Sample records for conventional anticancer agents

  1. Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer.

    PubMed

    Grundy, Megan; Coussios, Constantin; Carlisle, Robert

    2016-07-01

    The successful treatment of metastatic cancer is refractory to strategies employed to treat confined, primary lesions, such as surgical resection and radiation therapy, and thus must be addressed by systemic delivery of anti-cancer agents. Conventional systemically administered chemotherapeutics are often ineffective and come with severe dose-limiting toxicities. This review focuses on the recent developments in systemic therapy for metastatic cancer. Firstly, the strategies employed to improve the efficacy of conventional chemotherapeutics by 'passively' and 'actively' targeting them to tumors are discussed. Secondly, recent advances in the use of biologics to better target cancer and to instigate anti-tumor immunity are reviewed. Under the label of 'biologics', antibody-therapies, T cell engaging therapies, oncolytic virotherapies and cell-based therapies are examined and evaluated. Improving specificity of action, and engaging the immune system appear to be key goals in the development of novel or reformulated anti-cancer agents for the treatment of metastatic cancer. One of the largest areas of opportunity in this field will be the identification of robust predictive biomarkers for use in conjunction with these agents. Treatment regimens that combine an agent to elicit an immune response (such as an oncolytic virus), and an agent to potentiate/mediate that immune response (such as immune checkpoint inhibitors) are predicted to be more effective than treatment with either agent alone.

  2. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents.

    PubMed

    Galluzzi, Lorenzo; Buqué, Aitziber; Kepp, Oliver; Zitvogel, Laurence; Kroemer, Guido

    2015-12-14

    The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Infringement of the barriers of cancer via dietary phytoconstituents capsaicin through novel drug delivery system.

    PubMed

    Giri, Tapan Kumar; Alexander, Amit; Ajazuddin; Barman, Tapan Kumar; Maity, Subhasis

    2016-01-01

    Cancer is the major cause of fatality and the number of new cases is increasing incessantly. Conventional therapies and existing anticancer agents cause serious side effects and expand the patient's lifespan by a few years. There is the need to exploit alternative anticancer agents and novel drug delivery system to deliver these agents to the tumor site for the prevention of cancer. Recently, biologically active compounds isolated from plants used for the management of cancer have been the heart of interest. Capsaicin is a major pungent agent present in the chili peppers that is heavily consumed in the world. Capsaicin has demonstrated effectiveness as an anticancer agent, but a restraining factor is its pungency, extremely low aqueous solubility, and poor oral bioavailability which impede its use as an anticancer agent. Many technologies have been developed and applied to conquer this drawback. We bring to light the benefits of this phytoconstituent for treating different types of cancer. We also discussed some of the delivery approaches that have already made an impact by either delivering a drug to target tissue or increasing its bioavailability by many folds.

  4. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues.

    PubMed

    Tamura, Hirosumi; Higa, Arisa; Hoshi, Hirotaka; Hiyama, Gen; Takahashi, Nobuhiko; Ryufuku, Masae; Morisawa, Gaku; Yanagisawa, Yuka; Ito, Emi; Imai, Jun-Ichi; Dobashi, Yuu; Katahira, Kiyoaki; Soeda, Shu; Watanabe, Takafumi; Fujimori, Keiya; Watanabe, Shinya; Takagi, Motoki

    2018-06-18

    Patient-derived tumor xenograft models represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture; however, their use is low-throughput and costly. To overcome this limitation, patient-derived tumor organoids (PDOs) were established from human lung, ovarian and uterine tumor tissues, among others, to accurately and efficiently recapitulate the tissue architecture and function. PDOs were able to be cultured for >6 months, and formed cell clusters with similar morphologies to their source tumors. Comparative histological and comprehensive gene expression analyses proved that the characteristics of PDOs were similar to those of their source tumors, even following long-term expansion in culture. At present, 53 PDOs have been established by the Fukushima Translational Research Project, and were designated as Fukushima PDOs (F‑PDOs). In addition, the in vivo tumorigenesis of certain F‑PDOs was confirmed using a xenograft model. The present study represents a detailed analysis of three F‑PDOs (termed REME9, 11 and 16) established from endometrial cancer tissues. These were used for cell growth inhibition experiments using anticancer agents. A suitable high-throughput assay system, with 96- or 384‑well plates, was designed for each F‑PDO, and the efficacy of the anticancer agents was subsequently evaluated. REME9 and 11 exhibited distinct responses and increased resistance to the drugs, as compared with conventional cancer cell lines (AN3 CA and RL95-2). REME9 and 11, which were established from tumors that originated in patients who did not respond to paclitaxel and carboplatin (the standard chemotherapy for endometrial cancer), exhibited high resistance (half-maximal inhibitory concentration >10 µM) to the two agents. Therefore, assay systems using F‑PDOs may be utilized to evaluate anticancer agents using conditions that better reflect clinical conditions, compared with conventional methods using cancer cell lines, and to discover markers that identify the pharmacological effects of anticancer agents.

  5. Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms

    PubMed Central

    Gupta, Parul; Wright, Stephen E.; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent. PMID:25152445

  6. [A recent trial of chemo-radiation with S-1 against gastric cancer].

    PubMed

    Saikawa, Yoshiro; Kiyota, Tsuyoshi; Nakamura, Rieko; Wada, Norihito; Yoshida, Masashi; Kubota, Tetsuro; Kumai, Koichiro; Shigematsu, Naoyuki; Kubo, Atsushi; Kitajima, Masaki

    2006-06-01

    A recent development of novel anticancer agents like S-1, CPT-11 or taxanes has improved a therapeutic outcome for advanced gastric cancer, while conventional anticancer agents showed less anticancer effect against gastric cancer. The present main drug in Japan is S-1, which is easily used for outpatient with a high efficacy rate and low toxicity, also shows better effect in combination with other anticancer drugs than S-1 alone. In the present article, we demonstrated significant meaning of additional radiation therapy with anticancer drugs like S-1. With novel anticancer drugs like S-1, we will expose a clinical advantage and appropriateness for chemo-radiation therapy against gastric cancer discussed in the present references according to chemo-radiation therapy. Although chemo-radiation therapy has been recognized as one of the standard therapies for gastric cancer in Western countries, radiation therapy was selected in Japan for palliation therapy of recurrent disease or a terminal cancer to improve patients' QOL. On the other hand, we demonstrated in our trial of chemo-radiation therapy with S-1/low-dose CDDP/radiation (TSLDR), which was applied to initial treatment against highly advanced Stage IV gastric cancer and revealed the usefulness of the regimen in anticancer effect and toxicity. In addition, chemo-radiation therapy including novel anticancer agents like S-1 will be discussed based on various kinds of view points, expecting a better clinical outcome of multimodal therapies against advanced gastric cancer.

  7. Myeloid-derived suppressor cells

    PubMed Central

    Chandra, Dinesh; Gravekamp, Claudia

    2013-01-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases. PMID:24427545

  8. Myeloid-derived suppressor cells: Cellular missiles to target tumors.

    PubMed

    Chandra, Dinesh; Gravekamp, Claudia

    2013-11-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases.

  9. Biological therapy of hematologic malignancies: toward a chemotherapy-free era.

    PubMed

    Klener, Pavel; Etrych, Tomas; Klener, Pavel

    2017-10-06

    Less than 70 years ago, the vast majority of hematologic malignancies were untreatable diseases with fatal prognoses. The development of modern chemotherapy agents, which had begun after the Second World War, was markedly accelerated by the discovery of the structure of DNA and its role in cancer biology and tumor cell division. The path travelled from the first temporary remissions observed in children with acute lymphoblastic leukemia treated with single-agent antimetabolites until the first cures achieved by multi-agent chemotherapy regimens was incredibly short. Despite great successes, however, conventional genotoxic cytostatics suffered from an inherently narrow therapeutic index and extensive toxicity, which in many instances limited their clinical utilization. In the last decade of the 20th century, increasing knowledge on the biology of certain malignancies resulted in the conception and development of first molecularly targeted agents designed to inhibit specific druggable molecules involved in the survival of cancer cells. Advances in technology and genetic engineering enabled the production of structurally complex anticancer macromolecules called biologicals, including therapeutic monoclonal antibodies, antibody-drug conjugates and antibody fragments. The development of drug delivery systems (DDSs), in which conventional drugs were attached to various types of carriers including nanoparticles, liposomes or biodegradable polymers, represented an alternative approach to the development of new anticancer agents. Despite the fact that the antitumor activity of drugs attached to DDSs was not fundamentally different, the improved pharmacokinetic profiles, decreased toxic side effects and significantly increased therapeutic indexes resulted in their enhanced antitumor efficacy compared to conventional (unbound) drugs. Approval of the first immune checkpoint inhibitor for the treatment of cancer in 2011 initiated the era of cancer immunotherapy. Checkpoint inhibitors, bispecific T-cell engagers, adoptive T-cell approaches and cancer vaccines have joined the platform so far, represented mainly by recombinant cytokines, therapeutic monoclonal antibodies and immunomodulatory agents. In specific clinical indications, conventional drugs have already been supplanted by multi-agent, chemotherapy-free regimens comprising diverse immunotherapy and/or targeted agents. The very distinct mechanisms of the anticancer activity of new immunotherapy approaches not only call for novel response criteria, but also might fundamental change treatment paradigms of certain types of hematologic malignancies in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects.

    PubMed

    Krukiewicz, Katarzyna; Zak, Jerzy K

    2016-05-01

    Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells.

    PubMed

    Pédeboscq, Stéphane; L'Azou, Béatrice; Passagne, Isabelle; De Giorgi, Francesca; Ichas, François; Pometan, Jean-Paul; Cambar, Jean

    2008-01-01

    Glioblastoma is a malignant astrocytic tumor with a median survival of about 12 months for which new therapeutic strategies are required. We therefore examined the cytotoxicity of anticancer drugs with different mechanisms of action on two human glioblastoma cell lines expressing various levels of EGFR (epidermal growth factor receptor). Apoptosis induced by these anticancer agents was evaluated by flow cytometry. The cytotoxicity of alkylating drugs followed a dose-effect curve and cytotoxicity index values were lower with carboplatin than with BCNU and temozolomide. Anti-EGFR gefitinib (10 microM) cytotoxicity on DBTRG.05-MG expressing high levels of EGFR was significantly higher than on U87-MG expressing low levels of EGFR. Carboplatin and temozolomide cytotoxicity was potentiated with the addition of gefitinib on DBTRG.05-MG. Among the anticancer agents tested, the proteasome inhibitor bortezomib was the most cytotoxic with very low IC50 on the two cell lines. Moreover, all anticancer drugs tested induced apoptosis in a concentration-dependent manner. Bortezomib proved to be a more potent inductor of apoptosis than gefitinib and alkylating agents. These results show the efficacy of bortezomib and of the association between conventional chemotherapy and gefitinib on glioblastoma cells and therefore suggest the interest of these molecules in the treatment of glioblastoma.

  12. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure–Activity Relationships, and Molecular Mechanisms of Action

    PubMed Central

    Nag, Subhasree Ashok; Qin, Jiang-Jiang; Wang, Wei; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-κB and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure–activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors. PMID:22403544

  13. Phytochemicals as Adjunctive with Conventional Anticancer Therapies.

    PubMed

    Farzaei, Mohammad Hosein; Bahramsoltani, Roodabeh; Rahimi, Roja

    2016-01-01

    Cancer is defined as the abnormal proliferations of cells which could occur in any tissue and can cause life-threatening malignancies with high financial costs for both patients and health care system. Plant-derived secondary metabolites are shown to have positive role in various diseases and conditions. The aim of the present study is to summarize clinical evidences on the benefits of phytochemicals as adjuvant therapy along with conventional anticancer therapies. Electronic databases including Pubmed, Scopus and Cochrane library were searched with the keywords "chemotherapeutic", "anticancer", "antineoplastic" or "radiotherapy" with "plant", "extract", "herb", or "phytochemical", until July 2015. Only clinical studies were included in this review. The findings showed that positive effects of phytochemicals are due to their direct anticarcinogenic activity, induction of relief in cancer complications, as well as their protective role against side effects of conventional chemotherapeutic agents. Results obtained from current review demonstrated that numerous phytochemical agents from different chemical categories including alkaloid, benzopyran, coumarin, carotenoid, diarylheptanoid, flavonoid, indole, polysaccharide, protein, stilbene, terpene, and xanthonoid possess therapeutic effect in patients with different types of cancer. Polyphenols are the most studied components. Curcumin, ginsenosides, lycopene, homoharringtonine, aviscumine, and resveratrol are amongst the major components with remarkable volumes of clinical evidence indicating their direct anticancer activities in different types of cancer including hepatocarcinoma, prostate cancer, leukemia and lymphoma, breast and ovarian cancer, and gastrointestinal cancers. Cannabinoids, cumarin, curcumin, ginsenosides, epigallocatechin gallate, vitexin, and salidroside are phytochemicals with significant alleviative effect on synthetic chemotherapy- induced toxicities. There is lack of evidence from clinical trials in case of a large number of phytochemicals and further human studies are recommended to confirm the role of plant metabolites in the management of cancer.

  14. Applications of Venom Proteins as Potential Anticancer agents.

    PubMed

    Ejaz, Samina; Hashmi, Fatima Bashir; Malik, Waqas Nazir; Ashraf, Muhammad; Nasim, Faiz Ul-Hassan; Iqbal, Muhammad

    2018-06-13

    Venoms, the secretions of venomous animals, are conventionally thought to be the source of toxic substances though the views about venoms in the recent era have been changed. Venoms are the proven source of many biologically and pharmacologically important useful molecules. Bioactive components present in different venoms are mainly proteins and peptides either enzymatic or non-enzymatic which have tremendous therapeutic potential and are being used for the treatment of variety of diseases including cancer. Many venoms proteins and peptides have been reported as potential anticancer agents. Venom proteins kill cancer cells through a variety of mechanisms which induce apoptosis and ultimately lead to cell death. Therefore, the understanding regarding sources and classification of venoms, biological role of venomous proteins, their anticancer potential and mechanisms to suppress/kill cancer cells needs to be addressed. The present review is an attempt to highlight the reported work and develop strategies to answer the key questions regarding the use of venomous proteins as therapeutic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Development of Platinum(iv) Complexes as Anticancer Prodrugs: the Story so Far

    NASA Astrophysics Data System (ADS)

    Wong, Daniel Yuan Qiang; Ang, Wee Han

    2012-06-01

    The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.

  16. Are community pharmacists equipped to ensure the safe use of oral anticancer therapy in the community setting? Results of a cross-country survey of community pharmacists in Canada.

    PubMed

    Abbott, Rick; Edwards, Scott; Whelan, Maria; Edwards, Jonathan; Dranitsaris, George

    2014-02-01

    Oral anticancer agents offer significant benefits over parenteral anticancer therapy in terms of patient convenience and reduced intrusiveness. Oral anticancer agents give many cancer patients freedom from numerous hospital visits, allowing them to obtain their medications from their local community pharmacy. However, a major concern with increased use of oral anticancer agents is shift of responsibility in ensuring the proper use of anticancer agents from the hospital/clinical oncology team to the patient/caregiver and other healthcare providers such as the community pharmacists who may not be appropriately trained for this. This study assessed the readiness of community pharmacists across Canada to play this increased role with respect to oral anticancer agents. Using a structured electronic mailing strategy, a standardized survey was mailed to practicing pharmacists in five provinces where community pharmacists were dispensing the majority of oral anticancer agents. In addition to collecting basic demographic and their practice setting, the survey assessed the pharmacists' knowledge regarding cancer therapy and oral anticancer agents in particular, their education needs and access to resources on oral anticancer agents, the quality of prescriptions for oral anticancer agents received by them in terms of the required elements, their role in patient education, and steps to enhance patient and personal safety. There were 352 responses to the survey. Only 13.6% of respondents felt that they had received adequate oncology education at the undergraduate level and approximately 19% had attended a continuing education event related to oncology in the past 2 years. Only 24% of the pharmacists who responded were familiar with the common doses of oral anticancer agents and only 9% felt comfortable educating patients on these medications. A substantial portion of community pharmacists in Canada lack a solid understanding of oral anticancer agents and thus are poorly equipped to play a major role in ensuring their appropriate use. More education and training on oral anticancer agents are urgently required.

  17. Molecular predictors of therapeutic response to specific anti-cancer agents

    DOEpatents

    Spellman, Paul T.; Gray, Joe W.; Sadanandam, Anguraj; Heiser, Laura M.; Gibb, William J.; Kuo, Wen-lin; Wang, Nicholas J.

    2016-11-29

    Herein is described the use of a collection of 50 breast cancer cell lines to match responses to 77 conventional and experimental therapeutic agents with transcriptional, proteomic and genomic subtypes found in primary tumors. Almost all compounds produced strong differential responses across the cell lines produced responses that were associated with transcriptional and proteomic subtypes and produced responses that were associated with recurrent genome copy number abnormalities. These associations can now be incorporated into clinical trials that test subtype markers and clinical responses simultaneously.

  18. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    PubMed

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  19. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations.

    PubMed

    Kholodenko, Roman V; Kalinovsky, Daniel V; Doronin, Igor I; Ponomarev, Eugene D; Kholodenko, Irina V

    2017-08-17

    Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Promising Targets in Anti-cancer Drug Development: Recent Updates.

    PubMed

    Kumar, Bhupinder; Singh, Sandeep; Skvortsova, Ira; Kumar, Vinod

    2017-01-01

    Cancer is a multifactorial disease and its genesis and progression are extremely complex. The biggest problem in the anticancer drug development is acquiring of multidrug resistance and relapse. Classical chemotherapeutics directly target the DNA of the cell, while the contemporary anticancer drugs involve molecular-targeted therapy such as targeting the proteins possessing abnormal expression inside the cancer cells. Conventional strategies for the complete eradication of the cancer cells proved ineffective. Targeted chemotherapy was successful in certain malignancies however, the effectiveness has often been limited by drug resistance and side effects on normal tissues and cells. Since last few years, many promising drug targets have been identified for the effective treatment of cancer. The current review article describes some of these promising anticancer targets that include kinases, tubulin, cancer stem cells, monoclonal antibodies and vascular targeting agents. In addition, promising drug candidates under various phases of clinical trials are also described. Multi-acting drugs that simultaneously target different cancer cell signaling pathways may facilitate the process of effective anti-cancer drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Quercetin in Cancer Treatment, Alone or in Combination with Conventional Therapeutics?

    PubMed

    Brito, Ana Filipa; Ribeiro, Marina; Abrantes, Ana Margarida; Pires, Ana Salomé; Teixo, Ricardo Jorge; Tralhão, José Guilherme; Botelho, Maria Filomena

    2015-01-01

    Cancer is a problem of global importance, since the incidence is increasing worldwide and therapeutic options are generally limited. Thus, it becomes imperative to find new therapeutic targets as well as new molecules with therapeutic potential for tumors. Flavonoids are polyphenolic compounds that may be potential therapeutic agents. Several studies have shown that these compounds have a higher anticancer potential. Among the flavonoids in the human diet, quercetin is one of the most important. In the last decades, several anticancer properties of quercetin have been described, such as cell signaling, pro-apoptotic, anti-proliferative and anti-oxidant effects, growth suppression. In fact, it is now well known that quercetin has diverse biological effects, inhibiting multiple enzymes involved in cell proliferation, as well as, in signal transduction pathways. On the other hand, there are also studies reporting potential synergistic effects when combined quercetin with chemotherapeutic agents or radiotherapy. In fact, several studies which aim to explore the anticancer potential of these combined treatments have already been published, the majority with promising results. Actually it is well known that quercetin can act on the chemosensitization and radiosensitization but also as chemoprotective and radioprotective, protecting normal cells of the side effects that results from chemotherapy and radiotherapy, which obviously provides notable advantages in their use in anticancer treatment. Thus, all these data indicate that quercetin may have a key role in anticancer treatment. In this context, this review is focused on the relationship between flavonoids and cancer, with special emphasis on the role of quercetin.

  2. Diagnosis, Treatment, and Prevention of Cardiovascular Toxicity Related to Anti-Cancer Treatment in Clinical Practice: An Opinion Paper from the Working Group on Cardio-Oncology of the Korean Society of Echocardiography

    PubMed Central

    Kim, Hyungseop; Chung, Woo-Baek; Cho, Kyoung Im; Kim, Bong-Joon; Seo, Jeong-Sook; Park, Seong-Mi; Kim, Hak Jin; Lee, Ju-Hee; Kim, Eun Kyoung

    2018-01-01

    Cardiovascular (CV) toxicity associated with anti-cancer treatment is commonly encountered and raises critical problems that often result in serious morbidity or mortality. Most cardiac toxicities are related to the cumulative dose of chemotherapy; however, the type of chemotherapy, concomitant agents, and/or conventional CV risk factors have been frequently implicated in CV toxicity. Approximately half of the patients exhibiting CV toxicity receive an anthracycline-based regimen. Therefore, serologic biomarkers or cardiac imagings are important during anti-cancer treatment for early detection and the decision of appropriate management of cardiotoxicity. However, given the difficulty in determining a causal relationship, a multidisciplinary collaborative approach between cardiologists and oncologists is required. In this review, we summarize the CV toxicity and focus on the role of cardiac imaging in management strategies for cardiotoxicity associated with anti-cancer treatment. PMID:29629020

  3. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells

    PubMed Central

    Huang, Shile

    2014-01-01

    Dihydroartemisinin (DHA), an antimalarial drug, has previously unrecognized anticancer activity, and is in clinical trials as a new anticancer agent for skin, lung, colon and breast cancer treatment. However, the anticancer mechanism is not well understood. Here, we show that DHA inhibited proliferation and induced apoptosis in rhabdomyosarcoma (Rh30 and RD) cells, and concurrently inhibited the signaling pathways mediated by the mammalian target of rapamycin (mTOR), a central controller for cell proliferation and survival, at concentrations (<3 μM) that are pharmacologically achievable. Of interest, in contrast to the effects of conventional mTOR inhibitors (rapalogs), DHA potently inhibited mTORC1-mediated phosphorylation of p70 S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 but did not obviously affect mTORC2-mediated phosphorylation of Akt. The results suggest that DHA may represent a novel class of mTORC1 inhibitor and may execute its anticancer activity primarily by blocking mTORC1-mediated signaling pathways in the tumor cells. PMID:23929438

  4. Evidence-Based Review of BioBran/MGN-3 Arabinoxylan Compound as a Complementary Therapy for Conventional Cancer Treatment.

    PubMed

    Ooi, Soo Liang; McMullen, Debbie; Golombick, Terry; Nut, Dipl; Pak, Sok Cheon

    2018-06-01

    Conventional cancer treatment, including surgery, chemotherapy, and radiotherapy, may not be sufficient to eradicate all malignant cells and prevent recurrence. Intensive treatment often leads to a depressed immune system, drug resistance, and toxicity, hampering the treatment outcomes. BioBran/MGN-3 Arabinoxylan is a standardized arabinoxylan concentrate which has been proposed as a plant-based immunomodulator that can restore the tumor-induced disturbance of the natural immune system, including natural killer cell activity to fight cancer, complementing conventional therapies. To comprehensively review the available evidence on the effects and efficacies of MGN-3 as a complementary therapy for conventional cancer treatment. Systematic search of journal databases and gray literature for primary studies reporting the effects of MGN-3 on cancer and cancer treatment. Thirty full-text articles and 2 conference abstracts were included in this review. MGN-3 has been shown to possess immunomodulating anticancer effects and can work synergistically with chemotherapeutic agents, in vitro. In murine models, MGN-3 has been shown to act against carcinogenic agents, and inhibit tumor growth, either by itself or in combination with other anticancer compounds. Fourteen successful MGN-3 treated clinical cases were found. Eleven clinical studies, including 5 nonrandomized, pre-post intervention studies and 6 randomized controlled trials (RCTs) were located. Reported effects include enhanced immunoprofile, reduced side effects, improved treatment outcomes; one RCT established significantly increased survival rates. There are no reports on adverse events on MGN-3. Most of the clinical trials are small studies with short duration. There is sufficient evidence suggesting MGN-3 to be an effective immunomodulator that can complement conventional cancer treatment. However, more well-designed RCTs on MGN-3 are needed to strengthen the evidence base.

  5. Newly Engineered Magnetic Erythrocytes for Sustained and Targeted Delivery of Anti-Cancer Therapeutic Compounds

    PubMed Central

    Taranta, Monia; Naldi, Ilaria

    2011-01-01

    Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy. PMID:21373641

  6. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  7. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  8. Molecular biology of breast cancer stem cells: potential clinical applications.

    PubMed

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  9. Drug Repositioning for Effective Prostate Cancer Treatment.

    PubMed

    Turanli, Beste; Grøtli, Morten; Boren, Jan; Nielsen, Jens; Uhlen, Mathias; Arga, Kazim Y; Mardinoglu, Adil

    2018-01-01

    Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-κB inhibition, Wnt/β-Catenin pathway inhibition, DNMT1 inhibition, and GSK-3β inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.

  10. A review of molecular mechanisms of the anti-leukemic effects of phenolic compounds in honey.

    PubMed

    Abubakar, Murtala B; Abdullah, Wan Zaidah; Sulaiman, Siti Amrah; Suen, Ang Boon

    2012-11-15

    Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia.

  11. Pharmacological management of anticancer agent extravasation: A single institutional guideline.

    PubMed

    Kimmel, Jaime; Fleming, Patrick; Cuellar, Sandra; Anderson, Jennifer; Haaf, Christina Mactal

    2018-03-01

    Although the risk of extravasation of a chemotherapy (anticancer) medication is low, the complications associated with these events can have a significant impact on morbidity and health care costs. Institutions that administer anticancer agents should ideally have a current guideline on the proper management of the inadvertent administration of these toxic medications into tissues surrounding blood vessels. It is imperative that the health care team involved in administering drugs used to treat cancer be educated on the risk factors, preventative strategies and treatment of anticancer extravasations, as well as practice safe and proper administration techniques. Anticancer agents are generally divided into classes based on their ability to cause tissue damage. The review of current published guidelines and available literature reveals a lack of consensus on how these medications should be classified. In addition, many recently approved drugs for the treatment of cancer may lack data to support their classification and management of extravasation events. The treatment of the majority of extravasations of anticancer agents involves nonpharmacological measures, potentially in the ambulatory care setting. Antidotes are available for the extravasation of a minority of vesicant agents in order to mitigate tissue damage. Due to the limited data and lack of consensus in published guidelines, a working group was established to put forth an institutional guideline on the management of anticancer extravasations.

  12. A “Double-Edged” Scaffold: Antitumor Power within the 
Antibacterial Quinolone

    PubMed Central

    Bisacchi, Gregory S.; Hale, Michael R.

    2016-01-01

    In the late 1980s, reports emerged describing experimental antibacterial quinolones having significant potency against eukaryotic Type II topoisomerases (topo II) and showing cytotoxic activity against tumor cell lines. As a result, several pharmaceutical companies initiated quinolone anticancer programs to explore the potential of this class in comparison to conventional human topo II inhibiting antitumor drugs such as doxorubicin and etoposide. In this review, we present a modern re-evaluation of the anticancer potential of the quinolone class in the context of today’s predominantly pathway-based (rather than cytotoxicity-based) oncology drug R&D environment. The quinolone eukaryotic SAR is comprehensively discussed, contrasted with the corresponding prokaryotic data, and merged with recent structural biology information which is now beginning to help explain the basis for that SAR. Quinolone topo II inhibitors appear to be much less susceptible to efflux-mediated resistance, a current limitation of therapy with conventional agents. Recent advances in the biological understanding of human topo II isoforms suggest that significant progress might now be made in overcoming two other treatment-limiting disadvantages of conventional topo II inhibitors, namely cardiotoxicity and drug-induced secondary leukemias. We propose that quinolone class topo II inhibitors could have a useful future therapeutic role due to the continued need for effective topo II drugs in many cancer treatment settings, and due to the recent biological and structural advances which can now provide, for the first time, specific guidance for the design of a new class of inhibitors potentially superior to existing agents. PMID:26695512

  13. Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs.

    PubMed

    Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2010-06-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies.

  14. Lesson Learned from Nature for the Development of Novel Anti-Cancer Agents: Implication of Isoflavone, Curcumin, and their Synthetic Analogs

    PubMed Central

    Sarkar, Fazlul H.; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2011-01-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies. PMID:20345353

  15. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    PubMed

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  16. Anticancer mechanisms and clinical application of alkylphospholipids.

    PubMed

    van Blitterswijk, Wim J; Verheij, Marcel

    2013-03-01

    Synthetic alkylphospholipids (ALPs), such as edelfosine, miltefosine, perifosine, erucylphosphocholine and erufosine, represent a relatively new class of structurally related antitumor agents that act on cell membranes rather than on DNA. They selectively target proliferating (tumor) cells, inducing growth arrest and apoptosis, and are potent sensitizers of conventional chemo- and radiotherapy. ALPs easily insert in the outer leaflet of the plasma membrane and cross the membrane via an ATP-dependent CDC50a-containing 'flippase' complex (in carcinoma cells), or are internalized by lipid raft-dependent endocytosis (in lymphoma/leukemic cells). ALPs resist catabolic degradation, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. At the same time, stress pathways (e.g. stress-activated protein kinase/JNK) are activated to promote apoptosis. In many preclinical and clinical studies, perifosine was the most effective ALP, mainly because it inhibits Akt activity potently and consistently, also in vivo. This property is successfully exploited clinically in highly malignant tumors, such as multiple myeloma and neuroblastoma, in which a tyrosine kinase receptor/Akt pathway is amplified. In such cases, perifosine therapy is most effective in combination with conventional anticancer regimens or with rapamycin-type mTOR inhibitors, and may overcome resistance to these agents. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs.

    PubMed

    Khan, Tabassum; Gurav, Pranav

    2017-01-01

    Natural resources continue to be an invaluable source of new, novel chemical entities of therapeutic utility due to the vast structural diversity observed in them. The quest for new and better drugs has witnessed an upsurge in exploring and harnessing nature especially for discovery of antimicrobial, antidiabetic, and anticancer agents. Nature has historically provide us with potent anticancer agents which include vinca alkaloids [vincristine (VCR), vinblastine, vindesine, vinorelbine], taxanes [paclitaxel (PTX), docetaxel], podophyllotoxin and its derivatives [etoposide (ETP), teniposide], camptothecin (CPT) and its derivatives (topotecan, irinotecan), anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin), and others. In fact, half of all the anti-cancer drugs approved internationally are either natural products or their derivatives and were developed on the basis of knowledge gained from small molecules or macromolecules that exist in nature. Three new anti-cancer drugs introduced in 2007, viz. trabectedin, epothilone derivative ixabepilone, and temsirolimus were obtained from microbial sources. Selective drug targeting is the need of the current therapeutic regimens for increased activity on cancer cells and reduced toxicity to normal cells. Nanotechnology driven modified drugs and drug delivery systems are being developed and introduced in the market for better cancer treatment and management with good results. The use of nanoparticulate drug carriers can resolve many challenges in drug delivery to the cancer cells that includes: improving drug solubility and stability, extending drug half-lives in the blood, reducing adverse effects in non-target organs, and concentrating drugs at the disease site. This review discusses the scientific ventures and explorations involving application of nanotechnology to some selected plant derived molecules. It presents a comprehensive review of formulation strategies of phytoconstituents in development of novel delivery systems like liposomes, functionalized nanoparticles (NPs), application of polymer conjugates, as illustrated in the graphical abstract along with their advantages over conventional drug delivery systems supported by enhanced biological activity in in vitro and in vivo anticancer assays.

  18. Anticancer agents derived from natural cinnamic acids.

    PubMed

    Su, Ping; Shi, Yaling; Wang, Jinfeng; Shen, Xiuxiu; Zhang, Jie

    2015-01-01

    Cancer is the most dangerous disease that causes deaths all over the world. Natural products have afforded a rich source of drugs in a number of therapeutic fields including anticancer agents. Many significant drugs have been derived from natural sources by structural optimization of natural products. Cinnamic acid has gained great interest due to its antiproliferative, antioxidant, antiangiogenic and antitumorigenic potency. Currently it has been observed that cinnamic acid and its analogs such as caffeic acid, sinapic acid, ferulic acid, and isoferulic acid display various pharmacological activities, such as immunomodulation, anti-inflammation, anticancer and antioxidant. They have served to be the major sources of potential leading anticancer compounds. In this review, we focus on the anticancer potency of cinnamic acid derivatives and novel strategies to design these derivatives. We hope this review will be useful for researchers who are interested in developing anticancer agents.

  19. The Efficacy and Toxicity of Using the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), and Its Products in Chemotherapy (Review).

    PubMed

    Cizmarikova, Martina

    2017-01-01

    Around the world, cancer patients often combine conventional anticancer treatment with complementary alternative medicines derived from natural sources such as fungi and mushrooms, including the popular lingzhi or reishi medicinal mushroom Ganoderma lucidum. Many studies to date have described the anticancer properties of G. lucidum, which are attributed to its major pharmacologically bioactive compounds, such as terpenoids and polysaccharides. Moreover, several scientific observations have suggested a potential beneficial therapeutic strategy using G. lucidum in combination with chemotherapeutic agents to improve therapeutic outcome. However, to my knowledge, no systematic review has been conducted in this area. Therefore, this review summarizes the current knowledge on G. lucidum or its individual components in relation to chemotherapeutic efficacy, ability to reverse multidrug resistance, and chemotherapeutic toxicity.

  20. Nucleic Acid Aptamer-Guided Cancer Therapeutics and Diagnostics: the Next Generation of Cancer Medicine

    PubMed Central

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Wang, Tao; Kouzani, Abbas Z.; Zhou, Shu-Feng; Kong, Lingxue; Li, Yong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy. PMID:25553096

  1. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine.

    PubMed

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Wang, Tao; Kouzani, Abbas Z; Zhou, Shu-Feng; Kong, Lingxue; Li, Yong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy.

  2. A translational study "case report" on the small molecule "energy blocker" 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside.

    PubMed

    Ko, Y H; Verhoeven, H A; Lee, M J; Corbin, D J; Vogl, T J; Pedersen, P L

    2012-02-01

    The small alkylating molecule, 3-bromopyruvate (3BP), is a potent and specific anticancer agent. 3BP is different in its action from most currently available chemo-drugs. Thus, 3BP targets cancer cells' energy metabolism, both its high glycolysis ("Warburg Effect") and mitochondrial oxidative phosphorylation. This inhibits/ blocks total energy production leading to a depletion of energy reserves. Moreover, 3BP as an "Energy Blocker", is very rapid in killing such cells. This is in sharp contrast to most commonly used anticancer agents that usually take longer to show a noticeable effect. In addition, 3BP at its effective concentrations that kill cancer cells has little or no effect on normal cells. Therefore, 3BP can be considered a member, perhaps one of the first, of a new class of anticancer agents. Following 3BP's discovery as a novel anticancer agent in vitro in the Year 2000 (Published in Ko et al. Can Lett 173:83-91, 2001), and also as a highly effective and rapid anticancer agent in vivo shortly thereafter (Ko et al. Biochem Biophys Res Commun 324:269-275, 2004), its efficacy as a potent anticancer agent in humans was demonstrated. Here, based on translational research, we report results of a case study in a young adult cancer patient with fibrolamellar hepatocellular carcinoma. Thus, a bench side discovery in the Department of Biological Chemistry at Johns Hopkins University, School of Medicine was taken effectively to bedside treatment at Johann Wolfgang Goethe University Frankfurt/Main Hospital, Germany. The results obtained hold promise for 3BP as a future cancer therapeutic without apparent cyto-toxicity when formulated properly.

  3. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    PubMed

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  4. [Alkylating agents].

    PubMed

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  5. Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong

    2012-03-01

    As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.

  6. A Review of Molecular Mechanisms of the Anti-Leukemic Effects of Phenolic Compounds in Honey

    PubMed Central

    Abubakar, Murtala B.; Abdullah, Wan Zaidah; Sulaiman, Siti Amrah; Suen, Ang Boon

    2012-01-01

    Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia. PMID:23203111

  7. Management of pulmonary toxicity associated with targeted anticancer therapies.

    PubMed

    Teuwen, Laure-Anne; Van den Mooter, Tom; Dirix, Luc

    2015-01-01

    Targeted anticancer therapies act by interfering with defined molecular entities and/or biologic pathways. Because of their more specific mechanism of action, adverse events (AEs) on healthy tissues are intended to be minimal, resulting in a different toxicity profile from that observed with conventional cytotoxic chemotherapy. Pulmonary AEs are rare but potentially life-threatening and it is, therefore, critical to recognize early on and manage appropriately. In this review, we aim to offer an overview of both more frequent and rare pulmonary AEs caused by targeted anticancer therapies and discuss possible treatment algorithms. Anti-vascular endothelial growth factor, anti-human epidermal growth factor receptor and anti-CD20 therapy will be reviewed, as well as immune checkpoint inhibitors, anaplastic lymphoma kinase inhibitors and mammalian target of rapamycin inhibitors. Novel agents used in the treatment of cancer have specific side-effects, the result of allergic reactions, on-target and off-target effects. Clinical syndromes associated with pulmonary toxicity vary from bronchospasms, hypersensitivity reactions, pneumonitis, acute respiratory distress, lung bleeding, pleural effusion to pneumothorax. Knowledge of risk factors, a high index of suspicion and a complete diagnostic work-up are essential for limiting the risk of these events becoming life threatening. The development of treatment algorithms is extremely helpful in managing these events. It is probable that these toxicities will be even more frequent with the introduction of combination therapies with the obvious challenge of discerning the responsible agent.

  8. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  9. The Impact of Skin Problems on the Quality of Life in Patients Treated with Anticancer Agents: A Cross-Sectional Study.

    PubMed

    Lee, Jaewon; Lim, Jin; Park, Jong Seo; Kim, Miso; Kim, Tae-Yong; Kim, Tae Min; Lee, Kyung-Hun; Keam, Bhumsuk; Han, Sae-Won; Mun, Je-Ho; Cho, Kwang Hyun; Jo, Seong Jin

    2017-12-14

    Patients treated with anticancer agents often experience a variety of treatment-related skin problems, which can impair their quality of life. In this cross-sectional study, Dermatology Life Quality Index (DLQI) and clinical information were evaluated in patients under active anticancer treatment using a questionnaire survey and their medical records review. Of 375 evaluated subjects with anticancer therapy, 136 (36.27%) and 114 (30.40%) were treated for breast cancer and colorectal cancer, respectively. We found that women, breast cancer, targeted agent use, and longer duration of anticancer therapy were associated with higher dermatology-specific QoL distraction. In addition, itching, dry skin, easy bruising, pigmentation, papulopustules on face, periungual inflammation, nail changes, palmoplantar lesions were associated with significantly higher DLQI scores. Periungual inflammation and palmoplantar lesions scored the highest DLQI. We believe our findings can be helpful to clinicians in counseling and managing the patients undergoing anticancer therapy.

  10. A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition.

    PubMed

    Wang, Beilei; Wang, Zhigang; Ai, Fujin; Tang, Wai Kin; Zhu, Guangyu

    2015-01-01

    Cationic monofunctional platinum(II)-based anticancer agents with a general formula of cis-[Pt(NH3)2(N-donor)Cl](+) have recently drawn significant attention due to their unique mode of action, distinctive anticancer spectrum, and promising antitumor activity both in vitro and in vivo. Understanding the mechanism of action of novel monofunctional platinum compounds through rational drug design will aid in the further development of active agents. In this study, we synthesized and evaluated a monofunctional platinum-based anticancer agent SA-Pt containing a bulky salicylanilide moiety. The antiproliferative activity of SA-Pt was close to that of cisplatin. Mechanism studies revealed that SA-Pt entered HeLa cells more efficiently than cisplatin, blocked the cell cycle at the S-phase, and induced apoptosis. The compound bound to DNA as effectively as cisplatin, but did not block RNA polymerase II-mediated transcription as strongly as cisplatin, indicating that once the compound formed Pt-DNA lesions, the salicylanilide group was more easily recognized and removed. This study not only enriches the family of monofunctional platinum-based anticancer agents but also guides the design of more potent monofunctional platinum complexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy

    PubMed Central

    Granja, Andreia; Pinheiro, Marina; Reis, Salette

    2016-01-01

    Cancer is one of the leading causes of morbidity and mortality all over the world. Conventional treatments, such as chemotherapy, are generally expensive, highly toxic and lack efficiency. Cancer chemoprevention using phytochemicals is emerging as a promising approach for the treatment of early carcinogenic processes. (−)-Epigallocatechin-3-gallate (EGCG) is the major bioactive constituent in green tea with numerous health benefits including anti-cancer activity, which has been intensively studied. Besides its potential for chemoprevention, EGCG has also been shown to synergize with common anti-cancer agents, which makes it a suitable adjuvant in chemotherapy. However, limitations in terms of stability and bioavailability have hampered its application in clinical settings. Nanotechnology may have an important role in improving the pharmacokinetic and pharmacodynamics of EGCG. Indeed, several studies have already reported the use of nanoparticles as delivery vehicles of EGCG for cancer therapy. The aim of this article is to discuss the EGCG molecule and its associated health benefits, particularly its anti-cancer activity and provide an overview of the studies that have employed nanotechnology strategies to enhance EGCG’s properties and potentiate its anti-tumoral activity. PMID:27213442

  12. Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids.

    PubMed

    Dai, Fang; Liu, Guo-Yun; Li, Yan; Yan, Wen-Jing; Wang, Qi; Yang, Jie; Lu, Dong-Liang; Ding, De-Jun; Lin, Dong; Zhou, Bo

    2015-08-01

    Developing anticancer agents by a prooxidant strategy has attracted increasing attention in recent years, although it is not conventional in medicinal chemistry and is completely opposite to antioxidant therapy. In this work, a panel of diarylpentanoids as the curcumin mono-carbonyl analogs were designed and synthesized, and their cytotoxic and proapoptotic mechanisms against human lung cancer A549 cells were investigated at the frontiers of chemistry and biology. It was found that compared with curcumin, the compounds (A1, B1, and C1) bearing two ortho substituents on the aromatic rings, especially A1, exhibit significantly increased cytotoxic and proapoptotic activities through a Michael acceptor unit-dependent prooxidant-mediated mechanism. The prooxidative ability is governed not only by their electrophilicity but also by their geometry, cellular uptake and metabolic stability, and TrxR-inhibitory activity. Mechanistic investigation reveals that the compound A1 could effectively and irreversibly modify the TrxR by virtue of the above optimal biochemical parameters, and convert this antioxidant enzyme into a reactive oxygen species (ROS) promoter, resulting in a burst of the intracellular ROS including H2O2 and O2(-)•. The ROS generation is associated with falling apart in the redox buffering system, and subsequently induces increases in Ca(2+) influx and oxidative stress, collapse of mitochondrial membrane potential, and activation of caspase-9 and caspase-3, ultimately leading to cell apoptosis. This work highlights the feasibility in designing curcumin-inspired anticancer agents by a prooxidant strategy, and gives us useful information on how to design them. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Sicen; He, Langchon

    2011-07-01

    It has been demonstrated that taspine derivatives act as anticancer agents, thus we designed and synthesized a novel class of symmetrical biphenyl derivatives. We evaluated the cytotoxicity and antitumor activity of biphenyls against five human tumor and normal cell lines. The results indicated that the majority of the compounds exhibited anticancer activity equivalent to or greater than the positive control. Compounds (11) and (12) demonstrated the most potent cytotoxic activity with IC₅₀ values between 19.41 µM and 29.27 µM. The potent antiproliferative capabilities of these compounds against ECV304 human transformed endothelial cells indicated that these biphenyls could potentially serve as antiangiogenic agents. We also reviewed the relationship between structure and activity based on the experimental results. Our findings provide a good starting point for further development of symmetrical biphenyl derivatives as potential novel anticancer agents.

  14. Renal toxicity of anticancer agents targeting HER2 and EGFR.

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Porta, Camillo

    2015-12-01

    EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents.

  15. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    PubMed

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.

  16. Nitrosoureas: a review of experimental antitumor activity.

    PubMed

    Schabel, F M

    1976-06-01

    The chemical class of drugs known as the nitrosoureas are a recently developed group of very active alkylating-agent anticancer drugs which are best represented by BCNU, CCNU, and methyl-CCNU (meCCNU). The nitrosoureas are among the most active, if not the most active, anticancer drugs both quantitatively (log kill of sensitive tumor cells in vivo) and qualitatively (spectrum of mouse, rat, and hamster tumors responding to treatment). Therapeutic anticancer activity of the nitrosoureas has been consistently observed with oral as well as parenteral administration. The nitrosoureas are clearly the most active group of anticancer drugs observed against experimental meningeal leukemias and intracerebrally implanted transplantable primary tumors of central nervous system origin (eg, gliomas, ependymoblastomas, and astrocytomas in mice and hamsters). The nitrosoureas have been observed to be less than additive in lethal toxicity for vital normal cells in the mouse in combination with representatives of the other major classes of anticancer agents, eg, purine antagonists, pyrimidine antagonists, inhibitors of DNA polymerase(s) or ribonucleotide reductase(s), mitotic inhibitors, drugs that bind to or intercalate with DNA, and other alkylating agents. Therapeutic synergism against one or more transplantable or spontaneous tumors of mice, rats, or hamsters with one of several nitrosoureas in two-drug combinations with representatives of most of the major classes of anticancer agents listed above has been reported. With a number of advanced-stages mouse tumors, generally considered to be refractory to treatment with most anticancer agents, long-term cures have been obtained with combination-drug or combined-modality (surgery plus chemotherapy) treatment. The demonstrated lack of cross-resistance of several leukemias and solid tumors of mice selected for resistance to BCNU, meCCNU, or other alkylating agents suggests that the widely held opinion that all alkylating agents are very similar in biologic mechanism of action, and therefore resistance to one alkylating agent probably predicts cross-resistance to all alkylating agents, may no longer be tenable. If not, then alkylating-agent drug combinations, either used alone or combined with other treatment modalities (eg, surgery) which have been reported to result in therapeutic improvement in a number of experimental murine tumor systems, may be indicated for serious consideration as surgical adjuvant chemotherapy by surgeons or as primary therapy by medical oncologists.

  17. Magnetic nanoparticle drug delivery systems for targeting tumor

    NASA Astrophysics Data System (ADS)

    Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

    2014-04-01

    Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

  18. Curcumin: a promising agent targeting cancer stem cells.

    PubMed

    Zang, Shufei; Liu, Tao; Shi, Junping; Qiao, Liang

    2014-01-01

    Cancer stem cells are a subset of cells that are responsible for cancer initiation and relapse. They are generally resistant to the current anticancer agents. Successful anticancer therapy must consist of approaches that can target not only the differentiated cancer cells, but also cancer stem cells. Emerging evidence suggested that the dietary agent curcumin exerted its anti-cancer activities via targeting cancer stem cells of various origins such as those of colorectal cancer, pancreatic cancer, breast cancer, brain cancer, and head and neck cancer. In order to enhance the therapeutic potential of curcumin, this agent has been modified or used in combination with other agents in the experimental therapy for many cancers. In this mini-review, we discussed the effect of curcumin and its derivatives in eliminating cancer stem cells and the possible underlying mechanisms.

  19. AlgiMatrix™ Based 3D Cell Culture System as an In-Vitro Tumor Model for Anticancer Studies

    PubMed Central

    Godugu, Chandraiah; Patel, Apurva R.; Desai, Utkarsh; Andey, Terrick; Sams, Alexandria; Singh, Mandip

    2013-01-01

    Background Three-dimensional (3D) in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening. Methods Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100–300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin) and nanoparticle (NLC) were done using spheroids. Results IC50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin) in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro. Conclusion The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations. PMID:23349734

  20. Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances.

    PubMed

    Tyagi, Nikhil; Tyagi, Monika; Pachauri, Manendra; Ghosh, Prahlad C

    2015-11-01

    Cancer is one of the most common devastating disease affecting millions of people per year worldwide. To fight against cancer, a number of natural plant compounds have been exploited by researchers to discover novel anti-cancer therapeutics with minimum or no side effects and plants have proved their usefulness in anti-cancer therapy in past few years. Ricin, a cytotoxic plant protein isolated from castor bean seeds, is a ribosome-inactivating protein which destroys the cells by inhibiting proteins synthesis. Ricin presents great potential as anti-cancer agent and exerts its anti-cancer activity by inducing apoptosis in cancer cells. In this review, we summarize the current information on anti-cancer properties of plant toxin ricin, its potential applications in cancer therapy, challenges associated with its use as therapeutic agent and the recent advances made to overcome these challenges. Nanotechnology could open the doors for quick development of ricin-based anti-cancer therapeutics. Conceivably, ricin may serve as a chemotherapeutic agent against cancer by utilizing nanocarriers for its targeted delivery to cancer cells.

  1. Liposomal nanomedicines.

    PubMed

    Fenske, David B; Cullis, Pieter R

    2008-01-01

    Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines, represent an advanced class of drug delivery systems, with several formulations presently on the market and many more in clinical trials. Over the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs (such as anticancer drugs and antibiotics) and the new genetic drugs (plasmid DNA containing therapeutic genes, antisense oligonucleotides and small interfering RNA) within LNs. If the LNs possess certain properties, they tend to accumulate at sites of disease, such as tumours, where the endothelial layer is 'leaky' and allows extravasation of particles with small diameters. These properties include a diameter centred on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (> 6 h) circulation lifetime. These properties permit the LNs to protect their contents during circulation, prevent contact with healthy tissues, and accumulate at sites of disease. The authors discuss recent advances in this field involving conventional anticancer drugs, as well as applications involving gene delivery, stimulation of the immune system and silencing of unwanted gene expression. Liposomal nanomedicines have the potential to offer new treatments in such areas as cancer therapy, vaccine development and cholesterol management.

  2. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    NASA Astrophysics Data System (ADS)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  3. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-05

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  4. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869

  5. The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines.

    PubMed

    Doi, Toshifumi; Ishikawa, Takeshi; Okayama, Tetsuya; Oka, Kaname; Mizushima, Katsura; Yasuda, Tomoyo; Sakamoto, Naoyuki; Katada, Kazuhiro; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Handa, Osamu; Takagi, Tomohisa; Naito, Yuji; Itoh, Yoshito

    2017-03-01

    Although improvements in the chemotherapy modalities for pancreatic cancer have been realized, pancreatic cancer remains one of the most lethal malignancies. New-generation cancer immunotherapy methods, such as blocking of the PD-1/PD-L1 pathway, are consistently being investigated to improve the survival of pancreatic cancer patients. In the present study, we evaluated the influence of anticancer agents 5-fluorouracil, gemcitabine and paclitaxel on PD-L1 expression in human pancreatic cancer cell lines MIA PaCa-2 and AsPC-1 and in murine pancreatic cancer cell line Pan02. Additionally, we analyzed the molecular mechanisms that facilitated the regulation of PD-L1 expression in these cell lines. We observed that when AsPC-1, MIA PaCa-2 and Pan02 cells were stimulated by 5-fluorouracil, gemcitabine or paclitaxel, PD-L1 surface protein expression was enhanced. Similarly, the mRNA level of PD-L1 was upregulated in the AsPC-1 and Pan02 cells when stimulated by each of the three anticancer agents. The phosphorylation of STAT1 and an increase in total STAT1 were also observed in the AsPC-1 cells when stimulated by each anticancer agent. In response to JAK2 inhibitor treatment, PD-L1 upregulation induced by the anticancer agents was reduced in a dose-dependent manner. These results suggest that i) the JAK2/STAT1 pathway is involved in the anticancer agent-mediated PD-L1 transcription; and ii) the anticancer agents altered the tumor immune response which may induce tumor immune escape. These findings can have an influence on the design of treatments that combine chemotherapy and immunotherapy.

  6. Marine Mollusk‐Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance

    PubMed Central

    Lefranc, Florence; Carbone, Marianna; Mollo, Ernesto; Gavagnin, Margherita; Betancourt, Tania; Dasari, Ramesh

    2016-01-01

    Abstract The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as “chemotaxonomic markers” for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk‐derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen‐containing compounds. The “promise” of a mollusk‐derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk‐derived anticancer agents and solutions to their procurement in quantity. PMID:27925266

  7. Two drugs are better than one. A short history of combined therapy of ovarian cancer.

    PubMed

    Bukowska, Barbara; Gajek, Arkadiusz; Marczak, Agnieszka

    2015-01-01

    Combined therapy of ovarian cancer has a long history. It has been applied for many years. The first drug which was commonly combined with other chemotherapeutics was cisplatin. It turned out to be effective given together with alkylating agents as well as with taxanes. Another drug which is often the basis of first-line therapy is doxorubicin. The use of traditional chemotherapy is often limited due to side effects. This is why new drugs, targeted specifically at cancer cells (e.g. monoclonal antibodies or epidermal growth factor receptor inhibitors), offer a welcome addition when used in combination with conventional anticancer agents. Drugs applied in combination should be synergistic or at least additive. To evaluate the type of interaction between drugs in a plausible sequence, isobolographic analysis is used. This method allows one to assess whether the two agents could make an efficient combination, which might improve the therapy of ovarian cancer.

  8. Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling.

    PubMed

    Kirkpatrick, D Lynn; Powis, Garth

    2017-02-20

    There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.

  9. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  10. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    PubMed

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.

  11. Targeting Cancer using Polymeric Nanoparticle mediated Combination Chemotherapy

    PubMed Central

    Gad, Aniket; Kydd, Janel; Piel, Brandon; Rai, Prakash

    2016-01-01

    Cancer forms exhibiting poor prognosis have been extensively researched for therapeutic solutions. One of the conventional modes of treatment, chemotherapy shows inadequacy in its methodology due to imminent side-effects and acquired drug-resistance by cancer cells. However, advancements in nanotechnology have opened new frontiers to significantly alleviate collateral damage caused by current treatments via innovative delivery techniques, eliminating pitfalls encountered in conventional treatments. Properties like reduced drug-clearance and increased dose efficacy by the enhanced permeability and retention effect deem nanoparticles suitable for this application. Optimization of size, surface charge and surface modifications have provided nanoparticles with stealth properties capable of evading immune responses, thus deeming them as excellent carriers of chemotherapeutic agents. Biocompatible and biodegradable forms of polymers enhance the bioavailability of chemotherapeutic agents, and permit a sustained and time-dependent release of drugs which is a characteristic of their composition, thereby providing a controlled therapeutic approach. Studies conducted in vitro and animal models have also demonstrated a synergism in cytotoxicity given the mechanism of action of anticancer drugs when administered in combination providing promising results. Combination therapy has also shown implications in overcoming multiple-drug resistance, which can however be subdued by the adaptable nature of tumor microenvironment. Surface modifications with targeting moieties can therefore feasibly increase nanoparticle uptake by specific receptor-ligand interactions, increasing dose efficacy which can seemingly overcome drug-resistance. This article reviews recent trends and investigations in employing polymeric nanoparticles for effectively delivering combination chemotherapy, and modifications in delivery parameters enhancing dose efficacy, thus validating the potential in this approach for anticancer treatment. PMID:28042613

  12. Trial Watch

    PubMed Central

    Vacchelli, Erika; Aranda, Fernando; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Accumulating evidence suggests that the clinical efficacy of selected anticancer drugs, including conventional chemotherapeutics as well as targeted anticancer agents, originates (at least in part) from their ability to elicit a novel or reinstate a pre-existing tumor-specific immune response. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). Cancer cells succumbing to ICD are de facto converted into an anticancer vaccine and as such elicit an adaptive immune response. Several common chemotherapeutics share the ability of triggering ICD, as demonstrated in vaccination experiments relying on immunocompetent mice and syngeneic cancer cells. A large number of ongoing clinical trials involve such ICD inducers, often (but not always) as they are part of the gold standard therapeutic approach against specific neoplasms. In this Trial Watch, we summarize the latest advances on the use of cyclophosphamide, doxorubicin, epirubicin, oxaliplatin, and mitoxantrone in cancer patients, discussing high-impact studies that have been published during the last 13 months as well as clinical trials that have been initiated in the same period to assess the antineoplastic profile of these immunogenic drugs as off-label therapeutic interventions. PMID:24800173

  13. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis.

    PubMed

    Ha, Tae Kwun; Jung, Inae; Kim, Mi Eun; Bae, Sung Kwon; Lee, Jun Sik

    2017-07-01

    Thyroid cancer is the most common endocrine malignancy and can range in severity from relatively slow-growing occult differentiated thyroid cancer to uniformly aggressive and fatal anaplastic thyroid cancer. A subset of patients with papillary thyroid cancer present with aggressive disease that is refractory to conventional treatment. Myricetin is a flavonol compound found in a variety of berries as well as walnuts and herbs. Previous studies have demonstrated that myricetin exhibits anti-cancer activity against several tumor types. However, an anti-cancer effect of myricetin against human papillary thyroid cancer (HPTC) cells has not been established. The present investigation was undertaken to gain insights into the molecular mechanism of the anti-cancer activity of myricetin against HPTC cells. We examined the cytotoxicity, DNA damaging, and cell cycle arresting activities of myricetin using SNU-790 HPTC cells. We found that myricetin exhibited cytotoxicity and induced DNA condensation in SNU-790 HPTC cells in a dose-dependent manner. Moreover, myricetin up-regulated the activation of caspase cascades and the Bax:Bcl-2 expression ratio. In addition, myricetin induced the release of apoptosis-inducing factor (AIF) and altered the mitochondrial membrane potential. Our results suggest that myricetin induces the death of SNU-790 HPTC cells and thus may prove useful in the development of therapeutic agents for human thyroid cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    PubMed

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  15. Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India.

    PubMed

    Painuli, Sakshi; Kumar, Navin

    2016-03-01

    Radioprotective agents are substances those reduce the effects of radiation in healthy tissues while maintaining the sensitivity to radiation damage in tumor cells. Due to increased awareness about radioactive substances and their fatal effects on human health, radioprotective agents are now the topic of vivid research. Scavenging of free radicals is the most common mechanism in oncogenesis that plays an important role in protecting tissues from lethal effect of radiation exposure therefore radioprotectors are also good anti-cancer agents. There are numerous studies indicating plant-based therapeutics against cancer and radioprotection. Such plants could be further explored for developing them as promising natural radioprotectors with anti-cancer properties. This review systematically presents information on plants having radioprotective and anti-cancer properties. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  16. Renal toxicity of anticancer agents targeting vascular endothelial growth factor (VEGF) and its receptors (VEGFRs).

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Liguigli, Wanda; Porta, Camillo

    2017-04-01

    Since angiogenesis plays a key role in tumor growth, progression and metastasization, anti-vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) agents have been developed over the years as anticancer agents, and have changed, for the better, the natural history of a number of cancer types. In the present review, the renal safety profile of presently available agents targeting either VEGF or VEGFRs will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, renal toxicity (especially, but not exclusively, hypertension and proteinuria) are quite commonly observed with these agents, and may be increased by the concomitant use of cytoxic chemotherapeutics. Despite all the above, kidney impairment or dialysis must not be regarded di per se as reasons not to administer or to stop an active anticancer treatment, especially considering the possibility of a significant survival improvement in many cancer patients treated with these agents.

  17. Platinum-based anticancer agents: innovative design strategies and biological perspectives.

    PubMed

    Ho, Yee-Ping; Au-Yeung, Steve C F; To, Kenneth K W

    2003-09-01

    The impact of cisplatin on cancer chemotherapy cannot be denied. Over the past 20 years, much effort has been dedicated to discover new platinum-based anticancer agents that are superior to cisplatin or its analogue, carboplatin. Most structural modifications are based on changing one or both of the ligand types coordinated to platinum. Altering the leaving group can influence tissue and intracellular distribution of the drug, whereas the carrier ligand usually determines the structure of adducts formed with DNA. DNA-Pt adducts produced by cisplatin and many of its classical analogues are almost identical, and would explain their similar patterns of tumor sensitivity and susceptibility to resistance. Recently some highly innovative design strategies have emerged, aimed at overcoming platinum resistance and/or to introduce novel mechanisms of antitumor action. Platinum compounds bearing the 1,2-diaminocyclohexane carrier ligand; and those of multinuclear Pt complexes giving rise to radically different DNA-Pt adducts, have resulted in novel anticancer agents capable of circumventing cisplatin resistance. Other strategies have focused on integrating biologically active ligands with platinum moieties intended to selectively localizing the anticancer properties. With the rapid advance in molecular biology, combined with innovation, it is possible new Pt-based anticancer agents will materialize in the near future. Copyright 2003 Wiley Periodicals, Inc.

  18. Recent patents therapeutic agents for cancer.

    PubMed

    Li, Xun; Xu, Wenfang

    2006-06-01

    Cancer is one of the most dreaded diseases with a complex pathogenesis, which threats human life greatly. Multidisciplinary scientific investigations are making best efforts to combat this disease and put to the identification of novel anticancer agents. Patent anticancer agents registered in China are therefore increasing dramatically during the past ten years, which will be reviewed briefly in this article. platinum complexes anthracycline analogs (including doxorubicin derivatives) quinoline analogs podophyllotoxins analogs taxane analogs camptothecin (CPT) analogs.

  19. Sulfasalazine attenuates evading anticancer response of CD133-positive hepatocellular carcinoma cells.

    PubMed

    Song, Yeonhwa; Jang, Jaewoo; Shin, Tae-Hoon; Bae, Sang Mun; Kim, Jin-Sun; Kim, Kang Mo; Myung, Seung-Jae; Choi, Eun Kyung; Seo, Haeng Ran

    2017-03-03

    CD133-positive cells in hepatocellular carcinoma (HCC) exhibit cancer stem cell (CSC)-like properties as well as resistance to chemotherapeutic agents and ionizing radiation; however, their function remains unknown. In this paper, we identified a hitherto unknown mechanism to overcome CD133-induced resistance to anticancer therapy. We applied an alternative approach to enrich the CD133-positive HCC population by manipulating 3D culture conditions. Defense mechanisms against reactive oxygen species (ROS) in CSC spheroids were evaluated by fluorescence image-based phenotypic screening system. Further, we studied the effect of sulfasalazine on ROS defense system and synergistic therapeutic efficacy of anticancer therapies both in culture and in vivo HCC xenograft mouse model. Here, we found that oxidative stress increase CD133 expression in HCC and increased CD133 expression enhanced the capacity of the defense system against ROS, and thereby play a central role in resistance to liver cancer therapy. Moreover, ablation of CD133 attenuated not only the capacity for defense against ROS, but also chemoresistance, in HCC through decreasing glutathione (GSH) levels in vitro. Sulfasalazine, a potent xCT inhibitor that plays an important role in maintaining GSH levels, impaired the ROS defense system and increased the therapeutic efficacy of anticancer therapies in CD133-positive HCC but not CD133-negative HCC in vivo and in vitro. These results strongly indicate functional roles for CD133 in ROS defense and in evading anticancer therapies in HCC, and suggest that sulfasalazine, administered in combination with conventional chemotherapy, might be an effective strategy against CD133-positive HCC cells.

  20. Recent Progress of Marine Polypeptides as Anticancer Agents

    PubMed

    Zheng, Lanhong; Xua, Yixin; Lin, Xiukun; Yuan, Zhixin; Liu, Minghua; Cao, Shousong; Zhang, Fuming; Linhardt, Robert J

    2018-04-29

    Marine environment constitutes an almost infinite resource for novel anticancer drugs discovery. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer peptides in the treatment of human cancer. Marine peptides represent a new opportunity to obtain lead compounds in biomedical field, particularly for cancer therapy. Providing an insight of the recent progress of patented marine peptides and presenting information about the structures and mechanistic mode of anticancer activities of these marine peptides. We reviewed recent progress on the patented anticancer peptides from marine organisms according to their targets on different signal pathways. This work focuses on relevant recent patents (2010-2018) that entail the anticancer activity with associated mechanism and related molecular diversity of marine peptides. The related cellular signaling pathways for novel peptides that induce apoptosis and affect tubulin-microtubule equilibrium, angiogenesis and kinase activity that are related to the anticancer and related pharmacological properties are also discussed. The recent patents (2010-2018) of marine peptides with anticancer activity were reviewed, and the anticancer activity of marine peptides with associated mechanism and related molecular diversity of marine peptides were also discussed. Marine peptides possess chemical diversity and displays potent anticancer activity via targeting different signal pathways. Some of the marine peptides are promising to be developed as novel anticancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Matrix metalloproteinase inhibitors as anticancer agents.

    PubMed

    Konstantinopoulos, Panagiotis A; Karamouzis, Michalis V; Papatsoris, Athanasios G; Papavassiliou, Athanasios G

    2008-01-01

    The important role of matrix metalloproteinases (MMPs) in the process of carcinogenesis is well established. However, despite very promising activity in a plethora of preclinical models, MMP inhibitors (MMPIs) failed to demonstrate a statistically significant survival advantage in advanced stage clinical trials in most human malignancies. Herein, we review the implication of MMPs in carcinogenesis, outline the pharmacology and current status of various MMPIs as anticancer agents and discuss the etiologies for the discrepancy between their preclinical and clinical evaluation. Finally, strategies for effective incorporation of MMPIs in current anticancer therapies are proposed.

  2. Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma.

    PubMed

    Motoyama, Keiichi; Onodera, Risako; Tanaka, Nao; Kameyama, Kazuhisa; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

    2015-01-01

    Melanoma is a life-threatening disorder and its incidence is increasing gradually. Despite the numerous treatment approaches, conventional systemic chemotherapy has not reduced the mortality rate among melanoma patients, probably due to the induction of toxicity to normal tissues. Recently, we have developed folate-conjugated methyl-β-cyclodextrin (FA-M-β-CyD) and clarified its potential as a new antitumor agent involved in autophagic cell death. However, it remains uncertain whether FA-M-β-CyD exerts anticancer effects against melanomas. Therefore, in this study, we investigated the effects of FA-M-β-CyD on the folate receptor-α (FR-α)-expressing melanoma cell-selective cytotoxic effect. FA-M-β-CyD showed cytotoxic effects in Ihara cells, a human melanoma cell line expressing FR-α. In sharp contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered Ihara cells [FR-α(+)] through FR-α-mediated endocytosis. Additionally, FA-M-β-CyD elicited the formation of autophagosomes in Ihara cells. Notably, FA-M-β-CyD suppressed melanoma growth in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double deficient mice bearing Ihara cells. Therefore, these results suggest that FA-M-β-CyD could be utilized as a potent anticancer agent for melanoma chemotherapy by regulating autophagy.

  3. Inventory of oral anticancer agents: Pharmaceutical formulation aspects with focus on the solid dispersion technique.

    PubMed

    Sawicki, E; Schellens, J H M; Beijnen, J H; Nuijen, B

    2016-11-01

    Dissolution from the pharmaceutical formulation is a prerequisite for complete and consistent absorption of any orally administered drug, including anticancer agents (oncolytics). Poor dissolution of an oncolytic can result in low oral bioavailability, high variability in blood concentrations and with that suboptimal or even failing therapy. This review discusses pharmaceutical formulation aspects and absorption pharmacokinetics of currently licensed orally administered oncolytics. In nearly half of orally dosed oncolytics poor dissolution is likely to play a major role in low and unpredictable absorption. Dissolution-limited drug absorption can be improved with a solid dispersion which is a formulation method that induces super-saturated drug dissolution and with that it enhances in vivo absorption. This review discusses formulation principles with focus on the solid dispersion technology and how it works to enhance drug absorption. There are currently three licensed orally dosed oncolytics formulated as a solid dispersion (everolimus, vemurafenib and regorafenib) and these formulations result in remarkably improved dissolution and absorption compared to what can be achieved with conventional formulations of the respective oncolytics. Because of the successful implementation of these three solid dispersion formulations, we encourage the application of this formulation method for poorly soluble oral oncolytics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Oxidative stress mediates through apoptosis the anticancer effect of phospho-nonsteroidal anti-inflammatory drugs: implications for the role of oxidative stress in the action of anticancer agents.

    PubMed

    Sun, Yu; Huang, Liqun; Mackenzie, Gerardo G; Rigas, Basil

    2011-09-01

    We assessed the relationship between oxidative stress, cytokinetic parameters, and tumor growth in response to novel phospho-nonsteroidal anti-inflammatory drugs (NSAIDs), agents with significant anticancer effects in preclinical models. Compared with controls, in SW480 colon and MCF-7 breast cancer cells, phospho-sulindac, phospho-aspirin, phospho-flurbiprofen, and phospho-ibuprofen (P-I) increased the levels of reactive oxygen and nitrogen species (RONS) and decreased GSH levels and thioredoxin reductase activity, whereas the conventional chemotherapeutic drugs (CCDs), 5-fluorouracil (5-FU), irinotecan, oxaliplatin, chlorambucil, paclitaxel, and vincristine, did not. In both cell lines, phospho-NSAIDs induced apoptosis and inhibited cell proliferation much more potently than CCDs. We then treated nude mice bearing SW480 xenografts with P-I or 5-FU that had an opposite effect on RONS in vitro. Compared with controls, P-I markedly suppressed xenograft growth, induced apoptosis in the xenografts (8.9 ± 2.7 versus 19.5 ± 3.0), inhibited cell proliferation (52.6 ± 5.58 versus 25.8 ± 7.71), and increased urinary F2-isoprostane levels (10.7 ± 3.3 versus 17.9 ± 2.2 ng/mg creatinine, a marker of oxidative stress); all differences were statistically significant. 5-FU's effects on tumor growth, apoptosis, proliferation, and F2-isoprostane were not statistically significant. F2-isoprostane levels correlated with the induction of apoptosis and the inhibition of cell growth. P-I induced oxidative stress only in the tumors, and its apoptotic effect was restricted to xenografts. Our data show that phospho-NSAIDs act against cancer through a mechanism distinct from that of various CCDs, underscore the critical role of oxidative stress in their effect, and indicate that pathways leading to oxidative stress may be useful targets for anticancer strategies.

  5. Hyperglycaemia Induced by Novel Anticancer Agents: An Undesirable Complication or a Potential Therapeutic Opportunity?

    PubMed

    Shah, Rashmi R

    2017-03-01

    Signalling pathways involving protein kinase, insulin-like growth factor 1, insulin receptors and the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) system are critical in promoting oncogenesis. The use of anticancer agents that inhibit these pathways frequently results in hyperglycaemia, an on-target effect of these drugs. Hyperglycaemia induced by these agents denotes optimal inhibition of the desired pharmacological target. As hyperglycaemia can be treated successfully and effectively with metformin, managing this complication by reducing the dose of or discontinuing the anticancer drug may be counterproductive, especially if it is otherwise effective and clinically tolerated. The use of metformin to treat hyperglycaemia induced by anticancer drugs provides a valuable therapeutic opportunity of potentiating their clinical anticancer effects. Although evidence from randomised controlled trials is awaited, extensive preclinical evidence and clinical observational studies suggest that metformin has anticancer properties that improve overall survival in patients with diabetes and a variety of cancers. Metformin has also been reported to reverse resistance to epidermal growth factor receptor (EGFR)-inhibiting tyrosine kinase inhibitors. This review summarises briefly the role of the above signalling pathways in oncogenesis, the causal association between inhibition of these pathways and hyperglycaemia, and the effect of metformin on clinical outcomes resulting from its anticancer properties. The evidence reviewed herein, albeit almost exclusively from observational studies, provides support for a greater use of metformin not only in patients with cancer and diabetes or drug-induced hyperglycaemia but also potentially as an anticancer drug. However, prospective randomised controlled studies are needed in all these settings to better assess the effect on clinical outcomes of adding metformin to ongoing anticancer therapy.

  6. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, N.; Kumar, S.; Marlowe, T.

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less

  7. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE PAGES

    Yadav, N.; Kumar, S.; Marlowe, T.; ...

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less

  8. T-oligo as an anticancer agent in colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo,more » an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.« less

  9. Anticancer Effects of Sandalwood (Santalum album).

    PubMed

    Santha, Sreevidya; Dwivedi, Chandradhar

    2015-06-01

    Effective management of tumorigenesis requires development of better anticancer agents with greater efficacy and fewer side-effects. Natural products are important sources for the development of chemotherapeutic agents and almost 60% of anticancer drugs are of natural origin. α-Santlol, a sesquiterpene isolated from Sandalwood, is known for a variety of therapeutic properties including anti-inflammatory, anti-oxidant, anti-viral and anti-bacterial activities. Cell line and animal studies reported chemopreventive effects of sandalwood oil and α-santalol without causing toxic side-effects. Our laboratory identified its anticancer effects in chemically-induced skin carcinogenesis in CD-1 and SENCAR mice, ultraviolet-B-induced skin carcinogenesis in SKH-1 mice and in vitro models of melanoma, non-melanoma, breast and prostate cancer. Its ability to induce cell-cycle arrest and apoptosis in cancer cells is its most reported anticancer mechanism of action. The present review discusses studies that support the anticancer effect and the mode of action of sandalwood oil and α-santalol in carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran.

    PubMed

    Sanjeewa, K K Asanka; Lee, Jung-Suck; Kim, Won-Suck; Jeon, You-Jin

    2017-12-01

    In recent decades, attention to cancer-preventive treatments and studies on the development of anticancer drugs have sharply increased owing to the increase in cancer-related death rates in every region of the world. However, due to the adverse effects of synthetic drugs, much attention has been given to the development of anticancer drugs from natural sources because of fewer side effects of natural compounds than those of synthetic drugs. Recent studies on compounds and crude extracts from marine algae have shown promising anticancer properties. Among those compounds, polysaccharides extracted from brown seaweeds play a principal role as anticancer agents. Especially, a number of studies have revealed that polysaccharides isolated from brown seaweeds, such as fucoidan and laminaran, have promising effects against different cancer cell types in vitro and in vivo. Herein, we reviewed in vitro and in vivo anticancer properties reported for fucoidan and laminaran toward various cancer cells from 2013 to 2016. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Review in the studies on tannins activity of cancer prevention and anticancer].

    PubMed

    Li, Haixia; Wang, Zhao; Liu, Yanze

    2003-06-01

    This paper reviewed the biological activities of tannins in cancer prevention and anticancer, and mainly discussed related mechanisms. The results suggest that tannins, whether total tannins or pure tannin compound, have remarkable activity in cancer prevention and anticancer. It has wealthy foreground for developing new cancer prevention agents and/or new anticancer drugs screening among tannin compounds.

  12. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  13. Frondoside A potentiates the effects of conventional therapeutic agents in acute leukemia.

    PubMed

    Sajwani, F H; Collin, P; Adrian, T E

    2017-12-01

    Acute leukemia is the major cause of mortality in hematological malignancies. Despite improvement of survival with current chemotherapies, patients die from the disease or side-effects of treatment. Thus, new therapeutic agents are needed. Frondoside A is a triterpenoid glycoside originally isolated from the sea cucumber, Cucumaria frondosa that has potent antitumor effects in various cancers. The current study investigated the effects of frondoside A in acute leukemia cell lines alone and in combination with drugs used for this malignancy. This study is the first comparing the efficacy of frondoside A to available conventional drugs. The acute leukemia cell lines used were CCRF-CEM, HL-60 and THP-1. Cells were cultured and treated with different concentrations of vincristine sulphate, asparaginase and prednisolone alone and in combination with frondoside A. The inhibitory concentration 50 (IC 50 ) for each compound was determined for the cell lines. CCRF-CEM cells were very sensitive to frondoside A treatment while HL-60 and THP1 were less sensitive. Frondoside A markedly enhanced the anticancer effects of all of the conventional drugs. Synergistic effects were seen with most of the combinations. Frondoside A may be valuable in the treatment of acute leukemia, particularly when used in combination with current therapeutic drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy.

    PubMed

    Chen, Tao; Li, Mian; Zhang, Ruiwen; Wang, Hui

    2009-07-01

    The present study was designed to determine the effects of artemisinin (ARS) and its derivatives on human ovarian cancer cells, to evaluate their potential as novel chemotherapeutic agents used alone or in combination with a conventional cancer chemotherapeutic agent, and to investigate their underlying mechanisms of action. Human ovarian cancer cells (A2780 and OVCAR-3), and immortalized non-tumourigenic human ovarian surface epithelial cells (IOSE144), were exposed to four ARS compounds for cytotoxicity testing. The in vitro and in vivo antitumour effects and possible underlying mechanisms of action of dihydroartemisinin (DHA), the most effective compound, were further determined in ovarian cancer cells. ARS compounds exerted potent cytotoxicity to human ovarian carcinoma cells, with minimal effects on non-tumourigenic ovarian surface epithelial (OSE) cells. DHA inhibited ovarian cancer cell growth when administered alone or in combination with carboplatin, presumably through the death receptor- and, mitochondrion-mediated caspase-dependent apoptotic pathway. These effects were also observed in in vivo ovarian A2780 and OVCAR-3 xenograft tumour models. In conclusion, ARS derivatives, particularly DHA, exhibit significant anticancer activity against ovarian cancer cells in vitro and in vivo, with minimal toxicity to non-tumourigenic human OSE cells, indicating that they may be promising therapeutic agents for ovarian cancer, either used alone or in combination with conventional chemotherapy.

  15. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy

    PubMed Central

    Chen, Tao; Li, Mian; Zhang, Ruiwen; Wang, Hui

    2009-01-01

    The present study was designed to determine the effects of artemisinin (ARS) and its derivatives on human ovarian cancer cells, to evaluate their potential as novel chemotherapeutic agents used alone or in combination with a conventional cancer chemotherapeutic agent, and to investigate their underlying mechanisms of action. Human ovarian cancer cells (A2780 and OVCAR-3), and immortalized non-tumourigenic human ovarian surface epithelial cells (IOSE144), were exposed to four ARS compounds for cytotoxicity testing. The in vitro and in vivo antitumour effects and possible underlying mechanisms of action of dihydroartemisinin (DHA), the most effective compound, were further determined in ovarian cancer cells. ARS compounds exerted potent cytotoxicity to human ovarian carcinoma cells, with minimal effects on non-tumourigenic ovarian surface epithelial (OSE) cells. DHA inhibited ovarian cancer cell growth when administered alone or in combination with carboplatin, presumably through the death receptor- and, mitochondrion-mediated caspase-dependent apoptotic pathway. These effects were also observed in in vivo ovarian A2780 and OVCAR-3 xenograft tumour models. In conclusion, ARS derivatives, particularly DHA, exhibit significant anticancer activity against ovarian cancer cells in vitro and in vivo, with minimal toxicity to non-tumourigenic human OSE cells, indicating that they may be promising therapeutic agents for ovarian cancer, either used alone or in combination with conventional chemotherapy. PMID:18466355

  16. Re-purposing of curcumin as an anti-metastatic agent for the treatment of epithelial ovarian cancer: in vitro model using cancer stem cell enriched ovarian cancer spheroids.

    PubMed

    He, Misi; Wang, Dong; Zou, Dongling; Wang, Chen; Lopes-Bastos, Bruno; Jiang, Wen G; Chester, John; Zhou, Qi; Cai, Jun

    2016-12-27

    Malignant epithelial ovarian cancer (EOC) spheroids high frequently are detected in the malignant ascites of the patients with the extensive peritoneal metastasis of ovarian cancer, which represent a significant obstacle to efficacious treatment. Clinical data also suggested that EOC spheroids play a putative role in the development of chemoresistance. Since standard surgery and conventional chemotherapy is the only available treatment, there is an urgent need to identify a more effective therapeutic strategy. Recent studies demonstrated that curcumin exerts an anticancer effect in a variety of human cancers including ovarian cancer. This study evaluates anti-peritoneal metastasis and chemoresistance of curcumin related to the EOC spheroids. In this study, we confirm that the high invasive EOC cells forming the spheroids express a high level of a cancer stem cell (CSC) marker, aldehyde dehydrogenase 1 family member A1 (ALDH1A1), which was significantly down-regulated by curcumin treatment. Curcumin treatment markedly enhances the sensitivity of EOC spheroids to cisplatin in a dose-dependent manner. Our experiments provided evidence that curcumin could abolish the sphere-forming capacity of EOC cells in a dose-dependent manner. Moreover, curcumin substantially suppressed the growth of the pre-existed EOC spheroids, inhibited the adhesion of EOC spheroids to ECM as well as the invasion of EOC spheroids to the mesothelial monolayers. We propose to re-purpose curcumin as anti-metastatic and chemoresistant agent for EOC management in combination with conventional regimen. Further preclinical studies are necessary to validate the anti-cancer effect of curcumin in patients with EOC.

  17. An expanded portfolio of survival metrics for assessing anticancer agents.

    PubMed

    Karweit, Jennifer; Kotapati, Srividya; Wagner, Samuel; Shaw, James W; Wolfe, Steffan W; Abernethy, Amy P

    2017-01-01

    With the introduction of more effective anticancer agents that prolong survival, there is a need for new methods to define the clinical value of treatments. The objective of this preliminary qualitative and quantitative analysis was to assess the utility of an expanded portfolio of survival metrics to differentiate the value of anticancer agents. A literature review was conducted of phase 3 trial data, reported in regulatory submissions within the last 10 years of agents for 6 metastatic cancers (breast cancer, colorectal cancer [CRC], melanoma, non-small cell lung cancer [NSCLC], prostate cancer [PC], and renal cell cancer [RCC]). A new, simplified cost-value analysis tool was applied using survival outcomes and total drug costs. Metrics included median overall survival (OS), mean OS, 1-year survival rate, and number needed to treat (NNT) to avoid 1 death at 1 year. Survival results were compiled and compared both within and across trials by tumor type. Total drug costs were calculated by multiplying each agent's cost per month (from October/November 2013, based on the database Price Rx/Medi-Span) by duration of therapy. Relative clinical value for each agent was not consistent across survival outcomes. In 3 tumor types, both the highest improvement in median OS and the highest improvement in mean OS occurred with the same anticancer agent (ipilimumab with melanoma, pemetrexed with NSCLC, and sunitinib with RCC); the highest improvement in the 1-year survival rate and the lowest NNT occurred together with the same anticancer agent in 5 tumor types (bevacizumab with CRC, ipilimumab with melanoma, erlotinib with NSCLC, abiraterone with PC, and temsirolimus with RCC). In the cost-value analysis, agents were inconsistent and achieved a high relative value with some survival outcomes, but not others. This analysis suggests that any 1 metric may not completely characterize the expected survival benefit of all patients. The cost-value analysis tool may be applied to trial data and may be useful in helping to make treatment decisions, regardless of the agent's effectiveness. A combined metric will be needed, as well as further research that includes more mature data, other tumor types, and emerging treatments.

  18. Curcumin and Resveratrol as Promising Natural Remedies with Nanomedicine Approach for the Effective Treatment of Triple Negative Breast Cancer

    PubMed Central

    Shindikar, Amol; Singh, Akshita; Nobre, Malcolm; Kirolikar, Saurabh

    2016-01-01

    Researchers have made considerable progress in last few decades in understanding mechanisms underlying pathogenesis of breast cancer, its phenotypes, its molecular and genetic changes, its physiology, and its prognosis. This has allowed us to identify specific targets and design appropriate chemical entities for effective treatment of most breast cancer phenotypes, resulting in increased patient survivability. Unfortunately, these strategies have been largely ineffective in the treatment of triple negative breast cancer (TNBC). Hormonal receptors lacking render the conventional breast cancer drugs redundant, forcing scientists to identify novel targets for treatment of TNBC. Two natural compounds, curcumin and resveratrol, have been widely reported to have anticancer properties. In vitro and in vivo studies show promising results, though their effectiveness in clinical settings has been less than satisfactory, owing to their feeble pharmacokinetics. Here we discuss these naturally occurring compounds, their mechanism as anticancer agents, their shortcomings in translational research, and possible methodology to improve their pharmacokinetics/pharmacodynamics with advanced drug delivery systems. PMID:27242900

  19. Development of In Vitro Co-Culture Model in Anti-Cancer Drug Development Cascade.

    PubMed

    Xu, Ruiling; Richards, Frances M

    2017-01-01

    Tumour microenvironment is recognized as a major determinant of intrinsic resistance to anticancer therapies. In solid tumour types, such as breast cancer, lung cancer and pancreatic cancer, stromal components provide a fibrotic niche, which promotes stemness, EMT, chemo- and radioresistance of tumour. However, this microenvironment is not recapitulated in the conventional cell monoculture or xenografts, hence these in vitro and in vivo preclinical models are unlikely to be predictive of clinical response; which might attribute to the poor predictively of these preclinical drug-screening models. In this review, we summarized recently developed co-culture platforms in various tumour types that incorporate different stromal cell types and/or extracellular matrix (ECM), in the context of investigating potential mechanisms of stroma-mediated chemoresistance and evaluating novel agents and combinations. Some of these platforms will have great utility in the assessment of novel drug combinations and mechanistic understanding of the tumor-stroma interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Polypharmacology of Approved Anticancer Drugs.

    PubMed

    Amelio, Ivano; Lisitsa, Andrey; Knight, Richard A; Melino, Gerry; Antonov, Alexey V

    2017-01-01

    The major drug discovery efforts in oncology have been concentrated on the development of selective molecules that are supposed to act specifically on one anticancer mechanism by modulating a single or several closely related drug targets. However, a bird's eye view on data from multiple available bioassays implies that most approved anticancer agents do, in fact, target many more proteins with different functions. Here we will review and systematize currently available information on the targets of several anticancer drugs along with revision of their potential mechanisms of action. Polypharmacology of the current antineoplastic agents suggests that drug clinical efficacy in oncology can be achieved only via modulation of multiple cellular mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    PubMed Central

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  2. Natural flora and anticancer regime: milestones and roadmap.

    PubMed

    Bhatnagar, Ira; Thomas, Noel Vinay; Kim, Se-Kwon

    2013-07-01

    Cancer has long been an area of extensive research both at the molecular as well as pharmaceutical level. However, lack of understanding of the underlying molecular signalling and the probable targets of therapeutics is a major concern in successful treatment of cancer. The situation becomes even worse, with the increasing side effects of the existing synthetic commercial drugs. Natural compounds especially those derived from plants have been best explored for their anticancer properties and most of them have been efficient against the known molecular targets of cancer. However, advent of biotechnology and resulting advances in medical arena have let to the increasing knowledge of newer carcinogenic signaling agents which has made the anticancer drug discovery even more demanding. The present review aims to bring forward the molecular mediators of cancer and compiles the plant derived anticancer agents with special emphasis on their clinical status. Since marine arena has proved to be a tremendous source of pharmaceutical agents, this review also focuses on the anticancer potential of marine plants especially algae. This is a comprehensive review covering major aspects of cancer mediation and utilization of marine flora for remediation of this deadly disease.

  3. Development of a Combination Therapy for Prostate Cancer by Targeting Stat3 and HIF-1alpha

    DTIC Science & Technology

    2013-07-01

    inflammation-induced cancer, making it an attractive target (25-27). A3. Innovation 1. TEL03 is a novel anti-cancer agent from Chinese herbal medicine ...agents from Chinese herbal medicine (CHM) that targets HIF-1α /2α for prostate cancer therapy. Hypoxia orchestrated by HIF-1αis crucial for tumor...Stat3 for treatment of prostate and other cancers. TEL03, which is a novel anti-cancer agent derived from Chinese herbal medicine (CHM: Hypocrella

  4. Difluoromethylornithine in cancer: new advances.

    PubMed

    Alexiou, George A; Lianos, Georgios D; Ragos, Vassileios; Galani, Vasiliki; Kyritsis, Athanassios P

    2017-04-01

    Difluoromethylornithine (DFMO; eflornithine) is an irreversible suicide inhibitor of the enzyme ornithine decarboxylase which is involved in polyamine synthesis. Polyamines are important for cell survival, thus DFMO was studied as an anticancer agent and as a chemoprevention agent. DFMO exhibited mainly cytostatic activity and had single agent efficacy as well as activity in combination with other chemotherapeutic drugs for some cancers and leukemias. Herewith, we summarize the current knowledge of the anticancer and chemopreventive properties of DFMO and assess the status of clinical trials.

  5. Apoptosis induction and anti-cancer activity of LeciPlex formulations.

    PubMed

    Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S

    2014-10-01

    Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.

  6. Two drugs are better than one. A short history of combined therapy of ovarian cancer

    PubMed Central

    Gajek, Arkadiusz; Marczak, Agnieszka

    2014-01-01

    Combined therapy of ovarian cancer has a long history. It has been applied for many years. The first drug which was commonly combined with other chemotherapeutics was cisplatin. It turned out to be effective given together with alkylating agents as well as with taxanes. Another drug which is often the basis of first-line therapy is doxorubicin. The use of traditional chemotherapy is often limited due to side effects. This is why new drugs, targeted specifically at cancer cells (e.g. monoclonal antibodies or epidermal growth factor receptor inhibitors), offer a welcome addition when used in combination with conventional anticancer agents. Drugs applied in combination should be synergistic or at least additive. To evaluate the type of interaction between drugs in a plausible sequence, isobolographic analysis is used. This method allows one to assess whether the two agents could make an efficient combination, which might improve the therapy of ovarian cancer. PMID:26793017

  7. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-01

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  8. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs.

    PubMed

    Kue, Chin Siang; Tan, Kae Yi; Lam, May Lynn; Lee, Hong Boon

    2015-01-01

    The chick embryo chorioallantoic membrane (CAM) is a preclinical model widely used for vascular and anti-vascular effects of therapeutic agents in vivo. In this study, we examine the suitability of CAM as a predictive model for acute toxicology studies of drugs by comparing it to conventional mouse and rat models for 10 FDA-approved anticancer drugs (paclitaxel, carmustine, camptothecin, cyclophosphamide, vincristine, cisplatin, aloin, mitomycin C, actinomycin-D, melphalan). Suitable formulations for intravenous administration were determined before the average of median lethal dose (LD50) and median survival dose (SD(50)) in the CAM were measured and calculated for these drugs. The resultant ideal LD(50) values were correlated to those reported in the literature using Pearson's correlation test for both intravenous and intraperitoneal routes of injection in rodents. Our results showed moderate correlations (r(2)=0.42 - 0.68, P<0.005-0.05) between the ideal LD(50) values obtained using the CAM model with LD(50) values from mice and rats models for both intravenous and intraperitoneal administrations, suggesting that the chick embryo may be a suitable alternative model for acute drug toxicity screening before embarking on full toxicological investigations in rodents in development of anticancer drugs.

  9. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs

    PubMed Central

    KUE, Chin Siang; TAN, Kae Yi; LAM, May Lynn; LEE, Hong Boon

    2015-01-01

    The chick embryo chorioallantoic membrane (CAM) is a preclinical model widely used for vascular and anti-vascular effects of therapeutic agents in vivo. In this study, we examine the suitability of CAM as a predictive model for acute toxicology studies of drugs by comparing it to conventional mouse and rat models for 10 FDA-approved anticancer drugs (paclitaxel, carmustine, camptothecin, cyclophosphamide, vincristine, cisplatin, aloin, mitomycin C, actinomycin-D, melphalan). Suitable formulations for intravenous administration were determined before the average of median lethal dose (LD50) and median survival dose (SD50) in the CAM were measured and calculated for these drugs. The resultant ideal LD50 values were correlated to those reported in the literature using Pearson’s correlation test for both intravenous and intraperitoneal routes of injection in rodents. Our results showed moderate correlations (r2=0.42 − 0.68, P<0.005–0.05) between the ideal LD50 values obtained using the CAM model with LD50 values from mice and rats models for both intravenous and intraperitoneal administrations, suggesting that the chick embryo may be a suitable alternative model for acute drug toxicity screening before embarking on full toxicological investigations in rodents in development of anticancer drugs. PMID:25736707

  10. Potential drug-drug interactions between anti-cancer agents and community pharmacy dispensed drugs.

    PubMed

    Voll, Marsha L; Yap, Kim D; Terpstra, Wim E; Crul, Mirjam

    2010-10-01

    To identify the prevalence of potential drug-drug interactions between hospital pharmacy dispensed anti-cancer agents and community pharmacy dispensed drugs. A retrospective cohort study was conducted on the haematology/oncology department of the internal medicine ward in a large teaching hospital in Amsterdam, the Netherlands. Prescription data from the last 100 patients treated with anti-cancer agents were obtained from Paracelsus, the chemotherapy prescribing system in the hospital. The community pharmacy dispensed drugs of these patients were obtained by using OZIS, a system that allows regionally linked pharmacies to call up active medication on any patient. Both medication lists were manually screened for potential drug-drug interactions by using several information sources on interactions, e.g. Pubmed, the Flockhart P450 table, Micromedex and Dutch reference books. Prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the community pharmacy. Ninety-one patients were included in the study. A total of 31 potential drug-drug interactions were found in 16 patients, of which 15 interactions were clinically relevant and would have required an intervention. Of these interactions 1 had a level of severity ≥ D, meaning the potential drug-drug interaction could lead to long lasting or permanent damage, or even death. The majority of the interactions requiring an intervention (67%) had a considerable level of evidence (≥ 2) and were based on well-documented case reports or controlled interaction studies. Most of the potential drug-drug interactions involved the antiretroviral drugs (40%), proton pump inhibitors (20%) and antibiotics (20%). The anti-cancer drug most involved in the drug-drug interactions is methotrexate (33%). This study reveals a high prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the community pharmacy. It shows us there is need for an optimal medication surveillance mechanism to detect potential drug-drug interactions between these two groups of medication, especially because of the high toxicity of anticancer drugs and thus the severe consequences these interactions can have for the patient.

  11. Oncology drug discovery: planning a turnaround.

    PubMed

    Toniatti, Carlo; Jones, Philip; Graham, Hilary; Pagliara, Bruno; Draetta, Giulio

    2014-04-01

    We have made remarkable progress in our understanding of the pathophysiology of cancer. This improved understanding has resulted in increasingly effective targeted therapies that are better tolerated than conventional cytotoxic agents and even curative in some patients. Unfortunately, the success rate of drug approval has been limited, and therapeutic improvements have been marginal, with too few exceptions. In this article, we review the current approach to oncology drug discovery and development, identify areas in need of improvement, and propose strategies to improve patient outcomes. We also suggest future directions that may improve the quality of preclinical and early clinical drug evaluation, which could lead to higher approval rates of anticancer drugs.

  12. MEK5-ERK5 Signaling in Cancer: Implications for Targeted Therapy

    PubMed Central

    Hoang, Van T.; Yan, Thomas J.; Cavanaugh, Jane E.; Flaherty, Patrick T.; Beckman, Barbara S.; Burow, Matthew E.

    2017-01-01

    Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MAPK kinase 5-extracellular signal-regulated kinase 5 (MEK5-ERK5) pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents. PMID:28153789

  13. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on the synthesis and use of a biodegradable dendritic polypeptide-based nanocarrier for the delivery of multiple anticancer drugs and siRNA to brain tumor cells. The co-delivery of important anticancer agents using a single platform was shown to increase the efficacy of the drugs manyfold, ensuring the cancer cell-specific delivery and minimizing dose limiting toxicities of the individual drugs. This would be of immense importance when used in vivo.

  14. p53-Mdm2 interaction inhibitors as novel nongenotoxic anticancer agents.

    PubMed

    Nayak, Surendra Kumar; Khatik, Gopal L; Narang, Rakesh; Monga, Vikramdeep; Chopra, Harish Kumar

    2017-06-23

    Cancer is a major global health problem with high mortality rate. Most of clinically used anticancer agents induce apoptosis through genotoxic stress at various stages of cell cycle and activation of p53. Acting as a tumor suppressor p53 plays a vital role in preventing tumor development. Tumor suppressor function of p53 is effectively antagonized by its direct interaction with murine double minute 2 (Mdm2) proteins via multiple mechanisms. Thus, p53-Mdm2 interaction has been found to be an important target for the development of novel anticancer agents. Currently, nutlin, spirooxindole, isoquilinone and piperidinone analogues inhibiting p53-Mdm2 interaction are found to be promising in the treatment of cancer. The current review focused to scrutinize the structural aspects of p53-Mdm2 interaction inhibitors. The present study provides a detailed collection of published information on different classes of inhibitors of p53-Mdm2 interaction as potential anticancer agents. The review highlighted the structural aspects of various reported p53-Mdm2 inhibitor for optimization. In the last few years, different classes of inhibitors of p53-Mdm2 have been designed and developed, and seven such compounds are being evaluated in clinical trials as new anticancer drugs. Further, to explore the role of p53 protein as a potential target for anticancer drug development, in this review, the mechanism of Mdm2 mediated inactivation of p53 and recent developments on p53-Mdm2 interactions inhibitors are discussed. Agents designed to block the p53-Mdm2 interaction may have a therapeutic potential for treatment of a subset of human cancers retaining wild-type p53. We review herein the recent advances in the design and development of potent small molecules as p53-Mdm2 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Hyperglycemia Associated With Targeted Oncologic Treatment: Mechanisms and Management.

    PubMed

    Goldman, Jonathan W; Mendenhall, Melody A; Rettinger, Sarah R

    2016-07-29

    : Molecularly targeted cancer therapy has rapidly changed the landscape of oncologic care, often improving patients' prognosis without causing as substantial a quality-of-life decrement as cytotoxic chemotherapy does. Nevertheless, targeted agents can cause side effects that may be less familiar to medical oncologists and that require the attention and expertise of subspecialists. In this review, we focus on hyperglycemia, which can occur with use of new anticancer agents that interact with cell proliferation pathways. Key mediators of these pathways include the tyrosine kinase receptors insulin growth factor receptor 1 (IGF-1R) and epidermal growth factor receptor (EGFR), as well as intracellular signaling molecules phosphatidylinositol 3-kinase (PI3K), AKT, and mammalian target of rapamycin (mTOR). We summarize available information on hyperglycemia associated with agents that inhibit these molecules within the larger context of adverse event profiles. The highest incidence of hyperglycemia is observed with inhibition of IGF-1R or mTOR, and although the incidence is lower with PI3K, AKT, and EGFR inhibitors, hyperglycemia is still a common adverse event. Given the interrelationships between the IGF-1R and cell proliferation pathways, it is important for oncologists to understand the etiology of hyperglycemia caused by anticancer agents that target those pathways. We also discuss monitoring and management approaches for treatment-related hyperglycemia for some of these agents, with a focus on our experience during the clinical development of the EGFR inhibitor rociletinib. Treatment-related hyperglycemia is associated with several anticancer agents. Many cancer patients may also have preexisting or undiagnosed diabetes or glucose intolerance. Screening can identify patients at risk for hyperglycemia before treatment with these agents. Proper monitoring and management of symptoms, including lifestyle changes and pharmacologic intervention, may allow patients to continue benefiting from use of anticancer agents. ©AlphaMed Press.

  16. Polymeric micelles for multi-drug delivery in cancer.

    PubMed

    Cho, Hyunah; Lai, Tsz Chung; Tomoda, Keishiro; Kwon, Glen S

    2015-02-01

    Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that "prime" solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.

  17. Cytotoxicity Testing: Cell Experiments

    NASA Astrophysics Data System (ADS)

    Grünert, Renate; Westendorf, Aron; Buczkowska, Magdalena; Hänsch, Mareike; Grüunert, Sybil; Bednarski, Patrick J.

    Screening for new anticancer agents has traditionally been done with in vitro cell culture methods. Even in the genomic era of target-driven drug design, screening for cytotoxic activity is still a standard tool in the search for new anticancer agents, especially if the mode of action of a substance is not yet known. A wide variety of cell culture methods with unique end-points are available for testing the anticancer potential of a substance. Each has its advantages and disadvantages, which must be weighed in the decision to use a particular method. Often several complementary methods are used to gain information on the mode of action of a substance.

  18. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-06-19

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  19. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment.

    PubMed

    Puccinelli, Michael T; Stan, Silvia D

    2017-07-28

    Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS), a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent.

  20. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment

    PubMed Central

    Puccinelli, Michael T.; Stan, Silvia D.

    2017-01-01

    Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS), a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent. PMID:28788092

  1. An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents.

    PubMed

    Matzno, Sumio; Yamaguchi, Yuka; Akiyoshi, Takeshi; Nakabayashi, Toshikatsu; Matsuyama, Kenji

    2008-06-01

    The possibility of vitamin K3 (VK3) as an anticancer agent was assessed. VK3 dose-dependently diminished the cell viability (measured as esterase activity) with IC50 of 13.7 microM and Hill coefficient of 3.1 in Hep G2 cells. It also decreased the population of S phase and arrested cell cycle in the G2/M phase in a dose-dependent manner. G2/M arrest was regulated by the increment of cyclin A/cdk1 and cyclin A/cdk2 complex, and contrasting cyclin B/cdk1 complex decrease. Finally, combined application demonstrated that VK3 significantly enhanced the cytotoxicity of etoposide, a G2 phase-dependent anticancer agent, whereas it reduced the cytotoxic activity of irinotecan, a S phase-dependent agent. These findings suggest that VK3 induces G2/M arrest by inhibition of cyclin B/cdk1 complex formation, and is thus useful as an enhancer of G2 phase-dependent drugs in hepatic cancer chemotherapy.

  2. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities.

    PubMed

    Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O

    2016-08-08

    G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  4. Polyether ionophores-promising bioactive molecules for cancer therapy.

    PubMed

    Huczyński, Adam

    2012-12-01

    The natural polyether ionophore antibiotics might be important chemotherapeutic agents for the treatment of cancer. In this article, the pharmacology and anticancer activity of the polyether ionophores undergoing pre-clinical evaluation are reviewed. Most of polyether ionophores have shown potent activity against the proliferation of various cancer cells, including those that display multidrug resistance (MDR) and cancer stem cells (CSC). The mechanism underlying the anticancer activity of ionophore agents can be related to their ability to form complexes with metal cations and transport them across cellular and subcellular membranes. Increasing evidence shows that the anticancer activity of polyether ionophores may be a consequence of the induction of apoptosis leading to apoptotic cell death, arresting cell cycle progression, induction of the cell oxidative stress, loss of mitochondrial membrane potential, reversion of MDR, synergistic anticancer effect with other anticancer drugs, etc. Continued investigation of the mechanisms of action and development of new polyether ionophores and their derivatives may provide more effective therapeutic drugs for cancer treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. New perspectives of cobalt tris(bipyridine) system: anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers

    PubMed Central

    Mok, Simon Wing Fai; Liu, Hauwei; Zeng, Wu; Han, Yu; Gordillo-Martinez, Flora; Chan, Wai-Kit; Wong, Keith Man-Chung; Wong, Vincent Kam Wai

    2017-01-01

    Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1–6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies. PMID:28903398

  6. Cancer Treatment Using Peptides: Current Therapies and Future Prospects

    PubMed Central

    Thundimadathil, Jyothi

    2012-01-01

    This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field. PMID:23316341

  7. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance.

    PubMed

    Kwatra, Deep; Venugopal, Anand; Standing, David; Ponnurangam, Sivapriya; Dhar, Animesh; Mitra, Ashim; Anant, Shrikant

    2013-12-01

    Recently, we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells toward DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2, and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Dihydroartemisinin sensitizes Lewis lung carcinoma cells to carboplatin therapy via p38 mitogen-activated protein kinase activation

    PubMed Central

    Zhang, Bicheng; Zhang, Zhimin; Wang, Jun; Yang, Bo; Zhao, Yong; Rao, Zhiguo; Gao, Jianfei

    2018-01-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua, is an effective novel antimalarial agent. Studies have suggested that it also exhibits anticancer effects when administered alone or in combination with conventional chemotherapeutic agents. The present study investigated the therapeutic effect of DHA combined with carboplatin (CBP) on Lewis lung carcinoma (LLC) cells and the possible underlying molecular mechanisms. MTT and clonogenic assays demonstrated that the proliferation activity of LLC cells was inhibited in a dose-dependent manner by DHA combined with CBP. In addition, flow cytometry analysis revealed that cell cycle arrest was induced at the G0/G1 phase and apoptosis was induced following treatment with the combination. When administered in combination with CBP, DHA exhibited more effective anticancer activity compared with DHA or CBP used alone, via increased apoptosis. Following treatment with DHA with or without CBP, the expression of phosphorylated-p38 mitogen-activated protein kinase (MAPK), which can be inhibited with the selective inhibitor SB202190, was detected by western blotting. To summarize, the results of the present study indicated that DHA may sensitize LLC cells to CBP therapy via the activation of p38MAPK, which suggests that a combined treatment of DHA and CBP may be a potential novel therapeutic schedule for lung adenocarcinoma. PMID:29740482

  9. Anti-Cancer Drug Delivery Using Carbohydrate-Based Polymers.

    PubMed

    Ranjbari, Javad; Mokhtarzadeh, Ahad; Alibakhshi, Abbas; Tabarzad, Maryam; Hejazi, Maryam; Ramezani, Mohammad

    2018-02-12

    Polymeric drug delivery systems in the form of nanocarriers are the most interesting vehicles in anticancer therapy. Among different types of biocompatible polymers, carbohydrate-based polymers or polysaccharides are the most common natural polymers with complex structures consisting of long chains of monosaccharide or disaccharide units bound by glycosidic linkages. Their appealing properties such as availability, biocompatibility, biodegradability, low toxicity, high chemical reactivity, facile chemical modification and low cost led to their extensive applications in biomedical and pharmaceutical fields including development of nano-vehicles for delivery of anti-cancer therapeutic agents. Generally, reducing systemic toxicity, increasing short half-lives and tumor localization of agents are the top priorities for a successful cancer therapy. Polysaccharide-based or - coated nanosystems with respect to their advantageous features as well as accumulation in tumor tissue due to enhanced permeation and retention (EPR) effect can provide promising carrier systems for the delivery of noblest impressive agents. Most challenging factor in cancer therapy was the toxicity of anti-cancer therapeutic agents for normal cells and therefore, targeted delivery of these drugs to the site of action can be considered as an interesting therapeutic strategy. In this regard, several polysaccharides exhibited selective affinity for specific cell types, and so they can act as a targeting agent in drug delivery systems. Accordingly, different aspects of polysaccharide applications in cancer treatment or diagnosis were reviewed in this paper. In this regard, after a brief introduction of polysaccharide structure and its importance, the pharmaceutical usage of carbohydrate-based polymers was considered according to the identity of accompanying active pharmaceutical agents. It was also presented that the carbohydrate based polymers have been extensively considered as promising materials in the design of efficient nanocarriers for anti-cancer biopharmaceuticals including peptide and proteins or nucleic acid-based therapeutics. Then, the importance of various polysaccharide co-polymers in the drug delivery approaches was illustrated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    PubMed Central

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  11. Combination therapy in combating cancer

    PubMed Central

    Mokhtari, Reza Bayat; Homayouni, Tina S.; Baluch, Narges; Morgatskaya, Evgeniya; Kumar, Sushil; Das, Bikul; Yeger, Herman

    2017-01-01

    Combination therapy, a treatment modality that combines two or more therapeutic agents, is a cornerstone of cancer therapy. The amalgamation of anti-cancer drugs enhances efficacy compared to the mono-therapy approach because it targets key pathways in a characteristically synergistic or an additive manner. This approach potentially reduces drug resistance, while simultaneously providing therapeutic anti-cancer benefits, such as reducing tumour growth and metastatic potential, arresting mitotically active cells, reducing cancer stem cell populations, and inducing apoptosis. The 5-year survival rates for most metastatic cancers are still quite low, and the process of developing a new anti-cancer drug is costly and extremely time-consuming. Therefore, new strategies that target the survival pathways that provide efficient and effective results at an affordable cost are being considered. One such approach incorporates repurposing therapeutic agents initially used for the treatment of different diseases other than cancer. This approach is effective primarily when the FDA-approved agent targets similar pathways found in cancer. Because one of the drugs used in combination therapy is already FDA-approved, overall costs of combination therapy research are reduced. This increases cost efficiency of therapy, thereby benefiting the “medically underserved”. In addition, an approach that combines repurposed pharmaceutical agents with other therapeutics has shown promising results in mitigating tumour burden. In this systematic review, we discuss important pathways commonly targeted in cancer therapy. Furthermore, we also review important repurposed or primary anti-cancer agents that have gained popularity in clinical trials and research since 2012. PMID:28410237

  12. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment

    DTIC Science & Technology

    2007-12-01

    used in detection, diagnosis, and treatment of cancer . When loaded with chemotherapeutic agents, nanoparticle delivery to cancerous tissues...Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment PRINCIPAL INVESTIGATOR: Colleen Feltmate, M.D. CONTRACTING ORGANIZATION...5a. CONTRACT NUMBER Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment 5b. GRANT NUMBER

  13. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes

    PubMed Central

    Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng

    2015-01-01

    We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138

  14. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities.

