Yoon, Jihyung; Xie, Yibo; Zhang, Rui
2018-03-01
The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna
Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, eithermore » 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.« less
NASA Astrophysics Data System (ADS)
Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.
2017-08-01
The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG consensus guidelines.
Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.
Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan
2011-03-01
Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield markedly reduced the external dose to technologists. The doses to technologists varied significantly for different diagnostic applications. Consequently, the estimated annual dose to a technologist performing only a particular scintigraphic procedure is very different from one type of procedure to another. The results of this study should help in determining the rotation time of technologists in different procedures and differences in their individual techniques.
Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi
2017-12-01
To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects
Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.
2014-01-01
Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931
Clinical Ion Beam Applications: Basic Properties, Application, Quality Control, Planning
NASA Astrophysics Data System (ADS)
Kraft, Gerhard
2009-03-01
Heavy-ion therapy using beam scanning and biological dose optimization is a novel technique of high-precision external radiotherapy. It yields a better perspective for tumor cure of radio-resistant tumors. However, heavy-ion therapy is not a general solution for all types of tumors. As compared to conventional radiotherapy, heavy-ion radiotherapy has the advantages of higher tumor dose, improved sparing of normal tissue in the entrance channel, a more precise concentration of the dose in the target volume with steeper gradients to the normal tissue, and a higher radiobiological effectiveness for tumors which are radio-resistant in conventional therapy. These properties make it possible to treat radio-resistant tumors with great success, including those in close vicinity to critical organs.
Goswami, Jyotirup; Patra, Niladri B.; Sarkar, Biplab; Basu, Ayan; Pal, Santanu
2013-01-01
Background and Purpose: Conventional portals, based on bony anatomy, for external beam radiotherapy for cervical cancer have been repeatedly demonstrated as inadequate. Conversely, with image-based conformal radiotherapy, better target coverage may be offset by the greater toxicities and poorer compliance associated with treating larger volumes. This study was meant to dosimetrically compare conformal and conventional radiotherapy. Materials and Methods: Five patients of carcinoma cervix underwent planning CT scan with IV contrast and targets, and organs at risk (OAR) were contoured. Two sets of plans-conventional and conformal were generated for each patient. Field sizes were recorded, and dose volume histograms of both sets of plans were generated and compared on the basis of target coverage and OAR sparing. Results: Target coverage was significantly improved with conformal plans though field sizes required were significantly larger. On the other hand, dose homogeneity was not significantly improved. Doses to the OARs (rectum, urinary bladder, and small bowel) were not significantly different across the 2 arms. Conclusion: Three-dimensional conformal radiotherapy gives significantly better target coverage, which may translate into better local control and survival. On the other hand, it also requires significantly larger field sizes though doses to the OARs are not significantly increased. PMID:24455584
SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bichay, T; Mayville, A
2016-06-15
Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fransson, Per; Bergstroem, Per; Loefroth, Per-Olov
2006-10-01
Purpose: Late side effects were prospectively evaluated up to 5 years after dose-escalated external beam radiotherapy (EBRT) and were compared with a previously treated series with conventional conformal technique. Methods and Materials: Bladder and bowel symptoms were prospectively evaluated with the Prostate Cancer Symptom Scale (PCSS) questionnaire up to 5 years posttreatment. In all, 257 patients completed the questionnaire 5 years posttreatment. A total of 168 patients were treated with the conformal technique at doses <71 Gy, and 195 were treated with the dose-escalated stereotactic BeamCath (registered) technique comprising three dose levels: 74 Gy (n = 68), 76 Gy (nmore » = 74), and 78 Gy (n = 53). Results: For all dose groups analyzed together, 5 years after treatment, urinary starting problems decreased and urinary incontinence increased in comparison to baseline values. No increase in other bladder symptoms or frequency was detected. When comparing dose groups after 5 years, both the 74-Gy and 78-Gy groups reported increased urinary starting problems compared with patients given the conventional dose (<71 Gy). No increased incontinence was seen in the 76-Gy or the 78-Gy groups. Bowel symptoms were slightly increased during the follow-up period in comparison to baseline. Dose escalation with stereotactic EBRT (74-78 Gy) did not increase gastrointestinal late side effects after 5 years in comparison to doses <71 Gy. Conclusion: Dose-escalated EBRT with the BeamCath (registered) technique with doses up to 78 Gy is tolerable, and the toxicity profile is similar to that observed with conventional doses <71 Gy.« less
Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik
2008-12-01
Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2014-01-01
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2013-12-30
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET 137 Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.
King, Christopher R
2002-01-01
Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (<70 Gy), but similar to results from dose escalation series. LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy using current dose regimens. However, HDR brachytherapy dose escalation regimens might be able to achieve higher biologically effective doses of irradiation in comparison to LDR, and hence improved outcomes. This advantage over LDR would be amplified should prostate cancer possess a high sensitivity to dose fractionation (i.e., a low alpha/beta ratio) as the current evidence suggests.
Thyroid abnormalities after therapeutic external radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, S.L.; McDougall, I.R.; Constine, L.S.
1995-03-30
The thyroid gland is the largest pure endocrine gland in the body and one of the organs most likely to produce clinically significant abnormalities after therapeutic external radiation. Radiation doses to the thyroid that exceed approximately 26 Gy frequently produce hypothyroidism, which may be clinically overt or subclinical, as manifested by increased serum thyrotropin and normal serum-free thyroxine concentrations. Pituitary or hypothalamic hypothyroidism may arise when the pituitary region receives doses exceeding 50 Gy with conventional, 1.8-2 Gy fractionation. Direct irradiation of the thyroid may increase the risk of Graves` disease or euthyroid Graves` ophthalmopathy. Silent thyroiditis, cystic degeneration, benignmore » adenoma, and thyroid cancer have been observed after therapeutically relevant doses of external radiation. Direct or incidental thyroid irradiation increases the risk for well-differentiated, papillary, and follicular thyroid cancer from 15- to 53-fold. Thyroid cancer risk is highest following radiation at a young age, decreases with increasing age at treatment, and increases with follow-up duration. The potentially prolonged latent period between radiation exposure and the development of thyroid dysfunction, thyroid nodularity, and thyroid cancer means that individuals who have received neck or pituitary irradiation require careful, periodic clinical and laboratory evaluation to avoid excess morbidity. 39 refs.« less
NASA Astrophysics Data System (ADS)
Budiyono, T.; Budi, W. S.; Hidayanto, E.
2016-03-01
Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe
This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, Ashesh B.; Hand, Christopher M.; Lujan, Anthony E.
2004-03-31
We report a methodology for comparing and combining dose information from external beam radiotherapy (EBRT) and interstitial brachytherapy (IB) components of prostate cancer treatment using the biological effective dose (BED). On a prototype early-stage prostate cancer patient treated with EBRT and low-dose rate I-125 brachytherapy, a 3-dimensional dose distribution was calculated for each of the EBRT and IB portions of treatment. For each component of treatment, the BED was calculated on a point-by-point basis to produce a BED distribution. These individual BED distributions could then be summed for combined therapies. BED dose-volume histograms (DVHs) of the prostate, urethra, rectum, andmore » bladder were produced and compared for various combinations of EBRT and IB. Transformation to BED enabled computation of the relative contribution of each modality to the prostate dose, as the relative weighting of EBRT and IB was varied. The BED-DVHs of the prostate and urethra demonstrated dramatically increased inhomogeneity with the introduction of even a small component of IB. However, increasing the IB portion relative to the EBRT component resulted in lower dose to the surrounding normal structures, as evidenced by the BED-DVHs of the bladder and rectum. Conformal EBRT and low-dose rate IB conventional dose distributions were successfully transformed to the common 'language' of BED distributions for comparison and for merging prostate cancer radiation treatment plans. The results of this analysis can assist physicians in quantitatively determining the best combination and weighting of radiation treatment modalities for individual patients.« less
[Ultrahigh dose-rate, "flash" irradiation minimizes the side-effects of radiotherapy].
Favaudon, V; Fouillade, C; Vozenin, M-C
2015-10-01
Pencil beam scanning and filter free techniques may involve dose-rates considerably higher than those used in conventional external-beam radiotherapy. Our purpose was to investigate normal tissue and tumour responses in vivo to short pulses of radiation. C57BL/6J mice were exposed to bilateral thorax irradiation using pulsed (at least 40 Gy/s, flash) or conventional dose-rate irradiation (0.03 Gy/s or less) in single dose. Immunohistochemical and histological methods were used to compare early radio-induced apoptosis and the development of lung fibrosis in the two situations. The response of two human (HBCx-12A, HEp-2) tumour xenografts in nude mice and one syngeneic, orthotopic lung carcinoma in C57BL/6J mice (TC-1 Luc+), was monitored in both radiation modes. A 17 Gy conventional irradiation induced pulmonary fibrosis and activation of the TGF-beta cascade in 100% of the animals 24-36 weeks post-treatment, as expected, whereas no animal developed complications below 23 Gy flash irradiation, and a 30 Gy flash irradiation was required to induce the same extent of fibrosis as 17 Gy conventional irradiation. Cutaneous lesions were also reduced in severity. Flash irradiation protected vascular and bronchial smooth muscle cells as well as epithelial cells of bronchi against acute apoptosis as shown by analysis of caspase-3 activation and TUNEL staining. In contrast, the antitumour effectiveness of flash irradiation was maintained and not different from that of conventional irradiation. Flash irradiation shifted by a large factor the threshold dose required to initiate lung fibrosis without loss of the antitumour efficiency, suggesting that the method might be used to advantage to minimize the complications of radiotherapy. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Directional interstitial brachytherapy from simulation to application
NASA Astrophysics Data System (ADS)
Lin, Liyong
Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the design optimization and construction of the first prototype directional source. Potential clinical applications and potential benefits of directional sources have been shown for prostate and breast tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Rahimian, J; Cosmatos, H
2014-06-01
Purpose: The goal of this research is to calculate and compare the Biological Equivalent Dose (BED) between permanent prostate Iodine-125 implant brachytherapy as monotherapy with the BED of conventional external beam radiation therapy (EBRT). Methods: A retrospective study of 605 patients treated with Iodine-125 seed implant was performed in which physician A treated 274 patients and physician B treated 331 patients. All the Brachytherapy treatment plans were created using VariSeed 8 planning system. The Iodine-125 seed source activities and loading patterns varied slightly between the two physicians. The prescription dose is 145 Gy to PTV for each patient. The BEDmore » and Tumor Control Probability (TCP) were calculated based on the TG 137 formulas. The BED for conventional EBRT of the prostate given in our institution in 2Gy per fraction for 38 fractions was calculated and compared. Results: Physician A treated 274 patients with an average BED of 123.92±0.87 Gy and an average TCP of 99.20%; Physician B treated 331 patients with an average BED of 124.87±1.12 Gy and an average TCP of 99.30%. There are no statistically significant differences (T-Test) between the BED and TCP values calculated for these two group patients.The BED of the patients undergoing conventional EBRT is calculated to be 126.92Gy. The BED of the patients treated with permanent implant brachytherapy and EBRT are comparable. Our BED and TCP values are higher than the reported values by TG 137 due to higher Iodine-125 seed activity used in our institution. Conclusion: We calculated the BED,a surrogate of the biological response to a permanent prostate brachytherapy using TG 137 formulas and recommendation. The TCP of better than 99% is calculated for these patients. A clinical outcome study of these patients correlating the BED and TCP values with PSA and Gleason Levels as well as patient survival is warranted.« less
NASA Astrophysics Data System (ADS)
Torres-Xirau, I.; Olaciregui-Ruiz, I.; Rozendaal, R. A.; González, P.; Mijnheer, B. J.; Sonke, J.-J.; van der Heide, U. A.; Mans, A.
2017-08-01
In external beam radiotherapy, electronic portal imaging devices (EPIDs) are frequently used for pre-treatment and for in vivo dose verification. Currently, various MR-guided radiotherapy systems are being developed and clinically implemented. Independent dosimetric verification is highly desirable. For this purpose we adapted our EPID-based dose verification system for use with the MR-Linac combination developed by Elekta in cooperation with UMC Utrecht and Philips. In this study we extended our back-projection method to cope with the presence of an extra attenuating medium between the patient and the EPID. Experiments were performed at a conventional linac, using an aluminum mock-up of the MRI scanner housing between the phantom and the EPID. For a 10 cm square field, the attenuation by the mock-up was 72%, while 16% of the remaining EPID signal resulted from scattered radiation. 58 IMRT fields were delivered to a 20 cm slab phantom with and without the mock-up. EPID reconstructed dose distributions were compared to planned dose distributions using the γ -evaluation method (global, 3%, 3 mm). In our adapted back-projection algorithm the averaged {γmean} was 0.27+/- 0.06 , while in the conventional it was 0.28+/- 0.06 . Dose profiles of several square fields reconstructed with our adapted algorithm showed excellent agreement when compared to TPS.
Land, Charles E; Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M; Simon, Steven L
2015-02-01
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semipalatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point "best estimates". In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response.
Arterial chemoradiotherapy for carcinomas of the external auditory canal and middle ear.
Fujiwara, Masayuki; Yamamoto, Satoshi; Doi, Hiroshi; Takada, Yasuhiro; Odawara, Soichi; Niwa, Yasue; Ishikura, Reiichi; Kamikonya, Norihiko; Terada, Tomonori; Uwa, Nobuhiro; Sagawa, Kosuke; Hirota, Shozo
2015-03-01
The purpose of this study was to estimate the efficacy of superselective arterial chemoradiotherapy for locally advanced carcinomas of the external auditory canal and middle ear. A retrospective study of clinical data for consecutive patients with locally advanced carcinomas of the external auditory canal and middle ear. Thirteen patients with locally advanced carcinomas of the external auditory canal and middle ear (T3: one patient, T4: 12 patients) were reviewed. The median follow-up duration in the living patients was 33 months. The total dose of radiation therapy was 60 Gy using conventional fractionation. Four, five, or six courses of a superselective arterial infusion (cisplatin 50 mg) were given weekly. The overall survival and progression-free survival rates at 2 years, calculated by the Kaplan-Meier method, were 58.7% and 53.8%, respectively. No late-phase adverse effects due to chemoradiation and no adverse effects due to catheterization were observed. These results suggest that superselective arterial chemoradiation can be a treatment option for locally advanced carcinomas of the external auditory canal and middle ear. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.203 Combining internal and external equivalent doses. (a) The total effective dose...
NASA Astrophysics Data System (ADS)
Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.
2014-11-01
This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.
NASA Astrophysics Data System (ADS)
Bertholet, Jenny; Toftegaard, Jakob; Hansen, Rune; Worm, Esben S.; Wan, Hanlin; Parikh, Parag J.; Weber, Britta; Høyer, Morten; Poulsen, Per R.
2018-03-01
The purpose of this study was to develop, validate and clinically demonstrate fully automatic tumour motion monitoring on a conventional linear accelerator by combined optical and sparse monoscopic imaging with kilovoltage x-rays (COSMIK). COSMIK combines auto-segmentation of implanted fiducial markers in cone-beam computed tomography (CBCT) projections and intra-treatment kV images with simultaneous streaming of an external motion signal. A pre-treatment CBCT is acquired with simultaneous recording of the motion of an external marker block on the abdomen. The 3-dimensional (3D) marker motion during the CBCT is estimated from the auto-segmented positions in the projections and used to optimize an external correlation model (ECM) of internal motion as a function of external motion. During treatment, the ECM estimates the internal motion from the external motion at 20 Hz. KV images are acquired every 3 s, auto-segmented, and used to update the ECM for baseline shifts between internal and external motion. The COSMIK method was validated using Calypso-recorded internal tumour motion with simultaneous camera-recorded external motion for 15 liver stereotactic body radiotherapy (SBRT) patients. The validation included phantom experiments and simulations hereof for 12 fractions and further simulations for 42 fractions. The simulations compared the accuracy of COSMIK with ECM-based monitoring without model updates and with model updates based on stereoscopic imaging as well as continuous kilovoltage intrafraction monitoring (KIM) at 10 Hz without an external signal. Clinical real-time tumour motion monitoring with COSMIK was performed offline for 14 liver SBRT patients (41 fractions) and online for one patient (two fractions). The mean 3D root-mean-square error for the four monitoring methods was 1.61 mm (COSMIK), 2.31 mm (ECM without updates), 1.49 mm (ECM with stereoscopic updates) and 0.75 mm (KIM). COSMIK is the first combined kV/optical real-time motion monitoring method used clinically online on a conventional accelerator. COSMIK gives less imaging dose than KIM and is in addition applicable when the kV imager cannot be deployed such as during non-coplanar fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayana, V; McLaughlin, P; University of Michigan, Ann Arbor, MI
2015-06-15
Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients weremore » set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.« less
Kumar, Deepak; Singh, Vijay
2016-01-01
Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry can reduce the total external enzyme usage by more than 80 %, and combining their use with in situ removal of ethanol during fermentation allows efficient high-solid fermentation.
Hoffman, F. Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M.; Simon, Steven L.
2015-01-01
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semi-palatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point “best estimates”. In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response. PMID:25574587
Dosimetry in nuclear medicine therapy: radiobiology application and results.
Strigari, L; Benassi, M; Chiesa, C; Cremonesi, M; Bodei, L; D'Andrea, M
2011-04-01
The linear quadratic model (LQM) has largely been used to assess the radiobiological damage to tissue by external beam fractionated radiotherapy and more recently has been extended to encompass a general continuous time varying dose rate protocol such as targeted radionuclide therapy (TRT). In this review, we provide the basic aspects of radiobiology, from a theoretical point of view, starting from the "four Rs" of radiobiology and introducing the biologically effective doses, which may be used to quantify the impact of a treatment on both tumors and normal tissues. We also present the main parameters required in the LQM, and illustrate the main models of tumor control probability and normal tissue complication probability and summarize the main dose-effect responses, reported in literature, which demonstrate the tentative link between targeted radiotherapy doses and those used in conventional radiotherapy. A better understanding of the radiobiology and mechanisms of action of TRT could contribute to describe the clinical data and guide the development of future compounds and the designing of prospective clinical trials.
NASA Astrophysics Data System (ADS)
Jeon, Hosang; Nam, Jiho; Lee, Jayoung; Park, Dahl; Baek, Cheol-Ha; Kim, Wontaek; Ki, Yongkan; Kim, Dongwon
2015-06-01
Accurate dose delivery is crucial to the success of modern radiotherapy. To evaluate the dose actually delivered to patients, in-vivo dosimetry (IVD) is generally performed during radiotherapy to measure the entrance doses. In IVD, a build-up device should be placed on top of an in-vivo dosimeter to satisfy the electron equilibrium condition. However, a build-up device made of tissue-equivalent material or metal may perturb dose delivery to a patient, and requires an additional laborious and time-consuming process. We developed a novel IVD method using a look-up table of conversion ratios instead of a build-up device. We validated this method through a monte-carlo simulation and 31 clinical trials. The mean error of clinical IVD is 3.17% (standard deviation: 2.58%), which is comparable to that of conventional IVD methods. Moreover, the required time was greatly reduced so that the efficiency of IVD could be improved for both patients and therapists.
Honda, Atsushi; Nakamura, Yuji; Ohara, Hiroshi; Cao, Xin; Nomura, Hiroaki; Katagi, Jun; Wada, Takeshi; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Sugiyama, Atsushi
2016-03-15
Cardiac effects of a prostagrandin EP4-receptor agonist ONO-AE1-329 were assessed in the halothane-anesthetized dogs under the monitoring of left ventricular pressure-volume relationship, which were compared with those of clinically recommended doses of dopamine, dobutamine and milrinone (n=4-5 for each treatment). ONO-AE1-329 was intravenously administered in doses of 0.3, 1 and 3 ng/kg/min for 10 min with a pause of 20 min. Dopamine in a dose of 3 µg/kg/min for 10 min, dobutamine in a dose of 1 µg/kg/min for 10 min and milrinone in a dose of 5 µg/kg/min for 10 min followed by 0.5 µg/kg/min for 10 min were intravenously administered. Low dose of ONO-AE1-329 increased the stroke volume. Middle dose of ONO-AE1-329 increased the cardiac output, left ventricular end-diastolic volume, ejection fraction, maximum upstroke/downstroke velocities of the left ventricular pressure and external work, but decreased the end-systolic pressure and internal work besides the change by the low dose. High dose of ONO-AE1-329 increased the heart rate and maximum elastance, but decreased the end-systolic volume besides the changes by the middle dose. Dopamine, dobutamine and milrinone exerted essentially similar cardiac effects to ONO-AE1-329, but they did not significantly change the end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, end-systolic pressure, maximum elastance, external work or internal work. Thus, EP4-receptor stimulation by ONO-AE1-329 may have potential to better promote the passive ventricular filling than the conventional cardiotonic drugs, which could become a candidate of novel therapeutic strategy for the treatment of heart failure with preserved ejection fraction. Copyright © 2016 Elsevier B.V. All rights reserved.
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
Naito, Wataru; Uesaka, Motoki; Yamada, Chie; Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki
2016-01-01
The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding airborne monitoring-based ambient doses and time-activity patterns of individuals. Moreover, the results provide important information for predicting future cumulative doses after the return of residents to evacuation order areas in Fukushima.
Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki
2016-01-01
The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding airborne monitoring-based ambient doses and time-activity patterns of individuals. Moreover, the results provide important information for predicting future cumulative doses after the return of residents to evacuation order areas in Fukushima. PMID:27494021
Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce
2017-03-17
Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce
Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less
Strategies for systemic radiotherapy of micrometastases using antibody-targeted 131I.
Wheldon, T E; O'Donoghue, J A; Hilditch, T E; Barrett, A
1988-02-01
A simple analysis is developed to evaluate the likely effectiveness of treatment of micrometastases by antibody-targeted 131I. Account is taken of the low levels of tumour uptake of antibody-conjugated 131I presently achievable and of the "energy wastage" in targeting microscopic tumours with a radionuclide whose disintegration energy is widely dissipated. The analysis shows that only modest doses can be delivered to micrometastases when total body dose is restricted to levels which allow recovery of bone marrow. Much higher doses could be delivered to micrometastases when bone marrow rescue is used. A rationale is presented for targeted systemic radiotherapy used in combination with external beam total body irradiation (TBI) and bone marrow rescue. This has some practical advantages. The effect of the targeted component is to impose a biological non-uniformity on the total body dose distribution with regions of high tumour cell density receiving higher doses. Where targeting results in high doses to particular normal organs (e.g. liver, kidney) the total dose to these organs could be kept within tolerable limits by appropriate shielding of the external beam radiation component of the treatment. Greater levels of tumour cell kill should be achievable by the combination regime without any increase in normal tissue damage over that inflicted by conventional TBI. The predicted superiority of the combination regime is especially marked for tumours just below the threshold for detectability (e.g. approximately 1 mm-1 cm diameter). This approach has the advantage that targeted radiotherapy provides only a proportion of the total body dose, most of which is given by a familiar technique. The proportion of dose given by the targeted component could be increased as experience is gained. The predicted superiority of the combination strategy should be experimentally testable using laboratory animals. Clinical applications should be cautiously approached, with due regard to the limitations of the theoretical analysis.
NASA Astrophysics Data System (ADS)
Tahavori, Fatemeh
Respiratory motion induces uncertainty in External Beam Radiotherapy (EBRT), which can result in sub-optimal dose delivery to the target tissue and unwanted dose to normal tissue. The conventional approach to managing patient respiratory motion for EBRT within the area of abdominal-thoracic cancer is through the use of internal radiological imaging methods (e.g. Megavoltage imaging or Cone-Beam Computed Tomography) or via surrogate estimates of tumour position using external markers placed on the patient chest. This latter method uses tracking with video-based techniques, and relies on an assumed correlation or mathematical model, between the external surrogate signal and the internal target position. The marker's trajectory can be used in both respiratory gating techniques and real-time tracking methods. Internal radiological imaging methods bring with them limited temporal resolution, and additional radiation burden, which can be addressed by external marker-based methods that carry no such issues. Moreover, by including multiple external markers and placing them closer to the internal target organs, the effciency of correlation algorithms can be increased. However, the quality of such external monitoring methods is underpinned by the performance of the associated correlation model. Therefore, several new approaches to correlation modelling have been developed as part of this thesis and compared using publicly-available datasets. Highly competitive results have been obtained when compared against state-of-the-art methods. Marker-based methods also have the disadvantages of requiring manual set-up time for marker placement and patient positioning and potential issues with reproducibility of marker placement. This motivates the investigation of non-contact marker-free methods for use in EBRT, which is the main topic of this thesis. The Microsoft Kinect is used as an example of a low-cost consumer grade 3D depth camera for capturing and analysing external respiratory motion. This thesis makes the first presentation of detailed studies of external respiratory motion captured using such low-cost technology and demonstrates its potential in a healthcare environment. Firstly, the fundamental performance of a range of Microsoft Kinect sensors is assessed for use in radiotherapy (and potentially other healthcare applications), in terms of static and dynamic performance using both phantoms and volunteers. Then external respiratory motion is captured using the above technology from a group of 32 healthy volunteers and Principal Component Analysis (PCA) is applied to a region of interest encompassing the complete anterior surface to demonstrate breathing style. This work demonstrates that this surface motion can be compactly described by the first two PCA eigenvectors. The reproducibility of subject-specific EBRT set-up using conventional laser-based alignment and marker-based Deep Inspiration Breath Hold (DIBH) methods are also studied using the Microsoft Kinect sensor. A cohort of five healthy female volunteers is repeatedly set-up for left-sided breast cancer EBRT and multiple DIBH episodes captured over five separate sessions representing multiple fractionated radiotherapy treatment sessions, but without dose delivery. This provided an independent assessment that subjects were set-up and generally achieved variations within currently accepted margins of clinical practice. Moreover, this work demonstrated the potential role of consumer-grade 3D depth camera technology as a possible replacement for marker based set-up and DIBH management procedures. This brings with it the additional benefits of low cost, and potential through-put benefits, as patient set-up could ultimately be fully automated with this technology, and DIBH could be independently monitored without requiring preparatory manual intervention.
NASA Astrophysics Data System (ADS)
Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi
2015-08-01
The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv 94.0%, <2 mSv 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.
Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi
2015-01-01
The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected. PMID:26239643
Real time chemical exposure and risk monitor
Thrall, Karla D.; Kenny, Donald V.; Endres, George W. R.; Sisk, Daniel R.
1997-01-01
The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose.
Real time chemical exposure and risk monitor
Thrall, K.D.; Kenny, D.V.; Endres, G.W.R.; Sisk, D.R.
1997-07-08
The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose. 7 figs.
Use of in Vitro HTS-Derived Concentration-Response Data as ...
Background: Quantitative high-throughput screening (qHTS) assays are increasingly being employed to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in collaboration with the NIH Chemical Genomics Center. Objectives: To test a hypothesis that dose-response data points of the qHTS assays can serve as biological descriptors of assayed chemicals and, when combined with conventional chemical descriptors, may improve the accuracy of Quantitative Structure-Activity Relationship (QSAR) models applied to prediction of in vivo toxicity endpoints. Methods and Results: The cell viability qHTS concentration-response data for 1,408 substances assayed in 13 cell lines were obtained from PubChem; for a subset of these compounds rodent acute toxicity LD50 data were also available. The classification k Nearest Neighbor and Random Forest QSAR methods were employed for modeling LD50 data using either chemical descriptors alone (conventional models) or in combination with biological descriptors derived from the concentration-response qHTS data (hybrid models). Critical to our approach was the use of a novel noise-filtering algorithm to treat qHTS data. We show that both the external classification accuracy and coverage (i.e., fraction of compounds in the external set that fall within the applicability domain) of the hybrid QSAR models was superior to convent
Integral radiation dose to normal structures with conformal external beam radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoyama, Hidefumi; Westerly, David Clark; Mackie, Thomas Rockwell
2006-03-01
Background: This study was designed to evaluate the integral dose (ID) received by normal tissue from intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Twenty-five radiation treatment plans including IMRT using a conventional linac with both 6 MV (6MV-IMRT) and 20 MV (20MV-IMRT), as well as three-dimensional conformal radiotherapy (3DCRT) using 6 MV (6MV-3DCRT) and 20 MV (20MV-3DCRT) and IMRT using tomotherapy (6MV) (Tomo-IMRT), were created for 5 patients with localized prostate cancer. The ID (mean dose x tissue volume) received by normal tissue (NTID) was calculated from dose-volume histograms. Results: The 6MV-IMRT resulted in 5.0% lower NTID thanmore » 6MV-3DCRT; 20 MV beam plans resulted in 7.7%-11.2% lower NTID than 6MV-3DCRT. Tomo-IMRT NTID was comparable to 6MV-IMRT. Compared with 6MV-3DCRT, 6MV-IMRT reduced IDs to the rectal wall and penile bulb by 6.1% and 2.7%, respectively. Tomo-IMRT further reduced these IDs by 11.9% and 16.5%, respectively. The 20 MV did not reduce IDs to those structures. Conclusions: The difference in NTID between 3DCRT and IMRT is small. The 20 MV plans somewhat reduced NTID compared with 6 MV plans. The advantage of tomotherapy over conventional IMRT and 3DCRT for localized prostate cancer was demonstrated in regard to dose sparing of rectal wall and penile bulb while slightly decreasing NTID as compared with 6MV-3DCRT.« less
Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle.
Di Lillo, Francesca; Mettivier, Giovanni; Castriconi, Roberta; Sarno, Antonio; Stevenson, Andrew W; Hall, Chris J; Häusermann, Daniel; Russo, Paolo
2018-05-01
The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.
External doses of residents near Semipalatinsk nuclear test site.
Takada, J; Hoshi, M; Nagatomo, T; Yamamoto, M; Endo, S; Takatsuji, T; Yoshikawa, I; Gusev, B I; Sakerbaev, A K; Tchaijunusova, N J
1999-12-01
Accumulated external radiation doses of residents near the Semipalatinsk nuclear test site of the former USSR are presented as a results of study by the thermoluminescence technique for bricks sampled at several settlements in 1995 and 1996. The external doses that we evaluated from exposed bricks were up to about 100 cGy for resident. The external doses at several points in the center of Semipalatinsk City ranged from a background level to 60 cGy, which was remarkably high compared with the previously reported values based on military data.
Analysis and evaluation for consumer goods containing NORM in Korea.
Jang, Mee; Chung, Kun Ho; Lim, Jong Myoung; Ji, Young Yong; Kim, Chang Jong; Kang, Mun Ja
2017-08-01
We analyzed the consumer goods containing NORM by ICP-MS and evaluated the external dose. To evaluate the external dose, we assumed the small room model as irradiation scenario and calculated the specific effective dose rate using MCNPX code. The external doses for twenty goods are less than 1 mSv considering the specific effective dose rates and usage quantities. However, some of them have relatively high dose and the activity concentration limits are necessary as a screening tool. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ohira, Tetsuya; Takahashi, Hideto; Yasumura, Seiji; Ohtsuru, Akira; Midorikawa, Sanae; Suzuki, Satoru; Fukushima, Toshihiko; Shimura, Hiroki; Ishikawa, Tetsuo; Sakai, Akira; Yamashita, Shunichi; Tanigawa, Koichi; Ohto, Hitoshi; Abe, Masafumi; Suzuki, Shinichi
2016-01-01
Abstract The 2011 Great East Japan Earthquake led to a subsequent nuclear accident at the Fukushima Daiichi Nuclear Power Plant. In its wake, we sought to examine the association between external radiation dose and thyroid cancer in Fukushima Prefecture. We applied a cross-sectional study design with 300,476 participants aged 18 years and younger who underwent thyroid examinations between October 2011 and June 2015. Areas within Fukushima Prefecture were divided into three groups based on individual external doses (≥1% of 5 mSv, <99% of 1 mSv/y, and the other). The odds ratios (ORs) and 95% confidence intervals of thyroid cancer for all areas, with the lowest dose area as reference, were calculated using logistic regression models adjusted for age and sex. Furthermore, the ORs of thyroid cancer for individual external doses of 1 mSv or more and 2 mSv or more, with the external dose less than 1 mSv as reference, were calculated. Prevalence of thyroid cancer for the location groups were 48/100,000 for the highest dose area, 36/100,000 for the middle dose area, and 41/100,000 for the lowest dose area. Compared with the lowest dose area, age-, and sex-adjusted ORs (95% confidence intervals) for the highest-dose and middle-dose areas were 1.49 (0.36–6.23) and 1.00 (0.67–1.50), respectively. The duration between accident and thyroid examination was not associated with thyroid cancer prevalence. There were no significant associations between individual external doses and prevalence of thyroid cancer. External radiation dose was not associated with thyroid cancer prevalence among Fukushima children within the first 4 years after the nuclear accident. PMID:27583855
Ohira, Tetsuya; Takahashi, Hideto; Yasumura, Seiji; Ohtsuru, Akira; Midorikawa, Sanae; Suzuki, Satoru; Fukushima, Toshihiko; Shimura, Hiroki; Ishikawa, Tetsuo; Sakai, Akira; Yamashita, Shunichi; Tanigawa, Koichi; Ohto, Hitoshi; Abe, Masafumi; Suzuki, Shinichi
2016-08-01
The 2011 Great East Japan Earthquake led to a subsequent nuclear accident at the Fukushima Daiichi Nuclear Power Plant. In its wake, we sought to examine the association between external radiation dose and thyroid cancer in Fukushima Prefecture. We applied a cross-sectional study design with 300,476 participants aged 18 years and younger who underwent thyroid examinations between October 2011 and June 2015. Areas within Fukushima Prefecture were divided into three groups based on individual external doses (≥1% of 5 mSv, <99% of 1 mSv/y, and the other). The odds ratios (ORs) and 95% confidence intervals of thyroid cancer for all areas, with the lowest dose area as reference, were calculated using logistic regression models adjusted for age and sex. Furthermore, the ORs of thyroid cancer for individual external doses of 1 mSv or more and 2 mSv or more, with the external dose less than 1 mSv as reference, were calculated. Prevalence of thyroid cancer for the location groups were 48/100,000 for the highest dose area, 36/100,000 for the middle dose area, and 41/100,000 for the lowest dose area. Compared with the lowest dose area, age-, and sex-adjusted ORs (95% confidence intervals) for the highest-dose and middle-dose areas were 1.49 (0.36-6.23) and 1.00 (0.67-1.50), respectively. The duration between accident and thyroid examination was not associated with thyroid cancer prevalence. There were no significant associations between individual external doses and prevalence of thyroid cancer. External radiation dose was not associated with thyroid cancer prevalence among Fukushima children within the first 4 years after the nuclear accident.
Wu, Rui-Yi; Wang, Guo-Min; Xu, Lei; Zhang, Bo-Heng; Xu, Ye-Qing; Zeng, Zhao-Chong; Chen, Bing
2011-05-01
The aim of this study was to investigate the feasibility and safety of high-intensity focused ultrasound (HIFU) combined with (+) low-dose external beam radiotherapy (LRT) as supplemental therapy for advanced prostate cancer (PCa) following hormonal therapy (HT). Our definition of HIFU+LRT refers to treating primary tumour lesions with HIFU in place of reduced field boost irradiation to the prostate, while retaining four-field box irradiation to the pelvis in conventional-dose external beam radiotherapy (CRT). We performed a prospective, controlled and non-randomized study on 120 patients with advanced PCa after HT who received HIFU, CRT, HIFU+LRT and HT alone, respectively. CT/MR imaging showed the primary tumours and pelvic lymph node metastases visibly shrank or even disappeared after HIFU+LRT treatment. There were significant differences among four groups with regard to overall survival (OS) and disease-specific survival (DSS) curves (P = 0.018 and 0.015). Further comparison between each pair of groups suggested that the long-term DSS of the HIFU+LRT group was higher than those of the other three groups, but there was no significant difference between the HIFU+LRT group and the CRT group. Multivariable Cox's proportional hazard model showed that both HIFU+LRT and CRT were independently associated with DSS (P = 0.001 and 0.035) and had protective effects with regard to the risk of death. Compared with CRT, HIFU+LRT significantly decreased incidences of radiation-related late gastrointestinal (GI) and genitourinary (GU) toxicity grade ≥ II. In conclusion, long-term survival of patients with advanced PCa benefited from strengthening local control of primary tumour and regional lymph node metastases after HT. As an alternative to CRT, HIFU+LRT showed good efficacy and better safety.
Sharma, Arunkumar B; Singh, Tomcha Th; Singh, Khelendra N; Gartia, R K
2009-01-01
To study dosimetry of patients during the external radiotherapy of head and neck cancers from different hospitals of the northeastern region (NER) of India. 35 confirmed cases of head and neck cancers reporting to three different hospitals in the NER of India who underwent radiation treatment were the materials for the study. Dosimetry was carried out at 8(eight) anatomical points to these patients, namely, target (entrance and exit points), forehead, chest, abdomen, gonad, arm, and leg respectively by thermoluminescence (TL) as well as optically stimulated luminescence (OSL) dosimeters. Unlike conventional appliances, we used common iodized salt as TL/OSL phosphor. Patient dosimetry was found to vary with an average of 1.17 +/- 0.39 Sv at forehead, 1.24 +/- 0.39 Sv at chest, 0.52 +/- 0.13 Sv at gonad to a minimum of 0.26 +/- 0.07 Sv at leg areas when exposed to a cumulative dose of 65 Sv at the target. Maximum dose received from a stray radiation is about 1.5 Sv at forehead/chest and dosimetry of patient among the three centers is not significantly different at the 5% level of probability.
NASA Astrophysics Data System (ADS)
Lizarelli, Rosane F. Z.; Mazzetto, Marcello O.; Bagnato, Vanderlei S.
2001-04-01
Dentin hypersensitivity is the most common patient's complain related to pain. In fact, this is a challenge to treat specially if conventional techniques are used. The possibility to treat pain through a low intensity laser gives us an opportunity to solve this important clinical problem without promote a discomfort to patient. The main point here is not if this kind of treatment is anti- inflammatory to pulp and/or biostimulatory to production of irregular secondary dentin. The most important point here is to understand how much energy is necessary to reach conditions where to tooth become insensible to external stimulus. Our double-blinded study compared a group without laser (Placebo) with five other groups where different doses at 660 nm low intensity laser were employed. The final conclusion is that for 660 nm laser therapy, the doses from 0.13 to 2.0 J/cm2 were more efficiency than the others. The follow up care in this study was of 45 days.
Tsubokura, Masaharu; Murakami, Michio; Nomura, Shuhei; Morita, Tomohiro; Nishikawa, Yoshitaka; Leppold, Claire; Kato, Shigeaki; Kami, Masahiro
2017-01-01
After the 2011 Fukushima Daiichi nuclear power plant accident, little information has been available on individual doses from external exposure among residents living in radioactively contaminated areas near the nuclear plant; in the present study we evaluated yearly changes in the doses from external exposure after the accident and the effects of decontamination on external exposure. This study considered all children less than 16 years of age in Soma City, Fukushima who participated in annual voluntary external exposure screening programs during the five years after the accident (n = 5,363). In total, 14,405 screening results were collected. The median participant age was eight years. The geometric mean levels of annual additional doses from external exposure attributable to the Fukushima accident, decreased each year: 0.60 mSv (range: not detectable (ND)-4.29 mSv), 0.37 mSv (range: ND-3.61 mSv), 0.22 mSv (range: ND-1.44 mSv), 0.20 mSv (range: ND-1.87 mSv), and 0.17 mSv (range: ND-0.85 mSv) in 2011, 2012, 2013, 2014, and 2015, respectively. The proportion of residents with annual additional doses from external exposure of more than 1 mSv dropped from 15.6% in 2011 to zero in 2015. Doses from external exposure decreased more rapidly than those estimated from only physical decay, even in areas without decontamination (which were halved in 395 days from November 15, 2011), presumably due to the weathering effects. While the ratios of geometric mean doses immediately after decontamination to before were slightly lower than those during the same time in areas without decontamination, annual additional doses reduced by decontamination were small (0.04-0.24 mSv in the year of immediately after decontamination was completed). The results of this study showed that the levels of external exposure among Soma residents less than 16 years of age decreased during the five years after the Fukushima Daiichi nuclear power plant accident. Decontamination had only limited and temporal effects on reducing individual external doses.
Warner, Andrew; Pickles, Tom; Crook, Juanita; Martin, Andre-Guy; Souhami, Luis; Catton, Charles; Lukka, Himu
2015-01-01
Purpose: Although several clinical nomograms predictive of biochemical failure-free survival (BFFS) for localized prostate cancer exist in the medical literature, making valid comparisons can be challenging due to variable definitions of biochemical failure, the disparate distribution of prognostic factors, and received treatments in patient populations. The aim of this investigation was to develop and validate clinically-based nomograms for 5-year BFFS using the ASTRO II “Phoenix” definition for two patient cohorts receiving low-dose rate (LDR) brachytherapy or conventionally fractionated external beam radiation therapy (EBRT) from a large Canadian multi-institutional database. Methods and Materials: Patients were selected from the GUROC (Genitourinary Radiation Oncologists of Canada) Prostate Cancer Risk Stratification (ProCaRS) database if they received (1) LDR brachytherapy ≥ 144 Gy (n=4208) or (2) EBRT ≥ 70 Gy (n=822). Multivariable Cox regression analysis for BFFS was performed separately for each cohort and used to generate clinical nomograms predictive of 5-year BFFS. Nomograms were validated using calibration plots of nomogram predicted probability versus observed probability via Kaplan-Meier estimates. Results: Patients receiving LDR brachytherapy had a mean age of 64 ± 7 years, a mean baseline PSA of 6.3 ± 3.0 ng/mL, 75% had a Gleason 6, and 15% had a Gleason 7, whereas patients receiving EBRT had a mean age of 70 ± 6 years, a mean baseline PSA of 11.6 ± 10.7 ng/mL, 30% had a Gleason 6, 55% had a Gleason 7, and 14% had a Gleason 8-10. Nomograms for 5-year BFFS included age, use and duration of androgen deprivation therapy (ADT), baseline PSA, T stage, and Gleason score for LDR brachytherapy and an ADT (months), baseline PSA, Gleason score, and biological effective dose (Gy) for EBRT. Conclusions: Clinical nomograms examining 5-year BFFS were developed for patients receiving either LDR brachytherapy or conventionally fractionated EBRT and may assist clinicians in predicting an outcome. Future work should be directed at examining the role of additional prognostic factors, comorbidities, and toxicity in predicting survival outcomes. PMID:26180700
Sedykh, Alexander; Zhu, Hao; Tang, Hao; Zhang, Liying; Richard, Ann; Rusyn, Ivan; Tropsha, Alexander
2011-01-01
Background Quantitative high-throughput screening (qHTS) assays are increasingly being used to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in collaboration with the National Institutes of Health Chemical Genomics Center. Objectives Our goal was to test a hypothesis that dose–response data points of the qHTS assays can serve as biological descriptors of assayed chemicals and, when combined with conventional chemical descriptors, improve the accuracy of quantitative structure–activity relationship (QSAR) models applied to prediction of in vivo toxicity end points. Methods We obtained cell viability qHTS concentration–response data for 1,408 substances assayed in 13 cell lines from PubChem; for a subset of these compounds, rodent acute toxicity half-maximal lethal dose (LD50) data were also available. We used the k nearest neighbor classification and random forest QSAR methods to model LD50 data using chemical descriptors either alone (conventional models) or combined with biological descriptors derived from the concentration–response qHTS data (hybrid models). Critical to our approach was the use of a novel noise-filtering algorithm to treat qHTS data. Results Both the external classification accuracy and coverage (i.e., fraction of compounds in the external set that fall within the applicability domain) of the hybrid QSAR models were superior to conventional models. Conclusions Concentration–response qHTS data may serve as informative biological descriptors of molecules that, when combined with conventional chemical descriptors, may considerably improve the accuracy and utility of computational approaches for predicting in vivo animal toxicity end points. PMID:20980217
Conventional external beam radiotherapy for central nervous system malignancies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halperin, E.C.; Burger, P.C.
1985-11-01
Fractionated external beam photon radiotherapy is an important component of the clinical management of malignant disease of the central nervous system. The practicing neurologist or neurosurgeon frequently relies on the consultative and treatment skills of a radiotherapist. This article provides a review for the nonradiotherapist of the place of conventional external beam radiotherapy in neuro-oncology. 23 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rachana; Al-Hallaq, Hania; Pelizzari, Charles A.
2003-12-31
The purpose of this study was to compare conventional low-dose-rate prostate brachytherapy dosimetric quality parameters with their biological effective dose (BED) counterparts. To validate a model for transformation from conventional dose to BED, the postimplant plans of 31 prostate brachytherapy patients were evaluated using conventional dose-volume histogram (DVH) quality endpoints and analogous BED-DVH endpoints. Based on CT scans obtained 4 weeks after implantation, DVHs were computed and standard dosimetric endpoints V100 (volume receiving 100% of the prescribed dose), V150, V200, HI (1-[V150/V100]), and D90 (dose that 90% of the target volume received) were obtained for quality analysis. Using known andmore » reported transformations, dose grids were transformed to BED-early ({alpha}/{beta} = 10 Gy) and BED-late ({alpha}/{beta} = 3 Gy) grids, and the same dosimetric endpoints were analyzed. For conventional, BED-early and BED-late DVHs, no differences in V100 were seen (0.896, 0.893, and 0.894, respectively). However, V150 and V200 were significantly higher for both BED-early (0.582 and 0.316) and BED-late (0.595 and 0.337), compared with the conventional (0.539 and 0.255) DVHs. D90 was significantly lower for the BED-early (103.1 Gy) and BED-late transformations (106.9 Gy) as compared with the conventional (119.5 Gy) DVHs. The conventional prescription parameter V100 is the same for the corresponding BED-early and BED-late transformed DVHs. The toxicity parameters V150 and V200 are slightly higher using the BED transformations, suggesting that the BED doses are somewhat higher than predicted using conventional DVHs. The prescription/quality parameter D90 is slightly lower, implying that target coverage is lower than predicted using conventional DVHs. This methodology can be applied to analyze BED dosimetric endpoints to improve clinical outcome and reduce complications of prostate brachytherapy.« less
Simon, Steven L; Baverstock, Keith F; Lindholm, Carita
2003-06-01
The presently available evidence about the magnitude of doses received by members of the public living in villages in the vicinity of Semipalatinsk nuclear test in Kazakhstan, particularly with respect to external radiation, while preliminary, is conflicting. The village of Dolon, in particular, has been identified for many years as the most highly exposed location in the vicinity of the test site. Previous publications cited external doses of more than 2 Gy to residents of Dolon while an expert group assembled by the WHO in 1997 estimated that external doses were likely to have been less than 0.5 Gy. In 2001, a larger expert group workshop was held in Helsinki jointly by the WHO, the National Cancer Institute of the United States, and the Radiation and Nuclear Safety Authority of Finland, with the expressed purpose to acquire data to evaluate the state of knowledge concerning doses received in Kazakhstan. This paper summarizes evidence presented at that workshop. External dose estimates from calculations based on sparse physical measurements and bio-dosimetric estimates based on chromosome abnormalities and electron paramagnetic resonance from a relatively small sample of teeth do not agree well. The physical dose estimates are generally higher than the biodosimetric estimates (1 Gy or more compared to 0.5 Gy or less). When viewed in its entirety, the present body of evidence does not appear to support external doses greater than 0.5 Gy; however, research is continuing to try and resolve the difference in dose estimates from the different methods. Thyroid doses from internal irradiation, which can only be estimated via calculation, are expected to have been several times greater than the doses from external irradiation, especially where received by small children.
beta- and gamma-Comparative dose estimates on Enewetak Atoll.
Crase, K W; Gudiksen, P H; Robison, W L
1982-05-01
Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.
Murakami, Michio; Nomura, Shuhei; Morita, Tomohiro; Nishikawa, Yoshitaka; Leppold, Claire; Kato, Shigeaki; Kami, Masahiro
2017-01-01
After the 2011 Fukushima Daiichi nuclear power plant accident, little information has been available on individual doses from external exposure among residents living in radioactively contaminated areas near the nuclear plant; in the present study we evaluated yearly changes in the doses from external exposure after the accident and the effects of decontamination on external exposure. This study considered all children less than 16 years of age in Soma City, Fukushima who participated in annual voluntary external exposure screening programs during the five years after the accident (n = 5,363). In total, 14,405 screening results were collected. The median participant age was eight years. The geometric mean levels of annual additional doses from external exposure attributable to the Fukushima accident, decreased each year: 0.60 mSv (range: not detectable (ND)–4.29 mSv), 0.37 mSv (range: ND–3.61 mSv), 0.22 mSv (range: ND–1.44 mSv), 0.20 mSv (range: ND–1.87 mSv), and 0.17 mSv (range: ND–0.85 mSv) in 2011, 2012, 2013, 2014, and 2015, respectively. The proportion of residents with annual additional doses from external exposure of more than 1 mSv dropped from 15.6% in 2011 to zero in 2015. Doses from external exposure decreased more rapidly than those estimated from only physical decay, even in areas without decontamination (which were halved in 395 days from November 15, 2011), presumably due to the weathering effects. While the ratios of geometric mean doses immediately after decontamination to before were slightly lower than those during the same time in areas without decontamination, annual additional doses reduced by decontamination were small (0.04–0.24 mSv in the year of immediately after decontamination was completed). The results of this study showed that the levels of external exposure among Soma residents less than 16 years of age decreased during the five years after the Fukushima Daiichi nuclear power plant accident. Decontamination had only limited and temporal effects on reducing individual external doses. PMID:28235009
Colloidal drug delivery system: amplify the ocular delivery.
Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar
2016-01-01
The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.
Smith, Jessica A.; Wild, Aaron T.; Singhi, Aatur; Raman, Siva P.; Qiu, Haoming; Kumar, Rachit; Hacker-Prietz, Amy; Hruban, Ralph H.; Kamel, Ihab R.; Efron, Jonathan; Wick, Elizabeth C.; Azad, Nilofer S.; Diaz, Luis A.; Le, Yi; Armour, Elwood P.; Gearhart, Susan L.; Herman, Joseph M.
2012-01-01
Purpose. To assess for differences in clinical, radiologic, and pathologic outcomes between patients with stage II-III rectal adenocarcinoma treated neoadjuvantly with conventional external beam radiotherapy (3D conformal radiotherapy (3DRT) or intensity-modulated radiotherapy (IMRT)) versus high-dose-rate endorectal brachytherapy (EBT). Methods. Patients undergoing neoadjuvant EBT received 4 consecutive daily 6.5 Gy fractions without chemotherapy, while those undergoing 3DRT or IMRT received 28 daily 1.8 Gy fractions with concurrent 5-fluorouracil. Data was collected prospectively for 7 EBT patients and retrospectively for 25 historical 3DRT/IMRT controls. Results. Time to surgery was less for EBT compared to 3DRT and IMRT (P < 0.001). There was a trend towards higher rate of pathologic CR for EBT (P = 0.06). Rates of margin and lymph node positivity at resection were similar for all groups. Acute toxicity was less for EBT compared to 3DRT and IMRT (P = 0.025). Overall and progression-free survival were noninferior for EBT. On MRI, EBT achieved similar complete response rate and reduction in tumor volume as 3DRT and IMRT. Histopathologic comparison showed that EBT resulted in more localized treatment effects and fewer serosal adhesions. Conclusions. EBT offers several practical benefits over conventional radiotherapy techniques and appears to be at least as effective against low rectal cancer as measured by short-term outcomes. PMID:22830003
Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy.
Zhang, Rongxiao; Gladstone, David J; Jarvis, Lesley A; Strawbridge, Rendall R; Jack Hoopes, P; Friedman, Oscar D; Glaser, Adam K; Pogue, Brian W
2013-11-01
Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation therapy dosimetry. In this letter, the first in vivo Cherenkov images of a real-time Cherenkoscopy during EBRT are presented. The imaging system consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only during the 3.25-μs radiation bursts. Images of a tissue phantom under irradiation show that the intensity of Cherenkov emission is directly proportional to radiation dose, and images can be acquired at 4.7 frames/s with SNR>30. Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during planned, Institutional Animal Care and Use Committee approved, conventional (therapeutically appropriate) EBRT irradiation. Coregistration between photography and Cherenkoscopy validated that Cherenkov photons were detected from the planned treatment region. Real-time images correctly monitored the beam field changes corresponding to the planned dynamic wedge movement, with accurate extent of overall beam field, and expected cold and hot regions.
Bernhardsson, C; Zvonova, I; Rääf, C; Mattsson, S
2011-10-15
A Nordic-Soviet programme was initiated in 1990 to evaluate the external and internal radiation exposure of the inhabitants of several villages in the Bryansk region of Russia. This area was one of the number of areas particularly affected by the nuclear accident at the Chernobyl Nuclear Power Plant in 1986. Measurements were carried out yearly until 1998 and after that more irregularly; in 2000, 2006 and 2008 respectively. The effective dose estimates were based on individual thermoluminescent dosemeters and on in vivo measurements of the whole body content of (137)Cs (and (134)Cs during the first years of the programme). The decrease in total effective dose during the almost 2 decade follow-up was due to a continuous decrease in the dominating external exposure and a less decreasing but highly variable exposure from internal irradiation. In 2008, the observed average effective dose (i.e. the sum of external and internal exposure) from Chernobyl (137)Cs to the residents was estimated to be 0.3mSv y(-1). This corresponds to 8% of the estimated annual dose in 1990 and to 1% of the estimated annual dose in 1986. As a mean for the population group and for the period of the present study (2006-2008), the average yearly effective dose from Chernobyl cesium was comparable to the absorbed dose obtained annually from external exposure to cosmic radiation plus internal exposure to naturally occurring radionuclides in the human body. Our data indicate that the effective dose from internal exposure is becoming increasingly important as the body burdens of Chernobyl (137)Cs are decreasing more slowly than the external exposure. However, over the years there have been large individual variations in both the external and internal effective doses, as well as differences between the villages investigated. These variations and differences are presented and discussed in this paper. Copyright © 2011 Elsevier B.V. All rights reserved.
ASSESSMENT OF EYE LENS DOSES IN INTERVENTIONAL RADIOLOGY: A SIMULATION IN LABORATORY CONDITIONS.
Čemusová, Z; Ekendahl, D; Judas, L
2016-09-01
As workers in interventional radiology belong to one of the most occupationally exposed groups, methods for sufficiently accurate quantification of their external exposure are sought. The objective of the authors' experiment was to investigate the relations between eye lens dose and Hp(10), Hp(3) or Hp(0.07) values measured with a conventional whole-body personal thermoluminescence dosemeter (TLD). Conditions of occupational exposure during common interventional procedures were simulated in laboratory. An anthropomorphic phantom represented a physician. The TLDs were fixed to the phantom in different locations that are common for purposes of personal dosimetry. In order to monitor the dose at the eye lens level during the exposures, a special thermoluminescence eye dosemeter was fixed to the phantom's temple. Correlations between doses measured with the whole-body and the eye dosemeters were found. There are indications that personnel in interventional radiology do not need to be unconditionally equipped with additional eye dosemeters, especially if an appropriate whole-body dosimetry system has been already put into practice. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Orita, Makiko; Hayashida, Naomi; Taira, Yasuyuki; Fukushima, Yoshiko; Ide, Juichi; Endo, Yuuko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru
2015-01-01
To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual’s house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster. PMID:25806523
Orita, Makiko; Hayashida, Naomi; Taira, Yasuyuki; Fukushima, Yoshiko; Ide, Juichi; Endo, Yuuko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru
2015-01-01
To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual's house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Eldib, A; Chibani, O
2015-06-15
Purpose: Co-60 beams have unique dosimetric properties for cranial treatments and thoracic cancers. The conventional concern about the high surface dose is overcome by modern system designs with rotational treatment techniques. This work investigates a novel rotational Gamma ray system for image-guided, external beam radiotherapy. Methods: The CybeRT system (Cyber Medical Corp., China) consists of a ring gantry with either one or two treatment heads containing a Gamma source and a multileaf collimator (MLC). The MLC has 60 paired leaves, and the maximum field size is either 40cmx40cm (40 pairs of 0.5cm central leaves, 20 pairs of 1cm outer leaves),more » or 22cmx40cm (32 pairs of 0.25cm central leaves, 28 pairs of 0.5cm outer leaves). The treatment head(s) can swing 35° superiorly and 8° inferiorly, allowing a total of 43° non-coplanar beam incident. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV cone-beam CT system has a spatial resolution of 0.4mm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 98 previously treated patients was performed to compare CybeRT with existing RT systems. Results: Monte Carlo results confirmed the CybeRT design parameters including output factors and 3D dose distributions. Its beam penumbra/dose gradient was similar to or better than that of 6MV photon beams and its isocenter accuracy is 0.3mm. Co-60 beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Because of their rapid depth dose falloff, Co-60 beams are favorable for peripheral lung tumors with half-arc arrangements to spare the opposite lung and critical structures. Superior dose distributions were obtained for head and neck, breast, spine and lung tumors. Conclusion: Because of its accurate dose delivery and unique dosimetric properties of C-60 sources, CybeRT is ideally suited for advanced SBRT as well as conventional RT. This work was partially supported by Cyber Medical Corp.« less
Nasopharyngeal carcinoma with cranial nerve palsy: The importance of MRI for radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Joseph T.-C.; Taipei Chang Gung Head and Neck Oncology Group, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan; Lin, C.-Y.
2005-12-01
Purpose: To evaluate various prognostic factors and the impact of imaging modalities on tumor control in patients with nasopharyngeal cancer (NPC) with cranial nerve (China) palsy. Material and Methods: Between September 1979 and December 2000, 330 NPC patients with CN palsy received radical radiotherapy (RT) by the conventional opposing technique at Chang Gung Memorial Hospital-Linkou. Imaging methods used varied over that period, and included conventional tomography (Tm) for 47 patients, computerized tomography (CT) for 195 patients, and magnetic resonance image (MRI) for 88 patients. Upper CN (II-VI) palsy was found in 268 patients, lower CN (IX-XII) in 13, and 49more » patients had both. The most commonly involved CN were V or VI or both (23%, 12%, and 16%, respectively). All patients had good performance status (World Health Organization <2). The median external RT dose was 70.2 Gy (range, 63-77.5 Gy). Brachytherapy was also given to 156 patients in addition to external RT, delivered by the remote after-loading, high-dose-rate technique. A total of 139 patients received cisplatin-based chemotherapy, in 115 received as neoadjuvant or adjuvant chemotherapy and in 24 concomitant with RT. Recovery from CN palsy occurred in 171 patients during or after radiotherapy. Patients who died without a specific cause identified were regarded as having died with persistent disease. Results: The 3-year, 5-year, and 10-year overall survival was 47.1%, 34.4%, and 22.2%. The 3-year, 5-year, and 10-year disease-specific survival (DSS) rates were 50.4%, 37.8%, and 25.9%. The 5-year DSS for patients staged with MRI, CT, and Tm were 46.9%, 36.7%, and 21.9%, respectively (p = 0.016). The difference between MRI and CT was significant (p = 0.015). The 3-year and 5-year local control rates were 62% and 53%, respectively. The 5-year local control was 68.2% if excluding patients who died without a specific cause. Patients who had an MRI had a significantly better tumor control rate than those evaluated with CT or Tm, with a 15-30% improvement in local tumor control and survival. Patients with extensive CN palsy had worse survival than those with only lower CN or upper CN involvement (5-year DSS 20.4% vs. 43.2% and 40.4%, respectively; p < 0.001). Patients who recovered from CN palsy had better survival than those who did not (47% vs. 26%, p < 0.001). Brachytherapy was associated with poorer local control, whereas a total external dose of more than 70 Gy improved local tumor control and marginally improved DSS. Subgroup analysis in CT and MRI patients group, either DSS or OS was significantly associated with imaging modality, N stage, or location of or remission of CN palsy. Conclusion: The use of MRI was associated with improved tumor control and survival of patients with NPC causing CN palsy. Patients recovering from CN palsy had better survival. A higher radiation dose delivered by external beam may achieve better tumor control than brachytherapy.« less
Zhang, Haiying; Jiao, Ling; Cui, Songye; Wang, Liang; Tan, Jian; Zhang, Guizhi; He, Yajing; Ruan, Shuzhou; Fan, Saijun; Zhang, Wenyi
2014-01-01
Radiation safety is an integral part of targeted radionuclide therapy. The aim of this work was to study the external dose rate and retained body activity as functions of time in differentiated thyroid carcinoma patients receiving 131I therapy. Seventy patients were stratified into two groups: the ablation group (A) and the follow-up group (FU). The patients’ external dose rate was measured, and simultaneously, their retained body radiation activity was monitored at various time points. The equations of the external dose rate and the retained body activity, described as a function of hours post administration, were fitted. Additionally, the release time for patients was calculated. The reduction in activity in the group receiving a second or subsequent treatment was more rapid than the group receiving only the initial treatment. Most important, an expeditious method was established to indirectly evaluate the retained body activity of patients by measuring the external dose rate with a portable radiation survey meter. By this method, the calculated external dose rate limits are 19.2, 8.85, 5.08 and 2.32 μSv·h−1 at 1, 1.5, 2 and 3 m, respectively, according to a patient’s released threshold level of retained body activity <400 MBq. This study is beneficial for radiation safety decision-making. PMID:25337944
A detailed evaluation of TomoDirect 3DCRT planning for whole-breast radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Emma C.; Rabinovitch, Rachel; Ryan, Nicole E.
2013-01-01
The goal of this work was to develop planning strategies for whole-breast radiotherapy (WBRT) using TomoDirect three-dimensional conformal radiation therapy (TD-3DCRT) and to compare TD-3DCRT with conventional 3DCRT and TD intensity-modulated radiation therapy (TD-IMRT) to evaluate differences in WBRT plan quality. Computed tomography (CT) images of 10 women were used to generate 150 WBRT plans, varying in target structures, field width (FW), pitch, and number of beams. Effects on target and external maximum doses (EMD), organ-at-risk (OAR) doses, and treatment time were assessed for each parameter to establish an optimal planning technique. Using this technique, TD-3DCRT plans were generated andmore » compared with TD-IMRT and standard 3DCRT plans. FW 5.0 cm with pitch = 0.250 cm significantly decreased EMD without increasing lung V20 Gy. Increasing number of beams from 2 to 6 and using an additional breast planning structure decreased EMD though increased lung V20 Gy. Changes in pitch had minimal effect on plan metrics. TD-3DCRT plans were subsequently generated using FW 5.0 cm, pitch = 0.250 cm, and 2 beams, with additional beams or planning structures added to decrease EMD when necessary. TD-3DCRT and TD-IMRT significantly decreased target maximum dose compared to standard 3DCRT. FW 5.0 cm with 2 to 6 beams or novel planning structures or both allow for TD-3DCRT WBRT plans with excellent target coverage and OAR doses. TD-3DCRT plans are comparable to plans generated using TD-IMRT and provide an alternative to conventional 3DCRT for WBRT.« less
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Code of Federal Regulations, 2012 CFR
2012-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Code of Federal Regulations, 2011 CFR
2011-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Code of Federal Regulations, 2013 CFR
2013-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Bai, Penggang; Du, Min; Ni, Xiaolei; Ke, Dongzhong; Tong, Tong
2017-01-01
The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg), which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency. PMID:28388623
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, Mariana; Li, X. Allen; Ma Lijun
2005-07-01
Purpose: Whole-pelvis irradiation (WPI) followed by a boost to the tumor site is the standard of practice for the radiotherapeutic management of locally advanced gynecologic cancers. The boost is frequently administered by use of brachytherapy or, occasionally, external-beam radiotherapy (EBRT) when brachytherapy does not provide sufficient coverage because of the size of the tumor or the geometry of the patient. In this work, we propose using an intensity-modulated radiotherapy (IMRT) simultaneous integrated boost (SIB), which is a single-phase process, to replace the conventional two-phase process involving WPI plus a boost. Radiobiological modeling is used to design appropriate regimens for themore » IMRT SIB. To demonstrate feasibility, a dosimetric study is carried out on an example patient. Methods and Materials: The standard linear-quadratic (LQ) model is used to calculate the biologically effective dose (BED) and equivalent uniform dose (EUD). A series of regimens that are biologically equivalent to those conventional two-phase treatments is calculated for the proposed SIB. A commercial inverse planning system (Corvus) was used to generate IMRT SIB plans for a sample patient case that used the newly designed fractionations. The dose-volume histogram (DVH) and EUD of both the target and normal structures for conventional treatments and the SIB are compared. A sparing factor was introduced to characterize the sparing of normal structures. Results: Fractionation regimes that are equivalent to the conventional treatments and are suitable for the IMRT SIB are deduced. For example, a SIB plan with 25 x 3.1 Gy (77.5 Gy) to a tumor is equivalent to a conventional treatment of EBRT of 45 Gy to the whole pelvis in 25 fractions plus a high-dose rate (HDR) brachytherapy boost with 30 Gy in 5 fractions. The normal tissue BED is found to be lower for the SIB plan than for the whole-pelvis plus HDR scheme when a sparing factor for the critical structures is considered. This finding suggests that the IMRT SIB has a better therapeutic ratio. Three IMRT SIB plans with 25 x 1.8 Gy to the pelvic nodes and 25 x 2.4 Gy (60 Gy), 25 x 2.8 Gy (70 Gy), and 25 x 3.2 Gy (80 Gy) to the tumor site were generated for the example patient case. The target coverage ranged from 94% to 95.5%. The sparing of bladder and rectum is significantly improved with the 60 to 70 Gy SIB treatments, as compared with the conventional treatments. The proposed SIB treatment can reduce the treatment time to 5 weeks. Conclusions: An IMRT simultaneous integrated boost to replace the conventional two-phase treatments (whole pelvic irradiation followed by brachytherapy or EBRT boost) is radiobiologically and dosimetricaly feasible for locally advanced gynecological cancers that may not be amenable to brachytherapy for anatomic or medical reasons. In addition to its shorter treatment time, the proposed IMRT SIB can provide significant sparing to normal structures, which offers potential for dose escalation. Issues such as organ motion and changing anatomy as tumor responds still must be addressed.« less
Cunningham, Fred; Dean, Karen; Hanson-Dorr, Katie; Harr, Kendal; Healy, Kate; Horak, Katherine; Link, Jane; Shriner, Susan; Bursian, Steven; Dorr, Brian
2017-07-01
Oral and external dosing methods replicating field exposure were developed using the double crested cormorant (DCCO) to test the toxicity of artificially weathered Deepwater Horizon Mississippi Canyon 252 oil. The majority of previous oil dosing studies conducted on wild-caught birds used gavage methods to dose birds with oil and determine toxicity. However, rapid gut transit time of gavaged oil likely reduces oil absorption. In the present studies, dosing relied on injection of oil into live feeder fish for oral dosing of these piscivorous birds, or applying oil to body contour feathers resulting in transdermal oil exposure and oral exposure through preening. Both oral and external oil dosing studies identified oil-related toxicity endpoints associated with oxidative stress such as hemolytic anemia, liver and kidney damage, and immuno-modulation or compromise. External oil application allowed for controlled study of thermoregulatory stress as well. Infrared thermal images indicated significantly greater surface temperatures and heat loss in treated birds following external oil applications; however, measurements collected by coelomically implanted temperature transmitters showed that internal body temperatures were stable over the course of the study period. Birds exposed to oil externally consumed more fish than control birds, indicating metabolic compensation for thermal stress. Conversely, birds orally dosed with oil experienced hypothermia and consumed less fish compared to control birds. Published by Elsevier Inc.
Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A
2015-11-01
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed doses in tooth enamel and muscle are in agreement with EPR- and FISH-based estimates within uncertainty bounds. Basically, this agreement between the estimates has confirmed the validity of external doses calculated with the TRDS.
Development of Safety Assessment Code for Decommissioning of Nuclear Facilities
NASA Astrophysics Data System (ADS)
Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori
A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.
Endo, S; Kimura, S; Takatsuji, T; Nanasawa, K; Imanaka, T; Shizuma, K
2012-09-01
Soil sampling was carried out at an early stage of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Samples were taken from areas around FDNPP, at four locations northwest of FDNPP, at four schools and in four cities, including Fukushima City. Radioactive contaminants in soil samples were identified and measured by using a Ge detector and included (129 m)Te, (129)Te, (131)I, (132)Te, (132)I, (134)Cs, (136)Cs, (137)Cs, (140)Ba and (140)La. The highest soil depositions were measured to the northwest of FDNPP. From this soil deposition data, variations in dose rates over time and the cumulative external doses at the locations for 3 months and 1y after deposition were estimated. At locations northwest of FDNPP, the external dose rate at 3 months after deposition was 4.8-98 μSv/h and the cumulative dose for 1 y was 51 to 1.0 × 10(3)mSv; the highest values were at Futaba Yamada. At the four schools, which were used as evacuation shelters, and in the four urban cities, the external dose rate at 3 months after deposition ranged from 0.03 to 3.8μSv/h and the cumulative doses for 1 y ranged from 3 to 40 mSv. The cumulative dose at Fukushima Niihama Park was estimated as the highest in the four cities. The estimated external dose rates and cumulative doses show that careful countermeasures and remediation will be needed as a result of the accident, and detailed measurements of radionuclide deposition densities in soil will be important input data to conduct these activities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-08
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.
Gil, F; Hernández, A F
2015-06-01
Human biomonitoring has become an important tool for the assessment of internal doses of metallic and metalloid elements. These elements are of great significance because of their toxic properties and wide distribution in environmental compartments. Although blood and urine are the most used and accepted matrices for human biomonitoring, other non-conventional samples (saliva, placenta, meconium, hair, nails, teeth, breast milk) may have practical advantages and would provide additional information on health risk. Nevertheless, the analysis of these compounds in biological matrices other than blood and urine has not yet been accepted as a useful tool for biomonitoring. The validation of analytical procedures is absolutely necessary for a proper implementation of non-conventional samples in biomonitoring programs. However, the lack of reliable and useful analytical methodologies to assess exposure to metallic elements, and the potential interference of external contamination and variation in biological features of non-conventional samples are important limitations for setting health-based reference values. The influence of potential confounding factors on metallic concentration should always be considered. More research is needed to ascertain whether or not non-conventional matrices offer definitive advantages over the traditional samples and to broaden the available database for establishing worldwide accepted reference values in non-exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
Ultrasound-Detected Thyroid Nodule Prevalence and Radiation Dose from Fallout
Land, C. E.; Zhumadilov, Z.; Gusev, B. I.; Hartshorne, M. H.; Wiest, P. W.; Woodward, P. W.; Crooks, L. A.; Luckyanov, N. K.; Fillmore, C. M.; Carr, Z.; Abisheva, G.; Beck, H. L.; Bouville, A.; Langer, J.; Weinstock, R.; Gordeev, K. I.; Shinkarev, S.; Simon, S. L.
2014-01-01
Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949–1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0–0.65) and 0.31 Gy (0–9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09–3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose–response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings. PMID:18363427
Hauri, Pascal; Schneider, Uwe
2018-04-01
Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. The response with radiation energy of TLD100 and TLD100H compared to 60 Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements. Copyright © 2017. Published by Elsevier GmbH.
Beby, Anna Trisia; Cornelis, Tom; Zinck, Raymund; Liu, Frank Xiaoqing
2016-11-01
In the Netherlands, the current standard of care for treating patients with end-stage renal disease is three sessions of in-center hemodialysis (conventional ICHD). However, the literature indicates that high dose hemodialysis (high dose HD) may provide better health outcome such as survival and quality of life. The objective of this study was to determine the cost-effectiveness of high dose HD, both in-center and at home, in comparison to conventional ICHD from a Dutch payer's perspective over a 5 year period. Additionally, the cost-effectiveness of conventional HD at home in comparison to conventional ICHD will be analysed. A Markov model was developed assuming 28-day treatment cycles and was populated with data from Dutch and international renal registries, official tariffs and medical literature. Univariable and probabilistic sensitivity analyses were performed to test the robustness of the results. Using publicly available tariffs from the Dutch Healthcare Authority (Nederlandse Zorgautoriteit) of 2015, doing high dose ICHD instead of conventional ICHD shows an incremental cost-effectiveness ratio (ICER) of €275,747 per quality-adjusted life year (QALY) gained. In contrast, the ICER of high dose HD at home in comparison to conventional ICHD is €3248 per gained QALY. The final analysis shows that conventional HD at home is less costly per patient (-€3063) than conventional ICHD and results in health benefit improvement (+0.249 QALYs), and is therefore regarded as cost saving. Treating dialysis patients with conventional HD at home shows to be cost saving in comparison to conventional ICHD. However, the magnitude of clinical benefit of high dose HD at home is over two times greater than the clinical benefit of conventional HD at home. According to our analysis, from a payer's perspective, high dose HD should be offered as a home therapy to obtain its clinical benefits in a cost-effective manner. Future research should consider our findings alongside societal factors, such as patient preference, monitoring cost for the home patient, productivity loss and capacity. Baxter BV, The Netherlands.
Ohman, A; Kull, L; Andersson, J; Flygare, L
2008-12-01
To measure organ doses and calculate effective doses for pre-operative radiographic examination of lower third molars with CT and conventional radiography (CR). Measurements of organ doses were made on an anthropomorphic head phantom with lithium fluoride thermoluminescent dosemeters. The dosemeters were placed in regions corresponding to parotid and submandibular glands, mandibular bone, thyroid gland, skin, eye lenses and brain. The organ doses were used for the calculation of effective doses according to proposed International Commission on Radiological Protection 2005 guidelines. For the CT examination, a Siemens Somatom Plus 4 Volume Zoom was used and exposure factors were set to 120 kV and 100 mAs. For conventional radiographs, a Scanora unit was used and panoramic, posteroanterior, stereographic (scanogram) and conventional spiral tomographic views were exposed. The effective doses were 0.25 mSv, 0.060 mSv and 0.093 mSv for CT, CR without conventional tomography and CR with conventional spiral tomography, respectively. The effective dose is low when CT examination with exposure factors optimized for the examination of bone structures is performed. However, the dose is still about four times as high as for CR without tomography. CT should therefore not be a standard method for the examination of lower third molars. In cases where there is a close relationship between the tooth and the inferior alveolar nerve the advantages of true sectional imaging, such as CT, outweighs the higher effective dose and is recommended. Further reduction in the dose is feasible with further optimization of examination protocols and the development of newer techniques.
Proton therapy detector studies under the experience gained at the CATANA facility
NASA Astrophysics Data System (ADS)
Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.
2007-10-01
Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.
Assessment of radiation doses from residential smoke detectors that contain americium-241
NASA Astrophysics Data System (ADS)
Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.
1981-10-01
External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.
de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-01
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose‐optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off‐line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%. PACS number: 87.55.kh
Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika
2013-12-01
The objective of this study was to assess and compare the organ and effective doses in the knee area resulting from different commercially available multislice computed tomography devices (MSCT), one cone beam computed tomography device (CBCT) and one conventional X-ray radiography device using MOSFET dosemeters and an anthropomorphic RANDO knee phantom. Measurements of the MSCT devices resulted in effective doses ranging between 27 and 48 µSv. The CBCT measurements resulted in an effective dose of 12.6 µSv. The effective doses attained using the conventional radiography device were 1.8 µSv for lateral and 1.2 µSv for anterior-posterior projections. The effective dose resulting from conventional radiography was considerably lower than those recorded for the CBCT and MSCT devices. The MSCT effective dose results were two to four times higher than those measured on the CBCT device. This study demonstrates that CBCT can be regarded as a potential low-dose 3D imaging technique for knee examinations.
Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan
2018-05-01
The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.
Chalifoux, Laurie A; Bauchat, Jeanette R; Higgins, Nicole; Toledo, Paloma; Peralta, Feyce M; Farrer, Jason; Gerber, Susan E; McCarthy, Robert J; Sullivan, John T
2017-10-01
Breech presentation is a leading cause of cesarean delivery. The use of neuraxial anesthesia increases the success rate of external cephalic version procedures for breech presentation and reduces cesarean delivery rates for fetal malpresentation. Meta-analysis suggests that higher-dose neuraxial techniques increase external cephalic version success to a greater extent than lower-dose techniques, but no randomized study has evaluated the dose-response effect. We hypothesized that increasing the intrathecal bupivacaine dose would be associated with increased external cephalic version success. We conducted a randomized, double-blind trial to assess the effect of four intrathecal bupivacaine doses (2.5, 5.0, 7.5, 10.0 mg) combined with fentanyl 15 μg on the success rate of external cephalic version for breech presentation. Secondary outcomes included mode of delivery, indication for cesarean delivery, and length of stay. A total of 240 subjects were enrolled, and 239 received the intervention. External cephalic version was successful in 123 (51.5%) of 239 patients. Compared with bupivacaine 2.5 mg, the odds (99% CI) for a successful version were 1.0 (0.4 to 2.6), 1.0 (0.4 to 2.7), and 0.9 (0.4 to 2.4) for bupivacaine 5.0, 7.5, and 10.0 mg, respectively (P = 0.99). There were no differences in the cesarean delivery rate (P = 0.76) or indication for cesarean delivery (P = 0.82). Time to discharge was increased 60 min (16 to 116 min) with bupivacaine 7.5 mg or higher as compared with 2.5 mg (P = 0.004). A dose of intrathecal bupivacaine greater than 2.5 mg does not lead to an additional increase in external cephalic procedural success or a reduction in cesarean delivery.
SU-F-T-151: Measurement Evaluation of Skin Dose in Scanning Proton Beam Therapy for Breast Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J; Nichols, E; Strauss, D
Purpose: To measure the skin dose and compare it with the calculated dose from a treatment planning system (TPS) for breast cancer treatment using scanning proton beam therapy (SPBT). Methods: A single en-face-beam SPBT plan was generated by a commercial TPS for two breast cancer patients. The treatment volumes were the entire breasts (218 cc and 1500 cc) prescribed to 50.4 Gy (RBE) in 28 fractions. A range shifter of 5 cm water equivalent thickness was used. The organ at risk (skin) was defined to be 5 mm thick from the surface. The skin doses were measured in water withmore » an ADCL calibrated parallel plate (PP) chamber. The measured data were compared with the values calculated in the TPS. Skin dose calculations can be subject to uncertainties created by the definition of the external contour and the limitations of the correction based algorithms, such as proton convolution superposition. Hence, the external contours were expanded by 0, 3 mm and 1 cm to include additional pixels for dose calculation. In addition, to examine the effects of the cloth gown on the skin dose, the skin dose measurements were conducted with and without gown. Results: On average the measured skin dose was 4% higher than the calculated values. At deeper depths, the measured and calculated doses were in better agreement (< 2%). Large discrepancy occur for the dose calculated without external expansion due to volume averaging. The addition of the gown only increased the measured skin dose by 0.4%. Conclusion: The implemented TPS underestimated the skin dose for breast treatments. Superficial dose calculation without external expansion would result in large errors for SPBT for breast cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strenge, D.L.; Peloquin, R.A.
The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure modemore » are also printed if requested.« less
Omori, Yasutaka; Tokonami, Shinji; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Hosoda, Masahiro; Kudo, Hiromi; Pornnumpa, Chanis; Nair, Raghu Ram K; Jayalekshmi, Padmavaty Amma; Sebastian, Paul; Akiba, Suminori
2017-03-20
In order to evaluate internal exposure to radon and thoron, concentrations for radon, thoron, and thoron progeny were measured for 259 dwellings located in high background radiation areas (HBRAs, outdoor external dose: 3-5 mGy y -1 ) and low background radiation areas (control areas, outdoor external dose: 1 mGy y -1 ) in Karunagappally Taluk, Kerala, India. The measurements were conducted using passive-type radon-thoron detectors and thoron progeny detectors over two six-month measurement periods from June 2010 to June 2011. The results showed no major differences in radon and thoron progeny concentrations between the HBRAs and the control areas. The geometric mean of the annual effective dose due to radon and thoron was calculated as 0.10 and 0.44 mSv, respectively. The doses were small, but not negligible compared with the external dose in the two areas.
Song, Yanbo; Zhang, Miao; Gan, Lu; Chen, Xiaopin; Zhang, Tao; Yue, Ning J; Goyal, Sharad; Haffty, Bruce; Ren, Guosheng
2016-05-31
Electronic tissue compensation (eComp) is an external beam planning technique allowing user to manually generate dynamic beam fluence to produce more uniform or modulated dose distribution. In this study, we compared the effectiveness between conventional three-dimensional conformal radiotherapy (3DCRT) and eComp for whole breast irradiation. 3DCRT and eComp planning techniques were used to generate treatment plans for 60 whole breast patients, respectively. The planning goal was to cover 95% of the planning target volume (PTV) with 95% of the prescription dose while minimizing doses to lung, heart, and skin. Comparing to 3DCRT plans, on the average, eComp treatment planning process was about 7 minutes longer, but resulted in lower lung V20Gy, lower mean skin dose, with similar heart dose. The benefits were more pronounced for larger breast patients. Statistical analyses were performed between critical organ doses and patient anatomic features, i.e., central lung distance (CLD), maximal heart distance (MHD), maximal heart length (MHL) and breast separation (BS) to explore any correlations and planning method selection. It was found that to keep the lung V20Gy lower than 20% and mean skin dose lower than 85% of the prescription dose, eComp was the preferred method for patients with more than 2.3 cm CLD or larger than 22.5 cm BS. The study results may be useful in providing a handy criterion in clinical practice allowing us to easily choose between different planning techniques to satisfy the planning goal with minimal increase in complexity and cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degteva, M. O.; Shagina, N. B.; Shishkina, Elena A.
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teethmore » and bones that served as a source of confounding local exposures. In order to estimate and subtract doses from incorporated 89,90Sr, the EPR and FISH assays were supported by measurements of 90Sr-body burdens and estimates of 90Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR and FISH measurements for residents of the upper Techa River were found to be consistent: the mean values vary from 510 – 550 mGy for the villages located close to the site of radioactive release to 130 – 160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2 – 2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the Techa River Dosimetry System (TRDS). The TRDS external dose assessments were based on the data on contamination of the Techa River floodplain, simulation of ai r kerma above the contaminated soil, age-dependent life-styles and individual residence histories. For correct comparison TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from 137Cs incorporated in donors’ soft tissues. The TRDS-based absorbed doses in tooth enamel and muscle were in agreement with with EPR- and FISH-based estimates within uncertainty bounds. Basically, the agreement between the estimates has confirmed the validity of external doses calculated with the Techa River Dosimetry System.« less
Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K
2016-11-01
French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.
High-speed machining of Space Shuttle External Tank (ET) panels
NASA Technical Reports Server (NTRS)
Miller, J. A.
1983-01-01
Potential production rates and project cost savings achieved by converting the conventional machining process in manufacturing shuttle external tank panels to high speed machining (HSM) techniques were studied. Savings were projected from the comparison of current production rates with HSM rates and with rates attainable on new conventional machines. The HSM estimates were also based on rates attainable by retrofitting existing conventional equipment with high speed spindle motors and rates attainable using new state of the art machines designed and built for HSM.
Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications.
Torres-Xirau, I; Olaciregui-Ruiz, I; Baldvinsson, G; Mijnheer, B J; van der Heide, U A; Mans, A
2018-01-09
Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.
Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications
NASA Astrophysics Data System (ADS)
Torres-Xirau, I.; Olaciregui-Ruiz, I.; Baldvinsson, G.; Mijnheer, B. J.; van der Heide, U. A.; Mans, A.
2018-01-01
Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.
Assessment of radiation doses from residential smoke detectors that contain americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.
1981-10-01
External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Svmore » (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Yook C.; Rodean, H.C.; Anspaugh, L.R.
The Nevada Applied Ecology Group (NAEG) Model of transport and dose for transuranic radionuclides was modified and expanded for the analysis of radionuclides other than pure alpha-emitters. Doses from internal and external exposures were estimated for the inventories and soil distributions of the individual radionuclides quantified in Areas 2 and 4 of the Nevada Test Site (NTS). We found that the dose equivalents via inhalation to liver, lungs, bone marrow, and bone surface from the plutonium isotopes and /sup 241/Am, those via ingestion to bone marrow and bone surfaces from /sup 90/Sr, and those via ingestion to all the targetmore » organs from /sup 137/Cs were the highest from internal exposures. The effective dose equivalents from /sup 137/Cs, /sup 152/Eu, and /sup 154/Eu were the highest from the external exposures. The /sup 60/Co, /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu dose estimates for external exposures greatly exceeded those for internal exposures. The /sup 60/Co, /sup 90/Sr, and /sup 137/Cs dose equivalents from internal exposures were underestimated due to the adoption of some of the foodchain parameter values originally selected for /sup 239/Pu. Nonetheless, the ingestion pathway contributed significantly to the dose estimates for /sup 90/Sr and /sup 137/Cs, but contributed very much less than external exposures to the dose estimates for /sup 60/Co. Therefore, the use of more appropriate values would not alter the identification of important radionuclides, pathways, target organs, and exposure modes in this analysis. 19 refs., 13 figs., 12 tabs.« less
Chetty, Indrin J; Curran, Bruce; Cygler, Joanna E; DeMarco, John J; Ezzell, Gary; Faddegon, Bruce A; Kawrakow, Iwan; Keall, Paul J; Liu, Helen; Ma, C M Charlie; Rogers, D W O; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V
2007-12-01
The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.
NASA Astrophysics Data System (ADS)
Palleri, Francesca; Baruffaldi, Fabio; Angelini, Anna Lisa; Ferri, Andrea; Spezi, Emiliano
2008-12-01
In external beam radiotherapy the calculation of dose distribution for patients with hip prostheses is critical. Metallic implants not only degrade the image quality but also perturb the dose distribution. Conventional treatment planning systems do not accurately account for high-Z prosthetic implants heterogeneities, especially at interfaces. The materials studied in this work have been chosen on the basis of a statistical investigation on the hip prostheses implanted in 70 medical centres. The first aim of this study is a systematic characterization of materials used for hip prostheses, and it has been provided by BEAMnrc Monte Carlo code. The second aim is to evaluate the capabilities of a specific treatment planning system, Pinnacle 3, when dealing with dose calculations in presence of metals, also close to the regions of high-Z gradients. In both cases it has been carried out an accurate comparison versus experimental measurements for two clinical photon beam energies (6 MV and 18 MV) and for two experimental sets-up: metallic cylinders inserted in a water phantom and in a specifically built PMMA slab. Our results show an agreement within 2% between experiments and MC simulations. TPS calculations agree with experiments within 3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu
2014-01-01
Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less
Commissioning of intensity modulated neutron radiotherapy (IMNRT).
Burmeister, Jay; Spink, Robyn; Liang, Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan; Snyder, Michael
2013-02-01
Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center∕Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate∕five head and neck) agreed to within -0.8 ± 1.4% and 5.0 ± 6.0% within and outside the target, respectively. Nearly all (22∕24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)∕prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max = 7.0%) and 1.4% (max = 4.1%) in water and virtual water, respectively. The mean gamma pass rate for all cases was 92.8% (min = 88.6%). These pass rates are lower than typically achieved with photon IMRT, warranting development of a planar dosimetry system designed specifically for IMNRT and∕or the improvement of neutron beam modeling in the penumbral region. The fractional photon dose component did not change significantly in a typical IMNRT plan versus a conventional fast neutron therapy plan, and IMNRT delivery is not expected to significantly alter the RBE. All other commissioning results were considered satisfactory for clinical implementation of IMNRT, including the external neutron dose validation, which agreed with the predicted neutron dose to within 1%. IMNRT has been successfully commissioned for clinical use. While current plan quality is inferior to photon IMRT, it is superior to conventional fast neutron therapy. Ion chamber validation results for IMNRT commissioning are also comparable to those typically achieved with photon IMRT. Gamma pass rates for planar dose distributions are lower than typically observed for photon IMRT but may be improved with improved planar dosimetry equipment and beam modeling techniques. In the meantime, patient-specific quality assurance measurements should rely more heavily on point dose measurements with tissue equivalent ionization chambers. No significant technical impediments are anticipated in the clinical implementation of IMNRT as described here.
NASA Astrophysics Data System (ADS)
Angel, Erin
Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.
Safety and Tolerability of SBRT after High-Dose External Beam Radiation to the Lung
Owen, Dawn; Olivier, Kenneth R.; Song, Limin; Mayo, Charles S.; Miller, Robert C.; Nelson, Kathryn; Bauer, Heather; Brown, Paul D.; Park, Sean S.; Ma, Daniel J.; Garces, Yolanda I.
2015-01-01
Purpose: Stereotactic body radiotherapy (SBRT) is commonly used to treat unresectable lung nodules. Given its relative safety and effective local control, SBRT has also been used to treat recurrent lung nodules after high-dose external beam radiation (EBRT) to the lung. The toxicity of such treatment is unknown. Methods and Materials: Between 2006 and 2012, 18 subjects at the Mayo Clinic with 27 recurrent lung nodules were treated with SBRT after receiving EBRT to the lung. Median local control, overall survival, and progression-free survival (PFS) were described. Acute toxicity and late toxicity (defined as toxicity ≥ and >90 days, respectively) were reported and graded as per standardized CTCAE 4.0 criteria. Results: The median age of patients treated was 68 years. Fifteen patients had recurrent lung cancer as their primary histology. Twelve patients received ≥60 Gy of conventional EBRT prior to SBRT. SBRT dose and fractionation varied; the most common prescriptions were 48 Gy/4, 54 Gy/3, and 50 Gy/5 fractions. Only four patients had SBRT planning target volumes (PTVs) that overlapped more than 50% of their prior EBRT PTV. Two patients developed local recurrence following SBRT. With a median follow up of 21.2 months, median SBRT-specific overall survival and PFS were 21.7 and 12.3 months, respectively. No grade ≥3 acute or late toxicities were noted. Conclusion: Stereotactic body radiotherapy may be a good salvage option for select patients with recurrent lung nodules following definitive EBRT to the chest. Toxicity is minimal and local control is excellent. PMID:25642416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benmakhlouf, H; Kraepelien, T; Forander, P
2014-06-01
Purpose: Most Gamma knife treatments are based solely on MR-images. However, for fractionated treatments and to implement TPS dose calculations that require electron densities, CT image data is essential. The purpose of this work is to assess the dosimetric effects of using MR-images registered with stereotactic CT-images in Gamma knife treatments. Methods: Twelve patients treated for vestibular schwannoma with Gamma Knife Perfexion (Elekta Instruments, Sweden) were selected for this study. The prescribed doses (12 Gy to periphery) were delivered based on the conventional approach of using stereotactic MR-images only. These plans were imported into stereotactic CT-images (by registering MR-images withmore » stereotactic CT-images using the Leksell gamma plan registration software). The dose plans, for each patient, are identical in both cases except for potential rotations and translations resulting from the registration. The impact of the registrations was assessed by an algorithm written in Matlab. The algorithm compares the dose-distributions voxel-by-voxel between the two plans, calculates the full dose coverage of the target (treated in the conventional approach) achieved by the CT-based plan, and calculates the minimum dose delivered to the target (treated in the conventional approach) achieved by the CT-based plan. Results: The mean dose difference between the plans was 0.2 Gy to 0.4 Gy (max 4.5 Gy) whereas between 89% and 97% of the target (treated in the conventional approach) received the prescribed dose, by the CT-plan. The minimum dose to the target (treated in the conventional approach) given by the CT-based plan was between 7.9 Gy and 10.7 Gy (compared to 12 Gy in the conventional treatment). Conclusion: The impact of using MR-images registered with stereotactic CT-images has successfully been compared to conventionally delivered dose plans showing significant differences between the two. Although CTimages have been implemented clinically; the effect of the registration has not been fully investigated.« less
Fluorescent nuclear track detectors for alpha radiation microdosimetry.
Kouwenberg, J J M; Wolterbeek, H T; Denkova, A G; Bos, A J J
2018-06-07
While alpha microdosimetry dates back a couple of decades, the effects of localized energy deposition of alpha particles are often still unclear since few comparative studies have been performed. Most modern alpha microdosimetry studies rely for large parts on simulations, which negatively impacts both the simplicity of the calculations and the reliability of the results. A novel microdosimetry method based on the Fluorescent Nuclear Track Detector, a versatile tool that can measure individual alpha particles at sub-micron resolution, yielding accurate energy, fluence and dose rate measurements, was introduced to address these issues. Both the detectors and U87 glioblastoma cell cultures were irradiated using an external Am241 alpha source. The alpha particle tracks measured with a Fluorescent Nuclear Track Detector were used together with high resolution 3D cell geometries images to calculate the nucleus dose distribution in the U87 glioblastoma cells. The experimentally obtained microdosimetry parameters were thereafter applied to simulations of 3D U87 cells cultures (spheroids) with various spatial distributions of isotopes to evaluate the effect of the nucleus dose distribution on the expected cell survival. The new experimental method showed good agreement with the analytically derived nucleus dose distributions. Small differences (< 5%) in the relative effectiveness were found for isotopes in the cytoplasm and on the cell membrane versus external irradiation, while isotopes located in the nucleus or on the nuclear membrane showed a substantial increase in relative effectiveness (33 - 51%). The ease-of-use, good accuracy and use of experimentally derived characteristics of the radiation field make this method superior to conventional simulation-based microdosimetry studies. Considering the uncertainties found in alpha radionuclide carriers in-vivo and in-vitro, together with the large contributions from the relative biological effectiveness and the oxygen enhancement ratio, it is expected that only carriers penetrating or surrounding the cell nucleus will substantially benefit from microdosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S; Department of Biomedical Engineering, University of North Carolina- Chapel Hill/ North Carolina State University, Chapel Hill, North Carolina; Lineberger Clinical Cancer Center, University of North Carolina, Chapel Hill, NC
Purpose: Ultrahigh dose-rate radiation at >40Gy/s has demonstrated astonishing normal-tissue sparing and tumor control in recent preclinical naive and tumor-bearing rodent studies when compared to the same radiation dose at a conventional dose-rate. The working mechanism of this fascinating dose-rate effect is currently under investigation. The aims of this work include investigating 1) whether LINAC FFF mode radiation at approximately 1Gy/s also has an improved therapeutic ratio compared to the same radiation dose at the conventional dose-rate of 0.05Gy/s, and 2) the dose-rate effect’s potential working mechanism by studying the expression of the P53 gene, linked to tumor suppression andmore » cell regulation after radiation damage. Methods: We used mouse model C57BL/6J, the same as that used in the ultrahigh dose-rate studies, and exposed them to total body irradiation (TBI) using the Elekta Versa accelerator 10MV photons. Mice (N=20) were given a total dose of 12Gy in both the high dose-rate group (n=10) using the FFF-mode and the conventional dose-rate group (n=10) using the conventional does rate mode. The FFF-mode treatment setup consisted of a 15cm×15cm field size setting at 53.2cm SSD while the conventional-mode set-up consisted of a 10cm×10cm field size at 100SSD. Post-radiation, animals were monitored daily for survival analysis and signs of moribundity requiring euthanasia. In addition, mouse spleens were harvested for P53 analysis at different time points. Results: For 12Gy TBI, the 1.3Gy/s FFF-mode high dose-rate produced a statistically significant (p=0.02) improvement in mouse survival compared to the 0.05Gy/s conventional dose-rate. An initial P53 study at the time of death time-point indicates that high dose-rate radiation induced a stronger expression of P53 than conventional dose-rate radiation. Conclusion: Our pilot study indicates that the FFF-mode high dose-rate radiation, which has been used largely to improve clinical throughput, may provide the added clinical benefit of improving treatment therapeutic ratio. Animal Studies were performed within the LCCC Animal Studies Core Facility at the University of North Carolina at Chapel Hill. The LCCC Animal Studies Core is supported in part by an NCI Center Core Support Grant (CA16086) to the UNC Lineberger Comprehensive Cancer Center.« less
External dose assessment in the Ukraine following the Chernobyl accident
NASA Astrophysics Data System (ADS)
Frazier, Remi Jordan Lesartre
While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which parameters were driving the computed results. The mean external effective dose for all individuals in the cohort due to exposure to radiocontamination from the Chernobyl accident between 26 April 1986 and 31 December 2009 was found to be 1.2 mSv; the geometric mean was 0.84 mSv with a geometric standard deviation of 2.1. The mean value is well below the mean external effective dose expected due to typical background radiation (which in the United States over this time period would be 12.0 mSv). Sensitivity analysis suggests that the greatest driver of the distribution of individual dose estimates is lack of specific information about the daily behavior of each individual, specifically the portion of time each individual spent indoors (and shielded from radionuclides deposited on the soil) versus outdoors (and unshielded).
Assessment of dose and risk to the body following conventional and spiral computed tomography.
Chang, L L; Chen, F D; Chang, P S; Liu, C C; Lien, H L
1995-04-01
Computed tomography (CT) is one of the most frequently used examination procedures in diagnostic radiology and the dose given to the patients is higher than in general radiographic procedures. In this study LiF chip thermoluminescent dosimeters (TLD-100) were placed in each relative organ or tissue position, including head, chest and abdomen, in a Rando phantom. CT was performed using both conventional and spiral modes, and effective dose and effective dose equivalent were assessed for each organ or tissue scanned. The TLD reader used in this experiment was controlled at a nitrogen flow rate of 450 ml/min, preheat time of 14 seconds, reading time of 16 seconds and annealing time of 16 seconds. This CT scanner can be used to perform both conventional and spiral tomography. Operating conditions for spiral tomography were 120 kV, 80 mA for scout film, and 120 kV, 200 mA, 1 sec/slice for each scanning. However, for conventional tomography, the operating conditions were 120 kV, 80 mA for scout film and 120 kV, 160 mA, 1.5 sec/slice for each scanning. These operating conditions are satisfactory to most clinical applications, and therefore were adopted for the present studies. Results showed that, in both effective dose and effective dose and effective dose equivalent, conventional tomography was higher than spiral tomography. The average effective doses for each part were measured to be 1.89 and 4.95 mSv for the head, 30.01 and 40.65 mSv for the chest, and 12.85 and 19.62 mSv for the abdomen of spiral and conventional CT, respectively. Higher carcinogenic risk was assessed in organs such as liver, lung, stomach and bone marrow, other organs had a relatively lower incidence of risk. The main purpose of this study was to obtain distribution values of effective dose and effective dose equivalent, and to know the probability of carcinogenic effect upon each organ or tissue after CT scanning. Results showed the average effective dose for spiral CT to be less than conventional CT, and the dose in the body surface was generally lower than the dose in the central region.
Ishikawa, Tetsuo; Yasumura, Seiji; Ohtsuru, Akira; Sakai, Akira; Akahane, Keiichi; Yonai, Shunsuke; Sakata, Ritsu; Ozasa, Kotaro; Hayashi, Masayuki; Ohira, Tetsuya; Kamiya, Kenji; Abe, Masafumi
2016-06-01
Many studies have been conducted on radiation doses to residents after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Time spent outdoors is an influential factor for external dose estimation. Since little information was available on actual time spent outdoors for residents, different values of average time spent outdoors per day have been used in dose estimation studies on the FDNPP accident. The most conservative value of 24 h was sometimes used, while 2.4 h was adopted for indoor workers in the UNSCEAR 2013 report. Fukushima Medical University has been estimating individual external doses received by residents as a part of the Fukushima Health Management Survey by collecting information on the records of moves and activities (the Basic Survey) after the accident from each resident. In the present study, these records were analyzed to estimate an average time spent outdoors per day. As an example, in Iitate Village, its arithmetic mean was 2.08 h (95% CI: 1.64-2.51) for a total of 170 persons selected from respondents to the Basic Survey. This is a much smaller value than commonly assumed. When 2.08 h is used for the external dose estimation, the dose is about 25% (23-26% when using the above 95% CI) less compared with the dose estimated for the commonly used value of 8 h.
Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P
2015-03-01
Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.
Radiological dose in Muria peninsula from SB-LOCA event
NASA Astrophysics Data System (ADS)
Sunarko; Suud, Zaki
2017-01-01
Dose assessment for accident condition is performed for Muria Peninsula region using source-term from Three-Mile Island unit 2 SB-LOCA accident. Xe-133, Kr-88, 1-131 and Cs-137 isotopes are considered in the calculation. The effluent is assumed to be released from a 50 m stack. Lagrangian particle dispersion method (LPDM) employing non-Gaussian dispersion coefficient in 3-dimensional mass-consistent wind-field is employed to obtain periodic surface-level concentration which is then time-integrated to obtain spatial distribution of ground-level dose. In 1-hour simulation, segmented plumes with 60 seconds duration with a total of 18.000 particles involved. Simulations using 6-hour worst-case meteorological data from Muria peninsula results in a peak external dose of around 1.668 mSv for low scenario and 6.892 mSv for high scenario in dry condition. In wet condition with 5 mm/hour and 10 mm/hour rain for the whole duration of the simulation provides only minor effect to dose. The peak external dose is below the regulatory limit of 50 mSv for effective skin dose from external gamma exposure.
MO-C-17A-10: Comparison of Dose Deformable Accumulation by Using Parallel and Serial Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Z; Li, M; Wong, J
Purpose: The uncertainty of dose accumulation over multiple CT datasets with deformable fusion may have significant impact on clinical decisions. In this study, we investigate the difference of two dose summation approaches involving deformable fusion. Methods: Five patients, four external beam and one brachytherapy(BT), were chosen for the study. The BT patient was treated with CT-based HDR. The CT image sets acquired in the imageguidance process (8-11 CTs/patient) were used to determine the dose delivered to the four external beam patients. (prostate, pelvis, lung and head and neck). For the HDR patient (cervix), five CT image sets and the correspondingmore » BT plans were used. In total 44 CT datasets and RT dose/plans were imported into the image fusion software MiM (6.0.4) for analysis.For each of the five clinical cases, the dose from each fraction was accumulated into the primary CT dataset by using both Parallel and Serial approaches. The dose-volume histogram (DVH) for CTV and selected organs-at-risks (OAR) were generated. The D95(CTV), OAR(mean) and OAR(max) for the four external beam cases the D90(CTV), and the max dose to bladder and rectum for the BT case were compared. Results: For the four external beam patients, the difference in D95(CTV) were <1.2% PD between the parallel and the serial approaches. The differences of the OAR(mean) and the OAR(max ) range from 0 to 3.7% and <1% PD respectively. For the HDR patient, the dose difference for D90 is 11% PD while that of the max dose to bladder and rectum were 11.5% and 23.3% respectively. Conclusion: For external beam treatments, the parallel and serial approaches have <5% difference probably because tumor volume and OAR have less changes from fraction to fraction. For the brachytherapy case, >10% dose difference between the two approaches was observed as significant volume changes of tumor and OAR were observed among treatment fractions.« less
Ben-Ezra, Menachem; Palgi, Yuval; Shrira, Amit; Sternberg, Dina; Essar, Nir
2010-01-01
Exposure to prolonged war stress is understudied. While there is debate regarding the empirical data of the dose-response model for posttraumatic stress disorder (PTSD), little is known about how weekly changes in external stress influences the level of PTSD symptoms. The purpose of this study was to measure the relation between objective external stress and PTSD symptoms across time, and thus, gain a deeper understating of the dose-response model. The study hypothesis postulates that the more severe the external stressor, the more severe the exhibition of traumatic symptoms. Thirteen special army administrative staff (SAAS) members from the Rambam Medical Center in Haifa attended seven intervention meetings during the war. These personnel answered a battery of questionnaires regarding demographics and PTSD symptoms during each session. A non-parametric test was used in order to measure the changes in PTSD symptoms between sessions. Pearson correlations were used in order to study the relationship between the magnitude of external stressors and the severity of PTSD symptoms. The results suggested that there was a significant relationship between the magnitude of external stressors and the severity of PTSD symptoms. These results are in line with the dose-response model. The results suggest that a pattern of decline in PTSD symptoms confirm the dose-response model for PTSD.
Bohl, Michael A; Goswami, Roopa; Strassner, Brett; Stanger, Paula
2016-08-01
The purpose of this investigation was to evaluate the potential of using the ACR's Dose Index Registry(®) to meet The Joint Commission's requirements to identify incidents in which the radiation dose index from diagnostic CT examinations exceeded the protocol's expected dose index range. In total, 10,970 records in the Dose Index Registry were statistically analyzed to establish both an upper and lower expected dose index for each protocol. All 2015 studies to date were then retrospectively reviewed to identify examinations whose total examination dose index exceeded the protocol's defined upper threshold. Each dose incident was then logged and reviewed per the new Joint Commission requirements. Facilities may leverage their participation in the ACR's Dose Index Registry to fully meet The Joint Commission's dose incident identification review and external benchmarking requirements. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria
2015-09-01
In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus ionization chamber and Monte Carlo results (within about 3%) for both flat and bevelled applicators.
Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D
2012-11-01
Leukemia is one of the earliest cancer effects observed after acute exposure to relatively high doses of ionizing radiation. Leukemia mortality after external exposure at low doses and low-dose rates has been investigated at the French Atomic Energy Commission (CEA) and Nuclear Fuel Company (AREVA NC) after an additional follow-up of 10 years. The cohort included radiation-monitored workers employed for at least one year during 1950-1994 at CEA or AREVA NC and followed during 1968-2004. Association between external exposure and leukemia mortality was estimated with excess relative risk (ERR) models and time-dependent modifying factors were investigated with time windows. The cohort included 36,769 workers, followed for an average of 28 years, among whom 73 leukemia deaths occurred. Among the workers with a positive recorded dose, the mean cumulative external dose was 21.7 mSv. Results under a 2-year lag assumption suggested that the risk of leukemia (except chronic lymphatic leukemia) increased significantly by 8% per 10 mSv. The magnitude of the association for myeloid leukemia was larger. The higher ERR/Sv for doses received 2-14 years earlier suggest that time since exposure modifies the effect. The ERR/Sv also appeared higher for doses received at exposure rates ≥20 mSv per year. These results are consistent with those found in other studies of nuclear workers. However, confidence intervals are still wide. Further analyses should be conducted in pooled cohorts of nuclear workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de; Zaragoza, Francisco J.; Sempau, Josep
Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Montemore » Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.« less
Galalae, Razvan; Tharavichitkul, Ekkasit; Wanwilairat, Somsak; Chitapanarux, Imjai; Kimmig, Bernhard; Dunst, Jürgen; Lorvidhaya, Vicharn
2015-02-01
Starting in 1999, the University Cooperation Platform (UCP) implemented an exchange program of researchers and clinicians/physicists between the Christian-Albrechts-University Kiel in Germany and Chiang Mai University in Thailand, to initiate a sustainable base for long-term development of image-guided brachytherapy and in general for high-technology radiotherapy in Chiang Mai. A series of UCP protocols, based constructively on each other, were performed and evaluated at intermediate term follow-up. The first protocol, addressing computed tomography (CT)-optimized brachytherapy for advanced cervical cancer (n = 17), showed a significant reduction of D2cc for the bladder and sigmoid (p < 0.001) while maintaining a very high dose in D90 high-risk clinical target volume (HR-CTV) in comparison with standard point-based planning. In addition, after a follow-up of 19 months no tumor relapse was observed. The second UCP protocol, testing the impact of magnetic resonance imaging (MRI) guidance (n = 15) in patients with cervical cancer, proved significantly smaller D2cc doses for the bladder, rectum, and sigmoid (p = 0.003, p = 0.015, and p = 0.012), and secured highly curative mean doses in D90 HR-CTV of 99.2 Gy. The acute and late toxicity was excellent without any observed grade 3 or higher morbidity. In the third protocol, the combination of image-guided brachytherapy (IGBT) and whole pelvis intensity-modulated external beam radiotherapy (WP-IMRT) (n = 15) reaffirmed the significant reduction of D2cc doses for the bladder, rectum, and sigmoid (p = 0.001 or p < 0.001) along with high equivalent dose at 2 Gy (EQD2) in the HR-CTV, and demonstrated very low acute therapy-related toxicity in absence of grade 3 morbidity. The implementation of transabdominal ultrasound (TAUS) was the focus of the fourth UCP project aiming a more generous potential use of image-guidance on long-term, and enhancing the quality of soft tissue assessment complementary to conventionally planned gynecological brachytherapy. Analyses in 29 patients revealed significantly reduced OARs doses in bladder with a total EQD2 > 80 Gy for bladder in only 17.2% versus 62.1% in conventional planning, and in rectum EQD2 > 75 Gy in 44.8% versus 79.3%, respectively. In conclusion, analyses revealed excellent results for the high-dose-rate IGBT in patients with advanced gynecological cancer both by using CT and MRI, and/or the combination with WP-IMRT. They also define MRI as gold standard for soft tissue assessment and to determine more accurately HR-CTV. The use of TAUS-guidance adds quality aspects to the "classical" conventional X-ray based planning, especially in terms of real-time measures and adequate soft tissue information, and may lower significantly the dose in OARs. The review of all UCP-results reconfirms the importance of the established program that will continue to operate with subsequent projects.
Tharavichitkul, Ekkasit; Wanwilairat, Somsak; Chitapanarux, Imjai; Kimmig, Bernhard; Dunst, Jürgen; Lorvidhaya, Vicharn
2015-01-01
Starting in 1999, the University Cooperation Platform (UCP) implemented an exchange program of researchers and clinicians/physicists between the Christian-Albrechts-University Kiel in Germany and Chiang Mai University in Thailand, to initiate a sustainable base for long-term development of image-guided brachytherapy and in general for high-technology radiotherapy in Chiang Mai. A series of UCP protocols, based constructively on each other, were performed and evaluated at intermediate term follow-up. The first protocol, addressing computed tomography (CT)-optimized brachytherapy for advanced cervical cancer (n = 17), showed a significant reduction of D2cc for the bladder and sigmoid (p < 0.001) while maintaining a very high dose in D90 high-risk clinical target volume (HR-CTV) in comparison with standard point-based planning. In addition, after a follow-up of 19 months no tumor relapse was observed. The second UCP protocol, testing the impact of magnetic resonance imaging (MRI) guidance (n = 15) in patients with cervical cancer, proved significantly smaller D2cc doses for the bladder, rectum, and sigmoid (p = 0.003, p = 0.015, and p = 0.012), and secured highly curative mean doses in D90 HR-CTV of 99.2 Gy. The acute and late toxicity was excellent without any observed grade 3 or higher morbidity. In the third protocol, the combination of image-guided brachytherapy (IGBT) and whole pelvis intensity-modulated external beam radiotherapy (WP-IMRT) (n = 15) reaffirmed the significant reduction of D2cc doses for the bladder, rectum, and sigmoid (p = 0.001 or p < 0.001) along with high equivalent dose at 2 Gy (EQD2) in the HR-CTV, and demonstrated very low acute therapy-related toxicity in absence of grade 3 morbidity. The implementation of transabdominal ultrasound (TAUS) was the focus of the fourth UCP project aiming a more generous potential use of image-guidance on long-term, and enhancing the quality of soft tissue assessment complementary to conventionally planned gynecological brachytherapy. Analyses in 29 patients revealed significantly reduced OARs doses in bladder with a total EQD2 > 80 Gy for bladder in only 17.2% versus 62.1% in conventional planning, and in rectum EQD2 > 75 Gy in 44.8% versus 79.3%, respectively. In conclusion, analyses revealed excellent results for the high-dose-rate IGBT in patients with advanced gynecological cancer both by using CT and MRI, and/or the combination with WP-IMRT. They also define MRI as gold standard for soft tissue assessment and to determine more accurately HR-CTV. The use of TAUS-guidance adds quality aspects to the “classical” conventional X-ray based planning, especially in terms of real-time measures and adequate soft tissue information, and may lower significantly the dose in OARs. The review of all UCP-results reconfirms the importance of the established program that will continue to operate with subsequent projects. PMID:25829941
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T; Rella, J; Yang, J
Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width.more » For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant differences were found in favor of the robotic platform in terms of rectum V50Gy and bladder V65Gy at a cost of 25% longer treatment time.« less
Intracranial meningiomas related to external cranial irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spallone, A.; Gagliardi, F.M.; Vagnozzi, R.
1979-08-01
Three cases are presented of meningiomas following small-dose external cranial irradiation in which several features clearly indicate a causal relationship between radiotherapy and tumor development. The length of the latent period separates meningiomas following high-dose irradiation from those which followed small-dose irradiation. Therefore the oncogenic mechanism seems to act differently in the two groups. This demonstration that multiple meningiomas can occur in patients irradiated for Tinea capitis should enable other similar cases to be recognized.
Yasutaka, Tetsuo; Naito, Wataru; Nakanishi, Junko
2013-01-01
The objective of the present study is to evaluate the cost and effectiveness of decontamination strategies in the special decontamination areas in Fukushima in regard to external radiation dose. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, analysis of cost and effectiveness suggests that decontamination costs for agricultural areas account for approximately 80% of the total decontamination cost, of which approximately 60% is associated with storage. In addition, the costs of decontamination per person per unit area are estimated to vary greatly. Appropriate selection of decontamination methods may significantly decrease decontamination costs, allowing more meaningful decontamination in terms of the limited budget. Our analysis can help in examining the prioritization of decontamination areas from the viewpoints of cost and effectiveness in reducing the external dose. Decontamination strategies should be determined according to air dose rates and future land-use plans. PMID:24069398
Yasutaka, Tetsuo; Naito, Wataru; Nakanishi, Junko
2013-01-01
The objective of the present study is to evaluate the cost and effectiveness of decontamination strategies in the special decontamination areas in Fukushima in regard to external radiation dose. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, analysis of cost and effectiveness suggests that decontamination costs for agricultural areas account for approximately 80% of the total decontamination cost, of which approximately 60% is associated with storage. In addition, the costs of decontamination per person per unit area are estimated to vary greatly. Appropriate selection of decontamination methods may significantly decrease decontamination costs, allowing more meaningful decontamination in terms of the limited budget. Our analysis can help in examining the prioritization of decontamination areas from the viewpoints of cost and effectiveness in reducing the external dose. Decontamination strategies should be determined according to air dose rates and future land-use plans.
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
Dose comparison between conventional and quasi-monochromatic systems for diagnostic radiology
NASA Astrophysics Data System (ADS)
Baldelli, P.; Taibi, A.; Tuffanelli, A.; Gambaccini, M.
2004-09-01
Several techniques have been introduced in the last year to reduce the dose to the patient by minimizing the risk of tumour induced by radiation. In this work the radiological potential of dose reduction in quasi-monochromatic spectra produced via mosaic crystal Bragg diffraction has been evaluated, and a comparison with conventional spectra has been performed for four standard examinations: head, chest, abdomen and lumbar sacral spine. We have simulated quasi-monochromatic x-rays with the Shadow code, and conventional spectra with the Spectrum Processor. By means of the PCXMC software, we have simulated four examinations according to parameters established by the European Guidelines, and calculated absorbed dose for principal organs and the effective dose. Simulations of quasi-monochromatic laminar beams have been performed without anti-scatter grid, because of their inherent scatter geometry, and compared with simulations with conventional beams with anti-scatter grids. Results have shown that the dose reduction due to the introduction of quasi-monochromatic x-rays depends on different parameters related to the quality of the beam, the organ composition and the anti-scatter grid. With parameters chosen in this study a significant dose reduction can be achieved for two out of four kinds of examination.
Bouville, André; Beck, Harold L; Simon, Steven L
2010-08-01
Annual doses from external irradiation resulting from exposure to fallout from the 65 atmospheric nuclear weapons tests conducted in the Marshall Islands at Bikini and Enewetak between 1946 and 1958 have been estimated for the first time for Marshallese living on all inhabited atolls. All tests that deposited fallout on any of the 23 inhabited atolls or separate reef islands have been considered. The methodology used to estimate the radiation doses at the inhabited atolls is based on test- and location-specific radiation survey data, deposition density estimates of 137Cs, and fallout times-of-arrival provided in a companion paper (Beck et al.), combined with information on the radionuclide composition of the fallout at various times after each test. These estimates of doses from external irradiation have been combined with corresponding estimates of doses from internal irradiation, given in a companion paper (Simon et al.), to assess the cancer risks among the Marshallese population (Land et al.) resulting from exposure to radiation from the nuclear weapons tests.
Population dose near the Semipalatinsk test site.
Hille, R; Hill, P; Bouisset, P; Calmet, D; Kluson, J; Seisebaev, A; Smagulov, S
1998-10-01
To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 microSv/year for 90Sr. For other radionuclides the internal doses are also negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, R. Lee; Thomas, Christopher G., E-mail: Chris.Thomas@cdha.nshealth.ca; Department of Medical Physics, Nova Scotia Cancer Centre, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia B3H 1V7
2015-05-15
Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space,more » indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry motion during radiation therapy to minimize the geometrical overlap in the beams-eye-view of target volumes and the organs-at-risk can have an appreciable dose reduction to organs-at-risk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ik Jae; Koom, Woong Sub; Lee, Chang Geol, E-mail: cglee1023@yuhs.a
2009-11-15
Purpose: To analyze risk factors and the dose-effect relationship for osteoradionecrosis (ORN) of the mandible after radiotherapy of oral and oropharyngeal cancers. Materials and Methods: One-hundred ninety-eight patients with oral (45%) and oropharyngeal cancer (55%) who had received external radiotherapy between 1990 and 2000 were retrospectively reviewed. All patients had a dental evaluation before radiotherapy. The median radiation dose was 60 Gy (range, 16-75 Gy), and the median biologically effective dose for late effects (BED{sub late}) in bone was 114 Gy{sub 2} (range, 30-167 Gy{sub 2}). Results: The frequency of ORN was 13 patients (6.6%). Among patients with mandibular surgery,more » eight had ORN at the surgical site. Among patients without mandibular surgery, five patients had ORN on the molar area of the mandible. The median time to ORN was 22 months (range, 1-69 months). Univariate analysis revealed that mandibular surgery and Co-60 were significant risk factors for ORN (p = 0.01 and 0.04, respectively). In multivariate analysis, mandibular surgery was the most important factor (p = 0.001). High radiation doses over BED 102.6 Gy{sub 2} (conventional dose of 54 Gy at 1.8 Gy/fraction) were also a significant factor for ORN (p = 0.008) and showed a positive dose-effect relationship in logistic regression (p = 0.04) for patients who had undergone mandibular surgery. Conclusions: Mandibular surgery was the most significant risk factor for ORN of mandible in oral and oropharyngeal cancers patients. A BED of 102.6 Gy{sub 2} or higher to the mandible also significantly increases the risk of ORN.« less
Grigoryeva, Evgeniya S; Haylock, Richard G E; Pikulina, Maria V; Moseeva, Maria B
2015-01-01
Objective: Incidence and mortality from ischaemic heart disease (IHD) was studied in an extended cohort of 22,377 workers first employed at the Mayak Production Association during 1948–82 and followed up to the end of 2008. Methods: Relative risks and excess relative risks per unit dose (ERR/Gy) were calculated based on the maximum likelihood using Epicure software (Hirosoft International Corporation, Seattle, WA). Dose estimates used in analyses were provided by an updated “Mayak Worker Dosimetry System—2008”. Results: A significant increasing linear trend in IHD incidence with total dose from external γ-rays was observed after having adjusted for non-radiation factors and dose from internal radiation {ERR/Gy = 0.10 [95% confidence interval (CI): 0.04 to 0.17]}. The pure quadratic model provided a better fit of the data than did the linear one. No significant association of IHD mortality with total dose from external γ-rays after having adjusted for non-radiation factors and dose from internal alpha radiation was observed in the study cohort [ERR/Gy = 0.06 (95% CI: <0 to 0.15)]. A significant increasing linear trend was observed in IHD mortality with total absorbed dose from internal alpha radiation to the liver after having adjusted for non-radiation factors and dose from external γ-rays in both the whole cohort [ERR/Gy = 0.21 (95% CI: 0.01 to 0.58)] and the subcohort of workers exposed at alpha dose <1.00 Gy [ERR/Gy = 1.08 (95% CI: 0.34 to 2.15)]. No association of IHD incidence with total dose from internal alpha radiation to the liver was found in the whole cohort after having adjusted for non-radiation factors and external gamma dose [ERR/Gy = 0.02 (95% CI: not available to 0.10)]. Statistically significant dose effect was revealed in the subcohort of workers exposed to internal alpha radiation at dose to the liver <1.00 Gy [ERR/Gy = 0.44 (95% CI: 0.09 to 0.85)]. Conclusion: This study provides strong evidence of IHD incidence and mortality association with external γ-ray exposure and some evidence of IHD incidence and mortality association with internal alpha-radiation exposure. Advances in knowledge: It is the first time the validity of internal radiation dose estimates has been shown to affect the risk of IHD incidence. PMID:26224431
High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study
NASA Astrophysics Data System (ADS)
Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana
2017-01-01
Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased radioresistance caused by hypoxia if fast reoxygenation is assumed.
SU-F-J-86: Method to Include Tissue Dose Response Effect in Deformable Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, J; Liang, J; Chen, S
Purpose: Organ changes shape and size during radiation treatment due to both mechanical stress and radiation dose response. However, the dose response induced deformation has not been considered in conventional deformable image registration (DIR). A novel DIR approach is proposed to include both tissue elasticity and radiation dose induced organ deformation. Methods: Assuming that organ sub-volume shrinkage was proportional to the radiation dose induced cell killing/absorption, the dose induced organ volume change was simulated applying virtual temperature on each sub-volume. Hence, both stress and heterogeneity temperature induced organ deformation. Thermal stress finite element method with organ surface boundary condition wasmore » used to solve deformation. Initial boundary correspondence on organ surface was created from conventional DIR. Boundary condition was updated by an iterative optimization scheme to minimize elastic deformation energy. The registration was validated on a numerical phantom. Treatment dose was constructed applying both the conventional DIR and the proposed method using daily CBCT image obtained from HN treatment. Results: Phantom study showed 2.7% maximal discrepancy with respect to the actual displacement. Compared with conventional DIR, subvolume displacement difference in a right parotid had the mean±SD (Min, Max) to be 1.1±0.9(−0.4∼4.8), −0.1±0.9(−2.9∼2.4) and −0.1±0.9(−3.4∼1.9)mm in RL/PA/SI directions respectively. Mean parotid dose and V30 constructed including the dose response induced shrinkage were 6.3% and 12.0% higher than those from the conventional DIR. Conclusion: Heterogeneous dose distribution in normal organ causes non-uniform sub-volume shrinkage. Sub-volume in high dose region has a larger shrinkage than the one in low dose region, therefore causing more sub-volumes to move into the high dose area during the treatment course. This leads to an unfavorable dose-volume relationship for the normal organ. Without including this effect in DIR, treatment dose in normal organ could be underestimated affecting treatment evaluation and planning modification. Acknowledgement: Partially Supported by Elekta Research Grant.« less
Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue
2018-03-01
Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as the source waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lung cancer mortality among workers at a nuclear materials fabrication plant.
Richardson, David B; Wing, Steve
2006-02-01
The Oak Ridge, Tennessee Y-12 plant has operated as a nuclear materials fabrication plant since the 1940s. Given the work environment, and prior findings that lung cancer mortality was elevated among white male Y-12 workers relative to US white males, we investigated whether lung cancer mortality was associated with occupational radiation exposures. A cohort of 3,864 workers hired between 1947 and 1974 who had been monitored for internal radiation exposure was identified. Vital status was ascertained through 1990. Over the study period 111 lung cancer deaths were observed. Cumulative external radiation dose under a 5-year lag assumption was positively associated with lung cancer mortality (0.54% increase in lung cancer mortality per 10 mSv, se=0.16, likelihood ratio test (LRT)=5.84, 1 degree of freedom [df]); cumulative internal radiation dose exhibited a highly-imprecise negative association with lung cancer mortality. The positive association between external radiation dose and lung cancer mortality was primarily due to exposure occurring in the period 5-14 years after exposure (0.97% increase in lung cancer mortality rate per 10 mSv, se=0.28, LRT=6.35, 1 df). The association between external radiation dose and lung cancer mortality was negative for exposures occurring at ages<35 years and positive for exposures occurring at ages 35-50 and 50+years. There is evidence of a positive association between cumulative external radiation dose and lung cancer mortality in this population. However, a causal interpretation of this association is constrained by the uncertainties in external and internal radiation dose estimates, the lack of information about exposures to other lung carcinogens, and the limited statistical power of the study. Copyright (c) 2005 Wiley-Liss, Inc.
Jönsson, Mattias; Tondel, Martin; Isaksson, Mats; Finck, Robert; Wålinder, Robert; Mamour, Afrah; Rääf, Christopher
2017-11-01
In connection with the Chernobyl fallout and the subsequent deposition of radionuclides in Sweden, Swedish municipalities launched a measurement program to monitor the external radiation exposure. This program encompasses measurements of the ambient dose equivalent rate 1 m above ground at selected locations, and repeats those measurements at the same locations at 7-month intervals. Measurement data compiled from the seven locations with the highest deposition were combined with data from aerial surveys since May 1986 of ground deposition of 137 Cs, high-resolution gamma spectrometry performed at four locations in May 1986, and measurements from fixed continuous air gamma rate monitoring stations from 28 April to 15 May 1986. Based on these datasets, a model of the time pattern of the external dose rate in terms of ambient dose equivalent rate from the Chernobyl fallout was developed. The decrease in the ambient dose equivalent rate could, on average, be described by a four-component exponential decay function with effective half-times of 6.8 ± 0.3 d, 104 ± 26 d, 1.0 ± 0.02 y and 5.5 ± 0.09 y, respectively. The predominant contributions to the external dose rate in the first month were from short-lived fission products superseded by 134 Cs and then 137 Cs. Integrated over 70 y and using extrapolation of the curve fits, our model predicts that 137 Cs contributes about 60% and 134 Cs contributes about 30% of the external effective dose at these seven locations. The projected time-integrated 70 y external effective dose to an unshielded person from all nuclides per unit total activity deposition of 137 Cs is estimated to be 0.29 ± 0.0.08 mSv/(kBq m -2 ). These results are in agreement with those found in Chernobyl contaminated Russian forest areas, and emphasize the usefulness of maintaining a long-term and regular measurement program in contaminated areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D
2011-07-01
Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of nuclear workers, which should improve knowledge about the risks associated with chronic low doses and provide useful risk estimates for radiation protection.
Development of a mini-mobile digital radiography system by using wireless smart devices.
Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2014-08-01
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.
NASA Astrophysics Data System (ADS)
Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy
2016-05-01
It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.
Bainbridge, Hannah E; Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe; McDonald, Fiona
2017-11-01
This study investigates the feasibility and potential benefits of radiotherapy with a 1.5T MR-Linac for locally advanced non-small cell lung cancer (LA NSCLC) patients. Ten patients with LA NSCLC were retrospectively re-planned six times: three treatment plans were created according to a protocol for conventionally fractionated radiotherapy and three treatment plans following guidelines for isotoxic target dose escalation. In each case, two plans were designed for the MR-Linac, either with standard (∼7mm) or reduced (∼3mm) planning target volume (PTV) margins, while one conventional linac plan was created with standard margins. Treatment plan quality was evaluated using dose-volume metrics or by quantifying dose escalation potential. All generated treatment plans fulfilled their respective planning constraints. For conventionally fractionated treatments, MR-Linac plans with standard margins had slightly increased skin dose when compared to conventional linac plans. Using reduced margins alleviated this issue and decreased exposure of several other organs-at-risk (OAR). Reduced margins also enabled increased isotoxic target dose escalation. It is feasible to generate treatment plans for LA NSCLC patients on a 1.5T MR-Linac. Margin reduction, facilitated by an envisioned MRI-guided workflow, enables increased OAR sparing and isotoxic target dose escalation for the respective treatment approaches. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
EPR TOOTH DOSIMETRY OF SNTS AREA INHABITANTS.
Sholom, Sergey; Desrosiers, Marc; Bouville, André; Luckyanov, Nicholas; Chumak, Vadim; Simon, Steven L
2007-07-01
The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed "accident doses", were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine[ settlements were in the range from a few tens of mGy to approximately 100 mGy.
NASA Astrophysics Data System (ADS)
Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto
2013-04-01
The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.
Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto
2013-01-01
The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
Treatment of Head and Neck Paragangliomas With External Beam Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupin, Charles, E-mail: c.dupin@bordeaux.unicancer.fr; Lang, Philippe; Dessard-Diana, Bernadette
2014-06-01
Purpose: To retrospectively assess the outcomes of radiation therapy in patients with head and neck paragangliomas. Methods and Materials: From 1990 to 2009, 66 patients with 81 head and neck paragangliomas were treated by conventional external beam radiation therapy in 25 fractions at a median dose of 45 Gy (range, 41.4-68 Gy). One case was malignant. The median gross target volume and planning target volume were 30 cm{sup 3} (range, 0.9-243 cm{sup 3}) and 116 cm{sup 3} (range, 24-731 cm{sup 3}), respectively. Median age was 57.4 years (range, 15-84 years). Eleven patients had multicentric lesions, and 8 had family histories ofmore » paraganglioma. Paragangliomas were located in the temporal bone, the carotid body, and the glomus vagal in 51, 18, and 10 patients, respectively. Forty-six patients had exclusive radiation therapy, and 20 had salvage radiation therapy. The median follow-up was 4.1 years (range, 0.1-21.2 years). Results: One patient had a recurrence of temporal bone paraganglioma 8 years after treatment. The actuarial local control rates were 100% at 5 years and 98.7% at 10 years. Patients with multifocal tumors and family histories were significantly younger (42 years vs 58 years [P=.002] and 37 years vs 58 years [P=.0003], respectively). The association between family predisposition and multifocality was significant (P<.001). Two patients had cause-specific death within the 6 months after irradiation. During radiation therapy, 9 patients required hospitalization for weight loss, nausea, mucositis, or ophthalmic zoster. Two late vascular complications occurred (middle cerebral artery and carotid stenosis), and 2 late radiation-related meningiomas appeared 15 and 18 years after treatment. Conclusion: Conventional external beam radiation therapy is an effective and safe treatment option that achieves excellent local control; it should be considered as a first-line treatment of choice for head and neck paragangliomas.« less
Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L
2016-02-10
Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.
Undergraduate projects - do they have to be within the conventional medical environment?
Murdoch-Eaton, D; Jolly, B
2000-02-01
Undergraduate medical curricula now include increasing amounts of project work aimed at developing skills related to lifelong learning. One course allows students to choose from a wide range of projects, including 'conventional' hospital specialties and also from topics outside the mainstream of medicine. 'Conventional' and 'external' projects were compared in terms of the prior academic abilities of the students undertaking them, the assessment results and student and supervisor feedback, in order to consider whether the unconventional projects were equally valid within the undergraduate medical curriculum. School of Medicine, University of Leeds, UK. Medical students. No difference between the assessment results of the student groups was present, with over 85% of all students reaching a standard of 'excellent' or 'good' in their overall final grade. There was no difference in prior academic abilities between the student groups. Enjoyment of modules was comparable between student groups ('conventional' 89%, 'external' 93%) with good levels of satisfaction with the quality of supervision. There were no differences in students' self-appraisal of generic skill acquisition. Students who had undertaken 'external' projects felt they had gained less experience in data-handling and problem-solving skills. However, 'external' projects were rated higher by students in terms of having realistic and achievable objectives, and the supervisors of these projects were also more realistic about time commitments involved in project supervision. 'External' modules were very popular, with over 45% of students requesting places which were available for fewer than 20% of students per year. Concerns regarding the appropriateness of self-directed undergraduate medical student projects outside the mainstream of medical practice were unfounded.
Aouadi, Souha; Vasic, Ana; Paloor, Satheesh; Torfeh, Tarraf; McGarry, Maeve; Petric, Primoz; Riyas, Mohamed; Hammoud, Rabih; Al-Hammadi, Noora
2017-10-01
To create a synthetic CT (sCT) from conventional brain MRI using a patch-based method for MRI-only radiotherapy planning and verification. Conventional T1 and T2-weighted MRI and CT datasets from 13 patients who underwent brain radiotherapy were included in a retrospective study whereas 6 patients were tested prospectively. A new contribution to the Non-local Means Patch-Based Method (NMPBM) framework was done with the use of novel multi-scale and dual-contrast patches. Furthermore, the training dataset was improved by pre-selecting the closest database patients to the target patient for computation time/accuracy balance. sCT and derived DRRs were assessed visually and quantitatively. VMAT planning was performed on CT and sCT for hypothetical PTVs in homogeneous and heterogeneous regions. Dosimetric analysis was done by comparing Dose Volume Histogram (DVH) parameters of PTVs and organs at risk (OARs). Positional accuracy of MRI-only image-guided radiation therapy based on CBCT or kV images was evaluated. The retrospective (respectively prospective) evaluation of the proposed Multi-scale and Dual-contrast Patch-Based Method (MDPBM) gave a mean absolute error MAE=99.69±11.07HU (98.95±8.35HU), and a Dice in bones DI bone =83±0.03 (0.82±0.03). Good agreement with conventional planning techniques was obtained; the highest percentage of DVH metric deviations was 0.43% (0.53%) for PTVs and 0.59% (0.75%) for OARs. The accuracy of sCT/CBCT or DRR sCT /kV images registration parameters was <2mm and <2°. Improvements with MDPBM, compared to NMPBM, were significant. We presented a novel method for sCT generation from T1 and T2-weighted MRI potentially suitable for MRI-only external beam radiotherapy in brain sites. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Radiation Dose to Post-Chernobyl Cleanup Workers
Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.
Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite
NASA Technical Reports Server (NTRS)
Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.
1995-01-01
Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.
Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.
1990-01-01
Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.
Radioactivity concentrations in soils in the Qingdao area, China.
Qu, Limei; Yao, De; Cong, Pifu; Xia, Ning
2008-10-01
The specific activity concentrations of radionuclides (238)U, (232)Th, and (40)K of 2300 sampling points in the Qingdao area were measured by an FD-3022 gamma-ray spectrometer. The radioactivity concentrations of (238)U, (232)Th, and (40)K ranged from 3.3 to 185.3, from 6.9 to 157.2, and from 115.8 to 7834.4 Bq kg(-1), respectively. The air-absorbed dose at 1 meter above ground, effective annual dose, external hazard index, and radium equivalent activity were also calculated to systematically evaluate the radiological hazards of the natural radioactivity in Qingdao. The air-absorbed dose, effective annual dose, external hazard index, and radium equivalent activity in the study area were 98.6 nGy h(-1), 0.12 mSv, 0.56, 197 Bq kg(-1), respectively. Compared with the worldwide value, the air-absorbed dose is slightly high, but the other factors are all lower than the recommended value. The natural external exposure will not pose significant radiological threat to the population. In conclusion, the Qingdao area is safe with regard to the radiological level and suitable for living.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervino, L; Soultan, D; Pettersson, N
2016-06-15
Purpose: to evaluate the dosimetric and radiobiological consequences from having different gating windows, dose rates, and breathing patterns in gated VMAT lung radiotherapy. Methods: A novel 3D-printed moving phantom with central high and peripheral low tracer uptake regions was 4D FDG-PET/CT-scanned using ideal, patient-specific regular, and irregular breathing patterns. A scan of the stationary phantom was obtained as a reference. Target volumes corresponding to different uptake regions were delineated. Simultaneous integrated boost (SIB) 6 MV VMAT plans were produced for conventional and hypofractionated radiotherapy, using 30–70 and 100% cycle gating scenarios. Prescribed doses were 200 cGy with SIB to 240more » cGy to high uptake volume for conventional, and 800 with SIB to 900 cGy for hypofractionated plans. Dose rates of 600 MU/min (conventional and hypofractionated) and flattening filter free 1400 MU/min (hypofractionated) were used. Ion chamber measurements were performed to verify delivered doses. Vials with A549 cells placed in locations matching ion chamber measurements were irradiated using the same plans to measure clonogenic survival. Differences in survival for the different doses, dose rates, gating windows, and breathing patterns were analyzed. Results: Ion chamber measurements agreed within 3% of the planned dose, for all locations, breathing patterns and gating windows. Cell survival depended on dose alone, and not on gating window, breathing pattern, MU rate, or delivery time. The surviving fraction varied from approximately 40% at 2Gy to 1% for 9 Gy and was within statistical uncertainty relative to that observed for the stationary phantom. Conclusions: Use of gated VMAT in PET-driven SIB radiotherapy was validated using ion chamber measurements and cell survival assays for conventional and hypofractionated radiotherapy.« less
Bailiff, I K; Stepanenko, V F; Göksu, H Y; Jungner, H; Balmukhanov, S B; Balmukhanov, T S; Khamidova, L G; Kisilev, V I; Kolyado, I B; Kolizshenkov, T V; Shoikhet, Y N; Tsyb, A F
2004-12-01
Luminescence retrospective dosimetry techniques have been applied with ceramic bricks to determine the cumulative external gamma dose due to fallout, primarily from the 1949 test, in populated regions lying NE of the Semipalatinsk Nuclear Test Site in Altai, Russia, and the Semipalatinsk region, Kazakhstan. As part of a pilot study, nine settlements were examined, three within the regions of highest predicted dose (Dolon in Kazakshstan; Laptev Log and Leshoz Topolinskiy in Russia) and the remainder of lower predicted dose (Akkol, Bolshaya Vladimrovka, Kanonerka, and Izvestka in Kazakshstan; Rubtsovsk and Kuria in Russia) within the lateral regions of the fallout trace due to the 1949 test. The settlement of Kainar, mainly affected by the 24 September 1951 nuclear test, was also examined. The bricks from this region were found to be generally suitable for use with the luminescence method. Estimates of cumulative absorbed dose in air due to fallout for Dolon and Kanonerka in Kazakshstan and Leshoz Topolinskiy were 475 +/- 110 mGy, 240 +/- 60 mGy, and 230 +/- 70 mGy, respectively. The result obtained in Dolon village is in agreement with published calculated estimates of dose normalized to Cs concentration in soil. At all the other locations (except Kainar) the experimental values of cumulative absorbed dose obtained indicated no significant dose due to fallout that could be detected within a margin of about 25 mGy. The results demonstrate the potential suitability of the luminescence method to map variations in cumulative dose within the relatively narrow corridor of fallout distribution from the 1949 test. Such work is needed to provide the basis for accurate dose reconstruction in settlements since the predominance of short-lived radionuclides in the fallout and a high degree of heterogeneity in the distribution of fallout are problematic for the application of conventional dosimetry techniques.
SU-E-T-91: Correction Method to Determine Surface Dose for OSL Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, T; Higgins, P
Purpose: OSL detectors are commonly used in clinic due to their numerous advantages, such as linear response, negligible energy, angle and temperature dependence in clinical range, for verification of the doses beyond the dmax. Although, due to the bulky shielding envelope, this type of detectors fails to measure skin dose, which is an important assessment of patient ability to finish the treatment on time and possibility of acute side effects. This study aims to optimize the methodology of determination of skin dose for conventional accelerators and a flattening filter free Tomotherapy. Methods: Measurements were done for x-ray beams: 6 MVmore » (Varian Clinac 2300, 10×10 cm{sup 2} open field, SSD = 100 cm) and for 5.5 MV (Tomotherapy, 15×40 cm{sup 2} field, SAD = 85 cm). The detectors were placed at the surface of the solid water phantom and at the reference depth (dref=1.7cm (Varian 2300), dref =1.0 cm (Tomotherapy)). The measurements for OSLs were related to the externally exposed OSLs measurements, and further were corrected to surface dose using an extrapolation method indexed to the baseline Attix ion chamber measurements. A consistent use of the extrapolation method involved: 1) irradiation of three OSLs stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. Results: OSL measurements showed an overestimation of surface doses by the factor 2.31 for Varian 2300 and 2.65 for Tomotherapy. The relationships: SD{sup 2300} = 0.68 × M{sup 2300}-12.7 and SDτoμo = 0.73 × Mτoμo-13.1 were found to correct the single OSL measurements to surface doses in agreement with Attix measurements to within 0.1% for both machines. Conclusion: This work provides simple empirical relationships for surface dose measurements using single OSL detectors.« less
Zhu, X R; Jursinic, P A; Grimm, D F; Lopez, F; Rownd, J J; Gillin, M T
2002-08-01
A new type of radiographic film, Kodak EDR2 film, was evaluated for dose verification of intensity modulated radiation therapy (IMRT) delivered by a static multileaf collimator (SMLC). A sensitometric curve of EDR2 film irradiated by a 6 MV x-ray beam was compared with that of Kodak X-OMAT V (XV) film. The effects of field size, depth and dose rate on the sensitometric curve were also studied. It is found that EDR2 film is much less sensitive than XV film. In high-energy x-ray beams, the double hit process is the dominant mechanism that renders the grains on EDR2 films developable. As a result, in the dose range that is commonly used for film dosimetry for IMRT and conventional external beam therapy, the sensitometric curves of EDR2 films cannot be approximated as a linear function, OD = c * D. Within experimental uncertainty, the film sensitivity does not depend on the dose rate (50 vs 300 MU/min) or dose per pulse (from 1.0 x 10(-4) to 4.21 x 10(-4) Gy/pulse). Field sizes and depths (up to field size of 10 x 10 cm2 and depth = 10 cm) have little effect on the sensitometric curves. Percent depth doses (PDDs) for both 6 and 23 MV x rays were measured with both EDR2 and XV films and compared with ion chamber data. Film data are within 2.5% of the ion chamber results. Dose profiles measured with EDR2 film are consistent with those measured with an ion chamber. Examples of measured IMRT isodose distributions versus calculated isodoses are presented. We have used EDR2 films for verification of all IMRT patients treated by SMLC in our clinic. In most cases, with EDR2 film, actual clinical daily fraction doses can be used for verification of composite isodose distributions of SMLC-based IMRT.
EPR TOOTH DOSIMETRY OF SNTS AREA INHABITANTS
Sholom, Sergey; Desrosiers, Marc; Bouville, André; Luckyanov, Nicholas; Chumak, Vadim
2009-01-01
The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed “accident doses”, were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine[ settlements were in the range from a few tens of mGy to approximately 100 mGy. PMID:19590746
PREDICTING THE RISKS OF NEUROTOXIC VOLATILE ORGANIC COMPOUNDS BASED ON TARGET TISSUE DOSE.
Quantitative exposure-dose-response models relate the external exposure of a substance to the dose in the target tissue, and then relate the target tissue dose to production of adverse outcomes. We developed exposure-dose-response models to describe the affects of acute exposure...
Dose and image quality for a cone-beam C-arm CT system.
Fahrig, Rebecca; Dixon, Robert; Payne, Thomas; Morin, Richard L; Ganguly, Arundhuti; Strobel, Norbert
2006-12-01
We assess dose and image quality of a state-of-the-art angiographic C-arm system (Axiom Artis dTA, Siemens Medical Solutions, Forchheim, Germany) for three-dimensional neuro-imaging at various dose levels and tube voltages and an associated measurement method. Unlike conventional CT, the beam length covers the entire phantom, hence, the concept of computed tomography dose index (CTDI) is not the metric of choice, and one can revert to conventional dosimetry methods by directly measuring the dose at various points using a small ion chamber. This method allows us to define and compute a new dose metric that is appropriate for a direct comparison with the familiar CTDIw of conventional CT. A perception study involving the CATPHAN 600 indicates that one can expect to see at least the 9 mm inset with 0.5% nominal contrast at the recommended head-scan dose (60 mGy) when using tube voltages ranging from 70 kVp to 125 kVp. When analyzing the impact of tube voltage on image quality at a fixed dose, we found that lower tube voltages gave improved low contrast detectability for small-diameter objects. The relationships between kVp, image noise, dose, and contrast perception are discussed.
NASA Technical Reports Server (NTRS)
Bougrov, N. G.; Goksu, H. Y.; Haskell, E.; Degteva, M. O.; Meckbach, R.; Jacob, P.; Neta, P. I. (Principal Investigator)
1998-01-01
The potential of thermoluminescence measurements of bricks from the contaminated area of the Techa river valley, Southern Urals, Russia, for reconstructing external exposures of affected population groups has been studied. Thermoluminescence dating of background samples was used to evaluate the age of old buildings available on the river banks. The anthropogenic gamma dose accrued in exposed samples is determined by subtracting the natural radiation background dose for the corresponding age from the accumulated dose measured by thermoluminescence. For a site in the upper Techa river region, where the levels of external exposures were extremely high, the depth-dose distribution in bricks and the dependence of accidental dose on the height of the sampling position were determined. For the same site, Monte Carlo simulations of radiation transport were performed for different source configurations corresponding to the situation before and after the construction of a reservoir on the river and evacuation of the population in 1956. A comparison of the results provides an understanding of the features of the measured depth-dose distributions and height dependencies in terms of the source configurations and shows that bricks from the higher sampling positions are likely to have accrued a larger fraction of anthropogenic dose from the time before the construction of the reservoir. The applicability of the thermoluminescent dosimetry method to environmental dose reconstruction in the middle Techa region, where the external exposure was relatively low, was also investigated.
Respirators, internal dose, and Oyster Creek
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michal, R.
1996-06-01
This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent inmore » fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}« less
Moreira, Maria E; Hernandez, Caleb; Stevens, Allen D; Jones, Seth; Sande, Margaret; Blumen, Jason R; Hopkins, Emily; Bakes, Katherine; Haukoos, Jason S
2015-08-01
The Institute of Medicine has called on the US health care system to identify and reduce medical errors. Unfortunately, medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients when dosing requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national health care priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared with conventional medication administration, in simulated pediatric emergency department (ED) resuscitation scenarios. We performed a prospective, block-randomized, crossover study in which 10 emergency physician and nurse teams managed 2 simulated pediatric arrest scenarios in situ, using either prefilled, color-coded syringes (intervention) or conventional drug administration methods (control). The ED resuscitation room and the intravenous medication port were video recorded during the simulations. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the conventional and color-coded delivery groups was 47 seconds (95% confidence interval [CI] 40 to 53 seconds) and 19 seconds (95% CI 18 to 20 seconds), respectively (difference=27 seconds; 95% CI 21 to 33 seconds). With the conventional method, 118 doses were administered, with 20 critical dosing errors (17%); with the color-coded method, 123 doses were administered, with 0 critical dosing errors (difference=17%; 95% CI 4% to 30%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by emergency physician and nurse teams during simulated pediatric ED resuscitations. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
High Dose-Rate Intracavitary Brachytherapy for Cervical Carcinomas With Lower Vaginal Infiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazumoto, Tomoko; Kato, Shingo; Tabushi, Katsuyoshi
2007-11-15
Purpose: This report presents the clinical applications of an automated treatment-planning program of high-dose-rate intracavitary brachytherapy (HDR-ICBT) for advanced uterine cervical cancer infiltrating the parametrium and the lower vagina. Methods and Materials: We adopted HDR-ICBT under optimized dose distribution for 22 cervical cancer patients with tumor infiltration of the lower half of the vagina. All patients had squamous cell carcinoma with International Federation of Gynecology and Obstetrics clinical stages IIB-IVA. After whole pelvic external beam irradiation with a median dose of 30.6 Gy, a conventional ICBT was applied as 'pear-shaped' isodose curve. Then 3-4 more sessions per week of thismore » new method of ICBT were performed. With a simple determination of the treatment volume, the cervix-parametrium, and the lower vagina were covered automatically and simultaneously by this program, that was designated as 'utero-vaginal brachytherapy'. The mean follow-up period was 87.4 months (range, 51.8-147.9 months). Results: Isodose curve for this program was 'galaxy-shaped'. Five-year local-progression-free survival and overall survival rates were 90.7% and 81.8%, respectively. Among those patients with late complications higher than Grade 2 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity score, only one (4.5%) developed severe proctitis. Conclusions: Because of the favorable treatment outcomes, this treatment-planning program with a simplified target-volume based dosimetry was proposed for cervical cancer with lower vaginal infiltration.« less
Special cases for proton beam radiotherapy: re-irradiation, lymphoma, and breast cancer.
Plastaras, John P; Berman, Abigail T; Freedman, Gary M
2014-12-01
The dose distributions that can be achieved with protons are usually superior to those of conventional photon external-beam radiation. There are special cases where proton therapy may offer a substantial potential benefit compared to photon treatments where toxicity concerns dominate. Re-irradiation may theoretically be made safer with proton therapy due to lower cumulative lifetime doses to sensitive tissues, such as the spinal cord. Proton therapy has been used in a limited number of patients with rectal, pancreatic, esophageal, and lung cancers. Chordomas and soft tissue sarcomas require particularly high radiation doses, posing additional challenges for re-irradiation. Lymphoma is another special case where proton therapy may be advantageous. Late toxicities from even relatively low radiation doses, including cardiac complications and second cancers, are of concern in lymphoma patients with high cure rates and long life expectancies. Proton therapy has begun to be used for consolidation after chemotherapy in patients with Hodgkin and non-Hodgkin lymphoma. Breast cancer is another emerging area of proton therapy development and use. Proton therapy may offer advantages compared to other techniques in the setting of breast boosts, accelerated partial breast irradiation, and post-mastectomy radiotherapy. In these settings, proton therapy may decrease toxicity associated with breast radiotherapy. As techniques are refined in proton therapy, we may be able to improve the therapeutic ratio by maintaining the benefits of radiotherapy while better minimizing the risks. Copyright © 2014 Elsevier Inc. All rights reserved.
Seamless Phase IIa/IIb and enhanced dose-finding adaptive design.
Yuan, Jiacheng; Pang, Herbert; Tong, Tiejun; Xi, Dong; Guo, Wenzhao; Mesenbrink, Peter
2016-01-01
In drug development, when the drug class has a relatively well-defined path to regulatory approval and the enrollment is slow with certain patient populations, one may want to consider combining studies of different phases. This article considers combining a proof of concept (POC) study and a dose-finding (DF) study with a control treatment. Conventional DF study designs sometimes are not efficient, or do not have a high probability to find the optimal dose(s) for Phase III trials. This article seeks more efficient DF strategies that allow the economical testing of more doses. Hypothetical examples are simulated to compare the proposed adaptive design vs. the conventional design based on different models of the overall quantitative representation of efficacy, safety, and tolerability. The results show that the proposed adaptive design tests more active doses with higher power and comparable or smaller sample size in a shorter overall study duration for POC and DF, compared with a conventional design.
Hoffman, D.J.; Moore, Johnnie N.
1979-01-01
The embryotoxic potential of external applications of methyl mercury on mallard eggs was investigated to assess the possible impact of mercury transferred from the plumage of effluent-contaminated aquatic birds to their eggs. Eggs were treated on day 3 of development with microliter applications of methyl mercury that was dissolved with ethyl acetate into an aliphatic hydrocarbon vehicle. Mercury analysis by atomic absorption indicated that almost half of the mercury applied entered the eggs past the shell membranes within several days of treatment. Most mortality occurred within this period at doses of 9 microgram of mercury per egg or higher. Decreased embryonic growth resulted with similar doses. A significant incidence of malformations occurred at a dose of 1 microgram per egg. These malformations were mainly minor skeletal aberrations and incomplete ossification. With higher doses of mercury, defects included gross external ones such as micromella, gastroschisis, and eye and brain defects. Application of the aliphatic hydrocarbon vehicle did not result in any of these defects.
Measurement and properties of the dose-area product ratio in external small-beam radiotherapy.
Niemelä, Jarkko; Partanen, Mari; Ojala, Jarkko; Sipilä, Petri; Björkqvist, Mikko; Kapanen, Mika; Keyriläinen, Jani
2017-06-21
In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR 20,10 , using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR 20,10 . With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR 20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR 20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR 20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR 20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR 20,10 value.
Shielding design of the Mayo Clinic Scottsdale cyclotron vault
NASA Astrophysics Data System (ADS)
Riper, Kenneth A. Van; Metzger, Robert L.; Nelson, Kevin
2017-09-01
Mayo Clinic Scottsdale (Scottsdale, Arizona) is building a cyclotron vault containing a cyclotron with adjacent targets and a beam line leading to an external target. The targets are irradiated by high energy (15 to 16.5 MeV) protons for the production of radioisotopes. We performed Monte Carlo radiation transport simulations to calculate the radiation dose outside of the vault during irradiation of the cyclotron and external targets. We present the Monte Carlo model including the geometry, sources, and variance reduction methods. Mesh tallies surrounding the vault show the external dose rate is within acceptable limits.
Schulman, K A; Stadtmauer, E A; Reed, S D; Glick, H A; Goldstein, L J; Pines, J M; Jackman, J A; Suzuki, S; Styler, M J; Crilley, P A; Klumpp, T R; Mangan, K F; Glick, J H
2003-02-01
We performed an economic analysis of data from 180 women in a clinical trial of conventional-dose chemotherapy vs high-dose chemotherapy plus stem-cell transplantation for metastatic breast cancer responding to first-line chemotherapy. Data on resource use, including hospitalizations, medical procedures, medications, and diagnostic tests, were abstracted from subjects' clinical trial records. Resources were valued using the Medicare Fee Schedule for inpatient costs at one academic medical center and average wholesale prices for medications. Monthly costs were calculated and stratified by treatment group and clinical phase. Mean follow-up was 690 days in the transplantation group and 758 days in the conventional-dose chemotherapy group. Subjects in the transplantation group were hospitalized for more days (28.6 vs 17.8, P=0.0041) and incurred higher costs (US dollars 84055 vs US dollars 28169) than subjects receiving conventional-dose chemotherapy, with a mean difference of US dollars 55886 (95% CI, US dollars 47298-US dollars 63666). Sensitivity analyses resulted in cost differences between the treatment groups from US dollars 36528 to US dollars 75531. High-dose chemotherapy plus stem-cell transplantation resulted in substantial additional morbidity and costs at no improvement in survival. Neither the survival results nor the economic findings support the use of this procedure outside of the clinical trial setting.
Vaudaux, Catherine; Schneider, Uwe; Kaser-Hotz, Barbara
2007-01-01
We evaluated the impact of inverse planned intensity-modulated radiation therapy (IMRT) on the dose-volume histograms (DVHs) and on the normal tissue complication probabilities (NTCPs) of brain and eyes in dogs with nasal tumors. Nine dogs with large, caudally located nasal tumors were planned using conventional techniques and inverse planned IMRT for a total prescribed dose of 52.5 Gy in 3.5 Gy fractions. The equivalent uniform dose for brain and eyes was calculated to estimate the normal tissue complication probability (NTCP) of these organs. The NTCP values as well as the DVHs were used to compare the treatment plans. The dose distribution in IMRT plans was more conformal than in conventional plans. The average dose delivered to one-third of the brain was 10 Gy lower with the IMRT plan compared with conventional planning. The mean partial brain volume receiving 43.6 Gy or more was reduced by 25.6% with IMRT. As a consequence, the NTCPs were also significantly lower in the IMRT plans. The mean NTCP of brain was two times lower and at least one eye could be saved in all patients planed with IMRT. Another possibility with IMRT is dose escalation in the target to improve tumor control while keeping the NTCPs at the same level as for conventional planning. Veterinary
Proof of concept for a new energy-positive wastewater treatment scheme.
Remy, C; Boulestreau, M; Lesjean, B
2014-01-01
For improved exploitation of the energy content present in the organic matter of raw sewage, an innovative concept for treatment of municipal wastewater is tested in pilot trials and assessed in energy balance and operational costs. The concept is based on a maximum extraction of organic matter into the sludge via coagulation, flocculation and microsieving (100 μm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield an extraction of 70-80% of total chemical oxygen demand into the sludge while dosing 15-20 mg/L Al and 5-7 mg/L polymer with stable operation of the microsieve and effluent limits below 2-3 mg/L total phosphorus. Anaerobic digestion of the microsieve sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance for a 100,000 population equivalent (PE) treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engberg, L; KTH Royal Institute of Technology, Stockholm; Eriksson, K
Purpose: To formulate objective functions of a multicriteria fluence map optimization model that correlate well with plan quality metrics, and to solve this multicriteria model by convex approximation. Methods: In this study, objectives of a multicriteria model are formulated to explicitly either minimize or maximize a dose-at-volume measure. Given the widespread agreement that dose-at-volume levels play important roles in plan quality assessment, these objectives correlate well with plan quality metrics. This is in contrast to the conventional objectives, which are to maximize clinical goal achievement by relating to deviations from given dose-at-volume thresholds: while balancing the new objectives means explicitlymore » balancing dose-at-volume levels, balancing the conventional objectives effectively means balancing deviations. Constituted by the inherently non-convex dose-at-volume measure, the new objectives are approximated by the convex mean-tail-dose measure (CVaR measure), yielding a convex approximation of the multicriteria model. Results: Advantages of using the convex approximation are investigated through juxtaposition with the conventional objectives in a computational study of two patient cases. Clinical goals of each case respectively point out three ROI dose-at-volume measures to be considered for plan quality assessment. This is translated in the convex approximation into minimizing three mean-tail-dose measures. Evaluations of the three ROI dose-at-volume measures on Pareto optimal plans are used to represent plan quality of the Pareto sets. Besides providing increased accuracy in terms of feasibility of solutions, the convex approximation generates Pareto sets with overall improved plan quality. In one case, the Pareto set generated by the convex approximation entirely dominates that generated with the conventional objectives. Conclusion: The initial computational study indicates that the convex approximation outperforms the conventional objectives in aspects of accuracy and plan quality.« less
Dosimetric calculations for uranium miners for epidemiological studies.
Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L
2012-05-01
Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.
Faghihi, Gita; Mokhtari, Fatemeh; Fard, Nasrin Motamedi; Motamedi, Narges; Hosseini, Sayed Mohsen
2017-01-01
This study was conducted to compare the effect of low-dose isotretinoin with its conventional dose in patients with moderate and severe acne. This was a clinical trial conducted on 60 male and female patients with moderate and severe acne vulgaris. The patients were divided into two treatment groups: 0.5 mg/kg/day isotretinoin capsule and low-dose isotretinoin capsule (0.25 mg/kg/day). Patients in both groups received 6-month treatment. At the end of the 6 th month and 12 th month (6 months after the end of the treatment), they were examined again, and their improvement was determined and compared. The average severity of acne in the two treatment groups did not differ significantly within any of the study periods. The most common side effects were nose dryness in the low-dose group (17%) and hair thinning and loss in the conventional-dose group (33.2%), although all the patients had dry lips. According to the same severity of the acne in two groups in different study periods, as well as fewer side effects and more patients' satisfaction, the low-dose isotretinoin can be considered in the treatment of acne.
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
Higginson, Daniel S; Morris, David E; Jones, Ellen L; Clarke-Pearson, Daniel; Varia, Mahesh A
2011-03-01
Stereotactic body radiotherapy (SBRT) is a novel form of noninvasive, highly conformal radiation treatment that delivers a high dose to tumor. The advantage of the technique resides in its ability to provide a high dose to tumor but spare normal tissues to an extent not previously possible. In this paper we will provide an introduction and review of this technology with regard to its use in gynecologic malignancies. Preliminary results from our experience are presented for the purpose of illustrating the range of SBRT applications in gynecologic oncology. A comprehensive literature review was conducted and our experience from the past three years was reviewed. Six case series are published that report results of SBRT for gynecologic malignancies. Sixteen gynecologic patients have been treated with SBRT at our institution. Treatment sites include pelvic and periaortic nodes (9 patients), oligometastatic disease (2), and cervical or endometrial primary tumors when other conventional external radiation or brachytherapy techniques were unsuitable (5). Preliminary follow-up at a median of 11 months (range, 0.3-33 months) demonstrates 79% locoregional control, 43% distant failure, and 50% overall survival. SBRT boosts to macroscopic periaortic node recurrences and other sites seem to provide local control and a possibility of long-term disease-free survival in carefully selected patients. Previously this had been difficult to achieve with conventional radiotherapy because of the proximity of periaortic nodes to small bowel. SBRT also offers a novel approach for minimally invasive treatment in the management of gynecological cancer where current surgical and radiotherapy techniques are unsuitable. Copyright © 2010 Elsevier Inc. All rights reserved.
Gordeev, Konstantin; Shinkarev, Sergey; Ilyin, Leonid; Bouville, André; Hoshi, Masaharu; Luckyanov, Nickolas; Simon, Steven L
2006-02-01
A short analysis of all 111 atmospheric events conducted at the Semipalatinsk Test Site (STS) in 1949-1962 with regard to significant off-site exposure (more than 5 mSv of the effective dose during the first year after the explosion) has been made. The analytical method used to assess external exposure to the residents living in settlements near the STS is described. This method makes use of the archival data on the radiological conditions, including the measurements of exposure rate. Special attention was given to the residents of Dolon and Kanonerka villages exposed mainly as a result of the first test, detonated on August 29, 1949. For the residents of those settlements born in 1935, the dose estimates calculated according to the analytical method, are compared to those derived from the thermoluminescence measurements in bricks and electron paramagnetic resonance measurements in teeth. The methods described in this paper were used for external dose assessment for the cohort members at an initial stage of an ongoing epidemiological study conducted by the U.S. National Cancer Institute in the Republic of Kazakhstan. Recently revised methods and estimates of external exposure for that cohort are given in another paper (Simon et al.) in this conference.
Modeling in conventional and supra electroporation for model cell with organelles
NASA Astrophysics Data System (ADS)
Sulaeman, Muhammad Yangki; Widita, Rena
2015-09-01
Electroporation is a formation of pores in the membrane cell due to the external electric field applied to the cell. There are two types of electroporation, conventional and supra-electroporation. The purpose of creating pores in the cell using conventional electroporation are to increase the effectiveness of chemotherapy (electrochemotherapy) and to kill cancer tissue using irreversible electroporation. Supra-electroporation shows that it can induce electroporation in the organell inside the cell, so it can kill the cell by apoptosis mechanism. Modeling of electroporation phenomenon on a model cell had been done by using software COMSOL Multiphysics 4.3b with the applied external electric field used are 1.1 kV/cm for conventional electroporation and 60 kV/cm for supra-electroporation to find the difference between transmembrane voltage and pore density for both electroporation. It can be concluded from the results that there is a big difference between transmembrane voltage and pores density on conventional and supra electroporation on model cell.
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally exposed...
Linear energy transfer incorporated intensity modulated proton therapy optimization
NASA Astrophysics Data System (ADS)
Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe
2018-01-01
The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT optimization could lead to similar dose distributions as the conventional optimization but superior LET distributions in target volumes and normal tissues. This may have substantial advantages in improving tumor control and reducing normal tissue toxicities.
The development and role of megavoltage cone beam computerized tomography in radiation oncology
NASA Astrophysics Data System (ADS)
Morin, Olivier
External beam radiation therapy has now the ability to deliver doses that conform tightly to a tumor volume. The steep dose gradients planned in these treatments make it increasingly important to reproduce the patient position and anatomy at each treatment fraction. For this reason, considerable research now focuses on in-room three-dimensional imaging. This thesis describes the first clinical megavoltage cone beam computed tomography (MVCBCT) system, which utilizes a conventional linear accelerator equipped with an amorphous silicon flat panel detector. The document covers the system development and investigation of its clinical applications over the last 4-5 years. The physical performance of the system was evaluated and optimized for soft-tissue contrast resolution leading to recommendations of imaging protocols to use for specific clinical applications and body sites. MVCBCT images can resolve differences of 5% in electron density for a mean dose of 9 cGy. Hence, the image quality of this system is sufficient to differentiate some soft-tissue structures. The absolute positioning accuracy with MVCBCT is better than 1 mm. The accuracy of isodose lines calculated using MVCBCT images of head and neck patients is within 3% and 3 mm. The system shows excellent stability in image quality, CT# calibration, radiation exposure and absolute positioning over a period of 8 months. A procedure for MVCBCT quality assurance was developed. In our clinic, MVCBCT has been used to detect non rigid spinal cord distortions, to position a patient with a paraspinous tumor close to metallic hardware, to position prostate cancer patients using gold markers or soft-tissue landmarks, to monitor head and neck anatomical changes and their dosimetric consequences, and to complement the convention CT for treatment planning in presence of metallic implants. MVCBCT imaging is changing the clinical practice of our department by increasingly revealing patient-specific errors. New verification protocols are being developed to minimize those errors thus moving the practice of radiation therapy one step closer to personalized medicine.
C-arm positioning using virtual fluoroscopy for image-guided surgery
NASA Astrophysics Data System (ADS)
de Silva, T.; Punnoose, J.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M. D.; Manbachi, A.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.
2017-03-01
Introduction: Fluoroscopically guided procedures often involve repeated acquisitions for C-arm positioning at the cost of radiation exposure and time in the operating room. A virtual fluoroscopy system is reported with the potential of reducing dose and time spent in C-arm positioning, utilizing three key advances: robust 3D-2D registration to a preoperative CT; real-time forward projection on GPU; and a motorized mobile C-arm with encoder feedback on C-arm orientation. Method: Geometric calibration of the C-arm was performed offline in two rotational directions (orbit α, orbit β). Patient registration was performed using image-based 3D-2D registration with an initially acquired radiograph of the patient. This approach for patient registration eliminated the requirement for external tracking devices inside the operating room, allowing virtual fluoroscopy using commonly available systems in fluoroscopically guided procedures within standard surgical workflow. Geometric accuracy was evaluated in terms of projection distance error (PDE) in anatomical fiducials. A pilot study was conducted to evaluate the utility of virtual fluoroscopy to aid C-arm positioning in image guided surgery, assessing potential improvements in time, dose, and agreement between the virtual and desired view. Results: The overall geometric accuracy of DRRs in comparison to the actual radiographs at various C-arm positions was PDE (mean ± std) = 1.6 ± 1.1 mm. The conventional approach required on average 8.0 ± 4.5 radiographs spent "fluoro hunting" to obtain the desired view. Positioning accuracy improved from 2.6o ± 2.3o (in α) and 4.1o ± 5.1o (in β) in the conventional approach to 1.5o ± 1.3o and 1.8o ± 1.7o, respectively, with the virtual fluoroscopy approach. Conclusion: Virtual fluoroscopy could improve accuracy of C-arm positioning and save time and radiation dose in the operating room. Such a system could be valuable to training of fluoroscopy technicians as well as intraoperative use in fluoroscopically guided procedures.
Combined effect of gamma-irradiation and conventional cooking on Aeromonas hydrophila in meatball.
Ozbaş, Z Y; Vural, H; Aytaç, S A
1996-01-01
Irradiation combined with a conventional cooking procedure was applied to meatball and the effects on bacterial load and inoculated Aeromonas hydrophila were determined. Meatball samples were irradiated by using a 60Co source at the dose levels of 0, 0.30, 0.75, 1.50, 2.50 kGy and cold stored at 4 +/- 1 degrees C for 7 days. Bacterial load and the count of A. hydrophila decreased when the irradiation dose level increased. A minimum inhibition effect was found at the dose of 0.30 kGy. Irradiation in combination with a conventional cooking procedure was found to be more effective in reducing A. hydrophila and the bacterial load in meatball. This study indicated that a dose of 0.75 kGy was sufficient to destroy approximately 10(4) cfu/g of A. hydrophila in meatball.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Charles, E-mail: charles.mayo@umassmemorial.or; Yorke, Ellen; Merchant, Thomas E.
Publications relating brainstem radiation toxicity to quantitative dose and dose-volume measures derived from three-dimensional treatment planning were reviewed. Despite the clinical importance of brainstem toxicity, most studies reporting brainstem effects after irradiation have fewer than 100 patients. There is limited evidence relating toxicity to small volumes receiving doses above 60-64 Gy using conventional fractionation and no definitive criteria regarding more subtle dose-volume effects or effects after hypofractionated treatment. On the basis of the available data, the entire brainstem may be treated to 54 Gy using conventional fractionation using photons with limited risk of severe or permanent neurological effects. Smaller volumesmore » of the brainstem (1-10 mL) may be irradiated to maximum doses of 59 Gy for dose fractions <=2 Gy; however, the risk appears to increase markedly at doses >64 Gy.« less
Al-Jundi, J; Ulanovsky, A; Pröhl, G
2009-10-01
The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, David I., E-mail: dirosenthal@mdanderson.or; Fuller, Clifton D.; Barker, Jerry L.
2010-06-01
Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapymore » consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.« less
Maqueda, Ana Elda; Valle, Marta; Addy, Peter H; Antonijoan, Rosa Maria; Puntes, Montserrat; Coimbra, Jimena; Ballester, Maria Rosa; Garrido, Maite; González, Mireia; Claramunt, Judit; Barker, Steven; Johnson, Matthew W; Griffiths, Roland R; Riba, Jordi
2015-06-05
Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehensively studied the profiles of subjective effects of increasing doses of salvinorin-A in healthy volunteers, with a special emphasis on interoception. A placebo and three increasing doses of vaporized salvinorin-A (0.25, 0.50, and 1mg) were administered to eight healthy volunteers with previous experience in the use of psychedelics. Drug effects were assessed using a battery of questionnaires that included, among others, the Hallucinogen Rating Scale, the Altered States of Consciousness, and a new instrument that evaluates different aspects of body awareness: the Multidimensional Assessment for Interoceptive Awareness. Salvinorin-A led to a disconnection from external reality, induced elaborate visions and auditory phenomena, and modified interoception. The lower doses increased somatic sensations, but the highest dose led to a sense of a complete loss of contact with the body. Salvinorin-A induced intense psychotropic effects characterized by a dose-dependent gating of external audio-visual information and an inverted-U dose-response effect on body awareness. These results suggest a prominent role for the kappa opioid receptor in the regulation of sensory perception, interoception, and the sense of body ownership in humans. © The Author 2015. Published by Oxford University Press on behalf of CINP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandare, N.
2014-06-01
Purpose: To estimate and compare the doses received by the obturator, external and internal iliac lymph nodes and point Methods: CT-MR fused image sets of 15 patients obtained for each of 5 fractions of HDR brachytherapy using tandem and ring applicator, were used to generate treatment plans optimized to deliver a prescription dose to HRCTV-D90 and to minimize the doses to organs at risk (OARs). For each set of image, target volume (GTV, HRCTV) OARs (Bladder, Rectum, Sigmoid), and both left and right pelvic lymph nodes (obturator, external and internal iliac lymph nodes) were delineated. Dose-volume histograms (DVH) were generatedmore » for pelvic nodal groups (left and right obturator group, internal and external iliac chains) Per fraction DVH parameters used for dose comparison included dose to 100% volume (D100), and dose received by 2cc (D2cc), 1cc (D1cc) and 0.1 cc (D0.1cc) of nodal volume. Dose to point B was compared with each DVH parameter using 2 sided t-test. Pearson correlation were determined to examine relationship of point B dose with nodal DVH parameters. Results: FIGO clinical stage varied from 1B1 to IIIB. The median pretreatment tumor diameter measured on MRI was 4.5 cm (2.7– 6.4cm).The median dose to bilateral point B was 1.20 Gy ± 0.12 or 20% of the prescription dose. The correlation coefficients were all <0.60 for all nodal DVH parameters indicating low degree of correlation. Only 2 cc of obturator nodes was not significantly different from point B dose on t-test. Conclusion: Dose to point B does not adequately represent the dose to any specific pelvic nodal group. When using image guided 3D dose-volume optimized treatment nodal groups should be individually identified and delineated to obtain the doses received by pelvic nodes.« less
Dual mode fuel injector with one piece needle valve member
Lawrence, Keith E.; Hinrichsen, Michael H.; Buckman, Colby
2005-01-18
A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively by inner and outer needle value members. The homogenous charged nozzle outlet set is defined by an outer needle value member that is moveably positioned in an injector body, which defines the conventional nozzle outlet set. The inner needle valve member is positioned in the outer needle valve member. The outer needle valve member is a piece component that includes at least one external guide surface, an external value surface and an internal valve seat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Jean L., E-mail: jwright3@med.miami.ed; Patil, Sujata M.; Temple, Larissa K.F.
2010-11-15
Purpose: Intensity-modulated radiation treatment (IMRT) is increasingly used in the treatment of squamous cell carcinoma of the anal canal (SCCAC). Prevention of locoregional failure (LRF) using IMRT requires appropriate clinical target volume (CTV) definition. To better define the CTV for IMRT, we evaluated patterns and predictors of LRF in SCCAC patients given conventional radiation treatment. Methods and Materials: We reviewed records of 180 SCCAC patients treated with conventional radiation with or without chemotherapy at our institution between January 1990 and March 2007. All patients received radiation; the median primary tumor dose was 45 Gy. A total of 173 patients alsomore » received mitomycin-based chemotherapy. Results: Median follow-up was 40 months. Actuarial 3-year colostomy-free survival was 89% and overall survival (OS) 88%. Actuarial 3-year LRF was 23%. A total of 45 patients had LRF, with 35 (78%) occurring locally in the primary site (25 local only, 10 local and regional); however, 20 (44%) had regional components of failure within the pelvis or inguinal nodes (10 regional only, 10 local and regional). Cumulative sites of LRF (patients may have one or more site of failure) were as follows: primary, 35; inguinal, 8; external perianal, 5; common iliac, 4; presacral, 3; distal rectum, 2; external iliac, 2; and internal iliac, 2. All patients with common iliac failure had cT3 or N+ disease. Conclusions: The observed patterns of failure support inclusion of the inguinal and all pelvic nodal groups in the CTV for IMRT. In patients with advanced tumor or nodal stage, common iliac nodes should also be included in the CTV.« less
Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy
NASA Astrophysics Data System (ADS)
Alexander, M. A. R.; Brooks, W. A.; Blake, S. W.
2007-04-01
Cosmetic late effects of radiotherapy such as tissue fibrosis are increasingly regarded as being of importance. It is generally considered that the complication probability of a radiotherapy plan is dependent on the dose uniformity, and can be reduced by using better compensation to remove dose hotspots. This work aimed to model the effects of improved dose homogeneity on complication probability. The Lyman and relative seriality NTCP models were fitted to clinical fibrosis data for the breast collated from the literature. Breast outlines were obtained from a commercially available Rando phantom using the Osiris system. Multislice breast treatment plans were produced using a variety of compensation methods. Dose-volume histograms (DVHs) obtained for each treatment plan were reduced to simple numerical parameters using the equivalent uniform dose and effective volume DVH reduction methods. These parameters were input into the models to obtain complication probability predictions. The fitted model parameters were consistent with a parallel tissue architecture. Conventional clinical plans generally showed reducing complication probabilities with increasing compensation sophistication. Extremely homogenous plans representing idealized IMRT treatments showed increased complication probabilities compared to conventional planning methods, as a result of increased dose to areas receiving sub-prescription doses using conventional techniques.
Dewji, S.; Bellamy, M.; Hertel, N.; ...
2015-03-25
The purpose of this study is to estimate dose rates that may result from exposure to patients who had been administered iodine-131 ( 131I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered 131I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with 131I. Tissue attenuation and iodine biokinetics were considered in the patient in a largermore » comprehensive effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the 131I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of 131I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after 131I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ specific activities of 131I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for 131I patients with normal thyroid uptake (peak thyroid uptake of ~27% of administered 131I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ~4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ~3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with 131I therapy, consideration must be given to (patient- and case-specific) administered 131I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. Finally, the method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewji, S.; Bellamy, M.; Hertel, N.
The purpose of this study is to estimate dose rates that may result from exposure to patients who had been administered iodine-131 ( 131I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered 131I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with 131I. Tissue attenuation and iodine biokinetics were considered in the patient in a largermore » comprehensive effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the 131I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of 131I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after 131I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ specific activities of 131I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for 131I patients with normal thyroid uptake (peak thyroid uptake of ~27% of administered 131I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ~4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ~3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with 131I therapy, consideration must be given to (patient- and case-specific) administered 131I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. Finally, the method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less
Simon, Steven L.; Bouville, André; Land, Charles E.; Beck, Harold L.
2014-01-01
Nuclear weapons testing conducted at Bikini and Enewetak Atolls during 1946–1958 resulted in exposures of the resident population of the present-day Republic of the Marshall Islands to radioactive fallout. This paper summarizes the results of a thorough and systematic reconstruction of radiation doses to that population, by year, age at exposure, and atoll of residence, and the related cancer risks. Detailed methods and results are presented in a series of companion papers in this volume. From our analysis, we concluded that 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in measurable fallout deposition on one or more of the inhabited atolls of the Marshall Islands. In this work, we estimated deposition densities (kBq m−2) of all important dose-contributing radionuclides at each of the 32 atolls and separate reef islands of the Marshall Islands. Quantitative deposition estimates were made for 63 radionuclides from each test at each atoll. Those estimates along with reported measurements of exposure rates at various times after fallout were used to estimate radiation absorbed doses to the red bone marrow, thyroid gland, stomach wall, and colon wall of atoll residents from both external and internal exposure. Annual doses were estimated for six age groups ranging from newborns to adults. We found that the total deposition of 137Cs, external dose, internal organ doses, and cancer risks followed the same geographic pattern with the large population of the southern atolls receiving the lowest doses. Permanent residents of the southern atolls who were of adult age at the beginning of the testing period received external doses ranging from 5 to 12 mGy on average; the external doses to adults at the mid-latitude atolls ranged from 22 to 59 mGy on average, while the residents of the northern atolls received external doses in the hundreds to over 1,000 mGy. Internal doses varied significantly by age at exposure, location, and organ. Except for internal doses to the thyroid gland, external exposure was generally the major contributor to organ doses, particularly for red bone marrow and stomach wall. Internal doses to the stomach wall and red bone marrow were similar in magnitude, about 1 mGy to 7 mGy for permanent residents of the southern and mid-latitude atolls. However, adult residents of Utrik and Rongelap Island, which are part of the northern atolls, received much higher internal doses because of intakes of short-lived radionuclides leading to doses from 20 mGy to more than 500 mGy to red bone marrow and stomach wall. In general, internal doses to the colon wall were four to ten times greater than those to the red bone marrow and internal doses to the thyroid gland were 20 to 30 times greater than to the red bone marrow. Adult internal thyroid doses for the Utrik community and for the Rongelap Island community were about 760 mGy and 7,600 mGy, respectively. The highest doses were to the thyroid glands of young children exposed on Rongelap at the time of the Castle Bravo test of 1 March 1954 and were about three times higher than for adults. Internal doses from chronic intakes, related to residual activities of long-lived radionuclides in the environment, were, in general, low in comparison with acute exposure resulting from the intakes of radionuclides immediately or soon after the deposition of fallout. The annual doses and the population sizes at each atoll in each year were used to develop estimates of cancer risks for the permanent residents of all atolls that were inhabited during the testing period as well as for the Marshallese population groups that were relocated prior to the testing or after it had begun. About 170 excess cancers (radiation-related cases) are projected to occur among more than 25,000 Marshallese, half of whom were born before 1948. All but about 65 of those cancers are estimated to have already been expressed. The 170 excess cancers are in comparison to about 10,600 cancers that would spontaneously arise, unrelated to radioactive fallout, among the same cohort of Marshallese people. PMID:20622547
Simon, Steven L; Bouville, André; Land, Charles E; Beck, Harold L
2010-08-01
Nuclear weapons testing conducted at Bikini and Enewetak Atolls during 1946-1958 resulted in exposures of the resident population of the present-day Republic of the Marshall Islands to radioactive fallout. This paper summarizes the results of a thorough and systematic reconstruction of radiation doses to that population, by year, age at exposure, and atoll of residence, and the related cancer risks. Detailed methods and results are presented in a series of companion papers in this volume. From our analysis, we concluded that 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in measurable fallout deposition on one or more of the inhabited atolls of the Marshall Islands. In this work, we estimated deposition densities (kBq m(-2)) of all important dose-contributing radionuclides at each of the 32 atolls and separate reef islands of the Marshall Islands. Quantitative deposition estimates were made for 63 radionuclides from each test at each atoll. Those estimates along with reported measurements of exposure rates at various times after fallout were used to estimate radiation absorbed doses to the red bone marrow, thyroid gland, stomach wall, and colon wall of atoll residents from both external and internal exposure. Annual doses were estimated for six age groups ranging from newborns to adults. We found that the total deposition of 137Cs, external dose, internal organ doses, and cancer risks followed the same geographic pattern with the large population of the southern atolls receiving the lowest doses. Permanent residents of the southern atolls who were of adult age at the beginning of the testing period received external doses ranging from 5 to 12 mGy on average; the external doses to adults at the mid-latitude atolls ranged from 22 to 59 mGy on average, while the residents of the northern atolls received external doses in the hundreds to over 1,000 mGy. Internal doses varied significantly by age at exposure, location, and organ. Except for internal doses to the thyroid gland, external exposure was generally the major contributor to organ doses, particularly for red bone marrow and stomach wall. Internal doses to the stomach wall and red bone marrow were similar in magnitude, about 1 mGy to 7 mGy for permanent residents of the southern and mid-latitude atolls. However, adult residents of Utrik and Rongelap Island, which are part of the northern atolls, received much higher internal doses because of intakes of short-lived radionuclides leading to doses from 20 mGy to more than 500 mGy to red bone marrow and stomach wall. In general, internal doses to the colon wall were four to ten times greater than those to the red bone marrow and internal doses to the thyroid gland were 20 to 30 times greater than to the red bone marrow. Adult internal thyroid doses for the Utrik community and for the Rongelap Island community were about 760 mGy and 7,600 mGy, respectively. The highest doses were to the thyroid glands of young children exposed on Rongelap at the time of the Castle Bravo test of 1 March 1954 and were about three times higher than for adults. Internal doses from chronic intakes, related to residual activities of long-lived radionuclides in the environment, were, in general, low in comparison with acute exposure resulting from the intakes of radionuclides immediately or soon after the deposition of fallout. The annual doses and the population sizes at each atoll in each year were used to develop estimates of cancer risks for the permanent residents of all atolls that were inhabited during the testing period as well as for the Marshallese population groups that were relocated prior to the testing or after it had begun. About 170 excess cancers (radiation-related cases) are projected to occur among more than 25,000 Marshallese, half of whom were born before 1948. All but about 65 of those cancers are estimated to have already been expressed. The 170 excess cancers are in comparison to about 10,600 cancers that would spontaneously arise, unrelated to radioactive fallout, among the same cohort of Marshallese people.
NASA Astrophysics Data System (ADS)
He, Pengbo; Li, Qiang; Zhao, Ting; Liu, Xinguo; Dai, Zhongying; Ma, Yuanyuan
2016-12-01
A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient’s breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.
Dose specification for radiation therapy: dose to water or dose to medium?
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, Jinsheng
2011-05-01
The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.
Faghihi, Gita; Mokhtari, Fatemeh; Fard, Nasrin Motamedi; Motamedi, Narges; Hosseini, Sayed Mohsen
2017-01-01
Objective: This study was conducted to compare the effect of low-dose isotretinoin with its conventional dose in patients with moderate and severe acne. Methods: This was a clinical trial conducted on 60 male and female patients with moderate and severe acne vulgaris. The patients were divided into two treatment groups: 0.5 mg/kg/day isotretinoin capsule and low-dose isotretinoin capsule (0.25 mg/kg/day). Patients in both groups received 6-month treatment. At the end of the 6th month and 12th month (6 months after the end of the treatment), they were examined again, and their improvement was determined and compared. Findings: The average severity of acne in the two treatment groups did not differ significantly within any of the study periods. The most common side effects were nose dryness in the low-dose group (17%) and hair thinning and loss in the conventional-dose group (33.2%), although all the patients had dry lips. Conclusion: According to the same severity of the acne in two groups in different study periods, as well as fewer side effects and more patients' satisfaction, the low-dose isotretinoin can be considered in the treatment of acne. PMID:29417084
Galgani, Ilaria; Bunge, Eveline M; Hendriks, Lisa; Schludermann, Christopher; Marano, Cinzia; De Moerlooze, Laurence
2017-09-01
Tick-borne encephalitis (TBE), which is endemic across large regions of Europe and Asia, is most effectively prevented through vaccination. Three-dose primary TBE vaccination schedules are either rapid (0,7,21-days) or conventional (0,28-84-days, 9-12-months). The second dose can also be administered at 14 days for faster priming and sero-protection). Areas covered: We used a three-step selection process to identify 21 publications comparing the immunogenicity and/or safety of different schedules. Expert commentary: Priming with two or three TBE vaccine doses was highly immunogenic. After conventional priming (0-28 days), 95% adults and ≥95% children had neutralization test (NT) titers ≥10 at 14 days post-dose-2 compared with 92% adults and 99% children at 21 days post-dose-3 (rapid schedule). Most subjects retained NT titers ≥10 at day 300. A single booster dose induced a strong immune response in all subjects irrespective of primary vaccination schedule or elapsed time since priming. GMT peaked at 42 days post-dose-1 (i.e., 21 days post-dose 3 [rapid-schedule], or 14-28 days post-dose-2 [conventional-schedule]), and declined thereafter. Adverse events were generally rare and declined with increasing doses. In the absence of data to recommend one particular schedule, the regimen choice will remain at the physician's discretion, based on patient constraints and availability.
Barron, Heather W; Roberts, Royce E; Latimer, Kenneth S; Hernandez-Divers, Stephen; Northrup, Nicole C
2009-03-01
Currently used dosages for external-beam megavoltage radiation therapy in birds have been extrapolated from mammalian patients and often appear to provide inadequate doses of radiation for effective tumor control. To determine the tolerance doses of cutaneous and mucosal tissues of normal birds in order to provide more effective radiation treatment for tumors that have been shown to be radiation responsive in other species, ingluvial mucosa and the skin over the ingluvies of 9 ring-necked parakeets (Psittacula krameri) were irradiated in 4-Gy fractions to a total dose of either 48, 60, or 72 Gy using an isocentric cobalt-60 teletherapy unit. Minimal radiation-induced epidermal changes were present in the high-dose group histologically. Neither dose-related acute nor chronic radiation effects could be detected in any group grossly in cutaneous or mucosal tissue over a 9-month period. Radiation doses of 72 Gy in 4-Gy fractions were well tolerated in the small number of ring-necked parakeets in this initial tolerance dose study.
NASA Astrophysics Data System (ADS)
Taranenko, Valery; Xu, X. George
2008-03-01
Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.
On the new metrics for IMRT QA verification.
Garcia-Romero, Alejandro; Hernandez-Vitoria, Araceli; Millan-Cebrian, Esther; Alba-Escorihuela, Veronica; Serrano-Zabaleta, Sonia; Ortega-Pardina, Pablo
2016-11-01
The aim of this work is to search for new metrics that could give more reliable acceptance/rejection criteria on the IMRT verification process and to offer solutions to the discrepancies found among different conventional metrics. Therefore, besides conventional metrics, new ones are proposed and evaluated with new tools to find correlations among them. These new metrics are based on the processing of the dose-volume histogram information, evaluating the absorbed dose differences, the dose constraint fulfillment, or modified biomathematical treatment outcome models such as tumor control probability (TCP) and normal tissue complication probability (NTCP). An additional purpose is to establish whether the new metrics yield the same acceptance/rejection plan distribution as the conventional ones. Fifty eight treatment plans concerning several patient locations are analyzed. All of them were verified prior to the treatment, using conventional metrics, and retrospectively after the treatment with the new metrics. These new metrics include the definition of three continuous functions, based on dose-volume histograms resulting from measurements evaluated with a reconstructed dose system and also with a Monte Carlo redundant calculation. The 3D gamma function for every volume of interest is also calculated. The information is also processed to obtain ΔTCP or ΔNTCP for the considered volumes of interest. These biomathematical treatment outcome models have been modified to increase their sensitivity to dose changes. A robustness index from a radiobiological point of view is defined to classify plans in robustness against dose changes. Dose difference metrics can be condensed in a single parameter: the dose difference global function, with an optimal cutoff that can be determined from a receiver operating characteristics (ROC) analysis of the metric. It is not always possible to correlate differences in biomathematical treatment outcome models with dose difference metrics. This is due to the fact that the dose constraint is often far from the dose that has an actual impact on the radiobiological model, and therefore, biomathematical treatment outcome models are insensitive to big dose differences between the verification system and the treatment planning system. As an alternative, the use of modified radiobiological models which provides a better correlation is proposed. In any case, it is better to choose robust plans from a radiobiological point of view. The robustness index defined in this work is a good predictor of the plan rejection probability according to metrics derived from modified radiobiological models. The global 3D gamma-based metric calculated for each plan volume shows a good correlation with the dose difference metrics and presents a good performance in the acceptance/rejection process. Some discrepancies have been found in dose reconstruction depending on the algorithm employed. Significant and unavoidable discrepancies were found between the conventional metrics and the new ones. The dose difference global function and the 3D gamma for each plan volume are good classifiers regarding dose difference metrics. ROC analysis is useful to evaluate the predictive power of the new metrics. The correlation between biomathematical treatment outcome models and the dose difference-based metrics is enhanced by using modified TCP and NTCP functions that take into account the dose constraints for each plan. The robustness index is useful to evaluate if a plan is likely to be rejected. Conventional verification should be replaced by the new metrics, which are clinically more relevant.
Bochmann, Monika; Ludewig, E; Pees, M
2011-01-01
A conventional high-resolution screen-film system (Film Kodak MIN-R S, Kodak MIN-R 2000) was compared with an indirect digital detector system (Varian PaxScan 4030E) for use in radiography of lizards. A total of 20 bearded dragons (Pogona vitticeps ) with body masses between 123 g and 487 g were investigated by using conventional and digital image acquisition techniques. The digital image was taken with the same dose as well as half the dose of the conventional radiograph. The study was conducted semi-blinded as the x-ray images were encoded and randomised. Five veterinarians with clinical experience in reptile medicine served as observers. Exactly defined structures in three anatomical regions were assessed using a three-step scale. Furthermore, the overall quality of the respective region was evaluated using a five-step scale. Evaluation of the data was done by visual grading analysis. None of the structures examined was assessed to be of significantly inferior quality on the digital images in comparison to the conventional radiographs. The majority of the results demonstrated an equal quality of both systems. For assessment of the lung tissue and the pulmonary vessels as well as the overall assessment of the lung, the digital radiographs with full dose were rated to be significantly superior in comparison to the film-screen system. Furthermore, the joint contours of the shoulder and cubital joints and the overall assessments of the humerus and the caudal coelomic cavity were rated significantly better on digital images with full dose compared to those with reduced dose. The digital flat panel detector technique examined in this study is equal or superior to the conventional high-resolution screen-film system used. Nevertheless, the practicability of a dose reduction is limited in bearded dragons. Digital imaging systems are progressively being used in veterinary practice. The results of the study demonstrate the useful application of the digital detector systems in lizards.
El-Shamy, Shamekh; Alsharif, Rabab
2017-01-01
Objectives: The objective was to evaluate the effects of virtual reality versus conventional physiotherapy on upper extremity function in children with obstetric brachial plexus injury. Methods: Forty children with Erb’s palsy were selected for this randomized controlled study. They were assigned randomly to either group A (conventional physiotherapy program) or group B (virtual reality program using Armeo® spring for 45 min three times/week for 12 successive weeks). Mallet system scores for shoulder function and shoulder abduction, and external rotation range of motion (ROM) were obtained; shoulder abductor, and external rotators isometric strength were evaluated pre-and post-treatment using Mallet scoring system, standard universal goniometer, and handheld dynamometer. Results: The results of this study indicate that the children in both groups showed improvement in shoulder functions post-treatment with greater improvements in group B. The abduction muscle strength after treatment was 8.53 and 11.3 Nm for group A and group B, respectively. The external rotation muscle strength after treatment was 5.88 and 7.45 Nm for group A and group B, respectively. Conclusions: The virtual reality program is a significantly more effective than conventional physiotherapy program in improving the upper extremity functions in children with obstetric brachial plexus injury. PMID:29199193
Quetiapine for hypnogogic musical release hallucinations.
David, R R; Fernandez, H H
2000-01-01
Musical release hallucinations are complex auditory phenomena, affecting mostly the deaf geriatric population, in which individuals hear vocal or instrumental music. Progressive hearing loss from otosclerosis disrupts the usual external sensory stimuli necessary to inhibit the emergence of memory traces within the brain, thereby "releasing" previously recorded perceptions. Responses to conventional antipsychotic agents have been variable and extrapyramidal and other side effects have limited their use. We report the first case of hypnogogic release hallucinations successfully treated with the atypical antipsychotic quetiapine. The patient is an 88-year-old woman with progressive deafness who complained of hearing the piano, drums, or a full orchestra every time she was about to fall asleep. She accused her neighbor of hosting loud parties. Physical, neurologic, and psychiatric examination and work-up were unremarkable. She was treated with low-dose quetiapine affording near total resolution of hallucinations without adverse effects.
Efficacy and safety of add on low-dose mirtazapine in depression.
Matreja, Prithpal S; Badyal, Dinesh K; Deswal, Randhir S; Sharma, Arvind
2012-03-01
Although antidepressant medications are effective, they have a delayed onset of effect. Mirtazapine, an atypical antidepressant is an important option for add-on therapy in major depression. There is insufficient data on mirtazapine in Indian population; hence this study was designed to study the add-on effect of low-dose mirtazapine with selective serotonin reuptake inhibitors (SSRIs) in major depressive disorder (MDD) in Indian population. In an open, randomized study, 60 patients were divided into two groups. In Group A (n=30) patients received conventional SSRIs for 6 weeks. In Group B (n=30) patients received conventional SSRIs with low-dose mirtazapine for 6 weeks. Patients were evaluated at baseline and then at 1, 2, 3, 4, 5, and 6 weeks. There was significant improvement in Hamilton Depression Rating Scale (HDRS), Montgomery and Asberg depression rating scale (MADRS) scores (P<0.05) in both groups. Mirtazapine in low dose as add on therapy showed improvement in scores, had earlier onset of action, and more number of responders and remitters as compared to conventional treatment (P<0.05). No serious adverse event was reported in either of the groups. Low-dose mirtazapine as add-on therapy has shown better efficacy, earlier onset of action and more number of responders and remitters as compared to conventional treatment in MDD in Indian patients.
Takamura, Akio; Saito, Hiroya; Kamada, Tadashi; Hiramatsu, Kazuhide; Takeuchi, Shuhei; Hasegawa, Masakazu; Miyamoto, Noriyuki
2003-12-01
To evaluate the results of combined-modality therapy, including external beam radiotherapy, intraluminal (192)Ir, and biliary stenting for extrahepatic bile duct carcinoma. Between 1988 and 1998, 93 patients with unresectable extrahepatic bile duct carcinoma underwent definitive radiotherapy. The dose of external beam radiotherapy was 50 Gy in 25 fractions. Low-dose-rate (192)Ir was delivered at a dose of 27-50 Gy (mean 39.2) at 0.5 cm from the source. An expandable metallic endoprosthesis was used to establish an internal bile passage. The median survival was 12 months, with a 1-, 3-, and 5-year actuarial survival rate of 50%, 10%, and 4%, respectively. Tumor length, hepatic invasion, and distant metastasis significantly affected survival. Ninety-six percent of patients could successfully remove external drainage catheters. The actuarial biliary patency rate for these patients at 1, 3, and 5 years was 52%, 29%, and 18%, respectively. Tumor length, tumor diameter and T stage were significantly associated with the patency rate. Mild-to-severe gastroduodenal complications were observed in 32 patients and were significantly associated with the active length of (192)Ir and linear source activity. Eight patients had treatment-related biliary fistula. Our combined-modality therapy provided reasonable local control and improved the quality of life of patients with extrahepatic bile duct carcinoma. Because none of the treatment characteristics had any impact on survival or biliary patency, lower dose levels and/or a localized target volume are recommended to minimize morbidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, R; Kamima, T; Tachibana, H
2015-06-15
Purpose: To show the results of a multi-institutional study of the independent dose verification for conventional, Stereotactic radiosurgery and body radiotherapy (SRS and SBRT) plans based on the action level of AAPM TG-114. Methods: This study was performed at 12 institutions in Japan. To eliminate the bias of independent dose verification program (Indp), all of the institutions used the same CT-based independent dose verification software (Simple MU Analysis, Triangle Products, JP) with the Clarkson-based algorithm. Eclipse (AAA, PBC), Pinnacle{sup 3} (Adaptive Convolve) and Xio (Superposition) were used as treatment planning system (TPS). The confidence limits (CL, Mean±2SD) for 18 sitesmore » (head, breast, lung, pelvis, etc.) were evaluated in comparison in dose between the TPS and the Indp. Results: A retrospective analysis of 6352 treatment fields was conducted. The CLs for conventional, SRS and SBRT were 1.0±3.7 %, 2.0±2.5 % and 6.2±4.4 %, respectively. In conventional plans, most of the sites showed within 5 % of TG-114 action level. However, there were the systematic difference (4.0±4.0 % and 2.5±5.8 % for breast and lung, respectively). In SRS plans, our results showed good agreement compared to the action level. In SBRT plans, the discrepancy between the Indp was variable depending on dose calculation algorithms of TPS. Conclusion: The impact of dose calculation algorithms for the TPS and the Indp affects the action level. It is effective to set the site-specific tolerances, especially for the site where inhomogeneous correction can affect dose distribution strongly.« less
Turhan, K S Cakar; Akmese, R; Ozkan, F; Okten, F F
2015-04-01
In the current prospective, randomized study, we aimed to compare the effects of low dose selective spinal anesthesia with 5 mg of hyperbaric bupivacaine and single-shot femoral nerve block combination with conventional dose selective spinal anesthesia in terms of intraoperative anesthesia characteristics, block recovery characteristics, and postoperative analgesic consumption. After obtaining institutional Ethics Committee approval, 52 ASA I-II patients aged 25-65, undergoing arthroscopic meniscus repair were randomly assigned to Group S (conventional dose selective spinal anesthesia with 10 mg bupivacaine) and Group FS (low-dose selective spinal anesthesia with 5mg bupivacaine +single-shot femoral block with 0.25% bupivacaine). Primary endpoints were time to reach T12 sensory block level, L2 regression, and complete motor block regression. Secondary endpoints were maximum sensory block level (MSBL); time to reach MSBL, time to first urination, time to first analgesic consumption and pain severity at the time of first mobilization. Demographic characteristics were similar in both groups (p > 0.05). MSBL and time to reach T12 sensory level were similar in both groups (p > 0.05). Time to reach L2 regression, complete motor block regression, and time to first micturition were significantly shorter; time to first analgesic consumption was significantly longer; and total analgesic consumption and severity of pain at time of first mobilization were significantly lower in Group FS (p < 0.05). The findings of the current study suggest that addition of single-shot femoral block to low dose spinal anesthesia could be an alternative to conventional dose spinal anesthesia in outpatient arthroscopic meniscus repair. NCT02322372.
Hamers, H P; Johansson, K A; Venselaar, J L; de Brouwer, P; Hansson, U; Moudi, C
1993-01-01
Two anthropomorphic phantom breasts and six patients with breast carcinoma were irradiated according the prescriptions of the EORTC protocol 22881 on the conservative management of breast carcinoma by tumorectomy and radiotherapy. During the implantation procedure for an iridium-192 boost, three tubes were implanted, enabling the measurement with TLD rods of the dose within the breasts of the phantom and the patients during one fraction of the external x-ray therapy and during the interstitial therapy. Measured doses were compared with calculated values from a 2-D dose planning system. In general a fair agreement was found between the measured and calculated doses in points within the breast for the external beam therapy as well as for the interstitial treatment.
Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I
1989-01-01
In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.
2015-01-01
Objective: Spacer gel is used to reduce the rectal dose in prostate radiotherapy. It is injected to increase the distance between the prostate and rectum. During the course of external radiotherapy treatment, physiological changes in rectal volume exist. When using polyethylene glycol material, such as DuraSeal® (Covidien, Mansfield, MA), gel resorption also occurs. Together, these factors alter the original dose plan distribution. Methods: External dose planning and calculations were simulated using images acquired from 10 patients who were treated with brachytherapy and gel. The CT series was taken relative to gel injection: pre 1 day, post 1 day, post 1 month and post 2 months. Adaptive planning was compared with a single plan. Results: Adaptive planning shows better results compared with the single plan used in the total treatment course; however, the effect is minor. Conclusion: Gel usage is clearly favourable to rectal DVH. Using adaptive planning with gel improves rectal DVH but is not necessary according to this study. Advances in knowledge: Spacer gel is used in prostate radiotherapy to increase distance between the prostate and the rectum, thus reducing the rectal doses. During the treatment course, gel resorption exists which affects the rectal doses. The usefulness of adaptive planning to compensate this resorption effect has not been studied before. PMID:26370300
Miyatake, Hirokazu; Yoshizawa, Nobuaki; Suzuki, Gen
2018-05-11
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a release of radionuclides into the environment. Since the accident, measurements of radiation in the environment such as air dose rate and deposition density of radionuclides have been performed by various organizations and universities. In particular, Japan Atomic Energy Agency (JAEA) has been performing observations of air dose rate using a car-borne survey system continuously over widespread areas. Based on the data measured by JAEA, we estimated effective dose from external exposure in the prefectures surrounding Fukushima. Since car-borne survey started a few months after the accident, the main contribution to measured data comes from 137Cs and 134Cs whose half-lives are relatively long. Using air dose rate of 137Cs and 134Cs and the ratio of deposition density of short-lived nuclides to that of 137Cs and 134Cs, we also estimated contributions to the effective dose from other short-lived nuclides.
Spatial interpolation of gamma dose in radioactive waste storage facility
NASA Astrophysics Data System (ADS)
Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd
2018-01-01
External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.
Modelling in conventional electroporation for model cell with organelles using COMSOL Multiphysics
NASA Astrophysics Data System (ADS)
Sulaeman, M. Y.; Widita, R.
2016-03-01
Conventional electroporation is a formation of pores in the membrane cell due to the external electric field applied to the cell. The purpose of creating pores in the cell using conventional electroporation are to increase the effectiveness of chemotherapy (electrochemotherapy) and to kill cancer tissue using irreversible electroporation. Modeling of electroporation phenomenon on a model cell had been done by using software COMSOL Multiphysics 4.3b with the applied external electric field with intensity at 1.1 kV/cm to find transmembrane voltage and pore density. It can be concluded from the results of potential distribution and transmembrane voltage, it show that pores formation only occurs in the membrane cells and it could not penetrate into inside the model cell so there is not pores formation in its organells.
NASA Astrophysics Data System (ADS)
Fraser, Danielle
In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck imaging. Two case studies of nasopharyngeal cancer are discussed. The deformation of disease-positive cervical lymph nodes was monitored throughout treatment. Node volumes shrunk to 17% of the initial volume, moved up 1.3 cm, and received up to a 12% lower dose than that prescribed. It is shown that difficulties in imaging soft tissue in the neck region are circumvented with ultrasound imaging, and after dosimetric verification it is argued that adaptive replanning may be more beneficial than patient realignment when intensity modulated radiation therapy techniques are used. Some of the largest dose delivery errors were found in external electron beam treatments for breast cancer patients who underwent breast conserving surgery. Inaccuracies in conventional treatment planning resulted in substantial target dose discrepancies of up to 88%. When patient setup errors, interfraction tumour bed motion, and tissue remodeling were considered, inadequate target coverage was exacerbated. This thesis quantifies the dose discrepancy between that prescribed and that delivered. I delve into detail for common IGRT treatment sites, and illuminate problems that have not received much attention for less common IGRT treatment sites.
Belley, Matthew D; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J; Chen, Benny J; Dewhirst, Mark W; Yoshizumi, Terry T
2014-03-01
Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Average doses in soft-tissue organs were found to vary by as much as 23%-32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.
Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.
2014-01-01
Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigning a single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs. PMID:24593746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belley, Matthew D.; Wang, Chu; Nguyen, Giao
2014-03-15
Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application formore » tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.« less
Kirillov, Vladimir; Kuchuro, Joseph; Tolstik, Sergey; Leonova, Tatyana
2010-02-01
Dose reconstruction for citizens of Belarus affected by the Chernobyl accident showed an unexpectedly wide range of doses. Using the EPR tooth enamel dosimetry method, it has been demonstrated that when the tooth enamel dose was formed due to x-rays with effective energy of 34 keV and the additional irradiation of enamel samples was performed by gamma radiation with mean energy of 1,250 keV, it led to a considerable increase in the reconstructed absorbed dose as compared with the applied. In the case when the dose was formed due to gamma radiation and the additional irradiation was performed by x-rays, it led to a considerable decrease in the reconstructed dose as compared with the applied. When the dose formation and the additional irradiation were carried out from external sources of electromagnetic radiation of equal energy, the reconstructed dose value was close to that of the applied. The obtained data show that for adequate reconstruction of individual absorbed doses by the EPR tooth enamel spectra, it is necessary to take into account the contribution from diagnostic x-ray examination of the teeth, jaw, and skull of some individuals who were exposed to a combined effect of the external gamma radiation and x-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Kang, S; Eom, J
Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions includedmore » in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.« less
Radiological environment within an NPP after a severe nuclear accident
NASA Astrophysics Data System (ADS)
Andgren, Karin; Fritioff, Karin; Buhr, Anna Maria Blixt; Huutoniemi, Tommi
2017-09-01
The radiological environment following a severe nuclear accident can be visualised on building layouts. The direct radiation in an area (or room) can be visualized on the layout by a colouring scheme depending on the dose rate level (for example orange for high gamma dose rate level and purple for an intermediate gamma dose rate level). Following the Fukushima accident, a need for update of these layouts has been identified at the Swedish nuclear power plant of Forsmark. Shielding calculations for areas where access is desired for severe accident management have been performed. Many different sources of radiation together with different types of shielding material contribute to the dose that would be received by a person entering the area. External radiation from radioactivity within e.g. pipes and components is considered and also external radiation from radioactivity in the air (originating from diffuse leakage of the containment atmosphere). Results are presented as dose rates for relevant dose points together with a method for estimating the dose rate levels for each of the rooms of the reactor building.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardis, E.; Kato, I.; Lave, C.
Studies of the mortality among nuclear industry workforces have been carried out, and nationally combined analyses performed, in the U.S., the UK and Canada. This paper presents the results of internationally combined analyses of mortality data on 95,673 workers (85.4% men) monitored for external exposure to ionizing radiation and employed for 6 months or longer in the nuclear industry of one of the three countries. These analyses were undertaken to obtain a more precise direct assessment of the carcinogenic effects of protracted low-level exposure to external, predominantly {gamma}, radiation. The combination of the data from the various studies increases themore » power to study associations between radiation dose and mortality from all causes or from all cancers. Mortality from leukemia, excluding chronic lymphocytic leukemia (CLL)-the cause of death most strongly and consistently related to radiation dose in studies of atomic bomb survivors and other populations exposed at high dose rates-was significantly associated with cumulative external radiation dose (one-sided P value = 0.046; 119 deaths). Among the 31 other specific types of cancer studied, a significant association was observed only for multiple myeloma (one-sided P value = 0.037; 44 deaths), and this was attributable primarily to the associations reported previously between this disease and radiation dose in the Hanford (U.S.) and Sellafield (UK) cohorts. The excess relative risk (ERR) estimates for all cancers excluding leukemia, and leukemia excluding CLL, the two main groupings of causes of death for which risk estimates have been derived from studies of atomic bomb survivors, were -0.07 per Sv [90% confidence interval (CI):-0.4,0.3] and 2.18 per Sv (90% CI:0.1,5.7), respectively. These values correspond to a relative risk of 0.99 for all cancers excluding leukemia and 1.22 for leukemia excluding CLL for a cumulative protracted dose of 100 mSv compared to O mSv. 53 refs., 1 fig., 8 tabs.« less
Stevens, Allen D.; Hernandez, Caleb; Jones, Seth; Moreira, Maria E.; Blumen, Jason R.; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S.
2016-01-01
Background Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. Methods We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded-syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Results Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28–39) seconds and 42 (95% CI: 36–51) seconds, respectively (difference = 9 [95% CI: 4–14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference = 39%, 95% CI: 13–61%). Conclusions A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. PMID:26247145
Stevens, Allen D; Hernandez, Caleb; Jones, Seth; Moreira, Maria E; Blumen, Jason R; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S
2015-11-01
Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28-39) seconds and 42 (95% CI: 36-51) seconds, respectively (difference=9 [95% CI: 4-14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference=39%, 95% CI: 13-61%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Oparaji, U; Tsai, Y H; Liu, Y C; Lee, K W; Patelli, E; Sheu, R J
2017-06-01
This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6"-9") are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Wallace, R.; Boyer, M. F.
1972-01-01
These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.
High carrier activation of Mg ion-implanted GaN by conventional rapid thermal annealing
NASA Astrophysics Data System (ADS)
Niwa, Takaki; Fujii, Takahiro; Oka, Tohru
2017-09-01
A high activation ratio of Mg ion implantation by conventional rapid thermal annealing (RTA) was demonstrated. To obtain the high activation ratio of Mg ion implantation, the dependence of hole concentration on Mg dose was investigated. A maximum hole concentration and a high activation ratio of 2.3% were obtained at a Mg dose of 2.3 × 1014 cm-2 between 9.2 × 1013 and 2.3 × 1015 cm-2. The ratio is, to the best of our knowledge, the highest ever obtained by conventional RTA.
NASA Astrophysics Data System (ADS)
Taddei, Phillip J.; Chell, Erik; Hansen, Steven; Gertner, Michael; Newhauser, Wayne D.
2010-12-01
Age-related macular degeneration (AMD), a leading cause of blindness in the United States, is a neovascular disease that may be controlled with radiation therapy. Early patient outcomes of external beam radiotherapy, however, have been mixed. Recently, a novel multimodality treatment was developed, comprising external beam radiotherapy and concomitant treatment with a vascular endothelial growth factor inhibitor. The radiotherapy arm is performed by stereotactic radiosurgery, delivering a 16 Gy dose in the macula (clinical target volume, CTV) using three external low-energy x-ray fields while adequately sparing normal tissues. The purpose of our study was to test the sensitivity of the delivery of the prescribed dose in the CTV using this technique and of the adequate sparing of normal tissues to all plausible variations in the position and gaze angle of the eye. Using Monte Carlo simulations of a 16 Gy treatment, we varied the gaze angle by ±5° in the polar and azimuthal directions, the linear displacement of the eye ±1 mm in all orthogonal directions, and observed the union of the three fields on the posterior wall of spheres concentric with the eye that had diameters between 20 and 28 mm. In all cases, the dose in the CTV fluctuated <6%, the maximum dose in the sclera was <20 Gy, the dose in the optic disc, optic nerve, lens and cornea were <0.7 Gy and the three-field junction was adequately preserved. The results of this study provide strong evidence that for plausible variations in the position of the eye during treatment, either by the setup error or intrafraction motion, the prescribed dose will be delivered to the CTV and the dose in structures at risk will be kept far below tolerance doses.
Elquza, Emad; Babiker, Hani M; Howell, Krisha J; Kovoor, Andrew I; Brown, Thomas David; Patel, Hitendra; Malangone, Steven A; Borad, Mitesh J; Dragovich, Tomislav
2016-01-01
To establish the maximum tolerated dose (MTD) and safety profile of bi-weekly Pemetrexed (PEM) when combined with weekly cisplatin (CDDP) and standard dose external beam radiation (EBRT) in patients with locally advanced or metastatic esophageal and gastroesophageal junction (GEJ) carcinomas. We conducted an open label, single institution, phase I dose escalation study designed to evaluate up to 15-35 patients with advanced or metastatic esophageal and GEJ carcinomas. 10 patients were treated with bi-weekly PEM, weekly CDDP, and EBRT. The MTD of bi-weekly PEM was determined to be 500 mg/m(2).
Development of a dosimeter for distributed body organs
NASA Technical Reports Server (NTRS)
Khandelwal, G. S.
1976-01-01
Calculational methods for estimation of dose from external proton exposure of aribtrary convex bodies is briefly reviewed and all of the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is on retaining the effects of nuclear reaction especially in relation to the dose equivalent.
Engberg, Lovisa; Forsgren, Anders; Eriksson, Kjell; Hårdemark, Björn
2017-06-01
To formulate convex planning objectives of treatment plan multicriteria optimization with explicit relationships to the dose-volume histogram (DVH) statistics used in plan quality evaluation. Conventional planning objectives are designed to minimize the violation of DVH statistics thresholds using penalty functions. Although successful in guiding the DVH curve towards these thresholds, conventional planning objectives offer limited control of the individual points on the DVH curve (doses-at-volume) used to evaluate plan quality. In this study, we abandon the usual penalty-function framework and propose planning objectives that more closely relate to DVH statistics. The proposed planning objectives are based on mean-tail-dose, resulting in convex optimization. We also demonstrate how to adapt a standard optimization method to the proposed formulation in order to obtain a substantial reduction in computational cost. We investigated the potential of the proposed planning objectives as tools for optimizing DVH statistics through juxtaposition with the conventional planning objectives on two patient cases. Sets of treatment plans with differently balanced planning objectives were generated using either the proposed or the conventional approach. Dominance in the sense of better distributed doses-at-volume was observed in plans optimized within the proposed framework. The initial computational study indicates that the DVH statistics are better optimized and more efficiently balanced using the proposed planning objectives than using the conventional approach. © 2017 American Association of Physicists in Medicine.
External audits of electron beams using mailed TLD dosimetry: preliminary results.
Gomola, I; Van Dam, J; Isern-Verdum, J; Verstraete, J; Reymen, R; Dutreix, A; Davis, B; Huyskens, D
2001-02-01
A feasibility study has been performed to investigate the possibility of using mailed thermoluminescence dosimetry (TLD) for external audits of clinical electron beams in Europe. In the frame of the EC Network Project for Quality Assurance in Radiotherapy, instruction sheets and mailing procedures have been defined for mailed TLD dosimetry using the dedicated holder developed by a panel of experts of the International Atomic Energy Agency (IAEA). Three hundred and thirty electron beam set-ups have been checked in the reference centres and some local centres of the EC Network Project and in addition through the centres participating to the EORTC Radiotherapy Group trial 22922. The mean ratio of measured dose to stated dose is 0.2% and the standard deviation of measured dose to stated dose is 3.2%. In seven beam set-ups, deviations greater than 10% were observed (max. 66%), showing the usefulness of these checks. The results of this feasibility study (instruction sheets, mailing procedures, holder) are presently endorsed by the EQUAL-ESTRO structure in order to offer in the future to all ESTRO members the possibility to request external audits of clinical electron beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harriss-Phillips, Wendy M., E-mail: wharrphil@gmail.com; School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia; Bezak, Eva
Purpose: To simulate stereotactic ablative radiation therapy on hypoxic and well-oxygenated in silico tumors, incorporating probabilistic parameter distributions and linear-quadratic versus linear-quadratic-cubic methodology and the evaluation of optimal fractionation schemes using biological effective dose (BED{sub α/β=10} {sub or} {sub 3}) comparisons. Methods and Materials: A temporal tumor growth and radiation therapy algorithm simulated high-dose external beam radiation therapy using stochastic methods. Realistic biological proliferative cellular hierarchy and pO{sub 2} histograms were incorporated into the 10{sup 8}-cell tumor model, with randomized radiation therapy applied during continual cell proliferation and volume-based gradual tumor reoxygenation. Dose fractions ranged from 6-35 Gy, with predictive outcomes presentedmore » in terms of the total doses (converted to BED) required to eliminate all cells that could potentially regenerate the tumor. Results: Well-oxygenated tumor control BED{sub 10} outcomes were not significantly different for high-dose versus conventional radiation therapy (BED{sub 10}: 79-84 Gy; Equivalent Dose in 2 Gy fractions with α/β of 10: 66-70 Gy); however, total treatment times decreased from 7 down to 1-3 weeks. For hypoxic tumors, an additional 28 Gy (51 Gy BED{sub 10}) was required, with BED{sub 10} increasing with dose per fraction due to wasted dose in the final fraction. Fractions of 9 Gy compromised well for total treatment time and BED, with BED{sub 10}:BED{sub 3} of 84:176 Gy for oxic and 132:278 Gy for non-reoxygenating hypoxic tumors. Initial doses of 12 Gy followed by 6 Gy further increased the therapeutic ratio. When delivering ≥9 Gy per fraction, applying reoxygenation and/or linear-quadratic-cubic cell survival both affected tumor control doses by a significant 1-2 fractions. Conclusions: The complex temporal dynamics of tumor oxygenation combined with probabilistic cell kinetics in the modeling of radiation therapy requires sophisticated stochastic modeling to predict tumor cell kill. For stereotactic ablative radiation therapy, high doses in the first week followed by doses that are more moderate may be beneficial because a high percentage of hypoxic cells could be eradicated early while keeping the required BED{sub 10} relatively low and BED{sub 3} toxicity to tolerable levels.« less
Worldwide isotope ratios of the Fukushima release and early-phase external dose reconstruction
Chaisan, Kittisak; Smith, Jim T.; Bossew, Peter; Kirchner, Gerald; Laptev, Gennady V.
2013-01-01
Measurements of radionuclides (RNs) in air made worldwide following the Fukushima accident are quantitatively compared with air and soil measurements made in Japan. Isotopic ratios RN:137Cs of 131I, 132Te, 134,136Cs, are correlated with distance from release. It is shown, for the first time, that both within Japan and globally, ratios RN:137Cs in air were relatively constant for primarily particle associated radionuclides (134,136Cs; 132Te) but that 131I shows much lower local (<80 km) isotope ratios in soils relative to 137Cs. Derived isotope ratios are used to reconstruct external dose rate during the early phase post-accident. Model “blind” tests show more than 95% of predictions within a factor of two of measurements from 15 sites to the north, northwest and west of the power station. It is demonstrated that generic isotope ratios provide a sound basis for reconstruction of early-phase external dose rates in these most contaminated areas. PMID:24018776
Photoneutron radiation field of ducts in barrier of 15 MV medical electron accelerators
NASA Astrophysics Data System (ADS)
Deng, Lei; Zhou, Ning; Chen, Yi-shui; Tu, Yu
2017-11-01
Shielding body of the high-energy medical electron accelerators is always penetrated by ducts, which would influence the shielding capability of local barrier. In order to quantitatively analyze the duct's impact on shielding of the photoneutron from 15 MV accelerators, the ambient dose equivalent rate and energy spectrum at the center of a typical duct and the external mouth of duct were calculated based on MCNP program for the first time. The results demonstrate that leakage neutrons at the external mouth of duct are mainly thermal neutron, and its dose rate is decreased with the increase of the intersection angle between duct and wall as well as the reduction of duct diameter. When a duct in a diameter no more than 30 cm penetrates the wall unidirectionally and the inclined Angle (θ) is 60°, neutron dose rate at the external mouth of duct could meet the requirements of protection. At last, according to the calculation results, some suggestions are proposed for the shielding design of ducts in walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Jing
2008-08-07
This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients aremore » yet unknown, the results presented here fill a data gap.« less
Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R
2012-01-01
Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ford, Alexander C; Khan, Khurram J; Sandborn, William J; Kane, Sunanda V; Moayyedi, Paul
2011-12-01
Maintenance therapy with 5-aminosalicylates (5-ASAs) is recommended in patients with quiescent ulcerative colitis (UC), but compliance rates are low. Once-daily dosing may improve adherence, but impact on the relapse of disease activity is unclear as no previous meta-analysis has studied this issue. MEDLINE, EMBASE, and the Cochrane central register of controlled trials were searched (through April 2011). Eligible randomized controlled trials (RCTs) recruited adults with quiescent UC, and compared once-daily dosing of 5-ASAs with a more frequent dosing schedule of an identical total daily dose of the same 5-ASA drug. Minimum treatment duration was 6 months. Trials reported a dichotomous assessment of relapse of disease activity at last point of follow-up. Data concerning non-compliance and adverse events were extracted, where reported. Effect of once-daily vs. more frequent dosing schedule was reported as relative risk (RR) of relapse with a 95% confidence interval (CI). The search identified 3,061 citations, and seven RCTs containing 2,745 patients were eligible. All RCTs used mesalamine. Relapse rates were not significantly different between once-daily and conventional dosing schedules for mesalamine (RR of relapse=0.94; 95% CI: 0.82-1.08). Non-compliance (RR=0.87; 95% CI: 0.46-1.66) and adverse events were no more likely with once-daily dosing (RR=1.08; 95% CI: 0.97-1.20). Once-daily dosing with mesalamine is as effective as conventional dosing schedules for the prevention of relapse of quiescent UC, although there is no definitive evidence that compliance with once-daily dosing is better. Adverse events occur at a similar frequency.
Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT.
Ludlow, J B; Davies-Ludlow, L E; Brooks, S L; Howerton, W B
2006-07-01
Cone beam computed tomography (CBCT), which provides a lower dose, lower cost alternative to conventional CT, is being used with increasing frequency in the practice of oral and maxillofacial radiology. This study provides comparative measurements of effective dose for three commercially available, large (12'') field-of-view (FOV), CBCT units: CB Mercuray, NewTom 3G and i-CAT. Thermoluminescent dosemeters (TLDs) were placed at 24 sites throughout the layers of the head and neck of a tissue-equivalent human skull RANDO phantom. Depending on availability, the 12'' FOV and smaller FOV scanning modes were used with similar phantom positioning geometry for each CBCT unit. Radiation weighted doses to individual organs were summed using 1990 (E(1990)) and proposed 2005 (E(2005 draft)) ICRP tissue weighting factors to calculate two measures of whole-body effective dose. Dose as a multiple of a representative panoramic radiography dose was also calculated. For repeated runs dosimetry was generally reproducible within 2.5%. Calculated doses in microSv [corrected] (E(1990), E(2005 draft)) were NewTom3G (45, 59), i-CAT (135, 193) and CB Mercuray (477, 558). These are 4 to 42 times greater than comparable panoramic examination doses (6.3 microSv [corrected] 13.3 mSv). Reductions in dose were seen with reduction in field size and mA and kV technique factors. CBCT dose varies substantially depending on the device, FOV and selected technique factors. Effective dose detriment is several to many times higher than conventional panoramic imaging and an order of magnitude or more less than reported doses for conventional CT.
Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji
2017-11-01
We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131 I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post- 131 I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.
Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.
Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog
2017-09-07
We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, Thomas J.; Chen Changhu; Rabinovitch, Rachel
Purpose: To determine the maximal tolerated dose of bortezomib with concurrent external beam radiation therapy in patients with incurable solid malignant tumors requiring palliative therapy. Methods and Materials: An open label, dose escalation, phase I clinical trial evaluated the safety of three dose levels of bortezomib administered intravenously (1.0 mg/m{sup 2}, 1.3 mg/m{sup 2}, and 1.6 mg/m{sup 2}/ dose) once weekly with concurrent radiation in patients with histologically confirmed solid tumors and a radiographically appreciable lesion suitable for palliative radiation therapy. All patients received 40 Gy in 16 fractions to the target lesion. Dose-limiting toxicity was the primary endpoint, definedmore » as any grade 4 hematologic toxicity, any grade {>=}3 nonhematologic toxicity, or any toxicity requiring treatment to be delayed for {>=}2 weeks. Results: A total of 12 patients were enrolled. Primary sites included prostate (3 patients), head and neck (3 patients), uterus (1 patient), abdomen (1 patient), breast (1 patient), kidney (1 patient), lung (1 patient), and colon (1 patient). The maximum tolerated dose was not realized with a maximum dose of 1.6 mg/m{sup 2}. One case of dose-limiting toxicity was appreciated (grade 3 urosepsis) and felt to be unrelated to bortezomib. The most common grade 3 toxicity was lymphopenia (10 patients). Common grade 1 to 2 events included nausea (7 patients), infection without neutropenia (6 patients), diarrhea (5 patients), and fatigue (5 patients). Conclusions: The combination of palliative external beam radiation with concurrent weekly bortezomib therapy at a dose of 1.6 mg/m{sup 2} is well tolerated in patients with metastatic solid tumors. The maximum tolerated dose of once weekly bortezomib delivered concurrently with radiation therapy is greater than 1.6 mg/m{sup 2}.« less
What is limiting more flexible fire management—public or agency pressure?
Toddi A. Steelman; Sarah M. McCaffrey
2011-01-01
Conventional wisdom within American federal fire management agencies suggests that external influence such as community or political pressure for aggressive suppression are key factors circumscribing the ability to execute less aggressive fire management strategies. Thus, a better understanding of external constraints on fire management options is essential. This...
Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald
2013-01-01
Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are <0.6Gy(RBE) and <1.7% respectively. Conclusions For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423
Total Skin Electron Beam for Primary Cutaneous T-cell Lymphoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsayad, Khaled; Kriz, Jan; Moustakis, Christos
Purpose: Recent trials with low-dose total skin electron beam (TSEB) therapy demonstrated encouraging results for treating primary cutaneous T-cell lymphoma (PCTCL). In this study, we assessed the feasibility of different radiation doses and estimated survival rates of different pathologic entities and stages. Methods and Materials: We retrospectively identified 45 patients with PCTCL undergoing TSEB therapy between 2000 and 2015. Clinical characteristics, treatment outcomes, and toxicity were assessed. Results: A total of 49 courses of TSEB therapy were administered to the 45 patients. There were 26 pathologically confirmed cases of mycosis fungoides (MF) lymphoma, 10 cases of Sézary syndrome (SS), andmore » 9 non-MF/SS PCTCL patients. In the MF patients, the overall response rate (ORR) was 92% (50% complete remission [CR]), 70% ORR in SS patients (50% CR), and 89% ORR in non-MF/SS patients (78% CR). The ORR for MF/SS patients treated with conventional dose (30-36 Gy) regimens was 92% (63% CR) and 75% (25% CR) for low-dose (<30-Gy) regimens (P=.09). In MF patients, the overall survival (OS) was 77 months with conventional dose regimens versus 14 months with low-dose regimens (P=.553). In SS patients, the median OS was 48 versus 16 months (P=.219), respectively. Median event-free survival (EFS) for MF in conventional dose patients versus low-dose patients was 15 versus 8 months, respectively (P=.264) and 19 versus 3 months for SS patients (P=.457). Low-dose regimens had shorter treatment time (P=.009) and lower grade 2 adverse events (P=.043). A second TSEB course was administered in 4 MF patients with 100% ORR. There is a possible prognostic impact of supplemental/boost radiation (P<.001); adjuvant treatment (P<.001) and radiation tolerability (P=.021) were detected. Conclusions: TSEB therapy is an efficacious treatment modality in the treatment of several forms of cutaneous T-cell lymphoma. There is a nonsignificant trend to higher and longer clinical benefit for MF and SS patients receiving conventional dose. Low-dose TSEB regimens are well tolerated and achieve short-term palliation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Eldib, A; Li, J
Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less
IMRT for Image-Guided Single Vocal Cord Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl; Astreinidou, Eleftheria; Boer, Hans C.J. de
2012-02-01
Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRTmore » plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.« less
Feagan, Brian G; MacDonald, John K
2012-09-01
We systematically reviewed and compared the efficacy and safety of once daily (OD) mesalamine to conventional dosing for induction and maintenance of remission in ulcerative colitis (UC). A literature search to January 2012 identified all applicable randomized trials. Study quality was evaluated using the Cochrane risk of bias tool. The GRADE criteria were used to assess the overall quality of the evidence. Studies were subgrouped by formulation for meta-analysis. Eleven studies that evaluated 4070 patients were identified. The risk of bias was low for most factors, although five studies were single-blind and one was open-label. No difference was observed between the dosing strategies in the proportion of patients with clinical remission (relative risk [RR] 0.95; 95% confidence interval [CI] 0.82-1.10), clinical improvement (RR 0.87 95% CI 0.68-1.10), or relapse at 6 (RR 1.10; 95% CI 0.83-1.46) or 12 months (RR 0.92; 95% CI 0.83-1.03). Subgroup analyses showed no important differences in efficacy. No significant difference was demonstrated in rates of medication adherence or adverse events between OD and conventional dosing. OD mesalamine appears to be as effective and safe as conventional dosing for both the treatment of mild to moderately active UC and for maintenance of remission in quiescent UC. The failure to demonstrate a superior rate of adherence to OD dosing may be due to the high rate of adherence observed in the clinical trials environment. Future research should assess the value of OD dosing in community settings. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.
Multi-centre audit of VMAT planning and pre-treatment verification.
Jurado-Bruggeman, Diego; Hernández, Victor; Sáez, Jordi; Navarro, David; Pino, Francisco; Martínez, Tatiana; Alayrach, Maria-Elena; Ailleres, Norbert; Melero, Alejandro; Jornet, Núria
2017-08-01
We performed a multi-centre intercomparison of VMAT dose planning and pre-treatment verification. The aims were to analyse the dose plans in terms of dosimetric quality and deliverability, and to validate whether in-house pre-treatment verification results agreed with those of an external audit. The nine participating centres encompassed different machines, equipment, and methodologies. Two mock cases (prostate and head and neck) were planned using one and two arcs. A plan quality index was defined to compare the plans and different complexity indices were calculated to check their deliverability. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit (global 3D gamma, absolute dose differences, 10% of maximum dose threshold). Log-file analysis was performed to look for delivery errors. All centres fulfilled the dosimetric goals but plan quality and delivery complexity were heterogeneous and uncorrelated, depending on the manufacturer and the planner's methodology. Pre-treatment verifications results were within tolerance in all cases for gamma 3%-3mm evaluation. Nevertheless, differences between the external audit and in-house measurements arose due to different equipment or methodology, especially for 2%-2mm criteria with differences up to 20%. No correlation was found between complexity indices and verification results amongst centres. All plans fulfilled dosimetric constraints, but plan quality and complexity did not correlate and were strongly dependent on the planner and the vendor. In-house measurements cannot completely replace external audits for credentialing. Copyright © 2017 Elsevier B.V. All rights reserved.
Testing the role of external debt in environmental degradation: empirical evidence from Turkey.
Katircioglu, Salih; Celebi, Aysem
2018-03-01
This study investigates the role of external debt stock in Turkey, which has suffered from heavy (external and domestic) debt stock for many years. Annual data from 1960 to 2013 was analyzed using time series analysis in order to study this. The results confirm the validity of the conventional environmental Kuznets curve (EKC) in the case of Turkey. However, this study also found that Turkey's external debt stock did not influence the Turkish economy's long-term EKC behavior. Fortunately, the results suggest that there are important interactions among external debt stock, CO 2 emissions, energy consumption, and real income; that is, changes in external debt volume precede changes in these aggregates' volumes.
Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy
NASA Astrophysics Data System (ADS)
Donzelli, Mattia; Bräuer-Krisch, Elke; Oelfke, Uwe; Wilkens, Jan J.; Bartzsch, Stefan
2018-02-01
Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.
Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi
2012-11-01
Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodenhofer, K,; Gopel, W.; Hierlemann, A.
To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination,more » "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.« less
Yao, Weikun; Qu, Qiangyong; von Gunten, Urs; Chen, Chao; Yu, Gang; Wang, Yujue
2017-01-01
In this study methylisoborneol (MIB) and geosmin abatement in a surface water by conventional ozonation and the electro-peroxone (E-peroxone) process was compared. Batch tests with addition of ozone (O 3 ) stock solutions and semi-batch tests with continuous O 2 /O 3 gas sparging (simulating real ozone contactors) were conducted to investigate O 3 decomposition, •OH production, MIB and geosmin abatement, and bromate formation during the two processes. Results show that with specific ozone doses typically used in routine drinking water treatment (0.5-1.0 mg O 3 /mg dissolved organic carbon (DOC)), conventional ozonation could not adequately abate MIB and geosmin in a surface water. While increasing the specific ozone doses (1.0-2.5 mg O 3 /mg DOC) could enhance MIB and geosmin abatement by conventional ozonation, this approach resulted in significant bromate formation. By installing a carbon-based cathode to electrochemically produce H 2 O 2 from cathodic oxygen reduction, conventional ozonation can be conveniently upgraded to an E-peroxone process. The electro-generated H 2 O 2 considerably enhanced the kinetics and to a lesser extent the yields of hydroxyl radical (•OH) from O 3 decomposition. Consequently, during the E-peroxone process, abatement of MIB and geosmin occurred at much higher rates than during conventional ozonation. In addition, for a given specific ozone dose, the MIB and geosmin abatement efficiencies increased moderately in the E-peroxone (by ∼8-9% and ∼10-25% in the batch and semi-batch tests, respectively) with significantly lower bromate formation compared to conventional ozonation. These results suggest that the E-peroxone process may serve as an attractive backup of conventional ozonation processes during accidental spills or seasonal events such as algal blooms when high ozone doses are required to enhance MIB and geosmin abatement. Copyright © 2016 Elsevier Ltd. All rights reserved.
Öztürk, T.; Ağdanlı, D.; Bayturan, Ö.; Çıkrıkcı, C.; Keleş, G.T.
2015-01-01
Myocardial ischemia, as well as the induction agents used in anesthesia, may cause corrected QT interval (QTc) prolongation. The objective of this randomized, double-blind trial was to determine the effects of high- vs conventional-dose bolus rocuronium on QTc duration and the incidence of dysrhythmias following anesthesia induction and intubation. Fifty patients about to undergo coronary artery surgery were randomly allocated to receive conventional-dose (0.6 mg/kg, group C, n=25) or high-dose (1.2 mg/kg, group H, n=25) rocuronium after induction with etomidate and fentanyl. QTc, heart rate, and mean arterial pressure were recorded before induction (T0), after induction (T1), after rocuronium (just before laryngoscopy; T2), 2 min after intubation (T3), and 5 min after intubation (T4). The occurrence of dysrhythmias was recorded. In both groups, QTc was significantly longer at T3 than at baseline [475 vs 429 ms in group C (P=0.001), and 459 vs 434 ms in group H (P=0.005)]. The incidence of dysrhythmias in group C (28%) and in group H (24%) was similar. The QTc after high-dose rocuronium was not significantly longer than after conventional-dose rocuronium in patients about to undergo coronary artery surgery who were induced with etomidate and fentanyl. In both groups, compared with baseline, QTc was most prolonged at 2 min after intubation, suggesting that QTc prolongation may be due to the nociceptive stimulus of intubation. PMID:25714880
IRIS Toxicological Review of Methanol (Noncancer) (Revised External Review Draft)
EPA is seeking additional public comment and external peer review of the scientific basis supporting the human health hazard and dose-response assessment of methanol (noncancer).
Guinement, L; Marchesi, V; Veres, A; Lacornerie, T; Buchheit, I; Peiffert, D
2013-01-01
To develop an external quality control procedure for CyberKnife(®) beams. This work conducted in Nancy, has included a test protocol initially drawn by the medical physicist of Nancy and Lille in collaboration with Equal-Estro Laboratory. A head and neck anthropomorphic phantom and a water-equivalent homogeneous cubic plastic test-object, so-called "MiniCube", have been used. Powder and solid thermoluminescent dosimeters as well as radiochromic films have been used to perform absolute and relative dose studies, respectively. The comparison between doses calculated by Multiplan treatment planning system and measured doses have been studied in absolute dose. The dose distributions measured with films and treatment planning system calculations have been compared via the gamma function, configured with different tolerance criteria. This work allowed, via solid thermoluminescent dosimeter measurements, verifying the beam reliability with a reproducibility of 1.7 %. The absolute dose measured in the phantom irradiated by the seven participating centres has shown an error inferior to the standard tolerance limits (± 5 %), for most of participating centres. The relative dose measurements performed at Nancy and by the Equal-Estro laboratory allowed defining the most adequate parameters for gamma index (5 %/2mm--with at least 95 % of pixels satisfying acceptability criteria: γ<1). These parameters should be independent of the film analysis software. This work allowed defining a dosimetric external quality control for CyberKnife(®) systems, based on a reproducible irradiation plan through measurements performed with thermoluminescent dosimeters and radiochromic films. This protocol should be validated by a new series of measurement and taking into account the lessons of this work. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Yeh, Jekwon; Lehrich, Brandon; Tran, Carolyn; Mesa, Albert; Baghdassarian, Ruben; Yoshida, Jeffrey; Torrey, Robert; Gazzaniga, Michael; Weinberg, Alan; Chalfin, Stuart; Ravera, John; Tokita, Kenneth
2016-01-01
To present rectal toxicity rates in patients administered a polyethylene glycol (PEG) hydrogel rectal spacer in conjunction with combination high-dose-rate brachytherapy and external beam radiotherapy. Between February 2010 and April 2015, 326 prostate carcinoma patients underwent combination high-dose-rate brachytherapy of 16 Gy (average dose 15.5 Gy; standard deviation [SD] = 1.6 Gy) and external beam radiotherapy of 59.4 Gy (average dose 60.2 Gy; SD = 2.9 Gy). In conjunction with the radiation therapy regimen, each patient was injected with 10 mL of a PEG hydrogel in the anterior perirectal fat space. The injectable spacer (rectal spacer) creates a gap between the prostate and the rectum. The rectum is displaced from the radiation field, and rectal dose is substantially reduced. The goal is a reduction in rectal radiation toxicity. Clinical efficacy was determined by measuring acute and chronic rectal toxicity using the National Cancer Center Institute Common Terminology Criteria for Adverse Events v4.0 grading scheme. Median followup was 16 months. The mean anterior-posterior separation achieved was 1.6 cm (SD = 0.4 cm). Rates of acute Grade 1 and 2 rectal toxicity were 37.4% and 2.8%, respectively. There were no acute Grade 3/4 toxicities. Rates of late Grade 1, 2, and 3 rectal toxicity were 12.7%, 1.4%, and 0.7%, respectively. There were no late Grade 4 toxicities. PEG rectal spacer implantation is safe and well tolerated. Acute and chronic rectal toxicities are low despite aggressive dose escalation. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Heyne, J P; Merbold, H; Sehner, J; Neumann, R; Freesmeyer, M; Jonetz-Mentzel, L; Kaiser, W A
1999-07-01
How much can the radiation dose be reduced for skull radiography by using digital luminescence radiography (DLR) compared to a conventional screen film system with a grid cassette? A skull phantom (3M) was x-rayed in anterior-posterior orientation using both a conventional screen film system with grid cassette and DLR (ADC-70, Agfa). The tube current time product (mAs) was diminished gradually while keeping the voltage constant. The surface entrance dose was measured by a sensor of Dosimax (Wellhöfer). Five investigators evaluated the images by characteristic and critical features, spatial resolution and contrast. The surface entrance dose at 73 kV/22 mAs was 0.432 mGy in conventional screen film system and 0.435 mGy in DLR. The images could be evaluated very well down to an average dose of 71% (0.308 mGy; SD 0.050); sufficient images were obtained down to an average dose of 31% (0.136 mGy; SD 0.065). The resolution of the line pairs were reduced down to 2 levels depending on the investigator. Contrast was assessed as being very good to sufficient. The acceptance of the postprocessed images (MUSICA-software) was individually different and resulted in an improvement of the assessment of bone structures and contrast in higher dose ranges only. For the sufficient assessment of a possible fracture/of paranasal sinuses/of measurement of the skull the dose can be reduced to at least 56% (phi 31%; SD 14.9%)/40% (phi 27%; SD 9.3%)/18% (phi 14%; SD 4.4%). Digital radiography allows question-referred exposure parameters with clearly reduced dose, so e.g. for fracture exclusion 73 kV/12.5 mAs and to skull measurement 73 kV/4 mAs.
Fahimian, Benjamin; Yu, Victoria; Horst, Kathleen; Xing, Lei; Hristov, Dimitre
2013-12-01
External beam radiation therapy (EBRT) provides a non-invasive treatment alternative for accelerated partial breast irradiation (APBI), however, limitations in achievable dose conformity of current EBRT techniques have been correlated to reported toxicity. To enhance the conformity of EBRT APBI, a technique for conventional LINACs is developed, which through combined motion of the couch, intensity modulated delivery, and a prone breast setup, enables wide-angular coronal arc irradiation of the ipsilateral breast without irradiating through the thorax and contralateral breast. A couch trajectory optimization technique was developed to determine the trajectories that concurrently avoid collision with the LINAC and maintain the target within the MLC apertures. Inverse treatment planning was performed along the derived trajectory. The technique was experimentally implemented by programming the Varian TrueBeam™ STx in Developer Mode. The dosimetric accuracy of the delivery was evaluated by ion chamber and film measurements in phantom. The resulting optimized trajectory was shown to be necessarily non-isocentric, and contain both translation and rotations of the couch. Film measurements resulted in 93% of the points in the measured two-dimensional dose maps passing the 3%/3mm Gamma criterion. Preliminary treatment plan comparison to 5-field 3D-conformal, IMRT, and VMAT demonstrated enhancement in conformity, and reduction of the normal tissue V50% and V100% parameters that have been correlated with EBRT toxicity. The feasibility of wide-angular intensity modulated partial breast irradiation using motion of the couch has been demonstrated experimentally on a standard LINAC for the first time. For patients eligible for a prone setup, the technique may enable improvement of dose conformity and associated dose-volume parameters correlated with toxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Peripheral doses from pediatric IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Eric E.; Maserang, Beth; Wood, Roy
Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 tomore » 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged from 0.47-0.94) doses {approx}[0.4-1.8 cGy]/[0.9-2.9 cGy]/fraction, respectively. Prior phantom reports are for fields 10 cm or greater, while pediatric central nervous system fields range from 4 to 7 cm, and effectively much smaller for IMRT (2-6 cm). Peripheral dose in close proximity (<10 cm from the field edge) is dominated by internal scatter; therefore, field-size differences overwhelm phantom size affects and increased MU. Distant peripheral dose, dominated by head leakage, was higher than predicted, even when accounting for MUs ({approx}factor of 3) likely due to the pediatric phantom size. The ratio of the testes dose ranged from 3.3-5.3 for IMRT/conventional. PD to OAR for pediatric IMRT cannot be predicted from large-field full phantom studies. For regional OAR, doses are likely lower than predicted by existing ''large field'' data, while the distant PD is higher.« less
Lee, K W; Sheu, R J
2015-04-01
High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Harata, Naoki; Yoshida, Katsuya; Oota, Sayako; Fujii, Hayahiko; Isogai, Jun; Yoshimura, Ryoichi
2016-01-01
We retrospectively investigated changes of (18)F-fluorodeocyglucose ((18)F-FDG) uptake in the spinal cord, inside and outside the radiation fields, in patients with esophageal cancer before and after conventional dose radiotherapy. A total of 17 consecutive patients with esophageal cancer (16 males, one female; age 50-83 years, mean 67.0 years), who underwent conventional dose radiotherapy and (18)F-FDG PET/CT before and 5.1 months (range 1.6-8.6 months) after the radiotherapy, were retrospectively evaluated. Sixteen patients had esophageal cancer and one patient had esophageal metastasis from thyroid cancer. Mean standardized uptake values (SUVmean) of the cervical, thoracic (inside and outside the radiation fields) and lumbar spinal cord were measured. SUVmean of the thoracic spinal cord inside the radiation field was decreased significantly after radiotherapy compared to those before radiotherapy (p < 0.001). SUVmean of the cervical spinal cord showed the same trend but it was not statistically significant (p = 0.051). SUVmean of the thoracic spinal cord outside the radiation field and the lumbar spinal cord did not differ significantly before and after the radiotherapy (p = 0.146 and p = 0.701, respectively). The results suggest that glucose metabolism of the spinal cord is decreased in esophageal cancer patients after conventional dose radiotherapy.
WE-G-BRE-03: Dose Painting by Numbers Using Targeted Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altundal, Y; Sajo, E; Korideck, H
Purpose: Homogeneous dose enhancement in tumor cells of lung cancer patients treated with conventional dose of 60–66 Gy in five fractions is limited due to increased risk of toxicity to normal structures. Dose painting by numbers (DPBN) is the prescription of a non-uniform radiation dose distribution in the tumor for each voxel based on the intensity level of that voxel obtained from the tumor image. The purpose of this study is to show that DPBN using targeted gold nanoparticles (GNPs) could enhance conventional doses in the more resistant tumor areas. Methods: Cone beam computed tomography (CBCT) images of GNPs aftermore » intratumoral injection into human tumor were taken at 0, 48, 144 and 160 hours. The dose enhancement in the tumor voxels by secondary electrons from the GNPs was calculated based on analytical microdosimetry methods. The dose enhancement factor (DEF) is the ratio of the doses to the tumor with and without the presence of GNPs. The DEF was calculated for each voxel of the images based on the GNP concentration in the tumor sub-volumes using 6-MV photon spectra obtained using Monte Carlo simulations at 5 cm depth (10×10 cm2 field). Results: The results revealed DEF values of 1.05–2.38 for GNPs concentrations of 1–30 mg/g which corresponds to 12.60 – 28.56 Gy per fraction for delivering 12 Gy per fraction homogenously to lung tumor region. Conclusion: Our preliminary results verify that DPBN could be achieved using GNPs to enhance conventional doses to high risk tumor sub-volumes. In practice, DPBN using GNPs could be achieved due to diffusion of targeted GNPs sustainably released in-situ from radiotherapy biomaterials (e.g. fiducials) coated with polymer film containing the GNPs.« less
A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics.
Duconge, Jorge; Ramos, Alga S; Claudio-Campos, Karla; Rivera-Miranda, Giselle; Bermúdez-Bosch, Luis; Renta, Jessicca Y; Cadilla, Carmen L; Cruz, Iadelisse; Feliu, Juan F; Vergara, Cunegundo; Ruaño, Gualberto
2016-01-01
This study is aimed at developing a novel admixture-adjusted pharmacogenomic approach to individually refine warfarin dosing in Caribbean Hispanic patients. A multiple linear regression analysis of effective warfarin doses versus relevant genotypes, admixture, clinical and demographic factors was performed in 255 patients and further validated externally in another cohort of 55 individuals. The admixture-adjusted, genotype-guided warfarin dosing refinement algorithm developed in Caribbean Hispanics showed better predictability (R2 = 0.70, MAE = 0.72mg/day) than a clinical algorithm that excluded genotypes and admixture (R2 = 0.60, MAE = 0.99mg/day), and outperformed two prior pharmacogenetic algorithms in predicting effective dose in this population. For patients at the highest risk of adverse events, 45.5% of the dose predictions using the developed pharmacogenetic model resulted in ideal dose as compared with only 29% when using the clinical non-genetic algorithm (p<0.001). The admixture-driven pharmacogenetic algorithm predicted 58% of warfarin dose variance when externally validated in 55 individuals from an independent validation cohort (MAE = 0.89 mg/day, 24% mean bias). Results supported our rationale to incorporate individual's genotypes and unique admixture metrics into pharmacogenetic refinement models in order to increase predictability when expanding them to admixed populations like Caribbean Hispanics. ClinicalTrials.gov NCT01318057.
Zali, A; Shamsaei Zafarghandi, M; Feghhi, S A; Taherian, A M
2017-05-01
In this work, public dose resulting from fission products released from Bushehr Nuclear Power Plant (BNPP) under normal operation is assessed. Due to the long range transport of radionuclides in this work (80 km) and considering terrain and meteorological data, HYbrid Single-Particle Lagrangian Integrated Trajectory (HYsplit) model, which uses three dimensional long-range numerical models, has been employed to calculate atmospheric dispersion. Annual effective dose calculation is carried out for inhalation, ingestion, and external exposure pathways in 16directions and within 80 km around the site for representative person. The results showed the maximum dose of inhalation and external exposure for adults is 3.8 × 10 -8 Sv/y in the SE direction and distance of 600 m from the BNPP site which is less than ICRP 103 recommended dose limit (1 mSv). Children and infants' doses are higher in comparison with adults, although they are less than 1 mSv. Ingestion dose percentage in the total dose is less than 0.1%. The results of this study underestimate the Final Safety Analysis Report ofBNPP-1 (FSAR)data. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miyatake, Hirokazu; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Kawai, Masaki; Sato, Osamu; Takagi, Shunji; Suzuki, Gen
2017-09-01
The Fukushima Daiichi Nuclear Power Plant accident caused a release of radionuclides. Radionuclides were deposited on the ground not only in Fukushima prefecture but also in nearby prefectures. Since the accident, measurement of radiation in environment such as air dose rate and deposition density of radionuclides has been performed by many organizations and universities. In particular, Japan Atomic Energy Agency (JAEA) has been performing observations of air dose rate using a car-borne survey system continuously and over wide areas. In our study, using the data measured by JAEA, we estimated effective dose from external exposure in the six prefectures adjacent to Fukushima prefecture. Since car-borne survey was started a few months later after the accident, measured air dose rate in this method is mainly contributed by 137Cs and 134Cs whose half-lives are relatively long. Therefore, based on air dose rate of 137Cs and 134Cs and the ratio of deposition density of short-half-life nuclides to that of 137Cs and 134Cs, we also estimated effective dose contributed from not only 137Cs and 134Cs but also other short-half-life nuclides. We compared the effective dose estimated by the method above with that of UNSCEAR and measured data using personal dosimeters in some areas.
Radiation Doses and Associated Risk From the Fukushima Nuclear Accident.
Ishikawa, Tetsuo
2017-03-01
The magnitude of dose due to the Fukushima Daiichi Accident was estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2013 report published in April 2014. Following this, the UNSCEAR white paper, which comprises a digest of new information for the 2013 Fukushima report, was published in October 2015. Another comprehensive report on radiation dose due to the accident is the International Atomic Energy Agency (IAEA) report on the Fukushima Daiichi Accident published in August 2015. Although the UNSCEAR and IAEA publications well summarize doses received by residents, they review only literature published before the end of December 2014 and the end of March 2015, respectively. However, some studies on dose estimation have been published since then. In addition, the UNSCEAR 2013 report states it was likely that some overestimation had been introduced generally by the methodology used by the Committee. For example, effects of decontamination were not considered in the lifetime external dose estimated. Decontamination is in progress for most living areas in Fukushima Prefecture, which could reduce long-term external dose to residents. This article mainly reviews recent English language articles that may add new information to the UNSCEAR and IAEA publications. Generally, recent articles suggest lower doses than those presented by the UNSCEAR 2013 report.
SU-E-J-77: Dose Tracking On An MR-Linac for Online QA and Plan Adaptation in Abdominal Organs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glitzner, M; Crijns, S; Kontaxis, C
2015-06-15
Recent developments made MRI-guided radiotherapy feasible. Simultaneously performed imaging during dose delivery reveals the influence of changes in anatomy not yet known at the planning stage. When targeting highly motile abdominal organs, respiratory gating is commonly employed in MRI and investigated in external beam radiotherapy to mitigate malicious motion effects. The purpose of the presented work is to investigate anatomy-adaptive dose reconstruction in the treatment of abdominalorgans using concurrent (duplex) gating of an integrated MRlinac modality.Using navigators, 3D-MR images were sampled during exhale phase, requiring 3s per axial volume (360×260×100mm{sup 3}, waterselective T1w-FFE). Deformation vector fields (DVF) were calculated formore » all imaging dynamics with respect to initial anatomy, yielding an estimation of anatomy changes over the time of a fraction. A pseudo-CT was generated from the outline of a reference MR image, assuming a water-filled body. Consecutively, a treatment was planned on a fictional kidney lesion and optimized simulating a 6MV linac in a 1.5T magnetic field. After delivery, using the DVF, the pseudo-CT was deformed and dose accumulated for every individual gating interval yielding the true accumulated dose on the dynamic anatomy during beam-on.Dose-volume parameters on the PTV show only moderate changes when incorporating motion, i.e. ΔD{sub 99} (GTV)=0.3Gy with D{sub 99} (GTV)=20Gy constraints. However, local differences in the PTV region showed underdosages as high as 2.7Gy and overdosages up to 1.4Gy as compared to the optimized dose on static anatomy.A dose reconstruction toolchain was successfully implemented and proved its potential in the duplex gated treatment of abdominal organs by means of an MR-linac modality. While primary dose constraints were not violated on the fictional test data, large deviations could be found locally, which are left unaccounted for in conventional treatments. Dose-tracking of both target structures and organs at risk using 3D MRI during treatment enables truly adaptive hypofractionated radiotherapy. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less
Imanaka, Tetsuji; Fukutani, Satoshi; Yamamoto, Masayoshi; Sakaguchi, Aya; Hoshi, Masaharu
2006-02-01
Dolon village, located about 60 km from the border of the Semipalatinsk Nuclear Test Site, is known to be heavily contaminated by local fallout from the first USSR atomic bomb test in 1949. External radiation in Dolon was evaluated based on recent 137Cs data in soil and calculation of temporal change in the fission product composition. After fitting a log-normal distribution to the soil data, a 137Cs deposition of 32 kBq m-2, which corresponds to the 90th-percentile of the distribution, was tentatively chosen as a value to evaluate the radiation situation in 1949. Our calculation indicated that more than 95% of the cumulative dose for 50 y had been delivered within 1 y after the deposition. The resulting cumulative dose for 1 y after the deposition, normalized to the initial contamination containing 1 kBq m-2 of 137Cs, was 15.6 mGy, assuming a fallout arrival time of 3 h and a medium level of fractionation. Finally, 0.50 Gy of absorbed dose in air was derived as our tentative estimate for 1-year cumulative external dose in Dolon due to local fallout from the first USSR test in 1949.
Federal Guidance Report No. 15: External Exposure to Radionuclides in Air, Water and Soil
FGR 15 updates the 1993 Federal Guidance Report No. 12 (FGR 12), External Exposure to Radionuclides in Air, Water, and Soil. FGR 15 incorporates advances in radiation protection science regarding how organ/tissue doses change with age and sex.
NASA Astrophysics Data System (ADS)
Lee, Richard; Chan, Elisa K.; Kosztyla, Robert; Liu, Mitchell; Moiseenko, Vitali
2012-12-01
The relationship between rectal dose distribution and the incidence of late rectal complications following external-beam radiotherapy has been previously studied using dose-volume histograms or dose-surface histograms. However, they do not account for the spatial dose distribution. This study proposes a metric based on both surface dose and distance that can predict the incidence of rectal bleeding in prostate cancer patients treated with radical radiotherapy. One hundred and forty-four patients treated with radical radiotherapy for prostate cancer were prospectively followed to record the incidence of grade ≥2 rectal bleeding. Radiotherapy plans were used to evaluate a dose-distance metric that accounts for the dose and its spatial distribution on the rectal surface, characterized by a logistic weighting function with slope a and inflection point d0. This was compared to the effective dose obtained from dose-surface histograms, characterized by the parameter n which describes sensitivity to hot spots. The log-rank test was used to determine statistically significant (p < 0.05) cut-off values for the dose-distance metric and effective dose that predict for the occurrence of rectal bleeding. For the dose-distance metric, only d0 = 25 and 30 mm combined with a > 5 led to statistical significant cut-offs. For the effective dose metric, only values of n in the range 0.07-0.35 led to statistically significant cut-offs. The proposed dose-distance metric is a predictor of rectal bleeding in prostate cancer patients treated with radiotherapy. Both the dose-distance metric and the effective dose metric indicate that the incidence of grade ≥2 rectal bleeding is sensitive to localized damage to the rectal surface.
Ramey, Stephen James; Padgett, Kyle R; Lamichhane, Narottam; Neboori, Hanmath J; Kwon, Deukwoo; Mellon, Eric A; Brown, Karen; Duffy, Melissa; Victoria, James; Dogan, Nesrin; Portelance, Lorraine
2018-03-01
This study aims to perform a dosimetric comparison of 2 magnetic resonance (MR)-guided radiation therapy systems capable of performing online adaptive radiation therapy versus a conventional radiation therapy system for pancreas stereotactic body radiation therapy. Ten cases of patients with pancreatic adenocarcinoma previously treated in our institution were used for this analysis. MR-guided tri-cobalt 60 therapy (MR-cobalt) and MR-LINAC plans were generated and compared with conventional LINAC (volumetric modulated arc therapy) plans. The prescription dose was 40 Gy in 5 fractions covering 95% of the planning tumor volume for the 30 plans. The same organs at risk (OARs) dose constraints were used in all plans. Dose-volume-based indices were used to compare PTV coverage and OAR sparing. The conformity index of 40 Gy in 5 fractions covering 95% of the planning tumor volume demonstrated higher conformity in both LINAC-based plans compared with MR-cobalt plans. Although there was no difference in mean conformity index between LINAC and MR-LINAC plans (1.08 in both), there was a large difference between LINAC and MR-cobalt plans (1.08 vs 1.52). Overall, 79%, 72%, and 78% of critical structure dosimetric constraints were met with LINAC, MR-cobalt, and MR-LINAC plans, respectively. The MR-cobalt plans delivered more doses to all OARs compared with the LINAC plans. In contrast, the doses to the OARs of the MR-LINAC plans were similar to LINAC plans except in 2 cases: liver mean dose (MR-LINAC, 2 .8 Gy vs LINAC, 2.1 Gy) and volume of duodenum receiving at least 15 Gy (MR-LINAC, 13.2 mL vs LINAC, 15.4 mL). Both differences are likely not clinically significant. This study demonstrates that dosimetrically similar plans were achieved with conventional LINAC and MR-LINAC, whereas doses to OARs were statistically higher for MR-cobalt compared with conventional LINAC plans because of low-dose spillage. Given the improved tumor-tracking capabilities of MR-LINAC, further studies should evaluate potential benefits of adaptive radiation therapy-capable MR-guided LINAC treatment. Copyright © 2018. Published by Elsevier Inc.
Bekas, Marcin; Pachocki, Krzysztof A; Waśniewska, Elżbieta; Bogucka, Dagmara; Magiera, Andrzej
2014-01-01
X-ray examination is associated with patient exposure to ionizing radiation. Dose values depend on the type of medical procedure used, the X-ray unit technical condition and exposure conditions selected. The aim of this study was to determine the dose value received by patients during certain conventional radiography X-ray examinations and to assess the technical condition of medical equipment used for this purpose. The study covered the total number of 118 conventional diagnostic X-ray units located in the Masovian Voivodeship. The methodology used to assess the conventional diagnostic X-ray unit technical condition and the measurement of the radiation dose rate received by patients are based on test procedures developed by the Department of Radiation Protection and Radiobiology of the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland) accredited for compliance with PN-EN 17025 standard by the Polish Centre for Accreditation. It was found that 84.7% of X-ray units fully meet the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 15.3% of the units do not meet some of them. The broadest dose value range was recorded for adult patients. Particularly, during lateral (LATl) lumbar spine radiography the recorded entrance surface dose (ESD) values ranged from 283.5 to 7827 µGy (mean: 2183.3 µGy). It is absolutely necessary to constantly monitor the technical condition of all X-ray units, because it affects population exposure to ionizing radiation. Furthermore, it is essential to raise radiographers' awareness of the effects that ionizing radiation exposure can have on the human body.
Improving external beam radiotherapy by combination with internal irradiation.
Dietrich, A; Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M
2015-07-01
The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.
TU-AB-303-01: A Feasibility Study for Dynamic Adaptive Therapy of Non-Small Cell Lung Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Phillips, M
2015-06-15
Purpose: To compare plans for NSCLC optimized using Dynamic Adaptive Therapy (DAT) with conventional IMRT optimization. DAT adapts plans based on changes in the target volume by using dynamic programing techniques to consider expected changes into the optimization process. Information gathered during treatment, e.g. from CBCT, is incorporated into the optimization. Methods and materials: DAT is formulated using stochastic control formalism, which minimizes the total expected number of tumor cells at the end of a treatment course subject to uncertainty inherent in the tumor response and organs-at-risk (OAR) dose constraints. This formulation allows for non-stationary dose distribution as well asmore » non-stationary fractional dose as needed to achieve a series of optimal plans that are conformal to tumor over time. Sixteen phantom cases with various sizes and locations of tumors, and OAR geometries were generated. Each case was planned with DAT and conventional IMRT (60Gy/30fx). Tumor volume change over time was obtained by using, daily MVCT-based, two-level cell population model. Monte Carlo simulations have been performed for each treatment course to account for uncertainty in tumor response. Same OAR dose constraints were applied for both methods. The frequency of plan modification was varied to 1, 2, 5 (weekly), and 29 (daily). The final average tumor dose and OAR doses have been compared to quantify the potential benefit of DAT. Results: The average tumor max, min, mean, and D95 resulted from DAT were 124.0–125.2%, 102.1–114.7%, 113.7–123.4%, and 102.0–115.9% (range dependent on the frequency of plan modification) of those from conventional IMRT. Cord max, esophagus max, lung mean, heart mean, and unspecified tissue D05 resulted from AT were 84–102.4%, 99.8–106.9%, 66.9–85.6%, 58.2–78.8%, and 85.2–94.0% of those from conventional IMRT. Conclusions: Significant tumor dose increase and OAR dose reduction, especially with parallel OAR with mean or dose-volume constraints, can be achieved using DAT.« less
2018-01-01
Objective To compare radiation doses between conventional and chest pain protocols using dual-source retrospectively electrocardiography (ECG)-gated cardiothoracic computed tomography (CT) in children and adults and assess the effect of tube current saturation on radiation dose reduction. Materials and Methods This study included 104 patients (16.6 ± 7.7 years, range 5–48 years) that were divided into two groups: those with and those without tube current saturation. The estimated radiation doses of retrospectively ECG-gated spiral cardiothoracic CT were compared between conventional, uniphasic, and biphasic chest pain protocols acquired with the same imaging parameters in the same patients by using paired t tests. Dose reduction percentages, patient ages, volume CT dose index values, and tube current time products per rotation were compared between the two groups by using unpaired t tests. A p value < 0.05 was considered significant. Results The volume CT dose index values of the biphasic chest pain protocol (10.8 ± 3.9 mGy) were significantly lower than those of the conventional protocol (12.2 ± 4.7 mGy, p < 0.001) and those of the uniphasic chest pain protocol (12.9 ± 4.9 mGy, p < 0.001). The dose-saving effect of biphasic chest pain protocol was significantly less with a saturated tube current (4.5 ± 10.2%) than with unsaturated tube current method (14.8 ± 11.5%, p < 0.001). In 76 patients using 100 kVp, patient age showed no significant differences between the groups with and without tube current saturation in all protocols (p > 0.05); the groups with tube current saturation showed significantly higher volume CT dose index values (p < 0.01) and tube current time product per rotation (p < 0.001) than the groups without tube current saturation in all protocols. Conclusion The radiation dose of dual-source retrospectively ECG-gated spiral cardiothoracic CT can be reduced by approximately 15% by using the biphasic chest pain protocol instead of the conventional protocol in children and adults if radiation dose parameters are further optimized to avoid tube current saturation. PMID:29353996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.W.; Safai, C.; Goffinet, D.R.
Eleven patients with obstructive jaundice from unresectable cholangiocarcinoma, metastatic porta hepatis adenopathy, or direct compression from a pancreatic malignancy were treated at the Stanford University Medical Center from 1978-1983 with an external drainage procedure followed by high-dose external-beam radiotherapy and by an intracavitary boost to the site of obstruction with Iridium/sup 192/ (Ir/sup 192/). A median dose of 5000 cGy was delivered with 4-6 Mv photons to the tumor bed and regional lymphatics in 9 patients, 1 patient received 2100 cGy to the liver in accelerated fractions because of extensive intrahepatic disease, and 1 patient received 7000 equivalent cGy tomore » his pancreatic tumor bed and regional lymphatics with neon heavy particles. An Ir/sup 192/ wire source later delivered a 3100-10,647 cGy boost to the site of biliary obstruction in each patient, for a mean combined dose of 10,202 cGy to a point 5 mm from the line source. Few acute complications were noted, but 3/11 patients (27%) subsequently developed upper gastrointestinal bleeding from duodenitis or frank duodenal ulceration 4 weeks, 4 months, and 7.5 months following treatment. Eight patients died - 5 with local recurrence +/- distant metastasis, 2 with sepsis, and 1 with widespread systemic metastasis. Autopsies revealed no evidence of biliary tree obstruction in 3/3 patients. Evolution of radiation treatment technqiues for biliary obstruction in the literature is reviewed. High-dose external-beam therapy followed by high-dose Ir/sup 192/ intracavitary boost is well tolerated and provides significant palliation.« less
Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Eckerman, Keith F; Meck, Robert A.
2008-10-01
This report describes the results of a pilot study of the reliability of the biokinetic and dosimetric models currently used by the U.S. Nuclear Regulatory Commission (NRC) as predictors of dose per unit internal or external exposure to radionuclides. The study examines the feasibility of critically evaluating the accuracy of these models for a comprehensive set of radionuclides of concern to the NRC. Each critical evaluation would include: identification of discrepancies between the models and current databases; characterization of uncertainties in model predictions of dose per unit intake or unit external exposure; characterization of variability in dose per unit intakemore » or unit external exposure; and evaluation of prospects for development of more accurate models. Uncertainty refers here to the level of knowledge of a central value for a population, and variability refers to quantitative differences between different members of a population. This pilot study provides a critical assessment of models for selected radionuclides representing different levels of knowledge of dose per unit exposure. The main conclusions of this study are as follows: (1) To optimize the use of available NRC resources, the full study should focus on radionuclides most frequently encountered in the workplace or environment. A list of 50 radionuclides is proposed. (2) The reliability of a dose coefficient for inhalation or ingestion of a radionuclide (i.e., an estimate of dose per unit intake) may depend strongly on the specific application. Multiple characterizations of the uncertainty in a dose coefficient for inhalation or ingestion of a radionuclide may be needed for different forms of the radionuclide and different levels of information of that form available to the dose analyst. (3) A meaningful characterization of variability in dose per unit intake of a radionuclide requires detailed information on the biokinetics of the radionuclide and hence is not feasible for many infrequently studied radionuclides. (4) The biokinetics of a radionuclide in the human body typically represents the greatest source of uncertainty or variability in dose per unit intake. (5) Characterization of uncertainty in dose per unit exposure is generally a more straightforward problem for external exposure than for intake of a radionuclide. (6) For many radionuclides the most important outcome of a large-scale critical evaluation of databases and biokinetic models for radionuclides is expected to be the improvement of current models. Many of the current models do not fully or accurately reflect available radiobiological or physiological information, either because the models are outdated or because they were based on selective or uncritical use of data or inadequate model structures. In such cases the models should be replaced with physiologically realistic models that incorporate a wider spectrum of information.« less
Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.
Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos
2013-09-01
To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.
NASA Astrophysics Data System (ADS)
Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Brock, Kristy
2015-11-01
Biomechanical-based deformable image registration is conducted on the head and neck region. Patient specific 3D finite element models consisting of parotid glands (PG), submandibular glands (SG), tumor, vertebrae (VB), mandible, and external body are used to register pre-treatment MRI to post-treatment MR images to model the dose response using image data of five patients. The images are registered using combinations of vertebrae and mandible alignments, and surface projection of the external body as boundary conditions. In addition, the dose response is simulated by applying a new loading technique in the form of a dose-induced shrinkage using the dose-volume relationship. The dose-induced load is applied as dose-induced shrinkage of the tumor and four salivary glands. The Dice Similarity Coefficient (DSC) is calculated for the four salivary glands, and tumor to calculate the volume overlap of the structures after deformable registration. A substantial improvement in the registration is found by including the dose-induced shrinkage. The greatest registration improvement is found in the four glands where the average DSC increases from 0.53, 0.55, 0.32, and 0.37 to 0.68, 0.68, 0.51, and 0.49 in the left PG, right PG, left SG, and right SG, respectively by using bony alignment of vertebrae and mandible (M), body (B) surface projection and dose (D) (VB+M+B+D).
PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits.more » 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.« less
Peripheral photon and neutron doses from prostate cancer external beam irradiation.
Bezak, Eva; Takam, Rundgham; Marcu, Loredana G
2015-12-01
Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
SU-E-I-06: Measurement of Skin Dose from Dental Cone-Beam CT Scans.
Akyalcin, S; English, J; Abramovitch, K; Rong, J
2012-06-01
To directly measure skin dose using point-dosimeters from dental cone-beam CT (CBCT) scans. To compare the results among three different dental CBCT scanners and compare the CBCT results with those from a conventional panoramic and cephalomic dental imaging system. A head anthropomorphic phantom was used with nanoDOT dosimeters attached to specified anatomic landmarks of selected radiosensitive tissues of interest. To ensure reliable measurement results, three dosimeters were used for each location. The phantom was scanned under various modes of operation and scan protocols for typical dental exams on three dental CBCT systems plus a conventional dental imaging system. The Landauer OSL nanoDOT dosimeters were calibrated under the same imaging condition as the head phantom scan protocols, and specifically for each of the imaging systems. Using nanoDOT dosimeters, skin doses at several positions on the surface of an adult head anthropomorphic phantom were measured for clinical dental imaging. The measured skin doses ranged from 0.04 to 4.62mGy depending on dosimeter positions and imaging systems. The highest dose location was at the parotid surface for all three CBCT scanners. The surface doses to the locations of the eyes were ∼4.0mGy, well below the 500mGy threshold for possibly causing cataract development. The results depend on x-ray tube output (kVp and mAs) and also are sensitive to SFOV. Comparing to the conventional dental imaging system operated in panoramic and cephalometric modes, doses from all three CBCT systems were at least an order of magnitude higher. No image artifact was caused by presence of nanoDOT dosimeters in the head phantom images. Direct measurements of skin dose using nanoDOT dosimeters provided accurate skin dose values without any image artifacts. The results of skin dose measurements serve as dose references in guiding future dose optimization efforts in dental CBCT imaging. © 2012 American Association of Physicists in Medicine.
42 CFR 82.14 - What types of information could be used in dose reconstructions?
Code of Federal Regulations, 2011 CFR
2011-10-01
...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...
42 CFR 82.14 - What types of information could be used in dose reconstructions?
Code of Federal Regulations, 2012 CFR
2012-10-01
...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...
42 CFR 82.14 - What types of information could be used in dose reconstructions?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...
42 CFR 82.14 - What types of information could be used in dose reconstructions?
Code of Federal Regulations, 2014 CFR
2014-10-01
...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...
42 CFR 82.14 - What types of information could be used in dose reconstructions?
Code of Federal Regulations, 2013 CFR
2013-10-01
...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...
Yunus, Mahira
2012-11-01
To study the use of helical computed tomography 2-D and 3-D images, and virtual endoscopy in the evaluation of airway disease in neonates, infants and children and its value in lesion detection, characterisation and extension. Conducted at Al-Noor Hospital, Makkah, Saudi Arabia, from January 1 to June 30, 2006, the study comprised of 40 patients with strider, having various causes of airway obstruction. They were examined by helical CT scan with 2-D and 3-D reconstructions and virtual endoscopy. The level and characterisation of lesions were carried out and results were compared with actual endoscopic findings. Conventional endoscopy was chosen as the gold standard, and the evaluation of endoscopy was done in terms of sensitivity and specificity of the procedure. For statistical purposes, SPSS version 10 was used. All CT methods detected airway stenosis or obstruction. Accuracy was 98% (n=40) for virtual endoscopy, 96% (n=48) for 3-D external rendering, 90% (n=45) for multiplanar reconstructions and 86% (n=43) for axial images. Comparing the results of 3-D internal and external volume rendering images with conventional endoscopy for detection and grading of stenosis were closer than with 2-D minimum intensity multiplanar reconstruction and axial CT slices. Even high-grade stenosis could be evaluated with virtual endoscope through which conventional endoscope cannot be passed. A case of 4-year-old patient with tracheomalacia could not be diagnosed by helical CT scan and virtual bronchoscopy which was diagriosed on conventional endoscopy and needed CT scan in inspiration and expiration. Virtual endoscopy [VE] enabled better assessment of stenosis compared to the reading of 3-D external rendering, 2-D multiplanar reconstruction [MPR] or axial slices. It can replace conventional endoscopy in the assessment of airway disease without any additional risk.
Imbelloni, Luiz Eduardo; Sant’Anna, Raphael; Fornasari, Marcos; Fialho, José Carlos
2011-01-01
Background Laparoscopic cholecystectomy has the advantages of causing less postoperative pain and requiring a short hospital stay, and therefore is the treatment of choice for cholelithiasis. This study was designed to compare spinal anesthesia using hyperbaric bupivacaine given as a conventional dose by lumbar puncture or as a low-dose by thoracic puncture. Methods A total of 140 patients with symptomatic gallstone disease were randomized to undergo laparoscopic cholecystectomy with low-pressure CO2 pneumoperitoneum under spinal anesthesia using either conventional lumbar spinal anesthesia (hyperbaric bupivacaine 15 mg and fentanyl 20 mg) or low-dose thoracic spinal anesthesia (hyperbaric bupivacaine 7.5 mg and fentanyl 20 μg). Intraoperative parameters, postoperative pain, complications, recovery time, and patient satisfaction at follow-up were compared between the two treatment groups. Results All procedures were completed under spinal anesthesia, with no cases needing conversion to general anesthesia. Values for time for block to reach the T3 dermatomal level, duration of motor and sensory block, and hypotensive events were significantly lower with low-dose bupivacaine. Postoperative pain was higher for low-dose hyperbaric bupivacaine at 6 and 12 hours. All patients were discharged after 24 hours. Follow-up 1 week postoperatively showed all patients to be satisfied and to be keen advocates of spinal anesthesia. Conclusion Laparoscopic cholecystectomy can be performed successfully under spinal anesthesia. A small dose of hyperbaric bupivacaine 7.5 mg and 20 μg fentanyl provides adequate spinal anesthesia for laparoscopy and, in comparison with hyperbaric bupivacaine 15% and fentanyl 20 μg, causes markedly less hypotension. The low-dose strategy may have an advantage in ambulatory patients because of the earlier recovery of motor and sensory function and earlier discharge. PMID:22915892
Yoneyama, Koichiro; Schmitt, Christophe; Kotani, Naoki; Levy, Gallia G; Kasai, Ryu; Iida, Satofumi; Shima, Midori; Kawanishi, Takehiko
2017-12-06
Emicizumab (ACE910) is a bispecific antibody mimicking the cofactor function of activated coagulation factor VIII. In phase I-I/II studies, emicizumab reduced the bleeding frequency in patients with severe hemophilia A, regardless of the presence of factor VIII inhibitors, at once-weekly subcutaneous doses of 0.3, 1, and 3 mg/kg. Using the phase I-I/II study data, population pharmacokinetic and repeated time-to-event (RTTE) modeling were performed to quantitatively characterize the relationship between the pharmacokinetics of emicizumab and reduction in bleeding frequency. Simulations were then performed to identify the minimal exposure expected to achieve zero bleeding events for 1 year in at least 50% of patients and to select the dosing regimens to be tested in phase III studies. The RTTE model adequately predicted the bleeding onset over time as a function of plasma emicizumab concentration. Simulations suggested that plasma emicizumab concentrations of ≥ 45 μg/mL should result in zero bleeding events for 1 year in at least 50% of patients. This efficacious exposure provided the basis for selecting previously untested dosing regimens of 1.5 mg/kg once weekly, 3 mg/kg every 2 weeks, and 6 mg/kg every 4 weeks for phase III studies. A pharmacometric approach guided the phase III dose selection of emicizumab in hemophilia A, without conducting a conventional dose-finding study. Phase III studies with the selected dosing regimens are currently ongoing. This case study indicates that a pharmacometric approach can substitute for a conventional dose-finding study in rare diseases and will streamline the drug development process.
Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance
NASA Astrophysics Data System (ADS)
Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.
2014-09-01
An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).
Pulmonary disease in cystic fibrosis: assessment with chest CT at chest radiography dose levels.
Ernst, Caroline W; Basten, Ines A; Ilsen, Bart; Buls, Nico; Van Gompel, Gert; De Wachter, Elke; Nieboer, Koenraad H; Verhelle, Filip; Malfroot, Anne; Coomans, Danny; De Maeseneer, Michel; de Mey, Johan
2014-11-01
To investigate a computed tomographic (CT) protocol with iterative reconstruction at conventional radiography dose levels for the assessment of structural lung abnormalities in patients with cystic fibrosis ( CF cystic fibrosis ). In this institutional review board-approved study, 38 patients with CF cystic fibrosis (age range, 6-58 years; 21 patients <18 years and 17 patients >18 years) underwent investigative CT (at minimal exposure settings combined with iterative reconstruction) as a replacement of yearly follow-up posteroanterior chest radiography. Verbal informed consent was obtained from all patients or their parents. CT images were randomized and rated independently by two radiologists with use of the Bhalla scoring system. In addition, mosaic perfusion was evaluated. As reference, the previous available conventional chest CT scan was used. Differences in Bhalla scores were assessed with the χ(2) test and intraclass correlation coefficients ( ICC intraclass correlation coefficient s). Radiation doses for CT and radiography were assessed for adults (>18 years) and children (<18 years) separately by using technical dose descriptors and estimated effective dose. Differences in dose were assessed with the Mann-Whitney U test. The median effective dose for the investigative protocol was 0.04 mSv (95% confidence interval [ CI confidence interval ]: 0.034 mSv, 0.10 mSv) for children and 0.05 mSv (95% CI confidence interval : 0.04 mSv, 0.08 mSv) for adults. These doses were much lower than those with conventional CT (median: 0.52 mSv [95% CI confidence interval : 0.31 mSv, 3.90 mSv] for children and 1.12 mSv [95% CI confidence interval : 0.57 mSv, 3.15 mSv] for adults) and of the same order of magnitude as those for conventional radiography (median: 0.012 mSv [95% CI confidence interval : 0.006 mSv, 0.022 mSv] for children and 0.012 mSv [95% CI confidence interval : 0.005 mSv, 0.031 mSv] for adults). All images were rated at least as diagnostically acceptable. Very good agreement was found in overall Bhalla score ( ICC intraclass correlation coefficient , 0.96) with regard to the severity of bronchiectasis ( ICC intraclass correlation coefficient , 0.87) and sacculations and abscesses ( ICC intraclass correlation coefficient , 0.84). Interobserver agreement was excellent ( ICC intraclass correlation coefficient , 0.86-1). For patients with CF cystic fibrosis , a dedicated chest CT protocol can replace the two yearly follow-up chest radiographic examinations without major dose penalty and with similar diagnostic quality compared with conventional CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mille, M; Lee, C; Failla, G
Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective epidemiological investigations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Sanchez, Danyl
As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remainmore » in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)« less
Signorelli, Luca; Patcas, Raphael; Peltomäki, Timo; Schätzle, Marc
2016-01-01
The aim of this study was to determine radiation doses of different cone-beam computed tomography (CBCT) scan modes in comparison to a conventional set of orthodontic radiographs (COR) by means of phantom dosimetry. Thermoluminescent dosimeter (TLD) chips (3 × 1 × 1 mm) were used on an adult male tissue-equivalent phantom to record the distribution of the absorbed radiation dose. Three different scanning modes (i.e., portrait, normal landscape, and fast scan landscape) were compared to CORs [i.e., conventional lateral (LC) and posteroanterior (PA) cephalograms and digital panoramic radiograph (OPG)]. The following radiation levels were measured: 131.7, 91, and 77 μSv in the portrait, normal landscape, and fast landscape modes, respectively. The overall effective dose for a COR was 35.81 μSv (PA: 8.90 μSv; OPG: 21.87 μSv; LC: 5.03 μSv). Although one CBCT scan may replace all CORs, one set of CORs still entails 2-4 times less radiation than one CBCT. Depending on the scan mode, the radiation dose of a CBCT is about 3-6 times an OPG, 8-14 times a PA, and 15-26 times a lateral LC. Finally, in order to fully reconstruct cephalograms including the cranial base and other important structures, the CBCT portrait mode must be chosen, rendering the difference in radiation exposure even clearer (131.7 vs. 35.81 μSv). Shielding radiation-sensitive organs can reduce the effective dose considerably. CBCT should not be recommended for use in all orthodontic patients as a substitute for a conventional set of radiographs. In CBCT, reducing the height of the field of view and shielding the thyroid are advisable methods and must be implemented to lower the exposure dose.
Villalón, C. M.; Ramírez-San Juan, E.; Castillo, C.; Castillo, E.; López-Muñoz, F. J.; Terrón, J. A.
1995-01-01
1. 5-Hydroxytryptamine (5-HT) can produce vasodilatation or vasoconstriction of the canine external carotid bed depending upon the degree of carotid sympathetic tone. Hence, external carotid vasodilatation to 5-HT in dogs with intact sympathetic tone is primarily mediated by prejunctional 5-HT1-like receptors similar to the 5-HT1D subtype, which inhibit the carotid sympathetic outflow. The present investigation is devoted to the pharmacological analysis of the receptors mediating external carotid vasoconstriction by 5-HT in vagosympathectomized dogs. 2. Intracarotid (i.c.) infusions for 1 min of 5-HT (0.3, 1, 3, 10, 30 and 100 micrograms) resulted in dose-dependent decreases in both external carotid blood flow and the corresponding conductance; both mean arterial blood pressure and heart rate remained unchanged during the infusions of 5-HT. These responses to 5-HT were resistant to blockade by antagonists at 5-HT2 (ritanserin) and 5-HT3/5-HT4 (tropisetron) receptors, but were partly blocked by the 5-HT1-like and 5-HT2 receptor antagonist, methiothepin (0.3 mg kg-1); higher doses of methiothepin (1 and 3 mg kg-1) caused little, if any, further blockade. These methiothepin (3 mg kg-1)-resistant responses to 5-HT were not significantly antagonized by MDL 72222 (0.3 mg kg-1) or tropisetron (3 mg kg-1). 3. The external carotid vasoconstrictor effects of 5-HT were mimicked by the selective 5-HT1-like receptor agonist, sumatriptan (3, 10, 30 and 100 micrograms during 1 min, i.c.), which produced dose-dependent decreases in external carotid blood flow and the corresponding conductance; these effects of sumatriptan were dose-dependently antagonized by methiothepin (0.3, 1 and 3 mg kg-1), but not by 5-HT1D-like receptor blocking doses of metergoline (0.1 mg kg-1). 4. The above vasoconstrictor effects of 5-HT remained unaltered after administration of phentolamine, propranolol, atropine, hexamethonium, brompheniramine, cimetidine and haloperidol, thus excluding the involvement of alpha- and beta-adrenoceptors, muscarinic, nicotinic, histamine and dopamine receptors. Likewise, inhibition of either 5-HT-uptake (with fluoxetine) or cyclo-oxygenase (with indomethacin), depletion of biogenic amines (with reserpine) or blockade of calcium channels (with verapamil) did not modify the effects of 5-HT. 5. Taken together, the above results support our contention that the external carotid vasoconstrictor responses to 5-HT in vagosympathectomized dogs are mainly mediated by activation of sumatriptan-sensitive 5-HT1-like receptors. It must be emphasized, notwithstanding, that other mechanisms of 5-HT, including an interaction with a novel 5-HT receptor (sub)type and/or an indirect action that may lead to the release of a known (or even unknown) neurotransmitter substance cannot be categorically excluded. PMID:8591004
Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F
2009-01-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.
Study of natural radioactivity in Mansehra granite, Pakistan: environmental concerns.
Qureshi, Aziz Ahmed; Jadoon, Ishtiaq Ahmed Khan; Wajid, Ali Abbas; Attique, Ahsan; Masood, Adil; Anees, Muhammad; Manzoor, Shahid; Waheed, Abdul; Tubassam, Aneela
2014-03-01
A part of Mansehra Granite was selected for the assessment of radiological hazards. The average activity concentrations of (226)Ra, (232)Th and (40)K were found to be 27.32, 50.07 and 953.10 Bq kg(-1), respectively. These values are in the median range when compared with the granites around the world. Radiological hazard indices and annual effective doses were estimated. All of these indices were found to be within the criterion limits except outdoor external dose (82.38 nGy h(-1)) and indoor external dose (156.04 nGy h(-1)), which are higher than the world's average background levels of 51 and 55 nGy h(-1), respectively. These values correspond to an average annual effective dose of 0.867 mSv y(-1), which is less than the criterion limit of 1 mSv y(-1) (ICRP-103). Some localities in the Mansehra city have annual effective dose higher than the limit of 1 mSv y(-1). Overall, the Mansehra Granite does not pose any significant radiological health hazard in the outdoor or indoor.
Luminescence isochron dating: a new approach using different grain sizes.
Zhao, H; Li, S H
2002-01-01
A new approach to isochron dating is described using different sizes of quartz and K-feldspar grains. The technique can be applied to sites with time-dependent external dose rates. It is assumed that any underestimation of the equivalent dose (De) using K-feldspar is by a factor F, which is independent of grain size (90-350 microm) for a given sample. Calibration of the beta source for different grain sizes is discussed, and then the sample ages are calculated using the differences between quartz and K-feldspar De from grains of similar size. Two aeolian sediment samples from north-eastern China are used to illustrate the application of the new method. It is confirmed that the observed values of De derived using K-feldspar underestimate the expected doses (based on the quartz De) but, nevertheless, these K-feldspar De values correlate linearly with the calculated internal dose rate contribution, supporting the assumption that the underestimation factor F is independent of grain size. The isochron ages are also compared with the results obtained using quartz De and the measured external dose rates.
Challenges for Preclinical Investigations of Human Biofield Modalities
Gronowicz, Gloria; Bengston, William
2015-01-01
Preclinical models for studying the effects of the human biofield have great potential to advance our understanding of human biofield modalities, which include external qigong, Johrei, Reiki, therapeutic touch, healing touch, polarity therapy, pranic healing, and other practices. A short history of Western biofield studies using preclinical models is presented and demonstrates numerous and consistent examples of human biofields significantly affecting biological systems both in vitro and in vivo. Methodological issues arising from these studies and practical solutions in experimental design are presented. Important questions still left unanswered with preclinical models include variable reproducibility, dosing, intentionality of the practitioner, best preclinical systems, and mechanisms. Input from the biofield practitioners in the experimental design is critical to improving experimental outcomes; however, the development of standard criteria for uniformity of practice and for inclusion of multiple practitioners is needed. Research in human biofield studies involving preclinical models promises a better understanding of the mechanisms underlying the efficacy of biofield therapies and will be important in guiding clinical protocols and integrating treatments with conventional medical therapies. PMID:26665042
Mohamad, Osama; Sishc, Brock J; Saha, Janapriya; Pompos, Arnold; Rahimi, Asal; Story, Michael D; Davis, Anthony J; Kim, D W Nathan
2017-06-09
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Mohamad, Osama; Sishc, Brock J.; Saha, Janapriya; Pompos, Arnold; Rahimi, Asal; Story, Michael D.; Davis, Anthony J.; Kim, D.W. Nathan
2017-01-01
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT. PMID:28598362
Comparing errors in ED computer-assisted vs conventional pediatric drug dosing and administration.
Yamamoto, Loren; Kanemori, Joan
2010-06-01
Compared to fixed-dose single-vial drug administration in adults, pediatric drug dosing and administration requires a series of calculations, all of which are potentially error prone. The purpose of this study is to compare error rates and task completion times for common pediatric medication scenarios using computer program assistance vs conventional methods. Two versions of a 4-part paper-based test were developed. Each part consisted of a set of medication administration and/or dosing tasks. Emergency department and pediatric intensive care unit nurse volunteers completed these tasks using both methods (sequence assigned to start with a conventional or a computer-assisted approach). Completion times, errors, and the reason for the error were recorded. Thirty-eight nurses completed the study. Summing the completion of all 4 parts, the mean conventional total time was 1243 seconds vs the mean computer program total time of 879 seconds (P < .001). The conventional manual method had a mean of 1.8 errors vs the computer program with a mean of 0.7 errors (P < .001). Of the 97 total errors, 36 were due to misreading the drug concentration on the label, 34 were due to calculation errors, and 8 were due to misplaced decimals. Of the 36 label interpretation errors, 18 (50%) occurred with digoxin or insulin. Computerized assistance reduced errors and the time required for drug administration calculations. A pattern of errors emerged, noting that reading/interpreting certain drug labels were more error prone. Optimizing the layout of drug labels could reduce the error rate for error-prone labels. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Outcomes and xerostomia after postoperative radiotherapy for oral and oropharyngeal carcinoma.
Wang, Zhong-He; Yan, Chao; Zhang, Zhi-Yuan; Zhang, Chen-Ping; Hu, Hai-Sheng; Tu, Wen-Yong; Kirwan, Jessica; Mendenhall, William M
2014-10-01
We compared outcomes and xerostomia grade after postoperative intensity-modulated radiation therapy (IMRT) and conventional radiotherapy (RT) in patients with oral and oropharyngeal carcinoma. Eighty-eight patients with oral cavity (n = 77) and oropharyngeal (n = 11) carcinoma underwent postoperative IMRT (n = 44) or conventional RT (n = 44). Outcomes, failure patterns, volume, doses, salivary gland V30, and xerostomia grade were evaluated. The median follow-up was 53 months (range, 48-58 months). The median interval from surgery to RT was 4 weeks (range, 3-6 weeks). Twenty-one patients (7 and 14 for the IMRT and conventional RT groups, respectively) experienced local-regional failure. For the IMRT group, all 7 local-regional failures occurred in the high-dose target volumes. For the conventional RT group, there were 12 in-field failures, 1 at the margin, and 1 out-of-field. Nine patients experienced distant failure (5 and 4 for the IMRT and conventional RT groups, respectively). The 4-year local-regional control, disease-free survival (DFS), overall survival (OS), and distant-metastasis rates for the IMRT and conventional RT groups were 84.1% versus 68.2% (p = .055), 68.2% versus 52.3% (p = .091), 70.5% versus 56.8% (p = .124), and 11.4% versus 9.1% (p = .927), respectively. Xerostomia grade after RT was lower for IMRT compared to conventional RT (p < .001). Postoperative IMRT for oral and oropharyngeal carcinoma significantly improves mean dose, salivary gland V30, and xerostomia grade when compared to conventional RT. The predominant failure pattern was local. No differences were found in survival outcomes between both groups. There was a marginal difference in local-regional control. © 2014 Wiley Periodicals, Inc.
Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation.
Coolens, Catherine; Bracken, John; Driscoll, Brandon; Hope, Andrew; Jaffray, David
2012-05-01
Conventional (i.e., respiratory-correlated) 4DCT exploits the repetitive nature of breathing to provide an estimate of motion; however, it has limitations due to binning artifacts and irregular breathing in actual patient breathing patterns. The aim of this work was to evaluate the accuracy and image quality of a dynamic volume, CT approach (4D(vol)) using a 320-slice CT scanner to minimize these limitations, wherein entire image volumes are acquired dynamically without couch movement. This will be compared to the conventional respiratory-correlated 4DCT approach (RCCT). 4D(vol) CT was performed and characterized on an in-house, programmable respiratory motion phantom containing multiple geometric and morphological "tumor" objects over a range of regular and irregular patient breathing traces obtained from 3D fluoroscopy and compared to RCCT. The accuracy of volumetric capture and breathing displacement were evaluated and compared with the ground truth values and with the results reported using RCCT. A motion model was investigated to validate the number of motion samples needed to obtain accurate motion probability density functions (PDF). The impact of 4D image quality on this accuracy was then investigated. Dose measurements using volumetric and conventional scan techniques were also performed and compared. Both conventional and dynamic volume 4DCT methods were capable of estimating the programmed displacement of sinusoidal motion, but patient breathing is known to not be regular, and obvious differences were seen for realistic, irregular motion. The mean RCCT amplitude error averaged at 4 mm (max. 7.8 mm) whereas the 4D(vol) CT error stayed below 0.5 mm. Similarly, the average absolute volume error was lower with 4D(vol) CT. Under irregular breathing, the 4D(vol) CT method provides a close description of the motion PDF (cross-correlation 0.99) and is able to track each object, whereas the RCCT method results in a significantly different PDF from the ground truth, especially for smaller tumors (cross-correlation ranging between 0.04 and 0.69). For the protocols studied, the dose measurements were higher in the 4D(vol) CT method (40%), but it was shown that significant mAs reductions can be achieved by a factor of 4-5 while maintaining image quality and accuracy. 4D(vol) CT using a scanner with a large cone-angle is a promising alternative for improving the accuracy with which respiration-induced motion can be characterized, particularly for patients with irregular breathing motion. This approach also generates 4DCT image data with a reduced total scan time compared to a RCCT scan, without the need for image binning or external respiration signals within the 16 cm scan length. Scan dose can be made comparable to RCCT by optimization of the scan parameters. In addition, it provides the possibility of measuring breathing motion for more than one breathing cycle to assess stability and obtain a more accurate motion PDF, which is currently not feasible with the conventional RCCT approach.
Yahya, Noorazrul; Ebert, Martin A; Bulsara, Max; House, Michael J; Kennedy, Angel; Joseph, David J; Denham, James W
2015-11-01
This study aimed to compare urinary dose-symptom correlates after external beam radiotherapy of the prostate using commonly utilised peak-symptom models to multiple-event and event-count models which account for repeated events. Urinary symptoms (dysuria, haematuria, incontinence and frequency) from 754 participants from TROG 03.04-RADAR trial were analysed. Relative (R1-R75 Gy) and absolute (A60-A75Gy) bladder dose-surface area receiving more than a threshold dose and equivalent uniform dose using exponent a (range: a ∈[1 … 100]) were derived. The dose-symptom correlates were analysed using; peak-symptom (logistic), multiple-event (generalised estimating equation) and event-count (negative binomial regression) models. Stronger dose-symptom correlates were found for incontinence and frequency using multiple-event and/or event-count models. For dysuria and haematuria, similar or better relationships were found using peak-symptom models. Dysuria, haematuria and high grade (⩾ 2) incontinence were associated to high dose (R61-R71 Gy). Frequency and low grade (⩾ 1) incontinence were associated to low and intermediate dose-surface parameters (R13-R41Gy). Frequency showed a parallel behaviour (a=1) while dysuria, haematuria and incontinence showed a more serial behaviour (a=4 to a ⩾ 100). Relative dose-surface showed stronger dose-symptom associations. For certain endpoints, the multiple-event and event-count models provide stronger correlates over peak-symptom models. Accounting for multiple events may be advantageous for a more complete understanding of urinary dose-symptom relationships. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Murray, Louise; Mason, Joshua; Henry, Ann M; Hoskin, Peter; Siebert, Frank-Andre; Venselaar, Jack; Bownes, Peter
2016-08-01
To estimate the risks of radiation-induced rectal and bladder cancers following low dose rate (LDR) and high dose rate (HDR) brachytherapy as monotherapy for localised prostate cancer and compare to external beam radiotherapy techniques. LDR and HDR brachytherapy monotherapy plans were generated for three prostate CT datasets. Second cancer risks were assessed using Schneider's concept of organ equivalent dose. LDR risks were assessed according to a mechanistic model and a bell-shaped model. HDR risks were assessed according to a bell-shaped model. Relative risks and excess absolute risks were estimated and compared to external beam techniques. Excess absolute risks of second rectal or bladder cancer were low for both LDR (irrespective of the model used for calculation) and HDR techniques. Average excess absolute risks of rectal cancer for LDR brachytherapy according to the mechanistic model were 0.71 per 10,000 person-years (PY) and 0.84 per 10,000 PY respectively, and according to the bell-shaped model, were 0.47 and 0.78 per 10,000 PY respectively. For HDR, the average excess absolute risks for second rectal and bladder cancers were 0.74 and 1.62 per 10,000 PY respectively. The absolute differences between techniques were very low and clinically irrelevant. Compared to external beam prostate radiotherapy techniques, LDR and HDR brachytherapy resulted in the lowest risks of second rectal and bladder cancer. This study shows both LDR and HDR brachytherapy monotherapy result in low estimated risks of radiation-induced rectal and bladder cancer. LDR resulted in lower bladder cancer risks than HDR, and lower or similar risks of rectal cancer. In absolute terms these differences between techniques were very small. Compared to external beam techniques, second rectal and bladder cancer risks were lowest for brachytherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fujimura, Maya Sophia; Komasa, Yukako; Kimura, Shinzo; Shibanuma, Akira; Kitamura, Akiko; Jimba, Masamine
2017-01-01
On March 11, 2011, Japan experienced its largest recorded earthquake with a magnitude of 9.0. The resulting tsunami caused massive damage to the Fukushima Daiichi Nuclear Power Plant reactors, and the surrounding environment was contaminated with radioactive materials. During this period, some residents were exposed to high levels of radiation (up to 5 millisieverts [mSv]), but since then, many residents have been exposed to low levels of radiation (<1 mSv). This study was conducted to assess the effects of lifestyle and attitude factors on external radiation exposure among Fukushima residents. This community-based, cross-sectional study was conducted in Nihonmatsu City of the Fukushima Prefecture from May to July 2014. The population survey targeted 6,884 children between the ages of 0-15 years, and a personal radiation badge and questionnaire were administered to each of the residences. Multiple linear regression analysis was used to assess the impact of lifestyle and attitude factors on external radiation dose. The study participants (population size [n] = 4,571) had an additional mean radiation dose of 0.65 mSv/year, which is small as compared to the mean radiation dose 6 months after the disaster (1.5 mSv/year), in 2012 (1.5 mSv/year), and in 2013 (1.0 mSv/year). External radiation doses statistically varied by socio-demographic and lifestyle factors. Participants living in wooden residences (p-value<0.001) and within 100 meters of a forest (p = 0.001) had higher radiation exposure. Conversely, participants with a cautious attitude towards radiation had lower radiation exposure (beta [b] = -0.124, p = 0.003). Having a cautious attitude towards radiation and being aware of exposure risks proved to be significant in the reduction of external radiation dose. Therefore, in the event of future radiation disasters, attitudes towards and awareness of radiation should be considered in the reduction of exposure risk and implementation of radiation protection.
Gopalapillai, Yamini; Hale, Beverley A
2017-05-02
Simultaneous determinations of internal dose ([M] tiss ) and external doses ([M] tot , {M 2+ } in solution) were conducted to study ternary mixture (Ni, Cu, Cd) chronic toxicity to Lemna minor in alkaline solution (pH 8.3). Also, concentration addition (CA) based on internal dose was evaluated as a tool for risk assessment of metal mixture. Multiple regression analysis of dose versus root growth inhibition, as well as saturation binding kinetics, provided insight into interactions. Multiple regressions were simpler for [M] tiss than [M] tot and {M 2+ }, and along with saturation kinetics to the internal biotic ligand(s) in the cytoplasm, they indicated that Ni-Cu-Cd competed for uptake into plant, but once inside, only Cu-Cd shared a binding site. Copper inorganic complexes (hydroxides, carbonates) played a role in metal bioavailability in single metal exposure but not in mixtures. Regardless of interactions, the current regulatory approach of using CA based on [M] tot can sufficiently predict mixture toxicity (∑TU close to 1), but CA based on [M] tiss was closest to unity across a range of doses. Internal dose integrates all metal-metal interactions in solution and during uptake into the organism, thereby providing a more direct metric describing toxicity.
Carcinoma of the cervix, stage III. Results of radiation therapy.
Montana, G S; Fowler, W C; Varia, M A; Walton, L A; Mack, Y; Shemanski, L
1986-01-01
From April 1969 through December 1980, 203 patients with Stage III epidermoid carcinoma of the cervix were treated with radiation therapy with curative intent. The disease-free survival at 2, 5, and 10 years was 50%, 33%, and 27%, respectively. The survival was better for patients with Stage IIIB disease than for those with Stage IIIA disease. Eighty-eight patients were treated with external beam therapy only, and 115 received external beam and brachytherapy. The disease-free survival was better for the combination therapy group initially, but this difference was not sustained beyond 5 years. One hundred eight patients experienced recurrence within the irradiated field, for a locoregional recurrence rate of 53%. Twenty-seven patients had complications (13%). The complications were mild in 13 patients, moderate in 4 patients, and severe in 10 patients. A study was made of the relationship of the dose to Point A and the occurrence of complications. Similar analyses were made of the bladder and rectal doses and the subsequent occurrence of urinary and intestinal complications. In these analyses, the mean dose to Point A and the critical organs was higher for the groups of patients with complications than for those patients without complications. This relationship was also observed when the patients were stratified for treatment with either external beam plus brachytherapy or external beam therapy alone.
Dose density in adjuvant chemotherapy for breast cancer.
Citron, Marc L
2004-01-01
Dose-dense chemotherapy increases the dose intensity of the regimen by delivering standard-dose chemotherapy with shorter intervals between the cycles. This article discusses the rationale for dose-dense therapy and reviews the results with dose-dense adjuvant regimens in recent clinical trials in breast cancer. The papers for this review covered evidence of a dose-response relation in cancer chemotherapy; the rationale for dose-intense (and specifically dose-dense) therapy; and clinical experience with dose-dense regimens in adjuvant chemotherapy for breast cancer, with particular attention to outcomes and toxicity. Evidence supports maintaining the dose intensity of adjuvant chemotherapy within the conventional dose range. Disease-free and overall survival with combination cyclophosphamide, methotrexate, and fluorouracil are significantly improved when patients receive within 85% of the planned dose. Moderate and high dose cyclophosphamide, doxorubicin, and fluorouracil within the standard range results in greater disease-free and overall survival than the low dose regimen. The sequential addition of paclitaxel after concurrent doxorubicin and cyclophosphamide also significantly improves survival. Disease-free and overall survival with dose-dense sequential or concurrent doxorubicin, cyclophosphamide, and paclitaxel with filgrastim (rhG-CSF; NEUPOGEN) support are significantly greater than with conventional schedules (q21d). The delivered dose intensity of adjuvant chemotherapy within the standard dose range is an important predictor of the clinical outcome. Prospective trials of high-dose chemotherapy have shown no improvement over standard regimens, and toxicity was greater. Dose-dense adjuvant chemotherapy improves the clinical outcomes with doxorubicin-containing regimens. Filgrastim support enables the delivery of dose-dense chemotherapy and reduces the risk of neutropenia and its complications.
Analysis of errors detected in external beam audit dosimetry program at Mexican radiotherapy centers
NASA Astrophysics Data System (ADS)
Álvarez-Romero, José T.; Tovar-Muñoz, Víctor M.
2012-10-01
Presented and analyzed are the causes of deviation observed in the pilot postal dosimetry audit program to verify the absorbed dose to water Dw in external beams of teletherapy 60Co and/or linear accelerators in Mexican radiotherapy centers, during the years 2007-2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wroe, Andrew; Centre for Medical Radiation Physics, University of Wollongong, Wollongong; Clasie, Ben
2009-01-01
Purpose: Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. Methods and Materials: Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement frommore » the treatment field edge and distance downstream of the beam's distal edge. Results: Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. Conclusions: This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields.« less
Contralateral Breast Dose After Whole-Breast Irradiation: An Analysis by Treatment Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Terence M.; Moran, Jean M., E-mail: jmmoran@med.umich.edu; Hsu, Shu-Hui
2012-04-01
Purpose: To investigate the contralateral breast dose (CBD) across a continuum of breast-conservation therapy techniques. Methods and Materials: An anthropomorphic phantom was CT-simulated, and six treatment plans were generated: open tangents, tangents with an external wedge on the lateral beam, tangents with lateral and medial external wedges, a simple segment plan (three segments per tangent), a complex segmental intensity-modulated radiotherapy (IMRT) plan (five segments per tangent), and a beamlet IMRT plan (>100 segments). For all techniques, the breast on the phantom was irradiated to 5000 cGy. Contralateral breast dose was measured at a uniform depth at the center and eachmore » quadrant using thermoluminescent detectors. Results: Contralateral breast dose varied with position and was 50 {+-} 7.3 cGy in the inner half, 24 {+-} 4.1 cGy at the center, and 16 {+-} 2.2 cGy in the outer half for the open tangential plan. Compared with an average dose of 31 cGy across all points for the open field, the average doses were simple segment 32 cGy (range, 99-105% compared with open technique), complex segment 34 cGy (range, 103-117% compared with open technique), beamlet IMRT 34 cGy (range, 103-124% compared with open technique), lateral wedge only 46 cGy (range, 133-175% compared with open technique), and medial and lateral wedge 96 cGy (range, 282-370% compared with open technique). Conclusions: Single or dual wedge techniques resulted in the highest CBD increases compared with open tangents. To obtain the desired homogeneity to the treated breast while minimizing CBD, segmental and IMRT techniques should be encouraged over external physical compensators.« less
Petersen, Ann M.; Dillon, Danielle; Bernhardt, Richard A.; Torunsky, Roberta; Postlethwait, John H.; von Hippel, Frank A.; Buck, C. Loren; Cresko, William A.
2014-01-01
Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100 ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms. PMID:25448260
Dean, Karen M; Bursian, Steven J; Cacela, Dave; Carney, Michael W; Cunningham, Fred L; Dorr, Brian; Hanson-Dorr, Katie C; Healy, Kate A; Horak, Katherine E; Link, Jane E; Lipton, Ian; McFadden, Andrew K; McKernan, Moira A; Harr, Kendal E
2017-12-01
Scoping studies were designed whereby double-crested cormorants (Phalacocorax auritus) were dosed with artificially weathered Deepwater Horizon (DWH) oil either daily through oil injected feeder fish, or by application of oil directly to feathers every three days. Preening results in oil ingestion, and may be an effective means of orally dosing birds with toxicant to improve our understanding of the full range of physiological effects of oral oil ingestion on birds. Blood samples collected every 5-6 days were analyzed for a number of clinical endpoints including white blood cell (WBC) estimates and differential cell counts. Plasma biochemical evaluations were performed for changes associated with oil toxicity. Oral dosing and application of oil to feathers resulted in clinical signs and statistically significant changes in a number of biochemical endpoints consistent with petroleum exposure. In orally dosed birds there were statistically significant decreases in aspartate amino transferase (AST) and gamma glutamyl transferase (GGT) activities, calcium, chloride, cholesterol, glucose, and total protein concentrations, and increases in plasma urea, uric acid, and phosphorus concentrations. Plasma electrophoresis endpoints (pre-albumin, albumin, alpha-2 globulin, beta globulin, and gamma globulin concentrations and albumin: globulin ratios) were decreased in orally dosed birds. Birds with external oil had increases in urea, creatinine, uric acid, creatine kinase (CK), glutamate dehydrogenase (GLDH), phosphorus, calcium, chloride, potassium, albumin, alpha-1 globulin and alpha-2 globulin. Decreases were observed in AST, beta globulin and glucose. WBC also differed between treatments; however, this was in part driven by monocytosis present in the externally oiled birds prior to oil treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M; Ramaseshan, R
2016-06-15
Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less
A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics
Claudio-Campos, Karla; Rivera-Miranda, Giselle; Bermúdez-Bosch, Luis; Renta, Jessicca Y.; Cadilla, Carmen L.; Cruz, Iadelisse; Feliu, Juan F.; Vergara, Cunegundo; Ruaño, Gualberto
2016-01-01
Aim This study is aimed at developing a novel admixture-adjusted pharmacogenomic approach to individually refine warfarin dosing in Caribbean Hispanic patients. Patients & Methods A multiple linear regression analysis of effective warfarin doses versus relevant genotypes, admixture, clinical and demographic factors was performed in 255 patients and further validated externally in another cohort of 55 individuals. Results The admixture-adjusted, genotype-guided warfarin dosing refinement algorithm developed in Caribbean Hispanics showed better predictability (R2 = 0.70, MAE = 0.72mg/day) than a clinical algorithm that excluded genotypes and admixture (R2 = 0.60, MAE = 0.99mg/day), and outperformed two prior pharmacogenetic algorithms in predicting effective dose in this population. For patients at the highest risk of adverse events, 45.5% of the dose predictions using the developed pharmacogenetic model resulted in ideal dose as compared with only 29% when using the clinical non-genetic algorithm (p<0.001). The admixture-driven pharmacogenetic algorithm predicted 58% of warfarin dose variance when externally validated in 55 individuals from an independent validation cohort (MAE = 0.89 mg/day, 24% mean bias). Conclusions Results supported our rationale to incorporate individual’s genotypes and unique admixture metrics into pharmacogenetic refinement models in order to increase predictability when expanding them to admixed populations like Caribbean Hispanics. Trial Registration ClinicalTrials.gov NCT01318057 PMID:26745506
NASA Astrophysics Data System (ADS)
Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas
2018-05-01
The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumsteg, Zachary S.; Spratt, Daniel E.; Pei, Xin
2013-03-15
Purpose: We investigated the benefit of short-term androgen-deprivation therapy (ADT) in patients with intermediate-risk prostate cancer (PC) receiving dose-escalated external beam radiation therapy. Methods and Materials: The present retrospective study comprised 710 intermediate-risk PC patients receiving external beam radiation therapy with doses of ≥81 Gy at a single institution from 1992 to 2005, including 357 patients receiving neoadjuvant and concurrent ADT. Prostate-specific antigen recurrence-free survival (PSA-RFS) and distant metastasis (DM) were compared using the Kaplan-Meier method and Cox proportional hazards models. PC-specific mortality (PCSM) was assessed using competing-risks analysis. Results: The median follow-up was 7.9 years. Despite being more likelymore » to have higher PSA levels, Gleason score 4 + 3 = 7, multiple National Comprehensive Cancer Network intermediate-risk factors, and older age (P≤.001 for all comparisons), patients receiving ADT had improved PSA-RFS (hazard ratio [HR], 0.598; 95% confidence interval [CI], 0.435-0.841; P=.003), DM (HR, 0.424; 95% CI, 0.219-0.819; P=.011), and PCSM (HR, 0.380; 95% CI, 0.157-0.921; P=.032) on univariate analysis. Using multivariate analysis, ADT was an even stronger predictor of improved PSA-RFS (adjusted HR [AHR], 0.516; 95% CI, 0.360-0.739; P<.001), DM (AHR, 0.347; 95% CI, 0.176-0.685; P=.002), and PCSM (AHR, 0.297; 95% CI, 0.128-0.685; P=.004). Gleason score 4 + 3 = 7 and ≥50% positive biopsy cores were other independent predictors of PCSM. Conclusions: Short-term ADT improves PSA-RFS, DM, and PCSM in patients with intermediate-risk PC undergoing dose-escalated external beam radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Kevin S.; Jani, Ashesh B.; Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.ed
Purpose: To characterize the bleeding toxicity associated with external beam radiotherapy for prostate cancer patients receiving anticoagulation (AC) therapy. Methods and Materials: The study cohort consisted of 568 patients with adenocarcinoma of the prostate who were treated with definitive external beam radiotherapy. Of these men, 79 were receiving AC therapy with either warfarin or clopidogrel. All patients were treated with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy. Bleeding complications were recorded during treatment and subsequent follow-up visits. Results: With a median follow-up of 48 months, the 4-year actuarial risk of Grade 3 or worse bleeding toxicity was 15.5% for those receivingmore » AC therapy compared with 3.6% among those not receiving AC (p < .0001). On multivariate analysis, AC therapy was the only significant factor associated with Grade 3 or worse bleeding (p < .0001). For patients taking AC therapy, the crude rate of bleeding was 39.2%. Multivariate analysis within the AC group demonstrated that a higher radiotherapy dose (p = .0408), intensity-modulated radiotherapy (p = 0.0136), and previous transurethral resection of the prostate (p = .0001) were associated with Grade 2 or worse bleeding toxicity. Androgen deprivation therapy was protective against bleeding, with borderline significance (p = 0.0599). Dose-volume histogram analysis revealed that Grade 3 or worse bleeding was minimized if the percentage of the rectum receiving >=70 Gy was <10% or the rectum receiving >=50 Gy was <50%. Conclusion: Patients taking AC therapy have a substantial risk of bleeding toxicity from external beam radiotherapy. In this setting, dose escalation or intensity-modulated radiotherapy should be used judiciously. With adherence to strict dose-volume histogram criteria and minimizing hotspots, the risk of severe bleeding might be reduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuanben; Fei, Zhaodong; Chen, Lisha
This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contoursmore » were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.« less
Determination of naturally radioactive elements in chalk sticks by means of gamma spectroscopy
NASA Astrophysics Data System (ADS)
Abd El-Wahab, Magda; Morsy, Zeinab; El-Faramawy, Nabil
2010-04-01
The radiation hazards due to ingestion of chalkboard dust were investigated. Sixteen samples from three different origin fabricates were used. The estimation of radiation hazard indices were based on the evaluation of the concentration activities of the natural radionuclides 238U, 232Th and 40K. The radium equivalent activity, external hazard index, internal hazard index and the annual dose equivalent associated with the radionuclides were calculated and compared with international recommended values to assess the radiation hazard. The values of internal and external radiation hazard indices were found to be less than unity. The annual effective dose rate obtained, E eff, and the annual gonadal dose equivalent (AGDE) are found to be less than the limit of the doses recommended by the International Commission on Radiological Protection for the general public. The analytical results show that besides the main calcium content, some toxic elements, S, Mo and Pb and Ni and Pb, in the Egyptian and imported chalk stocks, respectively, existed.
Determination of naturally radioactive elements in chalk sticks by means of gamma spectroscopy
NASA Astrophysics Data System (ADS)
El-Wahab, Magda Abd; Morsy, Zeinab; El-Faramawy, Nabil
The radiation hazards due to ingestion of chalkboard dust were investigated. Sixteen samples from three different origin fabricates were used. The estimation of radiation hazard indices were based on the evaluation of the concentration activities of the natural radionuclides 238U, 232Th and 40K. The radium equivalent activity, external hazard index, internal hazard index and the annual dose equivalent associated with the radionuclides were calculated and compared with international recommended values to assess the radiation hazard. The values of internal and external radiation hazard indices were found to be less than unity. The annual effective dose rate obtained, Eeff, and the annual gonadal dose equivalent (AGDE) are found to be less than the limit of the doses recommended by the International Commission on Radiological Protection for the general public. The analytical results show that besides the main calcium content, some toxic elements, S, Mo and Pb and Ni and Pb, in the Egyptian and imported chalk stocks, respectively, existed.
Gilbert, Ethel S; Land, Charles E; Simon, Steven L
2002-05-01
This paper primarily discusses health effects that have resulted from exposures received as a result of above-ground nuclear tests, with emphasis on thyroid disease from exposure to 131I and leukemia and solid cancers from low dose rate external and internal exposure. Results of epidemiological studies of fallout exposures in the Marshall Islands and from the Nevada Test Site are summarized, and studies of persons with exposures similar to those from fallout are briefly reviewed (including patients exposed to 131I for medical reasons and workers exposed externally at low doses and low dose rates). Promising new studies of populations exposed in countries of the former Soviet Union are also discussed and include persons living near the Semipalatinsk Test Site in Kazakhstan, persons exposed as a result of the Chernobyl accident, and persons exposed as a result of operations of the Mayak Nuclear Plant in the Russian Federation. Very preliminary estimates of cancer risks from fallout doses received by the United States population are presented.
Severe neuropathy after high dose carboplatin in three patients receiving multidrug chemotherapy
Heinzlef, O.; Lotz, J.; Roullet, E.
1998-01-01
Three patients are described who developed a severe neuropathy after chemotherapy with high dose cis-diamine-(1,1-cyclobutane dicarboxylato) platinum (carboplatin). This toxic side effect, which is unusual at conventional doses, might become more frequent as increasing doses are administered to overcome drug resistance in cancer treatment, and might limit its use at very high doses before haematopoietic stem cell transplantation. PMID:9598687
Nichols, C R; Breeden, E S; Loehrer, P J; Williams, S D; Einhorn, L H
1993-01-06
Case reports have suggested that treatment with high-dose etoposide can result in development of a unique secondary leukemia. This study was designed to estimate the risk of developing leukemia for patients receiving conventional doses of etoposide along with cisplatin and bleomycin. We reviewed the records at Indiana University of all untreated patients entering clinical trials using etoposide at conventional doses (cumulative dose, 2000 mg/m2 or less) for germ cell cancer between 1982 and 1991. The records of all patients who received a chemotherapy regimen containing etoposide, ifosfamide, or cisplatin after failing to respond to primary chemotherapy were also reviewed. Between 1982 and 1991, 538 patients entered serial clinical trials with planned cumulative etoposide doses of 1500-2000 mg/m2 in combination with cisplatin plus either ifosfamide or bleomycin. Of these 538 patients, 348 received an etoposide combination as initial chemotherapy and 190 received etoposide as part of salvage treatment. To date, 315 patients are alive, with median follow-up of 4.9 years, and 337 patients have had follow-up beyond 2 years. Two patients (0.37%) developed leukemia. One developed acute undifferentiated leukemia with a t(4;11) (q21;q23) cytogenetic abnormality 2.0 years after starting etoposide-based therapy, and one developed acute myelomonoblastic leukemia with no chromosome abnormalities 2.3 years after beginning chemotherapy. During this period, several hundred patients were treated with etoposide-based chemotherapy and did not enter clinical trials. Three of these patients are known to have developed hematologic abnormalities, including one patient with acute monoblastic leukemia with a t(11;19)(q13;p13) abnormality. Secondary leukemia after treatment with a conventional dose of etoposide does occur, but the low incidence does not alter the risk-to-benefit ratio of etoposide-based chemotherapy in germ cell cancer. The reports of leukemia associated with high doses of etoposide emphasize the need for diligent follow-up of patients and make careful risk-to-benefit analysis imperative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Wei, Xian-ding; Zhao, Yu-tian
2014-07-01
To investigate the dosimetric characteristics of irradiation of the chest wall and supraclavicular region as an integrated volume with intensity-modulated radiation therapy (IMRT) after modified radical mastectomy. This study included 246 patients who received modified radical mastectomy. The patients were scanned with computed tomography, and the chest wall (with or without the internal mammary lymph nodes) and supraclavicular region were delineated. For 143 patients, the chest wall and supraclavicular region were combined as an integrated planning volume and treated with IMRT. For 103 patients, conventional treatments were employed with 2 tangential fields for the chest wall, abutting a mixed fieldmore » of 6-MV x-rays (16 Gy) and 9-MeV electrons (34 Gy) for the upper supraclavicular region. The common prescription dose was 50 Gy/25 Fx/5 W to 90% of the target volume. The dosimetric characteristics of the chest wall, the supraclavicular region, and normal organs were compared. For the chest wall target, compared with conventional treatments, the integrated IMRT plans lowered the maximum dose, increased the minimum dose, and resulted in better conformity and uniformity of the target volume. There was an increase in minimum, average, and 95% prescription dose for the integrated IMRT plans in the supraclavicular region, and conformity and uniformity were improved. The V{sub 30} of the ipsilateral lung and V{sub 10}, V{sub 30}, and mean dose of the heart on the integrated IMRT plans were lower than those of the conventional plans. The V{sub 5} and V{sub 10} of the ipsilateral lung and V{sub 5} of the heart were higher on the integrated IMRT plans (p < 0.05) than on conventional plans. Without an increase in the radiation dose to organs at risk, the integrated IMRT treatment plans improved the dose distribution of the supraclavicular region and showed better dose conformity and uniformity of the integrated target volume of the chest wall and supraclavicular region.« less
Heat regenerative external combustion engine
NASA Astrophysics Data System (ADS)
Duva, Anthony W.
1993-03-01
It is an object of the invention to provide an external combustion expander-type engine having improved efficiency. It is another object of the invention to provide an external combustion engine in which afterburning in the exhaust channel is substantially prevented. Yet another object of the invention is to provide an external combustion engine which is less noisy than an external combustion engine of conventional design. These and other objects of the invention will become more apparent from the following description. The above objects of the invention are realized by providing a heat regenerative external combustion engine. The heat regenerative external combustion engine of the invention comprises a combustion chamber for combusting a monopropellant fuel in order to form an energized gas. The energized gas is then passed through a rotary valve to a cylinder having a reciprocating piston disposed therein. The gas is spent in moving the piston, thereby driving a drive shaft.
Analgesia/anesthesia for external cephalic version.
Weiniger, Carolyn F
2013-06-01
Professional society guidelines recommend that women with breech presentation be delivered surgically due to a higher incidence of fetal risks compared with vaginal delivery. An alternative is attempted external cephalic version, which if successful, enables attempted vaginal delivery. Attitudes towards external cephalic version (ECV) will be considered in this review, along with pain relief methods and their impact on ECV success rates. Articles suggest that ECV is infrequently offered, due to both physician and patient factors. Success of ECV is higher in multiparous women, complete breech, posterior placenta, or smaller fetus. Preterm ECV performance does not increase vaginal delivery rates. Neuraxial techniques (spinal or epidural) significantly increase ECV success rates, as do moxibustion and hypnosis. Four reviews summarized studies considering ECV and neuraxial techniques. These reviews suggest that neuraxial techniques using high (surgical) doses of local anesthetic are efficacious compared with control groups not using anesthesia, whereas techniques using low-doses are not. Low-dose versus high-dose neuraxial analgesia/anesthesia has not been directly compared in a single study. Based on currently available data, the rate of cephalic presentation is not increased using neuraxial techniques, but vaginal delivery rates are higher. ECV appears to be a low-risk procedure. The logistics of routine ECV and provision of optimal neuraxial techniques for successful ECV require additional research. Safety aspects of neuraxial anesthesia for ECV require further investigation.
NASA Astrophysics Data System (ADS)
Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Gallia, G. L.; Rigamonti, D.; Wolinsky, J.-P.; Gokaslan, Ziya L.; Khanna, A. J.; Siewerdsen, J. H.
2014-03-01
An algorithm for 3D-2D registration of CT and x-ray projections has been developed using dual projection views to provide 3D localization with accuracy exceeding that of conventional tracking systems. The registration framework employs a normalized gradient information (NGI) similarity metric and covariance matrix adaptation evolution strategy (CMAES) to solve for the patient pose in 6 degrees of freedom. Registration performance was evaluated in anthropomorphic head and chest phantoms, as well as a human torso cadaver, using C-arm projection views acquired at angular separations (Δ𝜃) ranging 0-178°. Registration accuracy was assessed in terms target registration error (TRE) and compared to that of an electromagnetic tracker. Studies evaluated the influence of C-arm magnification, x-ray dose, and preoperative CT slice thickness on registration accuracy and the minimum angular separation required to achieve TRE ~2 mm. The results indicate that Δ𝜃 as small as 10-20° is adequate to achieve TRE <2 mm with 95% confidence, comparable or superior to that of commercial trackers. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers, and manual registration. The studies support potential application to percutaneous spine procedures and intracranial neurosurgery.
Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi
2015-04-01
The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after the accident. This dose rate exceeds 0.1-1 mGy d(-1) derived consideration reference level for Reference rat proposed by the International Commission on Radiological Protection (ICRP). Copyright © 2015 Elsevier Ltd. All rights reserved.
Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S
2017-05-01
In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.
Han, Sangwon; Yoo, Seon Hee; Koh, Kyung-Nam; Lee, Jong Jin
2017-04-01
Current recommendations suggest that family members should participate in the care of children receiving in-hospital I metaiodobenzylguanidine (MIBG) therapy for neuroblastoma. The present study aimed to measure the external radiation exposure and estimate the internal radiation exposure of caregivers during the hospital stay for I MIBG therapy. Caregivers received radiation safety instructions and a potassium iodide solution for thyroid blockade before patient admission. External radiation exposure was determined using a personal pocket dosimeter. Serial 24-hour urine samples were collected from caregivers during the hospital stay. Estimated internal radiation exposure was calculated based on the urine activity. Twelve cases (mean age, 6.2 ± 3.5 years; range, 2-13 years) were enrolled. The mean administered activity was 233.3 ± 74.9 (range, 150.0-350.0) mCi. The mean external radiation dose was 5.8 ± 7.2 (range, 0.8-19.9) mSv. Caregivers of children older than 4 years had significantly less external radiation exposure than those of children younger than 4 years (1.9 ± 1.0 vs 16.4 ± 5.0 mSv; P = 0.012). The mean estimated internal radiation dose was 11.3 ± 10.2 (range, 1.0-29.8) μSv. Caregivers receive both external and internal radiation exposure while providing in-hospital care to children receiving I MIBG therapy for neuroblastoma. However, the internal radiation exposure was negligible compared with the external radiation exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swisher-McClure, Samuel, E-mail: Swisher-Mcclure@uphs.upenn.edu; Leonard Davis Institute of Health Economics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Mitra, Nandita
Purpose: To examine recent practice patterns, using a large national cancer registry, to understand the extent to which dose-escalated external beam radiation therapy (EBRT) has been incorporated into routine clinical practice for men with prostate cancer. Methods and Materials: We conducted a retrospective observational cohort study using the National Cancer Data Base, a nationwide oncology outcomes database in the United States. We identified 98,755 men diagnosed with nonmetastatic prostate cancer between 2006 and 2011 who received definitive EBRT and classified patients into National Comprehensive Cancer Network (NCCN) risk groups. We defined dose-escalated EBRT as total prescribed dose of ≥75.6 Gy. Usingmore » multivariable logistic regression, we examined the association of patient, clinical, and demographic characteristics with the use of dose-escalated EBRT. Results: Overall, 81.6% of men received dose-escalated EBRT during the study period. The use of dose-escalated EBRT did not vary substantially by NCCN risk group. Use of dose-escalated EBRT increased from 70.7% of patients receiving treatment in 2006 to 89.8% of patients receiving treatment in 2011. On multivariable analysis, year of diagnosis and use of intensity modulated radiation therapy were significantly associated with receipt of dose-escalated EBRT. Conclusions: Our study results indicate that dose-escalated EBRT has been widely adopted by radiation oncologists treating prostate cancer in the United States. The proportion of patients receiving dose-escalated EBRT increased nearly 20% between 2006 and 2011. We observed high utilization rates of dose-escalated EBRT within all disease risk groups. Adoption of intensity modulated radiation therapy was strongly associated with use of dose-escalated treatment.« less
Jankowska, Petra J; Kong, Christine; Burke, Kevin; Harrington, Kevin J; Nutting, Christopher
2007-10-01
High dose irradiation of the posterior cervical lymph nodes usually employs applied electron fields to treat the target volume and maintain the spinal cord dose within tolerance. In the light of recent advances in elective lymph node localisation we investigated optimization of field shape and electron energy to treat this target volume. In this study, three sequential hypotheses were tested. Firstly, that customization of the electron fields based on the nodal PTV outlined gives better PTV coverage than conventional field delineation. Using the consensus guidelines, customization of the electron field shape was compared to conventional fields based on bony landmarks. Secondly, that selection of electron energy using DVHs for spinal cord and PTV improves the minimum dose to PTV. Electron dose-volume histograms (DVHs) for the PTV, spinal cord and para-vertebral muscles, were generated using the Monte Carlo electron algorithm. These DVHs were used to compare standard vs optimized electron energy calculations. Finally, that combination of field customization and electron energy optimization improves both the minimum and mean doses to PTV compared with current standard practice. Customized electron beam shaping based on the consensus guidelines led to fewer geographical misses than standard field shaping. Customized electron energy calculation led to higher minimum doses to the PTV. Overall, the customization of field shape and energy resulted in an improved mean dose to the PTV (92% vs 83% p=0.02) and a 27% improvement in the minimum dose delivered to the PTV (45% vs 18% p=0.0009). Optimization of electron field shape and beam energy based on current consensus guidelines led to significant improvement in PTV coverage and may reduce recurrence rates.
Long-Boyle, Janel R; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J; Dvorak, Christopher C
2015-04-01
Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation. Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02). When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.
Lee, Jia-Cheng; Chuang, Keh-Shih; Chen, Yi-Wei; Hsu, Fang-Yuh; Chou, Fong-In; Yen, Sang-Hue; Wu, Yuan-Hung
2017-01-01
Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting.
Lee, Jia-Cheng; Chuang, Keh-Shih; Chen, Yi-Wei; Hsu, Fang-Yuh; Chou, Fong-In; Yen, Sang-Hue
2017-01-01
Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting. PMID:28662135
High-Dose Vitamin C (PDQ®)—Health Professional Version
High-dose vitamin C, with and without conventional cancer therapies, appeared promising in early studies and was well tolerated. However, these studies have several limitations due to lack of rigor in trial design. Get detailed information about high-dose vitamin C in cancer in this clinician summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, W; Zaghian, M; Lim, G
2015-06-15
Purpose: The current practice of considering the relative biological effectiveness (RBE) of protons in intensity modulated proton therapy (IMPT) planning is to use a generic RBE value of 1.1. However, RBE is indeed a variable depending on the dose per fraction, the linear energy transfer, tissue parameters, etc. In this study, we investigate the impact of using variable RBE based optimization (vRBE-OPT) on IMPT dose distributions compared by conventional fixed RBE based optimization (fRBE-OPT). Methods: Proton plans of three head and neck cancer patients were included for our study. In order to calculate variable RBE, tissue specific parameters were obtainedmore » from the literature and dose averaged LET values were calculated by Monte Carlo simulations. Biological effects were calculated using the linear quadratic model and they were utilized in the variable RBE based optimization. We used a Polak-Ribiere conjugate gradient algorithm to solve the model. In fixed RBE based optimization, we used conventional physical dose optimization to optimize doses weighted by 1.1. IMPT plans for each patient were optimized by both methods (vRBE-OPT and fRBE-OPT). Both variable and fixed RBE weighted dose distributions were calculated for both methods and compared by dosimetric measures. Results: The variable RBE weighted dose distributions were more homogenous within the targets, compared with the fixed RBE weighted dose distributions for the plans created by vRBE-OPT. We observed that there were noticeable deviations between variable and fixed RBE weighted dose distributions if the plan were optimized by fRBE-OPT. For organs at risk sparing, dose distributions from both methods were comparable. Conclusion: Biological dose based optimization rather than conventional physical dose based optimization in IMPT planning may bring benefit in improved tumor control when evaluating biologically equivalent dose, without sacrificing OAR sparing, for head and neck cancer patients. The research is supported in part by National Institutes of Health Grant No. 2U19CA021239-35.« less
The application of polymer gel dosimeters to dosimetry for targeted radionuclide therapy
NASA Astrophysics Data System (ADS)
Gear, J. I.; Flux, G. D.; Charles-Edwards, E.; Partridge, M.; Cook, G.; Ott, R. J.
2006-07-01
There is a lack of standardized methodology to perform dose calculations for targeted radionuclide therapy and at present no method exists to objectively evaluate the various approaches employed. The aim of the work described here was to investigate the practicality and accuracy of calibrating polymer gel dosimeters such that dose measurements resulting from complex activity distributions can be verified. Twelve vials of the polymer gel dosimeter, 'MAGIC', were uniformly mixed with varying concentrations of P-32 such that absorbed doses ranged from 0 to 30 Gy after a period of 360 h before being imaged on a magnetic resonance scanner. In addition, nine vials were prepared and irradiated using an external 6 MV x-ray beam. Magnetic resonance transverse relaxation time, T2, maps were obtained using a multi-echo spin echo sequence and converted to R2 maps (where T2 = 1/R2). Absorbed doses for P-32 irradiated gel were calculated according to the medical internal radiation dose schema using EGSnrc Monte Carlo simulations. Here the energy deposited in cylinders representing the irradiated vials was scored. A relationship between dose and R2 was determined. Effects from oxygen contamination were present in the internally irradiated vials. An increase in O2 sensitivity over those gels irradiated externally was thought to be a result of the longer irradiation period. However, below the region of contamination dose response appeared homogenous. Due do a drop-off of dose at the periphery of the internally irradiated vials, magnetic resonance ringing artefacts were observed. The ringing did not greatly affect the accuracy of calibration, which was comparable for both methods. The largest errors in calculated dose originated from the initial activity measurements, and were approximately 10%. Measured R2 values ranged from 5-35 s-1 with an average standard deviation of 1%. A clear relationship between R2 and dose was observed, with up to 40% increased sensitivity for internally irradiated gels. Curve fits to the calibration data followed a single exponential function. The correlation coefficients for internally and externally irradiated gels were 0.991 and 0.985, respectively. With the ability to accurately calibrate internally dosed polymer gels, this technology shows promise as a means to evaluate dosimetry methods, particularly in cases of non-uniform uptake of a radionuclide.
Gaviraghi, A; Puglisi, R; Balduzzi, D; Severgnini, A; Bornaghi, V; Bongioni, G; Frana, A; Gandini, L M; Lukaj, A; Bonacina, C; Galli, A
2013-05-01
In buffaloes, AI with sexed semen is not fully optimized, and the procedure has only been performed using the approach currently in use for cattle. The objective of the present work was to compare the pregnancy rates in Mediterranean Italian buffalo cows inseminated with sexed frozen-thawed semen at 2, 4, 6, and 8 million sperm per dose, using the Ovsynch protocol and conventional AI at a fixed time. Fresh ejaculates from three buffalo bulls were processed according to Beltsville sperm sorting technology, and packaged in 0.25-mL straws with two total concentrations of 2 and 4 million live sorted sperm per straw. After thawing, semen was evaluated for total motility, forward motility, average path velocity, membrane and DNA integrity, and membrane fluidity. Sorting efficiency was estimated using a real time polymerase chain reaction method developed and validated in our laboratory. The artificial inseminations were conducted during the breeding season on 849 Italian Mediterranean buffalo heifers and cows distributed in 13 farms in northern and central Italy. No significant difference in quality parameters was reported between nonsexed and sexed straws produced with 2 and 4 million sperm. Lower pregnancy rate (P < 0.001) was reported when inseminating doses of sexed semen at 2 million were used (53/170; 31.2%), with respect to conventional nonsexed (78/142; 54.9%), and sexed doses at 4, 6, and 8 million spermatozoa (102/205, 49.8%; 84/175, 48.0%; and 74/157, 47.1%, respectively). No differences were evident using conventional doses and sexed semen with sperm numbers equal or higher than 4 million per dose. Pregnancies were not affected by the sire; 39/82 (47.6%), 120/270 (44.4%), and 151/355 (42.5%), respectively, for the three bulls. Variability in pregnancy rates observed in different herds was not significant. Furthermore, no significant difference was reported between pregnancies obtained with sexed semen in heifers and multiparous, respectively, 179/407 (44.0%) and 131/300 (43.7%). The results of the present work indicate that in Mediterranean Italian buffalo the dose of 4 million represents an optimal compromise when using sexed semen with conventional technologies of insemination, together with estrus synchronization, and the minimum number of spermatozoa per dose. In addition, the real time polymerase chain reaction method was optimized and is now available for estimating sorting efficiency in buffalo. Copyright © 2013 Elsevier Inc. All rights reserved.
Woda, Clemens; Jacob, P; Ulanovsky, A; Fiedler, I; Mokrov, Y; Rovny, S
2009-11-01
Recently discovered historical documents indicate that large releases of noble gases (mainly (41)Ar and radioactive isotopes of Kr and Xe) from the Mayak Production Association (MPA) over the period from 1948 to 1956 may have caused considerable external exposures of both, inhabitants of Ozyorsk and former inhabitants of villages at the upper Techa River. To quantify this exposure, seven brick samples from three buildings in Ozyorsk, located 8-10 km north-northwest from the radioactive gas release points, were taken. The absorbed dose in brick was measured in a depth interval of 3-13 mm below the exposed surface of the bricks by means of the thermoluminescence (TL) and the optically stimulated luminescence (OSL) method. Generally, luminescence properties using TL were more favorable for precise dose determination than using OSL, but within their uncertainties the results from both methods agree well with each other. The absorbed dose due to natural radiation was assessed and subtracted under the assumption of the bricks to be completely dry. The weighted average of the anthropogenic dose for all samples measured by TL and OSL is 10 +/- 9 and 1 +/- 9 mGy, respectively. An upper limit for a possible anthropogenic dose in brick that would not be detected due to the measurement uncertainties is estimated at 24 mGy. This corresponds to an effective dose of about 21 mSv. A similar range of values is obtained in recently published dispersion calculations that were based on reconstructed MPA releases. It is concluded that the release of radioactive noble gases from the radiochemical and reactor plants at Mayak PA did not lead to a significant external exposure of the population of Ozyorsk. In addition, the study demonstrates the detection limit for anthropogenic doses in ca. 60-year-old bricks to be about 24 mGy, if luminescence methods are used.
Choi, Aery; Kang, Young Kyung; Lim, Sewon; Kim, Dong Ho; Lim, Jung Sub; Lee, Jun Ah
2016-10-01
Hepatic sinusoidal obstruction syndrome (SOS) is a life-threatening syndrome that generally occurs as a complication after hematopoietic stem cell transplantation or, less commonly, after conventional chemotherapy. Regarding SOS in rhabdomyosarcoma patients who received conventional chemotherapy, the doses of chemotherapeutic agents are associated with the development of SOS. Several cases of SOS in rhabdomyosarcoma patients after receiving chemotherapy with escalated doses of cyclophosphamide have been reported. Here, we report on a 9-year-old female with rhabdomyosarcoma who developed severe SOS after receiving chemotherapy consisting of vincristine, actinomycin-D, and a moderate dose of cyclophosphamide. She was treated successfully with defibrotide without sequelae to the liver.
Berg, Robert A
2004-09-01
To evaluate published data regarding the treatment of prolonged pediatric defibrillation, with special emphasis on the use of attenuated adult biphasic shocks for pediatric defibrillation. Review relevant human and animal literature. Rhythm analysis algorithms from two manufacturers of automated external defibrillators can accurately distinguish shockable from nonshockable rhythms in children. Theoretical considerations and transthoracic impedance data from animals and children suggest that pediatric defibrillation doses should not necessarily vary in a simple weight-based manner. Two piglet studies have established that an attenuated adult biphasic dosage can be successfully used for 3.5- to 24-kg animals in ventricular fibrillation. One study established that the attenuated adult biphasic dosage was at least as safe and effective as the standard monophasic weight-based dosing. This review supports the American Heart Association's new guidelines for pediatric automated external defibrillator usage: "Automated external defibrillators may be used for children 1 to 8 yrs of age who have no signs of circulation. Ideally the device should deliver a pediatric dose. The arrhythmia detection system used in the device should demonstrate high specificity for pediatric shockable rhythms, i.e., it will not recommend delivery of a shock for nonshockable rhythms."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.
1997-12-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library ofmore » uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.« less
Quasi-radial wall jets as a new concept in boundary layer flow control
NASA Astrophysics Data System (ADS)
Javadi, Khodayar; Hajipour, Majid
2018-01-01
This work aims to introduce a novel concept of wall jets wherein the flow is radially injected into a medium through a sector of a cylinder, called quasi-radial (QR) wall jets. The results revealed that fluid dynamics of the QR wall jet flow differs from that of conventional wall jets. Indeed, lateral and normal propagations of a conventional three-dimensional wall jet are via shear stresses. While, lateral propagation of a QR wall jet is due to mean lateral component of the velocity field. Moreover, discharged Arrays of conventional three-dimensional wall jets in quiescent air lead to formation of a combined wall jet at large distant from the nozzles, while QR wall jet immediately spread in lateral direction, meet each other and merge together very quickly in a short distance downstream of the jet nozzles. Furthermore, in discharging the conventional jets into an external flow, there is no strong interaction between them as they are moving parallel. While, in QR wall jets the lateral components of the velocity field strongly interact with boundary layer of the external flow and create strong helical vortices acting as vortex generators.
Smith, Graham D; Pickles, Tom; Crook, Juanita; Martin, Andre-Guy; Vigneault, Eric; Cury, Fabio L; Morris, Jim; Catton, Charles; Lukka, Himu; Warner, Andrew; Yang, Ying; Rodrigues, George
2015-03-01
To compare, in a retrospective study, biochemical failure-free survival (bFFS) and overall survival (OS) in low-risk and intermediate-risk prostate cancer patients who received brachytherapy (BT) (either low-dose-rate brachytherapy [LDR-BT] or high-dose-rate brachytherapy with external beam radiation therapy [HDR-BT+EBRT]) versus external beam radiation therapy (EBRT) alone. Patient data were obtained from the ProCaRS database, which contains 7974 prostate cancer patients treated with primary radiation therapy at four Canadian cancer institutions from 1994 to 2010. Propensity score matching was used to obtain the following 3 matched cohorts with balanced baseline prognostic factors: (1) low-risk LDR-BT versus EBRT; (2) intermediate-risk LDR-BT versus EBRT; and (3) intermediate-risk HDR-BT+EBRT versus EBRT. Kaplan-Meier survival analysis was performed to compare differences in bFFS (primary endpoint) and OS in the 3 matched groups. Propensity score matching created acceptable balance in the baseline prognostic factors in all matches. Final matches included 2 1:1 matches in the intermediate-risk cohorts, LDR-BT versus EBRT (total n=254) and HDR-BT+EBRT versus EBRT (total n=388), and one 4:1 match in the low-risk cohort (LDR-BT:EBRT, total n=400). Median follow-up ranged from 2.7 to 7.3 years for the 3 matched cohorts. Kaplan-Meier survival analysis showed that all BT treatment options were associated with statistically significant improvements in bFFS when compared with EBRT in all cohorts (intermediate-risk EBRT vs LDR-BT hazard ratio [HR] 4.58, P=.001; intermediate-risk EBRT vs HDR-BT+EBRT HR 2.08, P=.007; low-risk EBRT vs LDR-BT HR 2.90, P=.004). No significant difference in OS was found in all comparisons (intermediate-risk EBRT vs LDR-BT HR 1.27, P=.687; intermediate-risk EBRT vs HDR-BT+EBRT HR 1.55, P=.470; low-risk LDR-BT vs EBRT HR 1.41, P=.500). Propensity score matched analysis showed that BT options led to statistically significant improvements in bFFS in low- and intermediate-risk prostate cancer patient populations. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Graham D.; Pickles, Tom; Crook, Juanita
2015-03-01
Purpose: To compare, in a retrospective study, biochemical failure-free survival (bFFS) and overall survival (OS) in low-risk and intermediate-risk prostate cancer patients who received brachytherapy (BT) (either low-dose-rate brachytherapy [LDR-BT] or high-dose-rate brachytherapy with external beam radiation therapy [HDR-BT+EBRT]) versus external beam radiation therapy (EBRT) alone. Methods and Materials: Patient data were obtained from the ProCaRS database, which contains 7974 prostate cancer patients treated with primary radiation therapy at four Canadian cancer institutions from 1994 to 2010. Propensity score matching was used to obtain the following 3 matched cohorts with balanced baseline prognostic factors: (1) low-risk LDR-BT versus EBRT; (2)more » intermediate-risk LDR-BT versus EBRT; and (3) intermediate-risk HDR-BT+EBRT versus EBRT. Kaplan-Meier survival analysis was performed to compare differences in bFFS (primary endpoint) and OS in the 3 matched groups. Results: Propensity score matching created acceptable balance in the baseline prognostic factors in all matches. Final matches included 2 1:1 matches in the intermediate-risk cohorts, LDR-BT versus EBRT (total n=254) and HDR-BT+EBRT versus EBRT (total n=388), and one 4:1 match in the low-risk cohort (LDR-BT:EBRT, total n=400). Median follow-up ranged from 2.7 to 7.3 years for the 3 matched cohorts. Kaplan-Meier survival analysis showed that all BT treatment options were associated with statistically significant improvements in bFFS when compared with EBRT in all cohorts (intermediate-risk EBRT vs LDR-BT hazard ratio [HR] 4.58, P=.001; intermediate-risk EBRT vs HDR-BT+EBRT HR 2.08, P=.007; low-risk EBRT vs LDR-BT HR 2.90, P=.004). No significant difference in OS was found in all comparisons (intermediate-risk EBRT vs LDR-BT HR 1.27, P=.687; intermediate-risk EBRT vs HDR-BT+EBRT HR 1.55, P=.470; low-risk LDR-BT vs EBRT HR 1.41, P=.500). Conclusions: Propensity score matched analysis showed that BT options led to statistically significant improvements in bFFS in low- and intermediate-risk prostate cancer patient populations.« less
The clinical pharmacology of alkylating agents in high-dose chemotherapy.
Huitema, A D; Smits, K D; Mathôt, R A; Schellens, J H; Rodenhuis, S; Beijnen, J H
2000-08-01
Alkylating agents are widely used in high-dose chemotherapy regimens in combination with hematological support. Knowledge about the pharmacokinetics and pharmacodynamics of these agents administered in high doses is critical for the safe and efficient use of these regimens. The aim of this review is to summarize the clinical pharmacology of the alkylating agents (including the platinum compounds) in high-dose chemotherapy. Differences between conventional and high doses will be discussed.
Inada, Satoshi; Masuda, Takanori; Maruyama, Naoya; Yamashita, Yukari; Sato, Tomoyasu; Imada, Naoyuki
2016-01-01
To evaluate the image quality and effect of radiation dose reduction by setting for computed tomography automatic exposure control system (CT-AEC) in computed tomographic angiography (CTA) of lower extremity artery. Two methods of setting were compared for CT-AEC [conventional and contrast-to-noise ratio (CNR) methods]. Conventional method was set noise index (NI): 14and tube current threshold: 10-750 mA. CNR method was set NI: 18, minimum tube current: (X+Y)/2 mA (X, Y: maximum X (Y)-axis tube current value of leg in NI: 14), and maximum tube current: 750 mA. The image quality was evaluated by CNR, and radiation dose reduction was evaluated by dose-length-product (DLP). In conventional method, mean CNRs for pelvis, femur, and leg were 19.9±4.8, 20.4±5.4, and 16.2±4.3, respectively. There was a significant difference between the CNRs of pelvis and leg (P<0.001), and between femur and leg (P<0.001). In CNR method, mean CNRs for pelvis, femur, and leg were 15.2±3.3, 15.3±3.2, and 15.3±3.1, respectively; no significant difference between pelvis, femur, and leg (P=0.973) in CNR method was observed. Mean DLPs were 1457±434 mGy⋅cm in conventional method, and 1049±434 mGy·cm in CNR method. There was a significant difference in the DLPs of conventional method and CNR method (P<0.001). CNR method gave equal CNRs for pelvis, femur, and leg, and was beneficial for radiation dose reduction in CTA of lower extremity artery.
Interstitial rotating shield brachytherapy for prostate cancer.
Adams, Quentin E; Xu, Jinghzu; Breitbach, Elizabeth K; Li, Xing; Enger, Shirin A; Rockey, William R; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T
2014-05-01
To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources. For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.
High-dose octreotide acetate for management of gastroenteropancreatic neuroendocrine tumors.
Chadha, Manpreet K; Lombardo, Jeffrey; Mashtare, Terry; Wilding, Gregory E; Litwin, Alan; Raczyk, Cheryl; Gibbs, John F; Kuvshinoff, Boris; Javle, Milind M; Iyer, Renuka V
2009-10-01
Long-acting sandostatin (S-LAR; octreotide acetate) is well tolerated and effective for symptom control and possibly disease control in gastroenteropancreatic neuroendocrine tumors (GEP-NETs). We undertook a retrospective analysis to study the efficacy and tolerability of higher doses (more than 20-30 mg/month) of S-LAR in GEP-NETs. With IRB approval, charts of all patients with GEP-NET who received S-LAR between June 2002 to September 2007 at Roswell Park Cancer Institute were reviewed and their data analyzed. Fifty-four patients with GEP-NET received S-LAR; thirty required dose escalation. Patients received a median of 5 doses of S-LAR at conventional dose followed by up-titration of the dose for symptom control (20) and radiological progression (17). Median high dose of S-LAR was 40 mg (range: 40-90 mg) with a median of 8.5 high doses received. No treatment related toxicities were seen. The estimated 1-year survival for patients on conventional dose alone was 0.77 (95% CI of 0.50 to 0.91) and those on high-dose was 0.88 (95% CI of 0.68 to 0.96) (p=0.4777) while median time to any other intervention was 2.9 months versus 17.7 months (p=0.12). Dose escalation of S-LAR is well tolerated and may provide longer disease control.
Digital radiography can reduce scoliosis x-ray exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kling, T.F. Jr.; Cohen, M.J.; Lindseth, R.E.
1990-09-01
Digital radiology is a new computerized system of acquiring x-rays in a digital (electronic) format. It possesses a greatly expanded dose response curve that allows a very broad range of x-ray dose to produce a diagnostic image. Potential advantages include significantly reduced radiation exposure without loss of image quality, acquisition of images of constant density irrespective of under or over exposure, and reduced repeat rates for unsatisfactory films. The authors prospectively studied 30 adolescents with scoliosis who had both conventional (full dose) and digital (full, one-half, or one-third dose) x-rays. They found digital made AP and lateral image with allmore » anatomic areas clearly depicted at full and one-half dose. Digital laterals were better at full dose and equal to conventional at one-half dose. Cobb angles were easily measured on all one-third dose AP and on 8 of 10 one-third dose digital laterals. Digital clearly depicted the Risser sign at one-half and one-third dose and the repeat rate was nil in this study, indicating digital compensates well for exposure errors. The study indicates that digital does allow radiation dose to be reduced by at least one-half in scoliosis patients and that it does have improved image quality with good contrast over a wide range of x-ray exposure.« less
Acharya, Sahaja; Fischer-Valuck, Benjamin W; Mazur, Thomas R; Curcuru, Austen; Sona, Karl; Kashani, Rojano; Green, Olga; Ochoa, Laura; Mutic, Sasa; Zoberi, Imran; Li, H Harold; Thomas, Maria A
2016-11-15
To use magnetic resonance image guided radiation therapy (MR-IGRT) for accelerated partial-breast irradiation (APBI) to (1) determine intrafractional motion of the breast surgical cavity; and (2) assess delivered dose versus planned dose. Thirty women with breast cancer (stages 0-I) who underwent breast-conserving surgery were enrolled in a prospective registry evaluating APBI using a 0.35-T MR-IGRT system. Clinical target volume was defined as the surgical cavity plus a 1-cm margin (excluding chest wall, pectoral muscles, and 5 mm from skin). No additional margin was added for the planning target volume (PTV). A volumetric MR image was acquired before each fraction, and patients were set up to the surgical cavity as visualized on MR imaging. To determine the delivered dose for each fraction, the electron density map and contours from the computed tomography simulation were transferred to the pretreatment MR image via rigid registration. Intrafractional motion of the surgical cavity was determined by applying a tracking algorithm to the cavity contour as visualized on cine MR. Median PTV volume was reduced by 52% when using no PTV margin compared with a 1-cm PTV margin used conventionally. The mean (± standard deviation) difference between planned and delivered dose to the PTV (V95) was 0.6% ± 0.1%. The mean cavity displacement in the anterior-posterior and superior-inferior directions was 0.6 ± 0.4 mm and 0.6 ± 0.3 mm, respectively. The mean margin required for at least 90% of the cavity to be contained by the margin for 90% of the time was 0.7 mm (5th-95th percentile: 0-2.7 mm). Minimal intrafractional motion was observed, and the mean difference between planned and delivered dose was less than 1%. Assessment of efficacy and cosmesis of this MR-guided APBI approach is under way. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Mazur, Thomas R.
Purpose: To use magnetic resonance image guided radiation therapy (MR-IGRT) for accelerated partial-breast irradiation (APBI) to (1) determine intrafractional motion of the breast surgical cavity; and (2) assess delivered dose versus planned dose. Methods and Materials: Thirty women with breast cancer (stages 0-I) who underwent breast-conserving surgery were enrolled in a prospective registry evaluating APBI using a 0.35-T MR-IGRT system. Clinical target volume was defined as the surgical cavity plus a 1-cm margin (excluding chest wall, pectoral muscles, and 5 mm from skin). No additional margin was added for the planning target volume (PTV). A volumetric MR image was acquired beforemore » each fraction, and patients were set up to the surgical cavity as visualized on MR imaging. To determine the delivered dose for each fraction, the electron density map and contours from the computed tomography simulation were transferred to the pretreatment MR image via rigid registration. Intrafractional motion of the surgical cavity was determined by applying a tracking algorithm to the cavity contour as visualized on cine MR. Results: Median PTV volume was reduced by 52% when using no PTV margin compared with a 1-cm PTV margin used conventionally. The mean (± standard deviation) difference between planned and delivered dose to the PTV (V95) was 0.6% ± 0.1%. The mean cavity displacement in the anterior–posterior and superior–inferior directions was 0.6 ± 0.4 mm and 0.6 ± 0.3 mm, respectively. The mean margin required for at least 90% of the cavity to be contained by the margin for 90% of the time was 0.7 mm (5th-95th percentile: 0-2.7 mm). Conclusion: Minimal intrafractional motion was observed, and the mean difference between planned and delivered dose was less than 1%. Assessment of efficacy and cosmesis of this MR-guided APBI approach is under way.« less
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.
Harada, Kouji H.; Niisoe, Tamon; Imanaka, Mie; Takahashi, Tomoyuki; Amako, Katsumi; Fujii, Yukiko; Kanameishi, Masatoshi; Ohse, Kenji; Nakai, Yasumichi; Nishikawa, Tamami; Saito, Yuuichi; Sakamoto, Hiroko; Ueyama, Keiko; Hisaki, Kumiko; Ohara, Eiji; Inoue, Tokiko; Yamamoto, Kanako; Matsuoka, Yukiyo; Ohata, Hitomi; Toshima, Kazue; Okada, Ayumi; Sato, Hitomi; Kuwamori, Toyomi; Tani, Hiroko; Suzuki, Reiko; Kashikura, Mai; Nezu, Michiko; Miyachi, Yoko; Arai, Fusako; Kuwamori, Masanori; Harada, Sumiko; Ohmori, Akira; Ishikawa, Hirohiko; Koizumi, Akio
2014-01-01
Radiation dose rates were evaluated in three areas neighboring a restricted area within a 20- to 50-km radius of the Fukushima Daiichi Nuclear Power Plant in August–September 2012 and projected to 2022 and 2062. Study participants wore personal dosimeters measuring external dose equivalents, almost entirely from deposited radionuclides (groundshine). External dose rate equivalents owing to the accident averaged 1.03, 2.75, and 1.66 mSv/y in the village of Kawauchi, the Tamano area of Soma, and the Haramachi area of Minamisoma, respectively. Internal dose rates estimated from dietary intake of radiocesium averaged 0.0058, 0.019, and 0.0088 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. Dose rates from inhalation of resuspended radiocesium were lower than 0.001 mSv/y. In 2012, the average annual doses from radiocesium were close to the average background radiation exposure (2 mSv/y) in Japan. Accounting only for the physical decay of radiocesium, mean annual dose rates in 2022 were estimated as 0.31, 0.87, and 0.53 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. The simple and conservative estimates are comparable with variations in the background dose, and unlikely to exceed the ordinary permissible dose rate (1 mSv/y) for the majority of the Fukushima population. Health risk assessment indicates that post-2012 doses will increase lifetime solid cancer, leukemia, and breast cancer incidences by 1.06%, 0.03% and 0.28% respectively, in Tamano. This assessment was derived from short-term observation with uncertainties and did not evaluate the first-year dose and radioiodine exposure. Nevertheless, this estimate provides perspective on the long-term radiation exposure levels in the three regions. PMID:24567380
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764
Rossano, Joseph W; Jones, Wendell E; Lerakis, Stamatios; Millin, Michael G; Nemeth, Ira; Cassan, Pascal; Shook, Joan; Kennedy, Siobán; Markenson, David; Bradley, Richard N
2015-07-01
Automated external defibrillators (AEDs) have been used successfully in many populations to improve survival for out-of-hospital cardiac arrest. While ventricular fibrillation and pulseless ventricular tachycardia are more prevalent in adults, these arrhythmias do occur in infants. The Scientific Advisory Council of the American Red Cross reviewed the literature on the use of AEDs in infants in order to make recommendations on use in the population. The Cochrane library and PubMed were searched for studies that included AEDs in infants, any external defibrillation in infants, and simulation studies of algorithms used by AEDs on pediatric arrhythmias. There were 4 studies on the accuracy of AEDs in recognizing pediatric arrhythmias. Case reports (n = 2) demonstrated successful use of AED in infants, and a retrospective review (n = 1) of pediatric pads for AEDs included infants. Six studies addressed defibrillation dosages used. The algorithms used by AEDs had high sensitivity and specificity for pediatric arrhythmias and very rarely recommended a shock inappropriately. The energy doses delivered by AEDs were high, although in the range that have been used in out-of-hospital arrest. In addition, there are data to suggest that 2 to 4 J/kg may not be effective defibrillation doses for many children. In the absence of prompt defibrillation for ventricular fibrillation or pulseless ventricular tachycardia, survival is unlikely. Automated external defibrillators should be used in infants with suspected cardiac arrest, if a manual defibrillator with a trained rescuer is not immediately available. Automated external defibrillators that attenuate the energy dose (eg, via application of pediatric pads) are recommended for infants. If an AED with pediatric pads is not available, the AED with adult pads should be used.
Technologist radiation exposure in routine clinical practice with 18F-FDG PET.
Guillet, Benjamin; Quentin, Pierre; Waultier, Serge; Bourrelly, Marc; Pisano, Pascale; Mundler, Olivier
2005-09-01
The use of 18F-FDG for clinical PET studies increases technologist radiation dose exposure because of the higher gamma-radiation energy of this isotope than of other conventional medical gamma-radiation-emitting isotopes. Therefore, 18F-FDG imaging necessitates stronger radiation protection requirements. The aims of this study were to assess technologist whole-body and extremity exposure in our PET department and to evaluate the efficiency of our radiation protection devices (homemade syringe drawing device, semiautomated injector, and video tracking of patients). Radiation dose assessment was performed for monodose as well as for multidose 18F-FDG packaging with both LiF thermoluminescence dosimeters (TLD) and electronic personal dosimeters (ED) during 5 successive 18F-FDG PET steps (from syringe filling to patient departure). The mean +/- SD total effective doses received by technologists (n = 50) during all of the working steps were 3.24 +/- 2.1 and 3.01 +/- 1.4 microSv, respectively, as measured with ED and TLD (345 +/- 84 MBq injected). These values were confirmed by daily TLD technologist whole-body dose measurements (2.98 +/- 1.8 microSv; 294 +/- 78 MBq injected; n = 48). Finger irradiation doses during preparation of single 18F-FDG syringes were 204.9 +/- 24 and 198.4 +/- 23 microSv with multidose vials (345 +/- 93 MBq injected) and 127.3 +/- 76 and 55.9 +/- 47 microSv with monodose vials (302 +/- 43 MBq injected) for the right hand and the left hand, respectively. The protection afforded by the semiautomated injector, estimated as the ratio of the doses received by TLD placed on the syringe shield and on the external face of the injector, was near 2,000. These results showed that technologist radiation doses in our PET department were lower than those reported in the literature. This finding may be explained by the use of a homemade syringe drawing device, a semiautomated injector, and patient video tracking, allowing a shorter duration of contact between the technologist and the patient. Extrapolation of these results to an annual dose (4 patients per day per technologist) revealed that the annual extrapolated exposure values remained under the authorized limits for workers classified to work in a radioactivity-controlled area.
Dose fractionation and single subject studies in PET
NASA Astrophysics Data System (ADS)
Balakrishnan, Karthikayan
Conventional positron emission tomography (PET) for cognitive brain studies typically relies on information collected from the distribution of decays following an injection of 15O-labeled water. The number of injections that can be administered to the subject are constrained by radiation dose to the subject and total length of the PET scan. The standard protocol involves 8--10 injections of H152O separated by approximately 5--7 half-lives of 15O. The number of activation conditions that can be realistically studied in a standard PET session is between 8 and 10. This work investigates the physiological response of a simulated subject to H152O injections that are administered in small doses (1--5 mCi) with short inter-injection intervals (40--180 seconds). A larger number of activation conditions are presented to the subject with a wider variation in the activation paradigm. Repeat conditions are studies. Signal averaging methods are feasible with this method of dose administration. Sinograms from scans with similar activation conditions are summed together before reconstruction. The signal in the primary activation region of the brain is shown to increase while suppressing the contribution of secondary activation regions in the brain. The contrast of the final image is similarly increased which leads to easier identification of the primary activation region. An automated H152O -production unit controlled by a PC running LabView software was developed to produce the dose required for the injection sequence by controlling the flow of H152O -vapor that diffuses across a semi-permeable membrane into saline. The unit is capable of producing H152O rapidly for both the standard and the proposed dose administration methods. The system also detects the bolus arrival time at the subject's lungs using a small external plastic detector. Activation sequence commences with the rise in radioactivity observed by the detector. The simulations indicate that inter-injection intervals should be approximately 90 seconds apart. Contrast in the resulting images are higher than the standard methods. Secondary activation regions that confound primary activations are absent in the low-dose method. The results also indicate that the automated H152O maker is capable of producing and injecting the dose in the required succession under appropriate computer control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Marks, Lawrence B.; Bentzen, Soren M.
Purpose: To quantitatively assess changes in computed tomography (CT)–defined normal lung tissue density after conventional and hypofractionated radiation therapy (RT). Methods and Materials: The pre-RT and post-RT CT scans from 118 and 111 patients receiving conventional and hypofractionated RT, respectively, at 3 institutions were registered to each other and to the 3-dimensional dose distribution to quantify dose-dependent changes in normal lung tissue density. Dose-response curves (DRC) for groups of patients receiving conventional and hypofractionated RT were generated for each institution, and the frequency of density changes >80 Hounsfield Units (HU) was modeled depending on the fractionation type using a Probitmore » model for different follow-up times. Results: For the pooled data from all institutions, there were significant differences in the DRC between the conventional and hypofractionated groups; the respective doses resulting in 50% complication risk (TD{sub 50}) were 62 Gy (95% confidence interval [CI] 57-67) versus 36 Gy (CI 33-39) at <6 months, 48 Gy (CI 46-51) versus 31 Gy (CI 28-33) at 6-12 months, and 47 Gy (CI 45-49) versus 35 Gy (32-37) at >12 months. The corresponding m values (slope of the DRC) were 0.52 (CI 0.46-0.59) versus 0.31 (CI 0.28-0.34) at <6 months, 0.46 (CI 0.42-0.51) versus 0.30 (CI 0.26-0.34) at 6-12 months, and 0.45 (CI 0.42-0.50) versus 0.31 (CI 0.27-0.35) at >12 months (P<.05 for all comparisons). Conclusion: Compared with conventional fractionation, hypofractionation has a lower TD{sub 50} and m value, both suggesting an increased degree of normal tissue density sensitivity with hypofractionation.« less
Alternate space shuttle concepts study. Part 2: Technical summary. Volume 2: Orbiter definition
NASA Technical Reports Server (NTRS)
1971-01-01
A study was conducted of a three-engined external hydrogen tank orbiter/heat sink booster utilizing 415 K sea level thrust engines. The results of the study, pertaining to the orbiter portion of the configuration, are presented. A complete summary of characteristics is given for the external tank configuration along with some comparative data for a conventional internal tank configuration.
Drozdovitch, Vladimir; Khrouch, Valeri; Maceika, Evaldas; Zvonova, Irina; Vlasov, Oleg; Bratilova, Angelica; Gavrilin, Yury; Goulko, Guennadi; Hoshi, Masaharu; Kesminiene, Ausrele; Shinkarev, Sergey; Tenet, Vanessa; Cardis, Elisabeth; Bouville, Andre
2010-01-01
A population-based case-control study of thyroid cancer was carried out in contaminated regions of Belarus and Russia among persons who were exposed during childhood and adolescence to fallout from the Chernobyl accident. For each study subject, individual thyroid doses were reconstructed for the following pathways of exposure: (1) intake of 131I via inhalation and ingestion; (2) intake of short-lived radioiodines (132I, 133I, and 135I) and radiotelluriums (131mTe, 132Te) via inhalation and ingestion; (3) external dose from radionuclides deposited on the ground; and (4) ingestion of 134Cs and 137Cs. A series of intercomparison exercises validated the models used for reconstruction of average doses to populations of specific age groups as well as of individual doses. Median thyroid doses from all factors for study subjects were estimated to be 0.37 and 0.034 Gy in Belarus and Russia, respectively. The highest individual thyroid doses among the subjects were 10.2 Gy in Belarus and 5.3 Gy in Russia. Iodine-131 intake was the main pathway for thyroid exposure. Estimated doses from short-lived radioiodines and radiotelluriums ranged up to 0.53 Gy. Reconstructed individual thyroid doses from external exposure ranged up to 0.1 Gy, while those from internal exposure due to ingested cesium did not exceed 0.05 Gy. The uncertainty of the reconstructed individual thyroid doses, characterized by the geometric standard deviation, varies from 1.7 to 4.0 with a median of 2.2. PMID:20539120
NASA Astrophysics Data System (ADS)
Lye, J. E.; Butler, D. J.; Oliver, C. P.; Alves, A.; Lehmann, J.; Gibbons, F. P.; Williams, I. M.
2016-07-01
Dosimetry protocols for external beam radiotherapy currently in use, such as the IAEA TRS-398 and AAPM TG-51, were written for conventional linear accelerators. In these accelerators, a flattening filter is used to produce a beam which is uniform at water depths where the ionization chamber is used to measure the absorbed dose. Recently, clinical linacs have been implemented without the flattening filter, and published theoretical analysis suggested that with these beams a dosimetric error of order 0.6% could be expected for IAEA TRS-398, because the TPR20,10 beam quality index does not accurately predict the stopping power ratio (water to air) for the softer flattening-filter-free (FFF) beam spectra. We measured doses on eleven FFF linacs at 6 MV and 10 MV using both dosimetry protocols and found average differences of 0.2% or less. The expected shift due to stopping powers was not observed. We present Monte Carlo k Q calculations which show a much smaller difference between FFF and flattened beams than originally predicted. These results are explained by the inclusion of the added backscatter plates and build-up filters used in modern clinical FFF linacs, compared to a Monte Carlo model of an FFF linac in which the flattening filter is removed and no additional build-up or backscatter plate is added.
Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A
2012-07-01
Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.
Proposed Oral Reference Dose (RfD) for Barium and Compounds (Final Report, 2004)
This document is the final report from the 2004 external peer review of the Proposed Oral Reference Dose (RfD) for Barium and Compounds, prepared by the U.S. Environmental Protection Agency (EPA), National Center for Environmental Assessment (NCEA), for the Integrated Risk...
Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.
Yasutaka, Tetsuo; Naito, Wataru
2016-01-01
Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design and optimization of a novel 3D detector: The 3D-open-shell-electrode detector
NASA Astrophysics Data System (ADS)
Liu, Manwen; Tan, Jian; Li, Zheng
2018-04-01
A new type of three-dimensional (3D) detector, namely 3D-Open-Shell-Electrode Detector (3DOSED), is proposed in this study. In a 3DOSED, the trench electrode can be etched all the way through the detector thickness, totally eliminating the low electric field region existed in the conventional 3D-Trench-Electrode detector. Full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Through comparing of the simulation results of the detector, we can obtain the best design of the 3SOSED. In addition, simulation results show that, as compared to the conventional 3D detector, the proposed 3DOSED can improve not only detector charge collection efficiency but also its radiation hardness with regard to solving the trapping problem in the detector bulk. What is more, it has been shown that detector full depletion voltage is also slightly reduced, which can improve the utility aspects of the detector. When compared to the conventional 3D detector, we find that the proposed novel 3DOSED structure has better electric potential and electric field distributions, and better electrical properties such as detector full depletion voltage. In 3DOSED array, each pixel cell is isolated from each other by highly doped trenches, but also electrically and physically connected with each other through the remaining silicon bulk between broken electrodes.
SU-E-T-547: Rotating Shield Brachytherapy (RSBT) for Cervical Cancer.
Yang, W; Kim, Y; Liu, Y; Wu, X; Flynn, R
2012-06-01
To assess rotating shield brachytherapy (RSBT) delivered with the electronic brachytherapy (eBT) source comparing to intracavitary (IC) and intracavitary plus supplemental interstitial brachytherapy (IC+IS BT) delivered with conventional isotope radiation source. IC, IC+IS and RSBT plan was simulated for 5 patients with advanced cervical cancer (>40cc). One BT plan for each patient (fraction 1) guided by magnetic resonance imaging (MRI) was used in our treatment planning system (TPS). A bio- and MRI-compatible polycarbonate (Makrolon Rx3158) intrauterine applicator was simulated for IC and RSBT, and the vienna applicator was simulated for IC+IS BT. 192Ir was used as the radiation source of IC and IC+IS BT; Xoft AxxentTM eBT source was used for RSBT. A 0.5 mm thick tungsten shield was used for RS-BT with different azimuthal and zenith angles. The total dose for each plan was escalated as the external beam radiation therapy (EBRT) plus BT times fraction number (5 in our case). RSBT and IC+IS BT had higher dose conformity in terms of D90 than IC BT for all the patients. The advantage of RSBT over IC+IS BT was dependent on the shield emission angle, tumor shape and tandem applicator location. The delivery time of RSBT was increased as finer emission angle was selected. RSBT is a less-invasive potential alternative to conventional IC and IC+IS BT for treating bulky (>40cc) cervical cancer. RSBT can provide better treatment outcome with clinically acceptable increased delivery time if proper emission angle is selected based on the tumor shape and tandem applicator location. supported in part by NSF grants CCF-0830402 and CCF-0844765; and the NIH grant K25-CA123112, and American Cancer Society seed grant (IRG-77-004-31). © 2012 American Association of Physicists in Medicine.
Summary of Building Protection Factor Studies for External Exposure to Ionizing Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, Michael B.; Kane, Jave; Nasstrom, John
Radiation dose assessments are used to help inform decisions to minimize health risks in the event of an atmospheric release of radioactivity including, for example, from a Radiological Dispersal Device, an Improvised Nuclear Device detonation, or a Nuclear Power Plant accident. During these incidents, radiation dose assessments for both indoor and outdoor populations are needed to make informed decisions. These dose assessments inform emergency plans and decisions including, for example, identifying areas in which people should be sheltered and determining when controlled population evacuations should be made. US dose assessment methodologies allow consideration of the protection, and therefore dose reduction,more » that buildings provide their occupants. However, these methodologies require an understanding of the protection provided by various building types that is currently lacking. To help address this need, Lawrence Livermore National Laboratory, in cooperation with Sandia National Laboratories and the Nuclear Regulatory Commission, was tasked with (a) identifying prior building protection studies, (b) extracting results relevant to US building construction, and (c) summarizing building protection by building type. This report focuses primarily on the protection against radiation from outdoor fallout particles (external gamma radiation).« less
Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper
2012-05-01
To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Estimation of external dose by car-borne survey in Kerala, India.
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.
Kubale, Travis L; Daniels, Robert D; Yiin, James H; Couch, James; Schubauer-Berigan, Mary K; Kinnes, Gregory M; Silver, Sharon R; Nowlin, Susan J; Chen, Pi-Hsueh
2005-12-01
A nested case-control study using conditional logistic regression was conducted to evaluate the exposure-response relationship between external ionizing radiation exposure and leukemia mortality among civilian workers at the Portsmouth Naval Shipyard (PNS), Kittery, Maine. The PNS civilian workers received occupational radiation exposure while performing construction, overhaul, repair and refueling activities on nuclear-powered submarines. The study age-matched 115 leukemia deaths with 460 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992. In addition to radiation doses received in the workplace, a secondary analysis incorporating doses from work-related medical X rays and other occupational radiation exposures was conducted. A significant positive association was found between leukemia mortality and external radiation exposure, adjusting for gender, radiation worker status, and solvent exposure duration (OR = 1.08 at 10 mSv of exposure; 95% CI = 1.01, 1.16). Solvent exposure (including benzene and carbon tetrachloride) was also significantly associated with leukemia mortality adjusting for radiation dose, radiation worker status, and gender. Incorporating doses from work-related medical X rays did not change the estimated leukemia risk per unit of dose.
Ducasse, Eric; Cosset, Jean-Marc; Eschwege, François; Creusy, Colette; Chevalier, Jacques; Puppinck, Paul; Lartigau, Eric
2004-01-01
In recent years there has been intensive research on the use of ionizing radiation for inhibition of intimal hyperplasia (IH). Results have clearly established that beta ionizing radiation delivered from an endoluminal source after angioplasty inhibits intimal restenosis. This effect has been confirmed by recent multicenter clinical trials in patients undergoing coronary dilatation. The purpose of this study was to determine if gamma radiation therapy delivered superficially from an external source also reduced smooth muscle cell proliferation in two animals models-the first involving experimentally induced restenosis and the second involving anastomosis between a prosthesis and artery. Ultimately we hope to develop a therapeutic application for patients undergoing peripheral anastomoses, especially in the lower extremities. Two different animal models were used in this two-stage study. The first-stage rabbit model (model 1) involved balloon injury of the aorta to validate the dose effect of external beam irradiation. The second-stage porcine model (model 2) involved aortic bypass followed by external beam irradiation of the distal anastomosis site. In model 1 a total of 56 rabbits were studied. They were divided into five groups including one control group in which external radiation was not applied after balloon injury and four test groups in which external radiation was applied in a single fraction on day 0 at four different doses: 10 grays, 15 grays, 20 grays, and 25 grays. In model 2, a total of 24 pigs underwent aortic bypass with a 6-mm PTFE graft followed by irradiation of the distal end-to-side anastomosis at a dose of 20 grays on day 0. In both models specimens were harvested after 6 weeks and studied histologically after staining with HES and orcein, histomorphometrically by measuring intimal hyperplasia, and immunohistochemically using actin and factor VIII/von Willebrand factor (F VIII/vWF). The zones of study on the anastomosis were separated into base of the artery to the tip and heel of the anastomosis and the edge of the arteriotomy. Measurements were compared using the Mann Whitney test. In the first-stage model designed to study IH in rabbits, mean intimal and medial thickness values and the intima-to-media ratio showed no difference between the control group and the groups irradiated at doses of 10 grays and 15 grays (p = 0.111, p = 0.405, and p = 0.14); (p = 0.301, p = 0.206, and p = 0.199). Conversely, there was a significant difference between the control group and the groups irradiated at 20 grays and 25 grays (p < 0.0001, p = 0.107 and p = 0.008; p = 0.008, p = 0.155, and p = 0.008). Histological examination demonstrated extensive changes in the wall with high-grade fibrosis after application of ionizing radiation. In the second-stage swine model, irradiation significantly inhibited development of IH at the level of anastomosis both at the base of the artery (p < 0.01) (tip 0.06 vs. 0.27 mm and heel 0.04 vs. 0.36) and at the level of the arteriotomy at the suture site (p < 0.001) (0.13 vs. 0.86 mm). Immunochemical analysis of the thickened zones showed a positive reaction of endothelial cells to smooth muscle actin and F VII/vWF. Like irradiation applied using an endoluminal source, superficial gamma ionizing radiation from an external source inhibits IH. Analysis of the dose effect showed that the overall dose must be between 15 and 20 grays. External radiation also reduces overall IH at the anastomosis between a prosthesis and artery. Although these experimental data are promising, further study will probably be necessary before attempting to undertake clinical trials using external beam radiation therapy for patients undergoing peripheral anastomoses.
Contribution of internal exposures to the radiological consequences of the Chernobyl accident.
Balonov, M I; Anspaugh, L R; Bouville, A; Likhtarev, I A
2007-01-01
The main pathways leading to exposure of members of the general public due to the Chernobyl accident were external exposure from radionuclides deposited on the ground and ingestion of contaminated terrestrial food products. The collective dose to the thyroid was nearly 1.5 million man Gy in Belarus, Russia and Ukraine with nearly half received by children and adolescents. The collective effective dose received in 1986-2005 by approximately five million residents living in the affected areas of the three countries was approximately 50,000 man Sv with approximately 40% from ingestion. That contribution might have been larger if countermeasures had not been applied. The main radionuclide contributing to both external and internal effective dose is 137Cs with smaller contributions of 134Cs and 90Sr and negligible contribution of transuranic elements. The major demonstrated radiation-caused health effect of the Chernobyl accident has been an elevated incidence of thyroid cancer in children.
Electron-proton spectrometer: Summary for critical design review
NASA Technical Reports Server (NTRS)
1972-01-01
The electron-proton spectrometer (EPS) is mounted external to the Skylab module complex on the command service module. It is designed to make a 2 pi omni-directional measurement of electrons and protons which result from solar flares or enhancement of the radiation belts. The EPS data will provide accurate radiation dose information so that uncertain Relative biological effectiveness factors are eliminated by measuring the external particle spectra. Astronaut radiation safety, therefore, can be ensured, as the EPS data can be used to correct or qualify radiation dose measurements recorded by other radiation measuring instrumentation within the Skylab module complex. The EPS has the capability of measuring and extremely wide dynamic radiation dose rate range, approaching 10 to the 7th power. Simultaneously the EPS has the capability to process data from extremely high radiation fields such as might be encountered in the wake of an intense solar flare.
Synthesized Mammography: Clinical Evidence, Appearance, and Implementation.
Durand, Melissa A
2018-04-04
Digital breast tomosynthesis (DBT) has improved conventional mammography by increasing cancer detection while reducing recall rates. However, these benefits come at the cost of increased radiation dose. Synthesized mammography (s2D) has been developed to provide the advantages of DBT with nearly half the radiation dose. Since its F.D.A. approval, multiple studies have evaluated the clinical performance of s2D. In clinical practice, s2D images are not identical to conventional 2D images and are designed for interpretation with DBT as a complement. This article reviews the present literature to assess whether s2D is a practical alternative to conventional 2D, addresses the differences in mammographic appearance of findings, and provides suggestions for implementation into clinical practice.
Roch-Lefèvre, Sandrine; Grégoire, Eric; Martin-Bodiot, Cécile; Flegal, Matthew; Fréneau, Amélie; Blimkie, Melinda; Bannister, Laura; Wyatt, Heather; Barquinero, Joan-Francesc; Roy, Laurence; Benadjaoud, Mohamed; Priest, Nick; Jourdain, Jean-René; Klokov, Dmitry
2018-06-08
The aim of this study was to carry out a comprehensive examination of potential genotoxic effects of low doses of tritium delivered chronically to mice and to compare these effects to the ones resulting from equivalent doses of gamma-irradiation. Mice were chronically exposed for one or eight months to either tritiated water (HTO) or organically bound tritium (OBT) in drinking water at concentrations of 10 kBq/L, 1 MBq/L or 20 MBq/L. Dose rates of internal β-particle resulting from such tritium treatments were calculated and matching external gamma-exposures were carried out. We measured cytogenetic damage in bone marrow and in peripheral blood lymphocytes (PBLs) and the cumulative tritium doses (0.009 - 181 mGy) were used to evaluate the dose-response of OBT in PBLs, as well as its relative biological effectiveness (RBE). Neither tritium, nor gamma exposures produced genotoxic effects in bone marrow. However, significant increases in chromosome damage rates in PBLs were found as a result of chronic OBT exposures at 1 and 20 M Bq/L, but not at 10 kBq/L. When compared to an external acute gamma-exposure ex vivo , the RBE of OBT for chromosome aberrations induction was evaluated to be significantly higher than 1 at cumulative tritium doses below 10 mGy. Although found non-existent at 10 kBq/L (the WHO limit), the genotoxic potential of low doses of tritium (>10 kBq/L), mainly OBT, may be higher than currently assumed.
Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop
2018-02-21
Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.
NASA Astrophysics Data System (ADS)
Sothmann, T.; Gauer, T.; Wilms, M.; Werner, R.
2017-12-01
The purpose of this study is to introduce a novel approach to incorporate patient-specific breathing variability information into 4D dose simulation of volumetric arc therapy (VMAT)-based stereotactic body radiotherapy (SBRT) of extracranial metastases. Feasibility of the approach is illustrated by application to treatment planning and motion data of lung and liver metastasis patients. The novel 4D dose simulation approach makes use of a regression-based correspondence model that allows representing patient motion variability by breathing signal-steered interpolation and extrapolation of deformable image registration motion fields. To predict the internal patient motion during treatment with only external breathing signal measurements being available, the patients’ internal motion information and external breathing signals acquired during 4D CT imaging were correlated. Combining the correspondence model, patient-specific breathing signal measurements during treatment and time-resolved information about dose delivery, reconstruction of a motion variability-affected dose becomes possible. As a proof of concept, the proposed approach is illustrated by a retrospective 4D simulation of VMAT-based SBRT treatment of ten patients with 15 treated lung and liver metastases and known clinical endpoints for the individual metastases (local metastasis recurrence yes/no). Resulting 4D-simulated dose distributions were compared to motion-affected dose distributions estimated by standard 4D CT-only dose accumulation and the originally (i.e. statically) planned dose distributions by means of GTV D98 indices (dose to 98% of the GTV volume). A potential linkage of metastasis-specific endpoints to differences between GTV D98 indices of planned and 4D-simulated dose distributions was analyzed.
Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.
Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-05-01
In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.
Ishikawa, Tetsuo; Takahashi, Hideto; Yasumura, Seiji; Ohtsuru, Akira; Sakai, Akira; Ohira, Tetsuya; Sakata, Ritsu; Ozasa, Kotaro; Akahane, Keiichi; Yonai, Shunsuke; Kurihara, Osamu; Kamiya, Kenji; Abe, Masafumi
2017-09-25
After the Fukushima Dai-ichi Nuclear Power Plant accident, the Fukushima Health Management Survey (FHMS) was launched. The Basic Survey, a component of FHMS, is a questionnaire used to survey residents across the Fukushima Prefecture about their behaviour in the first 4 months after the accident. The questionnaire findings are used to determine individual external doses by linking behaviour data to a computer programme with daily gamma ray dose rate maps, drawn after the accident. Through 30 June 2015, the response rate was only 27.2% (558 550 population), indicating that the findings might not be generalisable because of poor representativeness of the population. The objective of this study was to clarify if the data from the FHMS Basic Survey were representative of the entire population, by conducting a new survey to compare the external doses between non-respondents and respondents in the previous survey. A total of 5350 subjects were randomly selected from 7 local regions of Fukushima Prefecture. An interview survey was conducted with the non-respondents to the FHMS Basic Survey. A total of 990 responses were obtained from the previous non-responders by interview survey. For the regions Kempoku, Kenchu, Kennan, Aizu, Minami-Aizu, Soso, and Iwaki, differences in mean effective dose (95% confidence interval) in mSv between the non-responders and previous responders were 0.12 (0.01-0.23), -0.09 (-0.21-0.03), -0.06 (-0.18-0.07), 0.05 (-0.04-0.14), 0.01 (-0.01-0.02), 0.09 (0.01-0.17), 0.09 (0.00-0.17), respectively. The differences fall neither within the interval (-∞, -0.25) nor within the interval (0.25, ∞). These findings imply that mean effective doses between the previous and new respondents were not different, with a significantly indifferent region of 0.25 mSv according to equivalence tests. The present study indicates that the dose distribution obtained from about one-quarter of Fukushima residents represents the dose distribution for the entire Fukushima Prefecture.
Kryuchkov, Victor; Chumak, Vadim; Maceika, Evaldas; Anspaugh, Lynn R.; Cardis, Elisabeth; Bakhanova, Elena; Golovanov, Ivan; Drozdovitch, Vladimir; Luckyanov, Nickolas; Kesminiene, Ausrele; Voillequé, Paul; Bouville, André
2010-01-01
Between 1986 and 1990, several hundred thousand workers, called “liquidators” or “clean-up workers”, took part in decontamination and recovery activities within the 30-km zone around the Chernobyl nuclear power plant in Ukraine, where a major accident occurred in April 1986. The Chernobyl liquidators were mainly exposed to external ionizing radiation levels that depended primarily on their work locations and the time after the accident when the work was performed. Because individual doses were often monitored inadequately or were not monitored at all for the majority of liquidators, a new method of photon (i.e. gamma and x-rays) dose assessment, called “RADRUE” (Realistic Analytical Dose Reconstruction with Uncertainty Estimation) was developed to obtain unbiased and reasonably accurate estimates for use in three epidemiologic studies of hematological malignancies and thyroid cancer among liquidators. The RADRUE program implements a time-and-motion dose reconstruction method that is flexible and conceptually easy to understand. It includes a large exposure rate database and interpolation and extrapolation techniques to calculate exposure rates at places where liquidators lived and worked within ~70 km of the destroyed reactor. The RADRUE technique relies on data collected from subjects’ interviews conducted by trained interviewers, and on expert dosimetrists to interpret the information and provide supplementary information, when necessary, based upon their own Chernobyl experience. The RADRUE technique was used to estimate doses from external irradiation, as well as uncertainties, to the bone-marrow for 929 subjects and to the thyroid gland for 530 subjects enrolled in epidemiologic studies. Individual bone-marrow dose estimates were found to range from less than one μGy to 3,300 mGy, with an arithmetic mean of 71 mGy. Individual thyroid dose estimates were lower and ranged from 20 μGy to 507 mGy, with an arithmetic mean of 29 mGy. The uncertainties, expressed in terms of geometric standard deviations, ranged from 1.1 to 5.8, with an arithmetic mean of 1.9. PMID:19741357
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnelli, A; Xia, P
2015-06-15
Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, amore » large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.« less
Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis.
Feagan, Brian G; Macdonald, John K
2012-10-17
Oral 5-aminosalicylic acid (5-ASA) preparations were intended to avoid the adverse effects of sulfasalazine (SASP) while maintaining its therapeutic benefits. Previously, it was found that 5-ASA drugs in doses of at least 2 g/day, were more effective than placebo but no more effective than SASP for inducing remission in ulcerative colitis. This updated review includes more recent studies and evaluates the efficacy and safety of 5-ASA preparations used for the treatment of mild to moderately active ulcerative colitis. The primary objectives were to assess the efficacy, dose-responsiveness and safety of oral 5-ASA compared to placebo, SASP, or 5-ASA comparators for induction of remission in active ulcerative colitis. A secondary objective of this systematic review was to compare the efficacy and safety of once daily dosing of oral 5-ASA with conventional (two or three times daily) dosing regimens. A computer-assisted literature search for relevant studies (inception to January 20, 2012) was performed using MEDLINE, EMBASE and the Cochrane Library. Review articles and conference proceedings were also searched to identify additional studies. Studies were accepted for analysis if they were randomized controlled clinical trials of parallel design, with a minimum treatment duration of four weeks. Studies of oral 5-ASA therapy for treatment of patients with active ulcerative colitis compared with placebo, SASP or other formulations of 5-ASA were considered for inclusion. Studies that compared once daily 5-ASA treatment with conventional dosing of 5-ASA (two or three times daily) and 5-ASA dose ranging studies were also considered for inclusion. The outcomes of interest were the failure to induce global/clinical remission, global/clinical improvement, endoscopic remission, endoscopic improvement, adherence, adverse events, withdrawals due to adverse events, and withdrawals or exclusions after entry. Trials were separated into five comparison groups: 5-ASA versus placebo, 5-ASA versus sulfasalazine, once daily dosing versus conventional dosing, 5-ASA versus comparator 5-ASA, and 5-ASA dose-ranging. Placebo-controlled trials were subgrouped by dosage. SASP-controlled trials were subgrouped by 5-ASA/SASP mass ratios. Once daily versus conventional dosing studies were subgrouped by formulation. 5-ASA-controlled trials were subgrouped by common 5-ASA comparators (e.g. Asacol, Claversal, Salofalk and Pentasa). Dose-ranging studies were subgrouped by 5-ASA formulation. We calculated the relative risk (RR) and 95% confidence intervals (95% CI) for each outcome. Data were analyzed on an intention to treat basis. Forty-eight studies (7776 patients) were included. The majority of included studies were rated as low risk of bias. 5-ASA was significantly superior to placebo with regard to all measured outcome variables. Seventy-two per cent of 5-ASA patients failed to enter clinical remission compared to 85% of placebo patients (RR 0.86, 95% CI 0.81 to 0.91). A dose-response trend for 5-ASA was also observed. No statistically significant differences in efficacy were found between 5-ASA and SASP. Fifty-four per cent of 5-ASA patients failed to enter remission compared to 58% of SASP patients (RR 0.90, 95% CI 0.77 to 1.04). No statistically significant differences in efficacy or adherence were found between once daily and conventionally dosed 5-ASA. Forty-two per cent of once daily patients failed to enter clinical remission compared to 44% of conventionally dosed patients (RR 0.95, 95% CI 0.82 to 1.10). Eight per cent of patients dosed once daily failed to adhere to their medication regimen compared to 6% of conventionally dosed patients (RR 1.36, 95% CI 0.64 to 2.86). There does not appear to be any difference in efficacy among the various 5-ASA formulations. Forty-eight per cent of patients in the 5-ASA group failed to enter remission compared to 50% of patients in the 5-ASA comparator group (RR 0.94, 95% CI 0.86 to 1.03). A pooled analysis of the ASCEND (I, II and III, n = 1459 patients) studies found no statistically significant difference in clinical improvement between Asacol 4.8 g/day and 2.4 g/day used for the treatment of moderately active ulcerative colitis. Thirty-seven per cent of patients in the 4.8 g/day group failed to improve clinically compared to 41% of patients in the 2.4 g/day group (RR 0.89; 95% CI 0.78 to 1.01). Subgroup analysis indicated that patients with moderate disease may benefit from the higher dose of 4.8 g/day. One study compared (n = 123 patients) Pentasa 4 g/day to 2.25 g/day in patients with moderate disease. Twenty-five per cent of patients in the 4 g/day group failed to improve clinically compared to 57% of patients in the 2.25 g/day group (RR 0.44; 95% CI 0.27 to 0.71). A pooled analysis of two studies comparing MMX mesalamine 4.8 g/day to 2.4 g/day found no statistically significant difference in efficacy (RR 1.03, 95% CI 0.82 to 1.29). 5-ASA was generally safe and common adverse events included flatulence, abdominal pain, nausea, diarrhea, headache and worsening ulcerative colitis. There were no statistically significant differences in the incidence of adverse events between 5-ASA and placebo, once daily and conventionally dosed 5-ASA, 5-ASA and comparator 5-ASA formulation and 5-ASA dose ranging (high dose versus low dose) studies. SASP was not as well tolerated as 5-ASA. Twenty-nine percent of SASP patients experienced an adverse event compared to 15% of 5-ASA patients (RR 0.48, 95% CI 0.37 to 0.63). 5-ASA was superior to placebo and no more effective than SASP. Considering their relative costs, a clinical advantage to using oral 5-ASA in place of SASP appears unlikely. 5-ASA dosed once daily appears to be as efficacious and safe as conventionally dosed 5-ASA. Adherence does not appear to be enhanced by once daily dosing in the clinical trial setting. It is unknown if once daily dosing of 5-ASA improves adherence in a community-based setting. There do not appear to be any differences in efficacy or safety among the various 5-ASA formulations. A daily dosage of 2.4 g appears to be a safe and effective induction therapy for patients with mild to moderately active ulcerative colitis. Patients with moderate disease may benefit from an initial dose of 4.8 g/day.
Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis.
Wang, Yongjun; Parker, Claire E; Bhanji, Tania; Feagan, Brian G; MacDonald, John K
2016-04-21
Oral 5-aminosalicylic acid (5-ASA) preparations were intended to avoid the adverse effects of sulfasalazine (SASP) while maintaining its therapeutic benefits. Previously, it was found that 5-ASA drugs in doses of at least 2 g/day, were more effective than placebo but no more effective than SASP for inducing remission in ulcerative colitis. This updated review includes more recent studies and evaluates the efficacy and safety of 5-ASA preparations used for the treatment of mild to moderately active ulcerative colitis. The primary objectives were to assess the efficacy, dose-responsiveness and safety of oral 5-ASA compared to placebo, SASP, or 5-ASA comparators for induction of remission in active ulcerative colitis. A secondary objective of this systematic review was to compare the efficacy and safety of once daily dosing of oral 5-ASA with conventional (two or three times daily) dosing regimens. A computer-assisted literature search for relevant studies (inception to July 9, 2015) was performed using MEDLINE, EMBASE and the Cochrane Library. Review articles and conference proceedings were also searched to identify additional studies. Studies were accepted for analysis if they were randomized controlled clinical trials of parallel design, with a minimum treatment duration of four weeks. Studies of oral 5-ASA therapy for treatment of patients with active ulcerative colitis compared with placebo, SASP or other formulations of 5-ASA were considered for inclusion. Studies that compared once daily 5-ASA treatment with conventional dosing of 5-ASA (two or three times daily) and 5-ASA dose ranging studies were also considered for inclusion. The outcomes of interest were the failure to induce global/clinical remission, global/clinical improvement, endoscopic remission, endoscopic improvement, adherence, adverse events, withdrawals due to adverse events, and withdrawals or exclusions after entry. Trials were separated into five comparison groups: 5-ASA versus placebo, 5-ASA versus sulfasalazine, once daily dosing versus conventional dosing, 5-ASA versus comparator 5-ASA, and 5-ASA dose-ranging. Placebo-controlled trials were subgrouped by dosage. SASP-controlled trials were subgrouped by 5-ASA/SASP mass ratios. Once daily versus conventional dosing studies were subgrouped by formulation. 5-ASA-controlled trials were subgrouped by common 5-ASA comparators (e.g. Asacol, Claversal, Salofalk and Pentasa). Dose-ranging studies were subgrouped by 5-ASA formulation. We calculated the relative risk (RR) and 95% confidence intervals (95% CI) for each outcome. Data were analyzed on an intention-to-treat basis. Fifty-three studies (8548 patients) were included. The majority of included studies were rated as low risk of bias. 5-ASA was significantly superior to placebo with regard to all measured outcome variables. Seventy-one per cent of 5-ASA patients failed to enter clinical remission compared to 83% of placebo patients (RR 0.86, 95% CI 0.82 to 0.89). A dose-response trend for 5-ASA was also observed. No statistically significant differences in efficacy were found between 5-ASA and SASP. Fifty-four per cent of 5-ASA patients failed to enter remission compared to 58% of SASP patients (RR 0.90, 95% CI 0.77 to 1.04). No statistically significant differences in efficacy or adherence were found between once daily and conventionally dosed 5-ASA. Forty-five per cent of once daily patients failed to enter clinical remission compared to 48% of conventionally dosed patients (RR 0.94, 95% CI 0.83 to 1.07). Eight per cent of patients dosed once daily failed to adhere to their medication regimen compared to 6% of conventionally dosed patients (RR 1.36, 95% CI 0.64 to 2.86). There does not appear to be any difference in efficacy among the various 5-ASA formulations. Fifty per cent of patients in the 5-ASA group failed to enter remission compared to 52% of patients in the 5-ASA comparator group (RR 0.94, 95% CI 0.86 to 1.02). A pooled analysis of 3 studies (n = 1459 patients) studies found no statistically significant difference in clinical improvement between Asacol 4.8 g/day and 2.4 g/day used for the treatment of moderately active ulcerative colitis. Thirty-seven per cent of patients in the 4.8 g/day group failed to improve clinically compared to 41% of patients in the 2.4 g/day group (RR 0.89; 95% CI 0.78 to 1.01). Subgroup analysis indicated that patients with moderate disease may benefit from the higher dose of 4.8 g/day. One study compared (n = 123 patients) Pentasa 4 g/day to 2.25 g/day in patients with moderate disease. Twenty-five per cent of patients in the 4 g/day group failed to improve clinically compared to 57% of patients in the 2.25 g/day group (RR 0.44; 95% CI 0.27 to 0.71). A pooled analysis of two studies comparing MMX mesalamine 4.8 g/day to 2.4 g/day found no statistically significant difference in efficacy (RR 1.03, 95% CI 0.82 to 1.29). There were no statistically significant differences in the incidence of adverse events between 5-ASA and placebo, once daily and conventionally dosed 5-ASA, 5-ASA and comparator 5-ASA formulation and 5-ASA dose ranging (high dose versus low dose) studies. Common adverse events included flatulence, abdominal pain, nausea, diarrhea, headache and worsening ulcerative colitis. SASP was not as well tolerated as 5-ASA. Twenty-nine percent of SASP patients experienced an adverse event compared to 15% of 5-ASA patients (RR 0.48, 95% CI 0.37 to 0.63). 5-ASA was superior to placebo and no more effective than SASP. Considering their relative costs, a clinical advantage to using oral 5-ASA in place of SASP appears unlikely. 5-ASA dosed once daily appears to be as efficacious and safe as conventionally dosed 5-ASA. Adherence does not appear to be enhanced by once daily dosing in the clinical trial setting. It is unknown if once daily dosing of 5-ASA improves adherence in a community-based setting. There do not appear to be any differences in efficacy or safety among the various 5-ASA formulations. A daily dosage of 2.4 g appears to be a safe and effective induction therapy for patients with mild to moderately active ulcerative colitis. Patients with moderate disease may benefit from an initial dose of 4.8 g/day.
Electronic compensation technique to deliver a total body dose
NASA Astrophysics Data System (ADS)
Lakeman, Tara E.
Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.
Selvaraj, J; Uzan, J; Baker, C; Nahum, A
2015-01-01
To study the impact of the interplay between respiration-induced tumour motion and multileaf collimator leaf movements in intensity-modulated radiotherapy (IMRT) as a function of number of fractions, dose rate on population mean tumour control probability ([Formula: see text]) using an in-house developed dose model. Delivered dose was accumulated in a voxel-by-voxel basis inclusive of tumour motion over the course of treatment. The effect of interplay on dose and [Formula: see text] was studied for conventionally and hypofractionated treatments using digital imaging and communications in medicine data sets. Moreover, the effect of dose rate on interplay was also studied for single-fraction treatments. Simulations were repeated several times to obtain [Formula: see text] for each plan. The average variation observed in mean dose to the target volumes were -0.76% ± 0.36% for the 20-fraction treatment and -0.26% ± 0.68% and -1.05% ± 0.98% for the three- and single-fraction treatments, respectively. For the 20-fraction treatment, the drop in [Formula: see text] was -1.05% ± 0.39%, whereas for the three- and single-fraction treatments, it was -2.80% ± 1.68% and -4.00% ± 2.84%, respectively. By reducing the dose rate from 600 to 300 MU min(-1) for the single-fraction treatments, the drop in [Formula: see text] was reduced by approximately 1.5%. The effect of interplay on [Formula: see text] is negligible for conventionally fractionated treatments, whereas considerable drop in [Formula: see text] is observed for the three- and single-fraction treatments. Reduced dose rate could be used in hypofractionated treatments to reduce the interplay effect. A novel in silico dose model is presented to determine the impact of interplay effect in IMRT treatments on [Formula: see text].
Uzan, J; Baker, C; Nahum, A
2015-01-01
Objective: To study the impact of the interplay between respiration-induced tumour motion and multileaf collimator leaf movements in intensity-modulated radiotherapy (IMRT) as a function of number of fractions, dose rate on population mean tumour control probability () using an in-house developed dose model. Methods: Delivered dose was accumulated in a voxel-by-voxel basis inclusive of tumour motion over the course of treatment. The effect of interplay on dose and was studied for conventionally and hypofractionated treatments using digital imaging and communications in medicine data sets. Moreover, the effect of dose rate on interplay was also studied for single-fraction treatments. Simulations were repeated several times to obtain for each plan. Results: The average variation observed in mean dose to the target volumes were −0.76% ± 0.36% for the 20-fraction treatment and −0.26% ± 0.68% and −1.05% ± 0.98% for the three- and single-fraction treatments, respectively. For the 20-fraction treatment, the drop in was −1.05% ± 0.39%, whereas for the three- and single-fraction treatments, it was −2.80% ± 1.68% and −4.00% ± 2.84%, respectively. By reducing the dose rate from 600 to 300 MU min−1 for the single-fraction treatments, the drop in was reduced by approximately 1.5%. Conclusion: The effect of interplay on is negligible for conventionally fractionated treatments, whereas considerable drop in is observed for the three- and single-fraction treatments. Reduced dose rate could be used in hypofractionated treatments to reduce the interplay effect. Advances in knowledge: A novel in silico dose model is presented to determine the impact of interplay effect in IMRT treatments on . PMID:25251400
SU-C-BRB-01: Automated Dose Deformation for Re-Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, S; Kainz, K; Li, X
Purpose: An objective of retreatment planning is to minimize dose to previously irradiated tissues. Conventional retreatment planning is based largely on best-guess superposition of the previous treatment’s isodose lines. In this study, we report a rigorous, automated retreatment planning process to minimize dose to previously irradiated organs at risk (OAR). Methods: Data for representative patients previously treated using helical tomotherapy and later retreated in the vicinity of the original disease site were retrospectively analyzed in an automated fashion using a prototype treatment planning system equipped with a retreatment planning module (Accuray, Inc.). The initial plan’s CT, structures, and planned dosemore » were input along with the retreatment CT and structure set. Using a deformable registration algorithm implemented in the module, the initially planned dose and structures were warped onto the retreatment CT. An integrated third-party sourced software (MIM, Inc.) was used to evaluate registration quality and to contour overlapping regions between isodose lines and OARs, providing additional constraints during retreatment planning. The resulting plan and the conventionally generated retreatment plan were compared. Results: Jacobian maps showed good quality registration between the initial plan and retreatment CTs. For a right orbit case, the dose deformation facilitated delineating the regions of the eyes and optic chiasm originally receiving 13 to 42 Gy. Using these regions as dose constraints, the new retreatment plan resulted in V50 reduction of 28% for the right eye and 8% for the optic chiasm, relative to the conventional plan. Meanwhile, differences in the PTV dose coverage were clinically insignificant. Conclusion: Automated retreatment planning with dose deformation and definition of previously-irradiated regions allowed for additional planning constraints to be defined to minimize re-irradiation of OARs. For serial organs that do not recover from radiation damage, this method provides a more precise and quantitative means to limit cumulative dose. This research is partially supported by Accuray, Inc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Grelewicz, Z
Purpose: Real-time kV fluoroscopic tumor tracking has the benefit of direct tumor position monitoring. However, there is clinical concern over the excess kV imaging dose cost to the patient when imaging in continuous fluoroscopic mode. This work addresses this specific issue by proposing a combined MV+kV direct-aperture optimization (DAO) approach to integrate the kV imaging beam into a treatment planning such that the kV radiation is considered as a contributor to the overall dose delivery. Methods: The combined MV+kV DAO approach includes three algorithms. First, a projected Quasi-Newton algorithm (L-BFGS) is used to find optimized fluence with MV+kV dose formore » the best possible dose distribution. Then, Engel’s algorithm is applied to optimize the total number of monitor units and heuristically optimize the number of apertures. Finally, an aperture shape optimization (ASO) algorithm is applied to locally optimize the leaf positions of MLC. Results: Compared to conventional DAO MV plans with continuous kV fluoroscopic tracking, combined MV+kV DAO plan leads to a reduction in the total number of MV monitor units due to inclusion of kV dose as part of the PTV, and was also found to reduce the mean and maximum doses on the organs at risk (OAR). Compared to conventional DAO MV plan without kV tracking, the OAR dose in the combined MV+kV DAO plan was only slightly higher. DVH curves show that combined MV+kV DAO plan provided about the same PTV coverage as that in the conventional DAO plans without kV imaging. Conclusion: We report a combined MV+kV DAO approach that allows real time kV imager tumor tracking with only a trivial increasing on the OAR doses while providing the same coverage to PTV. The approach is suitable for clinic implementation.« less
Yan, M; Lovelock, D; Hunt, M; Mechalakos, J; Hu, Y; Pham, H; Jackson, A
2013-12-01
To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or -0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1-2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39-16.8) cGy, or 10.1 (0.8-32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%-9.06%) and 10.2% (0.7%-63.6%), respectively. Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%.
Yan, M.; Lovelock, D.; Hunt, M.; Mechalakos, J.; Hu, Y.; Pham, H.; Jackson, A.
2013-01-01
Purpose: To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Methods: Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. Results: The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or −0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1–2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39–16.8) cGy, or 10.1 (0.8–32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%–9.06%) and 10.2% (0.7%–63.6%), respectively. Conclusions: Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%. PMID:24320510
Neuraxial blockade for external cephalic version: a systematic review.
Sultan, P; Carvalho, B
2011-10-01
The desire to decrease the number of cesarean deliveries has renewed interest in external cephalic version. The rationale for using neuraxial blockade to facilitate external cephalic version is to provide abdominal muscular relaxation and reduce patient discomfort during the procedure, so permitting successful repositioning of the fetus to a cephalic presentation. This review systematically examined the current evidence to determine the safety and efficacy of neuraxial anesthesia or analgesia when used for external cephalic version. A systematic literature review of studies that examined success rates of external cephalic version with neuraxial anesthesia was performed. Published articles written in English between 1945 and 2010 were identified using the Medline, Cochrane, EMBASE and Web of Sciences databases. Six, randomized controlled studies were identified. Neuraxial blockade significantly improved the success rate in four of these six studies. A further six non-randomized studies were identified, of which four studies with control groups found that neuraxial blockade increased the success rate of external cephalic version. Despite over 850 patients being included in the 12 studies reviewed, placental abruption was reported in only one patient with a neuraxial block, compared with two in the control groups. The incidence of non-reassuring fetal heart rate requiring cesarean delivery in the anesthesia groups was 0.44% (95% CI 0.15-1.32). Neuraxial blockade improved the likelihood of success during external cephalic version, although the dosing regimen that provides optimal conditions for successful version is unclear. Anesthetic rather than analgesic doses of local anesthetics may improve success. The findings suggest that neuraxial blockade does not compromise maternal or fetal safety during external cephalic version. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2010 CFR
2010-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
Faulkner, Paul; Ghahremani, Dara G; Tyndale, Rachel F; Cox, Chelsea M; Kazanjian, Ari S; Paterson, Neil; Lotfipour, Shahrdad; Hellemann, Gerhard S; Petersen, Nicole; Vigil, Celia; London, Edythe D
2017-07-01
The use of cigarettes delivering different nicotine doses allows evaluation of the contribution of nicotine to the smoking experience. We compared responses of 46 young adult smokers to research cigarettes, delivering 0.027, 0.110, 0.231, or 0.763 mg nicotine, and conventional cigarettes. On five separate days, craving, withdrawal, affect, and sustained attention were measured after overnight abstinence and again after smoking. Participants also rated each cigarette, and the nicotine metabolite ratio (NMR) was used to identify participants as normal or slow metabolizers. All cigarettes equally alleviated craving, withdrawal, and negative affect in the whole sample, but normal metabolizers reported greater reductions of craving and withdrawal than slow metabolizers, with dose-dependent effects. Only conventional cigarettes and, to a lesser degree, 0.763-mg nicotine research cigarettes increased sustained attention. Finally, there were no differences between ratings of lower-dose cigarettes, but the 0.763-mg cigarettes and (even more so) conventional cigarettes were rated more favorably than lower-dose cigarettes. The findings indicate that smoking-induced relief of craving and withdrawal reflects primarily non-nicotine effects in slow metabolizers, but depends on nicotine dose in normal metabolizers. By contrast, relief of withdrawal-related attentional deficits and cigarette ratings depend on nicotine dose regardless of metabolizer status. These findings have bearing on the use of reduced-nicotine cigarettes to facilitate smoking cessation and on policy regarding regulation of nicotine content in cigarettes. They suggest that normal and slow nicotine metabolizers would respond differently to nicotine reduction in cigarettes, but that irrespective of metabolizer status, reductions to <0.763 mg/cigarette may contribute to temporary attentional deficits.
Chaker, A M; Al-Kadah, B; Luther, U; Neumann, U; Wagenmann, M
2015-01-01
The number of injections in the dose escalation of subcutaneous immunotherapy (SCIT) is small for some currently used hypoallergenic allergoids, but can still be inconvenient to patients and can impair compliance. The aim of this trial was to compare safety and tolerability of an accelerated to the conventional dose escalation scheme of a grass pollen allergoid. In an open label phase II trial, 122 patients were 1:1 randomized for SCIT using a grass pollen allergoid with an accelerated dose escalation comprising only 4 weekly injections (Group I) or a conventional dose escalation including 7 weekly injections (Group II). Safety determination included the occurrence of local and systemic adverse events. Tolerability was assessed by patients and physicians. Treatment-related adverse events were observed in 22 (36.1 %) patients in Group I and 15 (24.6 %) in Group II. Local reactions were reported by 18 patients in Group I and 11 in Group II. Five Grade 1 systemic reactions (WAO classification) were observed in Group I and 2 in Group II. Grade 2 reactions occurred 3 times in Group I and 2 times in Group II. Tolerability was rated as "good" or "very good" by 53 (86.9 %) patients in Group I and 59 (100 %) in Group II by investigators. Forty-eight patients in Group I (80.0 %) and 54 in Group II (91.5 %) rated tolerability as "good" or "very good". The dose escalation of a grass pollen allergoid can be accelerated with safety and tolerability profiles comparable to the conventional dose escalation.
Combination Treatment of Glioblastoma by Low-Dose Radiation and Genistein.
Atefeh, Zamanian; Vahid, Changizi; Hasan, Nedaie; Saeed, Amanpour; Mahnaz, Haddadi
2016-01-01
Gioblastoma multiforme as a chemoresistant and radioresistant malignant cell line needs to novel strategies to treatment. Low-dose hyper-radiosensitivity (LDHRS) seems to be an effective phenomenon to irradiation that can save normal brain fibroblasts. Genistein which is a soy isoflavone can be cytotoxic in some tumor cell lines. So we determined to study the effect of combining these two treatment modalities. After 30 hours incubation with Genistein in different concentrations on U87MG cell line, proliferation and clonogenicity were conducted by both clonogenic and MTT assays. A conventional 2Gy radiation dose was compared with 10 doses of 0.2Gy gamma irradiation with 3 minutes and 1 hour intervals. Finally, concurrent effect of these modalities was assessed. Based on acquired cell doubling time (30 hours), one doubling time treatment by Genistein could decrease clonogenicity. U87MG cell line exhibited HRS at low dose irradiations. 2Gy irradiation was more effective than ultra-fractionation methods in comparison with control group. All groups with 50uM concentration of Genistein showed decrease in the survival. This decrease compared with control group, in 10x0.2Gy with 3 minutes intervals plus 50uM Genistein was significant and for groups with the same dose of Genistein but along with continuous 2Gy was more significant. In one day treatment regimen, 10x0.2Gy ultra-fractionation with 3 minutes and 1 hour intervals seems to be less effective than conventional 2Gy irradiation, however adding 50uM Genistein can decrease survival more. Although 2Gy conventional dose plus 50uM Genistein was the most effective regimen. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Berg, Marc D.; Banville, Isabelle L.; Chapman, Fred W.; Walker, Robert G.; Gaballa, Mohammed A.; Hilwig, Ronald W.; Samson, Ricardo A.; Kern, Karl B.; Berg, Robert A.
2009-01-01
Objective The optimal biphasic defibrillation dose for children is unknown. Postresuscitation myocardial dysfunction is common and may be worsened by higher defibrillation doses. Adult-dose automated external defibrillators are commonly available; pediatric doses can be delivered by attenuating the adult defibrillation dose through a pediatric pads/cable system. The objective was to investigate whether unattenuated (adult) dose biphasic defibrillation results in greater postresuscitation myocardial dysfunction and damage than attenuated (pediatric) defibrillation. Design Laboratory animal experiment. Setting University animal laboratory. Subjects Domestic swine weighing 19 ± 3.6 kg. Interventions Fifty-two piglets were randomized to receive biphasic defibrillation using either adult-dose shocks of 200, 300, and 360 J or pediatric-dose shocks of ~50, 75, and 85 J after 7 mins of untreated ventricular fibrillation. Contrast left ventriculograms were obtained at baseline and then at 1, 2, 3, and 4 hrs postresuscitation. Postresuscitation left ventricular ejection fraction and cardiac troponins were evaluated. Measurements and Main Results By design, piglets in the adult-dose group received shocks with more energy (261 ± 65 J vs. 72 ± 12 J, p < .001) and higher peak current (37 ± 8 A vs. 13 ± 2 A, p < .001) at the largest defibrillation dose needed. In both groups, left ventricular ejection fraction was reduced significantly at 1, 2, and 4 hrs from baseline and improved during the 4 hrs postresuscitation. The decrease in left ventricular ejection fraction from baseline was greater after adult-dose defibrillation. Plasma cardiac troponin levels were elevated 4 hrs postresuscitation in 11 of 19 adult-dose piglets vs. four of 20 pediatric-dose piglets (p = .02). Conclusions Unattenuated adult-dose defibrillation results in a greater frequency of myocardial damage and worse postresuscitation myocardial function than pediatric doses in a swine model of prolonged out-of-hospital pediatric ventricular fibrillation cardiac arrest. These data support the use of pediatric attenuating electrodes with adult biphasic automated external defibrillators to defibrillate children. PMID:18496405
Jang, Hee-Chang; Kim, Choong Jong; Kim, Kye Hyoung; Lee, Kwang-Hee; Byun, Young-Ho; Seong, Baik-Lin; Saletti, Giulietta; Czerkinsky, Cecil; Park, Wan Beom; Park, Sang-Won; Kim, Hong-Bin; Kim, Nam Joong; Oh, Myoung-don
2010-08-16
A randomized, double-blind, controlled clinical trial was conducted to evaluate the efficacy and safety of CJ-50300, a newly developed cell culture-derived smallpox vaccine, and to determine its minimum effective dose. The overall rates of cutaneous "take" reaction and humoral and cellular immunogenicity in CJ-50300 vaccinees were 100% (123/123), 99.2% (122/123), and 90.8% (109/120), respectively, and these rates did not differ significantly between the conventional-dose and the low-dose CJ-50300 (1.0x10(8) and 1.0x10(7) plaque-forming units/mL, respectively) (P>0.05 for each). No serious adverse reaction was observed. However, one case of possible generalized vaccinia occurred in the conventionally dosed group [ClinicalTrials.gov Identifier: NCT00607243].
Choi, Aery; Kang, Young Kyung; Lim, Sewon; Kim, Dong Ho; Lim, Jung Sub; Lee, Jun Ah
2016-01-01
Hepatic sinusoidal obstruction syndrome (SOS) is a life-threatening syndrome that generally occurs as a complication after hematopoietic stem cell transplantation or, less commonly, after conventional chemotherapy. Regarding SOS in rhabdomyosarcoma patients who received conventional chemotherapy, the doses of chemotherapeutic agents are associated with the development of SOS. Several cases of SOS in rhabdomyosarcoma patients after receiving chemotherapy with escalated doses of cyclophosphamide have been reported. Here, we report on a 9-year-old female with rhabdomyosarcoma who developed severe SOS after receiving chemotherapy consisting of vincristine, actinomycin-D, and a moderate dose of cyclophosphamide. She was treated successfully with defibrotide without sequelae to the liver. PMID:27034141
Trans-oral miniature X-ray radiation delivery system with endoscopic optical feedback.
Boese, Axel; Johnson, Fredrick; Ebert, Till; Mahmoud-Pashazadeh, Ali; Arens, Christoph; Friebe, Michael
2017-11-01
Surgery, chemo- and/or external radiation therapy are the standard therapy options for the treatment of laryngeal cancer. Trans-oral access for the surgery reduces traumata and hospitalization time. A new trend in treatment is organ-preserving surgery. To avoid regrowth of cancer, this type of surgery can be combined with radiation therapy. Since external radiation includes healthy tissue surrounding the cancerous zone, a local and direct intraoral radiation delivery would be beneficial. A general concept for a trans-oral radiation system was designed, based on clinical need identification with a medical user. A miniaturized X-ray tube was used as the radiation source for the intraoperative radiation delivery. To reduce dose distribution on healthy areas, the X-ray source was collimated by a newly designed adjustable shielding system as part of the housing. For direct optical visualization of the radiation zone, a miniature flexible endoscope was integrated into the system. The endoscopic light cone and the field of view were aligned with the zone of the collimated radiation. The intraoperative radiation system was mounted on a semi-automatic medical holder that was combined with a frontal actuator for rotational and translational movement using piezoelectric motors to provide precise placement. The entire technical set-up was tested in a simulated environment. The shielding of the X-ray source was verified by performing conventional detector-based dose measurements. The delivered dose was estimated by an ionization chamber. The adjustment of the radiation zone was performed by a manual controlling mechanism integrated into the hand piece of the device. An endoscopic fibre was also added to offer visualization and illumination of the radiation zone. The combination of the radiation system with the semi-automatic holder and actuator offered precise and stable positioning of the device in range of micrometres and will allow for future combination with a radiation planning system. The presented system was designed for radiation therapy of the oral cavity and the larynx. This first set-up tried to cover all clinical aspects that are necessary for a later use in surgery. The miniaturized X-ray tube offers the size and the power for intraoperative radiation therapy. The adjustable shielding system in combination with the holder and actuator provides a precise placement. The visualization of radiation zone allows a targeting and observation of the radiation zone.
2002-06-13
KENNEDY SPACE CENTER, FLA. -- The 2002 Florida Press Association and Florida Society of Newspaper Editors Convention offers a panel on space. At the podium is Bob Stover, managing editor, Florida Today. Panel participants enjoying a laugh are (left to right) Craig Covault, senior editor, Aviation Week; Howard Benedict, retired AP reporter; JoAnn Morgan, director, External Relations and Business Development, Kennedy Space Center; Marcia Dunn, AP reporter. The convention was held at the Debus Center, KSC Visitors Complex. Also speaking at the convention were Center Director Roy Bridges and NASA Associate Deputy Administrator Dr. Daniel Mulville
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Masahiko, E-mail: masaoka@showa.gunma-u.ac.jp; Ishikawa, Hitoshi; Ebara, Takeshi
2012-02-01
Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose-volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy Multiplication-Sign five times in 3 days or 7 Gy Multiplication-Sign three, 10.5 Gy Multiplication-Sign two, or 9 Gy Multiplication-Sign two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2more » or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED{sub 3} at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED{sub 3-5%} and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED{sub 3-5%} was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.« less
REDUCTION OF DOSES IN DIAGNOSTIC USES OF RADIOISOTOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosain, F.
1960-03-01
> A moderately low-level counting technique with anticoincidence gas- flow counter was developed for use in metabolic and diagnostic tracer studies with radioisotopes. Several important experiments and results were reported which have been carried out with reduced doses of tracer isotopes. A reduction of the tracer dose of ahout 1/30th of the present conventional doses was achieved which helps to minimize the chances of radiation hazards. (auth)
Bi, Ting; Jin, Feng; Wu, Weili; Long, Jinhua; Li, Yuanyuan; Gong, Xiuyun; Luo, Xiuling; Li, Zhuoling; He, Qianyong; Qu, Bo
2015-09-01
To compare the therapeutic effects, toxic side effects and influence on the immune function in patients treated with TPF [docetaxel (DOC) + cisplatin (DDP) + 5-fluorouracil (5-Fu)] induction chronochemotherapy and conventional chemotherapy for locally advanced nasopharyngeal (NPC). Seventy patients with locally advanced nasopharyngeal carcinoma were treated in our department at their first visit from April 2013 to December 2013. They were divided randomly into two groups: the chronochemotherapy group (38 patients) and conventional chemotherapy group (32 patients). All of the patients were treated with TPF regimen with 2 cycles of induction chemotherapy in a 21-28-days/cycle. The chronochemotherapy group: DOC: 75 mg/m2, i. v. gtt, d1 (03: 30-04: 30); DDP: 75 mg/m2, 10 am-10 pm, c.i.v, d1-d5; 5-Fu: 750 mg·m(-2)·d(-1), 10 pm-10 am, c. i.v., d1-d5, both chemotherapies were administered by intravenous infusion using an automatic electric pump. The conventional chemotherapy group: Both DOC and DDP were administered intravenously at a dose of 75 mg/m2 on d1. 5-Fu was given at a dose of 750 mg/m2 for 24 hours from d1-d5 with continuous infusion in a total of 120 hours. In this procedure, prescribing the conventional intravenous infusion, intensity modulated radiation therapy was used after the induction chemotherapy. The prescribed nasopharyngeal lesion dose (GTVnx) was 69.96 Gy/33 fractions for the T1-T2 nasopharygeal cancer, while 73.92 Gy/33 fractions nasopharynx lesion dose (GTVnx) for the T3-T4 nasopharyngeal cancer. The planning target volume (PTV) of positive lymph node (PTVnd) dose was 69.96 Gy/33 fractions. Concurrent chemoradiotherapy: cisplatin 100 mg/m2, i. v. gtt. d1-d2, and there were two cycles in total and 21 days each cycle. Sixty-six patients were evaluable for the response assessment. There were 36 patients in the chronochemotherapy group and 30 patients in the conventional chemotherapy group. After the induction chemotherapy, no CR case was found in both of the two groups. The PR was 80.6% in the chronochemotherapy group and 50.0% in the conventional chemotherapy group (P=0.009). After concurrent chemoradiotherapy, the CR rate in the chronocheotherapy group was 45.5%, significantly higher than 20.7% in the conventional chemotherapy group (P=0.040). Secondly, the incidence rates of adverse reactions including bone marrow suppression, nausea, vomiting, diarrhea, constipation, oral mucositis, fatigue, anorexia in the chrono-chemotherapy group were significantly lower than that in the conventional group (P<0.05 for all). Finally, compared the two groups, the CD4+ /CD8+ ratio was significantly lower in the chronochemotherapy group than that in the conventional chemotherapy group (P<0.05). The lymphocytes CD19+ and CD4+/CD8+ were decreased and CD3+, CD4+, CD8+, CD16++CD56+ were increased in the chronochemotherapy group, while only CD3+ and CD8+ were increased in the conventional chemotherapy group. Compared with the conventional chemotherapy, the chronochemotherapy may be more favorable in the treatment of NPC, with a better therapeutic effects and effectiveness than that of conventional chemotherapy after induction chemotherapy, with less side effects, and can improve the immune function in the patients.
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...
Some engineering aspects of insulin delivery systems.
Spencer, W J; Bair, R E; Carlson, G A; Love, J T; Urenda, R S; Eaton, R P; Schade, D S
1980-01-01
The characteristics of electronically controlled insulin delivery systems are presented. Early experiments with an external system have shown promise in providing improved glycemic control over conventional methods of single or multiple subcutaneous insulin injections. The encouraging results with external insulin delivery systems have led to the development and early testing in dogs of an implantable system with remote controls to permit variable insulin flow rates. A number of questions remain to be answered before widespread experimentation with external and implanted insulin delivery systems is possible. There appears to be no major development problems with the engineering aspects of such systems.
Reynders, Truus; Tournel, Koen; De Coninck, Peter; Heymann, Steve; Vinh-Hung, Vincent; Van Parijs, Hilde; Duchateau, Michaël; Linthout, Nadine; Gevaert, Thierry; Verellen, Dirk; Storme, Guy
2009-10-01
Investigation of the use of TomoTherapy and TomoDirect versus conventional radiotherapy for the treatment of post-operative breast carcinoma. This study concentrates on the evaluation of the planning protocol for the TomoTherapy and TomoDirect TPS, dose verification and the implementation of in vivo dosimetry. Eight patients with different breast cancer indications (left/right tumor, axillary nodes involvement (N+)/no nodes (N0), tumorectomy/mastectomy) were enrolled. TomoTherapy, TomoDirect and conventional plans were generated for prone and supine positions leading to six or seven plans per patient. Dose prescription was 42Gy in 15 fractions over 3weeks. Dose verification of a TomoTherapy plan is performed using TLDs and EDR2 film inside a home-made wax breast phantom fixed on a rando-alderson phantom. In vivo dosimetry was performed with TLDs. It is possible to create clinically acceptable plans with TomoTherapy and TomoDirect. TLD calibration protocol with a water equivalent phantom is accurate. TLD verification with the phantom shows measured over calculated ratios within 2.2% (PTV). An overresponse of the TLDs was observed in the low dose regions (<0.1Gy). The film measurements show good agreement for high and low dose regions inside the phantom. A sharp gradient can be created to the thoracic wall. In vivo dosimetry with TLDs was clinically feasible. The TomoTherapy and TomoDirect modalities can deliver dose distributions which the radiotherapist judges to be equal to or better than conventional treatment of breast carcinoma according to the organ to be protected.
The 1998 Australian external beam radiotherapy survey and IAEA/WHO TLD postal dose quality audit.
Huntley, R; Izewska, J
2000-03-01
The results of an updated Australian survey of external beam radiotherapy centres are presented. Most of the centres provided most of the requested information. The relative caseloads of various linear accelerator photon and electron beams have not changed significantly since the previous survey in 1995. The mean age of Australian LINACs is 7.1 years and that of other radiotherapy machines is 14.7 years. Every Australian radiotherapy centre participated in a special run of the IAEA/WHO TLD postal dose quality audit program, which was provided for Australian centres by the IAEA and WHO in May 1998. The dose quoted by the centres was in nearly every case within 1.5% of the dose assessed by the IAEA. This is within the combined standard uncertainty of the IAEA TLD service (1.8%). The results confirm the accuracy and precision of radiotherapy dosimetry in Australia and the adequate dissemination of the Australian standards from ARL (now ARPANSA) to the centres. The Australian standards have recently been shown to agree with those of other countries to within 0.25% by comparison with the BIPM.
RADIOLOGICAL IMPACTS ASSESSMENT FOR WORKERS IN CERAMIC INDUSTRY IN SERBIA.
Todorovic, Nataša; Mrda, Dušan; Hansman, Jan; Todorovic, Slavko; Nikolov, Jovana; Krmar, Miodrag
2017-11-01
Studies have been carried out to determine the natural radioactivity in some materials used in ceramic industry (zircon, zirkosil, Zircobit MO/S, zircon silicate, zirklonil frit, hematite, bentonite, wollastonite, raw kaolin, kaolinized granite, sileks ball, feldspar, pigment, white base serigraphic, engobe) and their associated radiation hazard. The external hazard index, Hex, values, radium equivalent activity, Raeq, total absorbed dose rates, D and annual effective dose, De were derived for all measured materials and compared with the recommended values to assess the external radiation hazards to workers who worked in ceramic industries in Serbia. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kitamura, Akiko
2017-01-01
Introduction On March 11, 2011, Japan experienced its largest recorded earthquake with a magnitude of 9.0. The resulting tsunami caused massive damage to the Fukushima Daiichi Nuclear Power Plant reactors, and the surrounding environment was contaminated with radioactive materials. During this period, some residents were exposed to high levels of radiation (up to 5 millisieverts [mSv]), but since then, many residents have been exposed to low levels of radiation (<1 mSv). This study was conducted to assess the effects of lifestyle and attitude factors on external radiation exposure among Fukushima residents. Methods This community-based, cross-sectional study was conducted in Nihonmatsu City of the Fukushima Prefecture from May to July 2014. The population survey targeted 6,884 children between the ages of 0–15 years, and a personal radiation badge and questionnaire were administered to each of the residences. Multiple linear regression analysis was used to assess the impact of lifestyle and attitude factors on external radiation dose. Results The study participants (population size [n] = 4,571) had an additional mean radiation dose of 0.65 mSv/year, which is small as compared to the mean radiation dose 6 months after the disaster (1.5 mSv/year), in 2012 (1.5 mSv/year), and in 2013 (1.0 mSv/year). External radiation doses statistically varied by socio-demographic and lifestyle factors. Participants living in wooden residences (p-value<0.001) and within 100 meters of a forest (p = 0.001) had higher radiation exposure. Conversely, participants with a cautious attitude towards radiation had lower radiation exposure (beta [b] = -0.124, p = 0.003). Conclusion Having a cautious attitude towards radiation and being aware of exposure risks proved to be significant in the reduction of external radiation dose. Therefore, in the event of future radiation disasters, attitudes towards and awareness of radiation should be considered in the reduction of exposure risk and implementation of radiation protection. PMID:29236725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.
2010-09-15
Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David
2014-05-15
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less
Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.
2014-01-01
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380
Iaconelli, Carla Andrade Rebello; Setti, Amanda Souza; Braga, Daniela Paes Almeida Ferreira; Maldonado, Luiz Guilherme Louzada; Iaconelli, Assumpto; Borges, Edson; Aoki, Tsutomu
2017-12-01
The objective of this study was to investigate the effects of low-dose hCG supplementation on ICSI outcomes and controlled ovarian stimulation (COS) cost. Three hundred and thirty patients undergoing ICSI were split into groups according to the COS protocol: (i) control group (n = 178), including patients undergoing conventional COS treatment; and (ii) low-dose hCG group (n = 152), including patients undergoing COS with low-dose hCG supplementation. Lower mean total doses of FSH administered and higher mean oestradiol level and mature oocyte rates were observed in the low-dose hCG group. A significantly higher fertilization rate, high-quality embryo rate and blastocyst formation rate were observed in the low-dose hCG group as compared to the control group. The miscarriage rate was significantly higher in the control group compared to the low-dose hCG group. A significantly lower incidence of OHSS was observed in the low-dose hCG group. There was also a significantly lower gonadotropin cost in the low-dose hCG group as compared to the control group ($1235.0 ± 239.0×$1763.0 ± 405.3, p < 0.001). The concomitant use of low-dose hCG and FSH results in a lower abortion rate and increased number of mature oocytes retrieved, as well as improved oocyte quality, embryo quality and blastocyst formation and reduced FSH requirements.
Ramzaev, Valery; Yonehara, Hidenori; Hille, Ralf; Barkovsky, Anatoly; Mishine, Arkady; Sahoo, Sarat Kumar; Kurotaki, Katsumi; Uchiyama, Masafumi
2006-01-01
In order to estimate current external gamma doses to the population of the Russian territories contaminated as a result of the Chernobyl accident, absorbed gamma-dose rates in air (DR) were determined at typical urban and suburban locations. The study was performed in the western districts of the Bryansk Region within the areas of 30 settlements (28 villages and 2 towns) with the initial levels of 137Cs deposition ranging from 13 to 4340 kBqm(-2). In the towns, the living areas considered were private one-story wooden and stone houses. DR values were derived from in situ measurements performed with the help of gamma-dosimeters and gamma-spectrometers as well as from the results of soil samples analysis. In the areas under study, the values of DR from terrestrial radionuclides were 25+/-6, 24+/-5, 50+/-10, 32+/-6, 54+/-11, 24+/-8, 20+/-6, 25+/-8, and 18+/-5 nGyh(-1) at locations of kitchen gardens, dirt surfaces, asphalt surfaces, wooden houses, stone houses, grasslands inside settlement, grasslands outside settlement, ploughed fields, and forests, respectively. In 1996-2001, mean normalized (per MBqm(-2) of 137Cs current inventory in soil) values of DR from (137)Cs were 0.41+/-0.07, 0.26+/-0.13, 0.15+/-0.07, 0.10+/-0.05, 0.05+/-0.04, 0.48+/-0.12, 1.04+/-0.22, 0.37+/-0.07, and 1.15+/-0.19 microGyh(-1) at the locations of kitchen gardens, dirt surfaces, asphalt surfaces, wooden houses, stone houses, grasslands inside settlement, grasslands outside settlement, ploughed fields, and forests, respectively. The radiometric data from this work and the values of occupancy factors determined for the Russian population by others were used for the assessments of annual effective doses to three selected groups of rural population. The normalized (per MBqm(-2) 137Cs current ground deposition) external effective doses to adults from 137Cs ranged from 0.66 to 2.27 mSvy(-1) in the years 1996-2001, in accordance with professional activities and structures of living areas. For the areas under study, the average external effective doses from 137Cs were estimated to be in the range of 0.39-1.34 mSvy(-1) in 2001. The average external effective doses from natural radionuclides appeared to be lower than those from the Chernobyl fallout ranging from 0.15 to 0.27 mSvy(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, S; Miyaoka, R; Kinahan, P
2014-06-15
Purpose: Radiotherapy for hepatocellular carcinoma patients is conventionally planned without consideration of spatial heterogeneity in hepatic function, which may increase risk of radiation-induced liver disease. Pencil beam scanning (PBS) proton radiotherapy (pRT) plans were generated to differentially decrease dose to functional liver volumes (FLV) defined on [{sup 99m}Tc]sulfur colloid (SC) SPECT/CT images (functional avoidance plans) and compared against conventional pRT plans. Methods: Three HCC patients underwent SC SPECT/CT scans for pRT planning acquired 15 min post injection over 24 min. Images were reconstructed with OSEM following scatter, collimator, and exhale CT attenuation correction. Functional liver volumes (FLV) were defined bymore » liver:spleen uptake ratio thresholds (43% to 90% maximum). Planning objectives to FLV were based on mean SC SPECT uptake ratio relative to GTV-subtracted liver and inversely scaled to mean liver dose of 20 Gy. PTV target coverage (V{sub 95}) was matched between conventional and functional avoidance plans. PBS pRT plans were optimized in RayStation for single field uniform dose (SFUD) and systematically perturbed to verify robustness to uncertainty in range, setup, and motion. Relative differences in FLV DVH and target dose heterogeneity (D{sub 2}-D{sub 98})/D50 were assessed. Results: For similar liver dose between functional avoidance and conventional PBS pRT plans (D{sub mean}≤5% difference, V{sub 18Gy}≤1% difference), dose to functional liver volumes were lower in avoidance plans but varied in magnitude across patients (FLV{sub 70%max} D{sub mean}≤26% difference, V{sub 18Gy}≤8% difference). Higher PTV dose heterogeneity in avoidance plans was associated with lower functional liver dose, particularly for the largest lesion [(D{sub 2}-D{sub 98})/D{sub 50}=13%, FLV{sub 90%max}=50% difference]. Conclusion: Differential avoidance of functional liver regions defined on sulfur colloid SPECT/CT is feasible with proton therapy. The magnitude of benefit appears to be patient specific and dependent on tumor location, size, and proximity to functional volumes. Further investigation in a larger cohort of patients may validate the clinical utility of functional avoidance planning of HCC radiotherapy.« less
Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning
NASA Astrophysics Data System (ADS)
Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.
2014-03-01
Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.
Dose planning objectives in anal canal cancer IMRT: the TROG ANROTAT experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Elizabeth, E-mail: elizabeth@mebrown.net; Cray, Alison; Haworth, Annette
2015-06-15
Intensity modulated radiotherapy (IMRT) is ideal for anal canal cancer (ACC), delivering high doses to irregular tumour volumes whilst minimising dose to surrounding normal tissues. Establishing achievable dose objectives is a challenge. The purpose of this paper was to utilise data collected in the Assessment of New Radiation Oncology Treatments and Technologies (ANROTAT) project to evaluate the feasibility of ACC IMRT dose planning objectives employed in the Australian situation. Ten Australian centres were randomly allocated three data sets from 15 non-identifiable computed tomography data sets representing a range of disease stages and gender. Each data set was planned by twomore » different centres, producing 30 plans. All tumour and organ at risk (OAR) contours, prescription and dose constraint details were provided. Dose–volume histograms (DVHs) for each plan were analysed to evaluate the feasibility of dose planning objectives provided. All dose planning objectives for the bone marrow (BM) and femoral heads were achieved. Median planned doses exceeded one or more objectives for bowel, external genitalia and bladder. This reached statistical significance for bowel V30 (P = 0.04), V45 (P < 0.001), V50 (P < 0.001), external genitalia V20 (P < 0.001) and bladder V35 (P < 0.001), V40 (P = 0.01). Gender was found to be the only significant factor in the likelihood of achieving the bowel V50 (P = 0.03) and BM V30 constraints (P = 0.04). The dose planning objectives used in the ANROTAT project provide a good starting point for ACC IMRT planning. To facilitate clinical implementation, it is important to prioritise OAR objectives and recognise factors that affect the achievability of these objectives.« less
[External stability of the elbow after surgical treatment of epicondylitis. Presentation of a case].
Llop-Corbacho, A; Romero-Ruiz, J; Denia-Alarcón, N
2014-01-01
Elbow instability is a difficult to diagnose condition in certain cases, and could lead to some problems that limit daily functioning, such as joint blocks, bumps, projections, muscle weakness, and persistent pain. A case is presented of a patient with a clinical picture of epicondylitis, with a previous history of a fall on the affected arm. As there was no improvement after performing conventional non-aggressive treatment, surgery was performed on the affected tendon. The outcome of this was persistent pain and clinical instability of the elbow that ended up requiring surgery to reconstruct the ligament over the external complex. In follow-up 6 months after the operation, the clinical instability had disappeared, but there was still external discomfort and a 30° extension deficit. When faced with a picture of epicondylitis with a previous injury that does not respond to conventional therapies, it is important to take into account the possibility of an underlying elbow instability, ruling this out with a correct physical examination and, where necessary, with the appropriate complementary tests. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.
Archer, James; Li, Enbang; Petasecca, Marco; Stevenson, Andrew; Livingstone, Jayde; Dipuglia, Andrew; Davis, Jeremy; Rosenfeld, Anatoly; Lerch, Michael
2018-05-01
Cancer is one of the leading causes of death worldwide. External beam radiation therapy is one of the most important modalities for the treatment of cancers. Synchrotron microbeam radiation therapy (MRT) is a novel pre-clinical therapy that uses highly spatially fractionated X-ray beams to target tumours, allowing doses much higher than conventional radiotherapies to be delivered. A dosimeter with a high spatial resolution is required to provide the appropriate quality assurance for MRT. This work presents a plastic scintillator fibre optic dosimeter with a one-dimensional spatial resolution of 20 µm, an improvement on the dosimeter with a resolution of 50 µm that was demonstrated in previous work. The ability of this probe to resolve microbeams of width 50 µm has been demonstrated. The major limitations of this method were identified, most notably the low-light signal resulting from the small sensitive volume, which made valley dose measurements very challenging. A titanium-based reflective paint was used as a coating on the probe to improve the light collection, but a possible effect of the high-Z material on the probes water-equivalence has been identified. The effect of the reflective paint was a 28.5 ± 4.6% increase in the total light collected; it did not affect the shape of the depth-dose profile, nor did it explain an over-response observed when used to probe at low depths, when compared with an ionization chamber. With improvements to the data acquisition, this probe design has the potential to provide a water-equivalent, inexpensive dosimetry tool for MRT.
Radiosurgery for the treatment of spinal lung metastases.
Gerszten, Peter C; Burton, Steven A; Belani, Chandra P; Ramalingam, Suresh; Friedland, David M; Ozhasoglu, Cihat; Quinn, Annette E; McCue, Kevin J; Welch, William C
2006-12-01
Spinal metastases are a common source of pain as well as neurologic deficit in patients with lung cancer. Metastases from lung cancer traditionally have been believed to be relatively responsive to radiation therapy. However, conventional external beam radiotherapy lacks the precision to allow delivery of large single-fraction doses of radiation and simultaneously limit the dose to radiosensitive structures such as the spinal cord. The current study evaluated the efficacy of single-fraction radiosurgery for the treatment of spinal lung cancer metastases. In the current prospective cohort evaluation, 87 lung cancer metastases to the spine in 77 patients were treated with a single-fraction radiosurgery technique with a follow-up period of 6 to 40 months (median, 12 months). The indication for radiosurgery treatment was pain in 73 cases, as a primary treatment modality in 7 cases, for radiographic tumor progression in 4 cases, and for progressive neurologic deficit in 3 cases. Tumor volume ranged from 0.2 to 264 cm(3) (mean, 25.7 cm(3)). The maximum tumor dose was maintained at 15 to 25 grays (Gy) (mean, 20 Gy; median, 20 Gy). No radiation-induced toxicity occurred during the follow-up period. Long-term axial and radicular pain improvement occurred in 65 of 73 patients (89%) who were treated primarily for pain. Long-term radiographic tumor control was observed in all patients who underwent radiosurgery as their primary treatment modality or for radiographic tumor progression. Spinal radiosurgery was found to be feasible, safe, and clinically effective for the treatment of spinal metastases from lung cancer. The results of the current study indicate the potential of radiosurgery in the treatment of patients with spinal lung metastases, especially those with solitary sites of spine involvement, to improve long-term palliation. (c) 2006 American Cancer Society.
Sampson, John H.; Archer, Gary E.; Mitchell, Duane A.; Heimberger, Amy B.; Herndon, James E.; Lally-Goss, Denise; McGehee-Norman, Sharon; Paolino, Alison; Reardon, David A.; Friedman, Allan H.; Friedman, Henry S.; Bigner, Darell D.
2010-01-01
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, such that their efficacyis ultimately limited by nonspecific toxicity. Immunologic targeting of tumor-specific gene mutations, however, may allow more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a consistent and tumor-specific mutation widely expressed in GBMs and other neoplasms. The safety and immunogenicity of a dendritic cell (DC)–based vaccine targeting the EGFRvIII antigen was evaluated in this study. Adults with newly diagnosed GBM, who had undergone gross-total resection and standard conformal external beam radiotherapy, received three consecutive intradermal vaccinations with autologous mature DCs pulsed with an EGFRvIII-specific peptide conjugated to keyhole limpet hemocyanin. The dose of DCs was escalated in cohorts of three patients. Patients were monitored for toxicity, immune response, radiographic and clinical progression, and death. No allergic reactions or serious adverse events were seen. Adverse events were limited to grade 2 toxicities. The maximum feasible dose of antigen-pulsed mature DCs was reached at 5.7 × 107 ± 2.9 × 107 SD without dose-limiting toxicity. EGFRvIII-specific immune responses were evident in most patients. The mean time from histologic diagnosis to vaccination was 3.6 ± 0.6 SD months. Median time to progression from vaccination was 6.8 months [95% confidence interval (C.I.95), 2.5–8.8], and median survival time from vaccination was 18.7 months (C.I.95, 14.5–25.6). Overall median survival from time of histologic diagnosis was 22.8 months (C.I.95, 17.5–29). This study establishes the EGFRvIII mutation as a safe and immunogenic tumor-specific target for immunotherapy. PMID:19825799
Fattori, G; Saito, N; Seregni, M; Kaderka, R; Pella, A; Constantinescu, A; Riboldi, M; Steidl, P; Cerveri, P; Bert, C; Durante, M; Baroni, G
2014-12-01
The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in 20.3(2.3)% and 21.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.
Pharmacokinetic Studies in Neonates: The Utility of an Opportunistic Sampling Design.
Leroux, Stéphanie; Turner, Mark A; Guellec, Chantal Barin-Le; Hill, Helen; van den Anker, Johannes N; Kearns, Gregory L; Jacqz-Aigrain, Evelyne; Zhao, Wei
2015-12-01
The use of an opportunistic (also called scavenged) sampling strategy in a prospective pharmacokinetic study combined with population pharmacokinetic modelling has been proposed as an alternative strategy to conventional methods for accomplishing pharmacokinetic studies in neonates. However, the reliability of this approach in this particular paediatric population has not been evaluated. The objective of the present study was to evaluate the performance of an opportunistic sampling strategy for a population pharmacokinetic estimation, as well as dose prediction, and compare this strategy with a predetermined pharmacokinetic sampling approach. Three population pharmacokinetic models were derived for ciprofloxacin from opportunistic blood samples (SC model), predetermined (i.e. scheduled) samples (TR model) and all samples (full model used to previously characterize ciprofloxacin pharmacokinetics), using NONMEM software. The predictive performance of developed models was evaluated in an independent group of patients. Pharmacokinetic data from 60 newborns were obtained with a total of 430 samples available for analysis; 265 collected at predetermined times and 165 that were scavenged from those obtained as part of clinical care. All datasets were fit using a two-compartment model with first-order elimination. The SC model could identify the most significant covariates and provided reasonable estimates of population pharmacokinetic parameters (clearance and steady-state volume of distribution) compared with the TR and full models. Their predictive performances were further confirmed in an external validation by Bayesian estimation, and showed similar results. Monte Carlo simulation based on area under the concentration-time curve from zero to 24 h (AUC24)/minimum inhibitory concentration (MIC) using either the SC or the TR model gave similar dose prediction for ciprofloxacin. Blood samples scavenged in the course of caring for neonates can be used to estimate ciprofloxacin pharmacokinetic parameters and therapeutic dose requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lin, E-mail: konglinj@gmail.co; Lu, Jiade J.; Department of Radiation Oncology, National University Cancer Institute of Singapore
2011-04-01
Purpose: To address the characteristics and the causative factors of radiation-induced cranial nerve palsy (CNP) in nasopharyngeal carcinoma (NPC) patients with an extensive period of followed-up. Patients and Methods: A total of 317 consecutive and nonselected patients treated with definitive external-beam radiotherapy between November 1962 and February 1995 participated in this study. The median doses to the nasopharynx and upper neck were 71 Gy (range, 55-86 Gy) and 61 Gy (range, 34-72 Gy), respectively. Conventional fractionation was used in 287 patients (90.5%). Forty-five patients (14.2%) received chemotherapy. Results: The median follow-up was 11.4 years (range, 5.1-38.0 years). Ninety-eight patients (30.9%)more » developed CNP, with a median latent period of 7.6 years (range, 0.3-34 years). Patients had a higher rate of CNP (81 cases, 25.5%) in lower-group cranial nerves compared with upper group (44 cases, 13.9%) ({chi}{sup 2} = 34.444, p < 0.001). Fifty-nine cases experienced CNP in more than one cranial nerve. Twenty-two of 27 cases (68.8%) of intragroup CNP and 11 of 32 cases (40.7%) of intergroup CNP occurred synchronously ({chi}{sup 2} = 4.661, p = 0.031). The cumulative incidences of CNP were 10.4%, 22.4%, 35.5%, and 44.5% at 5, 10, 15, and 20 years, respectively. Multivariate analyses revealed that CNP at diagnosis, chemotherapy, total radiation dose to the nasopharynx, and upper neck fibrosis were independent risk factors for developing radiation-induced CNP. Conclusion: Radiation-induced fibrosis may play an important role in radiation-induced CNP. The incidence of CNP after definitive radiotherapy for NPC remains high after long-term follow-up and is dose and fractionation dependent.« less
Nakamura, T; Hayashi, Y; Watabe, H; Matsumoto, M; Horikawa, T; Fujiwara, T; Ito, M; Yanai, K
1998-02-01
We have developed a method for obtaining the cumulated activities in organs from radionuclides, which are injected into the patient in nuclear medicine procedures, by external exposure measurement with thermoluminescent dosimeters (TLDs) which are attached to the patient's body surface close to source organs to obtain information on body-surface doses. As the surface dose is connected to the cumulated activities in source organs through radiation transmission in the human body which can be estimated with the aid of a mathematical phantom, the organ cumulated activities can be obtained by the inverse transform method. The accuracy of this method was investigated by using a water phantom in which several gamma-ray volume sources of known activity were placed to simulate source organs. We then estimated by external measurements the organ cumulated activities and absorbed doses in subjects to whom the radiopharmaceuticals 11C-labelled Doxepin, 11C-labelled YM09151-2 and 11C-labelled Benzotropin were administered in clinical nuclear medicine procedures. The cumulated activities in the brain obtained with TLDs for Doxepin and YM09151-2 are 63.6 +/- 6.2 and 32.1 +/- 12.0 kBq h MBq-1 respectively, which are compared with the respective values of 33.3 +/- 9.9 and 23.9 +/- 6.2 kBq h MBq-1 with direct PET (positron emission tomography) measurements. The agreement between the two methods is within a factor of two. The effective doses of Doxepin, YM09151-2 and Benzotropin are determined as 6.92 x 10(-3), 7.08 x 10(-3) and 7.65 x 10(-3) mSv MBq-1 respectively with the TLD method. This method has great advantages, in that cumulated activities in several organs can be obtained easily with a single procedure, and the measurements of body surface doses are performed simultaneously with the nuclear medicine procedure, as TLDs are too small to interfere with other medical measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Morgan, A; Davros, W
Purpose: In CT imaging, a desirable quality assurance (QA) dose quantity should account for the dose variability across scan parameters and scanner models. Recently, AAPM TG 111 proposed to use equilibrium dose-pitch product, in place of CT dose index (CTDI100), for scan modes involving table translation. The purpose of this work is to investigate whether this new concept better accounts for the kVp dependence of organ dose than the conventional CTDI concept. Methods: The adult reference female extended cardiac-torso (XCAT) phantom was used for this study. A Monte Carlo program developed and validated for a 128-slice CT system (Definition Flash,more » Siemens Healthcare) was used to simulate organ dose for abdomenpelvis scans at five tube voltages (70, 80, 100, 120, 140 kVp) with a pitch of 0.8 and a detector configuration of 2x64x0.6 mm. The same Monte Carlo program was used to simulate CTDI100 and equilibrium dose-pitch product. For both metrics, the central and peripheral values were used together with helical pitch to calculate a volume-weighted average, i.e., CTDIvol and (Deq)vol, respectively. Results: While other scan parameters were kept constant, organ dose depended strongly on kVp; the coefficient of variation (COV) across the five kVp values ranged between 70–75% for liver, spleen, stomach, pancreas, kidneys, colon, small intestine, bladder, and ovaries, all of which were inside the primary radiation beam. One-way analysis of variance (ANOVA) for the effect of kVp was highly significant (p=3e−30). When organ dose was normalized by CTDIvol, the COV across the five kVp values reduced to 7–16%. The effect of kVp was still highly significant (p=4e−4). When organ dose was normalized by (Deq)vol, the COV further reduced to 4−12%. The effect of kVp was borderline significant (p=0.04). Conclusion: In abdomen-pelvis CT, TG 111 equilibrium dose concept better accounts for kVp dependence than the conventional CTDI. This work is supported by a faculty startup fund from the Cleveland State University.« less
Single-energy intensity modulated proton therapy
NASA Astrophysics Data System (ADS)
Farace, Paolo; Righetto, Roberto; Cianchetti, Marco
2015-09-01
In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.
Single-energy intensity modulated proton therapy.
Farace, Paolo; Righetto, Roberto; Cianchetti, Marco
2015-10-07
In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, Gerard C., E-mail: gerard.morton@sunnybrook.ca; Loblaw, D. Andrew; Chung, Hans
Purpose: To investigate the change in health-related quality of life for men after high-dose-rate brachytherapy and external beam radiotherapy for prostate cancer and the factors associated with this change. Methods and Materials: Eligible patients had clinically localized intermediate-risk prostate cancer. The patients received high-dose-rate brachytherapy as a single 15-Gy implant, followed by external beam radiotherapy to 37.5 Gy in 15 fractions. The patients were monitored prospectively for toxicity (Common Terminology Criteria for Adverse Events, version 3.0) and health-related quality of life (Expanded Prostate Cancer Index Composite [EPIC]). The proportion of patients developing a clinically significant difference in the EPIC domainmore » score (minimally important difference of >0.5 standard deviation) was determined and correlated with the baseline clinical and dosimetric factors. The study accrued 125 patients, with a median follow-up of 24 months. Results: By 24 months, 23% had Grade 2 urinary toxicity and only 5% had Grade 2 bowel toxicity, with no Grade 3 toxicity. The proportion of patients reporting a significant decrease in EPIC urinary, bowel, sexual, and hormonal domain scores was 53%, 51%, 45%, and 40% at 12 months and 57%, 65%, 51%, and 30% at 24 months, respectively. The proportion with a >1 standard deviation decrease in the EPIC urinary, bowel, sexual, and hormonal domain scores was 38%, 36%, 24%, and 20% at 12 months and 46%, 48%, 19%, and 8% at 24 months, respectively. On multivariate analysis, the dose to 10% of the urethra was associated with a decreasing EPIC urinary domain score (p = .0089) and, less strongly (p = .0312) with a decreasing hormonal domain score. No association was found between the prostate volume, bladder dose, or high-dose volume and urinary health-related quality of life. A high baseline International Index of Erectile Function score was associated (p = .0019) with a decreasing sexual domain score. The optimal maximal dose to 10% of the urethra cutpoint for urinary health-related quality of life was 120% of the prescription dose. Conclusion: EPIC was a more sensitive tool for detecting the effects on function and bother than were the generic toxicity scales. The urethral dose had the strongest association with a deteriorating urinary quality of life.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vishal; Mychalczak, Borys; Krug, Lee
Purpose: To evaluate pleurectomy/decortication (P/D) and adjuvant radiotherapy (RT) in the treatment of malignant pleural mesothelioma (MPM). Methods and Materials: In a retrospective review, we included MPM patients treated with P/D and adjuvant RT at Memorial Sloan-Kettering Cancer Center from 1974 to 2003. When indicated, patients received intraoperative brachytherapy to residual tumor. Results: All 123 patients received external beam RT (median dose, 42.5 Gy; range, 7.2-67.8 Gy) to the ipsilateral hemithorax postoperatively. Fifty-four patients underwent brachytherapy (matched peripheral dose, 160 Gy). The median and 2-year overall survival for all patients was 13.5 months (range, 1-199 months) and 23%, respectively. One-yearmore » actuarial local control for all patients was 42%. Multivariate analysis for overall survival revealed radiation dose <40 Gy (p = 0.001), nonepithelioid histology (p = 0.002), left-sided disease (p = 0.01), and the use of an implant (p = 0.02) to be unfavorable. Two patients (1.6%) died from Grade 5 toxicity within 1 month of treatment. Conclusions: Pleurectomy/decortication with adjuvant radiotherapy is not an effective treatment option for patients with MPM. Our results imply that residual disease cannot be eradicated with external RT with or without brachytherapy and that a more extensive surgery followed by external RT might be required to improve local control and overall survival.« less
Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.
Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan
2007-04-01
In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a check of the whole dosimetry chain for this type of brachytherapy afterloading system and can easily be performed by mail to any institution in the European area and elsewhere. Such an external audit can be an efficient QC method complementary to internal quality control as it can reveal some errors which are not observable by other means.
Interstitial rotating shield brachytherapy for prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Quentin E., E-mail: quentin-adams@uiowa.edu; Xu, Jinghzu; Breitbach, Elizabeth K.
Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535more » μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%–44% if the clinician allows a urethral dose gradient volume of 0–5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed {sup 153}Gd-based I-RSBT technique in reasonable treatment times.« less
He, Jingzhen; Zu, Yuliang; Wang, Qing; Ma, Xiangxing
2014-12-01
The purpose of this study was to determine the performance of low-dose computed tomography (CT) scanning with integrated circuit (IC) detector in defining fine structures of temporal bone in children by comparing with the conventional detector. The study was performed with the approval of our institutional review board and the patients' anonymity was maintained. A total of 86 children<3 years of age underwent imaging of temporal bone with low-dose CT (80 kV/150 mAs) equipped with either IC detector or conventional discrete circuit (DC) detector. The image noise was measured for quantitative analysis. Thirty-five structures of temporal bone were further assessed and rated by 2 radiologists for qualitative analysis. κ Statistics were performed to determine the agreement reached between the 2 radiologists on each image. Mann-Whitney U test was used to determine the difference in image quality between the 2 detector systems. Objective analysis showed that the image noise was significantly lower (P<0.001) with the IC detector than with the DC detector. The κ values for qualitative assessment of the 35 fine anatomical structures revealed high interobserver agreement. The delineation for 30 of the 35 landmarks (86%) with the IC detector was superior to that with the conventional DC detector (P<0.05) although there were no differences in the delineation of the remaining 5 structures (P>0.05). The low-dose CT images acquired with the IC detector provide better depiction of fine osseous structures of temporal bone than that with the conventional DC detector.
Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen
2002-02-01
The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.
Long-Boyle, Janel; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J.; Dvorak, Christopher C.
2014-01-01
Background Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared to conventional dosing. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration-at-steady-state, Css) and implement a simple, model-based tool for the initial dosing of busulfan in children undergoing HCT. Patients and Methods Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone HCT with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the non-linear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly, Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Results Modeling of busulfan time-concentration data indicates busulfan CL displays non-linearity in children, decreasing up to approximately 20% between the concentrations of 250–2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan CL were actual body weight and age. The percentage of individuals achieving a therapeutic Css was significantly higher in subjects receiving initial doses based on the population PK model (81%) versus historical controls dosed on conventional guidelines (52%) (p = 0.02). Conclusion When compared to the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults. PMID:25162216
Code of Federal Regulations, 2014 CFR
2014-01-01
..., set the clock time to 3:23 and use the average power approach described in Section 5, Paragraph 5.3.2... circulates air internally or externally to the cooking product for a finite period of time after the end of... persist for an indefinite time. An indicator that only shows the user that the product is in the off...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, Sean M.; Stenmark, Matthew H.; Blas, Kevin
2012-07-01
Purpose: To investigate the prognostic utility of the percentage of cancer volume (PCV) in needle biopsy specimens for prostate cancer patients treated with dose-escalated external beam radiotherapy. Methods and Materials: The outcomes were analyzed for 599 men treated for localized prostate cancer with external beam radiotherapy to a minimal planning target volume dose of 75 Gy (range, 75-79.2). We assessed the effect of PCV and the pretreatment and treatment-related factors on the freedom from biochemical failure, freedom from metastasis, cause-specific survival, and overall survival. Results: The median number of biopsy cores was 7 (interquartile range, 6-12), median PCV was 10%more » (interquartile range, 2.5-25%), and median follow-up was 62 months. The PCV correlated with the National Comprehensive Cancer Network risk group and individual risk features, including T stage, prostate-specific antigen level, Gleason score, and percentage of positive biopsy cores. On log-rank analysis, the PCV stratified by quartile was prognostic for all endpoints, including overall survival. In addition, the PCV was a stronger prognostic factor than the percentage of positive biopsy cores when the two metrics were analyzed together. On multivariate analysis, the PCV predicted a worse outcome for all endpoints, including freedom from biochemical failure, (hazard ratio, 1.9; p = .0035), freedom from metastasis (hazard ratio, 1.7, p = .09), cause-specific survival (hazard ratio, 3.9, p = .014), and overall survival (hazard ratio, 1.8, p = .02). Conclusions: For patients treated with dose-escalated external beam radiotherapy, the volume of cancer in the biopsy specimen adds prognostic value for clinically relevant endpoints, particularly in intermediate- and high-risk patients. Although the PCV determination is more arduous than the percentage of positive biopsy cores, it provides superior risk stratification.« less
Validation of a Prototype Optical Computed Tomography System
Zakariaee, Seyed Salman; Molazadeh, Mikaeil; Takavar, Abbas; Shirazi, Alireza; Mesbahi, Asghar; Zeinali, Ahad
2015-01-01
In radiation cancer treatments, the most of the side effects could be minimized using a proper dosimeter. Gel dosimeter is the only three-dimensional dosimeter and magnetic resonance imaging (MRI) is the gold standard method for gel dosimeter readout. Because of hard accessibility and high cost of sample reading by MRI systems, some other alternative methods were developed. The optical computed tomography (OCT) method could be considered as the most promising alternative method that has been studied widely. In the current study, gel dosimeter scanning using a prototype optical scanner and validation of this optical scanner was performed. