regardless of the technique used. The conventional technique was faster when compared to the more modern adenoidectomy techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Analytical Chemistry of Surfaces: Part II. Electron Spectroscopy.

    ERIC Educational Resources Information Center

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    Discusses two surface techniques: X-ray photoelectron spectroscopy (ESCA) and Auger electron spectroscopy (AES). Focuses on fundamental aspects of each technique, important features of instrumentation, and some examples of how ESCA and AES have been applied to analytical surface problems. (JN)

  16. Problem Formulation in Knowledge Discovery via Data Analytics (KDDA) for Environmental Risk Management

    PubMed Central

    Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason

    2016-01-01

    With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM3 ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs. PMID:27983713

  17. Problem Formulation in Knowledge Discovery via Data Analytics (KDDA) for Environmental Risk Management.

    PubMed

    Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason

    2016-12-15

    With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM³ ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs.

  18. Pre-concentration technique for reduction in "Analytical instrument requirement and analysis"

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Singha, Mousumi; Meena, Sher Singh

    2018-04-01

    Availability of analytical instruments for a methodical detection of known and unknown effluents imposes a serious hindrance in qualification and quantification. Several analytical instruments such as Elemental analyzer, ICP-MS, ICP-AES, EDXRF, ion chromatography, Electro-analytical instruments which are not only expensive but also time consuming, required maintenance, damaged essential parts replacement which are of serious concern. Move over for field study and instant detection installation of these instruments are not convenient to each and every place. Therefore, technique such as pre-concentration of metal ions especially for lean stream elaborated and justified. Chelation/sequestration is the key of immobilization technique which is simple, user friendly, most effective, least expensive, time efficient; easy to carry (10g - 20g vial) to experimental field/site has been demonstrated.

  19. Method for Derivatization and Detection of Chemical Weapons Convention Related Sulfur Chlorides via Electrophilic Addition with 3-Hexyne.

    PubMed

    Goud, D Raghavender; Pardasani, Deepak; Purohit, Ajay Kumar; Tak, Vijay; Dubey, Devendra Kumar

    2015-07-07

    Sulfur monochloride (S2Cl2) and sulfur dichloride (SCl2) are important precursors of the extremely toxic chemical warfare agent sulfur mustard and classified, respectively, into schedule 3.B.12 and 3.B.13 of the Chemical Weapons Convention (CWC). Hence, their detection and identification is of vital importance for verification of CWC. These chemicals are difficult to detect directly using chromatographic techniques as they decompose and do not elute. Until now, the use of gas chromatographic approaches to follow the derivatized sulfur chlorides is not reported in the literature. The electrophilic addition reaction of sulfur monochloride and sulfur dichloride toward 3-hexyne was explored for the development of a novel derivatization protocol, and the products were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Among various unsaturated reagents like alkenes and alkynes, symmetrical alkyne 3-hexyne was optimized to be the suitable derivatizing agent for these analytes. Acetonitrile was found to be the suitable solvent for the derivatization reaction. The sample preparation protocol for the identification of these analytes from hexane spiked with petrol matrix was also optimized. Liquid-liquid extraction followed by derivatization was employed for the identification of these analytes from petrol matrix. Under the established conditions, the detection and quantification limits are 2.6 μg/mL, 8.6 μg/mL for S2Cl2 and 2.3 μg/mL, 7.7 μg/mL for SCl2, respectively, in selected ion monitoring (SIM) mode. The calibration curve had a linear relationship with y = 0.022x - 0.331 and r(2) = 0.992 for the working range of 10 to 500 μg/mL for S2Cl2 and y = 0.007x - 0.064 and r(2) = 0.991 for the working range of 10 to 100 μg/mL for SCl2, respectively. The intraday RSDs were between 4.80 to 6.41%, 2.73 to 6.44% and interday RSDs were between 2.20 to 7.25% and 2.34 to 5.95% for S2Cl2 and SCl2, respectively.

  20. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  1. A rigorous assessment of tree height measurements obtained using airborne LIDAR and conventional field methods.

    Treesearch

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2006-01-01

    Tree height is an important variable in forest inventory programs but is typically time-consuming and costly to measure in the field using conventional techniques. Airborne light detection and ranging (LIDAR) provides individual tree height measurements that are highly correlated with field-derived measurements, but the imprecision of conventional field techniques does...

  2. Laser-induced breakdown spectroscopy (LIBS) technique for the determination of the chemical composition of complex inorganic materials

    NASA Astrophysics Data System (ADS)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Kozioł, Paweł E.; Stepak, Bogusz; Abramski, Krzysztof M.

    2014-08-01

    Laser-induced breakdown spectroscopy (LIBS) is a fast, fully optical method, that needs little or no sample preparation. In this technique qualitative and quantitative analysis is based on comparison. The determination of composition is generally based on the construction of a calibration curve namely the LIBS signal versus the concentration of the analyte. Typically, to calibrate the system, certified reference materials with known elemental composition are used. Nevertheless, such samples due to differences in the overall composition with respect to the used complex inorganic materials can influence significantly on the accuracy. There are also some intermediate factors which can cause imprecision in measurements, such as optical absorption, surface structure, thermal conductivity etc. This paper presents the calibration procedure performed with especially prepared pellets from the tested materials, which composition was previously defined. We also proposed methods of post-processing which allowed for mitigation of the matrix effects and for a reliable and accurate analysis. This technique was implemented for determination of trace elements in industrial copper concentrates standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for contents of three elements, that is silver, cobalt and vanadium. It has been shown that the described technique can be used to qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates.

  3. Mass Spectrometry as a Powerful Analytical Technique for the Structural Characterization of Synthesized and Natural Products

    NASA Astrophysics Data System (ADS)

    Es-Safi, Nour-Eddine; Essassi, El Mokhtar; Massoui, Mohamed; Banoub, Joseph

    Mass spectrometry is an important tool for the identification and structural elucidation of natural and synthesized compounds. Its high sensitivity and the possibility of coupling liquid chromatography with mass spectrometry detection make it a technique of choice for the investigation of complex mixtures like raw natural extracts. The mass spectrometer is a universal detector that can achieve very high sensitivity and provide information on the molecular mass. More detailed information can be subsequently obtained by resorting to collision-induced dissociation tandem mass spectrometry (CID-MS/MS). In this review, the application of mass spectrometric techniques for the identification of natural and synthetic compounds is presented. The gas-phase fragmentation patterns of a series of four natural flavonoid glycosides, three synthesized benzodiazepines and two synthesized quinoxalinone derivatives were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry techniques. Exact accurate masses were measured using a modorate resolution quadrupole orthogonal time-of-flight QqTOF-MS/MS hybrid mass spectrometer instrument. Confirmation of the molecular masses and the chemical structures of the studied compounds were achieved by exploring the gas-phase breakdown routes of the ionized molecules. This was rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole hexapole-quadrupole (QhQ) tandem mass spectrometer.

  4. Analytical technique characterizes all trace contaminants in water

    NASA Technical Reports Server (NTRS)

    Foster, J. N.; Lysyj, I.; Nelson, K. H.

    1967-01-01

    Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.

  5. 1T' transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels.

    PubMed

    Tao, Li; Chen, Kun; Chen, Zefeng; Cong, Chunxiao; Qiu, Caiyu; Chen, Jiajie; Wang, Ximiao; Chen, Huanjun; Yu, Ting; Xie, Weiguang; Deng, Shaozhi; Xu, Jianbin

    2018-06-21

    Plasmon-free surface enhanced Raman scattering (SERS) based on the chemical mechanism (CM) is drawing great attention due to its capability for controllable molecular detection. However, in comparison to the conventional noble-metal-based SERS technique driven by plasmonic electromagnetic mechanism (EM), the low sensitivity in the CM-based SERS is the dominant barrier towards its practical applications. Herein, we demonstrate the 1T' transition metal telluride atomic layers (WTe2 and MoTe2) as ultrasensitive platforms for CM-based SERS. The SERS sensitivities of analyte dyes on 1T'-W(Mo)Te2 reach EM-comparable ones and become even greater when it is integrated with a Bragg reflector. In addition, the dye fluorescence signals are efficiently quenched, making the SERS spectra more distinguishable. As a proof of concept, the SERS signals of analyte Rhodamine 6G (R6G) are detectable even with an ultralow concentration of 40 (400) fM on pristine 1T'-W(Mo)Te2, and the corresponding Raman enhancement factor (EF) reaches 1.8×109 (1.6×108). The limit concentration of detection and the EF of R6G can be further enhanced into 4 (40) fM and 4.4×1010 (6.2×109), respectively, when 1T'-W(Mo)Te2 is integrated on the Bragg reflector. The strong interaction between the analyte and 1T'-W(Mo)Te2 and the abundant density of states near the Fermi level of the semimetal 1T'-W(Mo)Te2 in combination gives rise to the promising SERS effects by promoting the charge transfer resonance in the analyte-telluride complex. Our findings reveal that the 1T'-W(Mo)Te2 as a plasmon-free SERS mediator can deliver an ultrahigh Raman enhancement for analytes, whose EF is even comparable to that by plasmon-driven noble metal SERS materials.

  6. Advancing statistical analysis of ambulatory assessment data in the study of addictive behavior: A primer on three person-oriented techniques.

    PubMed

    Foster, Katherine T; Beltz, Adriene M

    2018-08-01

    Ambulatory assessment (AA) methodologies have the potential to increase understanding and treatment of addictive behavior in seemingly unprecedented ways, due in part, to their emphasis on intensive repeated assessments of an individual's addictive behavior in context. But, many analytic techniques traditionally applied to AA data - techniques that average across people and time - do not fully leverage this potential. In an effort to take advantage of the individualized, temporal nature of AA data on addictive behavior, the current paper considers three underutilized person-oriented analytic techniques: multilevel modeling, p-technique, and group iterative multiple model estimation. After reviewing prevailing analytic techniques, each person-oriented technique is presented, AA data specifications are mentioned, an example analysis using generated data is provided, and advantages and limitations are discussed; the paper closes with a brief comparison across techniques. Increasing use of person-oriented techniques will substantially enhance inferences that can be drawn from AA data on addictive behavior and has implications for the development of individualized interventions. Copyright © 2017. Published by Elsevier Ltd.

  7. Modified fluoroscopy-guided sacroiliac joint injection: a technical report.

    PubMed

    Liliang, Po-Chou; Liang, Cheng-Loong; Lu, Kang; Weng, Hui-Ching; Syu, Fei-Kai

    2014-09-01

    Sacroiliac joint (SIJ) injection can occasionally be challenging. We describe our experience in using conventional technique, and we developed an adjustment to overcome difficulties incurred. Conventional technique required superimposition of the posterior and anterior SIJ lines. If this technique failed to provide entry into the joint, fluoroscopy was slightly adjusted to obtain an oblique view. Of 50 SIJ injections, 29 (58%; 44-72%) were successfully performed using conventional technique. In another 21 procedures, 18 (85.7%; 64-99%) were subsequently completed using oblique view technique. The medial joint line, viewed from this angle, corresponded to the posterior joint line in 17 cases. The lateral joint line corresponded to the posterior joint line in one case. Oblique view technique can improve the success rate of SIJ injection. Wiley Periodicals, Inc.

  8. Micellar and analytical implications of a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate.

    PubMed

    Sanan, Reshu; Mahajan, Rakesh Kumar

    2013-03-15

    With an aim to characterize the micellar aggregates of imidazolium based ionic liquids, a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate (C12MeIm(+)DS(-)) has been developed. The electrode exhibited a linear response for the concentration range of 7.9×10(-5)-9.8×10(-3) M with a super-Nernstian slope of 92.94 mV/decade, a response time of 5 s and critical micellar concentration (cmc) of 10.09 mM for C12MeImBr. The performance of the electrode in investigating the cmc of C12MeImBr in the presence of two drugs [promazine hydrochloride (PMZ) and promethazine hydrochloride (PMT)] and three triblock copolymers (P123, L64 and F68) has been found to be satisfactory on comparison with conductivity measurements. Various micellar parameters have been evaluated for the binary mixtures of C12MeImBr with drugs and triblock copolymers using Clint's, Rubingh's, and Motomura's approach. Thus the electrode offers a simple, straightforward and relatively fast technique for the characterization of micellar aggregates of C12MeImBr, complementing existing conventional techniques. Further, the analytical importance of proposed C12MeIm(+)-ISE as end point indicator in potentiometric titrations and for direct determination of cationic surfactants [cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), benzalkonium chloride (BC)] in some commercial products was judged by comparing statistically with classical two-phase titration methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Characterization of Source Signatures of Fine Roadway Particles by Pyrolysis-GC-MS

    NASA Astrophysics Data System (ADS)

    van Bergen, S. K.; Holmén, B. A.

    2001-12-01

    Fine particulate matter, defined as particles with an aerodynamic diameter less than 2.5 μ m (PM2.5), is of growing concern due to its detrimental effects on human health and the environment. Roadway traffic generates a significant fraction of PM2.5 in urban areas. Since exposure to fine particles derived from mobile sources commonly occurs, understanding the physicochemical processes that contribute to the generation, transport and atmospheric reactivity of roadway PM is important. Factors that influence the properties of roadway PM include: the mass, number and size distribution of the particles as well as their chemical composition. These factors are partially determined by the sources of the roadway particles. The focus of this effort is to identify unique organic chemical profiles of known roadway sources of PM using a new rapid characterization technique. A pyrolysis GC-MS analytical method is being developed to uniquely characterize the sources of roadway PM2.5 such as brake dust, tire wear, and direct emissions from diesel and gasoline engines. The source profiles will be used in conjunction with measurements of the composition of ambient roadway PM to determine the importance of the various roadway sources. The advantages of this technique over conventional solvent extractions include: smaller (mg) sample mass requirements, short extraction times and minimal sample handing. Preliminary two-step pyrolysis results will be presented for PM samples from individual sources and an ambient roadway. Specific analytical issues that will be discussed include: modifications of commercial pyrolysis hardware to improve reproducibility; desorption versus pyrolysis; developing appropriate pyrolysis programs for heterogenous sample materials; and method detection limits.

  10. Production of monoclonal antibody to acaricide dicofol and its derivatives.

    PubMed

    Hongsibsong, Surat; Prapamontol, Tippawan; Suphavilai, Chaisuree; Wipasa, Jiraprapa; Pattarawarapan, Mookda; Kasinrerk, Watchara

    2010-12-01

    In Thailand detection of acaricide dicofol residues has been sporadically performed due to the limitation of analytical techniques. Conventional analytical methods for detecting dicofol residues most often use chromatographic-based techniques. Our ultimate aim is to develop an alternative method for rapidly analyzing dicofol residues in vegetables and fruit samples. Here we report the production of monoclonal antibodies specific to dicofol and its derivatives. Hapten-protein carriers were prepared by linking succinic anhydride to dichlorobenzhydrol (DCBH), which was then conjugated to bovine serum albumin (BSA) and oval albumin (OVA). DCBH-BSA conjugate was used as immunogen while DCBH-OVA conjugate was used as capture antigen for competitive inhibition assay. Female BALB/c mice were immunized with DCBH-BSA conjugate subcutaneously, and antibody (Ab) level was determined 2 weeks after the last immunization. Spleen cells producing high titer antibody were isolated and fused with myeloma cells of P3.X6.Ag8.653. After limiting dilutions, antibody produced by one clone had high affinity, which was found to be of IgG1 with κ light chain. Specificity and inhibition concentrations of the monoclonal antibody (MAb) were determined by competitive indirect ELISA with dicofol, and its 50% (IC(50)) was 0.28 μg/mL. Working ranges of the developed immunoassay were from 0.07 to 25 μg/mL. Hence, the prepared MAb will be able to be applied for immunoassay development for detecting dicofol residue in vegetables and fruits far below the maximum residue limit such that 5 g of fruits and berries can be detected below 0.1 mg/kg.

  11. Kramers problem: Numerical Wiener-Hopf-like model characteristics

    NASA Astrophysics Data System (ADS)

    Ezin, A. N.; Samgin, A. L.

    2010-11-01

    Since the Kramers problem cannot be, in general, solved in terms of elementary functions, various numerical techniques or approximate methods must be employed. We present a study of characteristics for a particle in a damped well, which can be considered as a discretized version of the Melnikov [Phys. Rev. E 48, 3271 (1993)]10.1103/PhysRevE.48.3271 turnover theory. The main goal is to justify the direct computational scheme to the basic Wiener-Hopf model. In contrast to the Melnikov approach, which implements factorization through a Cauchy-theorem-based formulation, we employ the Wiener-Levy theorem to reduce the Kramers problem to a Wiener-Hopf sum equation written in terms of Toeplitz matrices. This latter can provide a stringent test for the reliability of analytic approximations for energy distribution functions occurring in the Kramers problems at arbitrary damping. For certain conditions, the simulated characteristics are compared well with those determined using the conventional Fourier-integral formulas, but sometimes may differ slightly depending on the value of a dissipation parameter. Another important feature is that, with our method, we can avoid some complications inherent to the Melnikov method. The calculational technique reported in the present paper may gain particular importance in situations where the energy losses of the particle to the bath are a complex-shaped function of the particle energy and analytic solutions of desired accuracy are not at hand. In order to appreciate more readily the significance and scope of the present numerical approach, we also discuss concrete aspects relating to the field of superionic conductors.

  12. Evaluation Applied to Reliability Analysis of Reconfigurable, Highly Reliable, Fault-Tolerant, Computing Systems for Avionics

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1979-01-01

    Emulation techniques are proposed as a solution to a difficulty arising in the analysis of the reliability of highly reliable computer systems for future commercial aircraft. The difficulty, viz., the lack of credible precision in reliability estimates obtained by analytical modeling techniques are established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. The technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. The use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques.

  13. Common aspects influencing the translocation of SERS to Biomedicine.

    PubMed

    Gil, Pilar Rivera; Tsouts, Dionysia; Sanles-Sobrido, Marcos; Cabo, Andreu

    2018-01-04

    In this review, we introduce the reader the analytical technique, surface-enhanced Raman scattering motivated by the great potential we believe this technique have in biomedicine. We present the advantages and limitations of this technique relevant for bioanalysis in vitro and in vivo and how this technique goes beyond the state of the art of traditional analytical, labelling and healthcare diagnosis technologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Performance and non-destructive evaluation methods of airborne radome and stealth structures

    NASA Astrophysics Data System (ADS)

    Panwar, Ravi; Ryul Lee, Jung

    2018-06-01

    In the past few years, great effort has been devoted to the fabrication of highly efficient, broadband radome and stealth (R&S) structures for distinct control, guidance, surveillance and communication applications for airborne platforms. The evaluation of non-planar aircraft R&S structures in terms of their electromagnetic performance and structural damage is still a very challenging task. In this article, distinct measurement techniques are discussed for the electromagnetic performance and non-destructive evaluation (NDE) of R&S structures. This paper deals with an overview of the transmission line method and free space measurement based microwave measurement techniques for the electromagnetic performance evaluation of R&S structures. In addition, various conventional as well as advanced methods, such as millimetre and terahertz wave based imaging techniques with great potential for NDE of load bearing R&S structures, are also discussed in detail. A glimpse of in situ NDE techniques with corresponding experimental setup for R&S structures is also presented. The basic concepts, measurement ranges and their instrumentation, measurement method of different R&S structures and some miscellaneous topics are discussed in detail. Some of the challenges and issues pertaining to the measurement of curved R&S structures are also presented. This study also lists various mathematical models and analytical techniques for the electromagnetic performance evaluation and NDE of R&S structures. The research directions described in this study may be of interest to the scientific community in the aerospace sectors.

  15. Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.

    PubMed

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-07-01

    Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.

  16. Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050

  17. Intraseptal anesthesia: a review of a relevant injection technique.

    PubMed

    Woodmansey, Karl

    2005-01-01

    Although overshadowed by intraosseous anesthesia and the periodontal ligament injection, intraseptal anesthesia remains a useful local anesthesia technique for general dentists. Intraseptal anesthesia can be employed with safety and efficacy as an alternative to conventional local infiltration or regional nerve block injections. It also can serve as an adjunctive technique when conventional techniques fail to achieve adequate local anesthesia. This article reviews the intraseptal anesthesia technique, including its indications and limitations.

  18. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    PubMed

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Synthetic Biology: Mapping the Scientific Landscape

    PubMed Central

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  20. Light aircraft crash safety program

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Hayduk, R. J.

    1974-01-01

    NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.

  1. Models for the transient stability of conventional power generating stations connected to low inertia systems

    NASA Astrophysics Data System (ADS)

    Zarifakis, Marios; Coffey, William T.; Kalmykov, Yuri P.; Titov, Sergei V.

    2017-06-01

    An ever-increasing requirement to integrate greater amounts of electrical energy from renewable sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating stations. One observation is the change in the electrical power output of synchronous generators following a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot be reproduced with existing mathematical models indicating that an understanding of the behaviour of synchronous generators, subjected to various disturbances especially in a system with low inertia requires a new modelling technique. Thus two models of a generating station based on a double pendulum described by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given and compared with numerical solutions. In particular the new finite grid model will allow one to identify limitations to the operational range of the synchronous generators used in conventional power generation and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to ± 0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements to the total inertia necessary, which is currently provided by conventional power generators only, thus allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and solar photo-voltaic installations.

  2. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  3. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    PubMed Central

    Jabłońska-Czapla, Magdalena

    2015-01-01

    Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962

  4. QA/QC in the laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, F.C.

    1992-05-01

    Quality assurance and quality control (QA/QC) of analytical chemistry laboratory activities are essential to the validity and usefulness of resultant data. However, in themselves, conventional QA/QC measures will not always ensure that fraudulent data are not generated. Conventional QA/QC measures are based on the assumption that work will be done in good faith; to assure against fraudulent practices, QA/QC measures must be tailored to specific analyses protocols in anticipation of intentional misapplication of those protocols. Application of specific QA/QC measures to ensure against fraudulent practices result in an increased administrative burden being placed on the analytical process; accordingly, in keepingmore » with graded QA philosophy, data quality objectives must be used to identify specific points of concern for special control to minimize the administrative impact.« less

  5. QA/QC in the laboratory. Session F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, F.C.

    1992-05-01

    Quality assurance and quality control (QA/QC) of analytical chemistry laboratory activities are essential to the validity and usefulness of resultant data. However, in themselves, conventional QA/QC measures will not always ensure that fraudulent data are not generated. Conventional QA/QC measures are based on the assumption that work will be done in good faith; to assure against fraudulent practices, QA/QC measures must be tailored to specific analyses protocols in anticipation of intentional misapplication of those protocols. Application of specific QA/QC measures to ensure against fraudulent practices result in an increased administrative burden being placed on the analytical process; accordingly, in keepingmore » with graded QA philosophy, data quality objectives must be used to identify specific points of concern for special control to minimize the administrative impact.« less

  6. Controlling rogue waves in inhomogeneous Bose-Einstein condensates.

    PubMed

    Loomba, Shally; Kaur, Harleen; Gupta, Rama; Kumar, C N; Raju, Thokala Soloman

    2014-05-01

    We present the exact rogue wave solutions of the quasi-one-dimensional inhomogeneous Gross-Pitaevskii equation by using similarity transformation. Then, by employing the exact analytical solutions we have studied the controllable behavior of rogue waves in the Bose-Einstein condensates context for the experimentally relevant systems. Additionally, we have also investigated the nonlinear tunneling of rogue waves through a conventional hyperbolic barrier and periodic barrier. We have found that, for the conventional nonlinearity barrier case, rogue waves are localized in space and time and get amplified near the barrier, while for the dispersion barrier case rogue waves are localized in space and propagating in time and their amplitude is reduced at the barrier location. In the case of the periodic barrier, the interesting dynamical features of rogue waves are obtained and analyzed analytically.

  7. Effects of floor location on response of composite fuselage frames

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Jones, Lisa E.; Fasanella, Edwin L.

    1992-01-01

    Experimental and analytical results are presented which show the effect of floor placement on the structural response and strength of circular fuselage frames constructed of graphite-epoxy composite material. The research was conducted to study the behavior of conventionally designed advanced composite aircraft components. To achieve desired new designs which incorporate improved energy absorption capabilities requires an understanding of how these conventional designs behave under crash type loadings. Data are presented on the static behavior of the composite structure through photographs of the frame specimen, experimental strain distributions, and through analytical data from composite structural models. An understanding of this behavior can aid the dynamist in predicting the crash behavior of these structures and may assist the designer in achieving improved designs for energy absorption and crash behavior of future structures.

  8. Differences in fate, behavior and uptake of conventional- and nano-pesticides

    NASA Astrophysics Data System (ADS)

    Anuar, M. Firdaus Mohd; E Hodson, Mark; Boxall, Alistair BA

    2017-04-01

    Nanopesticides, in which conventional pesticides are designed into nanoparticles, are now available and are marketed as having improved longevity and efficacy in the environment. Nanoparticles are known to have different properties to dissolved chemicals and as such it is possible that the fate and behaviour of nanopesticides differs from conventional pesticides. We present work on the synthetic pyrethroid bifenthrin to explore the implications of nanoencapsulation for the sorption, persistence and uptake of the active ingredient in soil-earthworm systems. Studies were done using the active ingredient, a traditional formulation and two nanoformulations. In adsorption experiments conducted using five soils with a range of properties (pH 4.7 - 7.7; % organic carbon 1.2 - 5.2; texture silt loam to loamy sand), adsorption was well described by linear isotherms. Adsorption of analytical grade bifenthrin (Kd = 1800 - 7200 mL / g) was greater than that of a commercial formulation (Kd = 190 - 470 mL / g) which in turn was greater than that of nanoformulations (Kd = 52 - 150 mL / g). For all bifenthrin types adsorption increased with increasing soil organic matter content. Degradation rates of the analytical grade bifenthrin and commercial formulation were similar and faster than those of nanoformulations. Degradation rates were faster in non-sterile compared to sterile conditions. These results suggest that nano-encapsulation could lead to increased mobility and persistence of bifenthrin in the environment and therefore potentially increased exposure and bioavailability. To investigate the effects of nanoencapsulation on uptake we carried out a series of uptake and excretion experiments using the earthworms Eisenia fetida and Lumbricus terrestris. Over the exposure period the concentration of bifenthrin in the soil decreased and increased in the earthworms. Rates of accumulation and excretion were greater for the nanobifenthrin than the non-nanoformulation and active ingredient. Dissection and analysis of earthworm tissues indicated that the accumulated bifenthrin from the nano exposure was concentrated in the earthworm gut whereas the accumulated bifenthrin in the conventional exposure was concentrated in the earthworm tissues. We used kinetic modelling to determine bioconcentration factors. The higher accumulation and excretion rates result in predicted lower bioconcentration factors for the nanobofenthrin compared to the conventional and analytical grade forms. Our experiments demonstrate the differing behaviours of a conventional and nano-formluated pesticide therefore suggesting that current environmental risk assessment methodologies for conventional pesticides may not be appropriate for nanoformulations.

  9. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil.

    PubMed

    Pandey, Khushaboo; Dubey, Rama Shankar; Prasad, Bhim Bali

    2016-03-01

    The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.

  10. To Remove or Not to Remove? The Challenge of Extracting the Template to Make the Cavities Available in Molecularly Imprinted Polymers (MIPs)

    PubMed Central

    Lorenzo, Rosa A.; Carro, Antonia M.; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2011-01-01

    Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods. PMID:21845081

  11. Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: a review.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Castillo-Michel, Hiram; Hong, Jie; Rico, Cyren M; Gardea-Torresdey, Jorge L

    2012-11-28

    Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update

    PubMed Central

    Wu, Xin; Kirov, Ivan I.; Gonen, Oded; Ge, Yulin; Grossman, Robert I.

    2016-01-01

    Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level–dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. © RSNA, 2016 PMID:27183405

  13. Measuring MERCI: exploring data mining techniques for examining the neurologic outcomes of stroke patients undergoing endo-vascular therapy at Erlanger Southeast Stroke Center.

    PubMed

    McNabb, Matthew; Cao, Yu; Devlin, Thomas; Baxter, Blaise; Thornton, Albert

    2012-01-01

    Mechanical Embolus Removal in Cerebral Ischemia (MERCI) has been supported by medical trials as an improved method of treating ischemic stroke past the safe window of time for administering clot-busting drugs, and was released for medical use in 2004. The importance of analyzing real-world data collected from MERCI clinical trials is key to providing insights on the effectiveness of MERCI. Most of the existing data analysis on MERCI results has thus far employed conventional statistical analysis techniques. To the best of our knowledge, advanced data analytics and data mining techniques have not yet been systematically applied. To address the issue in this thesis, we conduct a comprehensive study on employing state of the art machine learning algorithms to generate prediction criteria for the outcome of MERCI patients. Specifically, we investigate the issue of how to choose the most significant attributes of a data set with limited instance examples. We propose a few search algorithms to identify the significant attributes, followed by a thorough performance analysis for each algorithm. Finally, we apply our proposed approach to the real-world, de-identified patient data provided by Erlanger Southeast Regional Stroke Center, Chattanooga, TN. Our experimental results have demonstrated that our proposed approach performs well.

  14. To remove or not to remove? The challenge of extracting the template to make the cavities available in Molecularly Imprinted Polymers (MIPs).

    PubMed

    Lorenzo, Rosa A; Carro, Antonia M; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2011-01-01

    Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods.

  15. Side effects and complications of intraosseous anesthesia and conventional oral anesthesia

    PubMed Central

    Peñarrocha-Oltra, David; Ata-Ali, Javier; Oltra-Moscardó, María J.; Peñarrocha, Miguel

    2012-01-01

    Objective: To analyze the side effects and complications following intraosseous anesthesia (IA), comparing them with those of the conventional oral anesthesia techniques. Material and method: A simple-blind, prospective clinical study was carried out. Each patient underwent two anesthetic techniques: conventional (local infiltration and locoregional anesthetic block) and intraosseous, for respective dental operations. In order to allow comparison of IA versus conventional anesthesia, the two operations were similar and affected the same two teeth in opposite quadrants. Heart rate was recorded in all cases before injection of the anesthetic solution and again 30 seconds after injection. The complications observed after anesthetic administration were recorded. Results: A total of 200 oral anesthetic procedures were carried out in 100 patients. Both IA and conventional anesthesia resulted in a significant increase in heart rate, though the increase was greater with the latter technique. Incidents were infrequent with either anesthetic technique, with no significant differences between them. Regarding the complications, there were significant differences in pain at the injection site, with more intense pain in the case of IA (x2=3.532, p=0.030, Φ2=0.02), while the limitation of oral aperture was more pronounced with conventional anesthesia (x2=5.128, p<0.05, Φ2=0.014). Post-anesthetic biting showed no significant differences (x2=4.082, p=0.121, Φ2=0.009). Conclusions: Both anesthetic techniques significantly increased heart rate, and IA caused comparatively more pain at the injection site, while limited oral aperture was more frequent with conventional anesthesia. Post-anesthetic biting showed no significant differences between the two techniques. Key words:Intraosseous anesthesia, oral anesthesia, mandibular block, heart rate, adrenalin, complications. PMID:22143716

  16. Adaptive steganography

    NASA Astrophysics Data System (ADS)

    Chandramouli, Rajarathnam; Li, Grace; Memon, Nasir D.

    2002-04-01

    Steganalysis techniques attempt to differentiate between stego-objects and cover-objects. In recent work we developed an explicit analytic upper bound for the steganographic capacity of LSB based steganographic techniques for a given false probability of detection. In this paper we look at adaptive steganographic techniques. Adaptive steganographic techniques take explicit steps to escape detection. We explore different techniques that can be used to adapt message embedding to the image content or to a known steganalysis technique. We investigate the advantages of adaptive steganography within an analytical framework. We also give experimental results with a state-of-the-art steganalysis technique demonstrating that adaptive embedding results in a significant number of bits embedded without detection.

  17. Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    1997-01-01

    Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.

  18. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    NASA Astrophysics Data System (ADS)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  19. Analytical Eco-Scale for Assessing the Greenness of a Developed RP-HPLC Method Used for Simultaneous Analysis of Combined Antihypertensive Medications.

    PubMed

    Mohamed, Heba M; Lamie, Nesrine T

    2016-09-01

    In the past few decades the analytical community has been focused on eliminating or reducing the usage of hazardous chemicals and solvents, in different analytical methodologies, that have been ascertained to be extremely dangerous to human health and environment. In this context, environmentally friendly, green, or clean practices have been implemented in different research areas. This study presents a greener alternative of conventional RP-HPLC methods for the simultaneous determination and quantitative analysis of a pharmaceutical ternary mixture composed of telmisartan, hydrochlorothiazide, and amlodipine besylate, using an ecofriendly mobile phase and short run time with the least amount of waste production. This solvent-replacement approach was feasible without compromising method performance criteria, such as separation efficiency, peak symmetry, and chromatographic retention. The greenness profile of the proposed method was assessed and compared with reported conventional methods using the analytical Eco-Scale as an assessment tool. The proposed method was found to be greener in terms of usage of hazardous chemicals and solvents, energy consumption, and production of waste. The proposed method can be safely used for the routine analysis of the studied pharmaceutical ternary mixture with a minimal detrimental impact on human health and the environment.

  20. The Sine Method: An Alternative Height Measurement Technique

    Treesearch

    Don C. Bragg; Lee E. Frelich; Robert T. Leverett; Will Blozan; Dale J. Luthringer

    2011-01-01

    Height is one of the most important dimensions of trees, but few observers are fully aware of the consequences of the misapplication of conventional height measurement techniques. A new approach, the sine method, can improve height measurement by being less sensitive to the requirements of conventional techniques (similar triangles and the tangent method). We studied...

Top