Sample records for conventional continuous wave

  1. Design of a Tunable, Room Temperature, Continuous-Wave Terahertz Source and Detector using Silicon Waveguides

    DTIC Science & Technology

    2008-01-30

    that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3

  2. Purification of photon subtraction from continuous squeezed light by filtering

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Asavanant, Warit; Furusawa, Akira

    2017-11-01

    Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called Schrödinger cat states. However, conventional continuous-wave-based methods actually involve some impurity in squeezing of localized wave packets, even in the ideal case of no optical losses. Here, we theoretically discuss this impurity by introducing mode match of squeezing. Furthermore, here we propose a method to remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure photon-subtracted squeezed states, which was not possible with conventional methods.

  3. Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo

    2016-06-01

    A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.

  4. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

    PubMed

    Reed, George H; Poyner, Russell R

    2015-01-01

    An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

  5. Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror.

    PubMed

    Siltanen, Mikael; Leinonen, Tomi; Halonen, Lauri

    2011-09-26

    We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability. © 2011 Optical Society of America

  6. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong

    2017-04-01

    A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.

  7. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma.

    PubMed

    McCarren, D; Scime, E

    2015-10-01

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10(9) cm(-3) < plasma density <10(13) cm(-3)) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  8. Analysis of Helical Waveguide.

    DTIC Science & Technology

    1985-12-23

    tube Efficiency Helix structure Backward wave oscillation Gain 19. ABSTRACT (Continue on reverse if necessary and identofy by block number) The...4,vailabilitY CCdes -vai aidIorDist spec a ." iii "- -. .5- S.. . ANALYSIS OF HELICAL WAVEGUIDE I. INTRODUCTION High power (- 10 kW) and broadband ...sys- tems. The frequency range of interest is 60-100 GHz. In this frequency range, the conventional slow wave circuits such as klystrons and TWTs have

  9. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    PubMed Central

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  10. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarren, D.; Lockheed Martin, Palmdale, California 93599; Scime, E., E-mail: earl.scime@mail.wvu.edu

    2015-10-15

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10{sup 9} cm{sup −3} < plasma density <10{sup 13} cm{sup −3}) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  11. Continuous Blood Pressure Monitoring in Daily Life

    NASA Astrophysics Data System (ADS)

    Lopez, Guillaume; Shuzo, Masaki; Ushida, Hiroyuki; Hidaka, Keita; Yanagimoto, Shintaro; Imai, Yasushi; Kosaka, Akio; Delaunay, Jean-Jacques; Yamada, Ichiro

    Continuous monitoring of blood pressure in daily life could improve early detection of cardiovascular disorders, as well as promoting healthcare. Conventional ambulatory blood pressure monitoring (ABPM) equipment can measure blood pressure at regular intervals for 24 hours, but is limited by long measuring time, low sampling rate, and constrained measuring posture. In this paper, we demonstrate a new method for continuous real-time measurement of blood pressure during daily activities. Our method is based on blood pressure estimation from pulse wave velocity (PWV) calculation, which formula we improved to take into account changes in the inner diameter of blood vessels. Blood pressure estimation results using our new method showed a greater precision of measured data during exercise, and a better accuracy than the conventional PWV method.

  12. A Longitudinal Analysis of Site of Death: The Effects of Continuous Enrollment in Medicare Advantage Versus Conventional Medicare.

    PubMed

    Chen, Elizabeth Edmiston; Miller, Edward Alan

    2017-09-01

    This study assessed the odds of dying in hospital associated with enrollment in Medicare Advantage (M-A) versus conventional Medicare Fee-for-Service (M-FFS). Data were derived from the 2008 and 2010 waves of the Health and Retirement Study ( n = 1,030). The sample consisted of elderly Medicare beneficiaries who died in 2008-2010 (34% died in hospital, and 66% died at home, in long-term senior care, a hospice facility, or other setting). Logistic regression estimated the odds of dying in hospital for those continuously enrolled in M-A from 2008 until death compared to those continuously enrolled in M-FFS and those switching between the two plans. Results indicate that decedents continuously enrolled in M-A had 43% lower odds of dying in hospital compared to those continuously enrolled in M-FFS. Financial incentives in M-A contracts may reduce the odds of dying in hospital.

  13. Hyperthyroidism with dome-and-dart T wave: A case report: A care-compliant article.

    PubMed

    Lai, Ping; Yuan, Jing-Ling; Xue, Jin-Hua; Qiu, Yue-Qun

    2017-02-01

    Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Hyperthyroidism. Methimazole. All symptoms were alleviated. Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients.

  14. Hyperthyroidism with dome-and-dart T wave: A case report

    PubMed Central

    Lai, Ping; Yuan, Jing-ling; Xue, Jin-hua; Qiu, Yue-qun

    2017-01-01

    Abstract Rationale: Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. Patient concerns: The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Diagnoses: Hyperthyroidism. Interventions: Methimazole. Outcomes: All symptoms were alleviated. Lessons: Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients. PMID:28178156

  15. Hydroelectric power from ocean waves

    NASA Astrophysics Data System (ADS)

    Raghavendran, K.

    1981-02-01

    This paper describes a system which converts the variable energy of ocean waves into a steady supply of energy in a conventional form. The system consists of a set of floats and Persian wheels located off-shore and a storage reservoir on the shore. The floats oscillate vertically as the waves pass below them and turn their respective Persian wheels which lift sea water to a height and deliver to the reservoir through an interconnecting pipeline. The head of water in the reservoir operates a hydraulic turbine which in turn works a generator to supply electricity. Due to the recurrent wave action, water is maintained at the optimum level in the reservoir to ensure continuous power supply.

  16. Optical trapping of nanoparticles by ultrashort laser pulses.

    PubMed

    Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi

    2013-01-01

    Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.

  17. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    PubMed

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  18. Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding

    NASA Astrophysics Data System (ADS)

    Bilici, Temel; Tabakoğlu, Haşim Özgür; Topaloğlu, Nermin; Kalaycıoğlu, Hamit; Kurt, Adnan; Sennaroglu, Alphan; Gülsoy, Murat

    2010-05-01

    Our aim is to explore the welding capabilities of a thulium (Tm:YAP) laser in modulated and continuous-wave (CW) modes of operation. The Tm:YAP laser system developed for this study includes a Tm:YAP laser resonator, diode laser driver, water chiller, modulation controller unit, and acquisition/control software. Full-thickness incisions on Wistar rat skin were welded by the Tm:YAP laser system at 100 mW and 5 s in both modulated and CW modes of operation (34.66 W/cm2). The skin samples were examined during a 21-day healing period by histology and tensile tests. The results were compared with the samples closed by conventional suture technique. For the laser groups, immediate closure at the surface layers of the incisions was observed. Full closures were observed for both modulated and CW modes of operation at day 4. The tensile forces for both modulated and CW modes of operation were found to be significantly higher than the values found by conventional suture technique. The 1980-nm Tm:YAP laser system operating in both modulated and CW modes maximizes the therapeutic effect while minimizing undesired side effects of laser tissue welding. Hence, it is a potentially important alternative tool to the conventional suturing technique.

  19. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy

    PubMed Central

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615

  20. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    PubMed

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  1. Report of the Plasma Physics and Environmental Perturbation Laboratory (PPEPL) working groups. Volume 2: Wave experiments working group

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The area of wave experiments for the PPEPL is considered in broad terms. It was found that most experiments in this area can be classified typically by a few generalized experiments. These experiment possibilities are discussed in terms of advantages, disadvantages, and probable areas for future investigation. It was concluded that the areas where wave experiments have the most promise are wave sources, wave propagation, and nonlinear interactions and should be implemented in that order. It was recommended that the PPEPL facility remain sufficiently flexible to handle new ideas as they appear, and a continuing effort should be made to solicit new ideas and approaches. It was also felt that detailed investigations should begin as soon as possible in the areas of antennas, both conventional and particle types, and wave-particle interaction experiments. For Vol. 1, see N74-28169; for Vol. 3, see N74-28171.

  2. X-Band Rapid-Scan Electron Paramagnetic Resonance of Radiation-Induced Defects in Tooth Enamel

    PubMed Central

    Yu, Zhelin; Romanyukha, Alexander; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan. PMID:26207683

  3. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.

    PubMed

    Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun

    2007-07-01

    We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.

  4. Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler

    NASA Astrophysics Data System (ADS)

    Zirak, H.; Jafari, S.

    2015-06-01

    In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.

  5. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  6. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  7. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  8. Anomalous hydrodynamics and normal fluids in rapidly rotating Bose-Einstein condensates.

    PubMed

    Bourne, A; Wilkin, N K; Gunn, J M F

    2006-06-23

    In rapidly rotating condensed Bose systems we show that there is a regime of anomalous hydrodynamics which coincides with the mean field quantum Hall regime. A consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show that there are constraints which connect spatial variations of density and phase and that the vortex positions are not the simplest description of the dynamics. We demonstrate, inter alia, a simple relation between vortices and surface waves. We show that the surface waves can emulate a "normal fluid," allowing dissipation by energy and angular momentum absorbtion from vortex motion in the trap. The time scale is sensitive to the initial configuration, which can lead to long-lived vortex patches--perhaps related to those observed at JILA.

  9. Full Waveform Modelling for Subsurface Characterization with Converted-Wave Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Triyoso, Wahyu; Oktariena, Madaniya; Sinaga, Edycakra; Syaifuddin, Firman

    2017-04-01

    While a large number of reservoirs have been explored using P-waves seismic data, P-wave seismic survey ceases to provide adequate result in seismically and geologically challenging areas, like gas cloud, shallow drilling hazards, strong multiples, highly fractured, anisotropy. Most of these reservoir problems can be addressed using P and PS seismic data combination. Multicomponent seismic survey records both P-wave and S-wave unlike conventional survey that only records compressional P-wave. Under certain conditions, conventional energy source can be used to record P and PS data using the fact that compressional wave energy partly converts into shear waves at the reflector. Shear component can be recorded using down going P-wave and upcoming S-wave by placing a horizontal component geophone on the ocean floor. A synthetic model is created based on real data to analyze the effect of gas cloud existence to PP and PS wave reflections which has a similar characteristic to Sub-Volcanic imaging. The challenge within the multicomponent seismic is the different travel time between P-wave and S-wave, therefore the converted-wave seismic data should be processed with different approach. This research will provide a method to determine an optimum converted point known as Common Conversion Point (CCP) that can solve the Asymmetrical Conversion Point of PS data. The value of γ (Vp/Vs) is essential to estimate the right CCP that will be used in converted-wave seismic processing. This research will also continue to the advanced processing method of converted-wave seismic by applying Joint Inversion to PP&PS seismic. Joint Inversion is a simultaneous model-based inversion that estimates the P&S-wave impedance which are consistent with the PP&PS amplitude data. The result reveals a more complex structure mirrored in PS data below the gas cloud area. Through estimated γ section resulted from Joint Inversion, we receive a better imaging improvement below gas cloud area tribute to the converted-wave seismic as additional constrain.

  10. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less

  11. High-resolution all-optical photoacoustic imaging system for remote interrogation of biological specimens

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin

    2014-05-01

    Conventional photoacoustic imaging (PAI) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target tissue. The resolution of conventional PAI is limited by the sensitivity and bandwidth of the ultrasound transducer. We have developed an all-optical versatile PAI system for characterizing ex vivo and in vivo biological specimens. The system employs noncontact interferometric detection of the acoustic signals that overcomes limitations of conventional PAI. A 532-nm pump laser with a pulse duration of 5 ns excited the PA effect in tissue. Resulting acoustic waves produced surface displacements that were sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a GHz bandwidth. The pump and probe beams were coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam was demodulated using a homodyne interferometer. The detected time-domain signal was time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. Performance was assessed using PA images of ex vivo rabbit lymph node specimens and human tooth samples. A minimum peak surface displacement sensitivity of 0.19 pm was measured. The all-optical PAI (AOPAI) system is well suited for assessment of retinal diseases, caries lesion detection, skin burns, section less histology and pressure or friction ulcers.

  12. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.

    PubMed

    Möser, J; Lips, K; Tseytlin, M; Eaton, G R; Eaton, S S; Schnegg, A

    2017-08-01

    X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tiaoming; School of Information Science and Engineering, Lanzhou University, Lanzhou 730000; Upadhyay, Aditi

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the stripsmore » into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.« less

  14. Anomalous Hydrodynamics and Normal Fluids in Rapidly Rotating Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bourne, A.; Wilkin, N. K.; Gunn, J. M. F.

    2006-06-01

    In rapidly rotating condensed Bose systems we show that there is a regime of anomalous hydrodynamics which coincides with the mean field quantum Hall regime. A consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show that there are constraints which connect spatial variations of density and phase and that the vortex positions are not the simplest description of the dynamics. We demonstrate, inter alia, a simple relation between vortices and surface waves. We show that the surface waves can emulate a “normal fluid,” allowing dissipation by energy and angular momentum absorbtion from vortex motion in the trap. The time scale is sensitive to the initial configuration, which can lead to long-lived vortex patches—perhaps related to those observed at JILA.

  15. Generation conditions of CW Diode Laser Sustained Plasma

    NASA Astrophysics Data System (ADS)

    Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro

    2016-09-01

    Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.

  16. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    PubMed Central

    Okasaka, Shozo; Weiler, Richard J.; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074

  17. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    PubMed

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-08-25

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  18. A conservative scheme for electromagnetic simulation of magnetized plasmas with kinetic electrons

    NASA Astrophysics Data System (ADS)

    Bao, J.; Lin, Z.; Lu, Z. X.

    2018-02-01

    A conservative scheme has been formulated and verified for gyrokinetic particle simulations of electromagnetic waves and instabilities in magnetized plasmas. An electron continuity equation derived from the drift kinetic equation is used to time advance the electron density perturbation by using the perturbed mechanical flow calculated from the parallel vector potential, and the parallel vector potential is solved by using the perturbed canonical flow from the perturbed distribution function. In gyrokinetic particle simulations using this new scheme, the shear Alfvén wave dispersion relation in the shearless slab and continuum damping in the sheared cylinder have been recovered. The new scheme overcomes the stringent requirement in the conventional perturbative simulation method that perpendicular grid size needs to be as small as electron collisionless skin depth even for the long wavelength Alfvén waves. The new scheme also avoids the problem in the conventional method that an unphysically large parallel electric field arises due to the inconsistency between electrostatic potential calculated from the perturbed density and vector potential calculated from the perturbed canonical flow. Finally, the gyrokinetic particle simulations of the Alfvén waves in sheared cylinder have superior numerical properties compared with the fluid simulations, which suffer from numerical difficulties associated with singular mode structures.

  19. All-optical photoacoustic microscopy (AOPAM) system for remote characterization of biological tissues

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Chitnis, Parag V.; Silverman, Ronald H.

    2014-03-01

    Conventional photoacoustic microscopy (PAM) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target. The resolution of conventional PAM is limited by the sensitivity and bandwidth of the ultrasound transducer. We investigated a versatile, all-optical PAM (AOPAM) system for characterizing in vivo as well as ex vivo biological specimens. The system employs non-contact interferometric detection of PA signals that overcomes limitations of conventional PAM. A 532-nm pump laser with a pulse duration of 5 ns excites the PA effect in tissue. Resulting acoustic waves produce surface displacements that are sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a 1- GHz bandwidth. The pump and probe beams are coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam is demodulated using homodyne methods. The detected timedomain signal is time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. A minimum surface-displacement sensitivity of 0.19 pm was measured. PA-induced surface displacements are very small; therefore, they impose stringent detection requirements and determine the feasibility of implementing an all-optical PAM in biomedical applications. 3D PA images of ex vivo porcine retina specimens were generated successfully. We believe the AOPAM system potentially is well suited for assessing retinal diseases and other near-surface biomedical applications such as sectionless histology and evaluation of skin burns and pressure or friction ulcers.

  20. Functional significance of the pattern of renal sympathetic nerve activation.

    PubMed

    Dibona, G F; Sawin, L L

    1999-08-01

    To assess the renal functional significance of the pattern of renal sympathetic nerve activation, computer-generated stimulus patterns (delivered at constant integrated voltage) were applied to the decentralized renal sympathetic nerve bundle and renal hemodynamic and excretory responses determined in anesthetized rats. When delivered at the same integrated voltage, stimulus patterns resembling those observed in in vivo multifiber recordings of renal sympathetic nerve activity (diamond-wave patterns) produced greater renal vasoconstrictor responses than conventional square-wave patterns. Within diamond-wave patterns, increasing integrated voltage by increasing amplitude produced twofold greater renal vasoconstrictor responses than by increasing duration. With similar integrated voltages that were subthreshold for renal vasoconstriction, neither diamond- nor square-wave pattern altered glomerular filtration rate, whereas diamond- but not square-wave pattern reversibly decreased urinary sodium excretion by 25 +/- 3%. At the same number of pulses per second, intermittent stimulation produced faster and greater renal vasoconstriction than continuous stimulation. At the same number of pulses per second, increases in rest period during intermittent stimulation proportionally augmented the renal vasoconstrictor response compared with that observed with continuous stimulation; the maximum augmentation of 55% occurred at a rest period of 500 ms. These results indicate that the pattern of renal sympathetic nerve stimulation (activity) significantly influences the rapidity, magnitude, and selectivity of the renal vascular and tubular responses.

  1. Extension of the input-output relation for a Michelson interferometer to arbitrary coherent-state light sources: Gravitational-wave detector and weak-value amplification

    NASA Astrophysics Data System (ADS)

    Nakamura, Kouji; Fujimoto, Masa-Katsu

    2018-05-01

    An extension of the input-output relation for a conventional Michelson interferometric gravitational-wave detector is carried out to treat an arbitrary coherent state for the injected optical beam. This extension is one of necessary researches toward the clarification of the relation between conventional gravitational-wave detectors and a simple model of a gravitational-wave detector inspired by weak-measurements in Nishizawa (2015). The derived input-output relation describes not only a conventional Michelson-interferometric gravitational-wave detector but also the situation of weak measurements. As a result, we may say that a conventional Michelson gravitational-wave detector already includes the essence of the weak-value amplification as the reduction of the quantum noise from the light source through the measurement at the dark port.

  2. Exploitation of "Excess" Data Now Routinely Collected by Large N, Continuously Recorded Oil Exploration Surveys: From Microseismicity to Deep Crustal Imaging

    NASA Astrophysics Data System (ADS)

    Brown, L. D.

    2014-12-01

    The rapidly expanding use by the oil and gas industry of "nodal", large channel capacity areal arrays that record continuously for extended periods of time is generating large volumes of data in excess of that needed for the conventional CMP reflection imaging that is the primary goal of such surveys. These excess data, once considered as simply "noise", have recently been recognized to have utility not only for the exploration seismologist but also for addressing a diverse range of phenomena. The most widely recognized use for these "noise" records is surface wave tomographic imaging of near surface velocity structure via seismic interferometry of ambient natural noise. Such results are proving to be of great value in enhancing conventional 3D exploration imagery, but they should be appreciated in their own right for the information they provide on the shallow subsurface to the hydrologist, engineer and tectonicist. Another relatively dramatic application is the delineation of local structure by tracing the propagation of body and surface waves from local and teleseismic events across these dense arrays. Here I would like draw attention to three other promising uses for such data: a) detection and mapping of microseismicity below the detection thresholds of conventional earthquake monitoring networks, especially in areas of low conventional seismicity; b) reflection and refraction imaging of structure using cultural, as opposed to natural, energy sources, and c) systematic mapping of the basement in 3D using the existing exploration sources recorded at travel times longer than that typically harvested for resource purposes. We conclude by emphasizing that these potentially invaluable "extras" are now being recorded routinely around the world, but there is as yet no mechanism in place to ensure they are exploited rather than simply deleted.

  3. Detonation Propagation Through Ducts in a Pulsed Detonation Engine

    DTIC Science & Technology

    2011-03-01

    PDE head. This convention is used based on the fill and purge flow directions, not the detonation direction. Figure 21. Adapter used to rotate ...presented for the development of a continuously operating pulsed detonation engine ( PDE ). A PDE without a high energy ignition system or a... detonation wave. Propagation is left to right in the bottom tube. ..... 19  Figure 15. Research PDE head

  4. Effect of fuel stratification on detonation wave propagation

    NASA Astrophysics Data System (ADS)

    Masselot, Damien; Fievet, Romain; Raman, Venkat

    2016-11-01

    Rotating detonation engines (RDEs) form a class of pressure-gain combustion systems of higher efficiency compared to conventional gas turbine engines. One of the key features of the design is the injection system, as reactants need to be continuously provided to the detonation wave to sustain its propagation speed. As inhomogeneities in the reactant mixture can perturb the detonation wave front, premixed fuel jet injectors might seem like the most stable solution. However, this introduces the risk of the detonation wave propagating through the injector, causing catastrophic failure. On the other hand, non-premixed fuel injection will tend to quench the detonation wave near the injectors, reducing the likelihood of such failure. Still, the effects of such non-premixing and flow inhomogeneities ahead of a detonation wave have yet to be fully understood and are the object of this study. A 3D channel filled with O2 diluted in an inert gas with circular H2 injectors is simulated as a detonation wave propagates through the system. The impact of key parameters such as injector spacing, injector size, mixture composition and time variations will be discussed. PhD Candidate.

  5. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    PubMed Central

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079

  6. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  7. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    PubMed

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  8. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2016-12-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.

  9. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  10. Evaluation of the smoking ban in public places in France one year and five years after its implementation: Findings from the ITC France survey

    PubMed Central

    Fong, Geoffrey T.; Craig, Lorraine V.; Guignard, Romain; Nagelhout, Gera E.; Tait, Megan K.; Driezen, Pete; Kennedy, Ryan David; Boudreau, Christian; Wilquin, Jean-Louis; Deutsch, Antoine; Beck, François

    2013-01-01

    France implemented a comprehensive smoke-free policy in public places in February 2007 for workplaces, shopping centres, airports, train stations, hospitals and schools. On January 2008, it was extended to meeting places (bars, restaurants, hotels, casinos, nightclubs). This paper evaluates France’s smoke-free law based on the International Tobacco Control Policy Evaluation Project in France (the ITC France Project), which conducted a cohort survey of approximately 1,500 smokers and 500 non-smokers before the implementation of the laws (Wave 1, conducted December 2006 to February 2007) and two waves after the implementation (Wave 2, conducted between September-November 2008; and Wave 3, conducted between September-December 2012). Results show that the smoke-free law led to a very significant and near total elimination of indoor smoking in key venues such as bars (from 95.9% to 3.7%) and restaurants (from 64.7% to 2.3%) at Wave 2, which was sustained four years later at Wave 3 (1.4% in restaurants; 6.6% in bars). Smoking in workplaces declined significantly after the law (from 42.6% to 19.3%), which continued to decline at Wave 3 (to 12.8%). Support for the smoke-free law increased significantly after their implementation and continued to increase at Wave 3 (among smokers for bars and restaurants; among smokers and non-smokers for workplaces). The findings demonstrate that smoke-free policies that are implemented in ways consistent with the Guidelines for Article 8 of the WHO Framework Convention on Tobacco Control (WHO FCTC) lead to substantial and sustained reductions in tobacco smoke in public places while also leading to high levels of support by the public. PMID:24803715

  11. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  12. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    PubMed Central

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-01-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634

  13. Noncontact sphygmomanometer based on pulse-wave transit time between the face and hand

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuya; Ohnishi, Takashi; Nishidate, Izumi; Haneishi, Hideaki

    2018-02-01

    Systolic blood pressure (SBP) is highly sensitive to various factors such as psychological stress, and hence its continuous monitoring is essential to evaluate different health conditions. However, conventional sphygmomanometers cannot continuously measure SBP given the time-consuming setup based on a pressure cuff. Moreover, continuous biological signal monitoring is more comfortable when no sensors are attached. A solution for continuous SBP estimation is based on pulse transit time (PTT), which determines the time difference between two pulse waves at different body parts. In previous studies, we successfully measured the PTT using a contactless setup composed by two digital color cameras recording the face and hand of subjects. Then, the acquired images were transformed into blood volume by combining multiple regression analysis and a Monte Carlo method. As a result, the delay among images allowed to determine the PPT from pulse waves. In this study, we simultaneously measured SBP and PTT by using a sphygmomanometer and the two cameras, respectively. We evaluated SBP increases (i.e., stressful situations) and the corresponding PPT by asking participants to either grasp a handgrip or momentarily interrupting breath. We also determined the SBP and PTT without asking for such exercises. Comparison results show that the mean PTT under stress was significantly lower than that without stress, which is consistent with an increased SBP. Finally, we related the SBP and PTT by a nonlinear formula with a coefficient of determination of 0.59, thus confirming the effectiveness of the proposed system.

  14. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser.

    PubMed

    Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2015-03-09

    In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.

  15. Photonic generation of background-free millimeter-wave ultra-wideband pulses based on a single dual-drive Mach-Zehnder modulator.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua

    2014-03-01

    We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach-Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.

  16. Nearly-octave wavelength tuning of a continuous wave fiber laser

    PubMed Central

    Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan

    2017-01-01

    The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414

  17. Techniques A: continuous waves

    NASA Astrophysics Data System (ADS)

    Beuthan, J.

    1993-08-01

    In a vast amount of medical diseases the biochemical and physiological changes of soft tissues are hardly detectable by conventional techniques of diagnostic imaging (x- ray, ultrasound, computer tomography, and MRI). The detectivity is low and the technical efforts are tremendous. On the other hand these pathologic variations induce significant changes of the optical tissue parameters which can be detected. The corresponding variations of the scattered light can most easily be detected and evaluated by infrared diaphanoscopy, even on optical thick tissue slices.

  18. A novel measurand independent of the distance between the source and detector for continuous wave near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiguchi, Masashi; Funane, Tsukasa; Sato, Hiroki

    2017-06-01

    A new measurand is proposed for use in continuous wave near-infrared spectroscopy (cw-NIRS). The conventional measurand of cw-NIRS is l△c, which is the product of the change in the hemoglobin concentration (△c) and the partial path lengh (l), which depends on the source-detector (SD) distance (d). The SD distance must remain constant during cw-NIRS measurements, and we cannot compare the l△c value with that obtained using a different SD distance. In addition, the conventional measurand obtained using the standard measurement style sometimes includes a contribution from the human scalp. The SD distance independent (SID) measurand obtained using multi-SD distances is proportional to the product of the change in hemoglobin concentration and the derivative of the partial path length for the deep region with no scalp contribution under the assumption of a layer model. The principle of SID was validated by the layered phantom study. In order to check the limitation of assumption, a human study was conducted. The value of the SID measurand for the left side of the forehead during working memory task was approximately independent of the SD distance between 16 and 32 mm. The SID measurand and the standardized optode arrangement using flexible SD distances in a head coordinate system must be helpful for comparing the data in a population study.

  19. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  20. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone

    PubMed Central

    Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.

    2015-01-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678

  1. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-02-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

  2. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.

    PubMed

    Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young

    2005-12-12

    We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

  3. A Novel AMARS Technique for Baseline Wander Removal Applied to Photoplethysmogram.

    PubMed

    Timimi, Ammar A K; Ali, M A Mohd; Chellappan, K

    2017-06-01

    A new digital filter, AMARS (aligning minima of alternating random signal) has been derived using trigonometry to regulate signal pulsations inline. The pulses are randomly presented in continuous signals comprising frequency band lower than the signal's mean rate. Frequency selective filters are conventionally employed to reject frequencies undesired by specific applications. However, these conventional filters only reduce the effects of the rejected range producing a signal superimposed by some baseline wander (BW). In this work, filters of different ranges and techniques were independently configured to preprocess a photoplethysmogram, an optical biosignal of blood volume dynamics, producing wave shapes with several BWs. The AMARS application effectively removed the encountered BWs to assemble similarly aligned trends. The removal implementation was found repeatable in both ear and finger photoplethysmograms, emphasizing the importance of BW removal in biosignal processing in retaining its structural, functional and physiological properties. We also believe that AMARS may be relevant to other biological and continuous signals modulated by similar types of baseline volatility.

  4. Ex-CARS: exotic configuration for coherent anti-Stokes Raman scattering microspectroscopy utilizing two laser sources

    PubMed Central

    Yakovlev, Vladislav V.; Petrov, Georgi I.; Noojin, Gary D.; Harbert, Corey; Denton, Michael; Thomas, Robert

    2011-01-01

    We propose and experimentally demonstrate a new coherent anti-Stokes Raman scattering setting, which relies on a coherent excitation of Raman vibration using a broadband ultrashort laser pulse and signal read-out using a conventional continuous wave laser radiation. Such an exotic arrangement does not require any synchronization of two laser sources and can be used for direct comparison of amplitudes of nonlinear and spontaneous Raman signals. Ex-CARS in time- (top panel) and frequency- (bottom panel) domain. PMID:20635427

  5. Extending RTM Imaging With a Focus on Head Waves

    NASA Astrophysics Data System (ADS)

    Holicki, Max; Drijkoningen, Guy

    2016-04-01

    Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface with the head wave from the nth-layer. To illustrate the method we apply it to a layered Earth model with five layers and compare it to conventional RTM. We will show that conventional RTM highlights interfaces, while our head-wave based images highlight layers, producing fundamentally different images. We also demonstrate that our proposed imaging scheme is more sensitive to the velocity model than conventional RTM, which is important for improved velocity model building in the future.

  6. Development of Extended Ray-tracing method including diffraction, polarization and wave decay effects

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru

    2017-10-01

    Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.

  7. J Waves for Predicting Cardiac Events in Hypertrophic Cardiomyopathy.

    PubMed

    Tsuda, Toyonobu; Hayashi, Kenshi; Konno, Tetsuo; Sakata, Kenji; Fujita, Takashi; Hodatsu, Akihiko; Nagata, Yoji; Teramoto, Ryota; Nomura, Akihiro; Tanaka, Yoshihiro; Furusho, Hiroshi; Takamura, Masayuki; Kawashiri, Masa-Aki; Fujino, Noboru; Yamagishi, Masakazu

    2017-10-01

    This study sought to investigate whether the presence of J waves was associated with cardiac events in patients with hypertrophic cardiomyopathy (HCM). It has been uncertain whether the presence of J waves predicts life-threatening cardiac events in patients with HCM. This study evaluated consecutive 338 patients with HCM (207 men; age 61 ± 17 years of age). A J-wave was defined as J-point elevation >0.1 mV in at least 2 contiguous inferior and/or lateral leads. Cardiac events were defined as sudden cardiac death, ventricular fibrillation or sustained ventricular tachycardia, or appropriate implantable cardiac defibrillator therapy. The study also investigated whether adding the J-wave in a conventional risk model improved a prediction of cardiac events. J waves were seen in 46 (13.6%) patients at registration. Cardiac events occurred in 31 patients (9.2%) during median follow-up of 4.9 years (interquartile range: 2.6 to 7.1 years). In a Cox proportional hazards model, the presence of J waves was significantly associated with cardiac events (adjusted hazard ratio: 4.01; 95% confidence interval [CI]: 1.78 to 9.05; p = 0.001). Compared with the conventional risk model, the model using J waves in addition to conventional risks better predicted cardiac events (net reclassification improvement, 0.55; 95% CI: 0.20 to 0.90; p = 0.002). The presence of J waves was significantly associated with cardiac events in HCM. Adding J waves to conventional cardiac risk factors improved prediction of cardiac events. Further confirmatory studies are needed before considering J-point elevation as a marker of risk for use in making management decisions regarding risk in patients with HCM. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Environmental Hydrocarbon Harvesting for Micro-Scale Power Sources using Thermopower Waves

    DTIC Science & Technology

    2015-04-06

    expected by thermoelectricity . The peak specific power was found to be as high as 7 kW kg-1. Additionally, an analytical expression governing the...unipolar voltage across the ends of the conduit. Conventional theories of thermoelectricity and Seebeck coefficient are unable to predict the electrical...behavior of thermopower wave devices. We studied the differences in these two phenomena of conventional thermoelectricity and thermopower waves

  9. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zajnulina, M.; Giannone, D.; Haynes, R.

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromaticmore » input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.« less

  10. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers.

    PubMed

    Zajnulina, M; Böhm, M; Blow, K; Rieznik, A A; Giannone, D; Haynes, R; Roth, M M

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  11. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    NASA Astrophysics Data System (ADS)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  12. Rapid-scan EPR imaging.

    PubMed

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection

    PubMed Central

    Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181

  14. Controlling rogue waves in inhomogeneous Bose-Einstein condensates.

    PubMed

    Loomba, Shally; Kaur, Harleen; Gupta, Rama; Kumar, C N; Raju, Thokala Soloman

    2014-05-01

    We present the exact rogue wave solutions of the quasi-one-dimensional inhomogeneous Gross-Pitaevskii equation by using similarity transformation. Then, by employing the exact analytical solutions we have studied the controllable behavior of rogue waves in the Bose-Einstein condensates context for the experimentally relevant systems. Additionally, we have also investigated the nonlinear tunneling of rogue waves through a conventional hyperbolic barrier and periodic barrier. We have found that, for the conventional nonlinearity barrier case, rogue waves are localized in space and time and get amplified near the barrier, while for the dispersion barrier case rogue waves are localized in space and propagating in time and their amplitude is reduced at the barrier location. In the case of the periodic barrier, the interesting dynamical features of rogue waves are obtained and analyzed analytically.

  15. Ion tracking in photocathode rf guns

    NASA Astrophysics Data System (ADS)

    Lewellen, John W.

    2002-02-01

    Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.

  16. Experimental investigation of a diode-pumped powerful continuous-wave dual-wavelength Nd:YAG laser at 946 and 938.6 nm

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Yan, R. P.; Li, X. D.; Li, D. J.; Yang, G. L.; Xie, J. J.; Guo, J.

    2013-05-01

    In this paper, a diode-pumped high-power continuous-wave (cw) dual-wavelength Nd:YAG laser at 946 and 938.6 nm is reported. By using an end-pumped structure, comparative experiments indicate that a 5 mm-length Nd:YAG crystal with a Nd3+-doping concentration of 0.3 at.% is favorable for high-power laser operation, and the optimal transmissivity of the output coupler is 9%. As a result, a maximum output power of 17.2 W for a dual-wavelength laser at 946 and 938.6 nm is obtained at an incident pump power of 75.9 W, corresponding to a slope efficiency of 26.5%. To the best of our knowledge, this is the highest output power of a quasi-three-level dual-wavelength laser using a conventional Nd:YAG crystal achieved to date. By using a traveling knife-edge method, the beam quality factor and far-field divergence angle at 17 W power level are estimated to be 4.0 and 6.13 mrad, respectively.