    PubMed

    Mocellin, Simone; Bronte, Vincenzo; Nitti, Donato

    2007-05-01

    Nitric oxide (NO) is a pleiotropic molecule critical to a number of physiological and pathological processes. The last decade has witnessed major advances in dissecting NO biology and its role in cancer pathogenesis. However, the complexity of the interactions between different levels of NO and several aspects of tumor development/progression has led to apparently conflicting findings. Furthermore, both anti-NO and NO-based anticancer strategies appear effective in several preclinical models. This paradoxical dichotomy is leaving investigators with a double challenge: to determine the net impact of NO on cancer behavior and to define the therapeutic role of NO-centered anticancer strategies. Only a comprehensive and dynamic view of the cascade of molecular and cellular events underlying tumor biology and affected by NO will allow investigators to exploit the potential antitumor properties of drugs interfering with NO metabolism. Available data suggest that NO should be considered neither a universal target nor a magic bullet, but rather a signal transducer to be modulated according to the molecular makeup of each individual cancer and the interplay with conventional antineoplastic agents. (c) 2006 Wiley Periodicals, Inc.

  15. Possible Anticancer Mechanisms of Some Costus speciosus Active Ingredients Concerning Drug Discovery.

    PubMed

    El-Far, Ali H; Badria, Faried A; Shaheen, Hazem M

    2016-01-01

    Costus speciosus is native to South East Asia, especially found in India, Srilanka, Indonesia and Malaysia. C. speciosus have numerous therapeutic potentials against a wide variety of complains. The therapeutic properties of C. speciosus are attributed to the presence of various ingredients such as alkaloids, flavonoids, glycosides, phenols, saponins, sterols and sesquiterpenes. This review presented the past, present, and the future status of C. speciosus active ingredients to propose a future use as a potential anticancer agent. All possible up-regulation of cellular apoptotic molecules as p53, p21, p27, caspases, reactive oxygen species (ROS) generation and others attribute to the anticancer activity of C. speciosus along the down-regulation of anti-apoptotic agents such as Akt, Bcl2, NFKB, STAT3, JAK, MMPs, actin, surviving and vimentin. Eventually, we recommend further investigation of different C. speciosus extracts, using some active ingredients and evaluate the anticancer effect of these chemicals against different cancers.

  16. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic.

    PubMed

    Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle

    2016-04-28

    Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold.

  17. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  18. Anticancer Activities of C18-, C19-, C20-, and Bis-Diterpenoid Alkaloids Derived from Genus Aconitum.

    PubMed

    Ren, Meng-Yue; Yu, Qing-Tian; Shi, Chun-Yu; Luo, Jia-Bo

    2017-02-13

    Cancer is one of the most common lethal diseases, and natural products have been extensively studied as anticancer agents considering their availability, low toxicity, and economic affordability. Plants belonging to the genus Aconitum have been widely used medically in many Asian countries since ancient times. These plants have been proven effective for treating several types of cancer, such as lung, stomach, and liver cancers. The main effective components of Aconitum plants are diterpenoid alkaloids-which are divided into C 18 -, C 19 -, C 20 -, and bis-diterpenoid alkaloids-are reportedly some of the most promising, naturally abundant compounds for treating cancer. This review focuses on the progress of diterpenoid alkaloids with different structures derived from Aconitum plants and some of their derivatives with potential anticancer activities. We hope that this work can serve as a reference for further developing Aconitum diterpenoid alkaloids as anticancer agents.

  19. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties.

    PubMed

    Al-Said, Mansour S; Ghorab, Mostafa M; Nissan, Yassin M

    2012-07-02

    Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3-19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  20. Improving the Efficacy of Anticancer Drugs via Encapsulation and Acoustic Release.

    PubMed

    Ahmed, Salma E; Awad, Nahid; Paul, Vinod; Moussa, Hesham G; Husseini, Ghaleb A

    2018-06-08

    Conventional chemotherapeutics lack the specificity and controllability, thus may poison healthy cells while attempting to kill cancerous ones. Newly developed nano-drug delivery systems have shown promise in delivering anti-tumor agents with enhanced stability, durability and overall performance; especially when used along with targeting and triggering techniques. This work traces back the history of chemotherapy, addressing the main challenges that have encouraged the medical researchers to seek a sanctuary in nanotechnological-based drug delivery systems that are grafted with appropriate targeting techniques and drug release mechanisms. A special focus will be paid towards acoustically triggered liposomes encapsulating doxorubicin. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments.

    PubMed

    Hatakeyama, Shinji; Summermatter, Serge; Jourdain, Marie; Melly, Stefan; Minetti, Giulia C; Lach-Trifilieff, Estelle

    2016-01-01

    Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time-to-progression. Anti-ActRII blockade is an effective intervention against cancer cachexia providing benefit even in the presence of anti-cancer therapies. Co-treatment comprising chemotherapies and ActRII inhibitors might constitute a promising new approach to alleviate chemotherapy- and cancer-related wasting conditions and extend survival rates in cachectic cancer patients.

  2. Newer cytotoxic agents: attacking cancer broadly.

    PubMed

    Teicher, Beverly A

    2008-03-15

    The plasticity and instability of the cancer genome is impressive and is characterized by gene amplifications and deletions, rearrangements, and many silent and active mutations. Although targeted therapeutics have had effect in some diseases, there remains a large role for new cytotoxic agents that have the potential to be broadly active across multiple cancers. Platinum-based regimens are the basis for treatment of several common tumors. Satraplatin and picoplatin are newer platinum complexes that form bulkier lesions in DNA than their forerunners. Microtubules are a key target for anticancer agents. Vinca alkaloid and similar compounds fragment these critical structures, whereas taxanes stabilize them. Vinflunine is a new fluorinated Vinca alkaloid derivative with vascular disrupting effects, as well as antitumor effects. Epothilones are a new class of microtubule stabilizers. Mitosis has been targeted directly and indirectly by many anticancer agents. The aurora kinases are new targets in this class. Inhibitors of aurora kinases are likely to be cytotoxic. Finally, protein regulation is essential for cellular integrity. With the approval of bortezomib (Velcade, PS-341), the proteosome, a master protein regulator, has been validated as an anticancer target. The five articles in this issue of CCR Focus present the current status of these next generation cytotoxic agents.

  3. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria.

    PubMed

    Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean

    2016-09-01

    The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

  4. Novel epigallocatechin gallate analogs as potential anticancer agents: a patent review (2009 – present)

    PubMed Central

    Landis-Piwowar, Kristin; Chen, Di; Foldes, Robert; Chan, Tak-Hang; Dou, Qing Ping

    2013-01-01

    Introduction Over the past three years numerous patents and patent applications have been published relating to scientific advances in the use of the green tea polyphenol epigallocatechin gallate (EGCG) (the most abundant, and bioactive compound in green tea) and its analogs as anticancer agents. EGCG affects multiple molecular targets involved in cancer cell proliferation and survival; however, polyphenolic catechins, such as EGCG, generally exhibit poor oral bioavailability. Since the anticancer activity of polyphenols largely depends on their susceptibility to biotransformation reactions, numerous EGCG derivatives, analogs and prodrugs have been designed to improve the stability, bioavailability and anticancer potency of the native compound. Areas covered This review focuses on the applications of EGCG and its analogs, derivatives and prodrugs in the prevention and treatment of human cancers. A comprehensive description of patents related to EGCG and its derivatives, analogs and prodrugs and their uses as anticancer agents is included. Expert opinion EGCG targets multiple essential survival proteins and pathways in human cancer cells. Because it is unstable physiologically, numerous alterations to the EGCG molecule have been patented, either to improve the integrity of the native compound or to generate a more stable yet similarly efficacious molecule. EGCG and its derivatives, analogs and prodrugs could be developed into future drugs for chemoprevention, chemosensitization, radiosensitization and/or cancer interception. PMID:23230990

  5. Mitochondrial Delivery of Doxorubicin Using MITO-Porter Kills Drug-Resistant Renal Cancer Cells via Mitochondrial Toxicity.

    PubMed

    Yamada, Yuma; Munechika, Reina; Kawamura, Eriko; Sakurai, Yu; Sato, Yusuke; Harashima, Hideyoshi

    2017-09-01

    Most anticancer drugs are intended to function in the nuclei of cancer cells. If an anticancer drug could be delivered to mitochondria, the source of cellular energy, this organelle would be destroyed, resulting in the arrest of the energy supply and the killing of the cancer cells. To achieve such an innovative strategy, a mitochondrial drug delivery system targeted to cancer cells will be required. We recently reported on the development of a MITO-Porter, a liposome for mitochondrial delivery. In this study, we validated the utility of such a cancer therapeutic strategy by delivering anticancer drugs directly to mitochondria. We succeeded in packaging doxorubicin (DOX) as a model cargo in MITO-Porter to produce a DOX-MITO-Porter. We evaluated cellular toxicity of OS-RC-2 cell, a type of DOX-resistant cancer cell, after delivering DOX to mitochondria using the MITO-Porter system. Cell viability was decreased by the DOX-MITO-Porter treatment, while cell viability was not decreased in the case of naked DOX and a conventional DOX liposomal formulation. We also found a relationship between cellular toxicity and mitochondrial toxicity. The use of a MITO-Porter system for mitochondrial delivery of a toxic agent represents a possible therapeutic strategy for treating drug-resistant cancers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Time-lapse imaging assay using the BioStation CT: A sensitive drug-screening method for three-dimensional cell culture

    PubMed Central

    Sakamoto, Ruriko; Rahman, M Mamunur; Shimomura, Manami; Itoh, Manabu; Nakatsura, Tetsuya

    2015-01-01

    Three-dimensional (3D) cell culture is beneficial for physiological studies of tumor cells, due to its potential to deliver a high quantity of cell culture information that is representative of the cancer microenvironment and predictive of drug responses in vivo. Currently, gel-associated or matrix-associated 3D cell culture is comprised of intricate procedures that often result in experimental complexity. Therefore, we developed an innovative anti-cancer drug sensitivity screening technique for 3D cell culture on NanoCulture Plates (NCP) by employing the imaging device BioStation CT. Here, we showed that the human breast cancer cell lines BT474 and T47D form multicellular spheroids on NCP plates and compared their sensitivity to the anti-cancer drugs trastuzumab and paclitaxel using the BioStation CT. The anticancer drugs reduced spheroid migration velocity and suppressed spheroid fusion. In addition, primary cells derived from the human breast cancer tissues B58 and B61 grown on NCP plates also exhibited similar drug sensitivity. These results were in good agreement with the conventional assay method using ATP quantification. We confirmed the antitumor effects of the drugs on cells seeded in 96-well plates using the BioStation CT imaging technique. We expect this method to be useful in research for new antitumor agents and for drug sensitivity tests in individually-tailored cancer treatments. PMID:25865675

  7. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles.

    PubMed

    Sato, Itaru; Umemura, Masanari; Mitsudo, Kenji; Fukumura, Hidenobu; Kim, Jeong-Hwan; Hoshino, Yujiro; Nakashima, Hideyuki; Kioi, Mitomu; Nakakaji, Rina; Sato, Motohiko; Fujita, Takayuki; Yokoyama, Utako; Okumura, Satoshi; Oshiro, Hisashi; Eguchi, Haruki; Tohnai, Iwai; Ishikawa, Yoshihiro

    2016-04-22

    We previously investigated the utility of μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)) nanoparticles as a new anti-cancer agent for magnet-guided delivery with anti-cancer activity. Fe(Salen) nanoparticles should rapidly heat up in an alternating magnetic field (AMF), and we hypothesized that these single-drug nanoparticles would be effective for combined hyperthermia-chemotherapy. Conventional hyperthermic particles are usually made of iron oxide, and thus cannot exhibit anti-cancer activity in the absence of an AMF. We found that Fe(Salen) nanoparticles induced apoptosis in cultured cancer cells, and that AMF exposure enhanced the apoptotic effect. Therefore, we evaluated the combined three-fold strategy, i.e., chemotherapy with Fe(Salen) nanoparticles, magnetically guided delivery of the nanoparticles to the tumor, and AMF-induced heating of the nanoparticles to induce local hyperthermia, in a rabbit model of tongue cancer. Intravenous administration of Fe(Salen) nanoparticles per se inhibited tumor growth before the other two modalities were applied. This inhibition was enhanced when a magnet was used to accumulate Fe(Salen) nanoparticles at the tongue. When an AMF was further applied (magnet-guided chemotherapy plus hyperthermia), the tumor masses were dramatically reduced. These results indicate that our strategy of combined hyperthermia-chemotherapy using Fe(Salen) nanoparticles specifically delivered with magnetic guidance represents a powerful new approach for cancer treatment.

  8. Enhancement of the Efficacy of Conventional Anticancer Compounds Through the Repression of SNAI Proteins in Aggressive Breast Cancer Cells

    DTIC Science & Technology

    2014-04-01

    conjugating enzymes . J. Biol. Chem. 270, 30408-30414. [66] Bertone-Johnson, E. R. (2009) Vitamin D and breast cancer . Ann. Epidemiol. 19, 462-467... cancer growth in a murine model of bone metastasis. Cancer Res. 70, 1835- 1844. 22 [68] Ohyama, Y., and Yamasaki, T. (2004) Eight cytochrome ...0697 TITLE: Enhancement of the efficacy of conventional anticancer compounds through the repression of SNAI proteins in aggressive breast cancer

  9. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    PubMed

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent.

    PubMed

    Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu

    2016-07-19

    The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.

  11. Fisetin Reduces Cell Viability Through Up-Regulation of Phosphorylation of ERK1/2 in Cholangiocarcinoma Cells.

    PubMed

    Kim, Nayoung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Jae Min; Kang, Min-Jung; Kim, Bo Hye; Lee, Jung-Su; Ryu, Ji Kon; Kim, Yong-Tae

    2016-11-01

    Cholangiocarcinoma (CCA) is a malignancy with poor prognosis and limited therapeutic options. Effective prevention and treatment of CCA require developing novel anticancer agents and improved therapeutic regimens. As natural products are concidered a rich source of potential anticancer agents, we investigated the anticancer effect of fisetin in combination with gemcitabine. Cytotoxic effect of fisetin and gemcitabine on a human CCA cell line SNU-308 was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis assay using propidium iodine and annexin V. Molecular mechanisms of fisetin action in CCA were investigated by western blotting. Fisetin was found to inhibit survival of CCA cells, through strongly phosphorylating ERK. It also induced cellular apoptosis additively in combination with gemcitabine. Expression of cellular proliferative markers, such as phospho-p65 and myelocytomatosis (MYC), were reduced by fisetin. These results suggest fisetin in combination with gemcitabine as a candidate for use in improved anticancer regimens. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Inner conflict in patients receiving oral anticancer agents: a qualitative study.

    PubMed

    Yagasaki, Kaori; Komatsu, Hiroko; Takahashi, Tsunehiro

    2015-04-14

    To explore the experiences of patients receiving oral anticancer agents. A qualitative study using semistructured interviews with a grounded theory approach. A university hospital in Japan. 14 patients with gastric cancer who managed their cancer with oral anticancer agents. Patients with cancer experienced inner conflict between rational belief and emotional resistance to taking medication due to confrontation with cancer, doubt regarding efficacy and concerns over potential harm attached to use of the agent. Although they perceived themselves as being adherent to medication, they reported partial non-adherent behaviours. The patients reassessed their lives through the experience of inner conflict and, ultimately, they recognised their role in medication therapy. Patients with cancer experienced inner conflict, in which considerable emotional resistance to taking their medication affected their occasional non-adherent behaviours. In patient-centred care, it is imperative that healthcare providers understand patients' inner conflict and inconsistency between their subjective view and behaviour to support patient adherence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones.

    PubMed

    Raghavendra, Nulgulmnalli M; Thampi, Parameshwaran; Gurubasavarajaswamy, Purvarga M; Sriram, Dharmarajan

    2007-12-01

    Some novel substituted-3-{[(1E)-(substituted-2-furyl)-methylene]amino}quinazolin-4(3H)-one (5, 6, 7) a-f were synthesized by a multi-step process. These synthesized compounds are characterized by various spectroscopic techniques and evaluated for their antitubercular and anticancer activities. Biological activity indicated that some of the title compounds are potent antitubercular and anticancer agents.

  14. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature.

    PubMed

    Negi, Beena; Kumar, Deepak; Rawat, Diwan S

    2017-01-01

    In the search of bioactive molecules, nature has always been an important source and most of the drugs in clinic are either natural products or derived from natural products. The ocean has played significant role as thousands of molecules and their metabolites with different types of biological activity such as antimicrobial, anti-inflammatory, anti-malarial, antioxidant, anti HIV and anticancer activity have been isolated from marine organisms. In particular, marine peptides have attracted much attention due to their high specificity against cancer cell lines that may be attributed to the various unusual amino acid residues and their sequences in the peptide chain. This review aims to identify the various anticancer agents isolated from the marine system and their anticancer potential. We did literature search for the anticancer peptides isolated from the different types of microorganism found in the marine system. Total one eighty eight papers were reviewed concisely and most of the important information from these papers were extracted and kept in the present manuscript. This review gives details about the isolation, anticancer potential and mechanism of action of the anticancer peptides of the marine origin. Many of these molecules such as aplidine, dolastatin 10, didemnin B, kahalalide F, elisidepsin (PM02734) are in clinical trials for the treatment of various cancers. With the interdisciplinary and collaborative research and technical advancements we can search more promising and affordable anticancer drugs in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    PubMed Central

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose–response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies. PMID:17576437

  16. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs.

    PubMed

    Kim, Kyoung-Ran; Kim, Hyo Young; Lee, Yong-Deok; Ha, Jong Seong; Kang, Ji Hee; Jeong, Hansaem; Bang, Duhee; Ko, Young Tag; Kim, Sehoon; Lee, Hyukjin; Ahn, Dae-Ro

    2016-12-10

    Nanoparticle delivery systems have been extensively investigated for targeted delivery of anticancer drugs over the past decades. However, it is still a great challenge to overcome the drawbacks of conventional nanoparticle systems such as liposomes and micelles. Various novel nanomaterials consist of natural polymers are proposed to enhance the therapeutic efficacy of anticancer drugs. Among them, deoxyribonucleic acid (DNA) has received much attention as an emerging material for preparation of self-assembled nanostructures with precise control of size and shape for tailored uses. In this study, self-assembled mirror DNA tetrahedron nanostructures is developed for tumor-specific delivery of anticancer drugs. l-DNA, a mirror form of natural d-DNA, is utilized for resolving a poor serum stability of natural d-DNA. The mirror DNA nanostructures show identical thermodynamic properties to that of natural d-DNA, while possessing far enhanced serum stability. This unique characteristic results in a significant effect on the pharmacokinetics and biodistribution of DNA nanostructures. It is demonstrated that the mirror DNA nanostructures can deliver anticancer drugs selectively to tumors with enhanced cellular and tissue penetration. Furthermore, the mirror DNA nanostructures show greater anticancer effects as compared to that of conventional PEGylated liposomes. Our new approach provides an alternative strategy for tumor-specific delivery of anticancer drugs and highlights the promising potential of the mirror DNA nanostructures as a novel drug delivery platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer

    PubMed Central

    Crombag, Marie-Rose B.S.; Joerger, Markus; Thürlimann, Beat; Schellens, Jan H.M.; Beijnen, Jos H.; Huitema, Alwin D.R.

    2016-01-01

    Background: Elderly patients receiving anticancer drugs may have an increased risk to develop treatment-related toxicities compared to their younger peers. However, a potential pharmacokinetic (PK) basis for this increased risk has not consistently been established yet. Therefore, the objective of this study was to systematically review the influence of age on the PK of anticancer agents frequently administered to elderly breast cancer patients. Methods: A literature search was performed using the PubMed electronic database, Summary of Product Characteristics (SmPC) and available drug approval reviews, as published by EMA and FDA. Publications that describe age-related PK profiles of selected anticancer drugs against breast cancer, excluding endocrine compounds, were selected and included. Results: This review presents an overview of the available data that describe the influence of increasing age on the PK of selected anticancer drugs used for the treatment of breast cancer. Conclusions: Selected published data revealed differences in the effect and magnitude of increasing age on the PK of several anticancer drugs. There may be clinically-relevant, age-related PK differences for anthracyclines and platina agents. In the majority of cases, age is not a good surrogate marker for anticancer drug PK, and the physiological state of the individual patient may better be approached by looking at organ function, Charlson Comorbidity Score or geriatric functional assessment. PMID:26729170

  18. Development of a gene expression database and related analysis programs for evaluation of anticancer compounds.

    PubMed

    Ushijima, Masaru; Mashima, Tetsuo; Tomida, Akihiro; Dan, Shingo; Saito, Sakae; Furuno, Aki; Tsukahara, Satomi; Seimiya, Hiroyuki; Yamori, Takao; Matsuura, Masaaki

    2013-03-01

    Genome-wide transcriptional expression analysis is a powerful strategy for characterizing the biological activity of anticancer compounds. It is often instructive to identify gene sets involved in the activity of a given drug compound for comparison with different compounds. Currently, however, there is no comprehensive gene expression database and related application system that is; (i) specialized in anticancer agents; (ii) easy to use; and (iii) open to the public. To develop a public gene expression database of antitumor agents, we first examined gene expression profiles in human cancer cells after exposure to 35 compounds including 25 clinically used anticancer agents. Gene signatures were extracted that were classified as upregulated or downregulated after exposure to the drug. Hierarchical clustering showed that drugs with similar mechanisms of action, such as genotoxic drugs, were clustered. Connectivity map analysis further revealed that our gene signature data reflected modes of action of the respective agents. Together with the database, we developed analysis programs that calculate scores for ranking changes in gene expression and for searching statistically significant pathways from the Kyoto Encyclopedia of Genes and Genomes database in order to analyze the datasets more easily. Our database and the analysis programs are available online at our website (http://scads.jfcr.or.jp/db/cs/). Using these systems, we successfully showed that proteasome inhibitors are selectively classified as endoplasmic reticulum stress inducers and induce atypical endoplasmic reticulum stress. Thus, our public access database and related analysis programs constitute a set of efficient tools to evaluate the mode of action of novel compounds and identify promising anticancer lead compounds. © 2012 Japanese Cancer Association.

  19. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition.

    PubMed

    Kosic, Milica; Arsikin-Csordas, Katarina; Paunovic, Verica; Firestone, Raymond A; Ristic, Biljana; Mircic, Aleksandar; Petricevic, Sasa; Bosnjak, Mihajlo; Zogovic, Nevena; Mandic, Milos; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2016-10-28

    We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Characterization, catalyzed water oxidation and anticancer activities of a NIR BODIPY-Mn polymer

    NASA Astrophysics Data System (ADS)

    Lan, Ya-Quan; Xiao, Ke-Jing; Wu, Yun-Jie; Chen, Qiu-Yun

    2017-04-01

    To obtain near-IR absorbing biomaterials as fluorescence cellular imaging and anticancer agents for hypoxic cancer cell, a nano NIR fluorescence Mn(III/IV) polymer (PMnD) was spectroscopically characterized. The PMnD shows strong emission at 661 nm when excited with 643 nm. Furthermore, PMnD can catalyze water oxidation to generate dioxygen when irradiated by red LED light (10 W). In particular, the PMnD can enter into HepG-2 cells and mitochondria. Both anticancer activity and the inhibition of the expression of HIF-1α for PMnD were concentration dependent. Our results demonstrate that PMnD can be developed as mitochondria targeted imaging agents and new inhibitors for HIF-1 in hypoxic cancer cells.

  1. Resveratrol as an anti-cancer agent: A review.

    PubMed

    Rauf, Abdur; Imran, Muhammad; Butt, Masood Sadiq; Nadeem, Muhammad; Peters, Dennis G; Mubarak, Mohammad S

    2018-06-13

    Owing to their antimicrobial, antioxidant, and anti-inflammatory activity, grapes (Vitis vinifera L.) are the archetypal paradigms of fruits used not only for nutritional purposes, but also for exclusive therapeutics. Grapes are a prominent and promising source of phytochemicals, especially resveratrol, a phytoalexin antioxidant found in red grapes which has both chemopreventive and therapeutic effects against various ailments. Resveratrol's role in reducing different human cancers, including breast, cervical, uterine, blood, kidney, liver, eye, bladder, thyroid, esophageal, prostate, brain, lung, skin, gastric, colon, head and neck, bone, ovarian, and cervical, has been reviewed. This review covers the literature that deals with the anti-cancer mechanism of resveratrol with special reference to antioxidant potential. Furthermore, this article summarizes the literature pertaining to resveratrol as an anti-cancer agent.

  2. Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro-aza-Michael//aza-Michael Isomerizations.

    PubMed

    Tsai, Yi-Hsuan; Borini Etichetti, Carla M; Di Benedetto, Carolina; Girardini, Javier E; Martins, Felipe Terra; Spanevello, Rolando A; Suárez, Alejandra G; Sarotti, Ariel M

    2018-04-06

    The design and synthesis of biomass-derived triazoles and the in vitro evaluation as potential anticancer agents are described. The discovery of base-catalyzed retro-aza-Michael//aza-Michael isomerizations allowed the exploration of the chemical space by affording novel types of triazoles, difficult to obtain otherwise. Following this strategy, 2,4-disubstituted 1,2,3-triazoles could be efficiently obtained from the corresponding 1,4-disubstituted analogues.

  3. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment

    DTIC Science & Technology

    2007-12-01

    diagnosis, and treatment of cancer . When loaded with chemotherapeutic agents, nanoparticle delivery to cancerous tissues relative to healthy tissues may be...Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment PRINCIPAL INVESTIGATOR: Colleen Feltmate, M.D...Anticancer Drugs in Ovarian Cancer Treatment 5b. GRANT NUMBER W81XWH-06-1-0177 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Colleen

  4. The role of arsenic in the hydrolysis and DNA metalation processes in an arsenous acid-platinum(ii) anticancer complex.

    PubMed

    Marino, T; Parise, A; Russo, N

    2017-01-04

    Platinum(ii)-based molecules are the most commonly used anticancer drugs in the chemotherapeutic treatment of tumours but possess serious side effects and some cancer types exhibit resistance with respect to these compounds (e.g. cisplatin). For these reasons, the research of new compounds that can bypass this limitation is in continuous development. Recently, mixed Pt(ii)-As(iii) systems have been synthesized and tested as potential anticancer agents. The mechanism of action of these kinds of drugs is unclear. Since in other platinum(ii) containing drugs, hydrolysis plays an important role in the activation of the compound before it reaches DNA, we have explored the aquation process using density functional theory (DFT), focusing our attention on the arsenoplatin complex, [Pt(μ-NHC(CH 3 )O) 2 ClAs(OH) 2 ]. As DNA is believed to be the cellular target for Pt anticancer drugs, the metalation mechanism of DNA purine bases has been also investigated. Also for this new drug it appears that guanine is the preferred site with respect to adenine as with other platinum-containing compounds. A comparison with cisplatin is performed in order to highlight the contribution of arsenic in the anticancer activity of this new proposed anticancer agent.

  5. From old alkylating agents to new minor groove binders.

    PubMed

    Puyo, Stéphane; Montaudon, Danièle; Pourquier, Philippe

    2014-01-01

    Alkylating agents represent the oldest class of anticancer agents with the approval of mechloretamine by the FDA in 1949. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in the treatment of specific malignancies, sometimes representing the unique option for the treatment of refractory tumors. Here, we are reviewing the major classes of alkylating agents, with a particular focus on the latest generations of compounds that specifically target the minor groove of the DNA. These naturally occurring derivatives have a unique mechanism of action that explains the recent regain of interest in developing new classes of alkylating agents that could be used in combination with other anticancer drugs to enhance tumor response in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides

    PubMed Central

    Kang, Hee Kyoung; Choi, Moon-Chang; Seo, Chang Ho; Park, Yoonkyung

    2018-01-01

    Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy. PMID:29558431

  7. TGF-β-independent CTGF induction regulates cell adhesion mediated drug resistance by increasing collagen I in HCC.

    PubMed

    Song, Yeonhwa; Kim, Jin-Sun; Choi, Eun Kyung; Kim, Joon; Kim, Kang Mo; Seo, Haeng Ran

    2017-03-28

    Hepatocellular carcinoma (HCC) is resistant to conventional chemotherapeutic agents and remains an unmet medical need. Here, we demonstrate a mechanism of cell adhesion-mediated drug resistance using a variety of HCC spheroid models to overcome environment-mediated drug resistance in HCC. We classified spheroids into two groups, tightly compacted and loosely compacted aggregates, based on investigation of dynamics of spheroid formation. Our results show that compactness of HCC spheroids correlated with fibroblast-like characteristics, collagen 1A1 (COL1A1) content, and capacity for chemoresistance. We also showed that ablation of COL1A1 attenuated not only the capacity for compact-spheroid formation, but also chemoresistance. Generally, connective tissue growth factor (CTGF) acts downstream of transforming growth factor (TGF)-β and promotes collagen I fiber deposition in the tumor microenvironment. Importantly, we found that TGF-β-independent CTGF is upregulated and regulates cell adhesion-mediated drug resistance by inducing COL1A1 in tightly compacted HCC spheroids. Furthermore, losartan, which inhibits collagen I synthesis, impaired the compactness of spheroids via disruption of cell-cell contacts and increased the efficacy of anticancer therapeutics in HCC cell line- and HCC patient-derived tumor spheroids. These results strongly suggest functional roles for CTGF-induced collagen I expression in formation of compact spheroids and in evading anticancer therapies in HCC, and suggest that losartan, administered in combination with conventional chemotherapy, might be an effective treatment for liver cancer.

  8. Extemporaneous compounding of oral liquid dosage formulations and alternative drug delivery methods for anticancer drugs.

    PubMed

    Lam, Masha S H

    2011-02-01

    Oncology pharmacists face a constant challenge with patients who cannot swallow oral anticancer drugs, making extemporaneous oral liquid preparation a requirement. Improper extemporaneous preparation of these agents, especially with the traditional chemotherapy with a narrow therapeutic index, may increase the risk of over- or underdosing. In community pharmacies, multiple barriers exist that prevent these pharmacies from preparing extemporaneous oral anticancer drug formulations for a patient's use at home. In a home setting, patients or caregivers without proper counseling and education on how to safely handle chemotherapy are at increased risk for exposure to these drugs. Based on a review of the literature, compounding recipes are available for 46% of oral anticancer agents. A paucity of data exists on dose uniformity, bioequivalence, and stability of extemporaneous oral liquid formulations of anticancer drugs. Pharmacists must have an understanding of the basic scientific principles that are an essential foundation for the proper preparation of extemporaneous oral anticancer liquid formulations. The collaborative effort of a multidisciplinary team can also help identify different barriers in the community setting, especially in areas where community pharmacies may lack resources for the extemporaneous compounding of oral chemotherapy, and to find ways to coordinate better pharmaceutical care. There are great opportunities for oncology pharmacists, as well as community pharmacists, as a resource for educating and monitoring patients receiving oral chemotherapy to ensure dosing accuracy, safe administration, and proper disposal of hazardous drugs. Development of national guidelines to promote standards of practice in the community and/or home setting is urgently needed to help improve the safety of dispensing and handling oral chemotherapeutic agents, including extemporaneously compounded oral liquid formulations of these drugs.

  9. Clopidogrel in a combined therapy with anticancer drugs—effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models

    PubMed Central

    Denslow, Agnieszka; Świtalska, Marta; Jarosz, Joanna; Papiernik, Diana; Porshneva, Kseniia; Nowak, Marcin

    2017-01-01

    Clopidogrel, a thienopyridine derivative with antiplatelet activity, is widely prescribed for patients with cardiovascular diseases. In addition to antiplatelet activity, antiplatelet agents possess anticancer and antimetastatic properties. Contrary to this, results of some studies have suggested that the use of clopidogrel and other thienopyridines accelerates the progression of breast, colorectal, and prostate cancer. Therefore, in this study, we aimed to evaluate the efficacy of clopidogrel and various anticancer agents as a combined treatment using mouse models of breast, colorectal, and prostate cancer. Metastatic dissemination, selected parameters of platelet morphology and biochemistry, as well as angiogenesis were assessed. In addition, body weight, blood morphology, and biochemistry were evaluated to test toxicity of the studied compounds. According to the results, clopidogrel increased antitumor and/or antimetastatic activity of chemotherapeutics such as 5-fluorouracil, cyclophosphamide, and mitoxantrone, whereas it decreased the anticancer activity of doxorubicin, cisplatin, and tamoxifen. The mechanisms of such divergent activities may be based on the modulation of tumor vasculature via factors, such as transforming growth factor β1 released from platelets. Moreover, clopidogrel increased the toxicity of docetaxel and protected against mitoxantrone-induced toxicity, which may be due to the modulation of hepatic enzymes and protection of the vasculature, respectively. These results demonstrate that antiplatelet agents can be useful but also dangerous in anticancer treatment and therefore use of thienopyridines in patients undergoing chemotherapy should be carefully evaluated. PMID:29206871

  10. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents.

    PubMed

    Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A

    2015-11-03

    In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  11. Honey and Cancer: Sustainable Inverse Relationship Particularly for Developing Nations—A Review

    PubMed Central

    Othman, Nor Hayati

    2012-01-01

    Honey and cancer has a sustainable inverse relationship. Carcinogenesis is a multistep process and has multifactorial causes. Among these are low immune status, chronic infection, chronic inflammation, chronic non healing ulcers, obesity, and so forth. There is now a sizeable evidence that honey is a natural immune booster, natural anti-inflammatory agent, natural antimicrobial agent, natural cancer “vaccine,” and natural promoter for healing chronic ulcers and wounds. Though honey has substances of which the most predominant is a mixture of sugars, which itself is thought to be carcinogenic, it is understandable that its beneficial effect as anticancer agent raises skeptics. The positive scientific evidence for anticancer properties of honey is growing. The mechanism on how honey has anticancer effect is an area of great interest. Among the mechanisms suggested are inhibition of cell proliferation, induction of apoptosis, and cell-cycle arrest. Honey and cancer has sustainable inverse relationship in the setting of developing nations where resources for cancer prevention and treatment are limited. PMID:22761637

  12. Nano-Phytosome: A Developing Platform for Herbal Anti-Cancer Agents in Cancer Therapy.

    PubMed

    Babazadeh, Afshin; Zeinali, Mahdi; Hamishehkar, Hamed

    2018-01-01

    Cancer is one of the main causes of death in the world. It has not yet been cured in an efficient manner and has remained a major challenge for current chemotherapy. This review summarizes the latest investigations regarding the possible application of phytosome complexes for cancer therapy, their formulation techniques, and mechanism of transportation through phytosome. Nanotechnology opened a pioneer field in cancer therapy by modifying significant properties of drugs and their carriers. Nanotechnology utilizes various nanostructures to transport anti-cancer agents to the site of action. The greater stability of nanophytosomes is due to formation of chemical links between phospholipid molecules and phytoactive agents. Among several new drug delivery systems, phytosomes depict an advanced technology to deliver phytoactive compounds to the target site of action, and at present, several phytosome formulations are in clinical use. Potential anti-cancer properties of phytoconstituents are enhanced by phytosomal formulations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Synthesis and Anti-cancer Activity of 3-substituted Benzoyl-4-substituted Phenyl-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin

    2017-01-01

    Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Improved breast cancer cell-specific intracellular drug delivery and therapeutic efficacy by coupling decoration with cell penetrating peptide and SP90 peptide.

    PubMed

    Fan, Li-Qiang; Du, Guo-Xiu; Li, Peng-Fei; Li, Ming-Wei; Sun, Yao; Zhao, Li-Ming

    2016-12-01

    Lack of satisfactory specificity towards tumor cells and poor intracellular delivery efficacy are the major drawbacks with conventional cancer chemotherapy. Conjugated anticancer drugs to targeting moieties e.g. to peptides with the ability to recognize cancer cells and to cell penetrating peptide can improve these characteristics, respectively. Combining a tumor homing peptide with an appropriate cell-penetrating peptide can enhance the tumor-selective internalization efficacy of the carrying cargo molecules. In the present study, the breast cancer homing ability of SP90 peptide and the synergistic effect of SP90 with a cell-penetrating peptide(C peptide) were evaluated. SP90 and chimeric peptide SP90-C specifically targeted cargo molecule into breast cancer cells, especially triple negative MDA-MB-231 cell, in a dose- and time-dependent manner, but not normal breast cells and other cancer cells, while C peptide alone had no cell-selectivity. SP90-C increased the intracellular delivery efficiency by 12-fold or 10-fold compared to SP90 or C peptide alone, respectively. SP90 and SP90-C conjugation increased the anti-proliferative and apoptosis-inducing activity of HIV-1 Vpr, a potential novel anticancer protein drug, to breast cancer cell but not normal breast cell by arresting cells in G2/M phase. With excellent breast cancer cell-selective penetrating efficacy, SP90-C appears as a promising candidate vector for targeted anti-cancer drug delivery. SP90-VPR-C is a potential novel breast cancer-targeted anticancer agent for its high anti-tumor activity and low toxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Potential Application of Curcumin and Its Analogues in the Treatment Strategy of Patients with Primary Epithelial Ovarian Cancer

    PubMed Central

    Terlikowska, Katarzyna M.; Witkowska, Anna M.; Zujko, Malgorzata E.; Dobrzycka, Bozena; Terlikowski, Slawomir J.

    2014-01-01

    Recent findings on the molecular basis of ovarian cancer development and progression create new opportunities to develop anticancer medications that would affect specific metabolic pathways and decrease side systemic toxicity of conventional treatment. Among new possibilities for cancer chemoprevention, much attention is paid to curcumin—A broad-spectrum anticancer polyphenolic derivative extracted from the rhizome of Curcuma longa L. According to ClinicalTrials.gov at present there are no running pilot studies, which could assess possible therapeutic benefits from curcumin supplementation to patients with primary epithelial ovarian cancer. Therefore, the goal of this review was to evaluate potential preclinical properties of curcumin and its new analogues on the basis of in vivo and in vitro ovarian cancer studies. Curcumin and its different formulations have been shown to display multifunctional mechanisms of anticancer activity, not only in platinum-resistant primary epithelial ovarian cancer, but also in multidrug resistant cancer cells/xenografts models. Curcumin administered together with platinum-taxane chemotherapeutics have been reported to demonstrate synergistic effects, sensitize resistant cells to drugs, and decrease their biologically effective doses. An accumulating body of evidence suggests that curcumin, due to its long-term safety and an excellent profile of side effects should be considered as a beneficial support in ovarian cancer treatment strategies, especially in patients with platinum-resistant primary epithelial recurrent ovarian cancer or multidrug resistant disease. Although the prospect of curcumin and its formulations as anticancer agents in ovarian cancer treatment strategy appears to be challenging, and at the same time promising, there is a further need to evaluate its effectiveness in clinical studies. PMID:25429431

  16. Potential application of curcumin and its analogues in the treatment strategy of patients with primary epithelial ovarian cancer.

    PubMed

    Terlikowska, Katarzyna M; Witkowska, Anna M; Zujko, Malgorzata E; Dobrzycka, Bozena; Terlikowski, Slawomir J

    2014-11-25

    Recent findings on the molecular basis of ovarian cancer development and progression create new opportunities to develop anticancer medications that would affect specific metabolic pathways and decrease side systemic toxicity of conventional treatment. Among new possibilities for cancer chemoprevention, much attention is paid to curcumin-A broad-spectrum anticancer polyphenolic derivative extracted from the rhizome of Curcuma longa L. According to ClinicalTrials.gov at present there are no running pilot studies, which could assess possible therapeutic benefits from curcumin supplementation to patients with primary epithelial ovarian cancer. Therefore, the goal of this review was to evaluate potential preclinical properties of curcumin and its new analogues on the basis of in vivo and in vitro ovarian cancer studies. Curcumin and its different formulations have been shown to display multifunctional mechanisms of anticancer activity, not only in platinum-resistant primary epithelial ovarian cancer, but also in multidrug resistant cancer cells/xenografts models. Curcumin administered together with platinum-taxane chemotherapeutics have been reported to demonstrate synergistic effects, sensitize resistant cells to drugs, and decrease their biologically effective doses. An accumulating body of evidence suggests that curcumin, due to its long-term safety and an excellent profile of side effects should be considered as a beneficial support in ovarian cancer treatment strategies, especially in patients with platinum-resistant primary epithelial recurrent ovarian cancer or multidrug resistant disease. Although the prospect of curcumin and its formulations as anticancer agents in ovarian cancer treatment strategy appears to be challenging, and at the same time promising, there is a further need to evaluate its effectiveness in clinical studies.

  17. Design and development of PEGylated liposomal formulation of HER2 blocker Lapatinib for enhanced anticancer activity and diminshed cardiotoxicity.

    PubMed

    Shrivastava, Richa; Trivedi, Shruti; Singh, Pankaj Kumar; Asif, Mohammad; Chourasia, Manish Kumar; Khanna, Amit; Bhadauria, Smrati

    2018-06-13

    Breast cancer is most frequently diagnosed cancer and fifth leading cause of death in women. About 20-30% of all breast cancers overexpress HER2/neu receptors. Lapatinib is a dual tyrosin kinase inhibitor of EGFR and HER2. It exhibits its anticancer effect via blocking intracellular domain of HER2 receptor in breast cancer. Lapatinib belongs to class II of BSC classification due to its poor solubility restricting its clinical application. Due to presence of HER2 receptor on cardiomyocytes, it is associated with generation of cardiotoxicity. The present study was aimed to design a PEGylated liposomal formulation of Lapatinib and evaluate its anticancer potential. Lapatinib liposomes were prepared using lipid layer hydration method and its characterization was done by determining its particle size, zeta potential, entrapment efficiency and in vitro release profiling. The anti-tumor activity of PEGylated liposomal formulation was evaluated in xenografted tumor induced by MDA-MB-453 breast cancer cells in chick embryos. The anti-tumor effect of lapatinib was enhanced by its PEGylated liposomal preparation as it led to the reduction in tumor size to a greater extent compared to the embryos treated with free lapatinib. Flowcytometric analysis and immunofluroscence study using cleaved PARP antibody demonstrated the enhaced apoptotic potential of PEGylated liposomes of lapatonib. SGOT levels, marker for cardiotoxicity and hepatotoxicity, significantly decreased in serum of embryos treated with PEGylated liposmes of lapatinib compared to free drug treated embryos. Hence, the PEGylated liposomal formulation of lapatininb can be used as a therapeutic strategy against HER2 positive breast cancer either alone or in combination with conventional anticancer agents and hormonal therapies. Copyright © 2018. Published by Elsevier Inc.

  18. Failures in Phase III: Causes and Consequences.

    PubMed

    Seruga, Bostjan; Ocana, Alberto; Amir, Eitan; Tannock, Ian F

    2015-10-15

    Phase III randomized controlled trials (RCT) in oncology fail to lead to registration of new therapies more often than RCTs in other medical disciplines. Most RCTs are sponsored by the pharmaceutical industry, which reflects industry's increasing responsibility in cancer drug development. Many preclinical models are unreliable for evaluation of new anticancer agents, and stronger evidence of biologic effect should be required before a new agent enters the clinical development pathway. Whenever possible, early-phase clinical trials should include pharmacodynamic studies to demonstrate that new agents inhibit their molecular targets and demonstrate substantial antitumor activity at tolerated doses in an enriched population of patients. Here, we review recent RCTs and found that these conditions were not met for most of the targeted anticancer agents, which failed in recent RCTs. Many recent phase III RCTs were initiated without sufficient evidence of activity from early-phase clinical trials. Because patients treated within such trials can be harmed, they should not be undertaken. The bar should also be raised when making decisions to proceed from phase II to III and from phase III to marketing approval. Many approved agents showed only better progression-free survival than standard treatment in phase III trials and were not shown to improve survival or its quality. Introduction of value-based pricing of new anticancer agents would dissuade the continued development of agents with borderline activity in early-phase clinical trials. When collaborating with industry, oncologists should be more critical and better advocates for cancer patients. ©2015 American Association for Cancer Research.

  19. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, A.; Konforte, D; Poduch, E

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro,more » 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.« less

  20. Withdrawal of anticancer therapy in advanced disease: a systematic literature review.

    PubMed

    Clarke, G; Johnston, S; Corrie, P; Kuhn, I; Barclay, S

    2015-11-11

    Current guidelines set out when to start anticancer treatments, but not when to stop as the end of life approaches. Conventional cytotoxic agents are administered intravenously and have major life-threatening toxicities. Newer drugs include molecular targeted agents (MTAs), in particular, small molecule kinase-inhibitors (KIs), which are administered orally. These have fewer life-threatening toxicities, and are increasingly used to palliate advanced cancer, generally offering additional months of survival benefit. MTAs are substantially more expensive, between £2-8 K per month, and perceived as easier to start than stop. A systematic review of decision-making concerning the withdrawal of anticancer drugs towards the end of life within clinical practice, with a particular focus on MTAs. Nine electronic databases searched. PRISMA guidelines followed. Forty-two studies included. How are decisions made? Decision-making was shared and ongoing, including stopping, starting and trying different treatments. Oncologists often experienced 'professional role dissonance' between their self-perception as 'treaters', and talking about end of life care. Why are decisions made? Clinical factors: disease progression, worsening functional status, treatment side-effects. Non-clinical factors: physicians' personal experience, values, emotions. Some patients continued treatment to maintain 'hope', often reflecting limited understanding of palliative goals. When are decisions made? Limited evidence reveals patients' decisions based upon quality of life benefits. Clinicians found timing withdrawal particularly challenging. Who makes the decisions? Decisions were based within physician-patient interaction. Oncologists report that decisions around stopping chemotherapy treatment are challenging, with limited evidence-based guidance outside of clinical trial protocols. The increasing availability of oral MTAs is transforming the management of incurable cancer; blurring boundaries between active treatment and palliative care. No studies specifically addressing decision-making around stopping MTAs in clinical practice were identified. There is a need to develop an evidence base to support physicians and patients with decision-making around the withdrawal of these high cost treatments.

  1. The continuing search for antitumor agents from higher plants

    PubMed Central

    Pan, Li; Chai, Heebyung; Kinghorn, A. Douglas

    2009-01-01

    Plant secondary metabolites and their semi-synthetic derivatives continue to play an important role in anticancer drug therapy. In this short review, selected single chemical entity antineoplastic agents from higher plants that are currently in clinical trials as cancer chemotherapy drug candidates are described. These compounds are representative of a wide structural diversity. In addition, the approaches taken toward the discovery of anticancer agents from tropical plants in the laboratory of the authors are summarized. The successful clinical utilization of cancer chemotherapeutic agents from higher plants has been evident for about half a century, and, when considered with the promising pipeline of new plant-derived compounds now in clinical trials, this augurs well for the continuation of drug discovery research efforts to elucidate additional candidate substances of this type. PMID:20228943

  2. Pro-necrotic Activity of Cationic Mastoparan Peptides in Human Glioblastoma Multiforme Cells Via Membranolytic Action.

    PubMed

    da Silva, Annielle Mendes Brito; Silva-Gonçalves, Laíz Costa; Oliveira, Fernando Augusto; Arcisio-Miranda, Manoel

    2018-07-01

    Glioblastoma multiforme is the most common and lethal malignant brain tumor. Because of its complexity and heterogeneity, this tumor has become resistant to conventional therapies and the available treatment produces multiple side effects. Here, using multiple experimental approaches, we demonstrate that three mastoparan peptides-Polybia-MP1, Mastoparan X, and HR1-from solitary wasp venom exhibit potent anticancer activity toward human glioblastoma multiforme cells. Importantly, the antiglioblastoma action of mastoparan peptides occurs by membranolytic activity, leading to necrosis. Our data also suggest a direct relation between mastoparan membranolytic potency and the presence of negatively charged phospholipids like phosphatidylserine. Collectively, these data may warrant additional studies for mastoparan peptides as new agents for the treatment of glioblastoma multiforme brain tumor.

  3. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents

    NASA Astrophysics Data System (ADS)

    Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa

    2018-04-01

    In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.

  4. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of Pharmacokinetic and Pharmacodynamic Analysis to the Development of Liposomal Formulations for Oncology

    PubMed Central

    Ait-Oudhia, Sihem; Mager, Donald E.; Straubinger, Robert M.

    2014-01-01

    Liposomal formulations of anticancer agents have been developed to prolong drug circulating lifetime, enhance anti-tumor efficacy by increasing tumor drug deposition, and reduce drug toxicity by avoiding critical normal tissues. Despite the clinical approval of numerous liposome-based chemotherapeutics, challenges remain in the development and clinical deployment of micro- and nano-particulate formulations, as well as combining these novel agents with conventional drugs and standard-of-care therapies. Factors requiring optimization include control of drug biodistribution, release rates of the encapsulated drug, and uptake by target cells. Quantitative mathematical modeling of formulation performance can provide an important tool for understanding drug transport, uptake, and disposition processes, as well as their role in therapeutic outcomes. This review identifies several relevant pharmacokinetic/pharmacodynamic models that incorporate key physical, biochemical, and physiological processes involved in delivery of oncology drugs by liposomal formulations. They capture observed data, lend insight into factors determining overall antitumor response, and in some cases, predict conditions for optimizing chemotherapy combinations that include nanoparticulate drug carriers. PMID:24647104

  6. Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients.

    PubMed

    Al-Dasooqi, Noor; Bowen, Joanne M; Gibson, Rachel J; Sullivan, Thomas; Lees, Jude; Keefe, Dorothy M

    2009-04-01

    To characterise the gastrointestinal toxicities associated with Trastuzumab administration in HER2-overexpressing breast cancer patients. All patients (n = 46) who received Trastuzumab as a single agent or in conjunction with conventional anti-cancer treatment within the Royal Adelaide Hospital Cancer Centre from 2002-2007 were included in this study. A retrospective analysis of case-notes was conducted to investigate the toxicities associated with Trastuzumab. Trastuzumab as a single agent induced toxicities following 22% of administrations. Gastrointestinal toxicities were observed following 12% of administrations and included nausea and vomiting, diarrhoea, abdominal pain and bloating. However, other prominent toxicities that were not related to the gastrointestinal tract were also observed including fatigue and lung symptoms (10.4%). Elderly patients (> or =60 years) and those with metastatic disease experienced the highest frequency of toxicity. Trastuzumab induces a range of gastrointestinal toxicities in HER2-overexpressing breast cancer patients. These toxicities are separate to those caused by concurrent chemotherapy and/or radiotherapy.

  7. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of therasnostic agents

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Nanoparticles have demonstrated great potential for enhancing drug delivery. However, the low drug encapsulation efficiency at high drug-to-nanoparticle feeding ratios and minimal drug loading content in nanoparticle at any feeding ratios are major hurdles to their widespread applications. Here we report a robust eukaryotic cell-like hybrid nanoplatform (EukaCell) for encapsulation of theranostic agents (doxorubicin and indocyanine green). The EukaCell consists of a phospholipid membrane, a cytoskeleton-like mesoporous silica matrix and a nucleus-like fullerene core. At high drug-to-nanoparticle feeding ratios (for example, 1:0.5), the encapsulation efficiency and loading content can be improved by 58 and 21 times, respectively, compared with conventional silica nanoparticles. Moreover, release of the encapsulated drug can be precisely controlled via dosing near infrared laser irradiation. Ultimately, the ultra-high (up to ~87%) loading content renders augmented anticancer capacity both in vitro and in vivo. Our EukaCell is valuable for drug delivery to fight against cancer and potentially other diseases.

  8. Biomedical potentials of crown ethers: prospective antitumor agents.

    PubMed

    Kralj, Marijeta; Tusek-Bozić, Ljerka; Frkanec, Leo

    2008-10-01

    Crown ethers are of enormous interest and importance in chemistry, biochemistry, materials science, catalysis, separation, transport and encapsulated processes, as well as in the design and synthesis of various synthetic systems with specific properties, diverse capabilities, and programmable functions. Classical crown ethers are macrocyclic polyethers that contain 3-20 oxygen atoms separated from each other by two or more carbon atoms. They are exceptionally versatile in selectively binding a range of metal ions and a variety of organic neutral and ionic species. Crown ethers are currently being studied and used in a variety of applications beyond their traditional place in chemistry. This review presents additional applications and the ever-increasing biomedical potentials of these intriguing compounds, with particular emphasis on the prospects of their relevance as anticancer agents. We believe that further research in this direction should be encouraged, as crown compounds could either induce toxicities that are different from those of conventional antitumor drugs, or complement drugs in current use, thereby providing a valuable adjunct to therapy.

  9. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  10. Tricaproin Isolated From Simarouba glauca Inhibits the Growth of Human Colorectal Carcinoma Cell Lines by Targeting Class-1 Histone Deacetylases

    PubMed Central

    Jose, Asha; Chaitanya, Motamari V. N. L.; Kannan, Elango; Madhunapantula, SubbaRao V.

    2018-01-01

    While anticancer properties of Simarouba glauca (SG, commonly known as Paradise tree) are well documented in ancient literature, the underlying mechanisms leading to cancer cell death begin to emerge very recently. The leaves of SG have been used as potential source of anticancer agents in traditional medicine. Recently attempts have been made to isolate anticancer agents from the leaves of SG using solvent extraction, which identified quassinoids as the molecules with tumoricidal activity. However, it is not known whether the anti-cancer potential of SG leaves is just because of quassinoids alone or any other phytochemicals also contribute for the potency of SG leaf extracts. Therefore, SG leaves were first extracted with hexane, chloroform, ethyl acetate, 70% ethanol, water and anti-cancer potential (for inhibiting colorectal cancer (CRC) cells HCT-116 and HCT-15 proliferation) determined using Sulforhodamine-B (SRB) assay. The chloroform fraction with maximal anticancer activity was further fractionated by activity-guided isolation procedure and structure of the most potent compound determined using spectral analysis. Analysis of the structural characterization data showed the presence of tricaproin (TCN). TCN inhibited CRC cells growth in a time- and dose dependent manner but not the normal cell line BEAS-2B. Mechanistically, TCN reduced oncogenic Class-I Histone deacetylases (HDACs) activity, followed by inducing apoptosis in cells. In conclusion, the anti-cancer potential of SG is in part due to the presence of TCN in the leaves. PMID:29593526

  11. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action.

    PubMed

    Voruganti, Sukesh; Qin, Jiang-Jiang; Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-08-28

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.

  12. Xanthones from Mangosteen Extracts as Natural Chemopreventive Agents: Potential Anticancer Drugs

    PubMed Central

    Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E.

    2011-01-01

    Despite decades of research, the treatment and management of malignant tumors still remain a formidable challenge for public health. New strategies for cancer treatment are being developed, and one of the most promising treatment strategies involves the application of chemopreventive agents. The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds. Xanthones, from the pericarp, whole fruit, heartwood, and leaf of mangosteen (Garcinia mangostana Linn., GML), are known to possess a wide spectrum of pharmacologic properties, including anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities. The potential chemopreventive and chemotherapeutic activities of xanthones have been demonstrated in different stages of carcinogenesis (initiation, promotion, and progression) and are known to control cell division and growth, apoptosis, inflammation, and metastasis. Multiple lines of evidence from numerous in vitro and in vivo studies have confirmed that xanthones inhibit proliferation of a wide range of human tumor cell types by modulating various targets and signaling transduction pathways. Here we provide a concise and comprehensive review of preclinical data and assess the observed anticancer effects of xanthones, supporting its remarkable potential as an anticancer agent. PMID:21902651

  13. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  14. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  15. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics

    PubMed Central

    Min, Hyun Su; You, Dong Gil; Son, Sejin; Jeon, Sangmin; Park, Jae Hyung; Lee, Seulki; Kwon, Ick Chan; Kim, Kwangmeyung

    2015-01-01

    Theranostic nanoparticles hold great promise for simultaneous diagnosis of diseases, targeted drug delivery with minimal toxicity, and monitoring of therapeutic efficacy. However, one of the current challenges in developing theranostic nanoparticles is enhancing the tumor-specific targeting of both imaging probes and anticancer agents. Herein, we report the development of tumor-homing echogenic glycol chitosan-based nanoparticles (Echo-CNPs) that concurrently execute cancer-targeted ultrasound (US) imaging and US-triggered drug delivery. To construct this novel Echo-CNPs, an anticancer drug and bioinert perfluoropentane (PFP), a US gas precursor, were simultaneously encapsulated into glycol chitosan nanoparticles using the oil in water (O/W) emulsion method. The resulting Echo-CNPs had a nano-sized particle structure, composing of hydrophobic anticancer drug/PFP inner cores and a hydrophilic glycol chitosan polymer outer shell. The Echo-CNPs had a favorable hydrodynamic size of 432 nm, which is entirely different from the micro-sized core-empty conventional microbubbles (1-10 μm). Furthermore, Echo-CNPs showed the prolonged echogenicity via the sustained microbubble formation process of liquid-phase PFP at the body temperature and they also presented a US-triggered drug release profile through the external US irradiation. Interestingly, Echo-CNPs exhibited significantly increased tumor-homing ability with lower non-specific uptake by other tissues in tumor-bearing mice through the nanoparticle's enhanced permeation and retention (EPR) effect. Conclusively, theranostic Echo-CNPs are highly useful for simultaneous cancer-targeting US imaging and US-triggered delivery in cancer theranostics. PMID:26681985

  16. Strain Analysis in the Assessment of a Mouse Model of Cardiotoxicity due to Chemotherapy: Sample for Preclinical Research.

    PubMed

    Rea, Domenica; Coppola, Carmela; Barbieri, Antonio; Monti, Maria Gaia; Misso, Gabriella; Palma, Giuseppe; Bimonte, Sabrina; Zarone, Mayra Rachele; Luciano, Antonio; Liccardo, Davide; Maiolino, Piera; Cittadini, Antonio; Ciliberto, Gennaro; Arra, Claudio; Maurea, Nicola

    2016-01-01

    In recent years, the development of more effective anticancer drugs has provided great benefits in patients' quality of life by improving both prognosis and disease-free survival. Nevertheless, the frequency and severity of side-effects, with particular reference to cardiac toxicity, have gained particular attention. The purpose of this study was to create a precise and sensitive preclinical model, able to identify early contractile dysfunction in mice treated with chemotherapy, through use of speckle-tracking echocardiography. We generated a mouse model of cardiotoxicity induced by doxorubicin. C57BL 6 mice were divided into two groups, treated for 7 days by intraperitoneal injections of placebo (vehicle) or doxorubicin (2.17 mg/kg), in order to characterize the cardiac phenotype in vivo. We demonstrated that doxorubicin caused ealy remodeling of the left ventricle: after two days of therapy, the radial, circumferential and strain rates were reduced respectively by 35%, 34%, and 39% (p-value ≤0.001). Moreover, histological analysis revealed that doxorubicin treatment increased fibrosis, cardiomyocyte diameter and apoptosis. In a murine model of doxorubicin-induced cardiac injury, we detected left ventricular dysfunction followed by alterations in conventional echocardiographic indices. Our study suggests that a change in strain could be an effective early marker of myocardial dysfunction for new anticancer treatments and, in preclinical studies, it might also be a valuable indicator for the assessment of activity of cardioprotective agents. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Binase and other microbial RNases as potential anticancer agents.

    PubMed

    Makarov, Alexander A; Kolchinsky, Alexander; Ilinskaya, Olga N

    2008-08-01

    Some RNases possess preferential cytotoxicity against malignant cells. The best known of these RNases, onconase, was isolated from frog oocytes and is in clinical trials as anticancer therapy. Here we propose an alternative platform for anticancer therapy based on T1 RNases of microbial origin, in particular binase from Bacillus intermedius and RNase Sa from Streptomyces aureofaciens. We discuss their advantages and the most promising directions of research for their potential clinical applications. (c) 2008 Wiley Periodicals, Inc.

  18. Osmium(VI) complexes as a new class of potential anti-cancer agents.

    PubMed

    Ni, Wen-Xiu; Man, Wai-Lun; Cheung, Myra Ting-Wai; Sun, Raymond Wai-Yin; Shu, Yuan-Lan; Lam, Yun-Wah; Che, Chi-Ming; Lau, Tai-Chu

    2011-02-21

    A nitridoosmium(VI) complex [Os(VI)(N)(sap)(OH(2))Cl] (H(2)sap = N-salicylidene-2-aminophenol) displays prominent in vitro and in vivo anti-cancer properties, induces S- and G2/M-phase arrest and forms a stable adduct with dianionic 5'-guanosine monophosphate.

  19. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action.

    PubMed

    Wong, Yin Kwan; Xu, Chengchao; Kalesh, Karunakaran A; He, Yingke; Lin, Qingsong; Wong, W S Fred; Shen, Han-Ming; Wang, Jigang

    2017-11-01

    Artemisinin and its derivatives (collectively termed as artemisinins) are among the most important and effective antimalarial drugs, with proven safety and efficacy in clinical use. Beyond their antimalarial effects, artemisinins have also been shown to possess selective anticancer properties, demonstrating cytotoxic effects against a wide range of cancer types both in vitro and in vivo. These effects appear to be mediated by artemisinin-induced changes in multiple signaling pathways, interfering simultaneously with multiple hallmarks of cancer. Great strides have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of artemisinin. Moreover, encouraging data have also been obtained from a limited number of clinical trials to support their anticancer property. However, there are several key gaps in knowledge that continue to serve as significant barriers to the repurposing of artemisinins as effective anticancer agents. This review focuses on important and emerging aspects of this field, highlighting breakthroughs in unresolved questions as well as novel techniques and approaches that have been taken in recent studies. We discuss the mechanism of artemisinin activation in cancer, novel and significant findings with regards to artemisinin target proteins and pathways, new understandings in artemisinin-induced cell death mechanisms, as well as the practical issues of repurposing artemisinin. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as safe and potent anticancer agents. © 2017 Wiley Periodicals, Inc.

  20. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment.

    PubMed

    Jain, Vikas; Jain, Shikha; Mahajan, S C

    2015-01-01

    Cancer is defined as an uncontrolled growth of abnormal cells. Current treatment strategies for cancer include combination of radiation, chemotherapy and surgery. The long-term use of conventional drug delivery systems for cancer chemotherapy leads to fatal damage of normal proliferate cells and this is particularly used for the management of solid tumors, where utmost tumor cells are not invaded quickly. A targeted drug delivery system (TDDS) is a system, which releases the drug at a preselected biosite in a controlled manner. Nanotechnology based delivery systems are making a significant impact on cancer treatment and the polymers play key role in the development of nanopraticlulate carriers for cancer therapy. Some important technological advantages of nanotherapeutic drug delivery systems (NDDS) include prolonged half-life, improved bio-distribution, increased circulation time of the drug, controlled and sustained release of the drug, versatility of route of administration, increased intercellular concentration of drug and many more. This review covers the current research on polymer based anticancer agents, the rationale for development of these polymer therapeutical systems and discusses the benefits and challenges of cancer nanomedicines including polymer-drug conjugates, micelles, dendrimers, immunoconjugates, liposomes, nanoparticles.

  1. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    PubMed

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Cold atmospheric plasma, a novel promising anti-cancer treatment modality.

    PubMed

    Yan, Dayun; Sherman, Jonathan H; Keidar, Michael

    2017-02-28

    Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.

  3. Current concepts for the combined treatment modality of ionizing radiation with anticancer agents.

    PubMed

    Oehler, Christoph; Dickinson, Daniel J; Broggini-Tenzer, Angela; Hofstetter, Barbara; Hollenstein, Andreas; Riesterer, Oliver; Vuong, Van; Pruschy, Martin

    2007-01-01

    In current applied radiobiology, there exists a tremendous effort in basic and translational research to identify novel treatment modalities combining ionizing radiation with anticancer agents. This is mainly due to the highly improved molecular understanding of intrinsic radioresistance and the profiling of cellular stress responses to irradiation during recent years. Ionizing radiation not only damages DNA but also affects multiple cellular components that induce a multi-layered stress response. The treatment responses can be restricted to the individual cell level but might also be part of an intercellular stress communication network. Both DNA damage-induced signaling (which results in cell cycle arrest and induction of the DNA-repair machinery) and also ionizing radiation-induced signal transduction cascades, which are generated at cellular sites distant from and independent of DNA-damage, represent interesting targets for anticancer treatment modalities to sensitize for ionizing radiation. Due to the lack of molecular knowledge classic radiobiology assembled the cellular and tissue responses into four groups (4 R's of radiotherapy) which describe biological factors influencing the treatment response to fractionated radiotherapy. These classic 4 R's are Repair, Reassortment, Repopulation and Reoxygenation. With the tremendous progress in molecular oncology we now begin to understand theses factors on the molecular level. At the same time this classification may guide modern molecular radiobiologists to identify novel pharmaceuticals and antisignaling agents which can modulate the treatment response to irradiation. In this review we describe current approaches to sensitize tumor cells with novel anticancer agents along the lines of these 4 R's.

  4. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549).

    PubMed

    Ullah, Sadeeq; Ahmad, Aftab; Wang, Aoke; Raza, Muslim; Jan, Amin Ullah; Tahir, Kamran; Rahman, Aziz Ur; Qipeng, Yuan

    2017-08-01

    Platinum based drugs are considered as effective agents against various types of carcinoma; however, the severe toxicity associated with the chemically prepared platinum complexes limit their practical applications. Similarly, water pollution caused by various organic moieties is another serious health problem worldwide. Hence, an intense need exists to develop new, effective and biocompatible materials with catalytic and biomedical applications. In the present contribution, we prepared platinum nanoparticles (PtNPs) by a green route using phytochemicals as a source of reducing and stabilizing agents. Well dispersed and crystalline PtNPs of spherical shapes were prepared and characterized. The bio-fabricated PtNPs were used as catalyst and anticancer agents. Catalytic performance of the PtNPs showed that 84% of the methylene blue can be reduced in 32min under visible light irradiation (K=0.078min -1 ). Similarly the catalytic conversion of 4-nitrophenol to 4-aminophenol was achieved in <20min (K=0.124min -1 ). The in vitro anticancer study revealed that biogenic PtNPs are the efficient nano-agents possessing strong anticancer activity against the lungs cancer cells line (A549). Interestingly, the as prepared PtNPs were well tolerated by normal human cells, and therefore, could be effective and biocompatible agents in the treatment of different cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.

    PubMed

    Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas

    2017-09-01

    The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.

  6. Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles.

    PubMed

    Selvaraj, V; Grace, A Nirmala; Alagar, M; Hamerton, I

    2010-04-01

    Synthesis of thioguanine (TG)-capped Au nanoparticles (Au@TG) and their enhanced in vitro antimicrobial and anticancer efficacy against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Aspergillus fumigatus, Aspergillus niger and Hep2 cancer cell (Human epidermiod cell) have been reported. The nature of binding between 6-TG and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The present experimental studies suggests that Au@TG are more potential than TG towards antimicrobial and anticancer activities. Hence, gold nanoparticles have the potential to be used as effective carriers for anticancer drug.

  7. Essential Oils and Their Constituents as Anticancer Agents: A Mechanistic View

    PubMed Central

    Mantha, Anil K.

    2014-01-01

    Exploring natural plant products as an option to find new chemical entities as anticancer agents is one of the fastest growing areas of research. Recently, in the last decade, essential oils (EOs) have been under study for their use in cancer therapy and the present review is an attempt to collect and document the available studies indicating EOs and their constituents as anticancer agents. This review enlists nearly 130 studies of EOs from various plant species and their constituents that have been studied so far for their anticancer potential and these studies have been classified as in vitro and in vivo studies for EOs and their constituents. This review also highlights in-depth various mechanisms of action of different EOs and their constituents reported in the treatment strategies for different types of cancer. The current review indicates that EOs and their constituents act by multiple pathways and mechanisms involving apoptosis, cell cycle arrest, antimetastatic and antiangiogenic, increased levels of reactive oxygen and nitrogen species (ROS/RNS), DNA repair modulation, and others to demonstrate their antiproliferative activity in the cancer cell. The effect of EOs and their constituents on tumour suppressor proteins (p53 and Akt), transcription factors (NF-κB and AP-1), MAPK-pathway, and detoxification enzymes like SOD, catalase, glutathione peroxidase, and glutathione reductase has also been discussed. PMID:25003106

  8. Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents.

    PubMed

    Das, U; Kumar, S; Dimmock, J R; Sharma, R K

    2012-07-01

    N-myristoyltransferase (NMT) is an essential eukaryotic enzyme which catalyzes the transfer of the myristoyl group to the terminal glycine residue of a number of proteins including those involved in signal transduction and apoptotic pathways. Myristoylation is crucial for the cellular proliferation process and is required for the growth and development in a number of organisms including many human pathogens and viruses. Targeting the myristoylation process thus has emerged as a novel therapeutic strategy for anticancer drug design. The expression/activity of NMT is considerably elevated in a number of cancers originating in the colon, stomach, gallbladder, brain and breast and attenuation of NMT levels has been shown to induce apoptosis in cancerous cell lines and reduce tumor volume in murine xenograft models for cancer. A focus of current therapeutic interventions in novel cancer treatments is therefore directed at developing specific NMT inhibitors. The inhibition of the myristoyl lipidation process with respect to cancer drug development lies in the fact that many proteins involved in oncogenesis such as src and various kinases require myristoylation to perform their cellular functions. Inhibiting NMT functions to control malignancy is a novel approach in the area of anticancer drug design and there are rapidly expanding discoveries of synthetic NMT inhibitors as potential chemotherapeutic agents to be employed in the warfare against cancer. The current review focuses on developments of various chemical NMT inhibitors with potential roles as anticancer agents.

  9. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  10. Advances in Targeted Drug Delivery Approaches for the Central Nervous System Tumors: The Inspiration of Nanobiotechnology.

    PubMed

    Meng, Jianing; Agrahari, Vivek; Youm, Ibrahima

    2017-03-01

    At present, brain tumor is among the most challenging diseases to treat and the therapy is limited by the lack of effective methods to deliver anticancer agents across the blood-brain barrier (BBB). BBB is a selective barrier that separates the circulating blood from the brain extracellular fluid. In its neuroprotective function, BBB prevents the entry of toxins, as well as most of anticancer agents and is the main impediment for brain targeted drug delivery approaches. Nanotechnology-based delivery systems provide an attractive strategy to cross the BBB and reach the central nervous system (CNS). The incorporation of anticancer agents in various nanovehicles facilitates their delivery across the BBB. Moreover, a more powerful tool in brain tumor therapy has relied surface modifications of nanovehicles with specific ligands that can promote their passage through the BBB and favor the accumulation of the drug in CNS tumors. This review describes the physiological and anatomical features of the brain tumor and the BBB, and summarizes the recent advanced approaches to deliver anticancer drugs into brain tumor using nanobiotechnology-based drug carrier systems. The role of specific ligands in the design of functionalized nanovehicles for targeted delivery to brain tumor is reviewed. The current trends and future approaches in the CNS delivery of therapeutic molecules to tumors are also discussed.

  11. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor progression and metastasis in prostate cancer

    USDA-ARS?s Scientific Manuscript database

    The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol (Res), found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of Res, the ...

  12. The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside.

    PubMed

    Azevedo-Silva, J; Queirós, O; Baltazar, F; Ułaszewski, S; Goffeau, A; Ko, Y H; Pedersen, P L; Preto, A; Casal, M

    2016-08-01

    At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.

  13. Synthesis of nοvel artemisinin dimers with polyamine linkers and evaluation of their potential as anticancer agents.

    PubMed

    Magoulas, George E; Tsigkou, Tzoanna; Skondra, Lina; Lamprou, Margarita; Tsoukala, Panagiota; Kokkinogouli, Vassiliki; Pantazaka, Evangelia; Papaioannou, Dionissios; Athanassopoulos, Constantinos M; Papadimitriou, Evangelia

    2017-07-15

    The natural product artemisinin and derivatives thereof are currently considered as the drugs of choice for the treatment of malaria. At the same time, a significant number of such drugs have also shown interesting anticancer activity. In the context of the present research work, artemisinin was structurally modified and anchored to naturally occurring polyamines to afford new artemisinin dimeric conjugates whose potential anticancer activity was evaluated. All artemisinin conjugates tested were more effective than artemisinin itself in decreasing the number of MCF7 breast cancer cells. The effect required conjugation and was not due to the artemisinin analogue or the polyamine, alone or in combination. To elucidate potential mechanism of action, we used the most effective conjugates 6, 7, 9 and 12 and found that they decreased expression and secretion of the angiogenic growth factor pleiotrophin by the cancer cells themselves, and inhibited angiogenesis in vivo and endothelial cell growth in vitro. These data suggest that the new artemisinin dimers are good candidates for the development of effective anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  15. The Natural cAMP Elevating Compound Forskolin in Cancer Therapy: Is It Time?

    PubMed

    Sapio, Luigi; Gallo, Monica; Illiano, Michela; Chiosi, Emilio; Naviglio, Daniele; Spina, Annamaria; Naviglio, Silvio

    2017-05-01

    Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits, and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer. Forskolin is a diterpene produced by the roots of the Indian plant Coleus forskohlii. The natural compound forskolin has been used for centuries in traditional medicine and its safety has also been documented in conventional modern medicine. Forskolin directly activates the adenylate cyclase enzyme, that generates cAMP from ATP, thus, raising intracellular cAMP levels. Notably, cAMP signaling, through the PKA-dependent and/or -independent pathways, is very relevant to cancer and its targeting has shown a number of antitumor effects, including the induction of mesenchymal-to-epithelial transition, inhibition of cell growth and migration and enhancement of sensitivity to conventional antitumor drugs in cancer cells. Here, we describe some features of cAMP signaling that are relevant to cancer biology and address the state of the art concerning the natural cAMP elevating compound forskolin and its perspectives as an effective anticancer agent. J. Cell. Physiol. 232: 922-927, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Plant-derived anticancer agents - curcumin in cancer prevention and treatment.

    PubMed

    Creţu, Elena; Trifan, Adriana; Vasincu, Al; Miron, Anca

    2012-01-01

    Nowadays cancer is still a major public health issue. Despite all the progresses made in cancer prevention, diagnosis and treatment, mortality by cancer is on the second place after the one caused by cardiovascular diseases. The high mortality and the increasing incidence of certain cancers (lung, prostate, colorectal) justify a growing interest for the identification of new pharmacological agents efficient in cancer prevention and treatment. In the last fifty years many plant-derived agents (vinblastine, vincristine, vindesine, paclitaxel, docetaxel, topotecan, irinotecan, elliptinium) played a major role in cancer treatment. Other very promising plant-derived anticancer agents (combrestatins, betulinic acid, roscovitine, purvalanols, indirubins) are in clinical or preclinical trials. Curcumin, a liposoluble polyphenolic pigment isolated from the rhizomes of Curcuma longa L. (Zingiberaceae), is another potential candidate for new anticancer drug development. Curcumin has been reported to influence many cell-signaling pathways involved in tumor initiation and proliferation. Curcumin inhibits COX-2 activity, cyclin D1 and MMPs overexpresion, NF-kB, STAT and TNF-alpha signaling pathways and regulates the expression of p53 tumor suppressing gene. Curcumin is well-tolerated but has a reduced systemic bioavailability. Polycurcumins (PCurc 8) and curcumin encapsulated in biodegradable polymeric nanoparticles (NanoCurc) showed higher bioavailability than curcumin together with a significant tumor growth inhibition in both in vitro and in vivo studies. BILITY.

  17. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro.

    PubMed

    Ndolo, Rosemary A; Luan, Yepeng; Duan, Shaofeng; Forrest, M Laird; Krise, Jeffrey P

    2012-01-01

    Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC(50) values of the inhibitors in normal fibroblasts to the IC(50) values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity.

  18. Lysosomotropic Properties of Weakly Basic Anticancer Agents Promote Cancer Cell Selectivity In Vitro

    PubMed Central

    Ndolo, Rosemary A.; Luan, Yepeng; Duan, Shaofeng; Forrest, M. Laird; Krise, Jeffrey P.

    2012-01-01

    Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC50 values of the inhibitors in normal fibroblasts to the IC50 values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity. PMID:23145164

  19. Marine Natural Products Revisited.

    ERIC Educational Resources Information Center

    Chang, Clifford W. J.

    1978-01-01

    Reports the chemistry of saxitoxin, a paralytic shellfish poison, and other toxins, including the structure of aplysiatoxins. Discusses the chemical signals and defense agents used in intra- and inter- species communication; anticancer agents; and organometallics in the marine environment. (MA)

  20. A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides

    PubMed Central

    Li, Fangping; Luo, Ping; Liu, Huazhong

    2018-01-01

    Sepia ink polysaccharide (SIP) isolated from squid and cuttlefish ink is a kind of acid mucopolysaccharide that has been identified in three types of primary structures from squid (Illex argentinus and Ommastrephes bartrami), cuttlefish Sepiella maindroni, and cuttlefish Sepia esculenta ink. Although SIP has been proved to be multifaceted, most of the reported evidence has illuminated its chemopreventive and antineoplastic activities. As a natural product playing a role in cancer treatment, SIP may be used as chemotherapeutic ancillary agent or functional food. Based on the current findings on SIP, we have summarized four topics in this review, including: chemopreventive, antineoplastic, chemosensitive, and procoagulant and anticoagulant activities, which are correlative closely with the actions of anticancer agents on cancer patients, such as anticancer, toxicity and thrombogenesis, with the latter two actions being common causes of death in cancer cases exposed to chemotherapeutic agents. PMID:29597272

  1. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    PubMed Central

    Dinarvand, R; Sepehri, N; Manoochehri, S; Rouhani, H; Atyabi, F

    2011-01-01

    The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA), a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects. PMID:21720501

  2. Therapeutic strategies with oral fluoropyrimidine anticancer agent, S-1 against oral cancer.

    PubMed

    Harada, Koji; Ferdous, Tarannum; Ueyama, Yoshiya

    2017-08-01

    Oral cancer has been recognized as a tumor with low sensitivity to anticancer agents. However, introduction of S-1, an oral cancer agent is improving treatment outcome for patients with oral cancer. In addition, S-1, as a main drug for oral cancer treatment in Japan can be easily available for outpatients. In fact, S-1 exerts high therapeutic effects with acceptable side effects. Moreover, combined chemotherapy with S-1 shows higher efficacy than S-1 alone, and combined chemo-radiotherapy with S-1 exerts remarkable therapeutic effects. Furthermore, we should consider the combined therapy of S-1 and molecular targeting agents right now as these combinations were reportedly useful for oral cancer treatment. Here, we describe our findings related to S-1 that were obtained experimentally and clinically, and favorable therapeutic strategies with S-1 against oral cancer with bibliographic considerations.

  3. Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent.

    PubMed

    Gartner, Michael; Müller, Thomas; Simon, Jan C; Giannis, Athanassios; Sleeman, Jonathan P

    2005-01-01

    Hyperforin, a natural product of St. John's wort (Hypericum perforatum L.), has a number of pharmacological activities, including antidepressive and antibacterial properties. Furthermore, hyperforin has pronounced antitumor properties against different tumor cell lines, both in vitro and in vivo. Despite being a promising novel anticancer agent, the poor solubility and stability of hyperforin in aqueous solution limits its potential clinical application. In this study, we present the synthesis of hyperforin derivatives with improved pharmacological activity. The synthesized compounds were tested for their solubility and stability properties. They were also investigated for their antitumor properties, both in vitro and in vivo. One of these hyperforin derivatives, Aristoforin, is more soluble in aqueous solution than hyperforin and is additionally highly stable. Importantly, it retains the antitumor properties of the parental compound without inducing toxicity in experimental animals. These data strongly suggest that Aristoforin has potential as an anticancer drug.

  4. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives?

    PubMed Central

    Cirmi, Santa; Ferlazzo, Nadia; Lombardo, Giovanni E.; Maugeri, Alessandro; Calapai, Gioacchino; Gangemi, Sebastiano; Navarra, Michele

    2016-01-01

    Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology. PMID:27827912

  5. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

    PubMed Central

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date. PMID:23459471

  6. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    PubMed

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.

  7. Autophagy inhibition synergistically enhances anti-cancer efficacy of RAMBA, VN/12-1 in SKBR-3 cells and tumor xenografts

    PubMed Central

    Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.

    2012-01-01

    VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589

  8. Post-marketing research and its outcome for novel anticancer agents approved by both the FDA and EMA between 2005 and 2010: A cross-sectional study.

    PubMed

    Zeitoun, Jean-David; Baron, Gabriel; Vivot, Alexandre; Atal, Ignacio; Downing, Nicholas S; Ross, Joseph S; Ravaud, Philippe

    2018-01-15

    Post-marketing research in oncology has rarely been described. We aimed to characterize post-marketing trials for a consistent set of anticancer agents over a long period. We performed a cross-sectional analysis of post-marketing trials registered at ClinicalTrials.gov through September 2014 for novel anticancer agents approved by both the US Food and Drug Administration and the European Medicines Agency between 2005 and 2010. All relevant post-marketing trials were classified according to indication, primary outcome, starting date, sponsors, and planned enrollment. Supplemental indications were retrieved from regulatory documents and publication rate was assessed by two different methods. Ten novel anticancer agents were eligible: five were indicated for hematologic malignancies and the remaining five for solid cancers (three for kidney cancer). We identified 2,345 post-marketing trials; 1,362 (58.1%) targeted an indication other than the originally approved one. We observed extreme variations among drugs in both number of post-marketing trials (range 8-530) and overall population to be enrolled per trial (1-8,381). Post-marketing trials assessed almost all types of cancers, the three most frequently studied cancers being leukemia, kidney cancer and myeloma. In all, 6.6% of post-marketing trials had a clinical endpoint as a primary outcome, and 35.9% and 54.1% had a safety or surrogate endpoint, respectively, as a primary outcome. Nine drugs obtained approval for supplemental indications. The publication rate at 10 years was 12.3 to 26.1% depending on the analysis method. In conclusion, we found that post-marketing research in oncology is highly heterogeneous and the publication rate of launched trials is low. © 2017 UICC.

  9. Oral anticancer agent medication adherence by outpatients.

    PubMed

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence.

  10. Polyelectrolytes with high charge density

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.

    1974-01-01

    Polymers can be used as flocculants to clarify residential and industrial water supplies and as bactericidal and fungicidal agents. They can be used in preparation of electroconductive photocopy papers, to improve living cell adhesion to glass or plastic, and as anticancer agents.

  11. Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway.

    PubMed

    Sui, Yuxia; Yao, Hong; Li, Shaoguang; Jin, Long; Shi, Peiying; Li, Zhijun; Wang, Gang; Lin, Shilan; Wu, Youjia; Li, Yuxiang; Huang, Liying; Liu, Qicai; Lin, Xinhua

    2017-03-01

    Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.

  12. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review.

    PubMed

    Haque, Inamul; Subramanian, Arvind; Huang, Chao H; Godwin, Andrew K; Van Veldhuizen, Peter J; Banerjee, Snigdha; Banerjee, Sushanta K

    2017-12-31

    Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC.

  13. Hyaluronic acid for anticancer drug and nucleic acid delivery.

    PubMed

    Dosio, Franco; Arpicco, Silvia; Stella, Barbara; Fattal, Elias

    2016-02-01

    Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives.

    PubMed

    Li, Yang; Feng, Ling; Song, Zhi-Fang; Li, Hai-Bei; Huai, Qi-Yong

    2016-02-06

    A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.

  15. Time-lapse imaging assay using the BioStation CT: a sensitive drug-screening method for three-dimensional cell culture.

    PubMed

    Sakamoto, Ruriko; Rahman, M Mamunur; Shimomura, Manami; Itoh, Manabu; Nakatsura, Tetsuya

    2015-06-01

    Three-dimensional (3D) cell culture is beneficial for physiological studies of tumor cells, due to its potential to deliver a high quantity of cell culture information that is representative of the cancer microenvironment and predictive of drug responses in vivo. Currently, gel-associated or matrix-associated 3D cell culture is comprised of intricate procedures that often result in experimental complexity. Therefore, we developed an innovative anti-cancer drug sensitivity screening technique for 3D cell culture on NanoCulture Plates (NCP) by employing the imaging device BioStation CT. Here, we showed that the human breast cancer cell lines BT474 and T47D form multicellular spheroids on NCP plates and compared their sensitivity to the anti-cancer drugs trastuzumab and paclitaxel using the BioStation CT. The anticancer drugs reduced spheroid migration velocity and suppressed spheroid fusion. In addition, primary cells derived from the human breast cancer tissues B58 and B61 grown on NCP plates also exhibited similar drug sensitivity. These results were in good agreement with the conventional assay method using ATP quantification. We confirmed the antitumor effects of the drugs on cells seeded in 96-well plates using the BioStation CT imaging technique. We expect this method to be useful in research for new antitumor agents and for drug sensitivity tests in individually-tailored cancer treatments. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models.

    PubMed

    Desale, Swapnil S; Raja, Srikumar M; Kim, Jong Oh; Mohapatra, Bhopal; Soni, Kruti S; Luan, Haitao; Williams, Stetson H; Bielecki, Timothy A; Feng, Dan; Storck, Matthew; Band, Vimla; Cohen, Samuel M; Band, Hamid; Bronich, Tatiana K

    2015-06-28

    ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full potential as an anti-cancer agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Carnosol: a promising anti-cancer and anti-inflammatory agent.

    PubMed

    Johnson, Jeremy J

    2011-06-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicinal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    PubMed

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. [Study of rat blood serum biochemical indicators of cardiotoxic action of novel antitumor 4-thiazolidinone derivatives and doxorubicin in complexes with polyethylene glycol-containing polymeric carrier in the rat blood serum].

    PubMed

    Kobylyns'ka, L I; Havryliuk, D Ia; Riabtseva, A O; Mitina, N Ie; Zaichenko, O S; Zimenkovskyĭ, B S; Stoĭka, R S

    2014-01-01

    The aim of this study was to measure the activity of enzymes which reflect cardiotoxic action in rats of novel synthetic 4-thiazolidone derivatives--3882, 3288 and 3833 that demonstrated antineoplastic effect in vitro towards 60 lines of human tumor cells tested in the framework of the program of screening new anticancer drugs at the National Cancer Institute (USA). Such action of these compounds was compared with the effect of well known anticancer agent doxorubicin and after conjugation of all above mentioned substances with new polyethylenglycol-containing polymeric comb-like carrier that was synthesized by the authors. Among the biochemical indicators of cardiotoxic action of anticancer agents, activity of the following enzymes in rat blood serum showed to be the most informative: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransterase. Tenfold injection of doxorubicin in a dose of 5.5 mg/kg of weight caused rats' death, while 3882, 3288 and 3833 preparations had not such action. Application of the doxorubicin in combination with polymeric carrier prolonged the survival time to 20 days. Thus, the injection of anticancer agents in a complex with polymeric carrier provides a significant decrease in their cardiotoxicity that was confirmed by the corresponding changes in the activity of marker enzymes: creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in blood serum of treated rats.

  20. Iron(II) supramolecular helicates condense plasmid DNA and inhibit vital DNA-related enzymatic activities.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2015-07-27

    The dinuclear iron(II) supramolecular helicates [Fe2 L3 ]Cl4 (L=C25 H20 N4 ) bind to DNA through noncovalent (i.e., hydrogen-bonding, electrostatic) interactions and exhibit antimicrobial and anticancer effects. In this study, we show that the helicates condense plasmid DNA with a much higher potency than conventional DNA-condensing agents. Notably, molecules of DNA in the presence of the M enantiomer of [Fe2 L3 ]Cl4 do not form intermolecular aggregates typically formed by other condensing agents, such as spermidine or spermine. The helicates inhibit the activity of several DNA-processing enzymes, such as RNA polymerase, DNA topoisomerase I, deoxyribonuclease I, and site-specific restriction endonucleases. However, the results also indicate that the DNA condensation induced by the helicates does not play a crucial role in these inhibition reactions. The mechanisms for the inhibitory effects of [Fe2 L3 ]Cl4 helicates on DNA-related enzymatic activities have been proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia.

    PubMed

    Sasikala, Arathyram Ramachandra Kurup; GhavamiNejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-11-21

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.

  2. Molecular and chemical engineering of bacteriophages for potential medical applications.

    PubMed

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  3. Anti-cancer agents based on 4-(hetero)Ary1-1,2,5-oxadiazol-3-yl Amino derivatives and a method of making

    DOEpatents

    Gakh, Andrei A.; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A.; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V.

    2013-01-29

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. ##STR00001## In particular, the invention relates N-substituted derivatives of 4-(hetero)aryl-1,2,5-oxadiazol-3-yl amines having the structural Formula (I) and (II), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. Meaning of R1 and R2 in the Formula (I) and (II) are defined in claim 1. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  4. Animal Testing

    NASA Astrophysics Data System (ADS)

    Moretto, Johnny; Chauffert, Bruno; Bouyer, Florence

    The development of a new anticancer drug is a long, complex and multistep process which is supervised by regulatory authorities from the different countries all around the world [1]. Application of a new drug for admission to the market is supported by preclinical and clinical data, both including the determination of pharmacodynamics, toxicity, antitumour activity, therapeutic index, etc. As preclinical studies are associated with high cost, optimization of animal experiments is crucial for the overall development of a new anticancer agent. Moreover, in vivo efficacy studies remain a determinant panel for advancement of agents to human trials and thus, require cautious design and interpretation from experimental and ethical point of views.

  5. Highly Adaptable Triple-Negative Breast Cancer Cells as a Functional Model for Testing Anticancer Agents

    PubMed Central

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R.; Milligan, Ryan D.; Cady, Amanda M.; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance. PMID:25279830

  6. Impact of natural resources and research on cancer treatment and prevention: A perspective from Cameroon.

    PubMed

    Orang-Ojong, Barnabas Bessem; Munyangaju, Jose Edward; Wei, Ma Shang; Lin, Miao; Wei, Fan Guan; Foukunang, Charles; Zhu, Yan

    2013-07-01

    Cancer is a significant public health concern and treatment poses a problem and is frequently unsuccessful. As such, continuous efforts in the search for new agents and therapies to improve survival are required. A considerable number of plant extracts and isolated compounds possess significant anti-proliferative or pro-apoptotic effects. The majority of biologically active compounds belong to terpenoids, phenolics and alkaloids. Terpenoid plants such as Hypericum lanceolatum and a few alkaloid plants have been found to be potent anti-parasitic agents but have exhibited poor antimicrobial effects. The screening of medicinal plants for anticancer drugs has provided modern medicine with effective cytotoxic pharmaceuticals. Numerous medicinal plants have traditionally been used for the treatment of various ailments. However, a number of these medicinal plants have not been standardized and their mechanisms of actions are generally unknown. Active drug discovery research using local medicinal plants is ongoing. Some of these plant-derived compounds, including 3,39-dimethoxy-49- O -β-d-xylopyronosylellagic acid, have been tested for their potential use as anticancer agents. This review discussed the scope and possibility of natural products as anticancer remedy.

  7. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    PubMed

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    PubMed

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media.

  9. PEDF as an anticancer drug and new treatment methods following the discovery of its receptors: A patent perspective

    PubMed Central

    Manalo, Katrina B.; Choong, Peter F.M.; Becerra, S. Patricia; Dass, Crispin R.

    2014-01-01

    Background Traditional forms of cancer therapy, which includes chemotherapy, have largely been overhauled due to the significant degree of toxicity they pose to normal, otherwise healthy tissue. It is hoped that use of biological agents, most of which are endogenously present in the body, will lead to safer treatment outcomes, without sacrificing efficacy. Objective The finding that PEDF, a naturally-occurring protein, was a potent angiogenesis inhibitor became the basis for studying the role of PEDF in tumours that are highly resistant to chemotherapy. The determination of the direct role of PEDF against cancer paved the way for understanding and developing PEDF as a novel drug. This review focuses on the patent applications behind testing the anticancer therapeutic effect of PEDF via its receptors as an antiangiogenic agent and as a direct anticancer agent. Conclusions The majority of the PEDF patents describe its and/or its fragments’ antiangiogenic ability and the usage of recombinant vectors as the mode of treatment delivery. PEDF’s therapeutic potential against different diseases and the discovery of its receptors opens possibilities for improving PEDF-based peptide design and drug delivery modes. PMID:21204726

  10. Design, Synthesis and Biological Evaluation of (E)-N-Aryl-2-arylethene-sulfonamide Analogues as Potent and Orally Bioavailable Microtubule-targeted Anticancer Agents

    PubMed Central

    Ramana Reddy, M. V.; Mallireddigari, Muralidhar R.; Pallela, Venkat R.; Cosenza, Stephen C.; Billa, Vinay K.; Akula, Balaiah; Venkata Subbaiah, D. R. C.; Bharathi, E. Vijaya; Padgaonkar, Amol; Lv, Hua; Gallo, James M.; Reddy, E. Premkumar

    2013-01-01

    A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-Amino-4-methoxyphenyl)-2-(2′,4′,6′-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used anti-mitotic agents. Mechanistic studies indicate that 6t and some other analogs disrupted microtubule formation, formation of mitotic spindles and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin indicating its binding site on tubulin. PMID:23750455

  11. Dose escalation methods in phase I cancer clinical trials.

    PubMed

    Le Tourneau, Christophe; Lee, J Jack; Siu, Lillian L

    2009-05-20

    Phase I clinical trials are an essential step in the development of anticancer drugs. The main goal of these studies is to establish the recommended dose and/or schedule of new drugs or drug combinations for phase II trials. The guiding principle for dose escalation in phase I trials is to avoid exposing too many patients to subtherapeutic doses while preserving safety and maintaining rapid accrual. Here we review dose escalation methods for phase I trials, including the rule-based and model-based dose escalation methods that have been developed to evaluate new anticancer agents. Toxicity has traditionally been the primary endpoint for phase I trials involving cytotoxic agents. However, with the emergence of molecularly targeted anticancer agents, potential alternative endpoints to delineate optimal biological activity, such as plasma drug concentration and target inhibition in tumor or surrogate tissues, have been proposed along with new trial designs. We also describe specific methods for drug combinations as well as methods that use a time-to-event endpoint or both toxicity and efficacy as endpoints. Finally, we present the advantages and drawbacks of the various dose escalation methods and discuss specific applications of the methods in developmental oncotherapeutics.

  12. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    PubMed

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R; Milligan, Ryan D; Cady, Amanda M; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  13. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents

    PubMed Central

    Zhang, Lin; Shan, Yuanyuan; Ji, Xingyue; Zhu, Mengyuan; Li, Chuansheng; Sun, Ying; Si, Ru; Pan, Xiaoyan; Wang, Jinfeng; Ma, Weina; Dai, Bingling; Wang, Binghe; Zhang, Jie

    2017-01-01

    Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4. PMID:29285210

  14. Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi

    PubMed Central

    Suraweera, Amila; O’Byrne, Kenneth J.; Richard, Derek J.

    2018-01-01

    Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient’s response to these agents, in order to limit the off-target toxicity associated with HDACi. PMID:29651407

  15. Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater.

    PubMed

    Ferrando-Climent, Laura; Cruz-Morató, Carles; Marco-Urrea, Ernest; Vicent, Teresa; Sarrà, Montserrat; Rodriguez-Mozaz, Sara; Barceló, Damià

    2015-10-01

    This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at the end of the batch experiment (8 days) with the exception of Ifosfamide and Tamoxifen. These two recalcitrant compounds, together with Cyclophosphamide, were selected for further studies to test their degradability by T. versicolor under optimal growth conditions. Cyclophosphamide and Ifosfamide were inalterable during batch experiments both at high and low concentration, whereas Tamoxifen exhibited a decrease in its concentration along the treatment. Two positional isomers of a hydroxylated form of Tamoxifen were identified during this experiment using a high resolution mass spectrometry based on ultra-high performance chromatography coupled to an Orbitrap detector (LTQ-Velos Orbitrap). Finally the identified transformation products of Tamoxifen were monitored in the bioreactor run with real hospital wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.

    PubMed

    Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R

    2003-01-01

    Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.

  17. Taxane anticancer agents: a patent perspective

    PubMed Central

    Ojima, Iwao; Lichtenthal, Brendan; Lee, Siyeon; Wang, Changwei; Wang, Xin

    2016-01-01

    Introduction Paclitaxel and docetaxel were two epoch-making anticancer drugs and have been successfully used in chemotherapy for a variety of cancer types. In 2010, a new taxane, cabazitaxel, was approved by FDA for use in combination with prednisone for the treatment of metastatic hormone-refractory prostate cancer. Albumin-bound paclitaxel (nab™-paclitaxel; abraxane) nanodroplet formulation was another notable invention (FDA approval 2005 for refractory, metastatic, or relapsed breast cancer). Abraxane in combination with gemcitabine for the treatment of pancreatic cancer was approved by FDA in 2013. Accordingly, there have been a huge number of patent applications dealing with taxane anticancer agents in the last five years. Thus, it is a good time to review the progress in this area and find the next wave for new developments. Area covered This review article covers the patent literature from 2010 to early 2015 on various aspects of taxane-based chemotherapies and drug developments. Expert opinion Three FDA-approved taxane anticancer drugs will continue to expand their therapeutic applications, especially through drug combinations and new formulations. Inspired by the success of abraxane, new nano-formulations are emerging. Highly potent new-generation taxanes will play a key role in the development of efficacious tumor-targeted drug delivery systems. PMID:26651178

  18. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties.

    PubMed

    Joseph, Manu M; Aravind, S R; Varghese, Sheeja; Mini, S; Sreelekha, T T

    2013-04-01

    Polysaccharide PST001, which is isolated from the seed kernels of Tamarindus indica (Ti), is an antitumor and immunomodulatory compound. Gold nanoparticles have been used for various applications in cancer. In the present report, a novel strategy for the synthesis and stabilization of gold nanoparticles using anticancer polysaccharide PST001 was employed and the nanoparticles' antitumor activity was evaluated. PST-Gold nanoparticles were prepared such that PST001 acted both as a reducing agent and as a capping agent. PST-Gold nanoparticles showed high stability, no obvious aggregation for months and a wide range of pH tolerance. PST-Gold nanoparticles not only retained the antitumor effect of PST001 but also showed an enhanced effect even at a low concentration. It was also found that the nanoparticles exerted their antitumor effects through the induction of apoptosis. In vivo assays on BALB/c mice revealed that PST-Gold nanoparticles exhibited immunomodulatory effects. Evaluation of biochemical, hematological and histopathological features of mice revealed that PST-Gold nanoparticles could be administered safely without toxicity. Using the polysaccharide PST001 for the reduction and stabilization of gold nanoparticles does not introduce any environmental toxicity or biological hazards, and these particles are more effective than the parent polysaccharide. Further studies should be employed to exploit these particles as anticancer agents with imaging properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs

    PubMed Central

    2013-01-01

    A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277

  20. Combining imaging and anticancer properties with new heterobimetallic Pt(ii)/M(i) (M = Re, 99mTc) complexes.

    PubMed

    Quental, Letícia; Raposinho, Paula; Mendes, Filipa; Santos, Isabel; Navarro-Ranninger, Carmen; Alvarez-Valdes, Amparo; Huang, Huaiyi; Chao, Hui; Rubbiani, Riccardo; Gasser, Gilles; Quiroga, Adoración G; Paulo, António

    2017-10-31

    In this article, we report on the development of new metal-based anticancer agents with imaging, chemotherapeutic and photosensitizing properties. Hence, a new heterobimetallic complex (Pt-LQ-Re) was prepared by connecting a non-conventional trans-chlorido Pt(ii) complex to a photoactive Re tricarbonyl unit (LQ-Re), which can be replaced by 99m Tc to allow for in vivo imaging. We describe the photophysical and biological properties of the new complexes, in the dark and upon light irradiation (DNA interaction, cellular localization and uptake, and cytotoxicity). Furthermore, planar scintigraphic images of mice injected with Pt-LQ-Tc clearly showed that the radioactive compound is taken up by the excretory system organs, namely liver and kidneys, without significant retention in other tissues. All in all, the strategy of conjugating a chemotherapeutic compound with a PDT photosensitizer endows the resulting complexes with an intrinsic cytotoxic activity in the dark, driven by the non-classical platinum core, and a selective activity upon light irradiation. Most importantly, the possibility of integrating a SPECT imaging radiometal ( 99m Tc) in the structure of these new heterobimetallic complexes might allow for in vivo non-invasive visualization of their tumoral accumulation, a crucial issue to predict therapeutic outcomes.

  1. Are sigma modulators an effective opportunity for cancer treatment? A patent overview (1996-2016).

    PubMed

    Collina, Simona; Bignardi, Emanuele; Rui, Marta; Rossi, Daniela; Gaggeri, Raffaella; Zamagni, Alice; Cortesi, Michela; Tesei, Anna

    2017-05-01

    Although several molecular targets against cancer have been identified, there is a continuous need for new therapeutic strategies. Sigma Receptors (SRs) overexpression has been recently associated with different cancer conditions. Therefore, novel anticancer agents targeting SRs may increase the specificity of therapies, overcoming some of the common drawbacks of conventional chemotherapy. Areas covered: The present review focuses on patent documents disclosing SR modulators with possible application in cancer therapy and diagnosis. The analysis reviews patents of the last two decades (1996-2016); patents were grouped according to target subtypes (S1R, S2R, pan-SRs) and relevant Applicants. The literature was searched through Espacenet, ISI Web, PatentScope and PubMed databases. Expert opinion: The number of patents related to SRs and cancer has increased in the last twenty years, confirming the importance of this receptor family as valuable target against neoplasias. Despite their short history in the cancer scenario, many SR modulators are at pre-clinical stage and one is undergoing a phase II clinical trial. SRs ligands may represent a powerful source of innovative antitumor therapeutics. Further investigation is needed for validating SR modulators as anti-cancer drugs. We strongly hope that this review could stimulate the interest of both Academia and pharmaceutical companies.

  2. A potential photocatalytic, antimicrobial and anticancer activity of chitosan-copper nanocomposite.

    PubMed

    Arjunan, Nithya; Singaravelu, Chandra Mohan; Kulanthaivel, Jeganathan; Kandasamy, Jothivenkatachalam

    2017-11-01

    In this study, chitosan-copper (CS-Cu) nanocomposite was synthesized without the aid of any external chemical reducing agents. The optical, structural, spectral, thermal and morphological analyses were carried out by several techniques. The prepared nanocomposite acts as a photocatalyst for the removal of Rhodamine B (RhB) and Conge red (CR) dyes under visible light irradiation. The pseudo first order kinetics was derived according to Langmuir-Hinshelwood (L-H) model. The nanocomposite also proved to be an excellent antimicrobial agent against Gram-positive and Gram-negative bacteria; and also show activity against fungus. The advanced material was used for the major research areas which include photocatalytic materials for waste water treatment; biological applications in the development of drug resistant antimicrobials and anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents.

    PubMed

    Zhao, Jing; Feng, Si-Shen

    2015-07-01

    A major problem in cancer treatment is the multidrug resistance. siRNA inhibitors have great advantages to solve the problem, if the bottleneck of their delivery could be well addressed by the various nanocarriers. Moreover, co-delivery of siRNA together with the various anticancer agents in one nanocarrier may maximize their additive or synergistic effect. This review provides a comprehensive summary on the state-of-the-art of the nanocarriers, which may include prodrugs, micelles, liposomes, dendrimers, nanohydrogels, solid lipid nanoparticles, nanoparticles of biodegradable polymers and nucleic acid nanocarriers for delivery of siRNA and co-delivery of siRNA together with anticancer agents with focus on synthesis of the nanocarrier materials, design and characterization, in vitro and in vivo evaluation, and prospect and challenges of nanocarriers.

  4. Marine Microalgae with Anti-Cancer Properties.

    PubMed

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  5. Particle platforms for cancer immunotherapy

    PubMed Central

    Serda, Rita Elena

    2013-01-01

    Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation. PMID:23761969

  6. Co-administration of a charge-conversional dendrimer enhances antitumor efficacy of conventional chemotherapy.

    PubMed

    Cao, Jun; Wang, Chenhong; Guo, Leijia; Xiao, Zhiyong; Liu, Keliang; Yan, Husheng

    2018-06-01

    Despite extensive investigations, the clinical translation of nanocarrier-based drug delivery systems (NDDS) for cancer therapy is hindered by inefficient delivery and poor tumor penetration. Conventional chemotherapy by administration of free small molecule anticancer drugs remains the standard of care for many cancers. Herein, other than for carrying and releasing drugs, small nanoparticles were used as a potentiator of conventional chemotherapy by co-administration with free chemotherapeutic agents. This strategy avoided the problems associated with drug loading and controlled release encountered in NDDS, and was also much simpler than NDDS. Negatively charged poly(amido amine)-2,3-dimethylmaleic monoamide (PAMAM-DMA) dendrimers were prepared, which possessed low toxicity and can be converted to positively charged PAMAM dendrimers responsive to tumor acidic pH. The in situ formed PAMAM in tumor tissue promoted cellular uptake of co-administered doxorubicin by increasing the cell membrane permeability, and subsequently enhanced the cytotoxicity of doxorubicin. The small size of the dendrimers was favorable for deep penetration in tumor. Co-injection of PAMAM-DMA with doxorubicin into nude mice bearing human tumors almost completely inhibited tumor growth, with a mean tumor weight reducing by 55.9% after the treatment compared with the treatment with doxorubicin alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Extracorporeal shock waves: perspectives in malignant tumor treatment.

    PubMed

    Frairia, R; Berta, L; Catalano, M G

    2016-01-01

    Progress in basic research led to the design of new generations of anticancer drugs with some notable achievements. Over the years, more and more powerful drugs have been developed with the purpose of increasing the rate of response to therapy. As molecular power of chemotherapeutic agents increased, unfortunately also toxicity and undesired side-effects increased. The search for new therapeutic strategies to be used in the management of cancer is one of the more promising strategies to reduce chemotherapy toxicity. Extracorporeal Shock Waves (ESW), widely used for the treatment of urolithiasis, have been reported to cause modifications of cell growth both in vitro and in vivo. They exert an agonist cytotoxic effect with several chemotherapeutic agents, such as cisplatin, doxorubicin, bleomycin, paclitaxel. Moreover, as it has been reported that their main mechanism of action is an increase in cell membrane permeability, ESW are also used to deliver oligonucleotides and other small particles to cells. Recently, it was found that certain dye compounds, in particular porphyrins, can achieve a cytopathogenic effect when the disease site is subjected to ultrasound irradiation. This technique is referred to as sonodynamic therapy. Based on the new knowledge regarding the interaction between ultrasound with bulk liquid, several studies have shown a synergic effect of ESW and porphyrins in vitro, thus opening a new perspective in sonodynamic therapy, able to overcome some drawbacks encountered during conventional anticancer drug treatment. Finally, current advances in bioengineering encouraged the application of nano-scale technologies to medicine. Nanobubbles, composed of an external shell and a gas core, can deliver chemotropic drugs and porfirins, to target tumour tissues in response to physical triggers, and ESW features make them an ideal alternative to ultrasound in combination with drug-loaded nanobubbles in delivery strategies.

  8. Emerging drug treatments for solid tumours.

    PubMed

    Schellens, J H; Pronk, L C; Verweij, J

    1996-01-01

    A number of novel anticancer agents have emerged during the past few decades, which show high activity in preclinical tumour models and promising activity in early trials in patients with solid tumours. Most of the agents have novel and unique mechanisms of action, and show activity against a variety of malignancies, including tumours which are notoriously resistant to systemic treatment. Recently, our understanding of the molecular basis of cancer has increased considerably. This is reflected in the development of agents that are directed at well defined molecular targets, such as the mitotic tubulin/microtubuli system (taxoids), nuclear enzymes (topoisomerase I inhibitors) and cell signal transduction pathways (protein kinase C inhibitors). In addition, significant advances have been made in our understanding of mechanisms of toxicity, especially of cisplatin. This has resulted in the development of agents modulating cisplatin toxicity, among which amifostine (WR-2721) is one of the most promising. The outlined emerging drug therapies with novel anticancer agents and treatment modalities will, it is hoped, result in increased response rates of advanced tumours, longer disease-free and total survival and better palliative care.

  9. Chemical and Biological Studies of Nakiterpiosin and Nakiterpiosinone

    PubMed Central

    Gao, Shuanhu; Wang, Qiaoling; Huang, Lily Jun-Shen; Lum, Lawrence; Chen, Chuo

    2009-01-01

    Nakiterpiosin and nakiterpiosinone are two related C-nor-D-homosteroids isolated from the sponge Terpios hoshinota that show promise as anti-cancer agents. We have previously described the asymmetric synthesis and the revision of the relative configuration of nakiterpiosin. We now provide detailed information on the stereochemical analysis that supports our structure revision and the synthesis of the originally proposed and revised nakiterpiosin. In addition, we herein describe a refined approach for the synthesis of nakiterpiosin, the first synthesis of nakiterpiosinone, and preliminary mechanistic studies of nakiterpiosin's action in mammalian cells. Cells treated with nakiterpiosin exhibit compromised formation of the primary cilium, an organelle that functions as an assembly point for components of the Hedgehog signal transduction pathway. We provide evidence that the biological effects exhibited by nakiterpiosin are mechanistically distinct from those of well-established anti-mitotic agents such as taxol. Nakiterpiosin may be useful as an anti-cancer agent in those tumors resistant to existing anti-mitotic agents and those dependent on Hedgehog pathway responses for growth. PMID:20000429

  10. Effects of Korean Red Ginseng extract on busulfan-induced dysfunction of the male reproductive system.

    PubMed

    Jung, Seok-Won; Kim, Hyeon-Joong; Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyun-Sook; Choi, Yang-Kyu; Kim, Joon Yong; Kim, Eun-Soo; Hwang, Sung-Hee; Lim, Kwang Yong; Kim, Hyoung-Chun; Jang, Minhee; Park, Seong Kyu; Cho, Ik-Hyun; Nah, Seung-Yeol

    2015-07-01

    Anticancer agents induce a variety of adverse effects when administered to cancer patients. Busulfan is a known antileukemia agent. When administered for treatment of leukemia in young patients, busulfan could cause damage to the male reproductive system as one of its adverse effects, resulting in sterility. We investigated the effects of Korean Red Ginseng extract (KRGE) on busulfan-induced damage and/or dysfunction of the male reproductive system. We found that administration of busulfan to mice: decreased testis weight; caused testicular histological damage; reduced the total number of sperm, sperm motility, serum testosterone concentration; and eventually, litter size. Preadministration of KRGE partially attenuated various busulfan-induced damages to the male reproductive system. These results indicate that KRGE has a protective effect against busulfan-induced damage to the male reproduction system. The present study shows a possibility that KRGE could be applied as a useful agent to prevent or protect the male reproductive system from the adverse side effects induced by administration of anticancer agents such as busulfan.

  11. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    PubMed Central

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  12. Developments in platinum anticancer drugs

    NASA Astrophysics Data System (ADS)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  13. Phycocyanin: A Potential Drug for Cancer Treatment

    PubMed Central

    Jiang, Liangqian; Wang, Yujuan; Yin, Qifeng; Liu, Guoxiang; Liu, Huihui; Huang, Yajing; Li, Bing

    2017-01-01

    Phycocyanin isolated from marine organisms has the characteristics of high efficiency and low toxicity, and it can be used as a functional food. It has been reported that phycocyanin has anti-oxidative function, anti-inflammatory activity, anti-cancer function, immune enhancement function, liver and kidney protection pharmacological effects. Thus, phycocyanin has an important development and utilization as a potential drug, and phycocyanin has become a new hot spot in the field of drug research. So far, there are more and more studies have shown that phycocyanin has the anti-cancer effect, which can block the proliferation of cancer cells and kill cancer cells. Phycocyanin exerts anti-cancer activity by blocking tumor cell cell cycle, inducing tumor cell apoptosis and autophagy, thereby phycocyanin can serve as a promising anti-cancer agent. This review discusses the therapeutic use of phycocyanin and focuses on the latest advances of phycocyanin as a promising anti-cancer drug. PMID:29151925

  14. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases

    PubMed Central

    Jain, Chetan Kumar; Majumder, Hemanta Kumar; Roychoudhury, Susanta

    2017-01-01

    DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs. PMID:28503091

  15. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    PubMed

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  16. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review

    PubMed Central

    Haque, Inamul; Subramanian, Arvind; Huang, Chao H.; Godwin, Andrew K.; Van Veldhuizen, Peter J.; Banerjee, Snigdha; Banerjee, Sushanta K.

    2017-01-01

    Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC. PMID:29301217

  17. Neurotoxicity Associated with Platinum-Based Anti-Cancer Agents: What are the Implications of Copper Transporters?

    PubMed

    Stojanovska, Vanesa; McQuade, Rachel; Rybalka, Emma; Nurgali, Kulmira

    2017-01-01

    Platinum-based anti-cancer agents, which include cisplatin, carboplatin and oxaliplatin, are an important class of drugs used in clinical setting to treat a variety of cancers. The cytotoxic efficacy of these drugs is mediated by the formation of inter-strand and intrastrand crosslinks, or platinum adducts on nuclear DNA. There is also evidence demonstrating that mitochondrial DNA is susceptible to platinum-adduct damage in dorsal root ganglia neurons. Although all platinum-based agents form similar DNA adducts, they are quite different in terms of activation, systemic toxicity and tolerance. Platinum-based agents are well known for their neurotoxicity and gastrointestinal side-effects which are major causes for dose limitation and treatment discontinuation compromising the efficacy of anti-cancer treatment. Accumulating evidence in non-neuronal cells shows that the copper transport system is associated with platinum drug sensitivity and resistance. There is minimal research concerning the role of copper transporters within the central and peripheral nervous systems. It is unclear whether neurons are more sensitive to platinum-based drugs, are insufficient in drug clearance, or whether platinum accumulation affects intracellular copper status and coppermediated functions. Understanding these mechanisms is important as neurotoxicity is the predominant side-effect of platinum-based chemotherapy. This review highlights the role of copper transpor ters in drug influx, differences in drug activation and side-effects caused by platinum-based agents, as well as their association with central and peripheral neuropathies and gastrointestinal toxicities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Sulforaphane mitigates genotoxicity induced by radiation and anticancer drugs in human lymphocytes.

    PubMed

    Katoch, Omika; Kumar, Arun; Adhikari, Jawahar S; Dwarakanath, Bilikere S; Agrawala, Paban K

    2013-12-12

    Sulforaphane, present in cruciferous vegetables such as broccoli, is a dietary anticancer agent. Sulforaphane, added 2 or 20 h following phytohemaglutinin stimulation to cultured peripheral blood lymphocytes of individuals accidentally exposed to mixed γ and β-radiation, reduced the micronucleus frequency by up to 70%. Studies with whole blood cultures obtained from healthy volunteers confirmed the ability of sulforaphane to ameliorate γ-radiation-induced genotoxicity and to reduce micronucleus induction by other DNA-damaging anticancer agents, such as bleomycin and doxorubicin. This reduction in genotoxicity in lymphocytes treated at the G(0) or G(1) stage suggests a role for sulforaphane in modulating DNA repair. Sulforaphane also countered the radiation-induced increase in lymphocyte HDAC activity, to control levels, when cells were treated 2 h after exposure, and enhanced histone H4 acetylation status. Sulforaphane post-irradiation treatment enhanced the CD 34(+)Lin(-) cell population in culture. Sulforaphane has therapeutic potential for management of the late effects of radiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Aripiprazole, an Antipsychotic and Partial Dopamine Agonist, Inhibits Cancer Stem Cells and Reverses Chemoresistance.

    PubMed

    Suzuki, Shuhei; Okada, Masashi; Kuramoto, Kenta; Takeda, Hiroyuki; Sakaki, Hirotsugu; Watarai, Hikaru; Sanomachi, Tomomi; Seino, Shizuka; Yoshioka, Takashi; Kitanaka, Chifumi

    2016-10-01

    There is a growing interest in repurposing antipsychotic dopamine antagonists for cancer treatment; however, antipsychotics are often associated with an increased risk of fatal events. The anticancer activities of aripiprazole, an antipsychotic drug with partial dopamine agonist activity and an excellent safety profile, remain unknown. The effects of aripiprazole alone or in combination with chemotherapeutic agents on the growth, sphere-forming ability and stem cell/differentiation/chemoresistance marker expression of cancer stem cells, serum-cultured cancer cells from which they were derived, and normal cells were examined. At concentrations non-toxic to normal cells, aripiprazole inhibited the growth of serum-cultured cancer cells and cancer stem cells. Furthermore, aripiprazole induced differentiation and inhibited sphere formation, as well as stem cell marker expression of cancer stem cells while inhibiting their survivin expression and sensitizing them to chemotherapeutic agents. Repurposing aripiprazole as an anticancer stem cell drug may merit further consideration. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Marine Fungi: A Source of Potential Anticancer Compounds

    PubMed Central

    Deshmukh, Sunil K.; Prakash, Ved; Ranjan, Nihar

    2018-01-01

    Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines. PMID:29354097

  1. Effects of Animal Venoms and Toxins on Hallmarks of Cancer

    PubMed Central

    Chaisakul, Janeyuth; Hodgson, Wayne C.; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  2. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse

    PubMed Central

    Nowakowski, Adam; Drela, Katarzyna; Rozycka, Justyna; Janowski, Miroslaw

    2016-01-01

    Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials. PMID:27460260

  3. Evolution in Medicinal Chemistry of Ursolic Acid Derivatives as Anticancer Agents

    PubMed Central

    Chen, Haijun; Gao, Yu; Wang, Ailan; Zhou, Xiaobin; Zheng, Yunquan; Zhou, Jia

    2015-01-01

    Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA. PMID:25617694

  4. Histone deacetylase inhibitors: current status and overview of recent clinical trials.

    PubMed

    Ma, Xujun; Ezzeldin, Hany H; Diasio, Robert B

    2009-10-01

    Histone deacetylase (HDAC) inhibitors are a new group of anticancer agents that have a potential role in the regulation of gene expression, induction of cell death, apoptosis and cell cycle arrest of cancer cells by altering the acetylation status of chromatin and other non-histone proteins. In clinical trials, HDAC inhibitors have demonstrated promising antitumour activity as monotherapy in cutaneous T-cell lymphoma and other haematological malignancies. In solid tumours, several HDAC inhibitors have been shown to be efficacious as single agents; however, results of most clinical trials were in favour of using HDAC inhibitors either prior to the initiation of chemotherapy or in combination with other treatments. Currently, the molecular basis of response to HDAC inhibitors in patients is not fully understood. In this review, we summarize the current status of HDAC inhibitors, as single agents or in combination with other agents in different phases of clinical trials. In most of the clinical trials, HDAC inhibitors were tolerable and exerted biological or antitumor activity. HDAC inhibitors have been studied in phase I, II and III clinical trials with variable efficacy. The combination of HDAC inhibitors with other anticancer agents including epigenetic or chemotherapeutic agents demonstrated favourable clinical outcome.

  5. Advances in drug delivery system for platinum agents based combination therapy.

    PubMed

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-12-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy.

  6. [Identification of Circulating Tumor Cell(CTC)in Breast Cancer Patients Using a Newly Established CTC Detecting System].

    PubMed

    Nagata, Takuya; Ohnaga, Takashi; Lu, Xiao Long; Watanabe, Toru; Hirano, Katsuhisa; Okumura, Tomoyuki; Tsukada, Kazuhiro

    2015-10-01

    We developed a new circulating tumor cell (CTC) chip in order to identify CTCs in the peripheral blood of cancer patients. In this study, we aimed to identify CTCs in the blood of breast cancer patients by using this CTC detecting system. In addition, we used this system to evaluate the response to anticancer agents. We were able to identify CTCs in 5 of 6 patients. In addition, the system showed that the number of CTCs had decreased after chemotherapy. Thus, the CTC detecting system was useful in the identification of CTCs in the breast cancer patients and in the early prediction of response to anticancer agents.

  7. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy.

    PubMed

    Yang, Pei-Ming; Tseng, Ho-Hsing; Peng, Chih-Wen; Chen, Wen-Shu; Chiu, Shu-Jun

    2012-02-01

    The outcome of producing apoptotic defects in cancer cells is the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the development of novel agents targeting novel non-canonical cell death pathways has become an imperative mission for clinical research. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid commonly found in fruits and vegetables. In this study, we investigated the potential anticancer effects of fisetin on breast cancer cells. The result showed fisetin induced higher cytotoxicity in human breast cancer MCF-7 than in MDA-MB-231 cells otherwise it did not exert any detectable cytotoxicity in non-tumorigenic MCF-10A cells. We found fisetin can trigger a novel form of atypical apoptosis in caspase-3-deficient MCF-7 cells, which was characterized by several apoptotic features, including plasma membrane rupture, mitochondrial depolarization, activation of caspase-7, -8 and -9, and PARP cleavage; however, neither DNA fragmentation and phosphotidylserine (PS) externalization was observed. Although p53 was also activated by fisetin, the fisetin-induced apoptosis was not rescued by the p53 inhibitor pifithrin-α. In contrast, the fisetin-induced apoptosis was abrogated by pan-caspase inhibitor z-VAD-fmk. Furthermore, inhibition of autophagy by fisetin was shown as additional route to prompt anticancer activity in MCF-7 cells. These data allow us to propose that fisetin appears as a new potential anticancer agent which can be applied to develop a clinical protocol of human breast cancers.

  8. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs.

    PubMed

    Murray, Michael; Hraiki, Adam; Bebawy, Mary; Pazderka, Curtis; Rawling, Tristan

    2015-06-01

    Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. From conventional to stealth liposomes: a new frontier in cancer chemotherapy.

    PubMed

    Cattel, Luigi; Ceruti, Maurizio; Dosio, Franco

    2003-01-01

    Many attempts have been made to achieve good selectivity to targeted tumor cells by preparing specialized carrier agents that are therapeutically profitable for anticancer therapy. Among these, liposomes are the most studied colloidal particles thus far applied in medicine and in particular in antitumor therapy. Although they were first described in the 1960s, only at the beginning of 1990s did the first therapeutic liposomes appear on the market. The first-generation liposomes (conventional liposomes) comprised a liposome-containing amphotericin B, Ambisome (Nexstar, Boulder, CO, USA), used as an antifungal drug, and Myocet (Elan Pharma Int, Princeton, NJ, USA), a doxorubicin-containing liposome, used in clinical trials to treat metastatic breast cancer. The second-generation liposomes ("pure lipid approach") were long-circulating liposomes, such as Daunoxome, a daunorubicin-containing liposome approved in the US and Europe to treat AIDS-related Kaposi's sarcoma. The third-generation liposomes were surface-modified liposomes with gangliosides or sialic acid, which can evade the immune system responsible for removing liposomes from circulation. The fourth-generation liposomes, pegylated liposomal doxorubicin, were called "stealth liposomes" because of their ability to evade interception by the immune system, in the same way as the stealth bomber was able to evade radar. Actually, the only stealth liposome on the market is Caelyx/Doxil (Schering-Plough, Madison NJ, USA), used to cure AIDS-related Kaposi's sarcoma, resistant ovarian cancer and metastatic breast cancer. Pegylated liposomal doxorubicin is characterized by a very long-circulation half-life, favorable pharmacokinetic behavior and specific accumulation in tumor tissues. These features account for the much lower toxicity shown by Caelyx in comparison to free doxorubicin, in terms of cardiotoxicity, vesicant effects, nausea, vomiting and alopecia. Pegylated liposomal doxorubicin also appeared to be less myelotoxic than doxorubicin. Typical forms of toxicity associated to it are acute infusion reaction, mucositis and palmar plantar erythrodysesthesia, which occur especially at high doses or short dosing intervals. Active and cell targeted liposomes can be obtained by attaching some antigen-directed monoclonal antibodies (Moab or Moab fragments) or small proteins and molecules (folate, epidermal growth factor, transferrin) to the distal end of polyethylene glycol in pegylated liposomal doxorubicin. The most promising therapeutic application of liposomes is as non-viral vector agents in gene therapy, characterized by the use of cationic phospholipids complexed with the negatively charged DNA plasmid. The use of liposome formulations in local-regional anticancer therapy is also discussed. Finally, pegylated liposomal doxorubicin containing radionuclides are used in clinical trials as tumor-imaging agents or in positron emission tomography.

  10. Effect of Anti-Parasite Chemotherapeutic Agents on Immune Reactions.

    DTIC Science & Technology

    1980-08-01

    observations). Similar effects of a number of other alkylating agents have been noticed (9, and personal observa- tions). Similarly, corticosteroids inhibit...Wellham, L. L., and Sigel, M. M. Ef- fect of anti-cancer chemotherapeutic agents on immune reactions of mice. I. Comparison of two nitrosoureas . J...7 D-Ri138 852 EFFECT OF ANTI-PARASITE CHEMOTHERAPEUTIC AGENTS ON i/i IMMUNE REACTIONS(U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MICROBIOLOGY AND

  11. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    PubMed

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Trial Watch

    PubMed Central

    Aranda, Fernando; Vacchelli, Erika; Eggermont, Alexander; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Throughout the past 3 decades, along with the recognition that the immune system not only influences oncogenesis and tumor progression, but also determines how established neoplastic lesions respond therapy, renovated enthusiasm has gathered around the possibility of using vaccines as anticancer agents. Such an enthusiasm quickly tempered when it became clear that anticancer vaccines would have to be devised as therapeutic, rather than prophylactic, measures, and that malignant cells often fail to elicit (or actively suppress) innate and adaptive immune responses. Nonetheless, accumulating evidence indicates that a variety of anticancer vaccines, including cell-based, DNA-based, and purified component-based preparations, are capable of circumventing the poorly immunogenic and highly immunosuppressive nature of most tumors and elicit (at least under some circumstances) therapeutically relevant immune responses. Great efforts are currently being devoted to the identification of strategies that may provide anticancer vaccines with the capacity of breaking immunological tolerance and eliciting tumor-associated antigen-specific immunity in a majority of patients. In this sense, promising results have been obtained by combining anticancer vaccines with a relatively varied panels of adjuvants, including multiple immunostimulatory cytokines, Toll-like receptor agonists as well as inhibitors of immune checkpoints. One year ago, in the December issue of OncoImmunology, we discussed the biological mechanisms that underlie the antineoplastic effects of peptide-based vaccines and presented an abundant literature demonstrating the prominent clinical potential of such an approach. Here, we review the latest developments in this exciting area of research, focusing on high-profile studies that have been published during the last 13 mo and clinical trials launched in the same period to evaluate purified peptides or full-length proteins as therapeutic anticancer agents. PMID:24498550

  13. Integrating virtual screening and biochemical experimental approach to identify potential anti-cancer agents from drug databank.

    PubMed

    Deka, Suman Jyoti; Roy, Ashalata; Manna, Debasis; Trivedi, Vishal

    2018-06-01

    Chemical libraries constitute a reservoir of pharmacophoric molecules to identify potent anti-cancer agents. Virtual screening of heterocyclic compound library in conjugation with the agonist-competition assay, toxicity-carcinogenicity analysis, and string-based structural searches enabled us to identify several drugs as potential anti-cancer agents targeting protein kinase C (PKC) as a target. Molecular modeling study indicates that Cinnarizine fits well within the PKC C2 domain and exhibits extensive interaction with the protein residues. Molecular dynamics simulation of PKC-Cinnarizine complex at different temperatures (300, 325, 350, 375, and 400[Formula: see text]K) confirms that Cinnarizine fits nicely into the C2 domain and forms a stable complex. The drug Cinnarizine was found to bind PKC with a dissociation constant Kd of [Formula: see text]M. The breast cancer cells stimulated with Cinnarizine causes translocation of PKC-[Formula: see text] to the plasma membrane as revealed by immunoblotting and immunofluorescence studies. Cinnarizine also dose dependently reduced the viability of MDAMB-231 and MCF-7 breast cancer cells with an IC[Formula: see text] of [Formula: see text] and [Formula: see text]g/mL, respectively. It is due to the disturbance of cell cycle of breast cancer cells with reduction of S-phase and accumulation of cells in G1-phase. It disturbs mitochondrial membrane potentials to release cytochrome C into the cytosol and activates caspase-3 to induce apoptosis in cancer cells. The cell death was due to induction of apoptosis involving mitochondrial pathway. Hence, the current study has assigned an additional role to Cinnarizine as an activator of PKC and potentials of the approach to identify new molecules for anti-cancer therapy. Thus, in silico screening along with biochemical experimentation is a robust approach to assign additional roles to the drugs present in the databank for anti-cancer therapy.

  14. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects.

    PubMed

    Tuli, Hardeep Singh; Kashyap, Dharambir; Bedi, Simranjeet Kaur; Kumar, Pardeep; Kumar, Gaurav; Sandhu, Sardul Singh

    2015-12-15

    Metal oxide nanoparticles (MO-NPs) are the multidisciplinary nano-scaled molecules which are being used in the diagnosis and treatment of the challenging diseases including cancer. Evidence suggest that antimicrobial formulations in the form of MO-NPs can be possibly used as effective antimicrobial agents. In addition, MO-NPs are known to target various cellular signaling pathways associated with apoptosis, angiogenesis, metastasis and inflammation of cancer. In combination with other chemotherapeutic/anticancer agents, MO-NPs not only increase their bioavailability and efficacy but also lower down the requirement of active dosages. To date, to our knowledge there is no single comprehensive report on cellular and molecular interactions of MO-NPs which have been well elaborated in this review. Also we highlight various action mechanisms through which MO-NPs act as antimicrobial, anticancer, antioxidant and anti-inflammatory agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Synthesis, DNA binding ability and anticancer activity of 2-heteroaryl substituted benzimidazoles linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates.

    PubMed

    Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda

    2013-08-01

    As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.

  16. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery

    PubMed Central

    2018-01-01

    Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3′ positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids. PMID:29468872

  17. Evaluation of heterocyclic steroids and curcumin derivatives as anti-breast cancer agents: Studying the effect on apoptosis in MCF-7 breast cancer cells.

    PubMed

    Elmegeed, Gamal A; Yahya, Shaymaa M M; Abd-Elhalim, Mervat M; Mohamed, Mervat S; Mohareb, Rafat M; Elsayed, Ghada H

    2016-11-01

    Anticancer agents consisting of hybrid molecules are used to improve effectiveness and diminish drug resistance. The current study aimed to introduce newly synthesized hetero-steroids of promising anticancer effects. Besides, the pro-apoptotic effects of new compounds were investigated extensively. Several pyrimidino-, triazolopyrimidino-, pyridazino-, and curcumin-steroid derivatives were synthesized, elucidated and confirmed using the spectral and analytical data. The synthesized hetero-steroids, compounds 9, 10, 11, 12, 13, 14, 15, 18, 20, 21, 22 and 24, were tested for their cytotoxic effects versus human breast cancer cells (MCF-7) using neutral red supravital dye uptake assay. Compound 24 (IC50=18μM) showed more inhibitory influence on MCF-7 growth. Using QRT-PCR (Quantitative real time-polymerase chain reaction), CCND1, Survivin, BCL-2, CDC2, P21 and P53, genes expression levels were investigated. The study results disclose that compounds 4, 7, 18, 24 knocked down the expression levels of CCND1, Survivin, BCL-2 and CDC2. However, P21 and P53 were up-regulated by compounds 21, 22. This study introduced promising pro-apoptotic anticancer agents acting through the modulation of key regulators of apoptosis and cell cycle genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Selection of chemotherapy for glioblastoma expressing O6-methylguanine-DNA methyltransferase

    PubMed Central

    IWADATE, YASUO; MATSUTANI, TOMOO; HASEGAWA, YUZO; SHINOZAKI, NATSUKI; OIDE, TAKASHI; TANIZAWA, TORU; NAKATANI, YUKIO; SAEKI, NAOKATSU; FUJIMOTO, SHUICHI

    2010-01-01

    The therapeutic benefit of nitrosoureas or temozolomide for glioblastoma is limited mainly by O6-methylguanine-DNA methyltransferase (MGMT) expression. The aim of this study was to evaluate the effectiveness of various anticancer drugs for MGMT-positive glioblastoma. Seventy-four glioblastoma patients were administered various anticancer drugs according to drug sensitivity testing. For the individualization, drug-induced apoptosis was quantified by flow cytometry in the primary culture of surgically resected tumor cells. The MGMT protein expression was analyzed by immunohistochemistry. The median survival of the patients receiving the individualized chemotherapy was 19.4 months (95% CI, 15.9–22.1). The patients with negative MGMT immunostaining had significantly longer survival than those with positive MGMT immunostaining [median survival, 22.3 months (95% CI, 17.6–27.0) vs. 15.1 months (95% CI, 13.4–16.8); p=0.0188]. For MGMT-positive tumors, the platinum agents and the taxanes were more frequently selected for administration than the other categories of anticancer agents. The patient survival period of MGMT-positive glioblastomas treated with the platinum agents or the taxanes [median survival, 20.1 months (95% CI, 18.0–22.7)] was significantly longer than that of MGMT-positive tumors treated with nitrosoureas (p=0.0026), and was equivalent to that of MGMT-negative glioblastomas (p=0.3047). These results suggest that the platinum agents and the taxanes offer the best probability to be effective against immunohistochemically MGMT-positive glioblastomas. PMID:23136592

  19. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come

    PubMed Central

    Yingchoncharoen, Phatsapong; Kalinowski, Danuta S.

    2016-01-01

    Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles. PMID:27363439

  20. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents

    PubMed Central

    Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang

    2017-01-01

    Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061

  1. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments

    PubMed Central

    Inoue, H; Tani, K

    2014-01-01

    Apoptotic cell death generally characterized by a morphologically homogenous entity has been considered to be essentially non-immunogenic. However, apoptotic cancer cell death, also known as type 1 programmed cell death (PCD), was recently found to be immunogenic after treatment with several chemotherapeutic agents and oncolytic viruses through the emission of various danger-associated molecular patterns (DAMPs). Extensive studies have revealed that two different types of immunogenic cell death (ICD) inducers, recently classified by their distinct actions in endoplasmic reticulum (ER) stress, can reinitiate immune responses suppressed by the tumor microenvironment. Indeed, recent clinical studies have shown that several immunotherapeutic modalities including therapeutic cancer vaccines and oncolytic viruses, but not conventional chemotherapies, culminate in beneficial outcomes, probably because of their different mechanisms of ICD induction. Furthermore, interests in PCD of cancer cells have shifted from its classical form to novel forms involving autophagic cell death (ACD), programmed necrotic cell death (necroptosis), and pyroptosis, some of which entail immunogenicity after anticancer treatments. In this review, we provide a brief outline of the well-characterized DAMPs such as calreticulin (CRT) exposure, high-mobility group protein B1 (HMGB1), and adenosine triphosphate (ATP) release, which are induced by the morphologically distinct types of cell death. In the latter part, our review focuses on how emerging oncolytic viruses induce different forms of cell death and the combinations of oncolytic virotherapies with further immunomodulation by cyclophosphamide and other immunotherapeutic modalities foster dendritic cell (DC)-mediated induction of antitumor immunity. Accordingly, it is increasingly important to fully understand how and which ICD inducers cause multimodal ICD, which should aid the design of reasonably multifaceted anticancer modalities to maximize ICD-triggered antitumor immunity and eliminate residual or metastasized tumors while sparing autoimmune diseases. PMID:23832118

  2. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    PubMed

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast and colorectal cancers.

  3. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.

    PubMed

    Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail

    2009-04-21

    The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.

  4. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  5. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents

    PubMed Central

    Tanpure, Rajendra P.; George, Clinton S.; Strecker, Tracy E.; Devkota, Laxman; Tidmore, Justin K.; Lin, Chen-Ming; Herdman, Christine A.; MacDonough, Matthew T.; Sriram, Madhavi; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.

    2014-01-01

    Diversely functionalized, fused aryl-alkyl ring systems hold a prominent position as well-established molecular frameworks for a variety of anti-cancer agents. The benzosuberene (6,7 fused, also referred to as dihydro-5H-benzo[7]annulene and benzocycloheptene) ring system has emerged as a valuable molecular core component for the development of inhibitors of tubulin assembly, which function as antiproliferative anti-cancer agents and, in certain cases, as vascular disrupting agents (VDAs). Both a phenolic-based analogue (known as KGP18, compound 39) and its corresponding amine-based congener (referred to as KGP156, compound 45), which demonstrate strong inhibition of tubulin assembly (low micromolar range) and potent cytotoxicity (picomolar range for KGP18 and nanomolar range for KGP156) are noteworthy examples of such benzosuberene-based compounds. In order to extend the structure-activity relationship (SAR) knowledge base related to benzosuberene anti-cancer agents, a series of eleven analogues (including KGP18) were prepared in which the methoxylation pattern on the pendant aryl ring as well as functional group incorporation on the fused aryl ring were varied. The synthetic approach to these compounds featured a sequential Wittig olefination, reduction, Eaton's reagent-mediated cyclization strategy to achieve the core benzosuberone intermediate, and represented a higher-yielding synthesis of KGP18 (which we prepared previously through a ring-expansion strategy). Incorporation of a fluorine or chlorine atom at the 1-position of the fused aryl ring or replacement of one of the methoxy groups with hydrogen (on the pendant aryl ring of KGP18) led to benzosuberene analogues that were both strongly inhibitory against tubulin assembly (IC50 approximately 1.0 M) and strongly cytotoxic against selected human cancer cell lines (for example, GI50 = 5.47 nM against NCI-H460 cells with fluorobenzosuberene analogue 37). A water-soluble phosphate prodrug salt of KGP18 (referred to as KGP265, compound 44) and a water-soluble serinamide salt (compound 48) of KGP156 were also synthesized and evaluated in this study. PMID:24183586

  6. Influence of Glutathione and Glutathione S-transferases on DNA Interstrand Cross-Link Formation by 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine, the Active Anticancer Moiety Generated by Laromustine

    PubMed Central

    2015-01-01

    Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the therapeutic effects of 90CE and its prodrugs. Thus, 90CE demonstrates high selectivity toward tumors with diminished levels of O6-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O6-alkylguanine repair. The formation of O6-(2-chloroethyl)guanine lesions ultimately leads to the generation of highly cytotoxic 1-(N3-cytosinyl),-2-(N1-guaninyl)ethane DNA interstrand cross-links via N1,O6-ethanoguanine intermediates. The anticancer activity arising from this sequence of reactions is thus identical to this component of the anticancer activity of the clinically used chloroethylnitrosoureas. Herein, we evaluate the ability of glutathione (GSH) and other low molecular weight thiols, as well as GSH coupled with various glutathione S-transferase enzymes (GSTs) to attenuate the final yields of cross-links generated by 90CE when added prior to or immediately following the initial chloroethylation step to determine the major point(s) of interaction. In contrast to studies utilizing BCNU as a chloroethylating agent by others, GSH (or GSH/GST) did not appreciably quench DNA interstrand cross-link precursors. While thiols alone offered little protection at either alkylation step, the GSH/GST couple was able to diminish the initial yields of cross-link precursors. 90CE exhibited a very different GST isoenzyme susceptibility to that reported for BCNU, this could have important implications in the relative resistance of tumor cells to these agents. The protection afforded by GSH/GST was compared to that produced by MGMT. PMID:25012050

  7. Influence of glutathione and glutathione S-transferases on DNA interstrand cross-link formation by 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine, the active anticancer moiety generated by laromustine.

    PubMed

    Penketh, Philip G; Patridge, Eric; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C

    2014-08-18

    Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the therapeutic effects of 90CE and its prodrugs. Thus, 90CE demonstrates high selectivity toward tumors with diminished levels of O(6)-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O(6)-alkylguanine repair. The formation of O(6)-(2-chloroethyl)guanine lesions ultimately leads to the generation of highly cytotoxic 1-(N(3)-cytosinyl),-2-(N(1)-guaninyl)ethane DNA interstrand cross-links via N(1),O(6)-ethanoguanine intermediates. The anticancer activity arising from this sequence of reactions is thus identical to this component of the anticancer activity of the clinically used chloroethylnitrosoureas. Herein, we evaluate the ability of glutathione (GSH) and other low molecular weight thiols, as well as GSH coupled with various glutathione S-transferase enzymes (GSTs) to attenuate the final yields of cross-links generated by 90CE when added prior to or immediately following the initial chloroethylation step to determine the major point(s) of interaction. In contrast to studies utilizing BCNU as a chloroethylating agent by others, GSH (or GSH/GST) did not appreciably quench DNA interstrand cross-link precursors. While thiols alone offered little protection at either alkylation step, the GSH/GST couple was able to diminish the initial yields of cross-link precursors. 90CE exhibited a very different GST isoenzyme susceptibility to that reported for BCNU, this could have important implications in the relative resistance of tumor cells to these agents. The protection afforded by GSH/GST was compared to that produced by MGMT.

  8. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.

    PubMed

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold

    2018-04-13

    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  9. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    NASA Astrophysics Data System (ADS)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy. Electronic supplementary information (ESI) available: Characterization of p(HEMA-co-DMA) abbreviated as (HEDO), XRD spectra of Fe3O4 & HEDO-Fe3O4, DLS of Fe3O4 & HEDO-Fe3O4, UV-VIS photospectroscopy of HEDO, BTZ and HEDO-BTZ. See DOI: 10.1039/C5NR05844A

  10. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  11. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins.

    PubMed

    Cai, Yuee; Zhang, Jinming; Chen, Nelson G; Shi, Zhi; Qiu, Jiange; He, Chengwei; Chen, Meiwan

    2017-07-01

    Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (-)-epigallocatechin-3-gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off-taste, and shorter half-life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents. © 2016 Wiley Periodicals, Inc.

  12. A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging

    DOE PAGES

    Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko; ...

    2015-03-17

    New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)] 2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)] 2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)] 2O to melanoma tissues transplanted into themore » tails of mice using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)] 2O was visualized by MRI. Thus, [Fe(salen)] 2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.« less

  13. A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko

    New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)] 2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)] 2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)] 2O to melanoma tissues transplanted into themore » tails of mice using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)] 2O was visualized by MRI. Thus, [Fe(salen)] 2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.« less

  14. Organometallic iron complexes as potential cancer therapeutics.

    PubMed

    Mojžišová, Gabriela; Mojžiš, Ján; Vašková, Janka

    2014-01-01

    Metal-containing drugs have long been used for medicinal purposes in more or less empirical way. The potential of these anticancer agents has only been fully realised and explored since the discovery of the biological activity of cisplatin. Cisplatin and carboplatin have been two of the most successful anti-cancer agents ever developed, and are currently used to treat ovarian, lung and testicular cancers. They share certain side effects, so their clinical use is severely limited by dose-limiting toxicity. Inherent or acquired resistance is a second problem often associated with platinum-based drugs, with further limits of their clinical use. These problems have prompted chemists to employ different strategies in development of the new metal-based anticancer agents with different mechanisms of action. There are various metal complexes still under development and investigation for the future cancer treatment use. In the search for novel bio-organometallic molecules, iron containing anti-tumoral agents are enjoying an increasing interest and appear very promising as the potential drug candidates. Iron, as an essential cofactor in a number of enzymes and physiological processes, may be less toxic than non essential metals, such as platinum. Up to now, some of iron complexes have been tested as cytotoxic agents and found to be endowed with an antitumor activity in several in vitro tests (on cultured cancer cell lines) and few in vivo experiments (e. g. on Ehrlich's ascites carcinoma). Although the precise molecular mechanism is yet to be defined, a number of observations suggest that the reactive oxygen species can play important role in iron-induced cytotoxicty. This review covers some relevant examples of research on the novel iron complexes.

  15. The medicinal use of realgar (As₄S₄) and its recent development as an anticancer agent.

    PubMed

    Wu, Jinzhu; Shao, Yanbin; Liu, Jialiang; Chen, Gang; Ho, Paul C

    2011-06-01

    Arsenicals have been known as poisons and paradoxically as therapeutic agents. In the early 1970s, Chinese physicians from Harbin revived the medicinal use of arsenicals as anticancer agents. Notable success was observed in the treatment of acute promyelocytic leukemia (APL) with arsenic trioxide (ATO). The FDA approved ATO injection in the year 2000 for the treatment of APL. In contrast, the clinical use of the other arsenical, realgar (As₄S₄), is currently much less established, though it has also long been used in medical history. According to ancient medical records and recent findings in clinical trials, realgar was found as effective as ATO, but with relatively good oral safety profiles even on chronic administration. These give realgar an advantage over ATO in maintenance treatment. Though there is increasing understanding on the mechanisms of action and metabolic profiles of ATO, similar aspects of realgar are unclear to date. We outline the use of realgar in traditional medicines, especially in traditional Chinese medicines (TCM) from ancient times to present. The clinical and experimental observations on realgar as a therapeutic agent are described with an emphasis on those findings that may imply the rationale and future directions of realgar as a potential anticancer drug candidate. There is an increasing understanding in the mechanisms of action of realgar as an antileukemic agent. However, there is still sparse information on its metabolism and toxicity profiles. Realgar is poorly soluble in water. Recently, several types of realgar nanoparticles (NPs) have been developed. Some of these realgar NPs also possess the unique optical properties of quantum dots. The activities and bioavailability of realgar NPs are much influenced by their sizes, making realgar an interesting biomedical and pharmaceutical research candidate. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. A novel compound DT-010 protects against doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by inhibiting reactive oxygen species-mediated apoptotic and autophagic pathways.

    PubMed

    Tang, Fan; Zhou, Xinhua; Wang, Liang; Shan, Luchen; Li, Chuwen; Zhou, Hefeng; Lee, Simon Ming-Yuen; Hoi, Maggie Pui-Man

    2018-02-05

    Doxorubicin (Dox) is an effective anti-cancer agent but limited by its cardiotoxicity, thus the search for pharmacological agents for enhancing anti-cancer activities and protecting against cardiotoxicity has been a subject of great interest. We have previously reported the synergistic anti-cancer effects of a novel compound DT-010. In the present study, we further investigated the cardioprotective effects of DT-010 in zebrafish embryos in vivo and the molecular underlying mechanisms in H9c2 cardiomyocytes in vitro. We showed that DT-010 prevented the Dox-induced morphological distortions in the zebrafish heart and the associated cardiac impairments, and especially improved ventricular functions. By using H9c2 cells model, we showed that DT-010 directly inhibited the generation of reactive oxygen species by Dox and protected cell death and cellular damage. We further observed that DT-010 protected against Dox-induced myocardiopathy via inhibiting downstream molecular pathways in response to oxidative stress, including reactive oxygen species-mediated MAPK signaling pathways ERK and JNK, and apoptotic pathways involving the activation of caspase 3, caspase 7, and PARP signaling. Recent studies also suggest the importance of alterations in cardiac autophagy in Dox cardiotoxicity. We further showed that DT-010 could inhibit the induction of autophagosomes formation by Dox via regulating the upstream Akt/AMPK/mTOR signaling. Since Dox-induced cardiotoxicity is multifactorial, our results suggest that multi-functional agent such as DT-010 might be an effective therapeutic agent for combating cardiotoxicity associated with chemotherapeutic agents such as Dox. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhancing Tumor Cell Response to Chemotherapy through the Targeted Delivery of Platinum Drugs Mediated by Highly Stable, Multifunctional Carboxymethylcellulose-Coated Magnetic Nanoparticles.

    PubMed

    Medříková, Zdenka; Novohradsky, Vojtech; Zajac, Juraj; Vrána, Oldřich; Kasparkova, Jana; Bakandritsos, Aristides; Petr, Martin; Zbořil, Radek; Brabec, Viktor

    2016-07-04

    The fabrication of nanoparticles using different formulations, and which can be used for the delivery of chemotherapeutics, has recently attracted considerable attention. We describe herein an innovative approach that may ultimately allow for the selective delivery of anticancer drugs to tumor cells by using an external magnet. A conventional antitumor drug, cisplatin, has been incorporated into new carboxymethylcellulose-stabilized magnetite nanoparticles conjugated with the fluorescent marker Alexa Fluor 488 or folic acid as targeting agent. The magnetic nanocarriers possess exceptionally high biocompatibility and colloidal stability. These cisplatin-loaded nanoparticles overcome the resistance mechanisms typical of free cisplatin. Moreover, experiments aimed at the localization of the nanoparticles driven by an external magnet in a medium that mimics physiological conditions confirmed that this localization can inhibit tumor cell growth site-specifically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nitric oxide: cancer target or anticancer agent?

    PubMed

    Mocellin, Simone

    2009-03-01

    Despite the improved understanding of nitric oxide (NO) biology and the large amount of preclinical experiments testing its role in cancer development and progression, it is still debated whether NO should be considered a potential anticancer agent or instead a carcinogen. The complexity of NO effects within a cell and the variability of the final biological outcome depending upon NO levels makes it highly challenging to determine the therapeutic value of interfering with the activity of this intriguing gaseous messenger. This uncertainty has so far halted the clinical implementation of NO-based therapeutics in the field of oncology. Accordingly, only an in depth knowledge of the mechanisms leading to experimental tumor regression or progression in response to NO will allow us to exploit this molecule to fight cancer.

  19. [Quod medicina aliis, aliis est acre venenum**--venoms as a source of anticancer agents].

    PubMed

    Kucińska, Małgorzata; Ruciński, Piotr; Murias, Marek

    2013-01-01

    Natural product derived from plants and animals were used in folk medicine for centuries. The venoms produced by animals for hunting of self-defence are rich in bioactive compounds with broad spectrum of biological activity. The papers presents the most promising compounds isolated from venoms of snakes, scorpions and toads. For these compounds both: mechanism of anticancer activity as well as possibilities of clinical use are presented.

  20. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent.

    PubMed

    Ghorbani, Marjan; Hamishehkar, Hamed

    2017-12-01

    The aim of this study was to design and develop a new pH-responsive nano-platform for controlled and targeted delivery of anticancer drugs. Engineering of pH-responsive nanocarriers was prepared via decoration of gold nanoparticles (NPs) by thiolated (methoxy-poly(ethylene glycol)-b-poly((2-dimethylamino) ethyl methacrylate-co-itaconic acid) (mPEG-b-p(DMAEMA-co-IA) copolymer and fully characterized by various techniques and subsequently used for loading and targeted delivery of anticancer agent, methotrexate (MTX). By conjugation of MTX with the amino groups of polymeric shell of gold NPs (with the high loading capacity of 31%), since MTX is also the target ligand of folate receptors, the targeted performance of NPs examined through the cell uptake study. The results indicated that MTX-loaded NPs showed 1.3 times more cell internalization than MTX free NPs. Cell cytotoxicity studies pointed out ~1.5 and 3 times higher cell cytotoxicity after 24h for MTX-loaded nanoparticles than MTX in MTT assay and cell cycle arrest experiments, respectively. Additionally, mPEG was used as the outer shell of NPs which caused the long-term dispersibility of the NPs even under high ionic strength. The in-vitro pH-triggered drug release of MTX showed that MTX released more than three times in simulated cancerous tissue (40°C, pH5.3) than physiologic condition (37°C, pH7.4) during 48h. The results of various experiments determined that the developed smart nanocarrier proposed as a promising nanocarrier for active and passive targeting of anionic anti-cancer agents such as MTX. Copyright © 2017. Published by Elsevier B.V.

  1. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.

    PubMed

    Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J

    2005-09-01

    Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.

  2. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    PubMed

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  3. Design, synthesis and molecular modeling studies of novel thiazolidine-2,4-dione derivatives as potential anti-cancer agents

    NASA Astrophysics Data System (ADS)

    Asati, Vivek; Bharti, Sanjay Kumar

    2018-02-01

    A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.

  4. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells.

    PubMed

    Kim, Seong-Hoon; Ryu, Hye Guk; Lee, Juhyun; Shin, Joon; Harikishore, Amaravadhi; Jung, Hoe-Yune; Jung, Hoe-Youn; Kim, Ye Seul; Lyu, Ha-Na; Oh, Eunji; Baek, Nam-In; Choi, Kwan-Yong; Yoon, Ho Sup; Kim, Kyong-Tai

    2015-09-28

    Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.

  5. Cannabis-derived substances in cancer therapy--an emerging anti-inflammatory role for the cannabinoids.

    PubMed

    Liu, Wai M; Fowler, Daniel W; Dalgleish, Angus G

    2010-11-01

    Cannabinoids, the active components of the cannabis plant, have some clinical merit both as an anti-emetic and appetite stimulant in cachexic patients. Recently, interest in developing cannabinoids as therapies has increased following reports that they possess anti-tumour properties. Research into cannabinoids as anti-cancer agents is in its infancy, and has mainly focussed on the pro-apoptotic effects of this class of agent. Impressive anti-cancer activities have been reported; actions that are mediated in large part by disruptions to ubiquitous signalling pathways such as ERK and PI3-K. However, recent developments have highlighted a putative role for cannabinoids as anti-inflammatory agents. Chronic inflammation has been associated with neoplasia for sometime, and as a consequence, reducing inflammation as a way of impacting cancer presents a new role for these compounds. This article reviews the ever-changing relationship between cannabinoids and cancer, and updates our understanding of this class of agent. Furthermore, the relationship between chronic inflammation and cancer, and how cannabinoids can impact this relationship will be described.

  6. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Yang, Peihui; Cai, Jiye; Chen, Zheng W

    2017-05-01

    As the active anticancer component of Rabdosia Rubescens, oridonin has been proved to show strong anticancer activity in cancer cells, which is also found to be closely related to its specific inhibition effects on the EGFR tyrosine kinase activity. In this study, atomic force microscopy based single molecule force spectroscopy (AFM-SMFS) was used for real-time and in-situ detection of EGF-EGFR interactions in living esophageal cancer KYSE-150 cells to evaluate the anticancer activity of oridonin for the first time. Oridonin was found to induce apoptosis and also reduce EGFR expression in KYSE-150 cells. AFM-SMFS results demonstrated that oridonin could inhibit the binding between EGF and EGFR in KYSE-150 cells by decreasing the unbinding force and binding probability for EGF-EGFR complexes, which was further proved to be closely associated with the intracellular ROS level. More precise mechanism studies based on AFM-SMFS demonstrated that oridonin treatment could decrease the energy barrier width, increase the dissociation off rate constant and decrease the activation energy of EGF-EGFR complexes in ROS dependent way, suggesting oridonin as a strong anticancer agent targeting EGF-EGFR interactions in cancer cells through ROS dependent mechanism. Our results not only suggested oridonin as a strong anticancer agent targeting EGF-EGFR interactions in ROS dependent mechanism, but also highlighted AFM-SMFS as a powerful technique for pharmacodynamic studies by detecting ligand-receptor interactions, which was also expected to be developed into a promising tool for the screening and mechanism studies of drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nano-Chitosan Particles in Anticancer Drug Delivery: An Up-to-Date Review.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya

    2017-01-01

    Cancer is one of the most awful lethal diseases all over the world and the success of its current chemotherapeutic treatment strategies is limited due to several associated drawbacks. The exploration of cancer cell physiology and its microenvironment has exposed the potential of various classes of nanocarriers to deliver anticancer chemotherapeutic agents at the tumor target site. These nanocarriers must evade the immune surveillance system and achieve target selectivity. Besides, they must gain access into the interior of cancerous cells, evade endosomal entrapment and discharge the drugs in a sustained manner. Chitosan, the second naturally abundant polysaccharide is a biocompatible, biodegradable and mucoadhesive cationic polymer which has been exploited extensively in the last few years in the effective delivery of anticancer chemotherapeutics to the target tumor cells. Therapeutic agent-loaded surface modified chitosan nanoparticles are established to be more stable, permeable and bioactive. This review will provide an up-to-date evidence-based background on recent pharmaceutical advancements in the transformation of chitosan nanoparticles for smart anticancer therapeutic drug delivery. • Efforts to improve cancer chemotherapy by exploiting the intrinsic differences between normal and neoplastic cells to achieve maximum effective drug delivery to target cancer cells through bioengineered chitosan nano delivery vectors are discussed. • The easy manipulation of surface characteristics of chitosan based nanoparticles by various functionalization methods to achieve targeted drug delivery proves its potential to be an essential tool for the advancement of anticancer drug-delivery vectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Liposomal nanomedicines: an emerging field.

    PubMed

    Fenske, David B; Chonn, Arcadio; Cullis, Pieter R

    2008-01-01

    Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA-containing therapeutic genes, antisense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (>6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is "leaky" and allows extravasation of particles with small diameters. Thus, LNs protect the drug during circulation, prevent it from reaching healthy tissues, and permit its accumulation at sites of disease. We will discuss recent advances in this field involving conventional anticancer drugs as well as gene-delivery, immunostimulatory, and gene-silencing applications involving the new genetic drugs. LNMs have the potential to offer new treatments in such areas as cancer therapy, vaccine development, and cholesterol management.

  9. Green tea extract selectively targets nanomechanics of live metastatic cancer cells

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Jin, Yu-Sheng; Lu, Qing-Yi; Rao, JianYu; Gimzewski, James K.

    2011-05-01

    Green tea extract (GTE) is known to be a potential anticancer agent (Yang et al 2009 Nat. Rev. Cancer 9 429-39) with various biological activities (Lu et al 2005 Clin. Cancer Res. 11 1675-83 Yang et al 1998 Carcinogenesis 19 611-6) yet the precise mechanism of action is still unclear. The biomechanical response of GTE treated cells taken directly from patient's body samples was measured using atomic force microscopy (AFM) (Binnig et al 1986 Phys. Rev. Lett. 56 930). We found significant increase in stiffness of GTE treated metastatic tumor cells, with a resulting value similar to untreated normal mesothelial cells, whereas mesothelial cell stiffness after GTE treatment is unchanged. Immunofluorescence analysis showed an increase in cytoskeletal-F-actin in GTE treated tumor cells, suggesting GTE treated tumor cells display mechanical, structural and morphological features similar to normal cells, which appears to be mediated by annexin-I expression, as determined by siRNA analysis of an in vitro cell line model. Our data indicates that GTE selectively targets human metastatic cancer cells but not normal mesothelial cells, a finding that is significantly advantageous compared to conventional chemotherapy agents.

  10. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    PubMed Central

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  11. Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine.

    PubMed

    Javadi, Behjat

    2018-04-01

    Cancer is the second leading cause of death with profound socio-economic consequences worldwide. Growing evidence suggests the crucial role of diet on cancer prevention and treatment. In Traditional Persian Medicine (TPM) there is a major focus on contribution of special diet and foods to cancer management. In the present article, the cytotoxic and antitumor activities of several food items including plants and animal products recommended by TPM as anticancer agents are discussed. Strong evidence supports the anticancer effects of beetroot (Beta vulgris) and its major compound betanin, cinnamon and cinnamaldehyde, barley (H. vulgare) and its products, extra-virgin olive oil, black pepper (P. nigrum) and its piperine, grapes (V. vinifera) and its compound resveratrol, ginger and its compound 6-gingerol, whey protein, fish, and honey. However, additional pharmacological studies and clinical trials are needed to elucidate their molecular and cellular mechanisms of actions, frequency, and amount of consumption, possible adverse effects, and optimum preparation methods. Moreover, studying mechanisms of actions of the bioactive compounds present in the discussed food items can be helpful in identifying and development of new anticancer agents.

  12. PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery.

    PubMed

    Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok Kumar; Kesharwani, Prashant; Gupta, Lokesh; Iyer, Arun K; Gupta, Umesh

    2016-01-01

    Nanotechnological advancement has become a key standard for the diagnosis and treatment of several complex disorders such as cancer by utilizing the enhanced permeability and retention effect and tumor-specific targeting. Synthesis and designing the formulation of active agents in terms of their efficient delivery is of prime importance for healthcare. The use of nanocarriers has resolved the undesirable characteristics of anticancer drugs such as low solubility and poor permeability in cells. Several types of nanoparticles (NPs) have been designed with the use of various polymers along or devoid of surface engineering for targeting tumor cells. All NPs include polymers in their framework and, of these, polylactide-co-glycolide (PLGA) is biodegradable and Food and Drug Administration approved for human use. PLGA has been used extensively in the development of NPs for anticancer drug delivery. The extensive use of PLGA NPs is promising for cancer therapy, with higher efficiency and less adverse effects. The present review focused on recent developments regarding PLGA NPs, the methods used for their preparation, their characterization, and their utility in the delivery of chemotherapeutic agents.

  13. Incorporation of nitric oxide donor into 1,3-dioxyxanthones leads to synergistic anticancer activity.

    PubMed

    Liu, Jie; Zhang, Cao; Wang, Huailing; Zhang, Lei; Jiang, Zhenlei; Zhang, Jianrun; Liu, Zhijun; Chen, Heru

    2018-05-10

    Fifty 1,3-dioxyxanthone nitrates (4a ∼ i-n, n = 1-6) were designed and synthesized based on molecular similarity strategy. Incorporation of nitrate into 1,3-dioxyxanthones with electron-donating groups at 6-8 position brought about synergistic anticancer effect. Among them, compound 4g-4 was confirmed the most active agent against HepG-2 cells growth with an IC 50 of 0.33 ± 0.06 μM. It dose-dependently increased intramolecular NO levels. This activity was attenuated by either NO scavenger PTIO or mitochondrial aldehyde dehydrogenase (mtADH) inhibitor PCDA. Apoptosis analysis indicated different contributions of early/late apoptosis and necrosis to cell death for different dose of 4g-4. 4g-4 arrested more cells on S phase. Results from Western Blot implied that 4g-4 regulated p53/MDM2 to promote cancer cell apoptosis. All the evidences support that 4g-4 is a promising anti-cancer agent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Phytochemicals as Anticancer and Chemopreventive Topoisomerase II Poisons

    PubMed Central

    Ketron, Adam C.

    2013-01-01

    Phytochemicals are a rich source of anticancer drugs and chemopreventive agents. Several of these chemicals appear to exert at least some of their effects through interactions with topoisomerase II, an essential enzyme that regulates DNA supercoiling and removes knots and tangles from the genome. Topoisomerase II-active phytochemicals function by stabilizing covalent protein-cleaved DNA complexes that are intermediates in the catalytic cycle of the enzyme. As a result, these compounds convert topoisomerase II to a cellular toxin that fragments the genome. Because of their mode of action, they are referred to as topoisomerase II poisons as opposed to catalytic inhibitors. The first sections of this article discuss DNA topology, the catalytic cycle of topoisomerase II, and the two mechanisms (interfacial vs. covalent) by which different classes of topoisomerase II poisons alter enzyme activity. Subsequent sections discuss the effects of several phytochemicals on the type II enzyme, including demethyl-epipodophyllotoxins (semisynthetic anticancer drugs) as well as flavones, flavonols, isoflavones, catechins, isothiocyanates, and curcumin (dietary chemopreventive agents). Finally, the leukemogenic potential of topoisomerase II-targeted phytochemicals is described. PMID:24678287

  15. Withaferin-A—A Natural Anticancer Agent with Pleitropic Mechanisms of Action

    PubMed Central

    Lee, In-Chul; Choi, Bu Young

    2016-01-01

    Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A. PMID:26959007

  16. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action.

    PubMed

    Lee, In-Chul; Choi, Bu Young

    2016-03-04

    Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.

  17. Curcumin-I Knoevenagel's condensates and their Schiff's bases as anticancer agents: synthesis, pharmacological and simulation studies.

    PubMed

    Ali, Imran; Haque, Ashanul; Saleem, Kishwar; Hsieh, Ming Fa

    2013-07-01

    Pyrazolealdehydes (4a-d), Knoevenagel's condensates (5a-d) and Schiff's bases (6a-d) of curcumin-I were synthesized, purified and characterized. Hemolysis assays, cell line activities, DNA bindings and docking studies were carried out. These compounds were lesser hemolytic than standard drug doxorubicin. Minimum cell viability (MCF-7; wild) observed was 59% (1.0 μg/mL) whereas the DNA binding constants ranged from 1.4×10(3) to 8.1×10(5) M(-1). The docking energies varied from -7.30 to -13.4 kcal/mol. It has been observed that DNA-compound adducts were stabilized by three governing forces (Van der Wall's, H-bonding and electrostatic attractions). It has also been observed that compounds 4a-d preferred to enter minor groove while 5a-d and 6a-d interacted with major grooves of DNA. The anticancer activities of the reported compounds might be due to their interactions with DNA. These results indicated the bright future of the reported compounds as anticancer agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities

    NASA Astrophysics Data System (ADS)

    Borah, D.; Hazarika, M.; Tailor, P.; Silva, A. R.; Chetia, B.; Singaravelu, G.; Das, P.

    2018-05-01

    We describe an in situ method of synthesizing highly branched gold nanoflower (AuNFs) using aqueous seed extract of Syzygium cumini (L.) Skeels as reductant in the presence of 0.3% starch. Surprisingly, when the same reaction was carried out in the absence of starch or with starch at a lower concentration (0.15%), instead of flower-like morphology quasi-spherical or polyhedral nanoparticles (AuNPs) are obtained. The nanomaterials were extensively characterized by HRTEM, FESEM, UV-Vis, FTIR, XRD, XPS and TGA analysis. The biological activities of the materials were investigated for antimicrobial activities against four bacterial strains that include one Gram positive (Staphylococcus aureus MTCC 121), two Gram negative (Escherichia coli MTCC 40 and Pseudomonas aeruginosa MTCC 4673) and one fungi (Candida albicans MTCC 227). The nanoparticles functioned as effective antimicrobial and anti-biofilm agents against all the strains under study. Controlled study revealed that, the AuNFs showed improved efficacy over conventional polyhedral AuNPs against all the microbes under study which might be attributed to the larger surface-to-volume ratio of the nanoflowers. The AuNFs also showed effective in vitro anticancer activity against a human liver cancer cell line (HepG2) with no significant cytotoxicity. Our data suggest that the AuNFs can significantly reduce the cancer cell growth with IC50 value of 20 µg mL-1.

  19. Systemic use of tumor necrosis factor alpha as an anticancer agent

    PubMed Central

    Roberts, Nicholas J.; Zhou, Shibin; Diaz, Luis A.; Holdhoff, Matthias

    2011-01-01

    Tumor necrosis factor-α (TNF-α) has been discussed as a potential anticancer agent for many years, however initial enthusiasm about its clinical use as a systemic agent was curbed due to significant toxicities and lack of efficacy. Combination of TNF-α with chemotherapy in the setting of hyperthermic isolated limb perfusion (ILP), has provided new insights into a potential therapeutic role of this agent. The therapeutic benefit from TNF-α in ILP is thought to be not only due to its direct anti-proliferative effect, but also due to its ability to increase penetration of the chemotherapeutic agents into the tumor tissue. New concepts for the use of TNF-α as a facilitator rather than as a direct actor are currently being explored with the goal to exploit the ability of this agent to increase drug delivery and to simultaneously reduce systemic toxicity. This review article provides a comprehensive overview on the published previous experience with systemic TNF-α. Data from 18 phase I and 10 phase II single agent as well as 18 combination therapy studies illustrate previously used treatment and dose schedules, response data as well as the most prominently observed adverse effects. Also discussed, based on recent preclinical data, is a potential future role of systemic TNF-α in combination with liposomal chemotherapy to facilitate increased drug uptake into tumors. PMID:22036896

  20. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come.

    PubMed

    Yingchoncharoen, Phatsapong; Kalinowski, Danuta S; Richardson, Des R

    2016-07-01

    Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Advanced Renal Cell Carcinoma: Role of the Radiologist in the Era of Precision Medicine.

    PubMed

    Shinagare, Atul B; Krajewski, Katherine M; Braschi-Amirfarzan, Marta; Ramaiya, Nikhil H

    2017-08-01

    For the past decade, advanced renal cell carcinoma (RCC) has been at the forefront of oncologic innovation. Our rapidly evolving understanding of the molecular and genetic basis of RCC has revolutionized the management of advanced RCC; 10 novel molecular targeted agents and immune checkpoint inhibitor have received U.S. Food and Drug Administration approval for treatment of advanced RCC in a little over a decade. Amid this progress, imaging has assumed a central role in metastatic surveillance and follow-up of advanced RCC. State-of-the-art knowledge of the molecular basis of RCC and its treatment and imaging will help ensure that the radiology community remains relevant and central in the care of patients with advanced RCC. This article will review developments in management of advanced RCC from a radiologist's perspective to highlight our clinical role. It will describe how the underlying molecular mechanisms of RCC provide specific targets for novel anticancer agents. The relationship between the mechanisms of action of these novel anticancer agents and the imaging appearance of tumor response will be discussed, along with the available tumor response criteria and their strengths and weaknesses, thus assisting radiologists in response assessment in the setting of clinical trials or routine practice. The class- and drug-specific toxicities and complications associated with the novel anticancer agents will be summarized, since these are frequently missed or misinterpreted and require the radiologist's input in prompt detection and management. The potential role of radiogenomics and texture analysis in the management of advanced RCC will also be discussed. © RSNA, 2017.

  2. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells.

    PubMed

    Karimpoor, Mahroo; Yebra-Fernandez, Eva; Parhizkar, Maryam; Orlu, Mine; Craig, Duncan; Khorashad, Jamshid S; Edirisinghe, Mohan

    2018-04-01

    The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells. © 2018 The Author(s).

  3. Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. single-drug loading.

    PubMed

    Lee, Wei Li; Guo, Wei Mei; Ho, Vincent H B; Saha, Amitaksha; Chong, Han Chung; Tan, Nguan Soon; Tan, Ern Yu; Loo, Say Chye Joachim

    2015-11-01

    Double-layered microparticles composed of poly(d,l-lactic-co-glycolic acid, 50:50) (PLGA) and poly(l-lactic acid) (PLLA) were loaded with doxorubicin HCl (DOX) and paclitaxel (PCTX) through a solvent evaporation technique. DOX was localized in the PLGA shell, while PCTX was localized in the PLLA core. The aim of this study was to investigate how altering layer thickness of dual-drug, double-layered microparticles can influence drug release kinetics and their antitumor capabilities, and against single-drug microparticles. PCTX-loaded double-layered microparticles with denser shells retarded the initial release of PCTX, as compared with dual-drug-loaded microparticles. The DOX release from both DOX-loaded and dual-drug-loaded microparticles were observed to be similar with an initial burst. Through specific tailoring of layer thicknesses, a suppressed initial burst of DOX and a sustained co-delivery of two drugs can be achieved over 2months. Viability studies using spheroids of MCF-7 cells showed that controlled co-delivery of PCTX and DOX from dual-drug-loaded double-layered microparticles were better in reducing spheroid growth rate. This study provides mechanistic insights into how by tuning the layer thickness of double-layered microparticles the release kinetics of two drugs can be controlled, and how co-delivery can potentially achieve better anticancer effects. While the release of multiple drugs has been reported to achieve successful apoptosis and minimize drug resistance, most conventional particulate systems can only deliver a single drug at a time. Recently, although a number of formulations (e.g. micellar nanoparticles, liposomes) have been successful in delivering two or more anticancer agents, sustained co-delivery of these agents remains inadequate due to the complex agent loading processes and rapid release of hydrophilic agents. Therefore, the present work reports the multilayered particulate system that simultaneously hosts different drugs, while being able to tune their individual release over months. We believe that our findings would be of interest to the readers of Acta Biomaterialia because the proposed system could open a new avenue on how two drugs can be released, through rate-controlling carriers, for combination chemotherapy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    PubMed

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A comparison between PLGA-PEG and NIPAAm-MAA nanocarriers in curcumin delivery for hTERT silencing in lung cancer cell line.

    PubMed

    Roointan, A; Sharifi-Rad, M; Badrzadeh, F; Sharifi-Rad, J

    2016-08-29

    Lung cancer is the most common cancer among men. Since the main reason of cancer cells immortality is telomerase activity, targeting of such enzyme can be a promising approach in cancer therapy. Curcumin is a safe and efficient anticancer agent in this context, but its applications in cancer therapy are limited because of its hydrophobic structure and low solubility in water. Today, using nanocarriers for delivery of such anticancer agents is a well performed method. Here, we developed and compared the efficiency of two nanocarriers (PLGA-PEG and NIPAAm-MAA) in delivery of curcumin and also in levels of hTERT silencing in lung cancer cell line (calu-6). Scanning electron microscopy, MTT assays and real-time PCR were used for imaging, cytotoxicity testing and measuring the expression levels of hTERT after treatment of cells with different concentrations of free curcumin and curcumin loaded nanocarriers. The MTT results demonstrated that the IC50 values of curcumin loaded nanocarriers were in lower concentrations than free curcumin. The hTERT expression levels were decreased by curcumin loaded PLGA-PEG more than curcumin loaded NIPAAm-MAA and free curcumin. Our results showed that the curcumin loaded PLGA-PEG can be a useful nano based carrier for delivery of anti-cancer agents such as curcumin to fight lung cancer.

  6. Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma

    PubMed Central

    Kwak, Tae Won; Shin, Hee Jae; Jeong, Young-Il; Han, Myoung-Eun; Oh, Sae-Ock; Kim, Hyun-Jung; Kim, Do Hyung; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to investigate the anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Methods The anticancer activity of streptochlorin was evaluated in vitro in various cholangiocarcinoma cell lines for apoptosis, proliferation, invasiveness, and expression of various protein levels. A liver metastasis model was prepared by splenic injection of HuCC-T1 cholangiocarcinoma cells using a BALB/c nude mouse model to study the systemic antimetastatic efficacy of streptochlorin 5 mg/kg at 8 weeks. The antitumor efficacy of subcutaneously injected streptochlorin was also assessed using a solid tumor xenograft model of SNU478 cells for 22 days in the BALB/c nude mouse. Results Streptochlorin inhibited growth and secretion of vascular endothelial growth factor by cholangiocarcinoma cells in a dose-dependent manner and induced apoptosis in vitro. In addition, streptochlorin effectively inhibited invasion and migration of cholangiocarcinoma cells. Secretion of vascular endothelial growth factor and activity of matrix metalloproteinase-9 in cholangiocarcinoma cells were also suppressed by treatment with streptochlorin. Streptochlorin effectively regulated metastasis of HuCC-T1 cells in a mouse model of liver metastasis. In a tumor xenograft study using SNU478 cells, streptochlorin significantly inhibited tumor growth without changes in body weight when compared with the control. Conclusion These results reveal that streptochlorin is a promising chemotherapeutic agent to the treatment of cholangiocarcinoma. PMID:25931814

  7. Cyanobacteria as a Source for Novel Anti-Leukemic Compounds.

    PubMed

    Humisto, Anu; Herfindal, Lars; Jokela, Jouni; Karkman, Antti; Bjørnstad, Ronja; Choudhury, Romi R; Sivonen, Kaarina

    2016-01-01

    Cyanobacteria are an inspiring source of bioactive secondary metabolites. These bioactive agents are a diverse group of compounds which are varying in their bioactive targets, the mechanisms of action, and chemical structures. Cyanobacteria from various environments, especially marine benthic cyanobacteria, are found to be rich sources for the search for novel bioactive compounds. Several compounds with anticancer activities have been discovered from cyanobacteria and some of these have succeeded to enter the clinical trials. Varying anticancer agents are needed to overcome increasing challenges in cancer treatments. Different search methods are used to reveal anticancer compounds from natural products, but cell based methods are the most common. Cyanobacterial bioactive compounds as agents against acute myeloid leukemia are not well studied. Here we examined our new results combined with previous studies of anti-leukemic compounds from cyanobacteria with emphasis to reveal common features in strains producing such activity. We report that cyanobacteria harbor specific anti-leukemic compounds since several studied strains induced apoptosis against AML cells but were inactive against non-malignant cells like hepatocytes. We noted that particularly benthic strains from the Baltic Sea, such as Anabaena sp., were especially potential AML apoptosis inducers. Taken together, this review and re-analysis of data demonstrates the power of maintaining large culture collections for the search for novel bioactivities, and also how anti-AML activity in cyanobacteria can be revealed by relatively simple and low-cost assays.

  8. PEG conjugates in clinical development or use as anticancer agents: an overview.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.

  9. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    PubMed

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  11. Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy.

    PubMed

    Tang, Yadong; Huang, Boxin; Dong, Yuqin; Wang, Wenlong; Zheng, Xi; Zhou, Wei; Zhang, Kun; Du, Zhiyun

    2017-10-01

    In vitro cell-based assays are widely applied to evaluate anti-cancer drug efficacy. However, the conventional approaches are mostly based on two-dimensional (2D) culture systems, making it difficult to recapitulate the in vivo tumor scenario because of spatial limitations. Here, we develop an in vitro three-dimensional (3D) prostate tumor model based on a hyaluronic acid (HA)-alginate hybrid hydrogel to bridge the gap between in vitro and in vivo anticancer drug evaluations. In situ encapsulation of PCa cells was achieved by mixing HA and alginate aqueous solutions in the presence of cells and then crosslinking with calcium ions. Unlike in 2D culture, cells were found to aggregate into spheroids in a 3D matrix. The expression of epithelial to mesenchyme transition (EMT) biomarkers was found to be largely enhanced, indicating an increased invasion and metastasis potential in the hydrogel matrix. A significant up-regulation of proangiogenic growth factors (IL-8, VEGF) and matrix metalloproteinases (MMPs) was observed in 3D-cultured PCa cells. The results of anti-cancer drug evaluation suggested a higher drug tolerance within the 3D tumor model compared to conventional 2D-cultured cells. Finally, we found that the drug effect within the in vitro 3D cancer model based on HA-alginate matrix exhibited better predictability for in vivo drug efficacy.

  12. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert

    2013-03-01

    The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs. © 2012 Wiley Periodicals, Inc.

  13. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Novel Growth Factor and Anti-Apoptotic Agent for Promoting Lung Development and Treating Lung Disease | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the NCI have developed a new therapeutic strategy for lung cancer using secretoglobin family 3A member 2 (SCGB3A2), as a cell proliferative and anti-apoptotic agent. SCGB3A2 can be used to inhibit lung damage that results from treatment with anti-cancer agents. NCI seeks parties to license or co-develop this technology.

  15. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy.

    PubMed

    Ganapathy-Kanniappan, S; Vali, M; Kunjithapatham, R; Buijs, M; Syed, L H; Rao, P P; Ota, S; Kwak, B K; Loffroy, R; Geschwind, J F

    2010-08-01

    The pyruvate analog, 3-bromopyruvate, is an alkylating agent and a potent inhibitor of glycolysis. This antiglycolytic property of 3-bromopyruvate has recently been exploited to target cancer cells, as most tumors depend on glycolysis for their energy requirements. The anticancer effect of 3-bromopyruvate is achieved by depleting intracellular energy (ATP) resulting in tumor cell death. In this review, we will discuss the principal mechanism of action and primary targets of 3-bromopyruvate, and report the impressive antitumor effects of 3-bromopyruvate in multiple animal tumor models. We describe that the primary mechanism of 3-bromopyruvate is via preferential alkylation of GAPDH and that 3-bromopyruvate mediated cell death is linked to generation of free radicals. Research in our laboratory also revealed that 3-bromopyruvate induces endoplasmic reticulum stress, inhibits global protein synthesis further contributing to cancer cell death. Therefore, these and other studies reveal the tremendous potential of 3-bromopyruvate as an anticancer agent.

  16. Antimicrobial, antiparasitic and anticancer properties of Hibiscus sabdariffa (L.) and its phytochemicals: in vitro and in vivo studies.

    PubMed

    Hassan, Sherif T S; Berchová, Kateřina; Šudomová, Miroslava

    In the last few decades, Hibiscus sabdariffa L. (Malvaceae; H. sabdariffa) has gained much attention in research field because of its potentially useful bioactivity as well as a great safety and tolerability. For decades, microbial, parasitic and cancer diseases remain a serious threat to human health and animals as well. To treat such diseases, a search for new sources such as plants that provide various bioactive compounds useful in the treatment of several physiological conditions is urgently needed, since most of the drugs currently used in the therapy have several undesirable side effects, toxicity, and drug resistance. In this paper, we aim to present an updated overview of in vitro and in vivo studies that show the significant therapeutic properties of the crude extracts and phytochemicals derived from H. sabdariffa as antimicrobial, antiparasitic, and anticancer agents. The future directions of the use of H. sabdariffa in clinical trials will be discussed. Hibiscus sabdariffa L. antimicrobial agents cancer preventive agents antiparasitic drugs natural products.

  17. The search for novel anticancer agents: a differentiation-based assay and analysis of a folklore product.

    PubMed

    Dinnen, R D; Ebisuzaki, K

    1997-01-01

    One alternative approach to the current use of cytotoxic anticancer drugs involves the use of differentiation-inducing agents. However, a wider application of this strategy would require the development of assays to search for new differentiation-inducing agents. In this report we describe an in vitro assay using the murine erythroleukemia (clone 3-1) cells. Tests for the efficacy of this assay for the analysis of antineoplastic activity in natural products led to studies on pau d'arco, a South American folklore product used in the treatment of cancer. Purification of the activity in aqueous extracts by solvent partition and thin layer chromatography (TLC) indicated the presence of two activities, one of which was identified as lapachol. The activity in the pau d'arco extracts and of lapachol was inhibited by vitamin K1. As a vitamin K antagonist, lapachol might target such vitamin K-dependent reactions as the activation of a ligand for the Axl receptor tyrosine kinase.

  18. Anticancer polysaccharides from natural resources: a review of recent research.

    PubMed

    Zong, Aizhen; Cao, Hongzhi; Wang, Fengshan

    2012-11-06

    Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all of the chemotherapy drugs currently on the market cause serious side effects. Fortunately, several previous studies have shown that some non-toxic biological macromolecules, including polysaccharides and polysaccharide-protein complexes, possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs. Based on these encouraging observations, a great deal of effort has been focused on discovering anti-cancer polysaccharides and complexes for the development of effective therapeutics for various human cancers. This review focuses on the advancements in the anti-cancer efficacy of various natural polysaccharides and polysaccharide complexes in the past 5 years. Most polysaccharides were tested using model systems, while several involved clinical trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mesenchymal stem cell-mediated cancer therapy: A dual-targeted strategy of personalized medicine

    PubMed Central

    Sun, Xu-Yong; Nong, Jiang; Qin, Ke; Warnock, Garth L; Dai, Long-Jun

    2011-01-01

    Cancer remains one of the leading causes of mortality and morbidity throughout the world. To a significant extent, current conventional cancer therapies are symptomatic and passive in nature. The major obstacle to the development of effective cancer therapy is believed to be the absence of sufficient specificity. Since the discovery of the tumor-oriented homing capacity of mesenchymal stem cells (MSCs), the application of specific anticancer gene-engineered MSCs has held great potential for cancer therapies. The dual-targeted strategy is based on MSCs’ capacity of tumor-directed migration and incorporation and in situ expression of tumor-specific anticancer genes. With the aim of translating bench work into meaningful clinical applications, we describe the tumor tropism of MSCs and their use as therapeutic vehicles, the dual-targeted anticancer potential of engineered MSCs and a putative personalized strategy with anticancer gene-engineered MSCs. PMID:22180830

  20. Internalization of Ineffective Platinum Complex in Nanocapsules Renders It Cytotoxic.

    PubMed

    Vrana, Oldrich; Novohradsky, Vojtech; Medrikova, Zdenka; Burdikova, Jana; Stuchlikova, Olga; Kasparkova, Jana; Brabec, Viktor

    2016-02-18

    Anticancer therapy by platinum complexes, based on nanocarrier-based delivery, may offer a new approach to improve the efficacy and tolerability of the platinum family of anticancer drugs. The original rules for the design of new anticancer platinum drugs were affected by the fact that, although cisplatin (cis-[PtCl2 (NH3)2) was an anticancer drug, its isomer transplatin was not cytotoxic. For the first time, it is demonstrated that simple encapsulation of an inactive platinum compound in phospholipid bilayers transforms it into an efficient cytotoxic agent. Notably, the encapsulation of transplatin makes it possible to overcome the resistance mechanisms operating in cancer cells treated with cisplatin and prevents inactivation of transplatin in the extracellular environment. It is also shown that transplatin delivered to the cells in nanocapsules, in contrast to free (nonencapsulated) complex, forms cytotoxic cross-links on DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dichloroacetate Prevents Cisplatin-Induced Nephrotoxicity without Compromising Cisplatin Anticancer Properties

    PubMed Central

    Galgamuwa, Ramindhu; Hardy, Kristine; Dahlstrom, Jane E.; Blackburn, Anneke C.; Wium, Elize; Rooke, Melissa; Cappello, Jean Y.; Tummala, Padmaja; Patel, Hardip R.; Chuah, Aaron; Tian, Luyang; McMorrow, Linda; Board, Philip G.

    2016-01-01

    Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin. PMID:26961349

  2. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives.

    PubMed

    Lazarević, Tatjana; Rilak, Ana; Bugarčić, Živadin D

    2017-12-15

    Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  4. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    NASA Astrophysics Data System (ADS)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  5. Hydroquinone Exhibits In Vitro and In Vivo Anti-Cancer Activity in Cancer Cells and Mice.

    PubMed

    Byeon, Se Eun; Yi, Young-Su; Lee, Jongsung; Yang, Woo Seok; Kim, Ji Hye; Kim, Jooyoung; Hong, Suntaek; Kim, Jong-Hoon; Cho, Jae Youl

    2018-03-19

    Hydroquinone (HQ, 1,4-benzenediol) is a hydroxylated benzene metabolite with various biological activities, including anti-oxidative, neuroprotective, immunomodulatory, and anti-inflammatory functions. However, the anti-cancer activity of HQ is not well understood. In this study, the in vitro and in vivo anti-cancer activity of HQ was investigated in various cancer cells and tumor-bearing mouse models. HQ significantly induced the death of A431, SYF, B16F10, and MDA-MB-231 cells and also showed a synergistic effect on A431 cell death with other anti-cancer agents, such as adenosine-2',3'-dialdehyde and buthionine sulfoximine. In addition, HQ suppressed angiogenesis in fertilized chicken embryos. Moreover, HQ prevented lung metastasis of melanoma cells in mice in a dose-dependent manner without toxicity and adverse effects. HQ (10 mg/kg) also suppressed the generation of colon and reduced the thickness of colon tissues in azoxymethane/dextran sodium sulfate-injected mice. This study strongly suggests that HQ possesses in vitro and in vivo anti-cancer activity and provides evidence that HQ could be developed as an effective and safe anti-cancer drug.

  6. Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy.

    PubMed

    Davaran, Soodabeh; Fazeli, Hamed; Ghamkhari, Aliyeh; Rahimi, Fariborz; Molavi, Ommoleila; Anzabi, Maryam; Salehi, Roya

    2018-08-01

    A Novel poly [2-hydroxyethyl methacrylate-Lactide-dimethylaminoethyl methacrylate quaternary ammonium alkyl halide] [P(HEMA-LA-MADQUAT)] copolymer was synthesized through combination of ring opening polymerization (ROP) and 'free' radical initiated polymerization methods. This newly developed copolymer was fully characterized by FT-IR, 1 HNMR and 13 CNMR spectroscopy. Micellization of the copolymer was performed by dialysis membrane method and obtained micelles were characterized by FESEM, dynamic light scattering (DLS), zeta potential (ξ), and critical micelle concentration (CMC) measurements. This copolymer was developed with the aim of co-delivering two different anticancer drugs: methotrexate (MTX) and chrysin. In vitro cytotoxicity effect of MTX@Chrysin-loaded P(HEMA-LA-MADQUAT) was also studied through assessing the survival rate of breast cancer cell line (MCF-7) and DAPI staining assays. Cationic micelle (and surface charge of + 7.6) with spherical morphology and an average diameter of 55 nm and CMC of 0.023 gL -1 was successfully obtained. Micelles showed the drug loaded capacity around 87.6 and 86.5% for MTX and Chrysin, respectively. The cytotoxicity assay of a drug-free nanocarrier on MCF-7 cell lines indicated that this developed micelles were suitable nanocarriers for anticancer drugs. Furthermore, the MTX@Chrysin-loaded micelle had more efficient anticancer performance than free dual anticancer drugs (MTX @ chrysin), confirmed by MTT assay and DAPI stainingmethods. Therefore, we envision that this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies. Therefore, this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies.

  7. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast and colorectal cancers. PMID:26288313

  8. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents.

    PubMed

    Park, Sujin; Kim, Eun Hye; Kim, Jinwoo; Kim, Seong Hwan; Kim, Ikyon

    2018-01-20

    A new chemical space was explored based on an indolizine-chalcone hybrid, which was readily accessible by base-mediated aldol condensation of indolizine bearing a 7-acetyl group with various (hetero)aromatic aldehydes. Their anticancer effect was evaluated, revealing that indolizine-chalcone hybrids with 3,5-dimethoxyphenyl group (4h) or the halogen at the meta position (4j and 4l) could have the potential to induce the caspase-dependent apoptosis of human lymphoma cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Cold physical plasma treated buffered saline solution as effective agent against pancreatic cancer cells.

    PubMed

    Bekeschus, Sander; Kading, Andre; Schroder, Tim; Wende, Kristian; Hackbarth, Christine; Liedtke, Kim Rouven; van der Linde, Julia; von Woedtke, Thomas; Heidecke, Claus-Dieter; Partecke, Lars-Ivo

    2018-05-07

    Cold physical plasma has been suggested as a new anticancer tool recently. However, direct use of plasma is limited to visible tumors and in some clinical situations not feasible. This includes repetitive treatment of peritoneal metastases which commonly occur in advanced gastrointestinal cancer and in pancreatic cancer in particular. In case of diffuse intraperitoneal metastatic spread Hyperthermic Intraperitoneal Intraoperative Chemotherapy (HIPEC) is used as therapeutic approach. Plasma treated solutions may combine their suspected systemic non-toxic characteristics with the anticancer effects of HIPEC. Previous work has provided evidence for an anti-cancer efficacy of plasma treated cell culture medium but the clinical relevance of such an approach is low due to its complex formulation and lack of medical accreditation. Therefore, plasma treated phosphate-buffered saline (PBS) which closely resembles medically certified solutions was investigated for its cytotoxic effect on 2D monolayer murine pancreatic cancer cells in vitro. It significantly decreased cancer cell metabolisms and proliferation whereas plasma treated Dulbecco's Modified Eagle Medium had no effect. Moreover, tumor cell growth attenuation was significantly higher when compared to syngeneic primary murine fibroblasts. Both results were confirmed in a human pancreatic cancer cell line. Finally, plasma treated PBS also decreased tumor sizes of pancreatic tumors in the TUM-CAM model in a three-dimensional manner, and induction of apoptosis was found to be responsible for all anticancer effects identified. Altogether, plasma treated PBS inhibited cell growth in 2D and 3D models of cancer. These results may help facilitating the development of new plasma derived anticancer agent with clinical relevance in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. [Dexrazoxane (ICRF-187)--a cardioprotectant and modulator of action of some anticancer drugs].

    PubMed

    Kik, Krzysztof; Szmigiero, Leszek

    2006-01-01

    The nthracycline antibiotics are among the most widely used and effective anticancer drugs. The therapeutic efficacy of this class of drugs is limited by cumulative cardiac toxicity. Dexrazoxane is the only clinically approved cardioprotective agent used in anthracycline-containing anticancer therapy. Its cardioprotective action allows the use of a much higher cumulative dose of anthracyclines and improvement in the effectiveness of treatment. Anthracyclines form complexes with iron ions, which are very active in the production of reactive oxygen species responsible for the lipid peroxidation of mitochondrial and endoplasmatic reticulum membranes. This process seems to be the major cause of anthracycline-induced cardiotoxicity. Dexrazoxane exerts its protective effects by rapid and complete binding of ferric and ferrous ions, even by displacing the metal ions from complexes with anthracyclines. Besides its cardioprotective effect, dexrazoxane also exhibits anticancer properties. Like other derivatives of bisdioxopiperazine, dexrazoxane is a catalytic inhibitor of eukaryotic DNA topoisomerase II, the key enzyme controlling DNA topology and contributing to the replication and transcription processes. Dexrazoxane is able to lock topoisomerase II at the stage of the enzyme reaction cycle where the enzyme forms a closed clamp around the DNA. This phenomenon seems to be the main reason for the generation of DNA double-strand breaks by dexrazoxane as well as its cytotoxicity against quickly proliferating cancer cells. Other effects of its topoisomerase II catalytic inhibition is the induction of cell differentiation and apoptosis. Dexrazoxane may be used not only as a cardioprotective agent, but also as a modulator of action of some anticancer drugs by enhancing their selectivity or by delaying the development of multidrug resistance.

  11. Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells.

    PubMed

    Divac Rankov, Aleksandra; Ljujić, Mila; Petrić, Marija; Radojković, Dragica; Pešić, Milica; Dinić, Jelena

    2017-11-01

    Autophagy is linked to multiple cancer-related signaling pathways, and represents a defense mechanism for cancer cells under therapeutic stress. The crosstalk between apoptosis and autophagy is essential for both tumorigenesis and embryonic development. We studied the influence of autophagy on cell survival in pro-apoptotic conditions induced by anticancer drugs in three model systems: human cancer cells (NCI-H460, COR-L23 and U87), human normal cells (HaCaT and MRC-5) and zebrafish embryos (Danio rerio). Autophagy induction with AZD2014 and tamoxifen antagonized the pro-apoptotic effect of chemotherapeutics doxorubicin and cisplatin in cell lines, while autophagy inhibition by wortmannin and chloroquine synergized the action of both anticancer agents. This effect was further verified by assessing cleaved caspase-3 and PARP-1 levels. Autophagy inhibitors significantly increased both apoptotic markers when applied in combination with doxorubicin while autophagy inducers had the opposite effect. In a similar manner, autophagy induction in zebrafish embryos prevented cisplatin-induced apoptosis in the tail region while autophagy inhibition increased cell death in the tail and retina of cisplatin-treated animals. Autophagy modulation with direct inhibitors of the PI3kinase/Akt/mTOR pathway (AZD2014 and wortmannin) triggered the cellular response to anticancer drugs more effectively in NCI-H460 and zebrafish embryonic models compared to HaCaT suggesting that these modulators are selective towards rapidly proliferating cells. Therefore, evaluating the autophagic properties of chemotherapeutics could help determine more accurately the fate of different cell types under treatment. Our study underlines the importance of testing autophagic activity of potential anticancer agents in a comparative approach to develop more rational anticancer therapeutic strategies.

  12. Titanium wire implants with nanotube arrays: A study model for localized cancer treatment.

    PubMed

    Kaur, Gagandeep; Willsmore, Tamsyn; Gulati, Karan; Zinonos, Irene; Wang, Ye; Kurian, Mima; Hay, Shelley; Losic, Dusan; Evdokiou, Andreas

    2016-09-01

    Adverse complications associated with systemic administration of anti-cancer drugs are a major problem in cancer therapy in current clinical practice. To increase effectiveness and reduce side effects, localized drug delivery to tumour sites requiring therapy is essential. Direct delivery of potent anti-cancer drugs locally to the cancer site based on nanotechnology has been recognised as a promising alternative approach. Previously, we reported the design and fabrication of nano-engineered 3D titanium wire based implants with titania (TiO2) nanotube arrays (Ti-TNTs) for applications such as bone integration by using in-vitro culture systems. The aim of present study is to demonstrate the feasibility of using such Ti-TNTs loaded with anti-cancer agent for localized cancer therapy using pre-clinical cancer models and to test local drug delivery efficiency and anti-tumour efficacy within the tumour environment. TNF-related apoptosis-inducing ligand (TRAIL) which has proven anti-cancer properties was selected as the model drug for therapeutic delivery by Ti-TNTs. Our in-vitro 2D and 3D cell culture studies demonstrated a significant decrease in breast cancer cell viability upon incubation with TRAIL loaded Ti-TNT implants (TRAIL-TNTs). Subcutaneous tumour xenografts were established to test TRAIL-TNTs implant performance in the tumour environment by monitoring the changes in tumour burden over a selected time course. TRAIL-TNTs showed a significant regression in tumour burden within the first three days of implant insertion at the tumour site. Based on current experimental findings these Ti-TNTs wire implants have shown promising capacity to load and deliver anti-cancer agents maintaining their efficacy for cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Xrcc2 deficiency sensitizes cells to apoptosis by MNNG and the alkylating anticancer drugs temozolomide, fotemustine and mafosfamide.

    PubMed

    Tsaryk, Roman; Fabian, Kerstin; Thacker, John; Kaina, Bernd

    2006-08-08

    DNA double-strand breaks (DSBs) are potent killing lesions, and inefficient repair of DSBs does not only lead to cell death but also to genomic instability and tumorigenesis. DSBs are repaired by non-homologous end-joining and homologous recombination (HR). A key player in HR is Xrcc2, a Rad51-like protein. Cells deficient in Xrcc2 are hypersensitive to X-rays and mitomycin C and display increased chromosomal aberration frequencies. In order to elucidate the role of Xrcc2 in resistance to anticancer drugs, we compared Xrcc2 knockout (Xrcc2-/-) mouse embryonic fibroblasts with the corresponding isogenic wild-type and Xrcc2 complemented knockout cells. We show that Xrcc2-/- cells are hypersensitive to the killing effect of the simple methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). They undergo apoptosis after MNNG treatment while necrosis is only marginally enhanced. Complementation of Xrcc2 deficient cells by Xrcc2 cDNA transfection conferred resistance to the cytotoxic and apoptosis-inducing effect of MNNG. The hypersensitivity of Xrcc2-/- cells to MNNG prompted us to investigate their killing and apoptotic response to various methylating, chloroethylating and crosslinking drugs used in anticancer therapy. Xrcc2 deficient cells were found to be hypersensitive to temozolomide, fotemustine and mafosfamide. They were also hypersensitive to cisplatin but not to taxol. The data reveal that Xrcc2 plays a role in the protection against a wide range of anticancer drugs and, therefore, suggest Xrcc2 to be a determinant of anticancer drug resistance. They also indicate that HR is involved in the processing of DNA damage induced by simple alkylating agents.

  14. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii.

    PubMed

    Bhandari, Jaya; Muhammad, BushraTaj; Thapa, Pratiksha; Shrestha, Bhupal Govinda

    2017-02-08

    There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC 50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC 50 value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.

  15. Exploration of (hetero)aryl derived thienylchalcones for antiviral and anticancer activities.

    PubMed

    Patil, Vikrant; Patil, Siddappa A; Patil, Renukadevi; Bugarin, Alejandro; Beaman, Kenneth; Patil, Shivaputra A

    2018-05-23

    Search for new antiviral and anticancer agents are essential because of the emergence of drug resistance in recent years. In continuation of our efforts in identifying the new small molecule antiviral and anticancer agents, we identified chalcones as potent antiviral and anticancer agents. With the aim of identifying the broad acting antiviral and anticancer agents, we discovered substituted aryl/heteroaryl derived thienyl chalcones as antiviral and anticancer agents. A focused set of thienyl chalcone derivaties II-VI was screened for selected viruses Hepatitis B virus (HBV), Herpes simplex virus 1 (HSV-1), Human cytomegalovirus (HCMV), Dengue virus 2 (DENV2), Influenza A (H1N1) virus, MERS coronavirus, Poliovirus 1 (PV 1), Rift Valley fever (RVF), Tacaribe virus (TCRV), Venezuelan equine encephalitis virus (VEE) and Zika virus (ZIKV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. Additionally, a cyclopropylquinoline derivative IV has been screened for 60 human cancer cell lines using the Development Therapeutics Program (DTP) of NCI. All thienyl chalcone derivatives II-VI displayed moderate to excellent antiviral activity towards several viruses tested. Compounds V and VI were turned out be active compounds towards human cytomegalovirus for both normal strain (AD169) as well as resistant isolate (GDGr K17). Particularly, cyano derivative V showed very high potency (EC50: <0.05 µM) towards AD169 strain of HCMV compared to standard drug Ganciclovir (EC50: 0.12 µM). Additionally, it showed moderate activity in the secondary assay (AD169; EC50: 2.30 µM). The cyclopropylquinoline derivative IV displayed high potency towards Rift Valley fever virus (RVFV) and Tacaribe virus (TCRV). The cyclopropylquinoline derivative IV is nearly 28 times more potent in our initial in vitro visual assay (EC50: 0.39 μg/ml) and nearly 17 times more potent in neutral red assay (EC50: 0.71 μg/ml) compared to the standard drug Ribavirin (EC50: 11 μg/ml; visual assay and EC50: 12 μg/ml; neutral red assay). It is nearly 12 times more potent in our initial in vitro visual assay (EC50: >1 μg/ml) and nearly 8 times more potent in neutral red assay (EC50: >1.3 μg/ml) compared to the standard drug Ribavirin (EC50: 12 μg/ml; visual assay and EC50: 9.9 μg/ml; neutral red assay) towards Tacaribe virus (TCRV). Additionally, cyclopropylquinoline derivative IV has shown strong growth inhibitory activity towards three major cancer (colon, breast, and leukemia) cell lines and moderate growth inhibition shown towards other cancer cell lines screened. Compounds V and VI were demonstrated viral inhibition towards Human cytomegalovirus, whereas cyclopropylquinoline derivative IV towards Rift Valley fever virus and Tacaribe virus. Additionally, cyclopropylquinoline derivative IV has displayed very good cytotoxicity against colon, breast and leukemia cell lines in vitro. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Aloe vera inhibits proliferation of human breast and cervical cancer cells and acts synergistically with cisplatin.

    PubMed

    Hussain, Arif; Sharma, Chhavi; Khan, Saniyah; Shah, Kruti; Haque, Shafiul

    2015-01-01

    Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.

  17. Functionalization of Platinum Complexes for Biomedical Applications.

    PubMed

    Wang, Xiaoyong; Wang, Xiaohui; Guo, Zijian

    2015-09-15

    Platinum-based anticancer drugs are the mainstay of chemotherapy regimens in clinic. Nevertheless, the efficacy of platinum drugs is badly affected by serious systemic toxicities and drug resistance, and the pharmacokinetics of most platinum drugs is largely unknown. In recent years, a keen interest in functionalizing platinum complexes with bioactive molecules, targeting groups, photosensitizers, fluorophores, or nanomaterials has been sparked among chemical and biomedical researchers. The motivation for functionalization comes from some of the following demands: to improve the tumor selectivity or minimize the systemic toxicity of the drugs, to enhance the cellular accumulation of the drugs, to overcome the tumor resistance to the drugs, to visualize the drug molecules in vitro or in vivo, to achieve a synergistic anticancer effect between different therapeutic modalities, or to add extra functionality to the drugs. In this Account, we present different strategies being used for functionalizing platinum complexes, including conjugation with bisphosphonates, peptides, receptor-specific ligands, polymers, nanoparticles, magnetic resonance imaging contrast agents, metal chelators, or photosensitizers. Among them, bisphosphonates, peptides, and receptor-specific ligands are used for actively targeted drug delivery, polymers and nanoparticles are for passively targeted drug delivery, magnetic resonance imaging contrast agents are for theranostic purposes, metal chelators are for the treatment or prevention of Alzheimer's disease (AD), and photosensitizers are for photodynamic therapy of cancers. The rationales behind these designs are explained and justified at the molecular or cellular level, associating with the requirements for diagnosis, therapy, and visualization of biological processes. To illustrate the wide range of opportunities and challenges that are emerging in this realm, representative examples of targeted drug delivery systems, anticancer conjugates, anticancer theranostic agents, and anti-AD compounds relevant to functionalized platinum complexes are provided. All the examples exhibit new potential of platinum complexes for future applications in biomedical areas. The emphases of this Account are placed on the functionalization for targeted drug delivery and theranostic agents. In the end, a general assessment of various strategies has been made according to their major shortcomings and defects. The original information in this Account comes entirely from literature appearing since 2010.

  18. Rational Design, Synthesis, and Biological Evaluation of Third Generation α-Noscapine Analogues as Potent Tubulin Binding Anti-Cancer Agents

    PubMed Central

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents. PMID:24205049

  19. Contribution of reactive oxygen species to the anticancer activity of aminoalkanol derivatives of xanthone.

    PubMed

    Sypniewski, Daniel; Szkaradek, Natalia; Loch, Tomasz; Waszkielewicz, Anna M; Gunia-Krzyżak, Agnieszka; Matczyńska, Daria; Sołtysik, Dagna; Marona, Henryk; Bednarek, Ilona

    2018-06-01

    Reactive oxygen species (ROS) are critically involved in the action of anticancer agents. In this study, we investigated the role of ROS in the anticancer mechanism of new aminoalkanol derivatives of xanthone. Most xanthones used in the study displayed significant pro-oxidant effects similar to those of gambogic acid, one of the most active anticancer xanthones. The pro-oxidant activity of our xanthones was shown both directly (by determination of ROS induction, effects on the levels of intracellular antioxidants, and expression of antioxidant enzymes) and indirectly by demonstrating that the overexpression of manganese superoxide dismutase decreases ROS-mediated cell senescence. We also observed that mitochondrial dysfunction and cellular apoptosis enhancement correlated with xanthone-induced oxidative stress. Finally, we showed that the use of the antioxidant N-acetyl-L-cysteine partly reversed these effects of aminoalkanol xanthones. Our results demonstrated that novel aminoalkanol xanthones mediated their anticancer activity primarily through ROS elevation and enhanced oxidative stress, which led to mitochondrial cell death stimulation; this mechanism was similar to the activity of gambogic acid.

  20. A promising anti-cancer and anti-oxidant agents based on the pyrrole and fused pyrrole: synthesis, docking studies and biological evaluation.

    PubMed

    Fatahala, Samar Said; Shalaby, Emad Ahmed; Kassab, Shaymaa Emam; Mohamed, Mossad Said

    2015-01-01

    A series of N-aryl derivatives of pyrrole and its related derivatives of fused form (namely; tetrahydroindole and dihydroindenopyrroles) were prepared in fair to good yields. The newly synthesized compounds were confirmed using IR, (1)H NMR, Mass spectral and elemental analysis. Tetrahydrobenzo[b] pyrroles Ia-d, 1,4-dihydroindeno[1,2-b]pyrroles IIa,b and pyrroles IIIa-c,e were evaluated for anticancer activity, coinciding with the antioxidant activity; using Di-Phenyl Picryl Hydrazyl (DPPH) tests. The cytotoxicity of the tested compounds (at a concentration of 100 and 200 μg /mL) was performed against HepG-2 and EACC cell lines. Compounds Ib, d and IIa showed promising antioxidant activity beside their anticancer activity. Docking studies were employed to justify the promising anticancer activity of Ib,d and IIa. Protein kinase (PKase)-PDB entry 1FCQ was chosen as target enzyme for this purpose using the MOLSOFT ICM 3.4-8C program. The docking results of the tested compounds went aligned with the respective anticancer assay results.

  1. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics.

    PubMed

    Li, Yu-Ji; Dong, Ming; Kong, Fan-Min; Zhou, Jian-Ping

    2015-07-15

    Nanoparticulate system with theranostic applications has attracted significant attention in cancer therapeutics. In the present study, we have developed a novel composite PLGA NP co-encapsulated with anticancer drug (sorafenib) and magnetic NP (SPION). We have successfully developed nanosized folate-conjugated PEGylated PLGA nanoparticles (SRF/FA-PEG-PLGA NP) with both anticancer and magnetic resonance property. We have showed that FA-conjugated NP exhibits sustained drug release and enhanced cellular uptake in BEL7402 cancer cells. The targeted NP effectively suppressed the tumor cell proliferation and has improved the anticancer efficacy than that of free drug or non-targeted one. Additionally, enhanced MRI properties demonstrate this formulation has good imaging agent characteristics. Finally, SRF/FA-PEG-PLGA NP effectively inhibited the colony forming ability indicating its superior anticancer effect. Together, these multifunctional nanoparticles would be most ideal to improve the therapeutic response in cancer and holds great potential to be a part of future nanomedicine. Our unique approach could be extended for multiple biomedical applications. Copyright © 2015. Published by Elsevier B.V.

  2. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications.

    PubMed

    Sabra, Sally; Abdelmoneem, Mona; Abdelwakil, Mahmoud; Mabrouk, Moustafa Taha; Anwar, Doaa; Mohamed, Rania; Khattab, Sherine; Bekhit, Adnan; Elkhodairy, Kadria; Freag, May; Elzoghby, Ahmed

    2017-01-01

    Micellization provides numerous merits for the delivery of water insoluble anti-cancer therapeutic agents including a nanosized 'core-shell' drug delivery system. Recently, hydrophobically-modified polysaccharides and proteins are attracting much attention as micelle forming polymers to entrap poorly soluble anti-cancer drugs. By virtue of their small size, the self-assembled micelles can passively target tumor tissues via enhanced permeation and retention effect (EPR). Moreover, the amphiphilic micelles can be exploited for active-targeted drug delivery by attaching specific targeting ligands to the outer micellar hydrophilic surface. Here, we review the conjugation techniques, drug loading methods, physicochemical characteristics of the most important amphiphilic polysaccharides and proteins used as anti-cancer drug delivery systems. Attention focuses on the mechanisms of tumor-targeting and enhanced anti-tumor efficacy of the encapsulated drugs. This review will highlight the remarkable advances of hydrophobized polysaccharide and protein micelles and their potential applications as anti-cancer drug delivery nanosystems. Micellar nanocarriers fabricated from amphiphilic natural polymers hold great promise as vehicles for anti-cancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent.

    PubMed

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport.

  4. Synthesis and evaluation of triazole linked glycosylated 18β-glycyrrhetinic acid derivatives as anticancer agents.

    PubMed

    Parida, Pravat Kumar; Sau, Abhijit; Ghosh, Tamashree; Jana, Kuladip; Biswas, Kaushik; Raha, Sanghamitra; Misra, Anup Kumar

    2014-08-15

    A series of glycosyl triazol linked 18β-glycyrrhetinic acid (GA) derivatives have been synthesized using 1,3-dipolar cycloaddition reaction of per-O-acetylated glycosyl azide derivatives (4a-h) with propargyl ester of 18β-glycyrrhetinic acid (GA) (2 and 3) following the concept of 'Click chemistry'. The synthesized triazole derivatives were de-O-acetylated to furnish compounds (7a-h and 8a-c) with free hydroxyl groups in the carbohydrate moieties, which were evaluated for their anticancer potential against human cervical cancer cells (HeLa) and normal kidney epithelial (NKE) cells. GA (1), compound 7d, compound 7g and compound 8c showed promising anticancer activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Reverse chemomodulatory effects of the SIRT1 activators resveratrol and SRT1720 in Ewing's sarcoma cells: resveratrol suppresses and SRT1720 enhances etoposide- and vincristine-induced anticancer activity.

    PubMed

    Sonnemann, Jürgen; Kahl, Melanie; Siranjeevi, Priyanka M; Blumrich, Annelie; Blümel, Lisa; Becker, Sabine; Wittig, Susan; Winkler, René; Krämer, Oliver H; Beck, James F

    2016-01-01

    SIRT1-activating compounds (STACs) may have potential in the management of cancer. However, the best-studied STAC, the naturally occurring compound resveratrol, is reported to have contradictory effects in combination chemotherapy regimens: It has been shown both to increase and to decrease the action of anticancer agents. To shed more light on this issue, we comparatively investigated the impact of resveratrol and the synthetic STAC SRT1720 on the responsiveness of Ewing's sarcoma (ES) cells to the chemotherapeutic drugs etoposide and vincristine. Because the effects of STACs can depend on the functionality of the tumor suppressor protein p53, we used three ES cell lines differing in their p53 status, i.e., wild-type p53 WE-68 cells, mutant p53 SK-ES-1 cells and p53 null SK-N-MC cells. Single agent and combination therapy effects were assessed by flow cytometric analyses of propidium iodide uptake and mitochondrial depolarization, by measuring caspase 3/7 activity and by gene expression profiling. When applied as single agents, both STACs were effective in ES cells irrespective of their p53 status. Strikingly, however, when applied in conjunction with cytostatic agents, the STACs displayed reverse effects: SRT1720 largely enhanced etoposide- and vincristine-induced cell death, while resveratrol inhibited it. Combination index analyses validated the antipodal impact of the STACs on the effectiveness of the chemotherapeutics. These findings suggest that the synthetic STAC SRT1720 may be useful to enhance the efficacy of anticancer therapy in ES. But they also suggest that the dietary intake of the natural STAC resveratrol may be detrimental during chemotherapy of ES.

  6. Sound waves and antineoplastic drugs: The possibility of an enhanced combined anticancer therapy.

    PubMed

    Feril, Loreto B; Kondo, Takashi; Umemura, Shin-Ichiro; Tachibana, Katsuro; Manalo, Angelo H; Riesz, Peter

    2002-12-01

    Kremkau wrote a historical review of the use of ultrasound in cancer therapy in 1979((1)) In 1990, Kondo and Kano published a Japanese review of the implications of the thermal and nonthermal effects of ultrasound in the treatment of cancer(2)). Again in 2000, Kondo et al reviewed the therapeutic applications of ultrasound and shock wave, emphasizing their thermal and cavitational effects(3)). Here we focus on the effects of ultrasound or shock waves in combination with anticancer agents, emphasizing their mechanisms of action and interaction. Most of the studies cited here reported promising results. Although the extent of the augmented combined effects in vivo is limited, synergism is the rule in vitro. In addition to the thermal effect of ultrasound, cavitational effects undoubtedly played a major role in both ultrasound and, more prominently, in shock wave therapy. Although the mechanism of the nonthermal noncavitational effects on biological processes is obscure, several factors, including temperature and the occurrence of cavitation and inertial cavitation, probably coexist and blend with these other effects. Magnification of anticancer activity results mainly from increased localization of drugs or other agents in vivo and increased intracellular permeabilisation both in vivo and in vitro. On the other hand, sublethal damage caused by ultrasound or shock waves may render cells more susceptible, to the effects of the agents, and both may act together, further amplifying these effects. We thus conclude that proper combination of an appropriate agent and ultrasound or shock wave should help improve cancer therapy by minimizing the side effects of drugs by lowering the effective dose and reducing the systemic concentration while increasing the efficiency of the therapy as a whole. Future studies should reveal specific conditions in this combined therapy that will lead to optimal outcome.

  7. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    DOEpatents

    Gakh, Andrei A.; Vovk, Mykhaylo V.; Mel'nychenko, Nina V.; Sukach, Volodymyr A.

    2012-08-14

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  8. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    DOEpatents

    Gakh, Andrei A; Vovk, Mykhaylo V; Mel& #x27; nychenko, Nina V; Sukach, Volodymyr A

    2012-10-23

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  9. New estradiol-linked nitrosoureas: can the pharmacokinetic properties help to explain the pharmacodynamic activities?

    PubMed

    Betsch, B; Berger, M R; Spiegelhalder, B; Eisenbrand, G; Schmähl, D

    1989-01-01

    The pharmacokinetics of 1-(2-chloroethyl)-1-nitrosocarbamoyl-L-alanine-estradiol-17-ester (CNC-alanine-estradiol-17-ester) a new estradiol-linked anticancer drug and the unlinked DNA-crosslinking agent 1-(2-chloroethyl)-1-nitrosocarbamoyl-L-alanine (CNC-alanine) have been studied in methylnitrosourea-induced female Sprague-Dawley rats after equimolar intravenous and oral administration. In comparison with the unlinked single agent, the CNC-alanine-estradiol-17-ester showed a 3-fold longer halflife in plasma and a three times larger volume of distribution. The distribution after intravenous administration was nearly three times faster. The absorption after peroral administration was likewise two times faster. The bioavailability of the estradiol-linked drug was determined to be 52%. After application of CNC-alanine-estradiol-17-ester the cytostatic metabolite CNC-alanine was found, indicating the cleavage of the ester bond. CNC-alanine generated from CNC-alanine-estradiol-17-ester showed a 50% longer halflife than when applied directly. The results indicate that linking 2-chloroethyl-nitrosoureas to estradiol can result in new anticancer agents with modified properties in comparison to the unlinked single agent. The higher antineoplastic activity of the hormone-linked drug can mainly be attributed to differences in the pharmacokinetic behaviour.

  10. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.

    PubMed

    Nakamura, Kazuki; Shinozuka, Kazumasa; Yoshikawa, Noriko

    2015-01-01

    Cordyceps sinensis, a fungus that parasitizes on the larva of Lepidoptera, has been used as a valued traditional Chinese medicine. We investigated the effects of water extracts of Cordyceps sinensis (WECS), and particularly focused on its anticancer and antimetastatic actions. Based on in vitro studies, we report that WECS showed an anticancer action, and this action was antagonized by an adenosine A3 receptor antagonist. Moreover, this anticancer action of WECS was promoted by an adenosine deaminase inhibitor. These results suggest that one of the components of WECS with an anticancer action might be an adenosine or its derivatives. Therefore, we focused on cordycepin (3'-deoxyadenosine) as one of the active ingredients of WECS. According to our experiments, cordycepin showed an anticancer effect through the stimulation of adenosine A3 receptor, followed by glycogen synthase kinase (GSK)-3β activation and cyclin D1 suppression. Cordycepin also showed an antimetastatic action through inhibiting platelet aggregation induced by cancer cells and suppressing the invasiveness of cancer cells via inhibiting the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and accelerating the secretion of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 from cancer cells. In conclusion, cordycepin, an active component of WECS, might be a candidate anticancer and antimetastatic agent. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  11. The anticancer effects of Resina Draconis extract on cholangiocarcinoma.

    PubMed

    Wen, Feng; Zhao, Xiangxuan; Zhao, Yun; Lu, Zaiming; Guo, Qiyong

    2016-11-01

    Cholangiocarcinoma (CCA) is a relatively rare, heterogeneous malignant tumor with poor clinical outcomes. Because of high insensitivity to chemotherapy and radiotherapy, there are no effective treatment options. Efforts to identify and develop new agents for prevention and treatment of this deadly disease are urgent. Here, we assessed the apoptotic cytotoxicity of Resina Draconis extract (RDE) using in vitro and in vivo assays and identified the mechanisms underlying antitumor effects of RDE. RDE was obtained via vacuum distillation of Resina Draconis with 75 % ethanol. The ethanol extract could inhibit CCA cell proliferation and trigger apoptotic cell death in both QBC939 and HCCC9810 cell lines in a time- and concentration-dependent manner. RDE treatment resulted in intracellular caspase-8 and poly (ADP-ribose) polymerase protease activation. RDE significantly downregulated antiapoptotic protein survivin expression and upregulated proapoptotic protein Bak expression. RDE also inhibited CCA tumor growth in vivo. We observed that human CCA tissues had much higher survivin expression than did paired adjacent normal tissue. Taken together, the current data suggested that RDE has anticancer effects on CCA, and that RDE could function as a novel anticancer agent to benefit patients with CCA.

  12. The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo

    PubMed Central

    2011-01-01

    Background The initial pharmacokinetic study of a new anticancer agent (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Methods Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. Results We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. Conclusions RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs. PMID:22040120

  13. Design, synthesis and biological evaluation of arylcinnamide hybrid derivatives as novel anticancer agents

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Chayah, Mariem; Camacho, M. Encarnacion; Prencipe, Filippo; Hamel, Ernest; Consolaro, Francesca; Basso, Giuseppe; Viola, Giampietro

    2014-01-01

    The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. A series of novel antiproliferative agents designed by a pharmacophore hybridization approach, combining the arylcinnamide skeleton and an α-bromoacryloyl moiety, was synthesized and evaluated for its antiproliferative activity against a panel of seven human cancer cell lines. In addition, the new derivatives were also active on multidrug-resistant cell lines over-expressing P-glycoprotein. The biological effects of various substituents on the N-phenyl ring of the benzamide portion were also described. In order to study the possible mechanism of action, we observed that 4p slightly increased the Reactive Oxygen Species (ROS) production in HeLa cells, but, more importantly, a remarkable decrease of intracellular reduced glutathione content was detected in treated cells compared with controls. These results were confirmed by the observation that only thiol-containing antioxidants were able to significantly protect the cells from induced cell death. Altogether our results indicate that the new derivatives are endowed with good anticancer activity in vitro, and their properties may result in the development of new cancer therapeutic strategies. PMID:24858544

  14. Synthesis, in vitro anticancer and antimycobacterial evaluation of new 5-(2,5-dimethoxyphenyl)-1,3,4-thiadiazole-2-amino derivatives.

    PubMed

    Polkam, Naveen; Rayam, Parsharamulu; Anireddy, Jaya Shree; Yennam, Satyanarayana; Anantaraju, Hasitha Shilpa; Dharmarajan, Sriram; Perumal, Yogeeswari; Kotapalli, Sudha Sravanti; Ummanni, Ramesh; Balasubramanian, Sridhar

    2015-04-01

    A series of 2,5-disubstituted-1,3,4-thiadiazole derivatives 5a-5l, 7a-7e and 9 have been synthesised and screened for in vitro antimycobacterial activity against Mycobacterium smegmatis MC-155. In addition these compounds have also been screened for cytotoxic activity against cancer cell lines HT-29, MDA-MB-231 by MTT colorimetric assay. The compounds are well characterized by spectral analysis viz. (1)H NMR, (13)C NMR, FT-IR, mass and HRMS. Screening results indicate that compounds 5g, 7a possess good antitubercular activity with MIC value 65.74 and 40.86, respectively, compounds 5g, 7a, 7b, 7d, 7e and 9 displayed promising cytotoxic activity against the cell lines tested. 5g and 7a stand out to be potent antimycobacterial and anticancer agents among the tested series. Further the title compounds were also tested on human normal cells HEK293T and are found to be safer with lesser cytotoxicity. It is interesting to observe that compound 5g has come out to be safer, potent anticancer and antimycobacterial agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Short- and long-term cytotoxic effects of doxorubicin conjugates with dendrimers and vector protein on MCF-7/MDR1 chemoresistant breast cancer cells

    NASA Astrophysics Data System (ADS)

    Zamulaeva, I. A.; Matchuk, O. N.; Churyukina, K. A.; Kudryavtzev, V. A.; Yabbarov, N. G.; Nikolskaya, E. D.; Zhunina, O. A.; Kondrasheva, I. G.; Severin, E. S.

    2017-09-01

    The dendritic polymers (dendrimers) are perspective nanocontainers for targeted transport of anticancer drugs to tumor cells. We used polyamidoamine dendrimers of the second generation (G2) covalently conjugated with doxorubicin (Dox) and vector protein - recombinant third domain (3D) of alpha-fetoprotein. The objects of the study were MCF-7/MDR1 breast cancer cells, which demonstrated resistance to traditional anticancer agents due to high expression of P-glycoprotein. Effects of free Dox, G2 dendrimers loaded with Dox (G2-Dox), or conjugates of dendrimers with the vector protein and Dox (3D-G2-Dox) were assessed by the criteria of surviving cell number and clonogenic activity 24 hours and 11 days after treatment with the agents at Dox concentration of 2.5 μM, correspondingly. Flow cytometry was used to evaluate accumulation of Dox immediately after the treatment with the agents and removal of Dox during 24 hours of incubation in agent-free medium following by the treatment. Intracellular localization of Dox was studied using laser scanning microscopy. 3D-G2-Dox demonstrated the highest accumulation and the weakest removal from the cells in comparison with all other agents. The use of free Dox, G2-Dox, or 3D-G2-Dox resulted in a significant decrease in number of surviving cells by approximately 25-30% compared to the control (p ≤ 0.01). However, the most pronounced decrease in the clonogenic ability of cells was observed in the 3D-G2-Dox group (to 19% compared to the control, p < 0.01). Taking into account the previously obtained data on the extremely low 3D-G2-Dox accumulation in normal cells, it can be concluded that further development of 3D-G2-Dox as a possible anticancer drug is a promising way to overcome multiple drug resistance with minimal impact on normal cells.

  16. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent.

    PubMed

    Wei, Jianhua; Renfrew, Anna K

    2018-02-01

    CHS-828 (N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N″-4-pyridyl guanidine) is an anticancer agent with low bioavailability and high systemic toxicity. Here we present an approach to improve the therapeutic profile of the drug using photolabile ruthenium complexes to generate light-activated prodrugs of CHS-828. Both prodrug complexes are stable in the dark but release CHS-828 when irradiated with visible light. The complexes are water-soluble and accumulate in tumour cells in very high concentrations, predominantly in the mitochondria. Both prodrug complexes are significantly less cyototoxic than free CHS-828 in the dark but their toxicity increases up to 10-fold in combination with visible light. The cellular responses to light treatment are consistent with release of the cytotoxic CHS-828 ligand. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Trial Watch—Immunostimulation with cytokines in cancer therapy

    PubMed Central

    Vacchelli, Erika; Aranda, Fernando; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT During the past decade, great efforts have been dedicated to the development of clinically relevant interventions that would trigger potent (and hence potentially curative) anticancer immune responses. Indeed, developing neoplasms normally establish local and systemic immunosuppressive networks that inhibit tumor-targeting immune effector cells, be them natural or elicited by (immuno)therapy. One possible approach to boost anticancer immunity consists in the (generally systemic) administration of recombinant immunostimulatory cytokines. In a limited number of oncological indications, immunostimulatory cytokines mediate clinical activity as standalone immunotherapeutic interventions. Most often, however, immunostimulatory cytokines are employed as immunological adjuvants, i.e., to unleash the immunogenic potential of other immunotherapeutic agents, like tumor-targeting vaccines and checkpoint blockers. Here, we discuss recent preclinical and clinical advances in the use of some cytokines as immunostimulatory agents in oncological indications. PMID:27057468

  18. The Role of Resveratrol in Cancer Therapy

    PubMed Central

    Ko, Jeong-Hyeon; Sethi, Gautam; Um, Jae-Young; Shanmugam, Muthu K; Arfuso, Frank; Kumar, Alan Prem; Bishayee, Anupam; Ahn, Kwang Seok

    2017-01-01

    Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent. PMID:29194365

  19. Antioxidant & anticancer activities of isatin (1H-indole-2,3-dione), isolated from the flowers of Couroupita guianensis Aubl

    PubMed Central

    Premanathan, Mariappan; Radhakrishnan, Srinivasan; Kulangiappar, Kumarasamy; Singaravelu, Ganesan; Thirumalaiarasu, Velayutham; Sivakumar, Thangavel; Kathiresan, Kandasamy

    2012-01-01

    Background & objectives: Derivatives of isatin are known to have cytotoxicity against human carcinoma cell lines. This compound therefore, has a potential to be used as a chemotherapeutic agent against cancer. This study was done to investigate the antioxidant and anticancer activities of isatin, extracted from flower of a folklore medicinal plant Couroupita guianensis against human promylocytic leukemia (HL60) cells. Methods: Active fractions demonstrating anticancer and antioxidant activities were isolated from the extracts of shade-dried flowers of C. guianensis by bioassay guided fractionation. The free radical scavenging activity was determined using lipid peroxidation assay. Cytotoxicity against human promylocytic leukemia HL60 cells was determined by MTT assay. Apoptotic activity was analyzed by DNA fragmentation and flowcytometry. Results: Isatin isolated from the active fraction showed antioxidant activity with the EC50 value of 72.80 μg/ml. It also exhibited cytotoxicity against human promylocytic leukemia HL60 cells in dose-dependant manner with the CC50 value of 2.94 μg/ml. The isatin-treated cells underwent apoptosis and DNA fragmentation. Apoptosis was confirmed by the FACS analysis using FITC-annexin V markers. Interpretation & conclusions: Isatin showed antioxidant activity and was cytotoxic to the HL60 cells due to induction of apoptosis. The isatin can be further evaluated to be used as a prophylactic agent to prevent the free radical-induced cancer and as a chemotherapeutic agent to kill the cancer cells. PMID:23287130

  20. Genetic and Pharmacological Screens Converge in Identifying FLIP, BCL2, and IAP Proteins as Key Regulators of Sensitivity to the TRAIL-Inducing Anticancer Agent ONC201/TIC10.

    PubMed

    Allen, Joshua E; Prabhu, Varun V; Talekar, Mala; van den Heuvel, A Pieter J; Lim, Bora; Dicker, David T; Fritz, Jennifer L; Beck, Adam; El-Deiry, Wafik S

    2015-04-15

    ONC201/TIC10 is a small-molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway-inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the antiapoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small-molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes, including the multikinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib cotreatment to enhance anticancer responses. ©2015 American Association for Cancer Research.

  1. Genetic and pharmacological screens converge in identifying FLIP, BCL2 and IAP proteins as key regulators of sensitivity to the TRAIL-inducing anti-cancer agent ONC201/TIC10

    PubMed Central

    Allen, Joshua E.; Prabhu, Varun V.; Talekar, Mala; van den Heuvel, AP; Lim, Bora; Dicker, David T.; Fritz, Jennifer L.; Beck, Adam; El-Deiry, Wafik S.

    2015-01-01

    ONC201/TIC10 is a small molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the anti-apoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes including the multi-kinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib co-treatment to enhance anticancer responses. PMID:25681273

  2. Anticancer agent ABT-737 possesses anti-atopic dermatitis activity via blockade of caspase-1 in atopic dermatitis in vitro and in vivo models.

    PubMed

    Jeong, Hyun-Ja; Ryu, Ka-Jung; Kim, Hyung-Min

    2018-06-29

    Previous studies reported that depletion of Bcl-2 has a protective effect against allergic diseases. Furthermore, recently our study showed that anticancer drug has antiallergic inflammatory effect. An anticancer agent ABT-737 is an inhibitor of Bcl-2 and has an anti-inflammatory effect. However, the antiallergic inflammatory activity of ABT-737 is still unknown. Here, we aimed to explore the anti-atopic dermatitis (AD) activity and the mechanism of ABT-737 in AD models. HaCaT cells were used for in vitro experiments. To evaluate the effect of ABT-737 in vivo model, BalB/c mice were orally administered ABT-737 for 6 weeks in 2,4-dinitrofluorobenzene (DNFB)-induced AD-like murine model. Major assays were enzyme-linked immunosorbent assay, reverse transcription-PCR, caspase-1 assay, histamine assay, and H&E staining. ABT-737 significantly decreased thymic stromal lymphopoietin (TSLP) secretion and caspase-1 activity in activated HaCaT cells. In DNFB-induced AD mice, oral administration of ABT-737 alleviated clinical severity and scratching behavior. ABT-737 decreased levels of AD-related biomarkers including IgE, histamine, TSLP, and inflammatory cytokines. In addition, ABT significantly reduced caspase-1 activity in skin lesions of AD mice. ABT-737 elicited an anti-AD activity via suppression of caspase-1 activation in AD in vitro and in vivo models. Therefore, this study provides important information regarding the use of anticancer drugs for controlling allergic inflammatory diseases.

  3. The design and development of imidazothiazole-chalcone derivatives as potential anticancer drugs.

    PubMed

    Kamal, Ahmed; Kashi Reddy, Methuku; Viswanath, Arutla

    2013-03-01

    Imidazothiazole derivatives have long been therapeutically used for the treatment of various diseases. In recent years, the imidazothiazole and chalcone moieties have emerged as important pharmacophores in the development of antitumor agents. Imidazothiazole-chalcone conjugates can be accessed by covalently binding these two powerful pharamacophore units. These conjugates are known to exhibit a wide range of biological properties, including anticancer, antimicrobial, anti-inflammatory and immunosuppressive activities. Their promising biological profile and easy synthetic accessibility have triggered investigations directed at the design and development of new imidazothiazole-chalcone conjugate derivatives as potential chemotherapeutics. The present review focuses on recent reports of the syntheses and anticancer properties of various imidazothiazoles, chalcones and imidazothiazole-linked chalcone conjugates. Furthermore, the authors discuss the structure-activity relationships (SAR) of imidazothiazoles and chalcones and their conjugates as new antitumor agents, as well as in vitro and in vivo evaluation, clinical use and their future therapeutic applications. A large number of imidazothiazoles, chalcones and a new series of imidazothiazole-chalcone conjugates possess potent anticancer activity that could be further developed as drug candidates. Imidazothiazole-based conjugates could also display synergistic effect, and still there is a need to use the drug combinations permitting lower dose and development of new generation of drugs. Despite encouraging observed results for their response to tumors in clinical studies, full characterization of their toxicity is further required for their clinical usage as safe drugs for the treatment of cancer.

  4. The Anticancer Agent Chaetocin Is a Competitive Substrate and Inhibitor of Thioredoxin Reductase

    PubMed Central

    Tibodeau, Jennifer D.; Benson, Linda M.; Isham, Crescent R.; Owen, Whyte G.

    2009-01-01

    Abstract We recently reported that the antineoplastic thiodioxopiperazine natural product chaetocin potently induces cellular oxidative stress, thus selectively killing cancer cells. In pursuit of underlying molecular mechanisms, we now report that chaetocin is a competitive and selective substrate for the oxidative stress mitigation enzyme thioredoxin reductase-1 (TrxR1) with lower Km than the TrxR1 native substrate thioredoxin (Trx; chaetocin Km = 4.6 ± 0.6 μM, Trx Km = 104.7 ± 26 μM), thereby attenuating reduction of the critical downstream ROS remediation substrate Trx at achieved intracellular concentrations. Consistent with a role for TrxR1 targeting in the anticancer effects of chaetocin, overexpression of the TrxR1 downstream effector Trx in HeLa cells conferred resistance to chaetocin-induced, but not to doxorubicin-induced, cytotoxicity. As the TrxR/Trx pathway is of central importance in limiting cellular reactive oxygen species (ROS)—and as chaetocin exerts its selective anticancer effects via ROS imposition—the inhibition of TrxR1 by chaetocin has potential to explain its selective anticancer effects. These observations have important implications not just with regard to the mechanism of action and clinical development of chaetocin and related thiodioxopiperazines, but also with regard to the utility of molecular targets within the thioredoxin reductase/thioredoxin pathway in the development of novel candidate antineoplastic agents. Antioxid. Redox Signal. 11, 1097–1106. PMID:18999987

  5. Design, synthesis, and anticancer evaluation of long-chain alkoxylated mono-carbonyl analogues of curcumin.

    PubMed

    Weng, Qiaoyou; Fu, Lili; Chen, Gaozhi; Hui, Junguo; Song, Jingjing; Feng, Jianpeng; Shi, Dengjian; Cai, Yuepiao; Ji, Jiansong; Liang, Guang

    2015-10-20

    Curcumin is a nontoxic phenolic compound that modulates the activity of several cellular targets that have been linked with cancers and other chronic diseases. However, the efficacy of curcumin in the clinic has been limited by its poor bioavailability and rapid metabolism in vivo. We have previously reported the design and discovery of series of 5-carbon linker-containing mono-carbonyl analogues of curcumin (MACs) as anti-cancer agents. In continuation of our ongoing research, we designed and synthesized 37 novel long-chain alkoxylated MACs for anti-cancer evaluation here. The MTS assay was used to determine the cytotoxicity of compounds in gastrointestinal cancer cells. Compounds 5, 28, and 29 showed strongest inhibition against gastric cancer cell proliferation and were subjected to further analysis. The effects of 5, 28, and 29 on cell apoptosis were measured by flow cytometry. Expression levels of Bcl-2, cleaved poly ADP-ribose polymerase (PARP), and pro-caspase-3 were detected by western blotting. Compounds 5, 28, and 29 induced apoptosis in human gastric carcinoma cells, increased PARP cleavage, and decreased expression of Bcl-2 and pro-caspase-3 protein. We then showed that compound 28, which possessed the strongest activity among the test compounds in vitro, exhibited significant tumor inhibition in SGC7901-driven xenograft mouse model. Taken together, the novel compound 28 could be further explored as an effective anticancer agent for the treatment of human gastric cancer. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.

    PubMed

    Taylor, Sophie; Spugnini, Enrico Pierluigi; Assaraf, Yehuda G; Azzarito, Tommaso; Rauch, Cyril; Fais, Stefano

    2015-11-01

    Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide substantial new evidence that altering the acidic tumor microenvironment is an effective, well tolerated and low cost strategy for the overcoming of anticancer drug resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microbial synthesis of poly(epsilon-lysine) and its various applications.

    PubMed

    Shih, Ing-Lung; Shen, Ming-Haw; Van, Yi-Tsong

    2006-06-01

    This review article deals with the microbial synthesis, physiochemical properties, and potential applications of poly-epsilon-lysine (epsilon-PL), which is a naturally occurring biomaterial that is water soluble, biodegradable, edible and non-toxic toward humans and the environment. The potential applications of epsilon-PL as food preservatives, emulsifying agent, dietary agent, biodegradable fibers, highly water absorbable hydrogels, drug carriers, anticancer agent enhancer, biochip coatings in the fields of food, medicine, agriculture and electronics are also discussed in this review.

  8. Exploring the influence of culture conditions on kefir's anticancer properties.

    PubMed

    Hatmal, Ma'mon M; Nuirat, Abeer; Zihlif, Malek A; Taha, Mutasem O

    2018-05-01

    Cancer is a major health problem in many parts of the world. Conventional anticancer treatments are painful, expensive, and unsafe. Therefore, demand is increasing for cancer treatments preferentially in the form of functional foods or nutritional supplements. Kefir, a traditional fermented milk dairy product, has significant antimutagenic and antitumor properties. This research addresses the hypothesis that kefir's anticancer properties are affected by fermentation conditions. Initially, kefir extracts prepared under standard conditions were screened against 7 cancer cell lines using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Colon cancer and chronic myelogenous leukemia cells were found to be most susceptible to kefir extracts. Subsequently, a factorial design was implemented to assess the effects of 3 fermentation times (24, 48, and 72 h), 3 kefir-to-milk ratios (2, 5, and 10% wt/vol), and 3 fermentation temperatures (4, 25, and 40°C) on kefir's anticancer properties. Remarkably, exploration of the fermentation conditions allowed the anticancer properties of kefir to be enhanced by 5- to 8-fold against susceptible cell lines. Overall, these results demonstrate the possibility of optimizing the anticancer properties of kefir as a functional food in cancer therapy. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    PubMed

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Selective disruption of the blood-brain barrier by photochemical internalization

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Zhang, Michelle J.; Gach, Michael H.; Uzal, Francisco A.; Chighvinadze, David; Madsen, Steen J.

    2009-02-01

    Introduction: Failure to eradicate infiltrating glioma cells using conventional treatment regimens results in tumor recurrence and is responsible for the dismal prognosis of patients with glioblastoma multiforme (GBM). This is due to the fact that these migratory cells are protected by the blood-brain barrier (BBB) which prevents the delivery of most anti-cancer agents. We have evaluated the ability of photochemical internalization (PCI) to selectively disrupt the BBB in rats. This will permit access of anti-cancer drugs to effectively target the infiltrating tumor cells, and potentially improve the treatment effectiveness for malignant gliomas. Materials and Methods: PCI treatment, coupling a macromolecule therapy of Clostridium perfringens (Cl p) epsilon prototoxin with AlPcS2a-PDT, was performed on non-tumor bearing inbred Fisher rats. T1-weighted post-contrast magnetic resonance imaging (MRI) scans were used to evaluate the extent of BBB disruption which can be inferred from the volume contrast enhancement. Results: The synergistic effect of PCI to disrupt the BBB was observed at a fluence level of 1 J with an intraperitoneal injection of Cl p prototoxin. At the fluence level of 2.5J, the extent of BBB opening induced by PCI was similar to the result of PDT suggesting no synergistic effect evoked under these conditions. Conclusion: PCI was found to be highly effective and efficient for inducing selective and localized disruption of the BBB. The extent of BBB opening peaked on day 3 and the BBB was completed restored by day 18 post treatment.

  11. 78 FR 5818 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... followed by irradiation with near infrared light (NIR) was shown to kill cancer cells in a highly specific... significantly enhanced by the administration of one or more anti-cancer agents following the irradiation step...

  12. Rituximab, alkylating agents or combination therapy for gastric mucosa-associated lymphoid tissue lymphoma: a monocentric non-randomised observational study.

    PubMed

    Amiot, A; Lévy, M; Copie-Bergman, C; Dupuis, J; Szablewski, V; Le Baleur, Y; Baia, M; Belhadj, K; Sobhani, I; Leroy, K; Haioun, C; Delchier, J-C

    2014-03-01

    There is no consensus on the standard treatment of gastric mucosa-associated lymphoid tissue (MALT) lymphoma for Helicobacter pylori-negative patients and for patients with persistent disease despite H. pylori eradication. To evaluate the comparative efficacy and safety of alkylating agents and rituximab alone or in combination. In this monocentric retrospective study, which included 106 patients who had not been previously treated with anti-cancer agents, we evaluated the efficacy and safety of oral alkylating agents monotherapy (n = 48), rituximab monotherapy (n = 28) and the therapy combining both drugs (n = 30). Evaluations were performed at weeks 6 (W6), 25 (W25), and 52 (W52) and after 2 years (W104). After a median follow-up period of 4.9 years (range 0.4-17.2 years), complete remission and overall response were significantly higher in patients in the combination therapy group at W104 (92% and 100% respectively) compared with patients treated with alkylating agents alone (66% and 68%) and rituximab alone (64% and 73%). The 5-year progression-free survival probabilities were 68%, 70% and 89% in patients treated with alkylating agents alone, rituximab alone and combination therapy respectively. Haematological adverse events were reported in 32 (30%) patients (mostly grade 1) and were more frequent in the two groups receiving alkylating agents (P = 0.05 and P < 0.001). No toxicity-related death was reported. The use of anti-cancer systemic therapy is safe and efficient in gastric MALT lymphoma. In this retrospective study, the combination of rituximab plus chlorambucil seems more efficient than rituximab or alkylating agents alone. Rituximab has a better safety profile than regimens containing alkylating agents. © 2014 John Wiley & Sons Ltd.

  13. Preclinical Investigations of PM01183 (Lurbinectedin) as a Single Agent or in Combination with Other Anticancer Agents for Clear Cell Carcinoma of the Ovary

    PubMed Central

    Takahashi, Ryoko; Mabuchi, Seiji; Kawano, Mahiru; Sasano, Tomoyuki; Matsumoto, Yuri; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Sawada, Kenjiro; Kimura, Tadashi

    2016-01-01

    Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype. Methods Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of combination therapies involving lurbinectedin and 1 of the other 4 agents were evaluated using isobologram analysis to examine whether these combinations displayed synergistic effects. The antitumor activity of each treatment was also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines. Finally, we determined the effects of mTORC1 inhibition on the antitumor activity of lurbinectedin-based chemotherapy. Results Lurbinectedin exhibited significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. An examination of mouse CCC cell xenografts revealed that lurbinectedin significantly inhibits tumor growth. Among the tested combinations, lurbinectedin plus SN-38 resulted in a significant synergistic effect. This combination also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Everolimus significantly enhanced the antitumor activity of lurbinectedin-based chemotherapies. Conclusions Lurbinectedin, a new agent that targets active transcription, exhibits antitumor activity in CCC when used as a single agent and has synergistic antitumor effects when combined with irinotecan. Our results indicate that lurbinectedin is a promising agent for treating ovarian CCC, both as a first-line treatment and as a salvage treatment for recurrent lesions that develop after platinum-based or paclitaxel treatment. PMID:26986199

  14. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  15. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.

    PubMed

    Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2013-11-06

    DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via rolling circle replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery.

  16. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications

    PubMed Central

    Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2013-01-01

    DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via Rolling Circle Replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery. PMID:24164620

  17. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges.

    PubMed

    Nallar, Shreeram C; Xu, De-Qi; Kalvakolanu, Dhan V

    2017-01-01

    Bacteria act as pro- or anti- tumorigenic agents. Whole bacteria or cytotoxic or immunogenic peptides carried by them exert potent anti-tumor effects in the experimental models of cancer. The use of attenuated microorganism(s) e.g., BCG to treat human urinary bladder cancer was found to be superior compared to standard chemotherapy. Although the phase-I clinical trials with Salmonella enterica serovar Typhimurium, has shown limited benefits in human subjects, a recent pre-clinical trial in pet dogs with tumors reported some subjects benefited from this treatment strain. In addition to the attenuated host strains derived by conventional mutagenesis, recombinant DNA technology has been applied to a few microorganisms that have been evaluated in the context of tumor colonization and eradication using mouse models. There is an enormous surge in publications describing bacterial anti-cancer therapies in the past 15years. Vectors for delivering shRNAs that target oncogenic products, express tumor suppressor genes and immunogenic proteins have been developed. These approaches have showed promising anti-tumor activity in mouse models against various tumors. These can be potential therapeutics for humans in the future. In this review, some conceptual and practical issues on how to improve these agents for human applications are discussed. Copyright © 2016. Published by Elsevier Ltd.

  18. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action

    PubMed Central

    Ahmed, Sarfraz; Sulaiman, Siti Amrah; Baig, Atif Amin; Ibrahim, Muhammad; Liaqat, Sana; Fatima, Saira; Jabeen, Sadia; Shamim, Nighat

    2018-01-01

    Honey clasps several medicinal and health effects as a natural food supplement. It has been established as a potential therapeutic antioxidant agent for various biodiverse ailments. Data report that it exhibits strong wound healing, antibacterial, anti-inflammatory, antifungal, antiviral, and antidiabetic effects. It also retains immunomodulatory, estrogenic regulatory, antimutagenic, anticancer, and numerous other vigor effects. Data also show that honey, as a conventional therapy, might be a novel antioxidant to abate many of the diseases directly or indirectly associated with oxidative stress. In this review, these wholesome effects have been thoroughly reviewed to underscore the mode of action of honey exploring various possible mechanisms. Evidence-based research intends that honey acts through a modulatory road of multiple signaling pathways and molecular targets. This road contemplates through various pathways such as induction of caspases in apoptosis; stimulation of TNF-α, IL-1β, IFN-γ, IFNGR1, and p53; inhibition of cell proliferation and cell cycle arrest; inhibition of lipoprotein oxidation, IL-1, IL-10, COX-2, and LOXs; and modulation of other diverse targets. The review highlights the research done as well as the apertures to be investigated. The literature suggests that honey administered alone or as adjuvant therapy might be a potential natural antioxidant medicinal agent warranting further experimental and clinical research. PMID:29492183

  19. Therapies targeting cancer stem cells: Current trends and future challenges

    PubMed Central

    Dragu, Denisa L; Necula, Laura G; Bleotu, Coralia; Diaconu, Carmen C; Chivu-Economescu, Mihaela

    2015-01-01

    Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers. PMID:26516409

  20. Lessons Learned from Gemcitabine: Impact of Therapeutic Carrier Systems and Gemcitabine's Drug Conjugates on Cancer Therapy.

    PubMed

    Dyawanapelly, Sathish; Kumar, Animesh; Chourasia, Manish K

    2017-01-01

    Currently, drug delivery systems have a high impact in cancer therapy and are receiving more attention than conventional cancer treatment modalities. Compared with current cancer therapies, gemcitabine (2', 2'-difluoro-2'-deoxycytidine) has been proven to be an effective chemotherapeutic agent against pancreatic, colon, bladder, breast, ovarian, non-small-cell lung, and head and neck cancers in combination with other anticancer agents. To improve the safety and efficacy of cytotoxic drugs, several drug delivery systems have been explored. This review outlines the recent work directed toward gemcitabine delivery systems for cancer therapy, including aerosols, polymeric nanoparticles, liposomes, microparticles, carbon nanotubes, and multifunctional theranostic nanomedicines. It also provides insight into the design and development of gemcitabine conjugation for safe and effective cancer therapy. Despite the clinical promises of gemcitabine, many therapeutic challenges remain. Specifically, its therapeutic use in cancer chemotherapy is impeded by a short biological half-life, caused by its rapid metabolism, and resistance due to increased expression of ribonucleotide reductase. In our opinion, many research investigations have contributed to improve the selectivity and efficacy of gemcitabine. This combined approach of drug delivery systems and gemcitabine conjugates has shown promising efficacy in preclinical models and significant potential for future clinical cancer-therapeutic applications. Also, these strategies overcome most of the aforementioned limits of gemcitabine.

  1. Dual-Functional Nanographene Oxide as Cancer-Targeted Drug-Delivery System to Selectively Induce Cancer-Cell Apoptosis.

    PubMed

    Zhou, Binwei; Huang, Yanyu; Yang, Fang; Zheng, Wenjie; Chen, Tianfeng

    2016-04-05

    Construction of bioresponsive drug-delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer-targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf-NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor-mediated endocytosis and triggered pH-dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf-NGO@HPIP effectively induced cancer-cell apoptosis through activation of superoxide-mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug-delivery nanosystems and their use as efficient anticancer drug carriers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The high price of anticancer drugs: origins, implications, barriers, solutions.

    PubMed

    Prasad, Vinay; De Jesús, Kevin; Mailankody, Sham

    2017-06-01

    Globally, annual spending on anticancer drugs is around US$100 billion, and is predicted to rise to $150 billion by 2020. In the USA, a novel anticancer drug routinely costs more than $100,000 per year of treatment. When adjusted for per capita spending power, however, drugs are most unaffordable in economically developing nations, such as India and China. Not only are launch prices high and rising, but individual drug prices are often escalated during exclusivity periods. High drug prices harm patients - often directly through increased out-of-pocket expenses, which reduce levels of patient compliance and lead to unfavourable outcomes - and harms society - by imposing cumulative price burdens that are unsustainable. Moreover, high drug prices are not readily explained by rational factors, including the extent of benefit patients are likely to derive, the novelty of the agents, or spending on research and development. Herein, we summarize the available empirical evidence on the costs of anticancer drugs, probe the origins and implications of these high costs, and discuss proposed solutions.

  3. Effects of Plants and Isolates of Celastraceae Family on Cancer Pathways.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Seyed, Mohamed Ali

    2015-01-01

    The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.

  4. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.

    PubMed

    Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi

    2018-01-01

    The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gene signature critical to cancer phenotype as a paradigm for anti-cancer drug discovery

    PubMed Central

    Sampson, Erik R.; McMurray, Helene R.; Hassane, Duane C.; Newman, Laurel; Salzman, Peter; Jordan, Craig T.; Land, Hartmut

    2013-01-01

    Malignant cell transformation commonly results in the deregulation of thousands of cellular genes, an observation that suggests a complex biological process and an inherently challenging scenario for the development of effective cancer interventions. To better define the genes/pathways essential to regulating the malignant phenotype, we recently described a novel strategy based on the cooperative nature of carcinogenesis that focuses on genes synergistically deregulated in response to cooperating oncogenic mutations. These so-called “cooperation response genes” (CRGs) are highly enriched for genes critical for the cancer phenotype, thereby suggesting their causal role in the malignant state. Here we show that CRGs play an essential role in drug-mediated anti-cancer activity and that anti-cancer agents can be identified through their ability to antagonize the CRG expression profile. These findings provide proof-of-concept for the use of the CRG signature as a novel means of drug discovery with relevance to underlying anti-cancer drug mechanisms. PMID:22964631

  6. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    PubMed

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  7. Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis

    PubMed Central

    Costa, Margarida; Costa-Rodrigues, João; Fernandes, Maria Helena; Barros, Piedade; Vasconcelos, Vitor; Martins, Rosário

    2012-01-01

    Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed. PMID:23170077

  8. LHRH-Targeted Drug Delivery Systems for Cancer Therapy.

    PubMed

    Li, Xiaoning; Taratula, Oleh; Taratula, Olena; Schumann, Canan; Minko, Tamara

    2017-01-01

    Targeted delivery of therapeutic and diagnostic agents to cancer sites has significant potential to improve the therapeutic outcome of treatment while minimizing severe side effects. It is widely accepted that decoration of the drug delivery systems with targeting ligands that bind specifically to the receptors on the cancer cells is a promising strategy that may substantially enhance accumulation of anticancer agents in the tumors. Due to the transformed cellular nature, cancer cells exhibit a variety of overexpressed cell surface receptors for peptides, hormones, and essential nutrients, providing a significant number of target candidates for selective drug delivery. Among others, luteinizing hormonereleasing hormone (LHRH) receptors are overexpressed in the majority of cancers, while their expression in healthy tissues, apart from pituitary cells, is limited. The recent studies indicate that LHRH peptides can be employed to efficiently guide anticancer and imaging agents directly to cancerous cells, thereby increasing the amount of these substances in tumor tissue and preventing normal cells from unnecessary exposure. This manuscript provides an overview of the targeted drug delivery platforms that take advantage of the LHRH receptors overexpression by cancer cells.

  9. Arsenic compounds as anticancer agents.

    PubMed

    Wang, Z Y

    2001-08-01

    In this paper the use of arsenic compounds as anticancer agents in clinical trials and in in vitro investigations is reviewed, including the experience at our institute. Treatment of newly diagnosed and relapsed patients with acute promyelocytic leukemia (APL) with arsenic trioxide (As2O3) has been found to result in complete remission (CR) rates of 85-93% when given by intravenous infusion for 2-3 h at a dose of 10 mg/day diluted in 5% glucose saline solution. Patients exhibit a response in 28-42 days. CR rates after administration of Composite Indigo Naturalis tablets containing arsenic sulfide and of pure tetraarsenic tetrasulfide reached 98% and 84.9%, respectively. At higher concentrations (1-2 microM), arsenic induced apoptosis, while at lower concentrations (0.1-0.5 microM), it triggered cell differentiation in vitro. As2O3-induced apoptosis has been observed in many cancer cell lines, including esophageal carcinoma, gastric cancer, neuroblastoma, lymphoid malignancies, and multiple myeloma. Its effectiveness was confirmed in the treatment of multiple myeloma. Arsenic compounds are effective agents in the treatment of APL and their activity against other types of cancer requires further investigation.

  10. Synergistic Cytotoxicity Effect by Combination Treatment of Polyketide Derivatives from Annona muricata Linn Leaves and Doxorubicin as Potential Anticancer Material on Raji Cell Line

    NASA Astrophysics Data System (ADS)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Fisma, R.; Prihapsara, F.

    2018-03-01

    Nasopharynx cancer is one of the most deadly cancer. The main priority of nasopharynx cancer treatment is the use of chemotherapeutic agents, especially doxorubicin. However, doxorubicin might also lead to diverse side effect. An approach recently develop to overcome side effect of doxorubicin is to used of combined chemotherapeutic agent. One of the compounds found effication as an anticancer agent on nasopharynx cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on raji cell line. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). Data analysis showed that combination of polyketide derivative from Annona muricata L. (14,4 µg/ml) and doxorubicin with all of concentration performed synergistic effect on raji cell line with CI value from 0.13 – 0.65.

  11. Design of Enzymatically Cleavable Prodrugs of a Potent Platinum-Containing Anticancer Agent

    PubMed Central

    Ding, Song; Pickard, Amanda J.; Kucera, Gregory L.

    2014-01-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum–acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the pro-drug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  12. Polyketide Derivatives from Annona muricata Linn Leaves as Potencial Anticancer Material by Combination Treatment With Doxorubicin on Hela Cell Line

    NASA Astrophysics Data System (ADS)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Widiyaningsih, R. F.; Prihapsara, F.

    2017-02-01

    One of the compounds found effication as an anticancer agent on cervical cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on hela cell line. An approach recently develop to overcome side effect of chemoterapeutic agent is used of combined chemoterapeutic agent, i.e doxorubicin. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). The expression of p53 profile was evaluated by immunohistochemistry on hela cell line. Data analysis showed that combination of polyketide derivative from Annona muricata L. (38,5 µg/ml) and doxorubicin with all of concentration performed synergistic effect on hela cell line with CI value from 0,33 - 0,65. The analysis on immucytochemistry showed that polyketide derivative from Annona muricata L. leaves could enhance p53 pathway significantly on hela cell line.

  13. Epigenetic regulation of miRNA-Cancer Stem Cells nexus by Nutraceuticals

    PubMed Central

    Ahmad, Aamir; Li, Yiwei; Bao, Bin; Kong, Dejuan; Sarkar, Fazlul H.

    2014-01-01

    Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds. PMID:24272883

  14. APCCdc20 Suppresses Apoptosis through Targeting Bim for Ubiquitination and Destruction

    PubMed Central

    Wan, Lixin; Tan, Mingjia; Yang, Jie; Inuzuka, Hiroyuki; Dai, Xiangpeng; Wu, Tao; Liu, Jia; Shaik, Shavali; Chen, Guoan; Deng, Jing; Malumbres, Marcos; Letai, Anthony; Kirschner, Marc W.; Sun, Yi; Wei, Wenyi

    2014-01-01

    SUMMARY APCCdc20 plays pivotal roles in governing mitotic progression. By suppressing APCCdc20, anti-mitotic agents activate the spindle-assembly-checkpoint (SAC), and induce apoptosis after prolonged-treatment, while depletion of endogenous Cdc20 suppresses in vivo tumorigenesis in part by triggering mitotic arrest and subsequent apoptosis. However, the molecular mechanism(s) underlying apoptosis induced by Cdc20 abrogation remains poorly understood. Here we report that the BH3-only pro-apoptotic protein Bim is an APCCdc20 target, as such depletion of Cdc20 sensitizes cells to apoptotic stimuli. Strikingly, Cdc20 and multiple APC-core components were identified in an siRNA screen that upon knockdown sensitizes otherwise resistant cancer cells to chemo-radiation therapies in a Bim-dependent manner. Consistently, human Adult-T-cell-Leukemia (ATL) cells that acquire elevated APCCdc20 activity via expressing the Tax-viral-oncoprotein, exhibit reduced Bim levels and resistance to anti-cancer agents. These results reveal an important role for APCCdc20 in governing apoptosis, strengthening the rationale for developing specific Cdc20 inhibitors as effective anti-cancer agents. PMID:24871945

  15. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Unsal Tan, Oya; Sher, Muhammad; Naeem-Ul-Hassan, M; Qin, Hua-Li

    2014-06-18

    Hyperpigmentation in human skin and enzymatic browning in fruits, which are caused by tyrosinase enzyme, are not desirable. Investigations in the discovery of tyrosinase enzyme inhibitors and search for improved cytotoxic agents continue to be an important line in drug discovery and development. In present work, a new series of 30 compounds bearing α,β-unsaturated carbonyl moiety was designed and synthesized following curcumin as model. All compounds were evaluated for their effects on human cancer cell lines and mushroom tyrosinase enzyme. Moreover, the structure-activity relationships of these compounds are also explained. Molecular modeling studies of these new compounds were carried out to explore interactions with tyrosinase enzyme. Synthetic curcumin-like compounds (2a-b) were identified as potent anticancer agents with 81-82% cytotoxicity. Five of these newly synthesized compounds (1a, 8a-b, 10a-b) emerged to be the potent inhibitors of mushroom tyrosinase, providing further insight into designing compounds useful in fields of food, health, and agriculture.

  16. Molecular targets of naturopathy in cancer research: bridge to modern medicine.

    PubMed

    Ahmad, Aamir; Ginnebaugh, Kevin R; Li, Yiwei; Padhye, Subhash B; Sarkar, Fazlul H

    2015-01-06

    The relevance of naturopathy (defined as the practice of medicine for the treatment of human diseases with natural agents) in human cancer is beginning to be appreciated, as documented by renewed interest in nutraceutical research, the natural anticancer agents of dietary origin. Because of their pleiotropic effects and the ability to modulate multiple signaling pathways, which is a good attribute of natural agents, nutraceuticals have frequently been demonstrated to re-sensitize drug-resistant cancers. The effectiveness of nutraceuticals can be further enhanced if the tools for the relative assessment of their molecular targets are readily available. Such information can be critical for determining their most effective uses. Here, we discuss the anticancer potential of nutraceuticals and the associated challenges that have interfered with their translational potential as a naturopathic approach for the management of cancers. In the years to come, an efficient screening and assessment of molecular targets will be the key to make rapid progress in the area of drug design and discovery, especially focusing on evidence-based development of naturopathy for the treatment of human malignancies.

  17. Novel morphology change of Au-Methotrexate conjugates: From nanochains to discrete nanoparticles.

    PubMed

    Wang, Wei-Yuan; Zhao, Xiu-Fen; Ju, Xiao-Han; Wang, Yu; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong

    2016-12-30

    A novel morphology change of Au-methotrexate (Au-MTX) conjugates that could transform from nanochains to discrete nanoparticles was achieved by a simple, one-pot, and hydrothermal growth method. Herein, MTX was used efficiently as a complex-forming agent, reducing agent, capping agent, and importantly a targeting anticancer drug. The formation mechanism suggested a similarity with the molecular imprinting technology. The Au-MTX complex induced the MTX molecules to selectively adsorb on different crystal facets of gold nanoparticles (AuNPs) and then formed gold nanospheres. Moreover, the abundantly binding MTX molecules promoted directional alignment of these gold nanospheres to further form nanochains. More interestingly, the linear structures gradually changed into discrete nanoparticles by adding different amount of ethylene diamine tetra (methylene phosphonic acid) (EDTMPA) into the initial reaction solution, which likely arose from the strong electrostatic effect of the negatively charged phosphonic acid groups. Compared with the as-prepared nanochains, the resultant discrete nanoparticles showed almost equal drug loading capacity but with higher drug release control, colloidal stability, and in vitro anticancer activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs

    PubMed Central

    Padhye, Subhash; Ahmad, Aamir; Oswal, Nikhil; Sarkar, Fazlul H

    2009-01-01

    Garcinol, harvested from Garcinia indica, has traditionally been used in tropical regions and appreciated for centuries; however its biological properties are only beginning to be elucidated. There is ample data to suggest potent antioxidant properties of this compound which have been used to explain most of its observed biological activities. However, emerging evidence suggests that garcinol could be useful as an anti-cancer agent, and it is increasingly being realized that garcinol is a pleiotropic agent capable of modulating key regulatory cell signaling pathways. Here we have summarized the progress of our current research knowledge on garcinol and its observed biological activities. We have also provided an explanation of observed properties based on its chemical structure and provided an insight into the structure and properties of chalcones, the precursors of garcinol. The available data is promising but more detailed investigations into the various properties of this compound, particularly its anti-cancer activity are urgently needed, and it is our hope that this review will stimulate further research for elucidating and appreciating the value of this nature's wonder agent. PMID:19725977

  19. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs.

    PubMed

    Padhye, Subhash; Ahmad, Aamir; Oswal, Nikhil; Sarkar, Fazlul H

    2009-09-02

    Garcinol, harvested from Garcinia indica, has traditionally been used in tropical regions and appreciated for centuries; however its biological properties are only beginning to be elucidated. There is ample data to suggest potent antioxidant properties of this compound which have been used to explain most of its observed biological activities. However, emerging evidence suggests that garcinol could be useful as an anti-cancer agent, and it is increasingly being realized that garcinol is a pleiotropic agent capable of modulating key regulatory cell signaling pathways. Here we have summarized the progress of our current research knowledge on garcinol and its observed biological activities. We have also provided an explanation of observed properties based on its chemical structure and provided an insight into the structure and properties of chalcones, the precursors of garcinol. The available data is promising but more detailed investigations into the various properties of this compound, particularly its anti-cancer activity are urgently needed, and it is our hope that this review will stimulate further research for elucidating and appreciating the value of this nature's wonder agent.

  20. Molecular Targets of Naturopathy in Cancer Research: Bridge to Modern Medicine

    PubMed Central

    Ahmad, Aamir; Ginnebaugh, Kevin R.; Li, Yiwei; Padhye, Subhash B.; Sarkar, Fazlul H.

    2015-01-01

    The relevance of naturopathy (defined as the practice of medicine for the treatment of human diseases with natural agents) in human cancer is beginning to be appreciated, as documented by renewed interest in nutraceutical research, the natural anticancer agents of dietary origin. Because of their pleiotropic effects and the ability to modulate multiple signaling pathways, which is a good attribute of natural agents, nutraceuticals have frequently been demonstrated to re-sensitize drug-resistant cancers. The effectiveness of nutraceuticals can be further enhanced if the tools for the relative assessment of their molecular targets are readily available. Such information can be critical for determining their most effective uses. Here, we discuss the anticancer potential of nutraceuticals and the associated challenges that have interfered with their translational potential as a naturopathic approach for the management of cancers. In the years to come, an efficient screening and assessment of molecular targets will be the key to make rapid progress in the area of drug design and discovery, especially focusing on evidence-based development of naturopathy for the treatment of human malignancies. PMID:25569626

  1. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents.

    PubMed

    Maranhão, Raul C; Vital, Carolina G; Tavoni, Thauany M; Graziani, Silvia R

    2017-10-01

    The toxicity of chemotherapeutic agents, resulting from their low pharmacological index, introduces considerable discomfort and risk to cancer patients. Among several strategies to reduce the toxicity of chemotherapeutic agents, targeted drug delivery is the most promising one. Areas covered: Liposomes, micelles, albumin-based, polymeric, dendritic and lipid core nanoparticles have been used as carriers to concentrate anticancer drugs in neoplastic tissues, and clinical studies of those preparations are reviewed. In most clinical studies, drug delivery systems reduced drug toxicity. Lipid core nanoparticles (LDE) that bind to cell lipoprotein receptors have the ability to concentrate in neoplastic tissues and were the first artificial non-liposomal system shown in in vivo studies to possess targeting properties. The toxicity reduction achieved by LDE as vehicle of carmustine, etoposide and paclitaxel was singularly strong. Expert opinion: The reduced toxicity offered by drug delivery systems has expanded treatment population that may benefit from chemotherapy including feeble, overtreated and elderly patients that would otherwise be offered palliative therapy. Drug delivery systems may either prolong the duration of treatments or allow increases in drug dose.

  2. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents.

    PubMed

    Miller, Marvin J; Zhu, Helen; Xu, Yanping; Wu, Chunrui; Walz, Andrew J; Vergne, Anne; Roosenberg, John M; Moraski, Garrett; Minnick, Albert A; McKee-Dolence, Julia; Hu, Jingdan; Fennell, Kelley; Kurt Dolence, E; Dong, Li; Franzblau, Scott; Malouin, Francois; Möllmann, Ute

    2009-02-01

    Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the "microbial war", extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.

  3. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents

    PubMed Central

    Zhu, Helen; Xu, Yanping; Wu, Chunrui; Walz, Andrew J.; Vergne, Anne; Roosenberg, John M.; Moraski, Garrett; Minnick, Albert A.; McKee-Dolence, Julia; Hu, Jingdan; Fennell, Kelley; Dolence, E. Kurt; Dong, Li; Franzblau, Scott; Malouin, Francois; Möllmann, Ute

    2014-01-01

    Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the “microbial war”, extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery (“Trojan Horse” antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described. PMID:19130268

  4. Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines.

    PubMed

    Sirisha, Kalam; Achaiah, Garlapati; Reddy, Vanga Malla

    2010-06-01

    A series of twenty new 4-substituted-2,6-dimethyl-3,5-bis-N-(heteroaryl)-carbamoyl-1,4-dihydropyridines have been prepared from a three-component one-pot condensation reaction of N-heteroaryl acetoacetamide, an aromatic/heteroaromatic aldehyde, and ammonium acetate under four different experimental conditions. Except for the conventional method, all the experimental conditions were simple, eco-friendly, economical, and the reactions were rapid and high-yielding. The methods employed have been compared in terms of yields, cost, and simplicity. The synthesized compounds were characterized by different spectroscopic techniques and evaluated for their in-vitro anticancer, antibacterial, and antitubercular activities. Amongst the compounds tested, compound 25 exhibited the highest anticancer activity while compounds 14 and 18 exhibited significant antibacterial and antitubercular activities.

  5. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    PubMed

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  6. Novel Gold(I) Thiolate Derivatives Synergistic with 5-Fluorouracil as Potential Selective Anticancer Agents in Colon Cancer.

    PubMed

    Atrián-Blasco, Elena; Gascón, Sonia; Rodrı Guez-Yoldi, Ma Jesus; Laguna, Mariano; Cerrada, Elena

    2017-07-17

    New gold(I) thiolate complexes have been synthesized and characterized, and their physicochemical properties and anticancer activity have been tested. The coordination of PTA derivatives provides optimal hydrophilicity/lipophilicity properties to the complexes, which present high solution stability. Moreover, the complexes show a high anticancer activity against Caco-2 cells, comparable to that of auranofin, and a very low cytotoxic activity against enterocyte-like differentiated cells. Their activity has been shown to produce cell death by apoptosis and arrest of the cell cycle because of interaction with the reductase enzymes and consequent reactive oxygen species production. Some of these new complexes are also able to decrease the necessary dose of 5-fluorouracil, a drug used for the treatment of colon cancer, by a synergistic mechanism.

  7. Design and synthesis of aminocoumarin derivatives as DPP-IV inhibitors and anticancer agents.

    PubMed

    Soni, Rina; Soman, Shubhangi S

    2018-09-01

    DPP-IV "a moonlighting protein" has immerged as promising pathway to control Type 2 diabetes as well as found to play key role in earlier stages of cancer. Here we have reported design, synthesis and applications of aminocoumarin derivatives as DPP-IV inhibitors. Compounds have been synthesized and studied for their DPP-IV inhibition activity. Three compounds have shown moderate inhibition at 100 µM concentration. All compounds were also screened for their anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell line) using MTT assay. One of the compounds has shown very good anticancer activity with IC 50 value 24 ± 0.1 nM against A549 cell line. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Anticancer effects of different seaweeds on human colon and breast cancers.

    PubMed

    Moussavou, Ghislain; Kwak, Dong Hoon; Obiang-Obonou, Brice Wilfried; Maranguy, Cyr Abel Ogandaga; Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Dae Hoon; Pissibanganga, Ordelia Gwenaelle Manvoudou; Ko, Kisung; Seo, Jae In; Choo, Young Kug

    2014-09-24

    Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.

  9. Covalent nano delivery systems for selective imaging and treatment of brain tumors.

    PubMed

    Ljubimova, Julia Y; Sun, Tao; Mashouf, Leila; Ljubimov, Alexander V; Israel, Liron L; Ljubimov, Vladimir A; Falahatian, Vida; Holler, Eggehard

    2017-04-01

    Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Honey and Cancer: Current Status and Future Directions

    PubMed Central

    Porcza, Laura M.; Simms, Claire; Chopra, Mridula

    2016-01-01

    Cancer is a leading cause of death worldwide and poses a challenge to treatment. With overwhelming evidence of the role played by diet and lifestyle in cancer risk and prevention, there is a growing interest into the search for chemopreventative or chemotherapeutic agents derived from natural products. Honey is an important source of bioactive compounds derived from plants and recent years have seen an increased interest in its anticancer properties. This review examines the role of honey in targeting key hallmarks of carcinogenesis, including uncontrolled proliferation, apoptosis evasion, angiogenesis, growth factor signalling, invasion, and inflammation. The evidence for honey as an adjunct to conventional cancer therapy is also presented. The review also highlights gaps in the current understanding and concludes that, before translation of evidence from cell culture and animal studies into the clinical setting, further studies are warranted to examine the effects of honey at a molecular level, as well as on cells in the tumour environment. PMID:28933410

  11. Possible influence of infrasound on glioma cell response to chemotherapy: a pilot study.

    PubMed

    Yount, Garret; Taft, Ryan; West, Jeremy; Moore, Dan

    2004-04-01

    To assess the response of cultured human tumor cells to infrasound in combination with conventional anticancer agents using an infrasound-emitting apparatus marketed as a therapeutic device. Two pilot experiments measured proliferation of cultured brain tumor cells exposed to three treatment conditions: infrasound emission alone, infrasound in combination with the chemotherapy 5-fluorouracil (5-FU), and infrasound in combination with ionizing radiation. Results from each experimental condition were compared to those from appropriate control conditions. A standard colony-forming efficiency assay was used to assess tumor cell proliferation. Tumor cell proliferation was not significantly altered by treatment with infrasound alone, nor did infrasound appear to influence cellular response to x-rays. There was a significant interaction between 5-FU and infrasound (P < 0.0001), however, evident in decreased colony formation. Further research is warranted to assess potential synergism between infrasound and 5-FU against tumor cell proliferation, and to investigate the possible therapeutic use of infrasound.

  12. Anticancer therapy

    DOEpatents

    Norenberg, Jeffrey P.

    2017-04-04

    A subject afflicted with a cancer or precancerous condition is treated by administering an agent that increases expression of somatostatin receptors, and a cytotoxic recognition ligand. In an alternative embodiment, somatostatin analogs, which are radiolabeled are used to treat cancer or precancerous conditions.

  13. 78 FR 18999 - Prospective Grant of Start-Up Exclusive License: Photosensitizing Antibody-Fluorophore Conjugates...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    .... Binding of such conjugates to targeted cancer cells followed by irradiation with near infrared light (NIR... more anti-cancer agents following the irradiation step. This is achieved by the markedly rapid...

  14. PARP Inhibitor and NO-Donor Dual Prodrugs as Anticancer Agents | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Chemical Biology Laboratory seeks partners interested in collaborative research to co-develop PARP inhibitor and NO-donor hybrid prodrugs for the treatment of cancer.

  15. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  16. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  17. A screen to identify drug resistant variants to target-directed anti-cancer agents

    PubMed Central

    Azam, Mohammad; Raz, Tal; Nardi, Valentina; Opitz, Sarah L.

    2003-01-01

    The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec), a specific inhibitor of the Chronic Myeloid Leukemia (CML)-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair. PMID:14615817

  18. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma.

    PubMed

    Luthra, Pratibha Mehta; Lal, Neetika

    2016-02-15

    GBM (Glioblastoma) is the most malignant human brain tumor with median survival of one year. The treatment involves surgery, radiotherapy and adjuvant chemotherapy mostly with the alkylation agents such as temozolomide (TMZ). Dietary polyphenol curcumin, isolated from the rhizome of the Curcuma longa (turmeric), has emerged as remarkable anti-cancer agent in the treatment of various peripheral cancers such as blood, lymphomas, multiple myeloma, melanoma as well as skin, lung, prostate, breast, ovarian, bladder, liver, gastrointestinal tract, pancreatic and colorectal epithelial cancers with a pleiotropic mode of action and also showed promise in alleviation of GBM. In this review, the mechanism of anticancer effect of curcumin in GBM has been discussed extensively. The clinical safety and pharmacokinetics of curcumin has been scrutinized to combat the challenges for the treatment of GBM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Fenbendazole as a Potential Anticancer Drug

    PubMed Central

    DUAN, QIWEN; LIU, YANFENG; ROCKWELL, SARA

    2013-01-01

    Background/Aims To evaluate the anticancer activity of fenbendazole, a widely used antihelminth with mechanisms of action that overlap with those of the hypoxia-selective nitroheterocyclic cytotoxins/radiosensitizers and the taxanes. Materials and Methods We used EMT6 mouse mammary tumor cells in cell culture and as solid tumors in mice to examine the cytotoxic and antitumor effects of fenbendazole as a single agent and in combination regimens. Results Intensive treatments with fenbendazole were toxic to EMT6 cells in vitro; toxicity increased with incubation time and under conditions of severe hypoxia. Fenbendazole did not alter the dose-response curves for radiation or docetaxel; instead, the agents produced additive cytotoxicities. Febendazole in maximally-intensive regimens did not alter the growth of EMT6 tumors, or increase the antineoplastic effects of radiation. Conclusion These studies provided no evidence that fenbendazole would have value in cancer therapy, but suggested that this general class of compounds merits further investigation. PMID:23393324

  20. Fenbendazole as a potential anticancer drug.

    PubMed

    Duan, Qiwen; Liu, Yanfeng; Rockwell, Sara

    2013-02-01

    To evaluate the anticancer activity of fenbendazole, a widely used antihelminth with mechanisms of action that overlap with those of the hypoxia-selective nitroheterocyclic cytotoxins/radiosensitizers and the taxanes. We used EMT6 mouse mammary tumor cells in cell culture and as solid tumors in mice to examine the cytotoxic and antitumor effects of fenbendazole as a single agent and in combination regimens. Intensive treatments with fenbendazole were toxic to EMT6 cells in vitro; toxicity increased with incubation time and under conditions of severe hypoxia. Fenbendazole did not alter the dose-response curves for radiation or docetaxel; instead, the agents produced additive cytotoxicities. Febendazole in maximally-intensive regimens did not alter the growth of EMT6 tumors, or increase the antineoplastic effects of radiation. These studies provided no evidence that fenbendazole would have value in cancer therapy, but suggested that this general class of compounds merits further investigation.

  1. Small mitochondria-targeting molecules as anti-cancer agents

    PubMed Central

    Wang, Feng; Ogasawara, Marcia A.; Huang, Peng

    2009-01-01

    Alterations in mitochondrial structure and functions have long been observed in cancer cells. Targeting mitochondria as a cancer therapeutic strategy has gained momentum in the recent years. The signaling pathways that govern mitochondrial function, apoptosis and molecules that affect mitochondrial integrity and cell viability have been important topics of the recent review in the literature. In this article, we first briefly summarize the rationale and biological basis for developing mitochondrial-targeted compounds as potential anticancer agents, and then provide key examples of small molecules that either directly impact mitochondria or functionally affect the metabolic alterations in cancer cells with mitochondrial dysfunction. The main focus is on the small molecular weight compounds with potential applications in cancer treatment. We also summarize information on the drug developmental stages of the key mitochondria-targeted compounds and their clinical trial status. The advantages and potential shortcomings of targeting the mitochondria for cancer treatment are also discussed. PMID:19995573

  2. Repurposing Drugs in Oncology (ReDO)—Propranolol as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Bouche, Gauthier; Sukhatme, Vidula; Meheus, Lydie; Rooman, Ilse; Sukhatme, Vikas P

    2016-01-01

    Propranolol (PRO) is a well-known and widely used non-selective beta-adrenergic receptor antagonist (beta-blocker), with a range of actions which are of interest in an oncological context. PRO displays effects on cellular proliferation and invasion, on the immune system, on the angiogenic cascade, and on tumour cell sensitivity to existing treatments. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. In particular there is evidence that PRO is effective at multiple points in the metastatic cascade, particularly in the context of the post-surgical wound response. Based on this evidence the case is made for further clinical investigation of the anticancer effects of PRO, particularly in combination with other agents. A number of trials are on-going, in different treatment settings for various cancers. PMID:27899953

  3. Amygdalin, from Apricot Kernels, Induces Apoptosis and Causes Cell Cycle Arrest in Cancer Cells: An Updated Review.

    PubMed

    Saleem, Mohammad; Asif, Jawaria; Asif, Muhammad; Saleem, Uzma

    2018-01-05

    Amygdalin is a cyanogenic glycoside which is described as a naturally occurring anti-cancer agent. In 1830s, French chemists Robiquet and Boutron-Charlard isolated amygdalin from bitter almonds. Apoptosis is an important mechanism in cancer treatment by amygdalin. Amygdalin can probably stimulate apoptotic process in cancerous cells by increasing activity of Bax (pro-apoptotic protein) and caspase-3 and decreasing expression of Bcl-2 (anti-apoptotic protein). Amygdalin promotes arrest of cell cycle in G0/G1 phase followed by decreasing number of S and G2/M phase cells. So, amygdalin enhances deceleration of cell cycle by blocking cell proliferation and growth. The current review highlights that amygdalin has potential to be used as an anticancer agent in cancer therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Anti-cancer agents based on N-acyl-2, 3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives and a method of making

    DOEpatents

    Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V

    2013-04-16

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  5. Breakthrough cancer medicine and its impact on novel drug development in China: report of the US Chinese Anti-Cancer Association (USCACA) and Chinese Society of Clinical Oncology (CSCO) Joint Session at the 17th CSCO Annual Meeting.

    PubMed

    Luo, Feng Roger; Ding, Jian; Chen, Helen X; Liu, Hao; Fung, Man-Cheong; Koehler, Maria; Armand, Jean Pierre; Jiang, Lei; Xu, Xiao; Zhang, Ge; Xu, Li; Qian, Pascal; Yan, Li

    2014-12-01

    The US Chinese Anti-Cancer Association (USCACA) teamed up with Chinese Society of Clinical Oncology (CSCO) to host a joint session at the17th CSCO Annual Meeting on September 20th, 2014 in Xiamen, China. With a focus on breakthrough cancer medicines, the session featured innovative approaches to evaluate breakthrough agents and established a platform to interactively share successful experiences from case studies of 6 novel agents from both the United States and China. The goal of the session is to inspire scientific and practical considerations for clinical trial design and strategy to expedite cancer drug development in China. A panel discussion further provided in-depth advice on advancing both early and full development of novel cancer medicines in China.

  6. Therapeutic applications of curcumin for patients with pancreatic cancer

    PubMed Central

    Kanai, Masashi

    2014-01-01

    A number of preclinical studies have demonstrated anticancer effects for curcumin in various types of tumors, including pancreatic cancer. Curcumin has anticancer effects both alone and in combination with other anticancer drugs (e.g., gemcitabine, 5-fluorouracil, and oxaliplatin), and it has been shown to modulate a variety of molecular targets in preclinical models, with more than 30 molecular targets identified to date. Of these various molecules, NF-κB is thought to be one of the primary targets of curcumin activity. Based on these promising preclinical results, several research groups, including our own, have progressed to testing the anticancer effects of curcumin in clinical trials; however, the poor bioavailability of this agent has been the major challenge for its clinical application. Despite the ingestion of gram-level doses of curcumin, plasma curcumin levels remain at low (ng/mL) levels in patients, which is insufficient to yield the anticancer benefits of curcumin. This problem has been solved by the development of highly bioavailable forms of curcumin (THERACURMIN®), and higher plasma curcumin levels can now be achieved without increased toxicity in patients with pancreatic cancer. In this article, we review possible therapeutic applications of curcumin in patients with pancreatic cancer. PMID:25071333

  7. Phytotherapy of nephrotoxicity-induced by cancer drugs: an updated review

    PubMed Central

    Heidari-Soreshjani, Saeid; Asadi-Samani, Majid; Yang, Qian; Saeedi-Boroujeni, Ali

    2017-01-01

    Context: Kidney is one of the vital organs maintaining homeostasis of body and thus dysfunction of kidney affects quality of life and health severely. Anticancer drugs, particularly chemotherapeutic agents, cause high toxicity leading kidney dysfunction and irreparable kidney injury. Therefore, attention has recently been paid to seeking out alternatives such as nature-based drugs that are effective but less toxic. In this regard, this systematic review article is to report and introduce the most important medicinal plants and their derivatives that are used to reduce anticancer drug-induced nephrotoxicity. Evidence Acquisitions: The word nephrotoxicity alongside the words cancer or chemotherapy in combination with some herbal terms such as medicinal plant, plants, herbs, and extracts were administered to search for relevant publications indexed in PubMed. Results: According to this study, 16 medicinal plants, 12 plant-based derivatives, and three traditional plant-based formulations were found to help control and modulate anticancer drug-induced nephrotoxicity indices. Conclusions: Anticancer drugs cause nephrotoxicity through activating pathways of oxidative stress, damage-associated molecular patterns (DAMPs) production, inflammatory processes, and cell apoptosis, while medicinal plants and their derivatives can cause reduction in nephrotoxicity and anticancer drugs side effects via their antioxidant and anti-inflammatory properties. PMID:28975109

  8. Synergistic Anti-Cancer Effect of Phenformin and Oxamate

    PubMed Central

    Miskimins, W. Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young

    2014-01-01

    Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively. PMID:24465604

  9. Synergistic anti-cancer effect of phenformin and oxamate.

    PubMed

    Miskimins, W Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young

    2014-01-01

    Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and (18)F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively.

  10. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    PubMed

    Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.

  11. Design of an Anticancer Copper(II) Prodrug Based on the Lys199 Residue of the Active Targeting Human Serum Albumin Nanoparticle Carrier.

    PubMed

    Gou, Yi; Zhang, Yao; Zhang, Zhenlei; Wang, Jun; Zhou, Zuping; Liang, Hong; Yang, Feng

    2017-06-05

    We not only modified the types and numbers of coordinated ligands in a metal agent to enhance its anticancer activity, but we also designed a metal prodrug based on the N-donor residues of the human serum albumin (HSA) IIA subdomain to improve its delivery efficiency and selectivity in vivo. However, there may be a conflict in simultaneously achieving the two goals because Lys199 and His242 in the IIA subdomain of HSA can replace its two coordinated ligands, which will decrease its anticancer activity relative to the original metal agent. Thus, to improve the delivery efficiency of the metal agent and simultaneously avoid decreasing its anticancer activity in vivo, we decided to develop an anticancer metal prodrug by regulating its pharmacophore ligand so that it would not be displaced by the Lys199 residue of the folic acid (FA)-functionalized HSA nanoparticle (NP) carrier. To this end, we first synthesized two (E)-N'-(5-chloro-2-hydroxybenzylidene)benzohydrazide Schiff base (HL) Cu(II) compounds by designing a second ligand with a different coordinating atom with Cu 2+ /Cu(L)(QL)(Br) [C1, QL = quinolone] and Cu(L)(DMF)(Br) [C2, DMF = N,N-dimethylformamide]. As revealed by the structures of the two HSA complexes, the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. The QL ligand of C1 is replaced by Lys199, which coordinates with Cu 2+ , whereas the DMF ligand of C2 is kept intact and His242 is replaced with Br - of C2 and coordinates with Cu 2+ . The cytotoxicity of the Cu compounds was enhanced by the FA-HSA NPs in the Bel-7402 cells approximately 2-4-fold; however, they raise the cytotoxicity levels in the normal cells in vitro, and the FA-HSA NPs did not. Importantly, the in vivo data showed that FA-HSA-C2 NPs increased selectivity and the capacity to inhibit tumor growth and were less toxic than HSA-C2 NPs and C2. Moreover, C2/HSA-C2 NPs/FA-HSA-C2 NPs induced Bel-7402 cell death by potentially multiple mechanisms.

  12. Potent Oncolytic Herpes Simplex Virus for the Therapy of Advanced Prostate Cancer

    DTIC Science & Technology

    2007-07-01

    are clearly needed to improve this situation. Conditionally replicating (oncolytic) viruses offer unique features as anticancer agents . In this funded...RESEARCH ACCOMPLISHMENTS • Both in vitro and in vivo studies show that the fusogenic oncolytic HSVs are potent antitumor agents against either primary...of fusogenic oncolytic HSVs in the presence of host’s anti -HSV immunity. • Co-administration of fusogenic oncolytic HSV-based virotherapy with

  13. Synthesis and evaluation of a class of 1,4,7-triazacyclononane derivatives as iron depletion antitumor agents.

    PubMed

    Wang, Sheng; Gai, Yongkang; Zhang, Shasha; Ke, Lei; Ma, Xiang; Xiang, Guangya

    2018-01-15

    Iron depletion has been confirmed as an efficient strategy for cancer treatment. In the current study, a series of 1,4,7-triazacyclononane derivatives HE-NO2A, HP-NO2A and NE2P2A, as well as the bifunctional chelators p-NO 2 -PhPr-NE3TA and p-NH 2 -PhPr-NE3TA were synthesized and evaluated as iron-depleting agents for the potential anti-cancer therapy against human hepatocellular carcinoma. The cytotoxicity of these chelators was measured using hepatocellular cancer cells and compared with the clinically available iron depletion agent DFO and the universal metal chelator DTPA. All these 1,4,7-triazacyclononane-based chelators exhibited much stronger antiproliferative activity than DFO and DTPA. Among them, chelators with phenylpropyl side chains, represented by p-NO 2 -PhPr-NE3TA and p-NH 2 -PhPr-NE3TA, displayed the highest antiproliferative activity against HepG2 cells. Hence, these compounds are attractive candidates for the advanced study as iron depletion agents for the potential anti-cancer therapy, and could be further in conjugation with a targeting moiety for the future development in targeted iron depletion therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ocular toxicities associated with targeted anticancer agents: an analysis of clinical data with management suggestions

    PubMed Central

    Fu, Chen; Gombos, Dan S; Lee, Jared; George, Goldy C; Hess, Kenneth; Whyte, Andrew; Hong, David S

    2017-01-01

    Ocular toxicities are among the most common adverse events resulting from targeted anticancer agents and are becoming increasingly relevant in the management of patients on these agents. The purpose of this study is to provide a framework for management of these challenging toxicities based on objective data from FDA labels and from analysis of the literature. All oncologic drugs approved by the FDA up to March 14, 2015, were screened for inclusion. A total of 16 drugs (12 small-molecule drugs and 4 monoclonal antibodies) were analyzed for ocular toxicity profiles based on evidence of ocular toxicity. Trials cited by FDA labels were retrieved, and a combination search in Medline, Google Scholar, the Cochrane database, and the NIH Clinical Trials Database was conducted. The majority of ocular toxicities reported were low severity, and the most common were conjunctivitis and “visual disturbances.” However, severe events including incidents of blindness, retinal vascular occlusion, and corneal ulceration occurred. The frequency and severity at which ocular toxicities occur merits a more multidisciplinary approach to managing patients with agents that are known to cause ocular issues. We suggest a standardized methodology for referral and surveillance of patients who are potentially at risk of severe ocular toxicity. PMID:28938590

  15. Repurposing Toremifene for Treatment of Oral Bacterial Infections.

    PubMed

    Gerits, Evelien; Defraine, Valerie; Vandamme, Katleen; De Cremer, Kaat; De Brucker, Katrijn; Thevissen, Karin; Cammue, Bruno P A; Beullens, Serge; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan

    2017-03-01

    The spread of antibiotic resistance and the challenges associated with antiseptics such as chlorhexidine have necessitated a search for new antibacterial agents against oral bacterial pathogens. As a result of failing traditional approaches, drug repurposing has emerged as a novel paradigm to find new antibacterial agents. In this study, we examined the effects of the FDA-approved anticancer agent toremifene against the oral bacteria Porphyromonas gingivalis and Streptococcus mutans We found that the drug was able to inhibit the growth of both pathogens, as well as prevent biofilm formation, at concentrations ranging from 12.5 to 25 μM. Moreover, toremifene was shown to eradicate preformed biofilms at concentrations ranging from 25 to 50 μM. In addition, we found that toremifene prevents P. gingivalis and S. mutans biofilm formation on titanium surfaces. A time-kill study indicated that toremifene is bactericidal against S. mutans Macromolecular synthesis assays revealed that treatment with toremifene does not cause preferential inhibition of DNA, RNA, or protein synthesis pathways, indicating membrane-damaging activity. Biophysical studies using fluorescent probes and fluorescence microscopy further confirmed the membrane-damaging mode of action. Taken together, our results suggest that the anticancer agent toremifene is a suitable candidate for further investigation for the development of new treatment strategies for oral bacterial infections. Copyright © 2017 American Society for Microbiology.

  16. Toward Value-Based Pricing to Boost Cancer Research and Innovation.

    PubMed

    Ocana, Alberto; Amir, Eitan; Tannock, Ian F

    2016-06-01

    The high market price of new anticancer agents has stimulated debate about the long-term sustainability of healthcare systems and whether these new agents can continue to be supported by public healthcare or by private insurers. In addition, some drugs have been approved with limited clinical benefit, raising concerns about setting a minimum requirement for medical benefit. Options to resolve these problems include raising the bar for approval of new drugs and/or pricing of new agents based on the medical benefit that they offer to patients. In this commentary, we suggest that new agents should be marketed in a two-step process that would include first the approval of the new drug by the regulatory agencies and second the introduction of a market price based on the medical benefit that the new intervention offers to patients. Introduction of value-based pricing would maintain the sustainability of health care systems and would improve drug development, as it would pressure pharmaceutical companies to become more innovative and avoid the development of compounds with limited benefit. Value-based pricing could also stimulate the funding of research directed to development of new anticancer drugs with novel mechanisms of action. Cancer Res; 76(11); 3127-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    PubMed

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  18. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    PubMed

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  19. Mitochondria-targeted platinum(II) complexes induce apoptosis-dependent autophagic cell death mediated by ER-stress in A549 cancer cells.

    PubMed

    Wang, Feng-Yang; Tang, Xiao-Ming; Wang, Xia; Huang, Ke-Bin; Feng, Hai-Wen; Chen, Zhen-Feng; Liu, You-Nian; Liang, Hong

    2018-06-09

    Agents with multiple modes of tumor cell death can be effective chemotherapeutic drugs. One example of a bimodal chemotherapeutic approach is an agent that can induce both apoptosis and autophagic death. Thus far, no clinical anticancer drug has been shown to simultaneously induce both these pathways. Mono-functional platinum complexes are potent anticancer drug candidates which act through mechanisms distinct from cisplatin. Here, we describe the synthesis and characterize of two mono-functional platinum complexes containing 8-substituted quinoline derivatives as ligands, [PtL 1 Cl]Cl [L 1  = (Z)-1-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) methanamine] (Mon-Pt-1) and [PtL 2 Cl]Cl [L 2  = (Z)-2-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) ethanamine] (Mon-Pt-2). In comparison to cisplatin, Mon-Pt-2 exhibited a greater in vitro cytotoxicity, was more effective in resistant cells and elicited a better anticancer effect. Mechanistic experiments indicate that Mon-Pt-2 mainly accumulates in mitochondria, and stimulates significant TrxR inhibition ROS release and an ER stress response, mediated by mitochondrial dysfunction, ultimately resulting in a simultaneous induction of apoptosis and autophagy. Importantly, compared to cisplatin, Mon-Pt-2 exhibits lower acute toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Mon-Pt-2 is the first mono-functional platinum complex inducing pro-death autophagy and apoptosis of cancer cells. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  20. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis.

    PubMed

    Bhui, Kulpreet; Tyagi, Shilpa; Srivastava, Amit Kumar; Singh, Madhulika; Roy, Preeti; Singh, Richa; Shukla, Yogeshwer

    2012-03-01

    Bromelain, obtained from pineapple, is already in use clinically as adjunct in chemotherapy. Our objective was to test its ability to act as a sole anti-cancer agent. Therefore, we describe its anti-proliferative, anti-inflammatory and subsequent anti-cancer effects in vitro, against human epidermoid carcinoma-A431 and melanoma-A375 cells. Bromelain exhibited reduction in proliferation of both these cell-lines and suppressed their potential for anchorage-independent growth. Further, suppression of inflammatory signaling by bromelain was evident by inhibition of Akt regulated-nuclear factor-kappaB activation via suppression of inhibitory-kappaBα phosphorylation and concomitant reduction in cyclooxygenase-2. Since, the inflammatory cascade is well-known to be closely allied to cancer; we studied the effect of bromelain on events/molecules central to it. Bromelain caused depletion of intracellular glutathione and generation of reactive oxygen-species followed by mitochondrial membrane depolarization. This led to bromelain-induced cell-cycle arrest at G(2)/M phase which was mediated by modulation of cyclin B1, phospho-cdc25C, Plk1, phospho-cdc2, and myt1. This was subsequently followed by induction of apoptosis, indicated by membrane-blebbing, modulation of Bax-Bcl-2 ratio, Apaf-1, caspase-9, and caspase-3; chromatin-condensation, increase in caspase-activity and DNA-fragmentation. Bromelain afforded substantial anti-cancer potential in these settings; hence we suggest it as a potential prospect for anti-cancer agent besides only an additive in chemotherapy. Copyright ©2011 Wiley Periodicals, Inc.

  1. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents.

    PubMed

    Namdar, Mandana; Perez, Gisela; Ngo, Lang; Marks, Paul A

    2010-11-16

    Histone deacetylase 6 (HDAC6) is structurally and functionally unique among the 11 human zinc-dependent histone deacetylases. Here we show that chemical inhibition with the HDAC6-selective inhibitor tubacin significantly enhances cell death induced by the topoisomerase II inhibitors etoposide and doxorubicin and the pan-HDAC inhibitor SAHA (vorinostat) in transformed cells (LNCaP, MCF-7), an effect not observed in normal cells (human foreskin fibroblast cells). The inactive analogue of tubacin, nil-tubacin, does not sensitize transformed cells to these anticancer agents. Further, we show that down-regulation of HDAC6 expression by shRNA in LNCaP cells enhances cell death induced by etoposide, doxorubicin, and SAHA. Tubacin in combination with SAHA or etoposide is more potent than either drug alone in activating the intrinsic apoptotic pathway in transformed cells, as evidenced by an increase in PARP cleavage and partial inhibition of this effect by the pan-caspase inhibitor Z-VAD-fmk. HDAC6 inhibition with tubacin induces the accumulation of γH2AX, an early marker of DNA double-strand breaks. Tubacin enhances DNA damage induced by etoposide or SAHA as indicated by increased accumulation of γH2AX and activation of the checkpoint kinase Chk2. Tubacin induces the expression of DDIT3 (CHOP/GADD153), a transcription factor up-regulated in response to cellular stress. DDIT3 induction is further increased when tubacin is combined with SAHA. These findings point to mechanisms by which HDAC6-selective inhibition can enhance the efficacy of certain anti-cancer agents in transformed cells.

  2. Proof of Concept of a Mobile Health Short Message Service Text Message Intervention That Promotes Adherence to Oral Anticancer Agent Medications: A Randomized Controlled Trial.

    PubMed

    Spoelstra, Sandra L; Given, Charles W; Sikorskii, Alla; Coursaris, Constantinos K; Majumder, Atreyee; DeKoekkoek, Tracy; Schueller, Monica; Given, Barbara A

    2016-06-01

    This multisite, randomized controlled trial assigned 75 adult cancer patients prescribed an oral anticancer agent to either an experimental group that received daily text messages for adherence for 21 days plus usual care or a control group that received usual care. Measures were administered at baseline, weekly (Weeks 1-8), and at exit (Week 9). A satisfaction survey was conducted following the intervention. Acceptability, feasibility, and satisfaction were examined. Primary outcomes were adherence and symptoms. Secondary outcomes were depressive symptoms, self-efficacy, cognition, physical function, and social support. Mixed or general linear models were used for the analyses comparing trial groups. Effect sizes (ES) were estimated to gauge clinical significance. Regarding acceptability, 57.2% (83 of 145) of eligible patients consented, 88% (n = 37 of 42) receiving text messages read them most or all of the time, and 90% (n = 38) were satisfied. The differences between experimental and control groups' ES were 0.29 for adherence, 0.21 for symptom severity, and 0.21 for symptom interference, and differences were not statistically significant. Furthermore, perceived social support was higher (p = 0.04; ES = 0.54) in the experimental group. Proof of concept and preliminary efficacy of a mobile health intervention using text messages to promote adherence for patients prescribed oral anticancer agents were demonstrated. Patients accepted and had high satisfaction with the intervention, and adherence improved after the intervention. Text messages show promise. Additional research is needed prior to use in practice.

  3. Basics of cancer immunotherapy.

    PubMed

    Fujioka, Yuki; Nishikawa, Hiroyoshi

    2016-01-01

    The immune system is the body's defense against infectious organisms and other invaders including cancer cells. Cancer immunotherapy, which employs our own immune systems to attack cancer cells, is now emerging as a promising modality of cancer treatment based upon the clinical successes of immune checkpoint blockade and adoptive T cell transfer. In hematologic malignancies, clinical application of anti-PD-1 mAb and CAR (chimeric antigen receptor) T therapy is now being extensively tested in Hodgkin's disease, multiple myeloma, and CD19 + acute lymphocytic leukemia. In sharp contrast to conventional anti-cancer reagents which directly kill cancer cells, cancer immunotherapy activates various types of immune effector cells to attack cancer cells. However, more than half of the treated patients showed no activation of anti-tumor CD8 + killer T cells and CD4 + helper T cells and failed to respond to immune therapies such as immune checkpoint blockade, even when administered in combination regimens. Thus, development of novel immunotherapies to achieve more effective activation of anti-cancer immunity and immuno-monitoring of biomarkers, allowing proper evaluation of immune responses in cancer patients in order to detect responders, are urgent issues. Additionally, we must pay attention to characteristic immunological side effects not observed following treatment with conventional anti-cancer reagents. Herein, we present a summary outline and discuss the future direction of cancer immunotherapy.

  4. Disturbance of DNA conformation by the binding of testosterone-based platinum drugs via groove-face and intercalative interactions: a molecular dynamics simulation study

    PubMed Central

    2013-01-01

    Background To explore novel platinum-based anticancer agents that are distinct from the structure and interaction mode of the traditional cisplatin by forming the bifunctional intrastrand 1,2 GpG adduct, the monofunctional platinum + DNA adducts with extensive non-covalent interactions had been studied. It was reported that the monofunctional testosterone-based platinum(II) agents present the high anticancer activity. Moreover, it was also found that the testosterone-based platinum agents could cause the DNA helix to undergo significant unwinding and bending over the non-testosterone-based platinum agents. However, the interaction mechanisms of these platinum agents with DNA at the atomic level are not yet clear so far. Results In the present work, we used molecular dynamics (MD) simulations and DNA conformational dynamics calculations to study the DNA distortion properties of the testosterone-based platinum + DNA, the improved testosterone-based platinum + DNA and the non-testosterone-based platinum + DNA adducts. The results show that the intercalative interaction of the improved flexible testosterone-based platinum agent with DNA molecule could cause larger DNA conformational distortion than the groove-face interaction of the rigid testosterone-based platinum agent with DNA molecule. Further investigations for the non-testosterone-based platinum agent reveal the occurrence of insignificant change of DNA conformation due to the absence of testosterone ligand in such agent. Based on the DNA dynamics analysis, the DNA base motions relating to DNA groove parameter changes and hydrogen bond destruction of DNA base pairs were also discussed in this work. Conclusions The flexible linker in the improved testosterone-based platinum agent causes an intercalative interaction with DNA in the improved testosterone-based platinum + DNA adduct, which is different from the groove-face interaction caused by a rigid linker in the testosterone-based platinum agent. The present investigations provide useful information of DNA conformation affected by a testosterone-based platinum complex at the atomic level. PMID:23517640

  5. Sonodynamic therapy combined with novel anti-cancer agents, sanguinarine and ginger root extract: Synergistic increase in toxicity in the presence of PANC-1 cells in vitro.

    PubMed

    Prescott, Matthew; Mitchell, James; Totti, Stella; Lee, Judy; Velliou, Eirini; Bussemaker, Madeleine

    2018-01-01

    The presence of ultrasound-induced cavitation in sonodynamic therapy (SDT) treatments has previously enhanced the activity and delivery of certain sonosensitisers in biological systems. The purpose of this work was to investigate the potential for two novel anti-cancer agents from natural derivatives, sanguinarine and ginger root extract (GRE), as sonosensitisers in an SDT treatment with in vitro PANC-1 cells. Both anti-cancer compounds had a dose-dependent cytotoxicity in the presence of PANC-1 cells. A range of six discreet ultrasound power-frequency configurations were tested and it was found that the cell death caused directly by ultrasound was likely due to the sonomechanical effects of cavitation. Combined treatment used dosages of 100μM sanguinarine or 1mM of GRE with 15s sonication at 500kHz and 10W. The sanguinarine-SDT and GRE-SDT treatments showed a 6% and 17% synergistic increase in observed cell death, respectively. Therefore both sanguinarine and GRE were found to be effective sonosensitisers and warrant further development for SDT, with a view to maximising the magnitude of synergistic increase in toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Anticancer Properties of PPARα-Effects on Cellular Metabolism and Inflammation

    PubMed Central

    Grabacka, Maja; Reiss, Krzysztof

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) have lately attracted much attention as therapeutic targets. Previously, PPAR ligands were associated with the treatment of diabetes, hyperlipidemia and cardiovascular diseases, as they modulate the expression of genes regulating glucose and lipid metabolism. Recently, PPAR ligands have been also considered as potential anticancer agents, with relatively low systemic toxicity. The emerging evidence for antiproliferative, proapoptotic, antiinflammatory and potential antimetastatic properties of PPARα ligands prompted us to discuss possible roles of PPARα in tumor suppression. PPARα activation can target cancer cells energy balance by blocking fatty acid synthesis and by promoting fatty acid β-oxidation. In the state of limited nutrient availability, frequently presents in the tumor microenvironment, PPARα cooperates with AMP-dependent protein kinase in: (i) repressing oncogenic Akt activity, (ii) inhibiting cell proliferation, and (iii) forcing glycolysis-dependent cancer cells into “metabolic catastrophe.” Other potential anticancer effects of PPARα include suppression of inflammation, and upregulation of uncoupling proteins (UCPs), which attenuates mitochondrial reactive oxygen species production and cell proliferation. In conclusion, there are strong premises that the low-toxic and well-tolerated PPAR ligands should be considered as new therapeutic agents to fight disseminating cancer, which represents the major challenge for modern medicine and basic research. PMID:18509489

  7. Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy.

    PubMed

    Shi, Yunli; Liu, Shengnan; Ahmad, Shabir; Gao, Qingzhi

    2018-05-22

    Increased glycolysis has been one of the metabolic characteristics known as the Warburg effect. The functional and therapeutic importance of the Warburg effect in targeted therapy is scientifically recognized and the glucose metabolic pathway has become a desirable target of anticancer strategies. Glucose transporters (GLUTs) play an important role in cancer glycolysis to sustain cancer cell proliferation, metastasis and survival. Utilizing the knowledge of differential expression and biological functions of GLUTs offers us the possibility of designing and delivering chemotherapeutics toward targeted tumor tissues for improved cancer selectivity. Inhibition of glucose uptake or glycolysis may effectively kill hypoxic cancer cells. Facilitative drug uptake via active transportation provides the potential opportunity to circumvent the drug resistance in chemotherapy. GLUTs as the hallmarks and biotargets of cancer metabolism enable the design and development of novel targeted theranostic agents. In this updated review, we examine the current scenario of the GLUTs as strategic targets in cancer and the unique concepts for discovery and development of GLUTs-targeted anticancer agents. We highlight the recent progresses on structural biology and underlying mechanism studies of GLUTs, with a brief introduction to the computational approaches in GLUT-mediated drug transport and tumor targeting. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs.

    PubMed

    Garbuzenko, Olga B; Winkler, Jennifer; Tomassone, M Silvina; Minko, Tamara

    2014-11-04

    The aim of the present work is to synthesize, characterize, and test self-assembled anisotropic or Janus particles designed to load anticancer drugs for lung cancer treatment by inhalation. The particles were synthesized using binary mixtures of biodegradable and biocompatible materials. The particles did not demonstrate cyto- and genotoxic effects. Janus particles were internalized by cancer cells and accumulated both in the cytoplasm and nuclei. After inhalation delivery, nanoparticles accumulated preferentially in the lungs of mice and retained there for at least 24 h. Two drugs or other biologically active components with substantially different aqueous solubility can be simultaneously loaded in two-phases (polymer-lipid) of these nanoparticles. In the present proof-of-concept investigation, the particles were loaded with two anticancer drugs: doxorubicin and curcumin as model anticancer drugs with relatively high and low aqueous solubility, respectively. However, there are no obstacles for loading any hydrophobic or hydrophilic chemical agents. Nanoparticles with dual load were used for their local inhalation delivery directly to the lungs of mice with orthotopic model of human lung cancer. In vivo experiments showed that the selected nanoparticles with two anticancer drugs with different mechanisms of action prevented progression of lung tumors. It should be stressed that anticancer effects of the combined treatment with two anticancer drugs loaded in the same nanoparticle significantly exceeded the effect of either drug loaded in similar nanoparticles alone.

  9. The promising anticancer drug 3-bromopyruvate is metabolized through glutathione conjugation which affects chemoresistance and clinical practice: An evidence-based view.

    PubMed

    El Sayed, Salah Mohamed; Baghdadi, Hussam; Zolaly, Mohammed; Almaramhy, Hamdi H; Ayat, Mongi; Donki, Jagadish G

    2017-03-01

    3-Bromopyruvate (3BP) is a promising effective anticancer drug against many different tumors in children and adults. 3BP exhibited strong anticancer effects in both preclinical and human studies e.g. energy depletion, oxidative stress, anti-angiogenesis, anti-metastatic effects, targeting cancer stem cells and antagonizing the Warburg effect. There is no report about 3BP metabolism to guide researchers and oncologists to improve clinical practice and prevent drug resistance. In this article, we provide evidences that 3BP is metabolized through glutathione (GSH) conjugation as a novel report where 3BP was confirmed to be attached to GSH followed by permanent loss of pharmacological effects in a picture similar to cisplatin. Both cisplatin and 3BP are alkylating agents. Reported decrease in endogenous cellular GSH content upon 3BP treatment was confirmed to be due to the formation of 3BP-GSH complex i.e. GSH consumption for conjugation with 3BP. Cancer cells having high endogenous GSH exhibit resistance to 3BP while 3BP sensitive cells acquire resistance upon adding exogenous GSH. Being a thiol blocker, 3BP may attack thiol groups in tissues and serum proteins e.g. albumin and GSH. That may decrease 3BP-induced anticancer effects and the functions of those proteins. We proved here that 3BP metabolism is different from metabolism of hydroxypyruvate that results from metabolism of D-serine using D-amino acid oxidase. Clinically, 3BP administration should be monitored during albumin infusion and protein therapy where GSH should be added to emergency medications. GSH exerts many physiological effects and is safe for human administration both orally and intravenously. Based on that, reported GSH-induced inhibition of 3BP effects makes 3BP effects reversible, easily monitored and easily controlled. This confers a superiority of 3BP over many anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma Cell Line SCC-9 in Vitro.

    PubMed

    Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama

    2016-01-01

    Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

  11. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach.

    PubMed

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom-liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when compared with their free counterpart.

  12. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach

    PubMed Central

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom–liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when compared with their free counterpart. PMID:28144138

  13. Nanotechnology based approaches in cancer therapeutics

    NASA Astrophysics Data System (ADS)

    Kumer Biswas, Amit; Reazul Islam, Md; Sadek Choudhury, Zahid; Mostafa, Asif; Fahim Kadir, Mohammad

    2014-12-01

    The current decades are marked not by the development of new molecules for the cure of various diseases but rather the development of new delivery methods for optimum treatment outcome. Nanomedicine is perhaps playing the biggest role in this concern. Nanomedicine offers numerous advantages over conventional drug delivery approaches and is particularly the hot topic in anticancer research. Nanoparticles (NPs) have many unique criteria that enable them to be incorporated in anticancer therapy. This topical review aims to look at the properties and various forms of NPs and their use in anticancer treatment, recent development of the process of identifying new delivery approaches as well as progress in clinical trials with these newer approaches. Although the outcome of cancer therapy can be increased using nanomedicine there are still many disadvantages of using this approach. We aim to discuss all these issues in this review.

  14. Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy

    PubMed Central

    Weng, Liming; Zhang, Li; Peng, Yan; Huang, R Stephanie

    2013-01-01

    In the past decade, advances in pharmacogenetics and pharmacogenomics (PGx) have gradually unveiled the genetic basis of interindividual differences in drug responses. A large portion of these advances have been made in the field of anticancer therapy. Currently, the US FDA has updated the package inserts of approximately 30 anticancer agents to include PGx information. Given the complexity of this genetic information (e.g., tumor mutation and gene overexpression, chromosomal translocation and germline variations), as well as the variable level of scientific evidence, the FDA recommendation and potential action needed varies among drugs. In this review, we have highlighted some of these PGx discoveries for their scientific values and utility in improving therapeutic efficacy and reducing side effects. Furthermore, examples are also provided for the role of PGx in new anticancer drug development by revealing novel druggable targets. PMID:23394393

  15. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents.

    PubMed

    Hafez, Hend N; El-Gazzar, Abdel-Rhman B A; Al-Hussain, Sami A

    2016-05-15

    A series of [4-amino-3-(4-chlorophenyl)-1H-pyrazol-5-yl](3,5-dimethyl-1H-pyrazol-1-yl)-methanone and 6-amino-3-(4-chlorophenyl)-5-methyl-1,6-dihydro-7H-pyrazolo[4,3-d]-pyrimidin-7-one have been synthesized from ethyl 4-amino-3-(4-chlorophenyl)-pyrazol-5-carboxylate. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)CNMR, Mass spectra and Elemental analysis. The compounds were evaluated for their in vitro antimicrobial and anticancer activity. Among the synthesized compounds, compounds 7a,b and 15 exhibited higher anticancer activity than the doxorubicin as reference drug. Most of the newly synthesized compounds have good to excellent antimicrobial activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents.

    PubMed

    Bhat, Mahima; Poojary, Boja; Kalal, Bhuvanesh Sukhlal; Gurubasavaraja Swamy, Purawarga Matada; Kabilan, Senthamaraikannan; Kumar, Vasantha; Shruthi, Nooji; Alias Anand, Selvam Athavan; Pai, Vinitha Ramanath

    2018-05-01

    To synthesize a series of new thiazolidinone-pyrazole hybrids (5a-o) and assess their anticancer (in vitro and in vivo) and antimicrobial activities. The compounds 5h (against Ehrlich ascites carcinoma cells), 5e and 5i (against the human breast cancer [MDA-MB231] cell line) exhibited potent anticancer activity. All the compounds except 5g and 5e found to be less toxic for the human dermal fibroblast cells. The effective interactions of the compounds in silico with MDM2 exemplified their inhibitory potency. The derivatives also showed moderate antimicrobial activity. The halogen atoms on various positions of the N-arylamino ring played an advantageous role in elevating the potency of the molecules. Thus, these conjugates could be used as a lead for further optimization to achieve promising therapeutics.

  17. Design, synthesis, anticancer screening, docking studies and in silico ADME prediction of some β-carboline derivatives.

    PubMed

    Abdelsalam, Mohamed A; AboulWafa, Omaima M; M Badawey, El-Sayed A; El-Shoukrofy, Mai S; El-Miligy, Mostafa M; Gouda, Noha; Elaasser, Mahmoud M

    2018-05-22

    Medicinal interest has focused on β-carbolines as anticancer agents. Several β-carbolines were designed, synthesized and evaluated for their cytotoxic activity against MCF-7 and A-549 cancer cell lines using MTT assay. Compounds 13a, 13c, 13d and 20a were the most promising showing high selectivity indices. Compounds 13c and 20a showed potent inhibition of topoisomerase (topo-I) and kinesin spindle protein (KSP/Eg5 ATPase) which was confirmed by their docking results into the active site of both enzymes. In silico physicochemical calculations predicted that compounds 13a, 13d and 20a obeyed Lipinski's rule of five. Compounds 13c and 20a are multitarget anticancer leads that act as potent inhibitors for both topo-I and/or KSP ATPase.

  18. Synthesis and preliminary biological evaluation of novel taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Shan, Yuanyuan; Li, Na; Ma, Wei; He, Langchong

    2010-07-01

    Antiangiogenic therapy might represent a new promising anticancer therapeutic strategy. Taspine can significantly inhibit cell proliferation of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor-165, which is crucial for angiogenesis. In this study, a series of novel taspine derivatives were synthesized and screened for in vitro anticancer and antiangiogenesis activities. The majority of the derivatives demonstrated a moderate degree of cytotoxicity against human cancer cell lines. One of them (14) exhibited much better antiproliferative activity against CACO-2 (IC(50)=52.5microM) and ECV304 (IC(50)=2.67microM) cells than taspine did. Some of them were also effective in antiproliferative assays against HUVECs. The in silico estimate of solubility of title compounds were higher than that of taspine. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  19. Synthesis and structure-activity relationship studies of furan-ring fused chalcones as antiproliferative agents.

    PubMed

    Saito, Yusuke; Kishimoto, Maho; Yoshizawa, Yuko; Kawaii, Satoru

    2015-02-01

    As part of our continuing investigation of flavonoid derivatives as potential anticancer substances, the synthesis of 25 cinnamoyl derivatives of benzofuran as furan-fused chalcones was carried-out and these compounds were further evaluated for their antiproliferative activity towards HL60 promyelocytic leukemia cells. In comparison with 2',4'-dihydroxychalcone, attachment of a furan moiety on the A-ring enhanced activity by more than twofold. Benzofurans may be useful in the design of biologically active flavonoids. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Cancer Therapy Evaluation Program | Office of Cancer Genomics

    Cancer.gov

    The Cancer Therapy Evaluation Program (CTEP) seeks to improve the lives of cancer patients by finding better treatments, control mechanisms, and cures for cancer. CTEP funds a national program of cancer research, sponsoring clinical trials to evaluate new anti-cancer agents.

Top