  17. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    NASA Astrophysics Data System (ADS)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  18. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.

  19. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.

    PubMed

    Cheng, I-Fang; Froude, Victoria E; Zhu, Yingxi; Chang, Hsueh-Chia; Chang, Hsien-Chang

    2009-11-21

    We present a high throughput (maximum flow rate approximately 10 microl/min or linear velocity approximately 3 mm/s) continuous bio-particle sorter based on 3D traveling-wave dielectrophoresis (twDEP) at an optimum AC frequency of 500 kHz. The high throughput sorting is achieved with a sustained twDEP particle force normal to the continuous through-flow, which is applied over the entire chip by a single 3D electrode array. The design allows continuous fractionation of micron-sized particles into different downstream sub-channels based on differences in their twDEP mobility on both sides of the cross-over. Conventional DEP is integrated upstream to focus the particles into a single levitated queue to allow twDEP sorting by mobility difference and to minimize sedimentation and field-induced lysis. The 3D electrode array design minimizes the offsetting effect of nDEP (negative DEP with particle force towards regions with weak fields) on twDEP such that both forces increase monotonically with voltage to further increase the throughput. Effective focusing and separation of red blood cells from debris-filled heterogeneous samples are demonstrated, as well as size-based separation of poly-dispersed liposome suspensions into two distinct bands at 2.3 to 4.6 microm and 1.5 to 2.7 microm, at the highest throughput recorded in hand-held chips of 6 microl/min.

  20. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    ERIC Educational Resources Information Center

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  1. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  2. Analysis and measurement of the modulation transfer function of harmonic shear wave induced phase encoding imaging.

    PubMed

    McAleavey, Stephen A

    2014-05-01

    Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.

  3. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging.

    PubMed

    Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J

    2015-11-01

    We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.

  4. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging

    PubMed Central

    Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.

    2015-01-01

    Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682

  5. A Modified Through-Flow Wave Rotor Cycle with Combustor Bypass Ducts

    NASA Technical Reports Server (NTRS)

    Paxson Daniel E.; Nalim, M. Razi

    1998-01-01

    A wave rotor cycle is described which avoids the inherent problem of combustor exhaust gas recirculation (EGR) found in four-port, through-flow wave rotor cycles currently under consideration for topping gas turbine engines. The recirculated hot gas is eliminated by the judicious placement of a bypass duct which transfers gas from one end of the rotor to the other. The resulting cycle, when analyzed numerically, yields an absolute mean rotor temperature 18% below the already impressive value of the conventional four-port cycle (approximately the turbine inlet temperature). The absolute temperature of the gas leading to the combustor is also reduced from the conventional four-port design by 22%. The overall design point pressure ratio of this new bypass cycle is approximately the same as the conventional four-port cycle. This paper will describe the EGR problem and the bypass cycle solution including relevant wave diagrams. Performance estimates of design and off-design operation of a specific wave rotor will be presented. The results were obtained using a one-dimensional numerical simulation and design code.

  6. Parsimonious surface wave interferometry

    NASA Astrophysics Data System (ADS)

    Li, Jing; Hanafy, Sherif; Schuster, Gerard T.

    2018-03-01

    To decrease the recording time of a 2-D seismic survey from a few days to one hour or less, we present a parsimonious surface wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs. Then, the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious WD (PWD) gives S-velocity tomograms that are comparable to those obtained from a conventional survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  7. Adult obesity, disease and longevity in Mexico.

    PubMed

    Palloni, Alberto; Beltrán-Sánchez, Hiram; Novak, Beatriz; Pinto, Guido; Wong, Rebeca

    2015-01-01

    To obtain estimates of the effects of overweight and obesity on the incidence of type 2 diabetes (T2D) and adult mortality. We use three waves (2000, 2002, 2012) of the Mexican Health and Aging Survey (MHAS).We employ parametric hazard models to estimate mortality and conventional logistic models to estimate incidence of T2D. Obesity and overweight have a strong effect on the incidence of T2D;this, combined with the large impact of diabetes on adult mortality, generates increases in mortality that translate into losses of 2 to 3 years of life expectancy at age 50. If increasing trends in obesity in Mexico continue as in the past, progress in adult survival may be slowed down considerably and the incidence of T2D will continue to increase.

  8. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.

    PubMed

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2013-05-06

    We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yin; Wang, Wen; Wysocki, Gerard, E-mail: gwysocki@princeton.edu

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  10. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam; Kim, Seung-Jun; Mohammed-Tano, Priscilla

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interferece-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  11. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Kim, Seung-Jun; Mohammed, Priscilla N.

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interference-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  12. Spin and wavelength multiplexed nonlinear metasurface holography

    NASA Astrophysics Data System (ADS)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  13. Spin and wavelength multiplexed nonlinear metasurface holography

    PubMed Central

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam–Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  14. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    NASA Astrophysics Data System (ADS)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  15. Initial decay of flow properties of planar, cylindrical and spherical blast waves

    NASA Astrophysics Data System (ADS)

    Sadek, H. S. I.; Gottlieb, J. J.

    1983-10-01

    Analytical expressions are presented for the initial decay of all major flow properties just behind planar, cylindrical, and spherical shock wave fronts whose trajectories are known as a function of either distance versus time or shock overpressure versus distance. These expressions give the time and/or distance derivatives of the flow properties not only along constant time and distance lines but also along positive and negative characteristic lines and a fluid-particle path. Conventional continuity, momentum and energy equations for the nonstationary motion of an inviscid, non-heat conducting, compressible gas are used in their derivation, along with the equation of state of a perfect gas. All analytical expressions are validated by comparing the results to those obtained indirectly from known self-similar solutions for planar, cylindrical and spherical shock-wave flows generated both by a sudden energy release and by a moving piston. Futhermore, time derivatives of pressure and flow velocity are compared to experimental data from trinitrotoluene (TNT), pentolite, ammonium nitrate-fuel oil (ANFO) and propane-oxygen explosions, and good agreement is obtained.

  16. Towards terahertz detection and calibration through spontaneous parametric down-conversion in the terahertz idler-frequency range generated by a 795 nm diode laser system

    NASA Astrophysics Data System (ADS)

    Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.

    2018-05-01

    We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.

  17. What's the Matter with Waves?; An introduction to techniques and applications of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Parkinson, William

    2017-12-01

    Like rocket science or brain surgery, quantum mechanics is pigeonholed as a daunting and inaccessible topic, which is best left to an elite or peculiar few. This classification was not earned without some degree of merit. Depending on perspective; quantum mechanics is a discipline or philosophy, a convention or conundrum, an answer or question. Authors have run the gamut from hand waving to heavy handed in the hope to dispel the common beliefs about quantum mechanics, but perhaps they continue to promulgate the stigma. The focus of this particular effort is to give the reader an introduction, if not at least an appreciation, of the role that linear algebra techniques play in the practical application of quantum mechanical methods. It interlaces aspects of the classical and quantum picture, including a number of both worked and parallel applications. Students with no prior experience in quantum mechanics, motivated graduate students, or researchers in other areas attempting to gain some introduction to quantum theory will find particular interest in this book. Part of Series on wave phenomena in the physical sciences

  18. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.

    PubMed

    Lewis, George K; Olbricht, William L

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 ohms) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 V(pp) (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  19. Comparing different approaches to visualizing light waves: An experimental study on teaching wave optics

    NASA Astrophysics Data System (ADS)

    Mešić, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-06-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented by sinusoidal curves. The second teaching approach includes representing light waves by a series of static images, showing the oscillating electric field vectors at characteristic, subsequent instants of time. Within the third approach phasors are used for visualizing light waves. A total of N =85 secondary school students were randomly assigned to one of the three teaching approaches, each of which lasted a period of four class hours. Students who learned with phasors and students who learned from the series of static images outperformed the students learning according to the conventional approach, i.e., they showed a much better understanding of basic wave optics, as measured by a conceptual survey administered to the students one week after the treatment. Our results suggest that visualizing light waves with phasors or oscillating electric field vectors is a promising approach to developing a deeper understanding of wave optics for students enrolled in conceptual level physics courses.

  20. Study of biodegradable polymers for ``green'' devices

    NASA Astrophysics Data System (ADS)

    Perez, Carlos; Jiang, Xiaomei; Jiang Group Team

    2015-03-01

    Π - conjugated polymers such as polythiophenes are conventional picks for cost-effective organic solar cells. However, these organic semiconductors are not environment-friendly since the polymer back bones require temperature higher than 3000C to be decomposed, thus will cause potential environment problems upon disposal. In this work, the optical and electronic properties of biodegradable polymers, conjugated poly(disulfidediamine), were examined via continuous wave laser spectroscopy, FTIR spectroscopy and conductivity measurement. We found that the attachment of a side chain to aromatic ring increases both photo and thermal stability, as well as higher conductivity. Thermal annealing improved the film morphological, photophysical and electronic properties. Photo-Induced Absorption (PIA) reveals different features comparing with conventional pi-conjugated polymers. No observation of long-lived photoexcitations such as polarons or triplets which are common with pi-conjugated polymers. Instead, we found the formation of low energy species upon thermal annealing in these biodegradable polymers.

  1. Ionospsheric observation of enhanced convection-initiated gravity waves during tornadic storms

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1981-01-01

    Atmospheric gravity waves associated with tornadoes, with locally severe storms occuring with tornadoes, and with hurricanes were studied through the coupling between the ionosphere and the troposphere. Reverse group ray tracing computations of gravity waves observed by an ionospheric Doppler sounder array were analyzed. The results of ray tracing computations and comparisons between the computed location of the wave sources and with conventional meteorological data indicate that the computed sources of the waves were near the touchdown of the tornadoes, near the eye of the hurricanes, and directly on the squall line of the severe thunderstorms. The signals excited occurred one hour in advance of the tornadoes and three hours in advance of the hurricanes. Satellite photographs show convective overshooting turrets occurring at the same locations and times the gravity waves were being excited. It is suggested that gravity wave observations, conventional meteorological data, and satellite photographs be combined to develop a remote sensing technique for detecting severe storms.

  2. Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting.

    PubMed

    Castro, Jasmine O; Ramesan, Shwathy; Rezk, Amgad R; Yeo, Leslie Y

    2018-05-30

    We report a miniaturised platform for continuous production of single or multiple liquid droplets with diameters between 60 and 500 μm by interfacing a capillary-driven self-replenishing liquid feed with pulsed excitation of focussed surface acoustic waves (SAWs). The orifice-free operation circumvents the disadvantages of conventional jetting systems, which are often prone to clogging that eventuates in rapid degradation of the operational performance. Additionally, we show the possibility for flexibly tuning the ejected droplet size through the pulse width duration, thus avoiding the need for a separate device for every different droplet size required, as is the case for systems in which the droplet size is set by nozzles and orifices, as well as preceding ultrasonic jetting platforms where the droplet size is controlled by the operating frequency. Further, we demonstrate that cells can be jetted and hence printed onto substrates with control over the cell density within the droplets down to single cells. Given that the jetting does not lead to significant loss to the cell's viability or ability to proliferate, we envisage that this versatile jetting method can potentially be exploited with further development for cell encapsulation, dispensing and 3D bioprinting applications.

  3. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-01

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  4. Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 202¯1¯ GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers.

    PubMed

    Mehari, Shlomo; Cohen, Daniel A; Becerra, Daniel L; Nakamura, Shuji; DenBaars, Steven P

    2018-01-22

    The benefits of utilizing transparent conductive oxide on top of a thin p-GaN layer for continuous-wave (CW) operation of blue laser diodes (LDs) were investigated. A very low operating voltage of 5.35 V at 10 kA/cm 2 was obtained for LDs with 250 nm thick p-GaN compared to 7.3 V for LDs with conventional 650 nm thick p-GaN. An improved thermal performance was also observed for the thin p-GaN samples resulting in a 40% increase in peak light output power and a 32% decrease in surface temperature. Finally, a tradeoff was demonstrated between low operating voltage and increased optical modal loss in the indium tin oxide (ITO) with thinner p-GaN. LDs lasing at 445 nm with 150 nm thick p-GaN had an excess modal loss while LDs with an optimal 250 nm thick p-GaN resulted in optical output power of 1.1 W per facet without facet coatings and a wall-plug efficiency of 15%.

  5. Intrinsic superspin Hall current

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  6. Wave directional spreading from point field measurements.

    PubMed

    McAllister, M L; Venugopal, V; Borthwick, A G L

    2017-04-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465 , 3361-3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices.

  7. Wave directional spreading from point field measurements

    PubMed Central

    Venugopal, V.; Borthwick, A. G. L.

    2017-01-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361–3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices. PMID:28484326

  8. Detecting free-mass common-mode motion induced by incident gravitational waves

    NASA Astrophysics Data System (ADS)

    Tobar, Michael Edmund; Suzuki, Toshikazu; Kuroda, Kazuaki

    1999-05-01

    In this paper we show that information on both the differential and common mode free-mass response to a gravitational wave can provide important information on discriminating the direction of the gravitational wave source and between different theories of gravitation. The conventional Michelson interferometer scheme only measures the differential free-mass response. By changing the orientation of the beam splitter, it is possible to configure the detector so it is sensitive to the common-mode of the free-mass motion. The proposed interferometer is an adaptation of the Fox-Smith interferometer. A major limitation to the new scheme is its enhanced sensitivity to laser frequency fluctuations over the conventional, and we propose a method of cancelling these fluctuations. The configuration could be used in parallel to the conventional differential detection scheme with a significant sensitivity and bandwidth.

  9. Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes.

    PubMed

    Han, Jung Woo; Choi, Juhye; Kim, Young Shin; Kim, Jina; Brinkmann, Ralf; Lyu, Jungmook; Park, Tae Kwann

    2018-02-01

    This study investigated microglia and inflammatory cell responses after selective retina therapy (SRT) with microsecond-pulsed laser in comparison to continuous-wave laser photocoagulation (cwPC). Healthy C57BL/6 J mice were treated with either a train of short pulses (SRT; 527-nm, Q-switched, 1.7-μs pulse) or a conventional thermal continuous-wave (532-nm, 100-ms pulse duration) laser. The mice were sacrificed and their eyes were enucleated 1, 3, 7, and 14 days after both laser treatments. Pattern of cell death on retinal section was evaluated by TUNEL assay, and the distribution of activated inflammatory cells and glial cells were observed under immunohistochemistry. Consecutive changes for the expression of cytokines such as IL-1β, TNF-α, and TGF-β were also examined using immunohistochemistry, and compared among each period after quantification by Western blotting. The numbers of TUNEL-positive cells in the retinal pigment epithelium (RPE) layer did not differ in SRT and cwPC lesions, but TUNEL-positive cells in neural retinas were significantly less on SRT. Vague glial cell activation was observed in SRT-treated lesions. The population of inflammatory cells was also significantly decreased after SRT, and the cells were located in the RPE layer and subretinal space. Proinflammatory cytokines, including IL-1β and TNF-α, showed significantly lower levels after SRT; conversely, the level of TGF-β was similar to the cwPC-treated lesion. SRT resulted in selective RPE damage without collateral thermal injury to the neural retina, and apparently produced negligible glial activation. In addition, SRT showed a markedly less inflammatory response than cwPC, which may have important therapeutic implications for several macular diseases.

  10. Dynamic timecourse of typical childhood absence seizures: EEG, behavior and fMRI

    PubMed Central

    Bai, X; Vestal, M; Berman, R; Negishi, M; Spann, M; Vega, C; Desalvo, M; Novotny, EJ; Constable, RT; Blumenfeld, H

    2010-01-01

    Absence seizures are 5–10 second episodes of impaired consciousness accompanied by 3–4Hz generalized spike-and-wave discharge on electroencephalography (EEG). The timecourse of functional magnetic resonance imaging (fMRI) changes in absence seizures in relation to EEG and behavior is not known. We acquired simultaneous EEG-fMRI in 88 typical childhood absence seizures from 9 pediatric patients. We investigated behavior concurrently using a continuous performance task (CPT) or simpler repetitive tapping task (RTT). EEG time-frequency analysis revealed abrupt onset and end of 3–4 Hz spike-wave discharges with a mean duration of 6.6 s. Behavioral analysis also showed rapid onset and end of deficits associated with electrographic seizure start and end. In contrast, we observed small early fMRI increases in the orbital/medial frontal and medial/lateral parietal cortex >5s before seizure onset, followed by profound fMRI decreases continuing >20s after seizure end. This timecourse differed markedly from the hemodynamic response function (HRF) model used in conventional fMRI analysis, consisting of large increases beginning after electrical event onset, followed by small fMRI decreases. Other regions, such as the lateral frontal cortex, showed more balanced fMRI increases followed by approximately equal decreases. The thalamus showed delayed increases after seizure onset followed by small decreases, most closely resembling the HRF model. These findings reveal a complex and long lasting sequence of fMRI changes in absence seizures, which are not detectible by conventional HRF modeling in many regions. These results may be important mechanistically for seizure initiation and termination and may also contribute to changes in EEG and behavior. PMID:20427649

  11. 1.3 μm VCSELs: InGaAs/GaAs, GaInNAs/GaAs multiple quantum wells, and InAs/GaAs quantum dots — three candidates as active material

    NASA Astrophysics Data System (ADS)

    Gilet, Ph.; Pougeoise, E.; Grenouillet, L.; Grosse, Ph.; Olivier, N.; Poncet, S.; Chelnokov, A.; Gérard, J. M.; Stevens, R.; Hamelin, R.; Hammar, M.; Berggren, J.; Sundgren, P.

    2007-02-01

    In this article, we report our results on 1.3μm VCSELs for optical interconnection applications. Room temperature continuous-wave lasing operation is demonstrated for top emitting oxide-confined devices with three different active materials, highly strained InGaAs/GaAs(A) and GaInNAs/GaAs (B) multiple quantum wells (MQW) or InAs/GaAs (C) quantum dots (QD). Conventional epitaxial structures grown respectively by Metal Organic Vapour Phase Epitaxy (MOVPE), Molecular Beam Epitaxy (MBE) and MBE, contain fully doped GaAs/AlGaAs DBRs. All three epilayers are processed in the same way. Current and optical confinement are realized by selective wet oxidation. Circular apertures from 2 (micron)m to 16 (micron)m diameters are defined. At room temperature and in continuous wave operation, all three systems exhibit lasing operation at wavelengths above 1 275nm and reached 1 300nm for material (A). Typical threshold currents are in the range [1- 10]mA and are strongly dependent firstly on oxide diameter and secondly on temperature. Room temperature cw maximum output power corresponds respectively to 1.77mW, 0.5mW and 0.6mW. By increasing driving current, multimode operation occurs at different level depending on the oxide diameter. In case (A), non conventional modal behaviors will be presented and explained by the presence of specific oxide modes. Thermal behaviors of the different devices have been compared. In case (A) and (C) we obtain a negative T0. We will conclude on the different active materials in terms of performances with respect to 1300nm VCSEL applications.

  12. A Rosetta Stone Relating Conventions In Photo-Meson Partial Wave Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.M. Sandorfi, B. Dey, A. Sarantsev, L. Tiator, R. Workman

    2012-04-01

    A new generation of complete experiments in pseudoscalar meson photo-production is being pursued at several laboratories. While new data are emerging, there is some confusion regarding definitions of asymmetries and the conventions used in partial wave analyses (PWA). We present expressions for constructing asymmetries as coordinate-system independent ratios of cross sections, along with the names used for these ratios by different PWA groups.

  13. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  14. Use of the Wigner-Ville distribution in interpreting and identifying ULF waves in triaxial magnetic records

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.

    2008-01-01

    Magnetospheric ultra-low-frequency (ULF) waves (f = 1 mHz to 1 Hz) exhibit highly time-dependent characteristics due to the dynamic properties of these waves and, for observations in space, the spacecraft motion. These time-dependent features may not be properly resolved by conventional Fourier techniques. In this study we examine how the Wigner-Ville distribution (WVD) can be used to analyze ULF waves. We find that this approach has unique advantages over the conventional Fourier spectrograms and wavelet scalograms. In particular, for Pc1 wave packets, field line/cavity mode resonances in the Pc 3-4 band, and Pi2 pulsations, the start and end times of each wave packet can be well identified and the frequency better defined. In addition, we demonstrate that the Wigner-Ville distribution can be used to calculate the polarization of wave signals in triaxial magnetic field data in a way analogous to Fourier analysis. Motivated by the large amount of ULF wave observations, we have also developed a WVD-based algorithm to identify ULF waves as a way to facilitate the rapid processing of the data collected by satellite missions and the vast network of ground magnetometers.

  15. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  16. Singlemode 1.1 μm InGaAs quantum well microstructured photonic crystal VCSEL

    NASA Astrophysics Data System (ADS)

    Stevens, Renaud; Gilet, Philippe; Larrue, Alexandre; Grenouillet, Laurent; Olivier, Nicolas; Grosse, Philippe; Gilbert, Karen; Teysseyre, Raphael; Chelnokov, Alexei

    2008-02-01

    In this article, we present our results on long wavelength (1.1 μm) single-mode micro-structured photonic crystal strained InGaAs quantum wells VCSELs for optical interconnection applications. Single fundamental mode roomtemperature continuous-wave lasing operation was demonstrated for devices designed and processed with a number of different two-dimensional etched patterns. The conventional epitaxial structure was grown by Molecular Beam Epitaxy (MBE) and contains fully doped GaAs/AlGaAs DBRs, one oxidation layer and three strained InGaAs quantum wells. The holes were etched half-way through the top-mirror following various designs (triangular and square lattices) and with varying hole's diameters and pitches. At room temperature and in continuous wave operation, micro-structured 50 µm diameter mesa VCSELs with 10 μm oxidation aperture exhibited more than 1 mW optical power, 2 to 5 mA threshold currents and more than 30 dB side mode suppression ratio at a wavelength of 1090 nm. These structures show slight power reduction but similar electrical performances than unstructured devices. Systematic static electrical, optical and spectral characterization was performed on wafer using an automated probe station. Numerical modeling using the MIT Photonic-Bands (MPB [1]) package of the transverse modal behaviors in the photonic crystal was performed using the plane wave method in order to understand the index-guiding effects of the chosen patterns, and to further optimize the design structures for mode selection at extended wavelength range.

  17. Photochemistry of transition-metal phthalocyanines. Mechanistic aspects of the photochemistry of the acido(phthalocyanine)rhodium(III) complexes investigated by continuous, flash, and laser flash photolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidharan, S.; Ferraudi, G.; Schmatz, K.

    1982-08-01

    Rh(ph)(CH/sub 3/OH)X, X = Cl, Br, or I, has been prepared and characterized. Continuous-wave irradiations of these phthalocyanines in the ultraviolet region of the spectrum, in acetonitrile and acetonitrile-isopropyl alcohol mixtures, result in the redox-induced substitution of the axially coordinated halide ions by the solvent. Even though the overall reaction was photosubstitution, the intermediates observed by conventional and laser flash photolysis were found to be rhodium(II) phthalocyanine and rhodium(III) phthalocyanine ligand radicals. The photoredox processes were attributed to the population of (n..pi..*) ligand-centered excited states that involve the lone electron pair from the bridge nitrogens of the phthalocyanine ligand. 9more » figures, 3 tables.« less

  18. Adult obesity, disease and longevity in Mexico

    PubMed Central

    Palloni, Alberto; Beltrán-Sánchez, Hiram; Novak, Beatriz; Pinto, Guido; Wong, Rebeca

    2015-01-01

    Objective To obtain estimates of the effects of overweight and obesity on the incidence of type 2 diabetes (T2D) and adult mortality. Materials and methods We use three waves (2000, 2002, 2012) of the Mexican Health and Aging Survey (MHAS). We employ parametric hazard models to estimate mortality and conventional logistic models to estimate incidence of T2D. Results Obesity and overweight have a strong effect on the incidence of T2D; this, combined with the large impact of diabetes on adult mortality, generates increases in mortality that translate into losses of 2 to 3 years of life expectancy at age 50. Conclusions If increasing trends in obesity in Mexico continue as in the past, progress in adult survival may be slowed down considerably and the incidence of T2D will continue to increase. PMID:26172231

  19. Generation of whistler-wave heated discharges with planar resonant RF networks.

    PubMed

    Guittienne, Ph; Howling, A A; Hollenstein, Ch

    2013-09-20

    Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.

  20. Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Javadi, Hamid; Jarrahi, Mona

    2017-02-01

    Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.

  1. Using COMSOL Multiphysics Software to Model Anisotropic Dielectric and Metamaterial Effects in Folded-Waveguide Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.

    2008-01-01

    The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.

  2. High-frequency surface waves method for agricultural applications

    USDA-ARS?s Scientific Manuscript database

    A high-frequency surface wave method has been recently developed to explore shallow soil in the vadose zone for agricultural applications. This method is a modification from the conventional multichannel analysis of surface wave (MASW) method that explores near surface soil properties from a couple ...

  3. Improved compensation of atmospheric turbulence effects by multiple adaptive mirror systems.

    PubMed

    Shamir, J; Crowe, D G; Beletic, J W

    1993-08-20

    Optical wave-front propagation in a layered model for the atmosphere is analyzed by the use of diffraction theory, leading to a novel approach for utilizing artificial guide stars. Considering recent observations of layering in the atmospheric turbulence, the results of this paper indicate that, even for very large telescopes, a substantial enlargement of the compensated angular field of view is possible when two adaptive mirrors and four or five artificial guide stars are employed. The required number of guide stars increases as the thickness of the turbulent layers increases, converging to the conventional results at the limit of continuously turbulent atmosphere.

  4. Detection of swine-origin influenza A (H1N1) viruses using a paired surface plasma waves biosensor

    NASA Astrophysics Data System (ADS)

    Su, Li-Chen; Chang, Ying-Feng; Li, Ying-Chang; Hsieh, Jo-Ping; Lee, Cheng-Chung; Chou, Chien

    2010-08-01

    In order to enhance the sensitivity of conventional rapid test technique for the detection of swine-origin influenza A (H1N1) viruses (S-OIVs), we used a paired surface plasma waves biosensor (PSPWB) based on SPR in conjunction with an optical heterodyne technique. Experimentally, PSPWB showed a 125-fold improvement at least in the S-OIV detection as compared to conventional enzyme linked immunosorbent assay. Moreover, the detection limit of the PSPWB for the S-OIV detection was enhanced 250-fold in buffer at least in comparison with that of conventional rapid influenza diagnostic test.

  5. The performance of CryoSat-2 as an ocean altimeter

    NASA Astrophysics Data System (ADS)

    Scharroo, R.; Smith, W. H.; Leuliette, E. W.; Lillibridge, J. L.

    2012-12-01

    Two years after the launch of CryoSat-2, oceanographic uses of the CryoSat-2 data have well taken off, after several institutes, NOAA included, have spent a dedicated effort to upgrade the official CryoSat-2 data products to a level that is suitable for monitoring of mesoscale phenomena, as well as wind speed and wave height. But in the coastal areas, this is much less the case. This is mostly the result of the fact that CryoSat-2 is running in SAR or InSAR mode in many of the focus areas, like the Mediterranean Sea. We have shown, however, that the CryoSat data is intrinsically of high quality and for over a year now have been producing "IGDR" type data through FTP and through RADS. These steps include: ● Combine final (LRM) and fast-delivery (FDM) products and split the segmented files into pass files. ● Divide the 369-day repeat cycle into subcycles of 29 or 27 days. ● Retrack the conventional low-rate data to determine range, significant wave height, backscatter (and off-nadir angle). ● Add or replace the usual corrections for ionospheric and atmospheric delays, tides, dynamic atmospheric correction, sea state bias, mean sea surface. ● Update orbits and corrections whenever they become available. This way NOAA produces an "IGDR" product from the fast-delivery FDM and the CNES MOE orbit in about 2 days after real time, and a "GDR" product from the final LRM data and the CNES POE orbit with a delay of about 1 month. In order to extend the data products to the coastal regime, we have developed a process in which the SAR data are first combined to "Pseudo-LRM" or "reduced SAR" wave forms, that are similar to the conventional low-rate wave forms. After this the reduced SAR data are retracked and combined with the conventional data to form a harmonised product. Although this sounds relatively straightforward, many steps were needed to get this done: ● Combine the SAR wave forms to conventional wave forms, without loss of information. ● Reconstruct backscatter and significant wave height in a meaningful way, consistent with low-rate data. ● Cross-calibrate the conventional and SAR mode data. ● Validate the data quality of conventional and SAR mode data through crossovers and collinear track analyses. In this presentation we will demonstrate how the CryoSat-2 data quality compares to other altimeters (Envisat, Jason-1 and Jason-2) by means of data distribution maps, histograms and crossover comparisons.

  6. Precise and continuous time and frequency synchronisation at the 5×10⁻¹⁹ accuracy level.

    PubMed

    Wang, B; Gao, C; Chen, W L; Miao, J; Zhu, X; Bai, Y; Zhang, J W; Feng, Y Y; Li, T C; Wang, L J

    2012-01-01

    The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency transfer and time synchronisation via an 80 km fibre link between Tsinghua University (THU) and the National Institute of Metrology of China (NIM). Using a 9.1 GHz microwave modulation and a timing signal carried by two continuous-wave lasers and transferred across the same 80 km urban fibre link, frequency transfer stability at the level of 5×10⁻¹⁹/day was achieved. Time synchronisation at the 50 ps precision level was also demonstrated. The system is reliable and has operated continuously for several months. We further discuss the feasibility of using such frequency and time transfer over 1000 km and its applications to long-baseline radio astronomy.

  7. Precise and Continuous Time and Frequency Synchronisation at the 5×10-19 Accuracy Level

    PubMed Central

    Wang, B.; Gao, C.; Chen, W. L.; Miao, J.; Zhu, X.; Bai, Y.; Zhang, J. W.; Feng, Y. Y.; Li, T. C.; Wang, L. J.

    2012-01-01

    The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency transfer and time synchronisation via an 80 km fibre link between Tsinghua University (THU) and the National Institute of Metrology of China (NIM). Using a 9.1 GHz microwave modulation and a timing signal carried by two continuous-wave lasers and transferred across the same 80 km urban fibre link, frequency transfer stability at the level of 5×10−19/day was achieved. Time synchronisation at the 50 ps precision level was also demonstrated. The system is reliable and has operated continuously for several months. We further discuss the feasibility of using such frequency and time transfer over 1000 km and its applications to long-baseline radio astronomy. PMID:22870385

  8. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    USGS Publications Warehouse

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  10. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  11. Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond

    NASA Astrophysics Data System (ADS)

    Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore

    2017-10-01

    Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.

  12. Association Between Receptivity to Tobacco Advertising and Progression to Tobacco Use in Youth and Young Adults in the PATH Study.

    PubMed

    Pierce, John P; Sargent, James D; Portnoy, David B; White, Martha; Noble, Madison; Kealey, Sheila; Borek, Nicolette; Carusi, Charles; Choi, Kelvin; Green, Victoria R; Kaufman, Annette R; Leas, Eric; Lewis, M Jane; Margolis, Katherine A; Messer, Karen; Shi, Yuyan; Silveira, Marushka L; Snyder, Kimberly; Stanton, Cassandra A; Tanski, Susanne E; Bansal-Travers, Maansi; Trinidad, Dennis; Hyland, Andrew

    2018-03-26

    Cigarette marketing contributes to initiation of cigarette smoking among young people, which has led to restrictions on use of cigarette advertising. However, little is known about other tobacco advertising and progression to tobacco use in youth and young adults. To investigate whether receptivity to tobacco advertising among youth and young adults is associated with progression (being a susceptible never user or ever user) to use of the product advertised, as well as conventional cigarette smoking. The Population Assessment of Tobacco and Health (PATH) Study at wave 1 (2013-2014) and 1-year follow-up at wave 2 (2014-2015) was conducted in a US population-based sample of never tobacco users aged 12 to 24 years from wave 1 of the PATH Study (N = 10 989). Household interviews using audio computer-assisted self-interviews were conducted. Advertising for conventional cigarettes, electronic cigarettes (e-cigarettes), cigars, and smokeless tobacco products at wave 1. Progression to susceptibility or ever tobacco use at 1-year follow-up in wave 2. Of the 10 989 participants (5410 male [weighted percentage, 48.3%]; 5579 female [weighted percentage, 51.7%]), receptivity to any tobacco advertising at wave 1 was high for those aged 12 to 14 years (44.0%; 95% confidence limit [CL], 42.6%-45.4%) but highest for those aged 18 to 21 years (68.7%; 95% CL, 64.9%-72.2%). e-Cigarette advertising had the highest receptivity among all age groups. For those aged 12 to 17 years, susceptibility to use a product at wave 1 was significantly associated with product use at wave 2 for conventional cigarettes, e-cigarettes, cigars, and smokeless tobacco products. Among committed never users aged 12 to 17 years at wave 1, any receptivity was associated with progression toward use of the product at wave 2 (conventional cigarettes: adjusted odds ratio [AOR], 1.43; 95% CL, 1.23-1.65; e-cigarettes: AOR, 1.62; 95% CL, 1.41-1.85; cigars: AOR, 2.01; 95% CL, 1.62-2.49; and smokeless (males only): AOR, 1.42; 95% CL, 1.07-1.89) and with use of the product (conventional cigarettes: AOR, 1.54; 95% CL, 1.03-2.32; e-cigarettes: AOR, 1.45; 95% CL, 1.19-1.75; cigars: AOR, 2.07; 95% CL, 1.26-3.40). Compared with those not receptive to any product advertising, receptivity to e-cigarette advertising, but not to cigarette advertising, was independently associated with those aged 12 to 21 years having used a cigarette at wave 2 (AOR, 1.60; 95% CL, 1.08-2.38). Receptivity to tobacco advertising was significantly associated with progression toward use in adolescents. Receptivity was highest for e-cigarette advertising and was associated with trying a cigarette.

  13. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone

    PubMed Central

    Anderson, Christian C.; Marutyan, Karen R.; Holland, Mark R.; Wear, Keith A.; Miller, James G.

    2008-01-01

    Previous work has shown that ultrasonic waves propagating through cancellous bone often exhibit a linear-with-frequency attenuation coefficient, but a decrease in phase velocity with frequency (negative dispersion) that is inconsistent with the causality-imposed Kramers–Kronig relations. In the current study, interfering wave modes similar to those observed in bone are shown to potentially contribute to the observed negative dispersion. Biot theory, the modified Biot–Attenborogh model, and experimental results are used to aid in simulating multiple-mode wave propagation through cancellous bone. Simulations entail constructing individual wave modes exhibiting a positive dispersion using plausible velocities and amplitudes, and then summing the individual modes to create mixed-mode output wave forms. Results of the simulations indicate that mixed-mode wave forms can exhibit negative dispersion when analyzed conventionally under the assumption that only one wave is present, even when the individual interfering waves exhibit positive dispersions in accordance with the Kramers–Kronig relations. Furthermore, negative dispersion is observed when little or no visual evidence of interference exists in the time-domain data. Understanding the mechanisms responsible for the observed negative dispersion could aid in determining the true material properties of cancellous bone, as opposed to the apparent properties measured using conventional data analysis techniques. PMID:19045668

  14. Evaluating the Effectiveness of France’s Indoor Smoke-Free Law 1 Year and 5 Years after Implementation: Findings from the ITC France Survey

    PubMed Central

    Fong, Geoffrey T.; Craig, Lorraine V.; Guignard, Romain; Nagelhout, Gera E.; Tait, Megan K.; Driezen, Pete; Kennedy, Ryan David; Boudreau, Christian; Wilquin, Jean-Louis; Deutsch, Antoine; Beck, François

    2013-01-01

    France implemented a comprehensive smoke-free law in two phases: Phase 1 (February 2007) banned smoking in workplaces, shopping centres, airports, train stations, hospitals, and schools; Phase 2 (January 2008) banned smoking in hospitality venues (bars, restaurants, hotels, casinos, nightclubs). This paper evaluates France’s smoke-free law based on the International Tobacco Control Policy Evaluation Project in France (the ITC France Project), which conducted a cohort survey of approximately 1,500 smokers and 500 non-smokers before the implementation of the laws (Wave 1) and two waves after the implementation (Waves 2 and 3). Results show that the smoke-free law led to a very significant and near-total elimination of observed smoking in key venues such as bars (from 94–97% to 4%) and restaurants (from 60–71% to 2–3%) at Wave 2, which was sustained four years later (6–8% in bars; 1–2% in restaurants). The reduction in self-reported smoking by smoking respondents was nearly identical to the effects shown in observed smoking. Observed smoking in workplaces declined significantly after the law (from 41–48% to 18–20%), which continued to decline at Wave 3 (to 14–15%). Support for the smoke-free laws increased significantly after their implementation and continued to increase at Wave 3 (p<.001 among smokers for bars and restaurants; p<.001 among smokers and p = .003 for non-smokers for workplaces). The findings demonstrate that smoke-free policies that are implemented in ways consistent with the Guidelines for Article 8 of the WHO Framework Convention on Tobacco Control (WHO FCTC) lead to substantial and sustained reductions in indoor smoking while also leading to high levels of support by the public. Moreover, contrary to arguments by opponents of smoke-free laws, smoking in the home did not increase after the law was implemented and prevalence of smoke-free homes among smokers increased from 23.2% before the law to 37.2% 5 years after the law. PMID:23805265

  15. Evaluating the Effectiveness of France's Indoor Smoke-Free Law 1 Year and 5 Years after Implementation: Findings from the ITC France Survey.

    PubMed

    Fong, Geoffrey T; Craig, Lorraine V; Guignard, Romain; Nagelhout, Gera E; Tait, Megan K; Driezen, Pete; Kennedy, Ryan David; Boudreau, Christian; Wilquin, Jean-Louis; Deutsch, Antoine; Beck, François

    2013-01-01

    France implemented a comprehensive smoke-free law in two phases: Phase 1 (February 2007) banned smoking in workplaces, shopping centres, airports, train stations, hospitals, and schools; Phase 2 (January 2008) banned smoking in hospitality venues (bars, restaurants, hotels, casinos, nightclubs). This paper evaluates France's smoke-free law based on the International Tobacco Control Policy Evaluation Project in France (the ITC France Project), which conducted a cohort survey of approximately 1,500 smokers and 500 non-smokers before the implementation of the laws (Wave 1) and two waves after the implementation (Waves 2 and 3). Results show that the smoke-free law led to a very significant and near-total elimination of observed smoking in key venues such as bars (from 94-97% to 4%) and restaurants (from 60-71% to 2-3%) at Wave 2, which was sustained four years later (6-8% in bars; 1-2% in restaurants). The reduction in self-reported smoking by smoking respondents was nearly identical to the effects shown in observed smoking. Observed smoking in workplaces declined significantly after the law (from 41-48% to 18-20%), which continued to decline at Wave 3 (to 14-15%). Support for the smoke-free laws increased significantly after their implementation and continued to increase at Wave 3 (p<.001 among smokers for bars and restaurants; p<.001 among smokers and p = .003 for non-smokers for workplaces). The findings demonstrate that smoke-free policies that are implemented in ways consistent with the Guidelines for Article 8 of the WHO Framework Convention on Tobacco Control (WHO FCTC) lead to substantial and sustained reductions in indoor smoking while also leading to high levels of support by the public. Moreover, contrary to arguments by opponents of smoke-free laws, smoking in the home did not increase after the law was implemented and prevalence of smoke-free homes among smokers increased from 23.2% before the law to 37.2% 5 years after the law.

  16. Energy shadowing correction of ultrasonic pulse-echo records by digital signal processing

    NASA Technical Reports Server (NTRS)

    Kishonio, D.; Heyman, J. S.

    1985-01-01

    A numerical algorithm is described that enables the correction of energy shadowing during the ultrasonic testing of bulk materials. In the conventional method, an ultrasonic transducer transmits sound waves into a material that is immersed in water so that discontinuities such as defects can be revealed when the waves are reflected and then detected and displayed graphically. Since a defect that lies behind another defect is shadowed in that it receives less energy, the conventional method has a major drawback. The algorithm normalizes the energy of the incoming wave by measuring the energy of the waves reflected off the water/air interface. The algorithm is fast and simple enough to be adopted for real time applications in industry. Images of material defects with the shadowing corrections permit more quantitative interpretation of the material state.

  17. Genesis of the characteristic pulmonary venous pressure waveform as described by the reservoir-wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pulmonary venous and left atrial (LA) pressure waveforms yields substantial forward and backward waves throughout the cardiac cycle; the reservoir wave model provides an alternative analysis with minimal waves during diastole. Pressure and flow in a single pulmonary vein (PV) and the main pulmonary artery (PA) were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading, and positive-end expiratory pressure (PEEP) were observed. The reservoir wave model was used to determine the reservoir contribution to PV pressure and flow. Subtracting reservoir pressure and flow resulted in ‘excess’ quantities which were treated as wave-related. Wave intensity analysis of excess pressure and flow quantified the contributions of waves originating upstream (from the PA) and downstream (from the LA and/or left ventricle (LV)). Major features of the characteristic PV waveform are caused by sequential LA and LV contraction and relaxation creating backward compression (i.e. pressure-increasing) waves followed by decompression (i.e. pressure-decreasing) waves. Mitral valve opening is linked to a backwards decompression wave (i.e. diastolic suction). During late systole and early diastole, forward waves originating in the PA are significant. These waves were attenuated less with volume loading and delayed with PEEP. The reservoir wave model shows that the forward and backward waves are negligible during LV diastasis and that the changes in pressure and flow can be accounted for by the discharge of upstream reservoirs. In sharp contrast, conventional analysis posits forward and backward waves such that much of the energy of the forward wave is opposed by the backward wave. PMID:25015922

  18. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  19. Raman gas self-organizing into deep nano-trap lattice

    PubMed Central

    Alharbi, M.; Husakou, A.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2016-01-01

    Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb–Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing. PMID:27677451

  20. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking.

    PubMed

    Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W

    2007-01-01

    Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.

  1. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which ismore » usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.« less

  2. A compact, inexpensive infrared laser system for continuous-wave optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2014-03-01

    Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.

  3. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique.

    PubMed

    Mei, Liang; Guan, Peng; Kong, Zheng

    2017-10-02

    Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.

  4. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.

    PubMed

    Yang, Guangye; Li, Lu; Jia, Suotang

    2012-04-01

    Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.

  5. The new wave-ring helical (WRH) slow-wave structure for traveling wave tube amplifiers

    NASA Astrophysics Data System (ADS)

    Panahi, Nasser; Saviz, S.; Ghorannevis, M.

    2017-12-01

    In this paper, the new slow-wave structure called wave-ring helix to enhance the power of the traveling wave tubes is introduced. In this new structure, without increasing the length and radius of the helix, the wave motion path can be increased to radiofrequency wave in phase with the electron beam. The results show that in the special frequency range the output power and gain are greater than conventional helix. In this paper, optimization results are presented in cold and hot tests on the new structure. The software CST is used in S-band frequency range.

  6. COMPARATIVE DISINFECTION EFFICIENCY OF PULSED AND CONTINUOUS-WAVE UV IRRADIATION TECHNOLOGIES

    EPA Science Inventory

    Pulsed UV (PUV) is novel UV irradiation system that is a non-mercury lamp based alternative to currently used continuous-wave systems for water disinfection. To compare the polychromatic PUV irradiation disinfection efficiency with that from continuous wave monochromatic low-pre...

  7. Time stretch and its applications

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  8. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  9. Rapid Estimation of Building Damage by Conventional Weapons

    DTIC Science & Technology

    2014-09-01

    impulse applied to reflect surface 17 iso = impulse of incident wave t0 = wave duration Lw = wavelength of incident wave ta = arrival time...floor area = 3 x 100 x 90 = 27000 ft2 Tributary area support per column = 27000 /30 = 900 ft2 Therefore, the tributary area supported by a column is

  10. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  11. Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation

    NASA Astrophysics Data System (ADS)

    Su, Bo; Tuo, Xianguo; Xu, Ling

    2017-08-01

    Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.

  12. Application of artificial neural network to search for gravitational-wave signals associated with short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Harry, Ian W.; Hodge, Kari A.; Kim, Young-Min; Lee, Chang-Hwan; Lee, Hyun Kyu; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.

    2015-12-01

    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts (GRBs). The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability (FAP) is improved by the artificial neural network in comparison to the conventional detection statistic. Specifically, the distance at 50% detection probability at a fixed false positive rate is increased about 8%-14% for the considered waveform models. We also evaluate a few seconds of the gravitational-wave data segment using the trained networks and obtain the FAP. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short GRBs.

  13. The Diagnostic Value of Pulsed Wave Tissue Doppler Imaging in Asymptomatic Beta- Thalassemia Major Children and Young Adults; Relation to Chemical Biomarkers of Left Ventricular Function and Iron Overload

    PubMed Central

    Ragab, Seham M; Fathy, Waleed M; El-Aziz, Walaa FAbd; Helal, Rasha T

    2015-01-01

    Background Cardiac iron toxicity is the leading cause of death among β-halassaemia major (TM) patients. Once heart failure becomes overt, it is difficult to reverse. Objectives To investigate non-overt cardiac dysfunctions in TM patients using pulsed wave Tissue Doppler Imaging (TD I) and its relation to iron overload and brain natriuretic peptide (BNP). Methods Thorough clinical, conventional echo and pulsed wave TDI parameters were compared between asymptomatic 25 β-TM patients and 20 age and gender matched individuals. Serum ferritin and plasma BNP levels were assayed by ELISA. Results TM patients had significant higher mitral inflow early diastolic (E) wave and non significant other conventional echo parameters. In the patient group, pulsed wave TDI revealed systolic dysfunctions, in the form of significant higher isovolumetric contraction time (ICT), and lower ejection time (E T), with diastolic dysfunction in the form of higher isovolumetric relaxation time (IRT), and lower mitral annulus early diastolic velocity E′ (12.07 ±2.06 vs 15.04±2.65, P= 0.003) compared to the controls. Plasma BNP was higher in patients compared to the controls. Plasma BNP and serum ferritin had a significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions. Patients with E/E′ ≥ 8 had significant higher serum ferritin and plasma BNP levels compared to those with ratio < 8 without a difference in Hb levels. Conclusion Pulsed wave TDI is an important diagnostic tool for latent cardiac dysfunction in iron-loaded TM patients and is related to iron overload and BNP. PMID:26401240

  14. The Diagnostic Value of Pulsed Wave Tissue Doppler Imaging in Asymptomatic Beta- Thalassemia Major Children and Young Adults; Relation to Chemical Biomarkers of Left Ventricular Function and Iron Overload.

    PubMed

    Ragab, Seham M; Fathy, Waleed M; El-Aziz, Walaa FAbd; Helal, Rasha T

    2015-01-01

    Cardiac iron toxicity is the leading cause of death among β-halassaemia major (TM) patients. Once heart failure becomes overt, it is difficult to reverse. To investigate non-overt cardiac dysfunctions in TM patients using pulsed wave Tissue Doppler Imaging (TD I) and its relation to iron overload and brain natriuretic peptide (BNP). Thorough clinical, conventional echo and pulsed wave TDI parameters were compared between asymptomatic 25 β-TM patients and 20 age and gender matched individuals. Serum ferritin and plasma BNP levels were assayed by ELISA. TM patients had significant higher mitral inflow early diastolic (E) wave and non significant other conventional echo parameters. In the patient group, pulsed wave TDI revealed systolic dysfunctions, in the form of significant higher isovolumetric contraction time (ICT), and lower ejection time (E T), with diastolic dysfunction in the form of higher isovolumetric relaxation time (IRT), and lower mitral annulus early diastolic velocity E' (12.07 ±2.06 vs 15.04±2.65, P= 0.003) compared to the controls. Plasma BNP was higher in patients compared to the controls. Plasma BNP and serum ferritin had a significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions. Patients with E/E' ≥ 8 had significant higher serum ferritin and plasma BNP levels compared to those with ratio < 8 without a difference in Hb levels. Pulsed wave TDI is an important diagnostic tool for latent cardiac dysfunction in iron-loaded TM patients and is related to iron overload and BNP.

  15. Elastic-wave-mode separation in TTI media with inverse-distance weighted interpolation involving position shading

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Meng, Xiaohong; Zheng, Wanqiu

    2017-10-01

    The elastic-wave reverse-time migration of inhomogeneous anisotropic media is becoming the hotspot of research today. In order to ensure the accuracy of the migration, it is necessary to separate the wave mode into P-wave and S-wave before migration. For inhomogeneous media, the Kelvin-Christoffel equation can be solved in the wave-number domain by using the anisotropic parameters of the mesh nodes, and the polarization vector of the P-wave and S-wave at each node can be calculated and transformed into the space domain to obtain the quasi-differential operators. However, this method is computationally expensive, especially for the process of quasi-differential operators. In order to reduce the computational complexity, the wave-mode separation of mixed domain can be realized on the basis of a reference model in the wave-number domain. But conventional interpolation methods and reference model selection methods reduce the separation accuracy. In order to further improve the separation effect, this paper introduces an inverse-distance interpolation method involving position shading and uses the reference model selection method of random points scheme. This method adds the spatial weight coefficient K, which reflects the orientation of the reference point on the conventional IDW algorithm, and the interpolation process takes into account the combined effects of the distance and azimuth of the reference points. Numerical simulation shows that the proposed method can separate the wave mode more accurately using fewer reference models and has better practical value.

  16. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  17. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal processing of the photocurrent processes at the outputs of the two detectors is to perform log-matched filtering followed by a summation and peak detection. This implies that neither difference detection, nor Fourier-domain peak detection, which are the staples of the state-of-the-art systems, is optimal when a weak local oscillator is employed.

  18. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    PubMed

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  19. The potential impact of scatterometry on oceanography - A wave forecasting case

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Cardone, V. J.

    1981-01-01

    A series of observing system simulation experiments have been performed in order to assess the potential impact of marine surface wind data on numerical weather prediction. In addition to conventional data, the experiments simulated the time-continuous assimilation of remotely sensed marine surface wind or temperature sounding data. The wind data were fabricated directly for model grid points intercepted by a Seasat-1 scatterometer swath and were assimilated into the lowest active level (945 mb) of the model using a localized successive correction method. It is shown that Seasat wind data can greatly improve numerical weather forecasts due to better definition of specific features. The case of the QE II storm is examined.

  20. Echocardiography.

    PubMed Central

    Chambers, J. B.; Monaghan, M. J.; Jackson, G.

    1988-01-01

    Imaging echocardiography is an important extension of the clinical examination and will answer most questions in an emergency-for example, whether an enlarged cardiac shadow on the chest radiograph represents ventricular dilatation or an effusion. Doppler ultrasonography is essential for hospitals with an interest in cardiology because it provides direct haemodynamic data that are complementary to imaging. It requires more skill than imaging and may also be time consuming. Colour flow Doppler mapping is speedy and simple to use and aids the interpretation of continuous wave Doppler. It is therefore a natural companion to conventional Doppler, but there would have to be a high clinical load to justify its purchase. Images FIG 3 FIG 4 FIG 4 FIG 5 FIG 6 PMID:3143434

  1. A study on pseudo interface wave technique for CRDM weld defects in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Lee, Jaesun; Park, Junpil; Cho, Younho; Huh, Hyung; Park, Keun-Bae; Kim, Dong-Ok

    2015-03-01

    The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundary conditions and the experimental result shows a possibility of the defect detection on J-groove weld.

  2. Patterns of heterotypic continuity associated with the cross-sectional correlational structure of prevalent mental disorders in adults.

    PubMed

    Lahey, Benjamin B; Zald, David H; Hakes, Jahn K; Krueger, Robert F; Rathouz, Paul J

    2014-09-01

    Mental disorders predict future occurrences of both the same disorder (homotypic continuity) and other disorders (heterotypic continuity). Heterotypic continuity is inconsistent with a view of mental disorders as fixed entities. In contrast, hierarchical-dimensional conceptualizations of psychopathology, in which each form of psychopathology is hypothesized to have both unique and broadly shared etiologies and mechanisms, predict both homotypic and heterotypic continuity. To test predictions derived from a hierarchical-dimensional model of psychopathology that (1) heterotypic continuity is widespread, even controlling for homotypic continuity, and that (2) the relative magnitudes of heterotypic continuities recapitulate the relative magnitudes of cross-sectional correlations among diagnoses at baseline. Ten prevalent diagnoses were assessed in the same person twice (ie, in 2 waves separated by 3 years). We used a representative sample of adults in the United States (i.e., 28,958 participants 18-64 years of age in the National Epidemiologic Study of Alcohol and Related Conditions who were assessed in both waves). Diagnoses from reliable and valid structured interviews. Adjusting for sex and age, we found that bivariate associations of all pairs of diagnoses from wave 1 to wave 2 exceeded chance levels (P < .05) for all homotypic (median tetrachoric correlation of ρ = 0.54 [range, 0.41-0.79]) and for nearly all heterotypic continuities (median tetrachoric correlation of ρ = 0.28 [range, 0.07-0.50]). Significant heterotypic continuity was widespread even when all wave 1 diagnoses (including the same diagnosis) were simultaneous predictors of each wave 2 diagnosis. The rank correlation between age- and sex-adjusted tetrachoric correlation for cross-sectional associations among wave 1 diagnoses and for heterotypic associations from wave 1 to wave 2 diagnoses was ρ = 0.86 (P < .001). For these prevalent mental disorders, heterotypic continuity was nearly universal and not an artifact of failure to control for homotypic continuity. Furthermore, the relative magnitudes of heterotypic continuity closely mirrored the relative magnitudes of cross-sectional associations among these disorders, consistent with the hypothesis that both sets of associations reflect the same factors. Mental disorders are not fixed and independent entities. Rather, each diagnosis is robustly related to other diagnoses in a correlational structure that is manifested both concurrently and in patterns of heterotypic continuity across time.

  3. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  4. Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute.

    PubMed

    Handa, Rajash K; McAteer, James A; Evan, Andrew P; Connors, Bret A; Pishchalnikov, Yuri A; Gao, Sujuan

    2009-02-01

    Lithotriptors with 2 treatment heads deliver shock waves along separate paths. Firing 1 head and then the other in alternating mode has been suggested as a strategy to treat stones twice as rapidly as with conventional shock wave lithotripsy. Because the shock wave rate is known to have a role in shock wave lithotripsy induced injury, and given that treatment using 2 separate shock wave sources exposes more renal tissue to shock wave energy than treatment with a conventional lithotriptor, we assessed renal trauma in pigs following treatment at rapid rate (240 shock waves per minute and 120 shock waves per minute per head) using a Duet lithotriptor (Direx Medical Systems, Petach Tikva, Israel) fired in alternating mode. Eight adult female pigs (Hardin Farms, Danville, Indiana) each were treated with sham shock wave lithotripsy or 2,400 shock waves delivered in alternating mode (1,200 shock waves per head, 120 shock waves per minute per head and 240 shock waves per minute overall at a power level of 10) to the lower renal pole. Renal functional parameters, including glomerular filtration rate and effective renal plasma flow, were determined before and 1 hour after shock wave lithotripsy. The kidneys were perfusion fixed in situ and the hemorrhagic lesion was quantified as a percent of functional renal volume. Shock wave treatment resulted in no significant change in renal function and the response was similar to the functional response seen in sham shock wave treated animals. In 6 pigs treated with alternating mode the renal lesion was small at a mean +/- SEM of 0.22% +/- 0.09% of functional renal volume. Kidney tissue and function were minimally affected by a clinical dose of shock waves delivered in alternating mode (120 shock waves per minute per head and 240 shock waves per minute overall) with a Duet lithotriptor. These observations decrease concern that dual head lithotripsy at a rapid rate is inherently dangerous.

  5. Innovative Technologies for Maskless Lithography and Non-Conventional Patterning

    DTIC Science & Technology

    2008-08-01

    wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases...transistors”, Transducers 2007, Lyon, France, 3EH5.P, 2007. 9. D. Huang and V. Subramanian “Iodine-doped pentacene schottky diodes for high-frequency RFID...wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases

  6. An adaptive sparse deconvolution method for distinguishing the overlapping echoes of ultrasonic guided waves for pipeline crack inspection

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Zi, Yanyang; Zhao, Jiyuan; Yang, Zhe; He, Wangpeng; Sun, Hailiang

    2017-03-01

    In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally overlap, meaning useful information is lost. To solve the overlapping problem, sparse deconvolution methods have been developed in the past decade. However, conventional sparse deconvolution methods have limitations in handling guided wave signals, because the input signal is directly used as the prototype of the convolution matrix, without considering the waveform change caused by the dispersion properties of the guided wave. In this paper, an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. First, the Gaussian echo model is employed to adaptively estimate the column prototype of the convolution matrix instead of directly using the input signal as the prototype. Then, the convolution matrix is constructed upon the estimated results. Third, the split augmented Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem with high computational efficiency. To verify the effectiveness of the proposed method, guided wave signals obtained from pipeline inspection are investigated numerically and experimentally. Compared to conventional sparse deconvolution methods, e.g. the {{l}1} -norm deconvolution method, the proposed method shows better performance in handling the echo overlap problem in the guided wave signal.

  7. Measurements of Wind Velocity and Direction Using Acoustic Reflection against Wall

    NASA Astrophysics Data System (ADS)

    Saito, Ikumi; Wakatsuki, Naoto; Mizutani, Koichi; Ishii, Masahisa; Okushima, Limi; Sase, Sadanori

    2008-05-01

    The measurements of wind velocity and direction using an acoustic reflection against a wall are described. We aim to measure the spatial mean wind velocity and direction to be used for an air-conditioning system. The proposed anemometer consists of a single wall and two pairs of loudspeakers (SP) and microphones (MIC) that form a triangular shape. Two sound paths of direct and reflected waves are available. One is that of the direct wave and the other is that of the wave reflected on the wall. The times of flights (TOFs) of the direct and reflected waves can be measured using a single MIC because there is a difference in the TOF between direct and reflected waves. By using these TOFs, wind velocity and direction can be calculated. In the experiments, the wind velocities and directions were measured in a wind tunnel by changing the wind velocity. The wind direction was examined by changing the setup of the transducers. The measured values using the proposed and conventional anemometers agreed with each other. By using the wave reflected against a wall, wind velocities and directions can be measured using only two pairs of transducers, while four pairs are required in the case of conventional anemometers.

  8. Low frequency events on Montserrat

    NASA Astrophysics Data System (ADS)

    Visser, K.; Neuberg, J.

    2003-04-01

    Earthquake swarms observed on volcanoes consist generally of low frequency events. The low frequency content of these events indicates the presence of interface waves at the boundary of the magma filled conduit and the surrounding country rock. The observed seismic signal at the surface shows therefore a complicated interference pattern of waves originating at various parts of the magma filled conduit, interacting with the free surface and interfaces in the volcanic edifice. This research investigates the applicability of conventional seismic tools on these low frequency events, focusing on hypocenter location analysis using arrival times and particle motion analysis for the Soufrière Hills Volcano on Montserrat. Both single low frequency events and swarms are observed on this volcano. Synthetic low frequency events are used for comparison. Results show that reliable hypocenter locations and particle motions can only be obtained if the low frequency events are single events with an identifiable P wave onset, for example the single events preceding swarms on Montserrat or the first low frequency event of a swarm. Consecutive events of the same swarm are dominated by interface waves which are converted at the top of the conduit into weak secondary P waves and surface waves. Conventional seismic tools fail to correctly analyse these events.

  9. Low energy consumption vortex wave flow membrane bioreactor.

    PubMed

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  10. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    NASA Technical Reports Server (NTRS)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  11. Measurement of magnetostatic mode excitation and relaxation in permalloy films using scanning Kerr imaging

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Bain, J. A.; van de Veerdonk, R. J. M.; Crawford, T. M.; Covington, M.; Kryder, M. H.

    2004-09-01

    This work presents experimental results of magnetostatic mode excitation using scanning Kerr microscopy under continuous sinusoidal excitation in the microwave frequency range. This technique was applied to 100nm thick permalloy coupons excited in two different ways. In the first experiment, the uniform (Kittel) mode was excited at frequencies in 2.24-8.00GHz . The resonant condition was effectively described with the conventional Kittel mode equation. The LLG damping parameter α increased significantly with decreasing bias field. It was confirmed that this increase was caused by multidomain structure and ripple domains formed under weak bias fields, as suggested by other studies. In the second experiment, propagating magnetostatic mode surface waves were excited. They showed an exponential amplitude decay and a linear phase variation with distance from the drive field source, consistent with a decaying plane wave. The Damon-Eshbach (DE) model was extended to include a finite energy damping and used to analyze the results. It was found that the wave number and the decay constant were reasonably well described by the extended DE model. In contrast to the first experiment, no significant variation of α with frequency or bias field was seen in this second experiment, where spatial inhomogeneities in the magnetization are less significant.

  12. Improved shear wave group velocity estimation method based on spatiotemporal peak and thresholding motion search

    PubMed Central

    Amador, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F.; Urban, Matthew W.

    2017-01-01

    Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared to conventional TTP. PMID:28092532

  13. Improved Shear Wave Group Velocity Estimation Method Based on Spatiotemporal Peak and Thresholding Motion Search.

    PubMed

    Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew W

    2017-04-01

    Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocity values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index, ultrasound scanners, scanning protocols, and ultrasound image quality. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this paper, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time [spatiotemporal peak (STP)]; the second method applies an amplitude filter [spatiotemporal thresholding (STTH)] to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared with TTP in phantom. Moreover, in a cohort of 14 healthy subjects, STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared with conventional TTP.

  14. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats

    PubMed Central

    Keshri, Gaurav K.; Gupta, Asheesh; Yadav, Anju; Sharma, Sanjeev K.; Singh, Shashi Bala

    2016-01-01

    Chronic non-healing cutaneous wounds are often vulnerable in one or more repair phases that prevent normal healing and pose challenges to the use of conventional wound care modalities. In immunosuppressed subject, the sequential stages of healing get hampered, which may be the consequences of dysregulated or stagnant wound inflammation. Photobiomodulation (PBM) or low-level laser (light) therapy (LLLT) emerges as a promising drug-free, non-invasive biophysical approach for promoting wound healing, reduction of inflammation, pain and restoration of functions. The present study was therefore undertaken to evaluate the photobiomodulatory effects of 810 nm diode laser (40 mW/cm2; 22.6 J/cm2) with pulsed (10 and 100 Hz, 50% duty cycle) and continuous wave on full-thickness excision-type dermal wound healing in hydrocortisone-induced immunosuppressed rats. Results clearly delineated that 810 nm PBM at 10 Hz was more effective over continuous and 100 Hz frequency in accelerating wound healing by attenuating the pro-inflammatory markers (NF-kB, TNF-α), augmenting wound contraction (α-SM actin), enhancing cellular proliferation, ECM deposition, neovascularization (HIF-1α, VEGF), re-epithelialization along with up-regulated protein expression of FGFR-1, Fibronectin, HSP-90 and TGF-β2 as compared to the non-irradiated controls. Additionally, 810 nm laser irradiation significantly increased CCO activity and cellular ATP contents. Overall, the findings from this study might broaden the current biological mechanism that could be responsible for photobiomodulatory effect mediated through pulsed NIR 810 nm laser (10 Hz) for promoting dermal wound healing in immunosuppressed subjects. PMID:27861614

  15. Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yu-ya; Ten-no, Seiichiro

    2013-09-01

    The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.

  16. Patterns of Heterotypic Continuity Associated With the Cross-Sectional Correlational Structure of Prevalent Mental Disorders in Adults

    PubMed Central

    Lahey, Benjamin B.; Zald, David H.; Hakes, Jahn K.; Krueger, Robert F.; Rathouz, Paul J.

    2014-01-01

    Importance Mental disorders predict future occurrences of both the same disorder (homotypic continuity) and other disorders (heterotypic continuity). Heterotypic continuity is inconsistent with a view of mental disorders as fixed entities. In contrast, hierarchical-dimensional conceptualizations of psychopathology, in which each form of psychopathology is hypothesized to have both unique and broadly shared etiologies and mechanisms, predict both homotypic and heterotypic continuity. Objective To test predictions derived from a hierarchical-dimensional model of psychopathology that (a) heterotypic continuity is widespread, even controlling for homotypic continuity, and (b) the relative magnitudes of heterotypic continuities recapitulate the relative magnitudes of cross-sectional correlations among diagnoses at baseline. Design Assess 10 prevalent diagnoses in the same persons 3 years apart. Setting Representative sample of adults in the United States. Participants The 28,958 participants in the National Epidemiologic Study of Alcohol and Related Condition aged 18–64 years who were assessed in both waves. Main Outcome Measure Diagnoses from reliable and valid structured interviews. Results Bivariate associations of all pairs of diagnoses from wave 1 to wave 2 exceeded chance levels for all homotypic (tetrachoric ρ = 0.41 – 0.79, median = 0.54) and for nearly all heterotypic continuities (tetrachoric ρ = 0.07 – 0.50, median = 0.28), adjusted for sex and age. Significant heterotypic continuity was widespread even when all other wave 1 diagnoses (including the same diagnosis) were simultaneous predictors of each wave 2 diagnosis. The rank correlation between age and sex adjusted tetrachoric ρs for cross-sectional associations among wave 1 diagnoses and heterotypic associations from wave 1 to wave 2 diagnoses was ρ = .86. Conclusions and Relevance For these prevalent mental disorders, heterotypic continuity was nearly universal and not an artifact of failure to control for homotypic continuity. Furthermore, the relative magnitudes of heterotypic continuity closely mirrored the relative magnitudes of cross-sectional associations among these disorders, consistent with the hypothesis that both sets of associations reflect the same factors. Mental disorders are not fixed and independent entities. Rather, each diagnosis is robustly related to other diagnoses in a correlational structure that is manifested both concurrently and in patterns of heterotypic continuity across time. PMID:24989054

  17. Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain.

    PubMed

    Tunc, Burcu; Gulsoy, Murat

    2013-01-01

    The thermal damage of the surrounding tissue can be an unwanted result of continuous-wave laser irradiations. In order to propose an effective alternative to conventional surgical techniques, photothermal damage must be taken under control by a detailed dose study. Real-time temperature monitoring can be also an effective way to get rid of these negative effects. The aim of the present study is to investigate the potential of a new laser-thermoprobe, which consists of a continuous-wave 1,940-nm Tm:fiber laser and a thermocouple measurement system for brain surgery in an ex vivo study. A laser-thermoprobe was designed for using the near-by tissue temperature as a real-time reference for the applicator. Fresh lamb brain tissues were used for experiments. 320 laser shots were performed on both cortical and subcortical tissue. The relationship between laser parameters, temperature changes, and ablation (removal of tissue) efficiency was determined. The correlation between rate of temperature change and ablation efficiency was calculated. Laser-thermoprobe leads us to understand the basic laser-tissue interaction mechanism in a very cheap and easy way, without making a change in the experimental design. It was also shown that the ablation and coagulation (thermally irreversible damage) diameters could be predicted, and carbonization can be avoided by temperature monitoring. Copyright © 2013 Wiley Periodicals, Inc.

  18. Resonating group method as applied to the spectroscopy of α-transfer reactions

    NASA Astrophysics Data System (ADS)

    Subbotin, V. B.; Semjonov, V. M.; Gridnev, K. A.; Hefter, E. F.

    1983-10-01

    In the conventional approach to α-transfer reactions the finite- and/or zero-range distorted-wave Born approximation is used in liaison with a macroscopic description of the captured α particle in the residual nucleus. Here the specific example of 16O(6Li,d)20Ne reactions at different projectile energies is taken to present a microscopic resonating group method analysis of the α particle in the final nucleus (for the reaction part the simple zero-range distorted-wave Born approximation is employed). In the discussion of suitable nucleon-nucleon interactions, force number one of the effective interactions presented by Volkov is shown to be most appropriate for the system considered. Application of the continuous analog of Newton's method to the evaluation of the resonating group method equations yields an increased accuracy with respect to traditional methods. The resonating group method description induces only minor changes in the structures of the angular distributions, but it does serve its purpose in yielding reliable and consistent spectroscopic information. NUCLEAR STRUCTURE 16O(6Li,d)20Ne; E=20 to 32 MeV; calculated B(E2); reduced widths, dσdΩ extracted α-spectroscopic factors. ZRDWBA with microscope RGM description of residual α particle in 20Ne; application of continuous analog of Newton's method; tested and applied Volkov force No. 1; direct mechanism.

  19. Inspection of timber bridges using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Treesearch

    Robert J. Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk

    1999-01-01

    This guide was prepared to assist inspectors in the use of stress wave timing instruments and the various methods of locating and defining areas of decay in timber bridge members. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in timber bridges and (b) the principles of stress wave nondestructive...

  20. Stress wave timing nondestructive evaluation tools for inspecting historic structures : a guide for use and interpretation.

    Treesearch

    Robert Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk

    2000-01-01

    This guide was prepared to assist inspectors in the use of stress wave timing instruments and various methods of locating and defining areas of decay in timber members in historic structures. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in historic structures and (b) the principles of stress wave...

  1. Design Methodology and Experimental Verification of Serpentine/Folded Waveguide TWTs

    DTIC Science & Technology

    2016-03-17

    FW), oscillation, serpentine, stopband, traveling -wave tube (TWT), vacuum electronics. I. INTRODUCTION DEVELOPMENT of high-power broadband vacuum elec...tron devices (VEDs) beyond Ka-band using conventional coupled-cavity and helix traveling -wave tube (TWT) RF cir- cuit fabrication techniques is...between the two positions is simply ks times the relative distance along the waveguide axis. However, from the beam–wave interaction standpoint, the

  2. Effective modeling and reverse-time migration for novel pure acoustic wave in arbitrary orthorhombic anisotropic media

    NASA Astrophysics Data System (ADS)

    Xu, Shigang; Liu, Yang

    2018-03-01

    The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.

  3. Doppler synthetic aperture radar interferometry: a novel SAR interferometry for height mapping using ultra-narrowband waveforms

    NASA Astrophysics Data System (ADS)

    Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.

    2018-05-01

    This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.

  4. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  5. Conventional and cross-correlation brain-stem auditory evoked responses in the white leghorn chick: rate manipulations

    NASA Technical Reports Server (NTRS)

    Burkard, R.; Jones, S.; Jones, T.

    1994-01-01

    Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  7. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  8. Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; Feng, Chi; He, Yuan; Dou, Weiping; Tao, Yue; Chen, Wei-long; Jia, Huan; Liu, Shu-hui; Wang, Wang-sheng; Zhang, Yong; Wu, Jian-qiang; Zhang, Sheng-hu; Zhang, X. L.

    2016-04-01

    The noninterceptive four-dimensional transverse emittance measurements are essential for commissioning the high power continue-wave (CW) proton linacs as well as their operations. The conventional emittance measuring devices such as slits and wire scanners are not well suited under these conditions due to sure beam damages. Therefore, the method of using noninterceptive Beam Position Monitor (BPM) is developed and demonstrated on Injector Scheme II at the Chinese Accelerator Driven Sub-critical System (China-ADS) proofing facility inside Institute of Modern Physics (IMP) [1]. The results of measurements are in good agreements with wire scanners and slits at low duty-factor pulsed (LDFP) beam. In this paper, the detailed experiment designs, data analysis and result benchmarking are presented.

  9. An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza

    2014-11-01

    Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.

  10. Finite Element Study on Continuous Rotating versus Reciprocating Nickel-Titanium Instruments.

    PubMed

    El-Anwar, Mohamed I; Yousief, Salah A; Kataia, Engy M; El-Wahab, Tarek M Abd

    2016-01-01

    In the present study, GTX and ProTaper as continuous rotating endodontic files were numerically compared with WaveOne reciprocating file using finite element analysis, aiming at having a low cost, accurate/trustworthy comparison as well as finding out the effect of instrument design and manufacturing material on its lifespan. Two 3D finite element models were especially prepared for this comparison. Commercial engineering CAD/CAM package was used to model full detailed flute geometries of the instruments. Multi-linear materials were defined in analysis by using real strain-stress data of NiTi and M-Wire. Non-linear static analysis was performed to simulate the instrument inside root canal at a 45° angle in the apical portion and subjected to 0.3 N.cm torsion. The three simulations in this study showed that M-Wire is slightly more resistant to failure than conventional NiTi. On the other hand, both materials are fairly similar in case of severe locking conditions. For the same instrument geometry, M-Wire instruments may have longer lifespan than the conventional NiTi ones. In case of severe locking conditions both materials will fail similarly. Larger cross sectional area (function of instrument taper) resisted better to failure than the smaller ones, while the cross sectional shape and its cutting angles could affect instrument cutting efficiency.

  11. Possible management of near shore nonlinear surging waves through bottom boundary conditions

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhik; Janaki, M. S.; Kundu, Anjan

    2017-03-01

    We propose an alternative way for managing near shore surging waves, including extreme waves like tsunamis, going beyond the conventional passive measures like the warning system. We study theoretically the possibility of influencing the nonlinear surface waves through a leakage boundary effect at the bottom. It has been found through analytic result, that the controlled leakage at the bottom might regulate the amplitude of the surface solitary waves. This could lead to a possible decay of the surging waves to reduce its hazardous effects near the shore. Our theoretical results are estimated by applying it to a real coastal bathymetry of the Bay of Bengal in India.

  12. Cross-correlation analysis of pulse wave propagation in arteries: in vitro validation and in vivo feasibility.

    PubMed

    Nauleau, Pierre; Apostolakis, Iason; McGarry, Matthew; Konofagou, Elisa

    2018-05-29

    The stiffness of the arteries is known to be an indicator of the progression of various cardiovascular diseases. Clinically, the pulse wave velocity (PWV) is used as a surrogate for arterial stiffness. Pulse wave imaging (PWI) is a non-invasive, ultrasound-based imaging technique capable of mapping the motion of the vessel walls, allowing the local assessment of arterial properties. Conventionally, a distinctive feature of the displacement wave (e.g. the 50% upstroke) is tracked across the map to estimate the PWV. However, the presence of reflections, such as those generated at the carotid bifurcation, can bias the PWV estimation. In this paper, we propose a two-step cross-correlation based method to characterize arteries using the information available in the PWI spatio-temporal map. First, the area under the cross-correlation curve is proposed as an index for locating the regions of different properties. Second, a local peak of the cross-correlation function is tracked to obtain a less biased estimate of the PWV. Three series of experiments were conducted in phantoms to evaluate the capabilities of the proposed method compared with the conventional method. In the ideal case of a homogeneous phantom, the two methods performed similarly and correctly estimated the PWV. In the presence of reflections, the proposed method provided a more accurate estimate than conventional processing: e.g. for the soft phantom, biases of  -0.27 and -0.71 m · s -1 were observed. In a third series of experiments, the correlation-based method was able to locate two regions of different properties with an error smaller than 1 mm. It also provided more accurate PWV estimates than conventional processing (biases:  -0.12 versus -0.26 m · s -1 ). Finally, the in vivo feasibility of the proposed method was demonstrated in eleven healthy subjects. The results indicate that the correlation-based method might be less precise in vivo but more accurate than the conventional method.

  13. Perfectly invisible PT -symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry

    NASA Astrophysics Data System (ADS)

    Guilarte, Juan Mateos; Plyushchay, Mikhail S.

    2017-12-01

    We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.

  14. Toward continuous-wave operation of organic semiconductor lasers

    PubMed Central

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  15. Toward continuous-wave operation of organic semiconductor lasers.

    PubMed

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-04-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  16. GPS-Acoustic Seafloor Geodesy using a Wave Glider

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.

    2013-12-01

    The conventional approach to implement the GPS-Acoustic technique uses a ship or buoy for the interface between GPS and Acoustics. The high cost and limited availability of ships restricts occupations to infrequent campaign-style measurements. A new approach to address this problem uses a remote controlled, wave-powered sea surface vehicle, the Wave Glider. The Wave Glider uses sea-surface wave action for forward propulsion with both upward and downward motions producing forward thrust. It uses solar energy for power with solar panels charging the onboard 660 W-h battery for near continuous operation. It uses Iridium for communication providing command and control from shore plus status and user data via the satellite link. Given both the sea-surface wave action and solar energy are renewable, the vehicle can operate for extended periods (months) remotely. The vehicle can be launched from a small boat and can travel at ~ 1 kt to locations offshore. We have adapted a Wave Glider for seafloor geodesy by adding a dual frequency GPS receiver embedded in an Inertial Navigation Unit, a second GPS antenna/receiver to align the INU, and a high precision acoustic ranging system. We will report results of initial testing of the system conducted at SIO. In 2014, the new approach will be used for seafloor geodetic measurements of plate motion in the Cascadia Subduction Zone. The project is for a three-year effort to measure plate motion at three sites along an East-West profile at latitude 44.6 N, offshore Newport Oregon. One site will be located on the incoming plate to measure the present day convergence between the Juan de Fuca and North American plates and two additional sites will be located on the continental slope of NA to measure the elastic deformation due to stick-slip behavior on the mega-thrust fault. These new seafloor data will constrain existing models of slip behavior that presently are poorly constrained by land geodetic data 100 km from the deformation front.

  17. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    DTIC Science & Technology

    2017-04-18

    facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave...record achieved with strained material at this wavelength. Keywords quantum cascade laser, quantum cascade detector, lab- on -a-chip, monolithic integrated...materials, which makes their integration on Si particularly dicult. Heterogeneous integration using transfer techniques allows both single device and wafer

  18. Almost analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2017-11-01

    We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).

  19. Reasons for Trying E-cigarettes and Risk of Continued Use

    PubMed Central

    Kong, Grace; Cavallo, Dana A.; Camenga, Deepa R.; Krishnan-Sarin, Suchitra

    2016-01-01

    BACKGROUND: Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). METHODS: Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. RESULTS: Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. CONCLUSIONS: Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. PMID:27503349

  20. Reasons for Trying E-cigarettes and Risk of Continued Use.

    PubMed

    Bold, Krysten W; Kong, Grace; Cavallo, Dana A; Camenga, Deepa R; Krishnan-Sarin, Suchitra

    2016-09-01

    Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. Copyright © 2016 by the American Academy of Pediatrics.

  1. The exact thermal rotational spectrum of a two-dimensional rigid rotor obtained using Gaussian wave packet dynamics

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Heller, E. J.

    1985-01-01

    The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.

  2. Metasurfaces in terahertz waveband

    NASA Astrophysics Data System (ADS)

    He, Jingwen; Zhang, Yan

    2017-11-01

    Metasurface, composed of subwavelength antennas, allows us to obtain arbitrary permittivity and permeability in electromagnetic (EM) waveband. It can be used to control the polarization, frequency, amplitude, and phase of the EM wave. Conventional terahertz (THz) components, such as high-impedance silicon lens, polyethylene lens, and quartz wave plate, rely on the phase accumulation along the wave propagation to reshape the THz wavefront. The metasurface employs the localized surface plasmon resonance to modulate the wavefront. Compared with conventional THz components, metasurface has the advantages of being ultrathin, ultralight, and low cost. In recent years, a large number of THz devices based on metasurface have been proposed. We review in broad outline the metasurface devices in the THz region and describe the progress of static and tunable THz field-modulated metasurfaces in detail. Finally, we discuss current challenges and opportunities in this rapidly developing research field.

  3. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  4. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    NASA Astrophysics Data System (ADS)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  5. EFFECTS OF CONTINUOUS-WAVE, PULSED, AND SINUSOIDAL-AMPLITUDE-MODULATED MICROWAVES ON BRAIN ENERGY METABOLISM

    EPA Science Inventory

    A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...

  6. Prediction of Compressional, Shear, and Stoneley Wave Velocities from Conventional Well Log Data Using a Committee Machine with Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa

    2012-01-01

    Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.

  7. High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity

    DOE PAGES

    Xu, Luyao; Curwen, Christopher A.; Reno, John L.; ...

    2017-09-04

    A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also,more » the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.« less

  8. Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects.

    PubMed

    Wu, Hsien-Tsai; Liu, Cyuan-Cin; Lin, Po-Hsun; Chung, Hui-Ming; Liu, Ming-Chien; Yip, Hon-Kan; Liu, An-Bang; Sun, Cheuk-Kwan

    2010-11-01

    Although contour analysis of pulse waves has been proposed as a non-invasive means in assessing arterial stiffness in atherosclerosis, accurate determination of the conventional parameters is usually precluded by distorted waveforms in the aged and atherosclerotic objects. We aimed at testing reliable indices in these patient populations. Digital volume pulse (DVP) curve was obtained from 428 subjects recruited from a health screening program at a single medical center from January 2007 to July 2008. Demographic data, blood pressure, and conventional parameters for contour analysis including pulse wave velocity (PWV), crest time (CT), stiffness index (SI), and reflection index (RI) were recorded. Two indices including normalized crest time (NCT) and crest time ratio (CTR) were also analysed and compared with the known parameters. Though ambiguity of dicrotic notch precluded an accurate determination of the two key conventional parameters for assessing arterial stiffness (i.e. SI and RI), NCT and CTR were unaffected because the sum of CT and T(DVP) (i.e. the duration between the systolic and diastolic peak) tended to remain constant. NCT and CTR also correlated significantly with age, systolic and diastolic blood pressure, PWV, SI and RI (all P<0.01). NCT and CTR not only showed significant positive correlations with the conventional parameters for assessment of atherosclerosis (i.e. SI, RI, and PWV), but they also are of particular value in assessing degree of arterial stiffness in subjects with indiscernible peak of diastolic wave that precludes the use of conventional parameters in waveform contour analysis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi

    Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.

  10. Ex situ themo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor

    USDA-ARS?s Scientific Manuscript database

    Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the cat...

  11. 26 CFR 1.513-3 - Qualified convention and trade show activity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 7 2014-04-01 2013-04-01 true Qualified convention and trade show activity. 1.513-3 Section 1.513-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxation of Business Income of Certain Exempt Organizations § 1.513-3 Qualified convention and...

  12. [Physical and mechanical properties of the thermosetting resin for crown and bridge cured by micro-wave heating].

    PubMed

    Kaneko, K

    1989-09-01

    A heating method using micro-waves was utilized to obtain strong thermosetting resin for crown and bridge. The physical and mechanical properties of the thermosetting resin were examined. The resin was cured in a shorter time by the micro-waves heating method than by the conventional heat curing method and the working time was reduced markedly. The base resins of the thermosetting resin for crown and bridge for the micro-waves heating method were 2 PA and diluent 3 G. A compounding volume of 30 wt% for diluent 3 G was considered good the results of compressive strength, bending strength and diametral tensile strength. Grams of 200-230 of the filler compounded to the base resins of 2 PA-3 G system provided optimal compressive strength, bending strength and diametral tensile strength. A filler gram of 230 provided optimal hardness and curing shrinkage rate, the coefficient of thermal expansion became smaller with the increase of the compounding volume of the filler. The trial thermosetting resin for crown and bridge formed by the micro-waves heating method was not inferior to the conventional resin by the heat curing method or the light curing method.

  13. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  14. The Capacity Gain of Orbital Angular Momentum Based Multiple-Input-Multiple-Output System

    PubMed Central

    Zhang, Zhuofan; Zheng, Shilie; Chen, Yiling; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2016-01-01

    Wireless communication using electromagnetic wave carrying orbital angular momentum (OAM) has attracted increasing interest in recent years, and its potential to increase channel capacity has been explored widely. In this paper, we compare the technique of using uniform linear array consist of circular traveling-wave OAM antennas for multiplexing with the conventional multiple-in-multiple-out (MIMO) communication method, and numerical results show that the OAM based MIMO system can increase channel capacity while communication distance is long enough. An equivalent model is proposed to illustrate that the OAM multiplexing system is equivalent to a conventional MIMO system with a larger element spacing, which means OAM waves could decrease the spatial correlation of MIMO channel. In addition, the effects of some system parameters, such as OAM state interval and element spacing, on the capacity advantage of OAM based MIMO are also investigated. Our results reveal that OAM waves are complementary with MIMO method. OAM waves multiplexing is suitable for long-distance line-of-sight (LoS) communications or communications in open area where the multi-path effect is weak and can be used in massive MIMO systems as well. PMID:27146453

  15. Neural activity based biofeedback therapy for Autism spectrum disorder through wearable wireless textile EEG monitoring system

    NASA Astrophysics Data System (ADS)

    Sahi, Ahna; Rai, Pratyush; Oh, Sechang; Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2014-04-01

    Mu waves, also known as mu rhythms, comb or wicket rhythms are synchronized patterns of electrical activity involving large numbers of neurons, in the part of the brain that controls voluntary functions. Controlling, manipulating, or gaining greater awareness of these functions can be done through the process of Biofeedback. Biofeedback is a process that enables an individual to learn how to change voluntary movements for purposes of improving health and performance through the means of instruments such as EEG which rapidly and accurately 'feedback' information to the user. Biofeedback is used for therapeutic purpose for Autism Spectrum Disorder (ASD) by focusing on Mu waves for detecting anomalies in brain wave patterns of mirror neurons. Conventional EEG measurement systems use gel based gold cup electrodes, attached to the scalp with adhesive. It is obtrusive and wires sticking out of the electrodes to signal acquisition system make them impractical for use in sensitive subjects like infants and children with ASD. To remedy this, sensors can be incorporated with skull cap and baseball cap that are commonly used for infants and children. Feasibility of Textile based Sensor system has been investigated here. Textile based multi-electrode EEG, EOG and EMG monitoring system with embedded electronics for data acquisition and wireless transmission has been seamlessly integrated into fabric of these items for continuous detection of Mu waves. Textile electrodes were placed on positions C3, CZ, C4 according to 10-20 international system and their capability to detect Mu waves was tested. The system is ergonomic and can potentially be used for early diagnosis in infants and planning therapy for ASD patients.

  16. Freak Waves In The Ocean A~é­ We Need Continuous Measurements!

    NASA Astrophysics Data System (ADS)

    Liu, P.; Teng, C.; Mori, N.

    Freak waves, sometimes also known as rogue waves, are a particular kind of ocean waves that displays a singular, unexpected, and unusually high wave profile with an extraordinarily large and steep trough or crest. The existence of freak waves has be- come widely accepted while it always poses severe hazard to the navy fleets, merchant marines, offshore structures, and virtually all oceanic ventures. Multitudes of seagoing vessels and mariners have encountered freak waves over the years, many had resulted in disasters. The emerging interest in freak waves and the quest to grasp an understand- ing of the phenomenon have inspired numerous theoretical conjectures in recent years. But the practical void of actual field observation on freak waves renders even the well- developed theories remain unverified. Furthermore, the present wave measurement systems, which have been in practice for the last 5 decades, are not at all designed to capture freak waves. We wish therefore to propose and petition to all oceanic scientist and engineers to consider undertaking an unprecedented but technologically feasible practice of making continuous and uninterrupted wave measurements. As freak waves can happen anywhere in the ocean and at anytime, the continuous and uninterrupted measurements at a fixed station would certainly be warranted to document the occur- rence of freak waves, if present, and thus lead to basic realizations of the underlying driving mechanisms.

  17. Investigation of Pressurized Wave Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    2003-01-01

    The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.

  18. Millimeter wave detection of nuclear radiation: an alternative detection mechanism.

    PubMed

    Gopalsami, N; Chien, H T; Heifetz, A; Koehl, E R; Raptis, A C

    2009-08-01

    We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.

  19. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhen; Gao, Fei; Zhang, Baile, E-mail: blzhang@ntu.edu.sg

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find usemore » in the design of integrated surface-wave devices with suppressed crosstalk.« less

  20. Progress towards 3-cell superconducting traveling wave cavity cryogenic test

    NASA Astrophysics Data System (ADS)

    Kostin, R.; Avrakhov, P.; Kanareykin, A.; Yakovlev, V.; Solyak, N.

    2017-12-01

    This paper describes a superconducting L-band travelling wave cavity for electron linacs as an alternative to the 9-cell superconducting standing wave Tesla type cavity. A superconducting travelling wave cavity may provide 20-40% higher accelerating gradient by comparison with conventional cavities. This feature arises from an opportunity to use a smaller phase advance per cell which increases the transit time factor and affords the opportunity to use longer cavities because of its significantly smaller sensitivity to manufacturing errors. Two prototype superconducting travelling wave cavities were designed and manufactured for a high gradient travelling wave demonstration at cryogenic temperature. This paper presents the main milestones achieved towards this test.

  1. Smooth bridge between guided waves and spoof surface plasmon polaritons.

    PubMed

    Liu, Liangliang; Li, Zhuo; Gu, Changqing; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Yan, Jian; Niu, Zhenyi; Zhao, Yongjiu

    2015-04-15

    In this work, we build a smooth bridge between a coaxial waveguide and a plasmonic waveguide with subwavelength periodically cylindrical radial grooves, to realize high-efficiency mode conversion between conventional guided waves and spoof surface plasmon polaritons in broadband. This bridge consists of a flaring coaxial waveguide connected with a metal cylindrical wire corrugated with subwavelength gradient radial grooves. Experimental results of the transmission and reflection coefficients show excellent agreement with the numerical simulations. The proposed scheme can be extended readily to other bands and the bridge structure can find potential applications in the integration of conventional microwave or terahertz devices with plasmonic circuits.

  2. Intermode Breather Solitons in Optical Microresonators

    NASA Astrophysics Data System (ADS)

    Guo, Hairun; Lucas, Erwan; Pfeiffer, Martin H. P.; Karpov, Maxim; Anderson, Miles; Liu, Junqiu; Geiselmann, Michael; Jost, John D.; Kippenberg, Tobias J.

    2017-10-01

    Dissipative solitons can be found in a variety of systems resulting from the double balance between dispersion and nonlinearity, as well as gain and loss. Recently, they have been observed to spontaneously form in Kerr nonlinear microresonators driven by a continuous wave laser, providing a compact source of coherent optical frequency combs. As optical microresonators are commonly multimode, intermode interactions, which give rise to avoided mode crossings, frequently occur and can alter the soliton properties. Recent works have shown that avoided mode crossings cause the soliton to acquire a single-mode dispersive wave, a recoil in the spectrum, or lead to soliton decay. Here, we show that avoided mode crossings can also trigger the formation of breather solitons, solitons that undergo a periodic evolution in their amplitude and duration. This new breather soliton, referred to as an intermode breather soliton, occurs within a laser detuning range where conventionally stationary (i.e., stable) dissipative Kerr solitons are expected. We experimentally demonstrate the phenomenon in two microresonator platforms (crystalline magnesium fluoride and photonic chip-based silicon nitride microresonators) and theoretically describe the dynamics based on a pair of coupled Lugiato-Lefever equations. We show that the breathing is associated with a periodic energy exchange between the soliton and a second optical mode family, a behavior that can be modeled by a response function acting on dissipative solitons described by the Lugiato-Lefever model. The observation of breathing dynamics in the conventionally stable soliton regime is relevant to applications in metrology such as low-noise microwave generation, frequency synthesis, or spectroscopy.

  3. A Locally Modal B-Spline Based Full-Vector Finite-Element Method with PML for Nonlinear and Lossy Plasmonic Waveguide

    NASA Astrophysics Data System (ADS)

    Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan

    2016-09-01

    In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.

  4. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    PubMed

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  5. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    PubMed Central

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188

  6. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  7. Long period gratings in multimode optical fibers: application in chemical sensing

    NASA Astrophysics Data System (ADS)

    Thomas Lee, S.; Dinesh Kumar, R.; Suresh Kumar, P.; Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.

    2003-09-01

    We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.

  8. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  9. Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

    DOE PAGES

    Xiao, Fuliang; Zhou, Qinghua; He, Yihua; ...

    2015-09-11

    During the small storm on 14–15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then graduallymore » cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.« less

  10. Directed search for continuous gravitational waves from the Galactic center

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-11-01

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.

  11. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun

    2017-11-01

    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  12. Recent searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Riles, Keith

    2017-12-01

    Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.

  13. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    PubMed

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  14. Comparisons between conventional optical imaging and parametric indirect microscopic imaging on human skin detection

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.

  15. Cosine beamforming

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Wapenaar, Kees

    2014-05-01

    In various application areas, e.g., seismology, astronomy and geodesy, arrays of sensors are used to characterize incoming wavefields due to distant sources. Beamforming is a general term for phased-adjusted summations over the different array elements, for untangling the directionality and elevation angle of the incoming waves. For characterizing noise sources, beamforming is conventionally applied with a temporal Fourier and a 2D spatial Fourier transform, possibly with additional weights. These transforms become aliased for higher frequencies and sparser array-element distributions. As a partial remedy, we derive a kernel for beamforming crosscorrelated data and call it cosine beamforming (CBF). By applying beamforming not directly to the data, but to crosscorrelated data, the sampling is effectively increased. We show that CBF, due to this better sampling, suffers less from aliasing and yields higher resolution than conventional beamforming. As a flip-side of the coin, the CBF output shows more smearing for spherical waves than conventional beamforming.

  16. Superposition of polarized waves at layered media: theoretical modeling and measurement

    NASA Astrophysics Data System (ADS)

    Finkele, Rolf; Wanielik, Gerd

    1997-12-01

    The detection of ice layers on road surfaces is a crucial requirement for a system that is designed to warn vehicle drivers of hazardous road conditions. In the millimeter wave regime at 76 GHz the dielectric constant of ice and conventional road surface materials (i.e. asphalt, concrete) is found to be nearly similar. Thus, if the layer of ice is very thin and thus is of the same shape of roughness as the underlying road surface it cannot be securely detected using conventional algorithmic approaches. The method introduced in this paper extents and applies the theoretical work of Pancharatnam on the superposition of polarized waves. The projection of the Stokes vectors onto the Poincare sphere traces a circle due to the variation of the thickness of the ice layer. The paper presents a method that utilizes the concept of wave superposition to detect this trace even if it is corrupted by stochastic variation due to rough surface scattering. Measurement results taken under real traffic conditions prove the validity of the proposed algorithms. Classification results are presented and the results discussed.

  17. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  18. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    NASA Astrophysics Data System (ADS)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  19. New micro waveforms firstly recorded on electrocardiogram in human.

    PubMed

    Liu, Renguang; Chang, Qinghua; Chen, Juan

    2015-10-01

    In our study, not only the P-QRS-T waves but also the micro-wavelets before QRS complex (in P wave and PR segment) and after QRS complex (ST segment and upstroke of T wave) were first to be identified on surface electrocardiogram in human by the "new electrocardiogram" machine (model PHS-A10) according to conventional 12-lead electrocardiogram connection methods. By comparison to the conventional electrocardiogram in 100 cases of healthy individuals and several patients with arrhythmias, we have found that the wavelets before P wave theoretically reflected electrical activity of sinus node and the micro-wavelets before QRS complex may be related to atrioventricular conduction system (atrioventricular node, His bundle and bundle branch) potentials. Noninvasive atrioventricular node and His bundle potential tracing will contribute to differentiation of the origin of wide QRS and the location of the atrioventricular block. We also have found that the wavelets after QRS complex may be associated with phase 2 and 3 repolarization of ventricular action potential, which will further reveal ventricular repolarization changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sensitivity enhancement of traveling wave MRI using free local resonators: an experimental demonstration.

    PubMed

    Zhang, Xiaoliang

    2017-04-01

    Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo . This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.

  1. Investigation of the continuous flow of the sample solution on the performance of electromembrane extraction: Comparison with conventional procedure.

    PubMed

    Nojavan, Saeed; Sirani, Mahsa; Asadi, Sakine

    2017-10-01

    In this study, electromembrane extraction from a flowing sample solution, termed as continuous-flow electromembrane extraction, was developed and compared with conventional procedures for the determination of four basic drugs in real samples. Experimental parameters affecting the extraction efficiency were further studied and optimized. Under optimum conditions, linearity of continuous-flow procedure was within 8.0-500 ng/mL, while it was wider for conventional procedures (2.0-500 ng/mL). Moreover, repeatability (percentage relative standard deviation) was found to range between 5.6 and 10.4% (n = 3) for the continuous-flow procedure, with a better repeatability than that of conventional procedures (2.3-5.5% (n = 3)). Also, for the continuous-flow procedure, the estimated detection limit (signal-to-noise ratio = 3) was less than 2.4 ng/mL and extraction recoveries were within 8-10%, while the corresponding figures for conventional procedures were less than 0.6 ng/mL and 42-60%, respectively. Thus, the results showed that both continuous flow and conventional procedures were applicable for the extraction of model compounds. However, the conventional procedure was more convenient to use, and thus it was applied to determine sample drugs in real urine and wastewater samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates

    NASA Astrophysics Data System (ADS)

    Ashton, G.; Prix, R.

    2018-05-01

    Leveraging Markov chain Monte Carlo optimization of the F statistic, we introduce a method for the hierarchical follow-up of continuous gravitational wave candidates identified by wide-parameter space semicoherent searches. We demonstrate parameter estimation for continuous wave sources and develop a framework and tools to understand and control the effective size of the parameter space, critical to the success of the method. Monte Carlo tests of simulated signals in noise demonstrate that this method is close to the theoretical optimal performance.

  3. Automated laser-based barely visible impact damage detection in honeycomb sandwich composite structures

    NASA Astrophysics Data System (ADS)

    Girolamo, D.; Girolamo, L.; Yuan, F. G.

    2015-03-01

    Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies.

  4. A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere

    PubMed Central

    Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing

    2008-01-01

    The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865

  5. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  6. Atomic collisions in the presence of laser radiation - Time dependence and the asymptotic wave function

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1982-01-01

    A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.

  7. Chirp optical coherence tomography of layered scattering media.

    PubMed

    Haberland, U H; Blazek, V; Schmitt, H J

    1998-07-01

    A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.

  8. Epilepsy with myoclonic absences.

    PubMed Central

    Manonmani, V; Wallace, S J

    1994-01-01

    The cases are described of eight children, five of them girls, who had epilepsy with myoclonic absences. The mean age of onset was 4.9 years. Brief episodes of loss of awareness with bilateral clonic jerking of the upper limbs were associated with rhythmic 3 cycles/second spike-wave discharges on electroencephalogram. Generalised tonic-clonic or astatic seizures, or both, also occurred in seven patients. All now have learning difficulties, and seven have behavioural problems. Conventional treatment for absences was effective in only two children. Of six patients treated with lamotrigine, five have improved substantially, but only one is in sustained complete remission. One recently diagnosed patient continues to have frequent myoclonic absences. As the response to treatment and long term outcome are much poorer, it is important to differentiate myoclonic absences from typical childhood absence epilepsy. PMID:8185360

  9. ISTC projects devoted to improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yu. I.

    2007-05-01

    Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  10. CommServer: A Communications Manager For Remote Data Sites

    NASA Astrophysics Data System (ADS)

    Irving, K.; Kane, D. L.

    2012-12-01

    CommServer is a software system that manages making connections to remote data-gathering stations, providing a simple network interface to client applications. The client requests a connection to a site by name, and the server establishes the connection, providing a bidirectional channel between the client and the target site if successful. CommServer was developed to manage networks of FreeWave serial data radios with multiple data sites, repeaters, and network-accessed base stations, and has been in continuous operational use for several years. Support for Iridium modems using RUDICS will be added soon, and no changes to the application interface are anticipated. CommServer is implemented on Linux using programs written in bash shell, Python, Perl, AWK, under a set of conventions we refer to as ThinObject.

  11. Detection of undistorted continuous wave (CW) electron paramagnetic resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the magnetic field

    PubMed Central

    Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.

    2011-01-01

    A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868

  12. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  13. The Ultimate Pile Bearing Capacity from Conventional and Spectral Analysis of Surface Wave (SASW) Measurements

    NASA Astrophysics Data System (ADS)

    Faizah Bawadi, Nor; Anuar, Shamilah; Rahim, Mustaqqim A.; Mansor, A. Faizal

    2018-03-01

    A conventional and seismic method for determining the ultimate pile bearing capacity was proposed and compared. The Spectral Analysis of Surface Wave (SASW) method is one of the non-destructive seismic techniques that do not require drilling and sampling of soils, was used in the determination of shear wave velocity (Vs) and damping (D) profile of soil. The soil strength was found to be directly proportional to the Vs and its value has been successfully applied to obtain shallow bearing capacity empirically. A method is proposed in this study to determine the pile bearing capacity using Vs and D measurements for the design of pile and also as an alternative method to verify the bearing capacity from the other conventional methods of evaluation. The objectives of this study are to determine Vs and D profile through frequency response data from SASW measurements and to compare pile bearing capacities obtained from the method carried out and conventional methods. All SASW test arrays were conducted near the borehole and location of conventional pile load tests. In obtaining skin and end bearing pile resistance, the Hardin and Drnevich equation has been used with reference strains obtained from the method proposed by Abbiss. Back analysis results of pile bearing capacities from SASW were found to be 18981 kN and 4947 kN compared to 18014 kN and 4633 kN of IPLT with differences of 5% and 6% for Damansara and Kuala Lumpur test sites, respectively. The results of this study indicate that the seismic method proposed in this study has the potential to be used in estimating the pile bearing capacity.

  14. Wave rotor-enhanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.

    1995-01-01

    The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.

  15. Hydrodynamics of the double-wave structure of insect spermatozoa flagella

    PubMed Central

    Pak, On Shun; Spagnolie, Saverio E.; Lauga, Eric

    2012-01-01

    In addition to conventional planar and helical flagellar waves, insect sperm flagella have also been observed to display a double-wave structure characterized by the presence of two superimposed helical waves. In this paper, we present a hydrodynamic investigation of the locomotion of insect spermatozoa exhibiting the double-wave structure, idealized here as superhelical waves. Resolving the hydrodynamic interactions with a non-local slender body theory, we predict the swimming kinematics of these superhelical swimmers based on experimentally collected geometric and kinematic data. Our consideration provides insight into the relative contributions of the major and minor helical waves to swimming; namely, propulsion is owing primarily to the minor wave, with negligible contribution from the major wave. We also explore the dependence of the propulsion speed on geometric and kinematic parameters, revealing counterintuitive results, particularly for the case when the minor and major helical structures are of opposite chirality. PMID:22298815

  16. Use of an ultrasonic-acoustic technique for nondestructive evaluation of fiber composite strength

    NASA Technical Reports Server (NTRS)

    Vary, A.; Bowles, K. J.

    1978-01-01

    Details of the method used to measure the stress wave factor are described. Frequency spectra of the stress waves are analyzed in order to clarify the nature of the wave phenomena involved. The stress wave factor was measured with simple contact probes requiring only one-side access to a part. This is beneficial in nondestructive evaluations because the waves can run parallel to fiber directions and thus measure material properties in directions assumed by actual loads. The technique can be applied where conventional through transmission techniques are impractical or where more quantitative data are required. The stress wave factor was measured for a series of graphite/polyimide composite panels, and results obtained are compared with through transmission immersion ultrasonic scans.

  17. Detonation wave augmentation of gas turbines

    NASA Technical Reports Server (NTRS)

    Wortman, A.

    1984-01-01

    The results of a feasibility study that examined the effects of using detonation waves to augment the performance of gas turbines are reported. The central ideas were to reduce compressor requirements and to maintain high performance in jet engines. Gasdynamic equations were used to model the flows associated with shock waves generated by the detonation of fuel in detonator tubes. Shock wave attenuation to the level of Mach waves was found possible, thus eliminating interference with the compressor and the necessity of valves and seals. A preliminary parametric study of the performance of a compressor working at a 4:1 ratio in a conceptual design of a detonation wave augmented jet engine in subsonic flight indicated a clear superiority over conventional designs in terms of fuel efficiency and thrust.

  18. Contactless measurement of electrical conductivity of semiconductor wafers using the reflection of millimeter waves

    NASA Astrophysics Data System (ADS)

    Ju, Yang; Inoue, Kojiro; Saka, Masumi; Abe, Hiroyuki

    2002-11-01

    We present a method for quantitative measurement of electrical conductivity of semiconductor wafers in a contactless fashion by using millimeter waves. A focusing sensor was developed to focus a 110 GHz millimeter wave beam on the surface of a silicon wafer. The amplitude and the phase of the reflection coefficient of the millimeter wave signal were measured by which electrical conductivity of the wafer was determined quantitatively, independent of the permittivity and thickness of the wafers. The conductivity obtained by this method agrees well with that measured by the conventional four-point-probe method.

  19. Geology and oil and gas assessment of the Mancos-Menefee Composite Total Petroleum System: Chapter 4 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    Ridgley, J.L.; Condon, S.M.; Hatch, J.R.

    2013-01-01

    Eight assessment units were defined in the Mancos-Menefee Composite TPS. Of the eight assessment units, four were assessed as conventional oil or gas accumulations and four as continuous-type accumulations. The conventional assessment units are Dakota-Greenhorn Conventional Oil and Gas Assessment Unit (AU), Gallup Sandstone Conventional Oil and Gas AU, Mancos Sandstones Conventional Oil AU, and the Mesaverde Updip Conventional Oil AU. Continuous-type assessments are Dakota-Greenhorn Continuous Gas AU, Mancos Sandstones Continuous Gas AU, Mesaverde Central-Basin Continuous Gas AU, and Menefee Coalbed Gas AU. The Mesaverde Updip Conventional AU was not quantitatively assessed for undiscovered oil and gas resources, because the producing oil fields were smaller than the 0.5 million barrel cutoff, and the potential of finding fields above this cutoff was considered to be low. Total oil resources that have the potential for additions to reserves in the next 30 years are estimated at a mean of 16.78 million barrels. Most of this resource will come from reservoirs in the Mancos Sandstones Oil AU. Gas resources that have the potential for additions to reserves in the next 30 years are estimated at a mean of 11.11 trillion cubic feet of gas (TCFG). Of this amount, 11.03 TCFG will come from continuous gas accumulations; the remainder will be gas associated with oil in conventional accumulations.Total natural gas liquids (NGL) that have the potential for additions to reserves in the next 30 years are estimated at a mean of 99.86 million barrels. Of this amount, 96.95 million barrels will come from the continuous gas assessment units, and 78.3 percent of this potential resource will come from the Mancos Sandstones Continuous Gas AU.

  20. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population.

    PubMed

    Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya

    2018-04-18

    We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.

  1. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    NASA Astrophysics Data System (ADS)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs and T of conventional climatology in both satellite and VOS data collections. It can be treated as an effect of interaction of wind-driven seas and swell on global scales as it was stated in [2]. Further study combining the alternative and conventional climatologies can help to detail this important dynamical effect of global wave dynamics. The progress in satellite data processing and their physical interpretation is of great value for such study. The work was supported by Russian Foundation for Basic Research grant 11-05-01114-a and the Russian government contracts No.11.G34.31.0035, No.11.G34.31.0078. References [1] S. I. Badulin, A. V. Babanin, D. Resio, and V. Zakharov. Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591:339-378, 2007. [2] S. I. Badulin and Grigorieva V. G. On discriminating swell and wind-driven seas in voluntary observing ship data. J. Geophys. Res., 117(C00J29), 2012. [3] S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov. Self-similarity of wind-driven seas. Nonl. Proc. Geophys., 12:891-946, 2005. [4] E. Gagnaire-Renou, M. Benoit, and S. I. Badulin. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669:178-213, 2011. [5] S. K. Gulev, V. Grigorieva, A. Sterl, and D. Woolf. Assessment for the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys. Res. - Oceans, 108(C7):3236, doi:10,1029/2002JC001437, 2003.

  2. Cross-correlation analysis of pulse wave propagation in arteries: in vitro validation and in vivo feasibility

    NASA Astrophysics Data System (ADS)

    Nauleau, Pierre; Apostolakis, Iason; McGarry, Matthew; Konofagou, Elisa

    2018-06-01

    The stiffness of the arteries is known to be an indicator of the progression of various cardiovascular diseases. Clinically, the pulse wave velocity (PWV) is used as a surrogate for arterial stiffness. Pulse wave imaging (PWI) is a non-invasive, ultrasound-based imaging technique capable of mapping the motion of the vessel walls, allowing the local assessment of arterial properties. Conventionally, a distinctive feature of the displacement wave (e.g. the 50% upstroke) is tracked across the map to estimate the PWV. However, the presence of reflections, such as those generated at the carotid bifurcation, can bias the PWV estimation. In this paper, we propose a two-step cross-correlation based method to characterize arteries using the information available in the PWI spatio-temporal map. First, the area under the cross-correlation curve is proposed as an index for locating the regions of different properties. Second, a local peak of the cross-correlation function is tracked to obtain a less biased estimate of the PWV. Three series of experiments were conducted in phantoms to evaluate the capabilities of the proposed method compared with the conventional method. In the ideal case of a homogeneous phantom, the two methods performed similarly and correctly estimated the PWV. In the presence of reflections, the proposed method provided a more accurate estimate than conventional processing: e.g. for the soft phantom, biases of  ‑0.27 and ‑0.71 m · s–1 were observed. In a third series of experiments, the correlation-based method was able to locate two regions of different properties with an error smaller than 1 mm. It also provided more accurate PWV estimates than conventional processing (biases:  ‑0.12 versus ‑0.26 m · s–1). Finally, the in vivo feasibility of the proposed method was demonstrated in eleven healthy subjects. The results indicate that the correlation-based method might be less precise in vivo but more accurate than the conventional method.

  3. Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.

    PubMed

    Stothard, David J M; Dunn, Malcolm H

    2010-01-18

    We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaesun, E-mail: jaesun@pusan.ac.kr, E-mail: jpp@pusan.ac.kr; Park, Junpil, E-mail: jaesun@pusan.ac.kr, E-mail: jpp@pusan.ac.kr; Cho, Younho, E-mail: mechcyh@pusan.ac.kr

    The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundarymore » conditions and the experimental result shows a possibility of the defect detection on J-groove weld.« less

  5. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  6. Theory of disordered unconventional superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keles, A.; Andreev, A. V.; Spivak, B. Z., E-mail: spivak@uw.edu

    In contrast to conventional s-wave superconductivity, unconventional (e.g., p- or d-wave) superconductivity is strongly suppressed even by relatively weak disorder. Upon approaching the superconductormetal transition, the order parameter amplitude becomes increasingly inhomogeneous, leading to effective granularity and a phase ordering transition described by the Mattis model of spin glasses. One consequence of this is that at sufficiently low temperatures, between the clean unconventional superconducting and the diffusive metallic phases, there is necessarily an intermediate superconducting phase that exhibits s-wave symmetry on macroscopic scales.

  7. Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.

    ERIC Educational Resources Information Center

    Branson, David

    1979-01-01

    Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)

  8. Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2017-12-01

    We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of the upward flow around the equator and global antisunward convection, is the result of such coupling of the high-latitude and the low-latitude/equatorial ionosphere, and the requirement of the flow continuity, instead of mechanisms such as the penetration electric field.

  9. Picture of the global field of quasi-monochromatic gravity waves observed by stratospheric balloons and MST radars

    NASA Technical Reports Server (NTRS)

    Yamanaka, M. D.

    1989-01-01

    In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.

  10. Gas dynamics in strong centrifugal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V.

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarizedmore » along the rotational axis having the smallest dumping due to the viscosity.« less

  11. The Relationship of Dysthymia, Minor Depression, and Gender to Changes in Smoking for Current and Former Smokers: Longitudinal Evaluation in the U.S. Population

    PubMed Central

    Weinberger, Andrea H.; Pilver, Corey E.; Desai, Rani A.; Mazure, Carolyn M.; McKee, Sherry A.

    2012-01-01

    BACKGROUND Although data clearly link major depression and smoking, little is known about the association between dysthymia and minor depression and smoking behavior. The current study examined changes in smoking over three years for current and former smokers with and without dysthymia and minor depression. METHODS Participants who were current or former daily cigarette smokers at Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions and completed the Wave 2 assessment were included in these analyses (n=11,973; 46% female). Analyses examined the main and gender-specific effects of current dysthymia, lifetime dysthymia, and minor depression (a single diagnostic category that denoted current and or lifetime prevalence) on continued smoking for Wave 1 current daily smokers and continued abstinence for Wave 1 former daily smokers. RESULTS Wave 1 current daily smokers with current dysthymia (OR=2.13, 95% CI=1.23, 3.70) or minor depression (OR=1.53, 95% CI=1.07, 2.18) were more likely than smokers without the respective diagnosis to report continued smoking at Wave 2. Wave 1 former daily smokers with current dysthymia (OR=0.44, 95% CI=0.20, 0.96) and lifetime dysthymia (OR=0.37, 95% CI=0.15, 0.91) were less likely than those without the diagnosis to remain abstinent from smoking at Wave 2. The gender-by-diagnosis interactions were not significant, suggesting that the impact of dysthymia and minor depression on smoking behavior is similar among men and women. CONCLUSIONS Current dysthymia and minor depression are associated with a greater likelihood of continued smoking; current and lifetime dysthymia are associated with a decreased likelihood of continued smoking abstinence. PMID:22809897

  12. The relationship of dysthymia, minor depression, and gender to changes in smoking for current and former smokers: longitudinal evaluation in the U.S. population.

    PubMed

    Weinberger, Andrea H; Pilver, Corey E; Desai, Rani A; Mazure, Carolyn M; McKee, Sherry A

    2013-01-01

    Although data clearly link major depression and smoking, little is known about the association between dysthymia and minor depression and smoking behavior. The current study examined changes in smoking over 3 years for current and former smokers with and without dysthymia and minor depression. Participants who were current or former daily cigarette smokers at Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions and completed the Wave 2 assessment were included in these analyses (n=11,973; 46% female). Analyses examined the main and gender-specific effects of current dysthymia, lifetime dysthymia, and minor depression (a single diagnostic category that denoted current and/or lifetime prevalence) on continued smoking for Wave 1 current daily smokers and continued abstinence for Wave 1 former daily smokers. Wave 1 current daily smokers with current dysthymia (OR=2.13, 95% CI=1.23, 3.70) or minor depression (OR=1.53, 95% CI=1.07, 2.18) were more likely than smokers without the respective diagnosis to report continued smoking at Wave 2. Wave 1 former daily smokers with current dysthymia (OR=0.44, 95% CI=0.20, 0.96) and lifetime dysthymia (OR=0.37, 95% CI=0.15, 0.91) were less likely than those without the diagnosis to remain abstinent from smoking at Wave 2. The gender-by-diagnosis interactions were not significant, suggesting that the impact of dysthymia and minor depression on smoking behavior is similar among men and women. Current dysthymia and minor depression are associated with a greater likelihood of continued smoking; current and lifetime dysthymia are associated with a decreased likelihood of continued smoking abstinence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Tunable femtosecond lasers with low pump thresholds

    NASA Astrophysics Data System (ADS)

    Oppo, Karen

    The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.

  14. 2-micrometer continuous wave laser treatment for multiple non-muscle-invasive bladder cancer with intravesical instillation of epirubicin.

    PubMed

    Liu, Haitao; Xue, Song; Ruan, Yuan; Sun, Xiaowen; Han, Bangmin; Xia, Shujie

    2011-01-01

    We have reported the efficacy and safety of 2-micrometer continuous wave laser resection of non-muscle-invasive bladder tumor (NMIVBC) (World J Urology 2010;28:157-161). In this study, we evaluated the use of 2-micrometer continuous wave laser resection in combination with intravesical instillation of epirubicin for the treatment of multiple NMIVBC. From September 2007 to April 2008, sixty patients with multiple NMIVBC were included in this study (44 cases of low grade papillary urothelial carcinoma, 10 cases of high grade papillary urothelial carcinoma, and six cases of papillary urothelial neoplasm with low malignant potential). Imaging examinations including pelvic computer tomography (CT) and intravenous urography showed no extravesical extension, lymphatic metastasis or any lesions of upper urinary tract. All patients received 2-micrometer continuous wave laser therapy under continuous epidural anesthesia, and intravesical chemotherapy with epirubicin 1 week later (intravesical instillation weekly for 8 weeks, followed by monthly maintenance to 12 months). Totally 211 tumors in 60 patients were successfully removed with 2-micrometer continuous wave laser. The mean operation time was 48 minutes per patient (ranged 20-90 minutes) and 13.6 minutes per tumor (range 5-25 minutes). No obturator nerve reflection or bladder perforation occurred during the procedure. All patients finished 12 months of intravesical chemotherapy without severe complications. The mean followed-up time was 23 months. Tumor recurrences were found in 13 patients (22%). The combination of 2-micrometer continuous wave laser and intravesical chemotherapy is feasible, safe, and efficacious for the treatment of multiple NMIVBC. Copyright © 2011 Wiley-Liss, Inc.

  15. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.

    PubMed

    Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael

    2011-02-01

    The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r² = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.

  16. The use of the multiwavelet transform for the estimation of surface wave group and phase velocities and their associated uncertainties

    NASA Astrophysics Data System (ADS)

    Poppeliers, C.; Preston, L. A.

    2017-12-01

    Measurements of seismic surface wave dispersion can be used to infer the structure of the Earth's subsurface. Typically, to identify group- and phase-velocity, a series of narrow-band filters are applied to surface wave seismograms. Frequency dependent arrival times of surface waves can then be identified from the resulting suite of narrow band seismograms. The frequency-dependent velocity estimates are then inverted for subsurface velocity structure. However, this technique has no method to estimate the uncertainty of the measured surface wave velocities, and subsequently there is no estimate of uncertainty on, for example, tomographic results. For the work here, we explore using the multiwavelet transform (MWT) as an alternate method to estimate surface wave speeds. The MWT decomposes a signal similarly to the conventional filter bank technique, but with two primary advantages: 1) the time-frequency localization is optimized in regard to the time-frequency tradeoff, and 2) we can use the MWT to estimate the uncertainty of the resulting surface wave group- and phase-velocities. The uncertainties of the surface wave speed measurements can then be propagated into tomographic inversions to provide uncertainties of resolved Earth structure. As proof-of-concept, we apply our technique to four seismic ambient noise correlograms that were collected from the University of Nevada Reno seismic network near the Nevada National Security Site. We invert the estimated group- and phase-velocities, as well the uncertainties, for 1-D Earth structure for each station pair. These preliminary results generally agree with 1-D velocities that are obtained from inverting dispersion curves estimated from a conventional Gaussian filter bank.

  17. Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect.

    PubMed

    Brächer, T; Fabre, M; Meyer, T; Fischer, T; Auffret, S; Boulle, O; Ebels, U; Pirro, P; Gaudin, G

    2017-12-13

    The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co 8 Fe 72 B 20 /MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.

  18. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less

  19. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-05-01

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  20. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    PubMed

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  1. The local nanohertz gravitational-wave landscape from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.

    2017-12-01

    Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.

  2. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  3. Feasibility study for using an extended three-wave model to simulate plasma-based backward Raman amplification in one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wang, T.-L.; Michta, D.; Lindberg, R. R.; Charman, A. E.; Martins, S. F.; Wurtele, J. S.

    2009-12-01

    Results are reported of a one-dimensional simulation study comparing the modeling capability of a recently formulated extended three-wave model [R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007); Phys. Plasmas 15, 055911 (2008)] to that of a particle-in-cell (PIC) code, as well as to a more conventional three-wave model, in the context of the plasma-based backward Raman amplification (PBRA) [G. Shvets, N. J. Fisch, A. Pukhov et al., Phys. Rev. Lett. 81, 4879 (1998); V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999); Phys. Rev. Lett. 84, 1208 (2000)]. The extended three-wave model performs essentially as well as or better than a conventional three-wave description in all temperature regimes tested, and significantly better at the higher temperatures studied, while the computational savings afforded by the extended three-wave model make it a potentially attractive tool that can be used prior to or in conjunction with PIC simulations to model the kinetic effects of PBRA for nonrelativistic laser pulses interacting with underdense thermal plasmas. Very fast but reasonably accurate at moderate plasma temperatures, this model may be used to perform wide-ranging parameter scans or other exploratory analyses quickly and efficiently, in order to guide subsequent simulation via more accurate if intensive PIC techniques or other algorithms approximating the full Vlasov-Maxwell equations.

  4. A Novel DFT-Based DOA Estimation by a Virtual Array Extension Using Simple Multiplications for FMCW Radar

    PubMed Central

    Kim, Bongseok; Kim, Sangdong; Lee, Jonghun

    2018-01-01

    We propose a novel discrete Fourier transform (DFT)-based direction of arrival (DOA) estimation by a virtual array extension using simple multiplications for frequency modulated continuous wave (FMCW) radar. DFT-based DOA estimation is usually employed in radar systems because it provides the advantage of low complexity for real-time signal processing. In order to enhance the resolution of DOA estimation or to decrease the missing detection probability, it is essential to have a considerable number of channel signals. However, due to constraints of space and cost, it is not easy to increase the number of channel signals. In order to address this issue, we increase the number of effective channel signals by generating virtual channel signals using simple multiplications of the given channel signals. The increase in channel signals allows the proposed scheme to detect DOA more accurately than the conventional scheme while using the same number of channel signals. Simulation results show that the proposed scheme achieves improved DOA estimation compared to the conventional DFT-based method. Furthermore, the effectiveness of the proposed scheme in a practical environment is verified through the experiment. PMID:29758016

  5. Utilizing Multidimensional Measures of Race in Education Research: The Case of Teacher Perceptions

    PubMed Central

    Irizarry, Yasmiyn

    2015-01-01

    Education scholarship on race using quantitative data analysis consists largely of studies on the black-white dichotomy, and more recently, on the experiences of student within conventional racial/ethnic categories (white, Hispanic/Latina/o, Asian, black). Despite substantial shifts in the racial and ethnic composition of American children, studies continue to overlook the diverse racialized experiences for students of Asian and Latina/o descent, the racialization of immigration status, and the educational experiences of Native American students. This study provides one possible strategy for developing multidimensional measures of race using large-scale datasets and demonstrates the utility of multidimensional measures for examining educational inequality, using teacher perceptions of student behavior as a case in point. With data from the first grade wave of the Early Childhood Longitudinal Study, Kindergarten Cohort of 1998–1999, I examine differences in teacher ratings of Externalizing Problem Behaviors and Approaches to Learning across fourteen racialized subgroups at the intersections of race, ethnicity, and immigrant status. Results show substantial subgroup variation in teacher perceptions of problem and learning behaviors, while also highlighting key points of divergence and convergence within conventional racial/ethnic categories. PMID:26413559

  6. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak

    2018-02-01

    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  7. Comparison of the safety and efficacy of conventional monopolar and 2-micron laser transurethral resection in the management of multiple nonmuscle-invasive bladder cancer.

    PubMed

    Liu, H; Wu, J; Xue, S; Zhang, Q; Ruan, Y; Sun, X; Xia, S

    2013-08-01

    To compare the safety and efficacy of conventional monopolar transurethral resection of bladder tumour (TURBT) and 2-micron continuous-wave laser resection (2-µm laser) techniques in the management of multiple nonmuscle-invasive bladder cancer (NMIBC), and to investigate long-term effects on tumour recurrence. Patients with multiple NMIBC were randomized to receive TURBT or 2-µm laser in a nonblinded manner. All patients received intravesical chemotherapy with epirubicin (40 mg/40 ml) for 8 weeks, beginning 1 week after surgery, followed with monthly maintenance therapy for 12 months. Three-year follow-up data of preoperative, operative and postoperative management were recorded. In total, 120 patients were included: 56 in the TURBT group and 64 in the 2-µm laser group. Intra- and postoperative complications (including bladder perforation, bleeding and irritation) were less frequently observed in the 2-µm laser group compared with the TURBT group. There were no significant differences in first time to recurrence, overall recurrence or occurrence of urethral strictures. The 2-µm laser resection method was more effective than TURBT in reducing rates of intra- and postoperative complications, but offered no additional benefit regarding tumour recurrence.

  8. Utilizing Multidimensional Measures of Race in Education Research: The Case of Teacher Perceptions.

    PubMed

    Irizarry, Yasmiyn

    2015-10-01

    Education scholarship on race using quantitative data analysis consists largely of studies on the black-white dichotomy, and more recently, on the experiences of student within conventional racial/ethnic categories (white, Hispanic/Latina/o, Asian, black). Despite substantial shifts in the racial and ethnic composition of American children, studies continue to overlook the diverse racialized experiences for students of Asian and Latina/o descent, the racialization of immigration status, and the educational experiences of Native American students. This study provides one possible strategy for developing multidimensional measures of race using large-scale datasets and demonstrates the utility of multidimensional measures for examining educational inequality, using teacher perceptions of student behavior as a case in point. With data from the first grade wave of the Early Childhood Longitudinal Study, Kindergarten Cohort of 1998-1999, I examine differences in teacher ratings of Externalizing Problem Behaviors and Approaches to Learning across fourteen racialized subgroups at the intersections of race, ethnicity, and immigrant status. Results show substantial subgroup variation in teacher perceptions of problem and learning behaviors, while also highlighting key points of divergence and convergence within conventional racial/ethnic categories.

  9. A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method

    NASA Astrophysics Data System (ADS)

    Fu, Shubin; Gao, Kai

    2017-11-01

    Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.

  10. Assessment of Impact of Weight Loss on Left and Right Ventricular Functions and Value of Tissue Doppler Echocardiography in Obese Patients.

    PubMed

    Yuksel, Isa Oner; Akar Bayram, Nihal; Koklu, Erkan; Ureyen, Cagin Mustafa; Kucukseymen, Selcuk; Arslan, Sakir; Bozkurt, Engin

    2016-06-01

    In our study, we aimed to evaluate the effect of weight loss on left and right ventricular functions in obese patients. Thirty patients with a BMI greater than 30 kg/m(2) and without any exclusion criteria were included in the study. Left ventricular systolic and diastolic functions were assessed with conventional and tissue Doppler echocardiography (TDE). At the end of 3 months, echocardiographic examination was repeated in patients with weight loss for cardiac function evaluation and it was compared to the baseline echocardiographic parameters. At the end of 3 months of weight loss period, conventional Doppler echocardiography revealed an improvement in diastolic functions with an increase in mitral E-wave, a decrease in mitral A-wave and an increase in E/A ratio. Deceleration time and isovolumetric relaxation time were ascertained shortened and Tei index decreased. TDE showed an increase in left ventricular lateral wall systolic wave (Sm) and E-wave velocity (Em). Mitral septal annular isovolumetric acceleration time (IVA), Sm and Em, were found to be increased, whereas Tei index was ascertained reduced. Right ventricular tissue Doppler examination following weight loss revealed an increase in RV- IVA, RV-Sm, and RV-Em, and a decrease in Tei index. We disclosed that left ventricular structural changes and diastolic dysfunction occur in obese patients, and by weight loss, these abnormalities may be reversible which we demonstrated both by conventional and TDE. In addition, obesity might impair RV function as well, and we observed an enhancement in right ventricular functions by weight loss. © 2016, Wiley Periodicals, Inc.

  11. Evaluation of shear wave elastography for differential diagnosis of breast lesions: A new qualitative analysis versus conventional quantitative analysis.

    PubMed

    Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong

    2018-04-13

    To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.

  12. Clinical course of ICU patients with severe pandemic 2009 influenza A (H1N1) pneumonia: single center experience with proning and pressure release ventilation.

    PubMed

    Sundar, Krishna M; Thaut, Phillip; Nielsen, David B; Alward, William T; Pearce, Michael J

    2012-01-01

    A number of different modalities have been employed in addition to conventional ventilation to improve oxygenation in patients with severe 2009 pandemic influenza A (H1N1) pneumonia. Outcomes with ventilatory and rescue therapies for H1N1 influenza-related acute respiratory distress syndrome (ARDS) have been varied. A single intensive care unit (ICU) experience with management of laboratory-confirmed 2009 pandemic influenza A (H1N1) ARDS with a combination of proning and airway pressure release ventilation (APRV) is described. A retrospective review of medical records of ICU patients seen at Utah Valley Regional Medical Center during the first and second waves of the H1N1 influenza pandemic was done. Fourteen ICU patients were managed with invasive ventilation for 2009 pandemic influenza A (H1N1)-related ARDS. Hypoxemia refractory to conventional ventilation was noted in 11 of 14 patients despite application of APRV. Following proning in patients on APRV, improvement of hypoxemia and hemodynamic status was achieved. Only 2 of 11 patients on APRV and proning required continuous dialysis. Mortality in intubated patients receiving a combination of proning and APRV was 27.3% (3/11) with 2 of these dying during the first wave of the H1N1 influenza pandemic. In all, 3 of 11 patients on proning and APRV underwent tracheostomy, with 2 of these undergoing tube thoracostomy. ARDSnet fluid-conservative protocol was safely tolerated in 8 of 11 of the intubated patients following initiation of proning and APRV. Proning in combination with APRV provides improvement of hypoxemia with limitation of end-organ dysfunction and thereby facilitates recovery from severe 2009 pandemic influenza A (H1N1).

  13. Slump dominated upper slope reservoir facies, Intra Qua Iboe (Pliocene), Edop Field, offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, G.; Hermance, W.E.; Olaifa, J.O.

    An integration of sedimentologic and 3D seismic data provides a basis for unraveling complex depositional processes and sand distribution of the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Nearly 3,000 feet of conventional core was examined in interpreting slump/slide/debris flow, bottom current, turbidity current, pelagic/hemipelagic, wave and tide dominated facies. The IQI was deposited on an upper slope in close proximity to the shelf edge. Through time, as the shelf edge migrated seaward, deposition began with a turbidite channel dominated slope system (IQI 1 and 2) and progressed through a slump/debris flow dominated slope system (IQI 3,more » the principal reservoir) to a tide and wave dominated, collapsed shelf-edge deltaic system (IQI 4). Using seismic time slices and corresponding depositional facies in the core, a sandy {open_quotes}fairway{open_quotes} has been delineated in the IQI 3. Because of differences in stacking patterns of sandy and muddy slump intervals, seismic facies show: (1) both sheet-like and mounded external forms (geometries), and (2) parallel/continuous as well as chaotic/hummocky internal reflections. In wireline logs, slump facies exhibits blocky, coarsening-up, fining-up, and serrated motifs. In the absence of conventional core, slump facies may be misinterpreted and even miscorrelated because seismic facies and log motifs of slumps and debris flows tend to mimic properties of turbidite fan deposits. The slump dominated reservoir facies is composed of unconsolidated fine-grained sand. Thickness of individual units varies from 1 to 34 feet, but amalgamated intervals reach a thickness of up to 70 feet and apparently form connected sand bodies. Porosity commonly ranges from 20 to 35%. Horizontal permeability commonly ranges from 1,000 to 3,000 md.« less

  14. Electromagnetic waves in a topological insulator thin film stack: helicon-like wave mode and photonic band structure.

    PubMed

    Inoue, Jun-ichi

    2013-09-09

    We theoretically explore the electromagnetic modes specific to a topological insulator superlattice in which topological and conventional insulator thin films are stacked periodically. In particular, we obtain analytic formulas for low energy mode that corresponds to a helicon wave, as well as those for photonic bands. We illustrate that the system can be modeled as a stack of quantum Hall layers whose conductivity tensors alternately change signs, and then we analyze the photonic band structures. This subject is a natural extension of a previous study by Tselis et al., which took into consideration a stack of identical quantum Hall layers but their discussion was limited into a low energy mode. Thus we provide analytic formulas for photonic bands and compare their features between the two systems. Our central findings in the topological insulator superlattice are that a low energy mode corresponding to a helicon wave has linear dispersion instead of the conventional quadratic form, and that a robust gapless photonic band appears although the system considered has spacial periodicity. In addition, we demonstrate that the photonic bands agree with the numerically calculated transmission spectra.

  15. Spacetime representation of topological phononics

    NASA Astrophysics Data System (ADS)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  16. Analysis of sound propagation in ducts using the wave envelope concept

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1974-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.

  17. How tides get dissipated in Saturn? A question probably answerable by Cassni

    NASA Astrophysics Data System (ADS)

    Luan, Jing

    2017-06-01

    Tidal dissipation inside a giant planet is important in understanding the orbital evolutions of its natural satellites and perhaps some of the extrasolar giant planets. The tidal dissipation is conventionally parameterized by the tidal quality factor, Q. The corresponding tidal torque declines rapidly with distance adopting constant Q. However, the current fast migration rates of some Saturnian satellites reported by Lainey et al. (2015) conflict this conventional conceptual belief. Alternatively, resonance lock between a satellite and an internal oscillation mode or wave of Saturn, proposed by Fuller et al. (2016), could naturally match the observational migration rates. However, the question still remains to be answered what type of mode or wave is locked with each satellite. There are two candidates for resonance lock, one is gravity mode, and the other is inertial wave attractor. They generate very different gravity acceleration anomaly near the surface of Saturn, which may be distinguishable by the data to be collected by Cassini during its proximal orbits between April and September, 2017. Indicative information about the interior of Saturn may be extracted since the existence of both gravity mode and inertial wave attractor depends on the internal structure of Saturn.

  18. Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Rizzo, F.J.

    1997-08-01

    In this paper, the composite boundary integral equation (BIE) formulation is applied to scattering of elastic waves from thin shapes with small but {ital finite} thickness (open cracks or thin voids, thin inclusions, thin-layer interfaces, etc.), which are modeled with {ital two surfaces}. This composite BIE formulation, which is an extension of the Burton and Miller{close_quote}s formulation for acoustic waves, uses a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the conventional BIE, as well as the hypersingular BIE, will degenerate (or nearly degenerate) if they are applied {ital individually} on the two surfaces. Themore » composite BIE formulation, however, will not degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed to compute these nearly singular integrals. Numerical examples of elastic waves scattered from penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the composite BIE formulation. {copyright} {ital 1997 Acoustical Society of America.}« less

  19. Linear solutions to metamaterial volume hologram design using a variational approach.

    PubMed

    Marks, Daniel L; Smith, David R

    2018-04-01

    Multiplex volume holograms are conventionally constructed by the repeated exposure of a photosensitive medium to a sequence of external fields, each field typically being the superposition of a reference wave that reconstructs the hologram and the other being a desired signal wave. Because there are no sources of radiation internal to the hologram, the pattern of material modulation is limited to the solutions to Helmholtz's equation in the medium. If the three-dimensional structure of the medium could be engineered at each point rather than limited to the patterns produced by standing waves, more versatile structures may result that can overcome the typical limitations to hologram dynamic range imposed by sequentially superimposing holograms. Metamaterial structures and other synthetic electromagnetic materials offer the possibility of achieving high medium contrast engineered at the subwavelength scale. By posing the multiplex volume holography problem as a linear medium design problem, we explore the potential improvements that such engineered synthetic media may provide over conventional multiplex volume holograms.

  20. A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo

    2016-09-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.

  1. Sea of Majorana fermions from pseudo-scalar superconducting order in three dimensional Dirac materials.

    PubMed

    Salehi, Morteza; Jafari, S A

    2017-08-15

    We suggest that spin-singlet pseudo-scalar s-wave superconducting pairing creates a two dimensional sea of Majorana fermions on the surface of three dimensional Dirac superconductors (3DDS). This pseudo-scalar superconducting order parameter Δ 5 , in competition with scalar Dirac mass m, leads to a topological phase transition due to band inversion. We find that a perfect Andreev-Klein reflection is guaranteed by presence of anomalous Andreev reflection along with the conventional one. This effect manifests itself in a resonant peak of the differential conductance. Furthermore, Josephson current of the Δ 5 |m|Δ 5 junction in the presence of anomalous Andreev reflection is fractional with 4π period. Our finding suggests another search area for condensed matter realization of Majorana fermions which are beyond the vortex-core of p-wave superconductors. The required Δ 5 pairing can be extrinsically induced by a conventional s-wave superconductor into a three dimensional Dirac material (3DDM).

  2. Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique

    NASA Technical Reports Server (NTRS)

    Berger, H.

    1967-01-01

    Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.

  3. Continuous monitoring of Hawaiian volcanoes with thermal cameras

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.

    2014-01-01

    Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.

  4. Blast induced mild traumatic brain injury/concussion: A physical analysis

    NASA Astrophysics Data System (ADS)

    Kucherov, Yan; Hubler, Graham K.; DePalma, Ralph G.

    2012-11-01

    Currently, a consensus exists that low intensity non-impact blast wave exposure leads to mild traumatic brain injury (mTBI). Considerable interest in this "invisible injury" has developed in the past few years but a disconnect remains between the biomedical outcomes and possible physical mechanisms causing mTBI. Here, we show that a shock wave travelling through the brain excites a phonon continuum that decays into specific acoustic waves with intensity exceeding brain tissue strength. Damage may occur within the period of the phonon wave, measured in tens to hundreds of nanometers, which makes the damage difficult to detect using conventional modalities.

  5. Ketogenic diet in the treatment of refractory continuous spikes and waves during slow sleep.

    PubMed

    Nikanorova, Marina; Miranda, Maria J; Atkins, Mary; Sahlholdt, Lene

    2009-05-01

    To evaluate the effect of the ketogenic diet on electroclinical characteristics and cognitive function in children with continuous spikes and waves during slow sleep (CSWS). Five children (four boys, one girl) aged between 8 and 13 years with CSWS refractory to conventional antiepileptic drugs (AEDs), including levetiracetam, and steroids were included. The prospective electroclinical assessment was performed prior to the ketogenic diet and once every 6 months post initiation during the 2-year period. All children underwent neuropsychological testing prior to the ketogenic diet and four of the children again 12 months after the diet's introduction. In case 4 the testing has been performed after 7 months and the diet was withdrawn after 9 months because of the lack of efficacy and the parent's wishes. In two patients the cognitive functions were also evaluated after 24 months since the diet's initiation. During the period on the ketogenic diet the concomitant AED treatment was unchanged. Electrographic evaluation after 24 months on the ketogenic diet showed CSWS resolution in one patient, mild decrease of the spike-wave index in one, and lack of response in three patients. The ketogenic diet did not influence the neuropsychological outcome, and intelligence quotient (IQ) scores remained low at the end of the follow-up period. However, in two patients an improvement in attention and behavior was demonstrated. This is the first study evaluating the efficacy of the ketogenic diet in children with CSWS. Five presented cases were refractory to AEDs and steroids. Only one case responded with complete CSWS disappearance; in one the effect of the ketogenic diet was partial and intermittent, whereas in three patients no response has been observed. These results show that the ketogenic diet did not appear to influence the neuropsychological outcome; however, the absence of a control group makes it impossible to conclude with certainty.

  6. Experimental studies of a continuous-wave HF(DF) confocal unstable resonator. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chodzko, R.A.; Cross, E.F.; Durran, D.A.

    1976-05-03

    A series of experiments were performed on a continuous-wave HF(DF) multiline edge-coupled confocal unstable resonator at The Aerospace Corporation MESA facility. Experimental techniques were developed to measure remotely (from a blockhouse) the output power, the near-field intensity distribution, the spatially resolved spectral content of the near field, and the far-field power distribution. A new technique in which a variable aperture calorimeter absorbing scraper (VACAS) was used for measuring the continuous-wave output power from an unstable resonator with variable-mode geometry and without the use of an output coupling mirror was developed. (GRA)

  7. Noninvasive estimation of cardiac systolic function using continuous-wave Doppler echocardiography in dogs with experimental mitral regurgitation.

    PubMed

    Asano, K; Masui, Y; Masuda, K; Fujinaga, T

    2002-01-01

    To evaluate the feasibility of noninvasive estimation of cardiac systolic function using transthoracic continuous-wave Doppler echocardiography in dogs with mitral regurgitation. Seven mongrel dogs with experimental mitral regurgitation were used. Left ventriculography and measurement of pulmonary capillary wedge pressure were performed under inhalational anaesthesia. A micromanometer-tipped catheter was placed into the left ventricle and transthoracic echocardiography was carried out. The peak rate of left ventricular pressure rise (peak dP/dt) was derived simultaneously by continuous-wave Doppler and manometer measurements. The Doppler-derived dP/dt was compared with the catheter-measured peak dP/dt in the dogs. Classification of the severity of mitral regurgitation in the dogs was as follows: 1+, 2 dogs; 2+, 1 dog; 3+, 2 dogs; 4+, 1 dog; and not examined, 1 dog. We were able to derive dP/dt from the transthoracic continuous-wave Doppler echocardiography in all dogs. Doppler-derived dP/dt had a significant correlation with the catheter-measured peak dP/dt (r = 0.90, P < 0.0001). It was demonstrated that transthoracic continuous-wave Doppler echocardiography is a feasible method of noninvasive estimation of cardiac systolic function in dogs with experimental mitral regurgitation and may have clinical usefulness in canine patients with spontaneous mitral regurgitation.

  8. Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures.

    PubMed

    Ham, Suyun; Popovics, John S

    2015-04-17

    The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology.

  9. Fluid mechanics of fusion lasers. Final report, September 11, 1978-June 5, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shwartz, J; Kulkarny, V A; Ausherman, D A

    1980-01-01

    Flow loop components required to operate continuous-flow, repetitively-pulsed CO/sub 2/ and KrF laser drivers for ICF were identified and their performance requirements were specified. It was found that the laser flow loops can have a major effect on the laser beam quality and overall efficiency. The pressure wave suppressor was identified as the most critical flow loop component. The performance of vented side-wall suppressors was evaluated both analytically and experimentally and found capable of meeting the performance requirements of the CO/sub 2/ and KrF fusion lasers. All other laser flow loop components are essentially similar to those used in conventional,more » low speed wind tunnels and are therefore well characterized and can be readily incorporated into fusion laser flow systems designs.« less

  10. A digital beacon receiver

    NASA Technical Reports Server (NTRS)

    Ransome, Peter D.

    1988-01-01

    A digital satellite beacon receiver is described which provides measurement information down to a carrier/noise density ratio approximately 15 dB below that required by a conventional (phase locked loop) design. When the beacon signal fades, accuracy degrades gracefully, and is restored immediately (without hysteresis) on signal recovery, even if the signal has faded into the noise. Benefits of the digital processing approach used include the minimization of operator adjustments, stability of the phase measuring circuits with time, repeatability between units, and compatibility with equipment not specifically designed for propagation measuring. The receiver has been developed for the European Olympus satellite which has continuous wave (CW) beacons at 12.5 and 29.7 GHz, and a switched polarization beacon at 19.8 GHz approximately, but the system can be reconfigured for CW and polarization-switched beacons at other frequencies.

  11. Feedstock powder processing research needs for additive manufacturing development

    DOE PAGES

    Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan

    2018-02-01

    Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less

  12. Feedstock powder processing research needs for additive manufacturing development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan

    Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less

  13. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  14. Impact of iron-site defects on superconductivity in LiFeAs

    DOE PAGES

    Chi, Shun; Aluru, Ramakrishna; Singh, Udai Raj; ...

    2016-10-19

    In conventional s -wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s ± order parameter they can occur for both magnetic and nonmagnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. We present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. A detailed comparison of tunneling spectra measured on impurities with spin-fluctuation theory reveals a continuous evolution from negligible impurity-bound-state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. Furthermore, all bound states for these intermediate strengthmore » potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multiorbital physics.« less

  15. Restorative retinal laser therapy: Present state and future directions.

    PubMed

    Chhablani, Jay; Roh, Young Jung; Jobling, Andrew I; Fletcher, Erica L; Lek, Jia Jia; Bansal, Pooja; Guymer, Robyn; Luttrull, Jeffrey K

    Because of complications and side effects, conventional laser therapy has taken a back seat to drugs in the treatment of macular diseases. Despite this, research on new laser modalities remains active. In particular, various approaches are being pursued to preserve and improve retinal structure and function. These include micropulsing, various exposure titration algorithms, and real-time temperature feedback control of short-pulse continuous wave lasers, and ultra-short-pulse nanosecond lasers. Some of these approaches are at the preclinical stage of development, whereas others are available for clinical use. Cell biology is providing important insights into the mechanisms of action of retinal laser treatment. We outline the technological bases of current laser platforms, their basic science, therapeutic concepts, clinical experience, and future directions for retinal laser treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Performance Benefits for Wave Rotor-Topped Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Welch, Gerard E.

    1996-01-01

    The benefits of wave rotor-topping in turboshaft engines, subsonic high-bypass turbofan engines, auxiliary power units, and ground power units are evaluated. The thermodynamic cycle performance is modeled using a one-dimensional steady-state code; wave rotor performance is modeled using one-dimensional design/analysis codes. Design and off-design engine performance is calculated for baseline engines and wave rotor-topped engines, where the wave rotor acts as a high pressure spool. The wave rotor-enhanced engines are shown to have benefits in specific power and specific fuel flow over the baseline engines without increasing turbine inlet temperature. The off-design steady-state behavior of a wave rotor-topped engine is shown to be similar to a conventional engine. Mission studies are performed to quantify aircraft performance benefits for various wave rotor cycle and weight parameters. Gas turbine engine cycles most likely to benefit from wave rotor-topping are identified. Issues of practical integration and the corresponding technical challenges with various engine types are discussed.

  17. On the modeling of wave-enhanced turbulence nearshore

    NASA Astrophysics Data System (ADS)

    Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth

    2016-07-01

    A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.

  18. 26 CFR 1.513-3 - Qualified convention and trade show activity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Qualified convention and trade show activity. 1.513-3 Section 1.513-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxation of Business Income of Certain Exempt...

  19. Output characteristics of a 0.14 THz dual sheet beam backward wave oscillator based on a hole-grating slow wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaopin; Yang, Ziqiang; Shi, Zongjun

    A novel backward wave oscillator (BWO) based on a hole-grating slow wave structure is proposed as a dual sheet beam millimeter wave radiation source. In this paper, we focus on the output characteristics of a 0.14 THz hole-grating BWO. The output characteristics of the hole-grating BWO, the conventional single-beam grating BWO, and the dual-beam grating BWO are contrasted in detail. 3-D particle-in-cell results indicate that the hole-grating slow wave structure can help to increase the maximum output power as well as lower the operating current density. Meanwhile, the hole-grating BWO shows good insensitivity to the differences between two sheet electronmore » beams. These characteristics make the hole-grating BWO feasible to be a stable millimeter wave radiation source with higher output power.« less

  20. Phase-to-intensity conversion of magnonic spin currents and application to the design of a majority gate

    PubMed Central

    Brächer, T.; Heussner, F.; Pirro, P.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.

    2016-01-01

    Magnonic spin currents in the form of spin waves and their quanta, magnons, are a promising candidate for a new generation of wave-based logic devices beyond CMOS, where information is encoded in the phase of travelling spin-wave packets. The direct readout of this phase on a chip is of vital importance to couple magnonic circuits to conventional CMOS electronics. Here, we present the conversion of the spin-wave phase into a spin-wave intensity by local non-adiabatic parallel pumping in a microstructure. This conversion takes place within the spin-wave system itself and the resulting spin-wave intensity can be conveniently transformed into a DC voltage. We also demonstrate how the phase-to-intensity conversion can be used to extract the majority information from an all-magnonic majority gate. This conversion method promises a convenient readout of the magnon phase in future magnon-based devices. PMID:27905539

  1. Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide

    NASA Astrophysics Data System (ADS)

    Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu

    2018-05-01

    A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.

  2. Overcoming thermal noise in non-volatile spin wave logic.

    PubMed

    Dutta, Sourav; Nikonov, Dmitri E; Manipatruni, Sasikanth; Young, Ian A; Naeemi, Azad

    2017-05-15

    Spin waves are propagating disturbances in magnetically ordered materials, analogous to lattice waves in solid systems and are often described from a quasiparticle point of view as magnons. The attractive advantages of Joule-heat-free transmission of information, utilization of the phase of the wave as an additional degree of freedom and lower footprint area compared to conventional charge-based devices have made spin waves or magnon spintronics a promising candidate for beyond-CMOS wave-based computation. However, any practical realization of an all-magnon based computing system must undergo the essential steps of a careful selection of materials and demonstrate robustness with respect to thermal noise or variability. Here, we aim at identifying suitable materials and theoretically demonstrate the possibility of achieving error-free clocked non-volatile spin wave logic device, even in the presence of thermal noise and clock jitter or clock skew.

  3. Dynamic response analysis of surrounding rock under the continuous blasting seismic wave

    NASA Astrophysics Data System (ADS)

    Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.

    2017-10-01

    The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.

  4. Assessment of undiscovered conventional and continuous oil and gas resources of the Baltic Depression Province, 2014

    USGS Publications Warehouse

    Brownfield, Michael E.; Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Pitman, Janet K.; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Mercier, Tracey J.; Le, Phuong A.; Leathers, Heidi M.

    2015-01-01

    The U.S. Geological Survey estimated mean volumes of undiscovered, technically recoverable resources of 282 million barrels of conventional oil, 576 billion cubic feet of conventional gas, 1.3 billion barrels of continuous oil, and 4.6 trillion cubic feet of shale gas in the Baltic Depression Province.

  5. A special MJO event with a double Kelvin wave structure

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; Li, Tim

    2017-04-01

    The second Madden-Julian Oscillation (MJO) event during the field campaign of the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (DYNAMO/CINDY2011) exhibi ted an unusual double rainband structure. Using a wavenumber-frequency spectral filtering method, we unveil that this double rainband structure arises primarily from the Kelvin wave component. The zonal phase speed of the double rainbands is about 7.9 degree per day in the equatorial Indian Ocean, being in the range of convectively coupled Kelvin wave phase speeds. The convection and circulation anomalies associated with the Kelvin wave component are characterized by two anomalous convective cells, with low-level westerly (easterly) and high (low) pressure anomalies to the west (east) of the convective centers, and opposite wind and pressure anomalies in the upper troposphere. Such a zonal wind-pressure phase relationship is consistent with the equatorial free-wave dynamics. While the free-atmospheric circulation was dominated by the first baroclinic mode vertical structure, moisture and vertical motion in the boundary layer led the convection. The convection and circulation structures derived based on the conventional MJO filter show a different characteristic. For example, the phase speed is slower (about 5.9 degree per day), and there were no double convective branches. This suggests that MJO generally involves multi-scales and it is incomplete to extract its signals by using the conventional filtering technique.

  6. Calculation of hypersonic shock structure using flux-split algorithms

    NASA Technical Reports Server (NTRS)

    Eppard, W. M.; Grossman, B.

    1991-01-01

    There exists an altitude regime in the atmosphere that is within the continuum domain, but wherein the conventional Navier-Stokes equations cease to be accurate. The altitude limits for this so called continuum transition regime depend on vehicle size and speed. Within this regime the thickness of the bow shock wave is no longer negligible when compared to the shock stand-off distance and the peak radiation intensity occurs within the shock wave structure itself. For this reason it is no longer valid to treat the shock wave as a discontinuous jump and it becomes necessary to compute through the shock wave itself. To accurately calculate hypersonic flowfields, the governing equations must be capable of yielding realistic profiles of flow variables throughout the structure of a hypersonic shock wave. The conventional form of the Navier-Stokes equations is restricted to flows with only small departures from translational equilibrium; it is for this reason they do not provide the capability to accurately predict hypersonic shock structure. Calculations in the continuum transition regime, therefore, require the use of governing equations other than Navier-Stokes. Several alternatives to Navier-Stokes are discussed; first for the case of a monatomic gas and then for the case of a diatomic gas where rotational energy must be included. Results are presented for normal shock calculations with argon and nitrogen.

  7. Impact of large-scale atmospheric refractive structures on optical wave propagation

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.

  8. Supercontinuum generation in silicon waveguides relying on wave-breaking.

    PubMed

    Castelló-Lurbe, David; Silvestre, Enrique

    2015-10-05

    Four-wave-mixing processes enabled during optical wave-breaking (OWB) are exploited in this paper for supercontinuum generation. Unlike conventional approaches based on OWB, phase-matching is achieved here for these nonlinear interactions, and, consequently, new frequency production becomes more efficient. We take advantage of this kind of pulse propagation to obtain numerically a coherent octave-spanning mid-infrared supercontinuum generation in a silicon waveguide pumping at telecom wavelengths in the normal dispersion regime. This scheme shows a feasible path to overcome limits imposed by two-photon absorption on spectral broadening in silicon waveguides.

  9. Multichannel analysis of surface waves (MASW) - Active and passive methods

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.

    2007-01-01

    The conventional seismic approaches for near-surface investigation have usually been either high-resolution reflection or refraction surveys that deal with a depth range of a few tens to hundreds meters. Seismic signals from these surveys consist of wavelets with frequencies higher than 50 Hz. The multichannel analysis of surface waves (MASW) method deals with surface waves in the lower frequencies (e.g., 1-30 Hz) and uses a much shallower depth range of investigation (e.g., a few to a few tens of meters). ?? 2007 Society of Exploration Geophysicists.

  10. Overview of nonlinear kinetic instabilities

    NASA Astrophysics Data System (ADS)

    Berk, H. L.

    2012-09-01

    The saturation of shear Alfvén-like waves by alpha particles is presented from the general viewpoint of determining the saturation mechanisms of basic waves in a plasma destabilized by a perturbing source of free energy. The formalism is reviewed and then followed by analyses of isolated mode saturation far from and close to marginal stability. The effect of multiple waves that are isolated or are overlapping is then discussed. The presentation is concluded with a discussion of a non-conventional quasilinear theory that covers both extreme cases as well as the intermediate regime between the extremes.

  11. System identification of propagating wave segments in excitable media and its application to advanced control

    NASA Astrophysics Data System (ADS)

    Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki

    2018-04-01

    The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time series data of input and output signals for the media; in the second phase, the model derived in the first phase is used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that this scheme performs better than a conventional control scheme.

  12. [Bone quantitative ultrasound].

    PubMed

    Matsukawa, Mami

    2016-01-01

    The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.

  13. Photoacoustic phasoscopy super-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin, E-mail: yjzheng@ntu.edu.sg

    2014-05-26

    Phasoscopy is a recently proposed concept correlating electromagnetic (EM) absorption and scattering properties based on energy conservation. Phase information can be extracted from EM absorption induced acoustic wave and scattered EM wave for biological tissue characterization. In this paper, an imaging modality, termed photoacoustic phasoscopy imaging (PAPS), is proposed and verified experimentally based on phasoscopy concept with laser illumination. Both endogenous photoacoustic wave and scattered photons are collected simultaneously to extract the phase information. The PAPS images are then reconstructed on vessel-mimicking phantom and ex vivo porcine tissues to show significantly improved contrast than conventional photoacoustic imaging.

  14. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Poggi, V.; Fäh, D.; Giardini, D.

    2013-03-01

    A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.

  15. A full-wave Helmholtz model for continuous-wave ultrasound transmission.

    PubMed

    Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo

    2005-03-01

    A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.

  16. Confined states in photonic-magnonic crystals with complex unit cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk

    2016-08-21

    We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less

  17. Epileptic encephalopathy with continuous spike-waves during sleep: the need for transition from childhood to adulthood medical care appears to be related to etiology.

    PubMed

    de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard

    2014-08-01

    Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  18. Signal Processing and Calibration of Continuous-Wave Focused CO2 Doppler Lidars for Atmospheric Backscatter Measurement

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Chambers, Diana M.; Jarzembski, Maurice A.; Srivastava, Vandana; Bowdle, David A.; Jones, William D.

    1996-01-01

    Two continuous-wave(CW)focused C02 Doppler lidars (9.1 and 10.6 micrometers) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on range response over the lidar sample volume, not solely at focus. Both lidars were calibrated with a new technique using well-characterized aerosols as radiometric standard targets and related to conventional hard-target calibration. A digital signal processor (DSP), a surface acoustic and spectrum analyzer and manually tuned spectrum analyzer signal analyzers were used. The DSP signals were analyzed with an innovative method of correcting for systematic noise fluctuation; the noise statistics exhibit the chi-square distribution predicted by theory. System parametric studies and detailed calibration improved the accuracy of conversion from the measured signal-to-noise ratio to absolute backscatter. The minimum backscatter sensitivity is approximately 3 x 10(exp -12)/m/sr at 9.1 micrometers and approximately 9 x 10(exp -12)/m/sr at 10.6 micrometers. Sample measurements are shown for a flight over the remote Pacific Ocean in 1990 as part of the NASA Global Backscatter Experiment (GLOBE) survey missions, the first time to our knowledge that 9.1-10.6 micrometer lidar intercomparisons were made. Measurements at 9.1 micrometers, a potential wavelength for space-based lidar remote-sensing applications, are to our knowledge the first based on the rare isotope C-12 O(2)-18 gas.

  19. Near-infrared remotely triggered drug-release strategies for cancer treatment

    NASA Astrophysics Data System (ADS)

    Goodman, Amanda M.; Neumann, Oara; Nørregaard, Kamilla; Henderson, Luke; Choi, Mi-Ran; Clare, Susan E.; Halas, Naomi J.

    2017-11-01

    Remotely controlled, localized drug delivery is highly desirable for potentially minimizing the systemic toxicity induced by the administration of typically hydrophobic chemotherapy drugs by conventional means. Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery, and are an emerging field of interest in cancer treatment. Here, we demonstrate near-IR light-triggered release of two drug molecules from both DNA-based and protein-based hosts that have been conjugated to near-infrared-absorbing Au nanoshells (SiO2 core, Au shell), each forming a light-responsive drug delivery complex. We show that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release can be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells. Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex showed increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods provide spatially and temporally localized drug-release strategies that can facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.

  20. System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements

    NASA Technical Reports Server (NTRS)

    Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.

    2003-01-01

    A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.

  1. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, William B.; Graham, Robert A.; Morosin, Bruno

    1988-01-01

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

  2. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  3. In vitro study of calcium hydroxide removal from mandibular molar root canals.

    PubMed

    Ma, Jingzhi; Shen, Ya; Yang, Yan; Gao, Yuan; Wan, Pan; Gan, Yan; Patel, Payal; Curtis, Allison; Khakpour, Mehrzad; Haapasalo, Markus

    2015-04-01

    Previous studies have shown the difficulty in removing calcium hydroxide (Ca[OH]2) paste from the root canals before root filling. Mesial and distal canals of 30 mandibular molars were prepared with the WaveOne Primary (25/.08) and Large file (40/.08) (Dentsply Tulsa Dental Specialties, Tulsa, OK), respectively. All canals were then filled with Ca(OH)2. The teeth were divided into the following 3 treatment groups (each with n = 10): (1) instrumentation with needle irrigation, (2) instrumentation with irrigation and passive ultrasonic activation (PUI), and (3) the GentleWave system (Sonendo, Inc, Laguna Hills, CA) without instrumentation. The irrigation time in each group was 7.5 minutes. To further test the efficiency of the GentleWave system, shorter times of 90 seconds were tested using water alone. Reconstructed micro-computed tomographic scans were used to measure the volume of the canals and Ca(OH)2 after instrumentation, initial filling of Ca(OH)2, and after its removal. The percentage of Ca(OH)2 remaining in the canals was calculated. None of the 10 teeth (30 canals) in the conventional irrigation and PUI groups were completely cleaned of Ca(OH)2 in 7.5 minutes. In the apical third of mesial and distal canals, respectively, conventional irrigation removed 47.82% ± 16.36% and 77.68% ± 12.82%, PUI removed 61.66% ± 25.54% and 88.85 ± 12.06%, and the GentleWave system removed significantly more Ca(OH)2 (P < .05) with 100% and 98.78% ± 3.84%. Additional experiments in 10 teeth, using only water as the irrigant, revealed that the GentleWave system removed 99.85% and 99.97% of Ca(OH)2 within 90 seconds without the use of any instruments in the mesial and distal canals, respectively. The study confirms the difficulty to remove Ca(OH)2 from root canals using conventional methods. The GentleWave system removed the paste within 90 seconds using water irrigation alone. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  5. Free and forced vibrations of a tyre using a wave/finite element approach

    NASA Astrophysics Data System (ADS)

    Waki, Y.; Mace, B. R.; Brennan, M. J.

    2009-06-01

    Free and forced vibrations of a tyre are predicted using a wave/finite element (WFE) approach. A short circumferential segment of the tyre is modelled using conventional finite element (FE) methods, a periodicity condition applied and the mass and stiffness matrices post-processed to yield wave properties. Since conventional FE methods are used, commercial FE packages and existing element libraries can be utilised. An eigenvalue problem is formulated in terms of the transfer matrix of the segment. Zhong's method is used to improve numerical conditioning. The eigenvalues and eigenvectors give the wavenumbers and wave mode shapes, which in turn define transformations between the physical and wave domains. A method is described by which the frequency dependent material properties of the rubber components of the tyre can be included without the need to remesh the structure. Expressions for the forced response are developed which are numerically well-conditioned. Numerical results for a smooth tyre are presented. Dispersion curves for real, imaginary and complex wavenumbers are shown. The propagating waves are associated with various forms of motion of the tread supported by the stiffness of the side wall. Various dispersion phenomena are observed, including curve veering, non-zero cut-off and waves for which the phase velocity and the group velocity have opposite signs. Results for the forced response are compared with experimental measurements and good agreement is seen. The forced response is numerically determined for both finite area and point excitations. It is seen that the size of area of the excitation is particularly important at high frequencies. When the size of the excitation area is small enough compared to the tread thickness, the response at high frequencies becomes stiffness-like (reactive) and the effect of shear stiffness becomes important.

  6. Every slow-wave impulse is associated with motor activity of the human stomach.

    PubMed

    Hocke, Michael; Schöne, Ulrike; Richert, Hendryk; Görnert, Peter; Keller, Jutta; Layer, Peter; Stallmach, Andreas

    2009-04-01

    Using a newly developed high-resolution three-dimensional magnetic detector system (3D-MAGMA), we observed periodical movements of a small magnetic marker in the human stomach at the typical gastric slow-wave frequency, that is 3 min(-1). Thus we hypothesized that each gastric slow wave induces a motor response that is not strong enough to be detected by conventional methods. Electrogastrographies (EGG, Medtronic, Minneapolis, MN) for measurement of gastric slow waves and 3D-MAGMA (Innovent, Jena, Germany) measurements were simultaneously performed in 21 healthy volunteers (10 men, 40.4+/-13.6 yr; 11 women, 35.8+/-11.6 yr). The 3D-MAGMA system contains 27 highly sensitive magnetic field sensors that are able to locate a magnetic pill inside a human body with an accuracy of +/-5 mm or less in position and +/-2 degrees in orientation at a frequency of 50 Hz. Gastric transit time of the magnetic marker ranged from 19 to 154 min. The mean dominant EGG frequency while the marker was in the stomach was 2.87+/-0.15 cpm. The mean dominant 3D-MAGMA frequency during this interval was nearly identical; that is, 2.85+/-0.15 movements per minute. We observed a strong linear correlation between individual dominant EGG and 3D-MAGMA frequency (R=0.66, P=0.0011). Our findings suggest that each gastric slow wave induces a minute contraction that is too small to be detected by conventional motility investigations but can be recorded by the 3D-MAGMA system. The present slow-wave theory that assumes that the slow wave is a pure electrical signal should be reconsidered.

  7. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B. E.; Sharma, A.; Chang, C.; Parrot, M.; Papadopoulos, K.

    2013-12-01

    We report observations of VLF waves by the DEMETER satellite overflying the HAARP facility during ionospheric heating experiments. The detected VLF waves were in the range 8-17 kHz and coincided with times of continuous heating. The experiments indicate whistler generation due to conversion of artificial lower hybrid waves to whistlers on small scale field-aligned plasma density striations. The observations are compared with theoretical models, taking into account both linear and nonlinear processes. Implications of the mode conversion technique on VLF generation with subsequent injection into the radiation belts to trigger particle precipitation are discussed.

  8. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh

    2016-01-01

    A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375

  9. Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO's fifth science run

    NASA Astrophysics Data System (ADS)

    Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Zhu, Sylvia; Pletsch, Holger; Allen, Bruce; Bock, Oliver; Maschenchalk, Bernd; Prix, Reinhard; Siemens, Xavier

    2016-09-01

    We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGO's fifth science run (S5) data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high-frequency range on S5 data. We find no significant candidate signal, so we set 90% confidence level upper limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper limit is 5.0 ×10-24, while at the higher end, around 1500 Hz, it is 6.2 ×10-24. Based on these upper limits, and assuming a fiducial value of the principal moment of inertia of 1038 kg m2 , we can exclude objects with ellipticities higher than roughly 2.8 ×10-7 within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.

  10. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers.

    PubMed

    Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh

    2016-03-24

    A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.

  11. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  12. Propagation characteristics of ultrasonic guided waves in continuously welded rail

    NASA Astrophysics Data System (ADS)

    Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan

    2017-07-01

    Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.

  13. Point shear wave elastography of the pancreas in patients with cystic fibrosis: a comparison with healthy controls.

    PubMed

    Pfahler, Matthias Hermann Christian; Kratzer, Wolfgang; Leichsenring, Michael; Graeter, Tilmann; Schmidt, Stefan Andreas; Wendlik, Inka; Lormes, Elisabeth; Schmidberger, Julian; Fabricius, Dorit

    2018-02-19

    Manifestations of cystic fibrosis in the pancreas are gaining in clinical importance as patients live longer. Conventional ultrasonography and point shear wave elastography (pSWE) imaging are non-invasive and readily available diagnostic methods that are easy to perform. The aim of this study was to perform conventional ultrasonography and obtain pSWE values in the pancreases of patients with cystic fibrosis and to compare the findings with those of healthy controls. 27 patients with cystic fibrosis (13 women/14 men; mean age 27.7 ± 13.7 years; range 9-58 years) and 60 healthy control subjects (30 women/30 men; mean age 30.3 ± 10.0 years; range 22-55 years) underwent examinations of the pancreas with conventional ultrasound and pSWE imaging. Patients with cystic fibrosis have an echogenic pancreatic parenchyma. We found cystic lesions of the pancreas in six patients. pSWE imaging of the pancreatic parenchyma gave significantly lower shear wave velocities in patients with cystic fibrosis than in the control group (1.01 m/s vs 1.30 m/s; p < 0.001). Using pSWE imaging in vivo, we have shown that the pancreas is considerably softer in patients with cystic fibrosis than in a healthy control population.

  14. An innovative design for using flexible printed coils for magnetostrictive-based longitudinal guided wave sensors in steel strand inspection

    NASA Astrophysics Data System (ADS)

    Tse, P. W.; Liu, X. C.; Liu, Z. H.; Wu, B.; He, C. F.; Wang, X. J.

    2011-05-01

    Magnetostrictive sensors (MsSs) that can excite and receive guided waves are commonly used in detecting defects that may occur in cables and strands for supporting heavy structures. A conventional MsS has a hard sensing coil that is wound onto a bobbin with electric wires to generate the necessary dynamic magnetic field to excite the desired guided waves. This tailor-made hard coil is usually bulky and is not flexible enough to fit steel strands of various sizes. The conventional MsS also cannot be mounted to any steel strand that does not have a free end to allow the bobbin to pass through the structure of the tested strand. Such inflexibilities limit the use of conventional MsSs in practical situations. To solve these limitations, an innovative type of coil, called a flexible printed coil (FPC), which is made out of flexible printed film, has been designed to replace the inflexible hard coil. The flexible structure of the FPC ensures that the new MsS can be easily installed on and removed from steel strands with different diameters and without free ends. Moreover, the FPC-based MsS can be wrapped into multiple layers due to its thin and flexible design. Although multi-layer FPC creates a minor asymmetry in the dynamic magnetic field, the results of finite element analysis and experiments confirm that the longitudinal guided waves excited by a FPC-based MsS are comparable to those excited by a conventional hard coil MsS. No significant reduction in defect inspection performance was found; in fact, further advantages were identified when using the FPC-based MsS. When acting as the transmitter, the innovative FPC-based MsS can cover a longer inspection length of strand. When acting as the receiver, the FPC-based MsS is more sensitive to smaller defects that are impossible to detect using a hard coil MsS. Hence, the multi-layer FPC-based MsS has great potential for replacing the conventional hard coil MsS because of its convenient installation, and ease of fitting to different strand diameters; it is smaller, and, most importantly, performs much better in strand defect detection.

  15. Trivelpiece-Gould modes in a uniform unbounded plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonancemore » arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.« less

  16. Simulating wave-turbulence on thin elastic plates with arbitrary boundary conditions

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Mahadevan, L.

    2016-11-01

    The statistical characteristics of interacting waves are described by the theory of wave turbulence, with the study of deep water gravity wave turbulence serving as a paradigmatic physical example. Here we consider the elastic analog of this problem in the context of flexural waves arising from vibrations of a thin elastic plate. Such flexural waves generate the unique sounds of so-called thunder machines used in orchestras - thin metal plates that make a thunder-like sound when forcefully shaken. Wave turbulence in elastic plates is typically investigated numerically using spectral simulations with periodic boundary conditions, which are not very realistic. We will present the results of numerical simulations of the dynamics of thin elastic plates in physical space, with arbitrary shapes, boundary conditions, anisotropy and inhomogeneity, and show first results on wave turbulence beyond the conventionally studied rectangular plates. Finally, motivated by a possible method to measure ice-sheet thicknesses in the open ocean, we will further discuss the behavior of a vibrating plate when floating on an inviscid fluid.

  17. Incidence rates, correlates, and prognosis of electrocardiographic P-wave abnormalities - a nationwide population-based study.

    PubMed

    Lehtonen, Arttu O; Langén, Ville L; Puukka, Pauli J; Kähönen, Mika; Nieminen, Markku S; Jula, Antti M; Niiranen, Teemu J

    Scant data exist on incidence rates, correlates, and prognosis of electrocardiographic P-wave abnormalities in the general population. We recorded ECG and measured conventional cardiovascular risk factors in 5667 Finns who were followed up for incident atrial fibrillation (AF). We obtained repeat ECGs from 3089 individuals 11years later. The incidence rates of prolonged P-wave duration, abnormal P terminal force (PTF), left P-wave axis deviation, and right P-wave axis deviation were 16.0%, 7.4%, 3.4%, and 2.2%, respectively. Older age and higher BMI were associated with incident prolonged P-wave duration and abnormal PTF (P≤0.01). Higher blood pressure was associated with incident prolonged P-wave duration and right P-wave axis deviation (P≤0.01). During follow-up, only prolonged P-wave duration predicted AF (multivariable-adjusted hazard ratio, 1.38; P=0.001). Modifiable risk factors associate with P-wave abnormalities that are common and may represent intermediate steps of atrial cardiomyopathy on a pathway leading to AF. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    NASA Astrophysics Data System (ADS)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  19. Sparsity-optimized separation of body waves and ground-roll by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Wenchao; Wang, Xiaokai; Wang, Wei

    2017-10-01

    Low-frequency oscillatory ground-roll is regarded as one of the main regular interference waves, which obscures primary reflections in land seismic data. Suppressing the ground-roll can reasonably improve the signal-to-noise ratio of seismic data. Conventional suppression methods, such as high-pass and various f-k filtering, usually cause waveform distortions and loss of body wave information because of their simple cut-off operation. In this study, a sparsity-optimized separation of body waves and ground-roll, which is based on morphological component analysis theory, is realized by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors. Our separation model is grounded on the fact that the input seismic data are composed of low-oscillatory body waves and high-oscillatory ground-roll. Two different waveform dictionaries using a low Q-factor and a high Q-factor, respectively, are confirmed as able to sparsely represent each component based on their diverse morphologies. Thus, seismic data including body waves and ground-roll can be nonlinearly decomposed into low-oscillatory and high-oscillatory components. This is a new noise attenuation approach according to the oscillatory behaviour of the signal rather than the scale or frequency. We illustrate the method using both synthetic and field shot data. Compared with results from conventional high-pass and f-k filtering, the results of the proposed method prove this method to be effective and advantageous in preserving the waveform and bandwidth of reflections.

  20. Excitation of helicons by current antennas

    NASA Astrophysics Data System (ADS)

    Gospodchikov, E. D.; Timofeev, A. V.

    2017-06-01

    Depending on the angle θ between the wave vector and the magnetic field, helicons are conventionally divided into two branches: proper helicons (H mode), propagating at small θ, and Trivelpiece-Gould waves (TG mode), propagating at large θ. The latter are close to potential waves and have a significant electric component along the external magnetic field. It is believed that it is these waves that provide electron heating in helicon discharges. There is also commonly believed that current antennas, widely used to ignite helicon discharges, excite essentially nonpotential H modes, which then transform into TG modes due to plasma inhomogeneity. In this work, it is demonstrated that electromagnetic energy can also be efficiently introduced in plasma by means of TG modes.

  1. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  2. Superconducting proximity in three-dimensional Dirac materials: Odd-frequency, pseudoscalar, pseudovector, and tensor-valued superconducting orders

    NASA Astrophysics Data System (ADS)

    Faraei, Zahra; Jafari, S. A.

    2017-10-01

    We find that a conventional s -wave superconductor in proximity to a three-dimensional Dirac material (3DDM), to all orders of perturbation in tunneling, induces a combination of s - and p -wave pairing only. We show that the Lorentz invariance of the superconducting pairing prevents the formation of Cooper pairs with higher orbital angular momenta in the 3DDM. This no-go theorem acquires stronger form when the probability of tunneling from the conventional superconductor to positive and negative energy states of 3DDM are equal. In this case, all the p -wave contribution except for the lowest order, identically vanish and hence we obtain an exact result for the induced p -wave superconductivity in 3DDM. Fierz decomposing the superconducting matrix we find that the temporal component of the vector superconducting order and the spatial components of the pseudovector order have odd-frequency pairing symmetry. We find that the latter is odd with respect to exchange of position and chirality of the electrons in the Cooper pair and is a spin-triplet, which is necessary for NMR detection of such an exotic pseudovector pairing. Moreover, we show that the tensorial order breaks into a polar vector and an axial vector and both of them have conventional pairing symmetry except for being a spin triplet. According to our study, for gapless 3DDM, the tensorial superconducting order will be the only order that is odd with respect to the chemical potential μ . Therefore we predict that a transverse p -n junction binds Majorana fermions. This effect can be used to control the neutral Majorana fermions with electric fields.

  3. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    PubMed

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  4. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  5. Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge

    NASA Astrophysics Data System (ADS)

    Zavadsky, A.; Shemer, L.

    2017-05-01

    Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.

  6. Distinguishing transient signals and instrumental disturbances in semi-coherent searches for continuous gravitational waves with line-robust statistics

    NASA Astrophysics Data System (ADS)

    Keitel, David

    2016-05-01

    Non-axisymmetries in rotating neutron stars emit quasi-monochromatic gravitational waves. These long-duration ‘continuous wave’ signals are among the main search targets of ground-based interferometric detectors. However, standard detection methods are susceptible to false alarms from instrumental artefacts that resemble a continuous-wave signal. Past work [Keitel, Prix, Papa, Leaci and Siddiqi 2014, Phys. Rev. D 89 064023] showed that a Bayesian approach, based on an explicit model of persistent single-detector disturbances, improves robustness against such artefacts. Since many strong outliers in semi-coherent searches of LIGO data are caused by transient disturbances that last only a few hours or days, I describe in a recent paper [Keitel D 2015, LIGO-P1500159] how to extend this approach to cover transient disturbances, and demonstrate increased sensitivity in realistic simulated data. Additionally, neutron stars could emit transient signals which, for a limited time, also follow the continuous-wave signal model. As a pragmatic alternative to specialized transient searches, I demonstrate how to make standard semi-coherent continuous-wave searches more sensitive to transient signals. Focusing on the time-scale of a single segment in the semi-coherent search, Bayesian model selection yields a simple detection statistic without a significant increase in computational cost. This proceedings contribution gives a brief overview of both works.

  7. Diagnostic performances of shear wave elastography: which parameter to use in differential diagnosis of solid breast masses?

    PubMed

    Lee, Eun Jung; Jung, Hae Kyoung; Ko, Kyung Hee; Lee, Jong Tae; Yoon, Jung Hyun

    2013-07-01

    To evaluate which shear wave elastography (SWE) parameter proves most accurate in the differential diagnosis of solid breast masses. One hundred and fifty-six breast lesions in 139 consecutive women (mean age: 43.54 ± 9.94 years, range 21-88 years), who had been scheduled for ultrasound-guided breast biopsy, were included. Conventional ultrasound and SWE were performed in all women before biopsy procedures. Ultrasound BI-RADS final assessment and SWE parameters were recorded. Diagnostic performance of each SWE parameter was calculated and compared with those obtained when applying cut-off values of previously published data. Performance of conventional ultrasound and ultrasound combined with each parameter was also compared. Of the 156 breast masses, 120 (76.9 %) were benign and 36 (23.1 %) malignant. Maximum stiffness (Emax) with a cut-off of 82.3 kPa had the highest area under the receiver operating characteristics curve (Az) value compared with other SWE parameters, 0.860 (sensitivity 88.9 %, specificity 77.5 %, accuracy 80.1 %). Az values of conventional ultrasound combined with each SWE parameter showed lower (but not significantly) values than with conventional ultrasound alone. Maximum stiffness (82.3 kPa) provided the best diagnostic performance. However the overall diagnostic performance of ultrasound plus SWE was not significantly better than that of conventional ultrasound alone. • SWE offers new information over and above conventional breast ultrasound • Various SWE parameters were explored regarding distinction between benign and malignant lesions • An elasticity of 82.3 kPa appears optimal in differentiating solid breast masses • However, ultrasound plus SWE was not significantly better than conventional ultrasound alone.

  8. Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-05-01

    Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.

  9. Semi-continuous detection of mercury in gases

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

  10. Global Observation of Planetary-Scale Waves in UARS HRDI and WINDII MLT Winds

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth

    1999-01-01

    The purpose of this study is to use examine planetary-scale motions in the UARS mesosphere and lower thermospheric data. The actual study was confined to HRDI winds and temperatures, since these observations were more continuous, and spanned the 60-120 km range. Three classes of waves were studied: fast equatorial Kelvin waves, nonmigrating tides, and the midlatitude 2-day wave. The purpose of the Kelvin wave and the 2-day wave studies was to test whether the waves significantly affect the mean flow. Such studies require high-quality spectral definitions in order to derive the wave heat and momentum flux divergence which can act in comination to drive the mean flow. Accordingly, HRDI winds from several special observing campaigns were used for analyses of fast (periods under 5 days) waves. The campaigns are characterized by continuous viewing by HRDI in 2 viewing directions, for periods of 10-12 days. Data sampled in this manner lend themselves quite well to "asynoptic spectral analysis", from which motions with periods as low as one day can be retrieved with relatively minimal aliasing.

  11. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    NASA Astrophysics Data System (ADS)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  12. Emergence and robustness of target waves in a neuronal network

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Jin, Wuyin; Ma, Jun

    2015-08-01

    Target waves in excitable media such as neuronal network can regulate the spatial distribution and orderliness as a continuous pacemaker. Three different schemes are used to develop stable target wave in the network, and the potential mechanism for emergence of target waves in the excitable media is investigated. For example, a local pacing driven by external periodical forcing can generate stable target wave in the excitable media, furthermore, heterogeneity and local feedback under self-feedback coupling are also effective to generate continuous target wave as well. To discern the difference of these target waves, a statistical synchronization factor is defined by using mean field theory and artificial defects are introduced into the network to block the target wave, thus the robustness of these target waves could be detected. However, these target waves developed from the above mentioned schemes show different robustness to the blocking from artificial defects. A regular network of Hindmarsh-Rose neurons is designed in a two-dimensional square array, target waves are induced by using three different ways, and then some artificial defects, which are associated with anatomical defects, are set in the network to detect the effect of defects blocking on the travelling waves. It confirms that the robustness of target waves to defects blocking depends on the intrinsic properties (ways to generate target wave) of target waves.

  13. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  14. Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets.

    PubMed

    Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2018-05-01

    Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Survey of EBW Mode-Conversion Characteristics for Various Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Maekawa, T.; Igami, H.

    2005-09-26

    A survey of linear mode-conversion characteristics between external transverse electromagnetic (TEM) waves and electron Bernstein waves (EBW) for various plasma and wave parameters has been presented. It is shown that if the wave propagation angle and polarization are adjusted appropriately for each individual case of the plasma parameters, efficient mode conversion occur for wide range of plasma parameters where the conventional 'XB' and 'OXB' scheme cannot cover. It is confirmed that the plasma parameters just at the upper hybrid resonance (UHR) layer strongly affect the mode conversion process and the influence of the plasma profiles distant from the UHR layermore » is not so much. The results of this survey is useful enough to examine wave injection/detection condition for efficient ECH/ECCD or measurement of emissive TEM waves for each individual experimental condition of overdense plasmas.« less

  16. Alternative stable qP wave equations in TTI media with their applications for reverse time migration

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Wang, Huazhong; Liu, Wenqing

    2015-10-01

    Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.

  17. The wave-based substructuring approach for the efficient description of interface dynamics in substructuring

    NASA Astrophysics Data System (ADS)

    Donders, S.; Pluymers, B.; Ragnarsson, P.; Hadjit, R.; Desmet, W.

    2010-04-01

    In the vehicle design process, design decisions are more and more based on virtual prototypes. Due to competitive and regulatory pressure, vehicle manufacturers are forced to improve product quality, to reduce time-to-market and to launch an increasing number of design variants on the global market. To speed up the design iteration process, substructuring and component mode synthesis (CMS) methods are commonly used, involving the analysis of substructure models and the synthesis of the substructure analysis results. Substructuring and CMS enable efficient decentralized collaboration across departments and allow to benefit from the availability of parallel computing environments. However, traditional CMS methods become prohibitively inefficient when substructures are coupled along large interfaces, i.e. with a large number of degrees of freedom (DOFs) at the interface between substructures. The reason is that the analysis of substructures involves the calculation of a number of enrichment vectors, one for each interface degree of freedom (DOF). Since large interfaces are common in vehicles (e.g. the continuous line connections to connect the body with the windshield, roof or floor), this interface bottleneck poses a clear limitation in the vehicle noise, vibration and harshness (NVH) design process. Therefore there is a need to describe the interface dynamics more efficiently. This paper presents a wave-based substructuring (WBS) approach, which allows reducing the interface representation between substructures in an assembly by expressing the interface DOFs in terms of a limited set of basis functions ("waves"). As the number of basis functions can be much lower than the number of interface DOFs, this greatly facilitates the substructure analysis procedure and results in faster design predictions. The waves are calculated once from a full nominal assembly analysis, but these nominal waves can be re-used for the assembly of modified components. The WBS approach thus enables efficient structural modification predictions of the global modes, so that efficient vibro-acoustic design modification, optimization and robust design become possible. The results show that wave-based substructuring offers a clear benefit for vehicle design modifications, by improving both the speed of component reduction processes and the efficiency and accuracy of design iteration predictions, as compared to conventional substructuring approaches.

  18. On the measurement of airborne, angular-dependent sound transmission through supercritical bars.

    PubMed

    Shaw, Matthew D; Anderson, Brian E

    2012-10-01

    The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.

  19. Cluster Observations of Non-Time Continuous Magnetosonic Waves

    NASA Technical Reports Server (NTRS)

    Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.

    2016-01-01

    Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.

  20. Very small IF resonator filters using reflection of shear horizontal wave at free edges of substrate.

    PubMed

    Kadota, Michio; Ago, Junya; Horiuchi, Hideya; Ikeura, Mamoru

    2002-09-01

    A shear horizontal (SH) wave has the characteristic of complete reflection at the free edges of a substrate with a large dielectric constant. A conventional surface acoustic wave (SAW) resonator filter requires reflectors consisting of numerous grating fingers on both sides of interdigital transducers (IDTs). On the contrary, it is considered that small-sized and low loss resonator filters without reflectors consisting of grating fingers can be realized by exploiting this characteristic of the SH wave or the Bleustein-Gulyaev-Shimizu (BGS) wave. There are two types of resonator filters: transversely coupled and longitudinally coupled. No transversely coupled filters (neither conventional nor edge-reflection) using the SH wave on a single-crystal substrate have been realized until now, because two transverse modes (symmetrical and asymmetrical modes) are not easily coupled. However, the authors have realized small low loss transversely coupled resonator filters in the range of 25 to 52 MHz using edge reflections of the BGS wave on piezoelectric ceramic (PZT: Pb(Zr,Ti)O3) substrates for the first time by developing methods by which the two transverse modes could be coupled. On the other hand, longitudinally coupled resonator filters using edge reflection of the SH or BGS wave always have large spurious responses because of the even modes in the out-of-band range, because the frequencies of even modes do not coincide with the nulls of the frequency spectra of the IDTs. Consequently, longitudinally coupled resonator filters using the edge reflection of the SH wave have not been realized. By developing a method of reducing the spurious responses without increasing of the insertion loss, the authors have realized small low loss longitudinally coupled resonator filters in the range of 40 to 190 MHz using edge reflection of BGS or SH waves on PZT or 36 degrees-rotated-Y X-propagation LiTaO3 substrates for the first time. Despite being intermediate frequency (IF) filters, their package (3 x 3 x 1.03 mm3) sizes are as small as those of radio frequency (RF) SAW filters.

  1. Shock conditions and shock wave structures in a steady flow in a dissipative fluid

    NASA Technical Reports Server (NTRS)

    Germain, P.; Guiraud, J. P.

    1983-01-01

    More precisely, calling xi the reciprocal of the Reynolds number based on the shock wave curvature radius, the xi terms of the first order are systematically taken into account. The most important result is a system of formulas giving a correction of order xi for the various RANKINE-HUGONIOT conditions. The suggested formulas may for instance have to be used instead of the conventional ones to evaluate the loss of the total pressure across the detached shock wave which is found at the nose of a very small probe in supersonic flow.

  2. Nonlinear mechanism for the generation of electromagnetic fields in a magnetized plasma by the beatings of waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.

    2006-07-15

    The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.

  3. Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Becker, Erich; Vadas, Sharon L.

    2018-03-01

    This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.

  4. Pressure-sensing performance of upright cylinders in a Mach 10 boundary-layer

    NASA Technical Reports Server (NTRS)

    Johnson, Steven; Murphy, Kelly

    1994-01-01

    An experimental research program to provide basic knowledge of the pressure-sensing performance of upright, flushported cylinders in a hypersonic boundary layer is described. Three upright cylinders of 0.25-, 0.5- and l.0-in. diameters and a conventional rake were placed in the test section sidewall boundary layer of the 31 Inch Mach 10 Wind Tunnel at NASA Langley Research Center, Hampton, Virginia. Boundary-layer pressures from these cylinders were compared to those measured with a conventional rake. A boundary-layer thickness-to-cylinder-diameter ratio of 8 proved sufficient to accurately measure an overall pressure profile and ascertain the boundary-layer thickness. Effects of Reynolds number, flow angularity, and shock wave impingement on pressure measurement were also investigated. Although Reynolds number effects were negligible at the conditions studied, flow angularity above 10 deg significantly affects the measured pressures. Shock wave impingement was used to investigate orifice-to-orifice pressure crosstalk. No crosstalk was measured. The lower pressure measured above the oblique shock wave impingement showed no influence of the higher pressure generated at the lower port locations.

  5. Comparison of variational real-space representations of the kinetic energy operator

    NASA Astrophysics Data System (ADS)

    Skylaris, Chris-Kriton; Diéguez, Oswaldo; Haynes, Peter D.; Payne, Mike C.

    2002-08-01

    We present a comparison of real-space methods based on regular grids for electronic structure calculations that are designed to have basis set variational properties, using as a reference the conventional method of finite differences (a real-space method that is not variational) and the reciprocal-space plane-wave method which is fully variational. We find that a definition of the finite-difference method [P. Maragakis, J. Soler, and E. Kaxiras, Phys. Rev. B 64, 193101 (2001)] satisfies one of the two properties of variational behavior at the cost of larger errors than the conventional finite-difference method. On the other hand, a technique which represents functions in a number of plane waves which is independent of system size closely follows the plane-wave method and therefore also the criteria for variational behavior. Its application is only limited by the requirement of having functions strictly localized in regions of real space, but this is a characteristic of an increasing number of modern real-space methods, as they are designed to have a computational cost that scales linearly with system size.

  6. Out in the cold: the hypothermic heart response

    PubMed Central

    Nabeel, Yassar; Ali, Omair

    2014-01-01

    We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. PMID:25406217

  7. Out in the cold: the hypothermic heart response.

    PubMed

    Nabeel, Yassar; Ali, Omair

    2014-11-18

    We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. 2014 BMJ Publishing Group Ltd.

  8. Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission

    PubMed Central

    Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.

    2013-01-01

    We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840

  9. Parametric excitation of very low frequency (VLF) electromagnetic whistler waves and interaction with energetic electrons in radiation belt

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.

    2018-04-01

    The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.

  10. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology

    PubMed Central

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-01-01

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject’s wrist, the active antenna can monitor the pulse on the subject’s wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO’s output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information. PMID:27792176

  11. New techniques in television to provide research in three-dimensional real-time or near real-time imagery and reduced cost systems for teleconferencing and educational uses, part 1

    NASA Technical Reports Server (NTRS)

    Pao, Y. H.; Claspy, P.; Allen, J. E.; Merat, F.

    1979-01-01

    The results are presented of a continuing research and development program the objective of which is to develop a reduced bandwidth television system and a technique for television transmission of holograms. The result of the former is a variable frame rate television system, the operation of which was demonstrated for both black-and-white and color signals. This system employs a novel combination of the inexpensive mass storage capacity of a magnetic disc with the reliability of a digital system for time expansion and compression. Also reported are the results of a theoretical analysis and preliminary feasibility experiment of an innovative system for television transmission of holograms using relatively conventional TV equipment along with a phase modulated reference wave for production of the original interference pattern.

  12. Tunable dual-band graphene-based infrared reflectance filter.

    PubMed

    Goldflam, Michael D; Ruiz, Isaac; Howell, Stephen W; Wendt, Joel R; Sinclair, Michael B; Peters, David W; Beechem, Thomas E

    2018-04-02

    We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm -1 . Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.

  13. A cascaded silicon Raman laser

    NASA Astrophysics Data System (ADS)

    Rong, Haisheng; Xu, Shengbo; Cohen, Oded; Raday, Omri; Lee, Mindy; Sih, Vanessa; Paniccia, Mario

    2008-03-01

    One of the major advantages of Raman lasers is their ability to generate coherent light in wavelength regions that are not easily accessible with other conventional types of lasers. Recently, efficient Raman lasing in silicon in the near-infrared region has been demonstrated, showing great potential for realizing low-cost, compact, room-temperature lasers in the mid-infrared region. Such lasers are highly desirable for many applications, ranging from trace-gas sensing, environmental monitoring and biomedical analysis, to industrial process control, and free-space communications. Here we report the first experimental demonstration of cascaded Raman lasing in silicon, opening the path to extending the lasing wavelength from the near- to mid-infrared region. Using a 1,550-nm pump source, we achieve stable, continuous-wave, second-order cascaded lasing at 1,848 nm with an output power exceeding 5 mW. The laser operates in single mode, and the laser linewidth is measured to be <2.5 MHz.

  14. Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device.

    PubMed

    An, Kunsik; Hong, Sukjoon; Han, Seungyong; Lee, Hyungman; Yeo, Junyeob; Ko, Seung Hwan

    2014-02-26

    We demonstrate selective laser sintering of silver (Ag) nanoparticle (NP) ink using a digital micromirror device (DMD) for the facile fabrication of 2D electrode pattern without any conventional lithographic means or scanning procedure. An arbitrary 2D pattern at the lateral size of 25 μm × 25 μm with 160 nm height is readily produced on a glass substrate by a short exposure of 532 nm Nd:YAG continuous wave laser. The resultant metal pattern exhibits low electrical resistivity of 10.8 uΩ · cm and also shows a fine edge sharpness by the virtue of low thermal conductivity of Ag NP ink. Furthermore, 10 × 10 star-shaped micropattern arrays are fabricated through a step-and-repeat scheme to ensure the potential of this process for the large-area metal pattern fabrication.

  15. A review of the physiological and histological effects of laser osteotomy.

    PubMed

    Rajitha Gunaratne, G D; Khan, Riaz; Fick, Daniel; Robertson, Brett; Dahotre, Narendra; Ironside, Charlie

    2017-01-01

    Osteotomy is the surgical cutting of bone. Some obstacles to laser osteotomy have been melting, carbonisation and subsequent delayed healing. New cooled scanning techniques have resulted in effective bone cuts without the strong thermal side effects, which were observed by inappropriate irradiation techniques with continuous wave and long pulsed lasers. With these new techniques, osteotomy gaps histologically healed with new bone formation without any noticeable or minimum thermal damage. No significant cellular differences in bone healing between laser and mechanical osteotomies were noticed. Some studies even suggest that the healing rate may be enhanced following laser osteotomy compared to conventional mechanical osteotomy. Additional research is necessary to evaluate different laser types with appropriate laser setting variables to increase ablation rates, with control of depth, change in bone type and damage to adjacent soft tissue. Laser osteotomy has the potential to become incorporated into the armamentarium of bone surgery.

  16. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology.

    PubMed

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-10-26

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject's wrist, the active antenna can monitor the pulse on the subject's wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO's output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information.

  17. 10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE

    NASA Astrophysics Data System (ADS)

    Sobon, G.; Sliwinska, D.; Abramski, K. M.; Kaczmarek, P.

    2014-02-01

    In this work we demonstrate a single-frequency, single-mode all-fiber master oscillator power amplifier (MOPA) source, based on erbium-ytterbium co-doped double-clad fiber emitting 10 W of continuous wave power at 1565 nm. In the power amplifier stage, the amplified spontaneous emission from Yb3+ ions (Yb-ASE) is forced to recirculate in a loop resonator in order to provide stable lasing at 1060 nm. The generated signal acts as an additional pump source for the amplifier and is reabsorbed by the Yb3+ ions in the active fiber, allowing an increase in the efficiency and boosting the output power. The feedback loop also protects the amplifier from parasitic lasing or self-pulsing at a wavelength of 1 μm. This allows one to significantly scale the output power in comparison to a conventional setup without any Yb-ASE control.

  18. Individual electron and hole localization in submonolayer InN quantum sheets embedded in GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feix, F., E-mail: feix@pdi-berlin.de; Flissikowski, T.; Chèze, C.

    2016-07-25

    We investigate sub-monolayer InN quantum sheets embedded in GaN(0001) by temperature-dependent photoluminescence spectroscopy under both continuous-wave and pulsed excitation. Both the peak energy and the linewidth of the emission band associated with the quantum sheets exhibit an anomalous dependence on temperature indicative of carrier localization. Photoluminescence transients reveal a power law decay at low temperatures reflecting that the recombining electrons and holes occupy spatially separate, individual potential minima reminiscent of conventional (In,Ga)N(0001) quantum wells exhibiting the characteristic disorder of a random alloy. At elevated temperatures, carrier delocalization sets in and is accompanied by a thermally activated quenching of the emission.more » We ascribe the strong nonradiative recombination to extended states in the GaN barriers and confirm our assumption by a simple rate-equation model.« less

  19. Fiber sensor for non-contact estimation of vital bio-signs

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-05-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in arterial pulse monitoring using optical fiber sensors. In this paper, we introduce a novel device based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual.

  20. Can Anomalous Amplification be Attained without Postselection?

    PubMed

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I; Howell, John C

    2016-03-11

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  1. Can Anomalous Amplification be Attained without Postselection?

    NASA Astrophysics Data System (ADS)

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  2. Prophylactic laser in age-related macular degeneration: the past, the present and the future.

    PubMed

    Findlay, Quan; Jobling, Andrew I; Vessey, Kirstan A; Greferath, Ursula; Phipps, Joanna A; Guymer, Robyn H; Fletcher, Erica L

    2018-05-01

    The presence of drusen in the posterior eye is a hallmark feature of the early stages of age-related macular degeneration and their size is an indicator of risk of progression to vision-threatening forms of the disease. Since the initial observations that laser treatment can resolve drusen, there has been great interest in whether laser treatment can be used to reduce the progression of age-related macular degeneration. In this article, we review the development of lasers for the treatment of those with age-related macular degeneration. We provide an overview of the clinical trial results that demonstrated drusen resolution but that had mixed effects on progression of disease. In addition, we provide a summary of the recent developments in pulsed lasers that are designed to reduce the energy applied to the posterior eye to provide the therapeutic effects of conventional continuous wave lasers while reducing the secondary tissue effects.

  3. Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Sundramoorthy, Subramanian V.; Krzykawska-Serda, Martyna; Maggio, Matthew C.; Tseytlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.; Rosen, Gerald M.; Kao, Joseph P. Y.; Halpern, Howard J.

    2017-03-01

    Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic images.

  4. Data reduction and analysis of HELIOS plasma wave data

    NASA Technical Reports Server (NTRS)

    Anderson, Roger R.

    1988-01-01

    Reduction of data acquired from the HELIOS Solar Wind Plasma Wave Experiments on HELIOS 1 and 2 was continued. Production of 24 hour survey plots of the HELIOS 1 plasma wave data were continued and microfilm copies were submitted to the National Space Science Data Center. Much of the effort involved the shock memory from both HELIOS 1 and 2. This data had to be deconvoluted and time ordered before it could be displayed and plotted in an organized form. The UNIVAX 418-III computer was replaced by a DEC VAX 11/780 computer. In order to continue the reduction and analysis of the data set, all data reduction and analysis computer programs had to be rewritten.

  5. Intraoperative assessment of in situ saphenous vein bypass grafts with continuous-wave Doppler probe.

    PubMed

    Spencer, T D; Goldman, M H; Hyslop, J W; Lee, H M; Barnes, R W

    1984-11-01

    A 5 MHz continuous-wave Doppler probe was used intraoperatively to evaluate 25 in situ saphenous vein bypass grafts. At least one arteriovenous fistula per case and five retained competent posterior valvular leaflets were identified before completion angiography. The Doppler was able to distinguish a retained valve from an arteriovenous fistula on clinical grounds but not by waveform analysis. Intraoperative assessment of in situ saphenous vein bypass grafts with the continuous-wave Doppler can identify retained valves that might be missed by angiography. It can reduce the number of angiograms needed to demonstrate a technically perfect result, thus saving operative time and contrast agent load to the patient.

  6. Continuous wave room temperature external ring cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  7. High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuemin; Shen, Changle; Jiang, Tao

    2016-07-15

    Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.

  8. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    NASA Astrophysics Data System (ADS)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  9. Laser-induced photo-thermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  10. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  11. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.

    PubMed

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-13

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  12. Focusing-schlieren visualization in a dual-mode scramjet

    NASA Astrophysics Data System (ADS)

    Kouchi, Toshinori; Goyne, Christopher P.; Rockwell, Robert D.; McDaniel, James C.

    2015-12-01

    Schlieren imaging is particularly suited to measuring density gradients in compressible flowfields and can be used to capture shock waves and expansion fans, as well as the turbulent structures of mixing and wake flows. Conventional schlieren imaging, however, has difficulty clearly capturing such structures in long-duration supersonic combustion test facilities. This is because the severe flow temperatures locally change the refractive index of the window glass that is being used to provide optical access. On the other hand, focusing-schlieren imaging presents the potential of reduced sensitivity to thermal distortion of the windows and to clearly capture the flow structures even during a combustion test. This reduced sensitivity is due the technique's ability to achieve a narrow depth of focus. As part of this study, a focusing-schlieren system was developed with a depth of focus near ±5 mm and was applied to a direct-connect, continuous-flow type, supersonic combustion test facility with a stagnation temperature near 1200 K. The present system was used to successfully visualize the flowfield inside a dual-mode scramjet. The imaging system captured combustion-induced volumetric expansion of the fuel jet and an anchored bifurcated shock wave at the trailing edge of the ramp fuel injector. This is the first time successful focusing-schlieren measurements have been reported for a dual-mode scramjet.

  13. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    PubMed Central

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-01-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer. PMID:25676705

  14. Lommel modes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Kotlyar, Victor V.

    2015-03-01

    We study a non-paraxial family of nondiffracting laser beams whose complex amplitude is proportional to an n-th order Lommel function of two variables. These beams are referred to as Lommel modes. Explicit analytical relations for the angular spectrum of plane waves and orbital angular momentum of the Lommel beams have been derived. The even (n=2p) and odd (n=2p+1) Lommel modes are mutually orthogonal, as are the Lommel modes characterized by different projections of the wave vector on the optical axis. At a definite parameter, the Lommel modes change to conventional Bessel beams. Asymmetry of the Lommel modes depends on a complex parameter с, with its modulus in the polar notation defining the intensity pattern in the beam‧s cross-section and the argument defining the angle of rotation of the intensity pattern about the optical axis. If the parameter с is real or purely imaginary, the transverse intensity component of the Lommel modes is specularly symmetric about the Cartesian coordinate axes. Besides, with the modulus of the с parameter increasing from 0 to 1, the orbital angular momentum of the Lommel modes increases from a finite value proportional to the topological charge n to infinity. The orbital angular momentum of the Lommel modes undergoes continuous variations, in contrast to its discrete changes in the Bessel modes.

  15. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    NASA Astrophysics Data System (ADS)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  16. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    NASA Astrophysics Data System (ADS)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  17. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    PubMed

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  18. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    PubMed Central

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838

  19. Insight into large-scale topography on analysis of high-frequency Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Chu, Risheng; Chong, Jiajun; Ni, Sidao; Zhang, Yu

    2018-03-01

    The dispersion of surface waves could be biased in regions where topography is comparable to the wavelength. We investigate the effects on high-frequency Rayleigh waves propagating in a typical massif model through numerical simulations. High-frequency Rayleigh waves have relatively higher signal-to-noise ratios (SNR) using the Q component in the LQT coordinate system, perpendicular to the local free surface in these topographic models. When sources and stations are located at different sides of the massif, the conventional dispersion image overestimates phase velocities of Rayleigh waves, as much as 25% with topographic height/width ratio (H/r) > 0.5. The dispersion perturbation is more distinctive for fundamental modes. Using a two-layer model, the thickness deviation (ΔD/D) may be significant in surface-wave inversion due to the variation of H/r and the thickness of the first layer. These phenomena cannot be ignored in surface-wave interpretations, nevertheless they are trivial for the source and stations located at the same side of the massif.

  20. A fiber-based quasi-continuous-wave quantum key distribution system

    PubMed Central

    Shen, Yong; Chen, Yan; Zou, Hongxin; Yuan, Jianmin

    2014-01-01

    We report a fiber-based quasi-continuous-wave (CW) quantum key distribution (QKD) system with continuous variables (CV). This system employs coherent light pulses and time multiplexing to maximally reduce cross talk in the fiber. No-switching detection scheme is adopted to optimize the repetition rate. Information is encoded on the sideband of the pulsed coherent light to fully exploit the continuous wave nature of laser field. With this configuration, high secret key rate can be achieved. For the 50 MHz detected bandwidth in our experiment, when the multidimensional reconciliation protocol is applied, a secret key rate of 187 kb/s can be achieved over 50 km of optical fiber against collective attacks, which have been shown to be asymptotically optimal. Moreover, recently studied loopholes have been fixed in our system. PMID:24691409

  1. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.

    PubMed

    Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu

    2018-01-01

    Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    NASA Astrophysics Data System (ADS)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less

  4. Nonlinear surface waves at ferrite-metamaterial waveguide structure

    NASA Astrophysics Data System (ADS)

    Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques

    2016-09-01

    A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.

  5. Prestack density inversion using the Fatti equation constrained by the P- and S-wave impedance and density

    NASA Astrophysics Data System (ADS)

    Liang, Li-Feng; Zhang, Hong-Bing; Dan, Zhi-Wei; Xu, Zi-Qiang; Liu, Xiu-Juan; Cao, Cheng-Hao

    2017-03-01

    Simultaneous prestack inversion is based on the modified Fatti equation and uses the ratio of the P- and S-wave velocity as constraints. We use the relation of P-wave impedance and density (PID) and S-wave impedance and density (SID) to replace the constant Vp/Vs constraint, and we propose the improved constrained Fatti equation to overcome the effect of P-wave impedance on density. We compare the sensitivity of both methods using numerical simulations and conclude that the density inversion sensitivity improves when using the proposed method. In addition, the random conjugate-gradient method is used in the inversion because it is fast and produces global solutions. The use of synthetic and field data suggests that the proposed inversion method is effective in conventional and nonconventional lithologies.

  6. Microscopic Lagrangian description of warm plasmas. I - Linear wave propagation. II - Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1977-01-01

    It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.

  7. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Alkhalifah, Tariq

    2018-07-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.

  8. Analysis and suppression of passive noise in surface microseismic data

    NASA Astrophysics Data System (ADS)

    Forghani-Arani, Farnoush

    Surface microseismic surveys are gaining popularity in monitoring the hydraulic fracturing process. The effectiveness of these surveys, however, is strongly dependent on the signal-to-noise ratio of the acquired data. Cultural and industrial noise generated during hydraulic fracturing operations usually dominate the data, thereby decreasing the effectiveness of using these data in identifying and locating microseismic events. Hence, noise suppression is a critical step in surface microseismic monitoring. In this thesis, I focus on two important aspects in using surface-recorded microseismic seismic data: first, I take advantage of the unwanted surface noise to understand the characteristics of these noise and extract information about the propagation medium from the noise; second, I propose effective techniques to suppress the surface noise while preserving the waveforms that contain information about the source of microseisms. Automated event identification on passive seismic data using only a few receivers is challenging especially when the record lengths span over long durations of time. I introduce an automatic event identification algorithm that is designed specifically for detecting events in passive data acquired with a small number of receivers. I demonstrate that the conventional STA/LTA (Short-term Average/Long-term Average) algorithm is not sufficiently effective in event detection in the common case of low signal-to-noise ratio. With a cross-correlation based method as an extension of the STA/LTA algorithm, even low signal-to-noise events (that were not detectable with conventional STA/LTA) were revealed. Surface microseismic data contains surface-waves (generated primarily from hydraulic fracturing activities) and body-waves in the form of microseismic events. It is challenging to analyze the surface-waves on the recorded data directly because of the randomness of their source and their unknown source signatures. I use seismic interferometry to extract the surface-wave arrivals. Interferometry is a powerful tool to extract waves (including body-wave and surface-waves) that propagate from any receiver in the array (called a pseudo source) to the other receivers across the array. Since most of the noise sources in surface microseismic data lie on the surface, seismic interferometry yields pseudo source gathers dominated by surface-wave energy. The dispersive characteristics of these surface-waves are important properties that can be used to extract information necessary for suppressing these waves. I demonstrate the application of interferometry to surface passive data recorded during the hydraulic fracturing operation of a tight gas reservoir and extract the dispersion properties of surface-waves corresponding to a pseudo-shot gather. Comparison of the dispersion characteristics of the surface waves from the pseudo-shot gather with that of an active shot-gather shows interesting similarities and differences. The dispersion character (e.g. velocity change with frequency) of the fundamental mode was observed to have the same behavior for both the active and passive data. However, for the higher mode surface-waves, the dispersion properties are extracted at different frequency ranges. Conventional noise suppression techniques in passive data are mostly stacking-based that rely on enforcing the amplitude of the signal by stacking the waveforms at the receivers and are unable to preserve the waveforms at the individual receivers necessary for estimating the microseismic source location and source mechanism. Here, I introduce a technique based on the tau - p transform, that effectively identifies and separates microseismic events from surface-wave noise in the tau -p domain. This technique is superior to conventional stacking-based noise suppression techniques, because it preserves the waveforms at individual receivers. Application of this methodology to microseismic events with isotropic and double-couple source mechanism, show substantial improvement in the signal-to-noise ratio. Imaging of the processed field data also show improved imaging of the hypocenter location of the microseismic source. In the case of double-couple source mechanism, I suggest two approaches for unifying the polarities at the receivers, a cross-correlation approach and a semblance-based prediction approach. The semblance-based approach is more effective at unifying the polarities, especially for low signal-to-noise ratio data.

  9. Amplitudes on plane waves from ambitwistor strings

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2017-11-01

    In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.

  10. A probabilistic method for constructing wave time-series at inshore locations using model scenarios

    USGS Publications Warehouse

    Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.

    2014-01-01

    Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.

  11. Model of interaction in Smart Grid on the basis of multi-agent system

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-11-01

    This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.

  12. Radar Measurements of Ocean Surface Waves using Proper Orthogonal Decomposition

    DTIC Science & Technology

    2017-03-30

    rely on use of Fourier transforms (FFT) and filtering spectra on the linear dispersion relationship for ocean surface waves. This report discusses...the measured signal (e.g., Young et al., 1985). In addition, the methods often rely on filtering the FFT of radar backscatter or Doppler velocities...to those obtained with conventional FFT and dispersion curve filtering techniques (iv) Compare both results of(iii) to ground truth sensors (i .e

  13. Investigation of mesoscale meteorological phenomena as observed by geostationary satellite

    NASA Technical Reports Server (NTRS)

    Brundidge, K. C.

    1982-01-01

    Satellite imagery plus conventional synoptic observations were used to examine three mesoscale systems recently observed by the GOES-EAST satellite. The three systems are an arc cloud complex (ACC), mountain lee wave clouds and cloud streets parallel to the wind shear. Possible gravity-wave activity is apparent in all three cases. Of particular interest is the ACC because of its ability to interact with other mesoscale phenomena to produce or enhance convection.

  14. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  15. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  16. Laterally coupled distributed feedback lasers emitting at 2 μm with quantum dash active region and high-duty-cycle etched semiconductor gratings

    NASA Astrophysics Data System (ADS)

    Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim

    2017-02-01

    Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.

  17. Characterization of a Laser Surface-Treated Martensitic Stainless Steel.

    PubMed

    Al-Sayed, S R; Hussein, A A; Nofal, A A; Hassab Elnaby, S I; Elgazzar, H

    2017-05-29

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min-1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  18. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    PubMed Central

    Al-Sayed, S. R.; Hussein, A. A.; Nofal, A. A.; Hassab Elnaby, S. I.; Elgazzar, H.

    2017-01-01

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m·min−1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique. PMID:28772955

  19. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  20. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    NASA Astrophysics Data System (ADS)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  1. Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-Sensitivity Methodology for the Detection of Early-Stage Tumors in Tissues

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mandelis, A.; Guo, X.; Lashkari, B.; Kellnberger, S.; Ntziachristos, V.

    2015-06-01

    In the field of medical diagnostics, biomedical photoacoustics (PA) is a non-invasive hybrid optical-ultrasonic imaging modality. Due to the unique hybrid capability of optical and acoustic imaging, PA imaging has risen to the frontiers of medical diagnostic procedures such as human breast cancer detection. While conventional PA imaging has been mainly carried out by a high-power pulsed laser, an alternative technology, the frequency domain biophotoacoustic radar (FD-PAR) is under intensive development. It utilizes a continuous wave optical source with the laser intensity modulated by a frequency-swept waveform for acoustic wave generation. The small amplitude of the generated acoustic wave is significantly compensated by increased signal-to-noise ratio (several orders of magnitude) using matched-filter and pulse compression correlation processing in a manner similar to radar systems. The current study introduces the theory of a novel FD-PAR modality for ultra-sensitive characterization of functional information for breast cancer imaging. The newly developed theory of wavelength-modulated differential PA spectroscopy (WM-DPAS) detection has been introduced to address angiogenesis and hypoxia monitoring, two well-known benchmarks of breast tumor formation. Based on the WM-DPAS theory, this modality efficiently suppresses background absorptions and is expected to detect very small changes in total hemoglobin concentration and oxygenation levels, thereby identifying pre-malignant tumors before they are anatomically apparent. An experimental system design for the WM-DPAS is presented and preliminary single-ended laser experimental results were obtained and compared to a limiting case of the developed theoretical formalism.

  2. Impurity bound states in d-wave superconductors with subdominant order parameters

    NASA Astrophysics Data System (ADS)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica

    Single magnetic impurity induces intra-gap bound states in conventional s-wave superconductors (SCs) but, in d-wave SCs only virtual bound states can be induced. However, in small cuprate islands a fully gapped spectrum has recently been discovered. In this work, we investigate the real bound states due to potential and magnetic impurities in the two candidate fully gapped states for this system: the topologically trivial d + is -wave state and the topologically non-trivial d + id' -wave (chiral d-wave state). Using the analytic T-matrix formalism and self-consistent numerical tight-binding lattice calculations, we show that potential and magnetic impurities create entirely different intra-gap bound states in d + is -wave and chiral d-wave SCs. Therefore, our results suggest that the bound states mainly depend on the subdominant order parameter. Considering that recent experiments have demonstrated an access to adjustable coupling J, impurities thus offer an intriguing way to clearly distinguish between the chiral d-wave and topologically trivial d + is -wave state. This work was supported by Swedish Research Council, Swedish Foundation for Strategic Research, the Wallenberg Academy Fellows program and the Göran Gustafsson Foundation. The computations were performed on resources provided by SNIC at LUNARC.

  3. Wave equation datuming applied to S-wave reflection seismic data

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Giustiniani, M.; Nicolich, R.

    2018-05-01

    S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.

  4. Chiral mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk; Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk; The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spacedmore » by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.« less

  5. Emergent thermodynamics in a system of macroscopic, chaotic surface waves

    NASA Astrophysics Data System (ADS)

    Welch, Kyle J.

    The properties of conventional materials are inextricably linked with their molecular composition; to make water flow like wine would require changing its molecular identity. To circumvent this restriction, I have constructed and characterized a two-dimensional metafluid, so-called because its constitutive dynamics are derived not from atoms and molecules but from macroscopic, chaotic surface waves excited on a vertically agitated fluid. Unlike in conventional fluids, the viscosity and temperature of this metafluid are independently tunable. Despite this unconventional property, our system is surprisingly consistent with equilibrium thermodynamics, despite being constructed from macroscopic, non-equilibrium elements. As a programmable material, our metafluid represents a new platform on which to study complex phenomena such as self-assembly and pattern formation. We demonstrate one such application in our study of short-chain polymer analogs embedded in our system.

  6. Guided wave opto-acoustic device

    DOEpatents

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  7. RMB identification based on polarization parameters inversion imaging

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  8. PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance

    NASA Astrophysics Data System (ADS)

    Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.

  9. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  10. Wave reflections in the pulmonary arteries analysed with the reservoir–wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pressure and flow in the pulmonary circulation yields incident and reflected waves throughout the cardiac cycle, even during diastole. The reservoir–wave model provides an alternative haemodynamic analysis consistent with minimal wave activity during diastole. Pressure and flow in the main pulmonary artery were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading and positive end-expiratory pressure were observed. The reservoir–wave model was used to determine the reservoir contribution to pressure and flow and once subtracted, resulted in ‘excess’ quantities, which were treated as wave-related. Wave intensity analysis quantified the contributions of waves originating upstream (forward-going waves) and downstream (backward-going waves). In the pulmonary artery, negative reflections of incident waves created by the right ventricle were observed. Overall, the distance from the pulmonary artery valve to this reflection site was calculated to be 5.7 ± 0.2 cm. During 100% O2 ventilation, the strength of these reflections increased 10% with volume loading and decreased 4% with 10 cmH2O positive end-expiratory pressure. In the pulmonary arterial circulation, negative reflections arise from the junction of lobar arteries from the left and right pulmonary arteries. This mechanism serves to reduce peak systolic pressure, while increasing blood flow. PMID:24756638

  11. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams.

    PubMed

    Liu, Shuo; Cui, Tie Jun; Zhang, Lei; Xu, Quan; Wang, Qiu; Wan, Xiang; Gu, Jian Qiang; Tang, Wen Xuan; Qing Qi, Mei; Han, Jia Guang; Zhang, Wei Li; Zhou, Xiao Yang; Cheng, Qiang

    2016-10-01

    The concept of coding metasurface makes a link between physically metamaterial particles and digital codes, and hence it is possible to perform digital signal processing on the coding metasurface to realize unusual physical phenomena. Here, this study presents to perform Fourier operations on coding metasurfaces and proposes a principle called as scattering-pattern shift using the convolution theorem, which allows steering of the scattering pattern to an arbitrarily predesigned direction. Owing to the constant reflection amplitude of coding particles, the required coding pattern can be simply achieved by the modulus of two coding matrices. This study demonstrates that the scattering patterns that are directly calculated from the coding pattern using the Fourier transform have excellent agreements to the numerical simulations based on realistic coding structures, providing an efficient method in optimizing coding patterns to achieve predesigned scattering beams. The most important advantage of this approach over the previous schemes in producing anomalous single-beam scattering is its flexible and continuous controls to arbitrary directions. This work opens a new route to study metamaterial from a fully digital perspective, predicting the possibility of combining conventional theorems in digital signal processing with the coding metasurface to realize more powerful manipulations of electromagnetic waves.

  12. Mechanically tunable terahertz graphene plasmonics using soft metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Li; Liu, Xin; Zang, Jianfeng

    2016-12-01

    This letter presents a new approach to continuously tune the resonances of graphene plasmons in terahertz soft metasurface. The continuous tunability of plasmon resonance is either unachievable in conventional plasmonic materials like noble metals or requires gate voltage regulation in graphene. Here we investigate a simplest form of terahertz metasurface, graphene nanoribbon arrays (GNRAs), and demonstrate the graphene plasmon resonance modes can be tailored by mechanical deformation of the elastomeric substrate using finite element method (FEM). By integrating the electric doping with substrate deformation, we have managed to tune the resonance wavelength from 13.7 to 50.6 μm. The 36.9 μm tuning range is nearly doubled compared with that by electric doping regulation only. Moreover, we observe the plasmon coupling effect in GNRAs on waved substrate and its evolution with substrate curvature. A new decoupling mechanism enabled by the out-of-plane separation of the adjacent ribbons is revealed. The out-of-plane setup of plasmonic components extends the fabrication of plasmonic devices into three-dimensional space, which simultaneously increases the nanoribbon density and decreases the coupling strength. Our findings provide an additional degree of freedom to design reconfigurable metasurfaces and metadevices.

  13. Continuous Glucose Monitoring vs Conventional Therapy for Glycemic Control in Adults With Type 1 Diabetes Treated With Multiple Daily Insulin Injections: The GOLD Randomized Clinical Trial.

    PubMed

    Lind, Marcus; Polonsky, William; Hirsch, Irl B; Heise, Tim; Bolinder, Jan; Dahlqvist, Sofia; Schwarz, Erik; Ólafsdóttir, Arndís Finna; Frid, Anders; Wedel, Hans; Ahlén, Elsa; Nyström, Thomas; Hellman, Jarl

    2017-01-24

    The majority of individuals with type 1 diabetes do not meet recommended glycemic targets. To evaluate the effects of continuous glucose monitoring in adults with type 1 diabetes treated with multiple daily insulin injections. Open-label crossover randomized clinical trial conducted in 15 diabetes outpatient clinics in Sweden between February 24, 2014, and June 1, 2016 that included 161 individuals with type 1 diabetes and hemoglobin A1c (HbA1c) of at least 7.5% (58 mmol/mol) treated with multiple daily insulin injections. Participants were randomized to receive treatment using a continuous glucose monitoring system or conventional treatment for 26 weeks, separated by a washout period of 17 weeks. Difference in HbA1c between weeks 26 and 69 for the 2 treatments. Adverse events including severe hypoglycemia were also studied. Among 161 randomized participants, mean age was 43.7 years, 45.3% were women, and mean HbA1c was 8.6% (70 mmol/mol). A total of 142 participants had follow-up data in both treatment periods. Mean HbA1c was 7.92% (63 mmol/mol) during continuous glucose monitoring use and 8.35% (68 mmol/mol) during conventional treatment (mean difference, -0.43% [95% CI, -0.57% to -0.29%] or -4.7 [-6.3 to -3.1 mmol/mol]; P < .001). Of 19 secondary end points comprising psychosocial and various glycemic measures, 6 met the hierarchical testing criteria of statistical significance, favoring continuous glucose monitoring compared with conventional treatment. Five patients in the conventional treatment group and 1 patient in the continuous glucose monitoring group had severe hypoglycemia. During washout when patients used conventional therapy, 7 patients had severe hypoglycemia. Among patients with inadequately controlled type 1 diabetes treated with multiple daily insulin injections, the use of continuous glucose monitoring compared with conventional treatment for 26 weeks resulted in lower HbA1c. Further research is needed to assess clinical outcomes and longer-term adverse effects. clinicaltrials.gov Identifier: NCT02092051.

  14. Laser-assisted solar-cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.

  15. Intracavity-pumped Raman laser action in a mid IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Okishev, Andrey V.; Zuegel, Jonathan D.

    2006-12-01

    Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.

  16. On the absence of reverse running waves in general displacement of lattice vibration in popular books on solid state theory

    NASA Astrophysics Data System (ADS)

    Xia, Shangda; Lou, Liren

    2018-05-01

    In this article we point out that there is a deficiency in the presentation of the general solution of harmonic lattice vibration, the omission of half of the allowed running waves, in many popular textbooks published since 1940, e.g. O Madelung’s 1978 Introduction to Solid-State Theory and J Solyom’s 2007 Fundamentals of the Physics of Solids, vol 1. So we provide a revised presentation, which gives a complete general solution and demonstrates clearly that the conventional complex normal coordinate should be a superposition of two coordinates (multiplied by a factor \\sqrt{1/2}) of running waves travelling oppositely along q and -q, not only a coordinate of a unidirectional running wave as many books considered. It is noticed that the book, Quantum Theory of the Solid State: An Introduction, by L Kantorovich, published in 2004, and the review article, ‘Phonons in perfect crystals’ by W Cochran and R A Cowly, published in 1967, for a one-dimensional single-atom chain gave correct (but not normalized) formulae for the general solution of lattice vibration and the normal coordinate. However, both of them stated still that each normal coordinate describes an independent mode of vibration, which in our opinion needs to be further discussed. Moreover, in books such as Fundamentals of the Physics of Solids, vol 1, by J Solyom, and The Physics and Chemistry of Solids, by S R Elliott, published in 2006 and 2007, respectively, the reverse waves were still lost. Hence, we also discuss a few related topics. In quantization of the lattice vibration, the introduction of the conventional two (not one) independent phonon operators in a normal coordinate is closely related to the ‘independence’ of the two constituent waves mentioned above, and we propose a simple propositional relation between the phonon operator and the corresponding running wave coordinate. Moreover, only the coordinate of the superposition wave (not the running wave), as the normal coordinate can give the correct quantization commutation relations. In addition, there is an interference between the direct and reverse running waves in kinetic and potential energies, which also questions the popular term ‘normal mode’ for a running wave mode. Therefore we have made a few suggestions and discuss the terms of relative quantities.

  17. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun

    2011-08-01

    We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.

  18. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.

    PubMed

    Taylor, Adam B; Kim, Jooho; Chon, James W M

    2012-02-27

    In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.

  19. Non-invasive continuous blood pressure measurement based on mean impact value method, BP neural network, and genetic algorithm.

    PubMed

    Tan, Xia; Ji, Zhong; Zhang, Yadan

    2018-04-25

    Non-invasive continuous blood pressure monitoring can provide an important reference and guidance for doctors wishing to analyze the physiological and pathological status of patients and to prevent and diagnose cardiovascular diseases in the clinical setting. Therefore, it is very important to explore a more accurate method of non-invasive continuous blood pressure measurement. To address the shortcomings of existing blood pressure measurement models based on pulse wave transit time or pulse wave parameters, a new method of non-invasive continuous blood pressure measurement - the GA-MIV-BP neural network model - is presented. The mean impact value (MIV) method is used to select the factors that greatly influence blood pressure from the extracted pulse wave transit time and pulse wave parameters. These factors are used as inputs, and the actual blood pressure values as outputs, to train the BP neural network model. The individual parameters are then optimized using a genetic algorithm (GA) to establish the GA-MIV-BP neural network model. Bland-Altman consistency analysis indicated that the measured and predicted blood pressure values were consistent and interchangeable. Therefore, this algorithm is of great significance to promote the clinical application of a non-invasive continuous blood pressure monitoring method.

  20. Portable hyperspectral imager with continuous wave green laser for identification and detection of untreated latent fingerprints on walls.

    PubMed

    Nakamura, Atsushi; Okuda, Hidekazu; Nagaoka, Takashi; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Ichikawa, Fumihiko; Torao, Akira; Sota, Takayuki

    2015-09-01

    Untreated latent fingerprints are known to exhibit fluorescence under UV laser excitation. Previously, the hyperspectral imager (HSI) has been primarily evaluated in terms of its potential to enhance the sensitivity of latent fingerprint detection following treatment by conventional chemical methods in the forensic science field. In this study however, the potential usability of the HSI for the visualization and detection of untreated latent fingerprints by measuring their inherent fluorescence under continuous wave (CW) visible laser excitation was examined. Its potential to undertake spectral separation of overlapped fingerprints was also evaluated. The excitation wavelength dependence of fluorescent images was examined using an untreated palm print on a steel based wall, and it was found that green laser excitation is superior to blue and yellow lasers' excitation for the production of high contrast fluorescence images. In addition, a spectral separation method for overlapped fingerprints/palm prints on a plaster wall was proposed using new images converted by the division and subtraction of two single wavelength images constructed based on measured hyperspectral data (HSD). In practical tests, the relative isolation of two overlapped fingerprints/palm prints was successful in twelve out of seventeen cases. Only one fingerprint/palm print was extracted for an additional three cases. These results revealed that the feasibility of overlapped fingerprint/palm print spectral separation depends on the difference in the temporal degeneration of each fluorescence spectrum. The present results demonstrate that a combination of a portable HSI and CW green laser has considerable potential for the identification and detection of untreated latent fingerprints/palm prints on the walls under study, while the use of HSD makes it practically possible for doubly overlapped fingerprints/palm prints to be separated spectrally. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Laser-based gluing of diamond-tipped saw blades

    NASA Astrophysics Data System (ADS)

    Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter

    2016-03-01

    To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.

  2. Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.

    2018-05-01

    The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.

  3. Continuous-wave optical parametric oscillators on their way to the terahertz range

    NASA Astrophysics Data System (ADS)

    Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten

    2010-02-01

    Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.

  4. Monitoring leaf water content with THz and sub-THz waves.

    PubMed

    Gente, Ralf; Koch, Martin

    2015-01-01

    Terahertz technology is still an evolving research field that attracts scientists with very different backgrounds working on a wide range of subjects. In the past two decades, it has been demonstrated that terahertz technology can provide a non-invasive tool for measuring and monitoring the water content of leaves and plants. In this paper we intend to review the different possibilities to perform in-vivo water status measurements on plants with the help of THz and sub-THz waves. The common basis of the different methods is the strong absorption of THz and sub-THz waves by liquid water. In contrast to simpler, yet destructive, methods THz and sub-THz waves allow for the continuous monitoring of plant water status over several days on the same sample. The technologies, which we take into focus, are THz time domain spectroscopy, THz continuous wave setups, THz quasi time domain spectroscopy and sub-THz continuous wave setups. These methods differ with respect to the generation and detection schemes, the covered frequency range, the processing and evaluation of the experimental data, and the mechanical handling of the measurements. Consequently, we explain which method fits best in which situation. Finally, we discuss recent and future technological developments towards more compact and budget-priced measurement systems for use in the field.

  5. Theory of Electromagnetic Surface Waves in Plasma with Smooth Boundaries

    NASA Astrophysics Data System (ADS)

    Kuzelev, M. V.

    2018-05-01

    A theory of nonpotential surface waves in plasma with smooth boundaries is developed. The complex frequencies of surface waves for plasma systems of different geometries and different profiles of the plasma density are calculated. Expressions for the rates of collisionless damping of surface waves due to their resonance interaction with local plasma waves of continuous spectrum are obtained. The influence of collisions in plasma is also considered.

  6. On the design of wave digital filters with low sensitivity properties.

    NASA Technical Reports Server (NTRS)

    Renner, K.; Gupta, S. C.

    1973-01-01

    The wave digital filter patterned after doubly terminated maximum available power (MAP) networks by means of the Richard's transformation has been shown to have low-coefficient-sensitivity properties. This paper examines the exact nature of the relationship between the wave-digital-filter structure and the MAP networks and how the sensitivity property arises, which permits implementation of the digital structure with a lower coefficient word length than that possible with the conventional structures. The proper design procedure is specified and the nature of the unique complementary outputs is discussed. Finally, an example is considered which illustrates the design, the conversion techniques, and the low sensitivity properties.

  7. Applications of the JARS method to study levee sites in southern Texas and southern New Mexico

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Dunbar, J.B.

    2007-01-01

    We apply the joint analysis of refractions with surface waves (JARS) method to several sites and compare its results to traditional refraction-tomography methods in efforts of finding a more realistic solution to the inverse refraction-traveltime problem. The JARS method uses a reference model, derived from surface-wave shear-wave velocity estimates, as a constraint. In all of the cases JARS estimates appear more realistic than those from the conventional refraction-tomography methods. As a result, we consider, the JARS algorithm as the preferred method for finding solutions to the inverse refraction-tomography problems. ?? 2007 Society of Exploration Geophysicists.

  8. MHz gravitational waves from short-term anisotropic inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Asuka; Soda, Jiro

    2016-04-18

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  9. A 24 km fiber-based discretely signaled continuous variable quantum key distribution system.

    PubMed

    Dinh Xuan, Quyen; Zhang, Zheshen; Voss, Paul L

    2009-12-21

    We report a continuous variable key distribution system that achieves a final secure key rate of 3.45 kilobits/s over a distance of 24.2 km of optical fiber. The protocol uses discrete signaling and post-selection to improve reconciliation speed and quantifies security by means of quantum state tomography. Polarization multiplexing and a frequency translation scheme permit transmission of a continuous wave local oscillator and suppression of noise from guided acoustic wave Brillouin scattering by more than 27 dB.

  10. Simulation studies of the application of SEASAT data in weather and state of sea forecasting models

    NASA Technical Reports Server (NTRS)

    Cardone, V. J.; Greenwood, J. A.

    1979-01-01

    The design and analysis of SEASAT simulation studies in which the error structure of conventional analyses and forecasts is modeled realistically are presented. The development and computer implementation of a global spectral ocean wave model is described. The design of algorithms for the assimilation of theoretical wind data into computers and for the utilization of real wind data and wave height data in a coupled computer system are presented.

  11. Spatial resolution study and power calibration of the high-k scattering system on NSTX.

    PubMed

    Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C

    2008-10-01

    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.

  12. Study on the application of shear-wave elastography to thin-layered media and tubular structure: Finite-element analysis and experiment verification

    NASA Astrophysics Data System (ADS)

    Jang, Jun-keun; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally, shear-wave velocity (C S) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated C S. However, because shear waves in thin-layered media propagate as guided waves, C S cannot be accurately estimated using the conventional TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional TOF is ineffective for thin-layered media. In phantom experiments, C S results estimated using the two methods were compared for 1.5 and 2% agar plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement between LLDA (plate phantoms of 2 mm thickness: 5.0 m/s for 1.5% agar and 7.2 m/s for 2% agar; tube phantoms with 2 mm thickness and 2 mm inner radius: 5.1 m/s for 1.5% agar and 7.0 m/s for 2% agar; tube phantoms with 2 mm thickness and 4 mm inner radius: 5.3 m/s for 1.5% agar and 7.3 m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3 m/s ± 0.27 for 1.5% agar and 7.3 m/s ± 0.54 for 2% agar).

  13. Interference-free ultrasound imaging during HIFU therapy, using software tools

    NASA Technical Reports Server (NTRS)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  14. Measurement of cylindrical Rayleigh surface waves using line-focused PVDF transducers and defocusing measurement method.

    PubMed

    Lin, Chun-I; Lee, Yung-Chun

    2014-08-01

    Line-focused PVDF transducers and defocusing measurement method are applied in this work to determine the dispersion curve of the Rayleigh-like surface waves propagating along the circumferential direction of a solid cylinder. Conventional waveform processing method has been modified to cope with the non-linear relationship between phase angle of wave interference and defocusing distance induced by a cylindrically curved surface. A cross correlation method is proposed to accurately extract the cylindrical Rayleigh wave velocity from measured data. Experiments have been carried out on one stainless steel and one glass cylinders. The experimentally obtained dispersion curves are in very good agreement with their theoretical counterparts. Variation of cylindrical Rayleigh wave velocity due to the cylindrical curvature is quantitatively verified using this new method. Other potential applications of this measurement method for cylindrical samples will be addressed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Unconventional pairing symmetry of interacting Dirac fermions on a π -flux lattice

    NASA Astrophysics Data System (ADS)

    Guo, Huaiming; Khatami, Ehsan; Wang, Yao; Devereaux, Thomas P.; Singh, Rajiv R. P.; Scalettar, Richard T.

    2018-04-01

    The pairing symmetry of interacting Dirac fermions on the π -flux lattice is studied with the determinant quantum Monte Carlo and numerical linked-cluster expansion methods. The s*- (i.e., extended s -) and d -wave pairing symmetries, which are distinct in the conventional square lattice, are degenerate under the Landau gauge. We demonstrate that the dominant pairing channel at strong interactions is an unconventional d s* -wave phase consisting of alternating stripes of s*- and d -wave phases. A complementary mean-field analysis shows that while the s*- and d -wave symmetries individually have nodes in the energy spectrum, the d s* channel is fully gapped. The results represent a new realization of pairing in Dirac systems, connected to the problem of chiral d -wave pairing on the honeycomb lattice, which might be more readily accessed by cold-atom experiments.

  16. Unconventional pairing symmetry of interacting Dirac fermions on a π -flux lattice

    DOE PAGES

    Guo, Huaiming; Khatami, Ehsan; Wang, Yao; ...

    2018-04-20

    The pairing symmetry of interacting Dirac fermions on the π-flux lattice is studied with the determinant quantum Monte Carlo and numerical linked-cluster expansion methods. The s*- (i.e., extended s-) and d-wave pairing symmetries, which are distinct in the conventional square lattice, are degenerate under the Landau gauge. We demonstrate that the dominant pairing channel at strong interactions is an unconventional ds*-wave phase consisting of alternating stripes of s*- and d-wave phases. A complementary mean-field analysis shows that while the s*- and d-wave symmetries individually have nodes in the energy spectrum, the ds* channel is fully gapped. The results represent amore » new realization of pairing in Dirac systems, connected to the problem of chiral d-wave pairing on the honeycomb lattice, which might be more readily accessed by cold-atom experiments.« less

  17. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2015-04-01

    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  18. A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light

    NASA Astrophysics Data System (ADS)

    Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.

    2014-06-01

    A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.

  19. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventionalmore » Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.« less

  20. Model-independent partial wave analysis using a massively-parallel fitting framework

    NASA Astrophysics Data System (ADS)

    Sun, L.; Aoude, R.; dos Reis, A. C.; Sokoloff, M.

    2017-10-01

    The functionality of GooFit, a GPU-friendly framework for doing maximum-likelihood fits, has been extended to extract model-independent {\\mathscr{S}}-wave amplitudes in three-body decays such as D + → h + h + h -. A full amplitude analysis is done where the magnitudes and phases of the {\\mathscr{S}}-wave amplitudes are anchored at a finite number of m 2(h + h -) control points, and a cubic spline is used to interpolate between these points. The amplitudes for {\\mathscr{P}}-wave and {\\mathscr{D}}-wave intermediate states are modeled as spin-dependent Breit-Wigner resonances. GooFit uses the Thrust library, with a CUDA backend for NVIDIA GPUs and an OpenMP backend for threads with conventional CPUs. Performance on a variety of platforms is compared. Executing on systems with GPUs is typically a few hundred times faster than executing the same algorithm on a single CPU.

  1. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    PubMed

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  2. Elastic wave manipulation by using a phase-controlling meta-layer

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohui; Sun, Chin-Teh; Barnhart, Miles V.; Huang, Guoliang

    2018-03-01

    In this work, a high pass meta-layer for elastic waves is proposed. An elastic phase-controlling meta-layer is theoretically realized using parallel and periodically arranged metamaterial sections based on the generalized Snell's law. The elastic meta-layer is composed of periodically repeated supercells, in which the frequency dependent elastic properties of the metamaterial are used to control a phase gradient at the interface between the meta-layer and conventional medium. It is analytically and numerically demonstrated that with a normal incident longitudinal wave, the wave propagation characteristics can be directly manipulated by the periodic length of the meta-layer element at the sub-wavelength scale. It is found that propagation of the incident wave through the interface is dependent on whether the working wavelength is longer or shorter than the periodic length of the meta-layer element. Specifically, a mode conversion of the P-wave to an SV-wave is investigated as the incident wave passes through the meta-layer region. Since the most common and damaging elastic waves in civil and mechanical industries are in the low frequency region, the work in this paper has great potential in the seismic shielding, engine vibration isolation, and other highly dynamic fields.

  3. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  4. PDF turbulence modeling and DNS

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.

    1992-01-01

    The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.

  5. Detecting gravity waves from binary black holes

    NASA Technical Reports Server (NTRS)

    Wahlquist, Hugo D.

    1989-01-01

    One of the most attractive possible sources of strong gravitational waves would be a binary system comprising massive black holes (BH). The gravitational radiation from a binary is an elliptically polarized, periodic wave which could be observed continuously - or at intervals whenever a detector was available. This continuity of the signal is certainly appealing compared to waiting for individual pulses from infrequent random events. It also has the advantage over pulses that continued observation can increase the signal-to-noise ratio almost indefinitely. Furthermore, this system is dynamically simple; the theory of the generation of the radiation is unambiguous; all characteristics of the signal can be precisely related to the dynamical parameters of the source. The current situation is that while there is no observational evidence as yet for the existence of massive binary BH, their formation is theoretically plausible, and within certain coupled constraints of mass and location, their existence cannot be observationally excluded. Detecting gravitational waves from these objects might be the first observational proof of their existence.

  6. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Astrophysics Data System (ADS)

    Haering, Edward A.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2006-05-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  7. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2005-01-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  8. Effect of Shock Waves on Dielectric Properties of KDP Crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.

    2018-05-01

    An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

  9. Multichannel analysis of surface wave method with the autojuggie

    USGS Publications Warehouse

    Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.

    2003-01-01

    The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.

  10. Pure quasi-P-wave calculation in transversely isotropic media using a hybrid method

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Liu, Hongwei; Alkhalifah, Tariq

    2018-07-01

    The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because Pwaves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulae tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artefacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artefacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constraint ɛ ≥ δ. Numerical tests demonstrate the effectiveness of the approach.

  11. Rupture, waves and earthquakes.

    PubMed

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  12. Rupture, waves and earthquakes

    PubMed Central

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  13. Co- and contra-directional vertical coupling between ferromagnetic layers with grating for short-wavelength spin wave generation

    NASA Astrophysics Data System (ADS)

    Graczyk, Piotr; Zelent, Mateusz; Krawczyk, Maciej

    2018-05-01

    The possibility to generate short spin waves (SWs) is of great interest in the field of magnonics nowadays. We present an effective and technically affordable way of conversion of long SWs, which may be generated by conventional microwave antenna, to the short, sub-micrometer waves. It is achieved by grating-assisted resonant dynamic dipolar interaction between two ferromagnetic layers separated by some distance. We analyze criteria for the optimal conversion giving a semi-analytical approach for the coupling coefficient. We show by the numerical calculations the efficient energy transfer between layers which may be either of co-directional or contra-directional type. Such a system may operate either as a short spin wave generator or a frequency filter, moving forward possible application of magnonics.

  14. Terahertz wave polarization beam splitter using a cascaded multimode interference structure.

    PubMed

    Li, Jiu-sheng; Liu, Han; Zhang, Le

    2014-08-01

    A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.

  15. In situ geophysical investigation at Proposed Chemical Demilitarization Facility, Lexington Bluegrass Army Depot, Lexington, Kentucky. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llopis, J.L.; Lee, L.T.

    1996-02-01

    Current computerized seismic wave propagation analysis procedures for building foundations require that values of shear-wave (S-wave) propagation velocities as a function of depth be determined. The S-wave velocities are used in conjunction with conventional field sampling and laboratory testing to provide soil property information for a dynamic analysis of buildings and their foundations. The Lexington Bluegrass Army Depot, Bluegrass Activity, is located approximately 20 miles south of Lexington, KY in the city of Richmond, in east central Kentucky as shown in Figure 1. A chemical demilitarization (Chem- Demil) facility is planned to be built at the depot. The Chem-Demil facilitymore » will be used to incinerate nerve gas presently stockpiled at the site.« less

  16. El Niño Surges; Warm Kelvin Wave Headed for South America

    NASA Image and Video Library

    2009-12-17

    The most recent sea-level height data from the NASA/European Ocean Surface Topography Mission/Jason-2 oceanography satellite show the continued eastward progression of a strong wave of warm water, known as a Kelvin wave, now approaching South America.

  17. 1.9 μm square-wave passively Q-witched mode-locked fiber laser.

    PubMed

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin

    2018-05-14

    We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

  18. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    NASA Astrophysics Data System (ADS)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.

    2018-05-01

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.

  19. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  20. Continuous-time quantum random walks require discrete space

    NASA Astrophysics Data System (ADS)

    Manouchehri, K.; Wang, J. B.

    2007-11-01

    Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.

Top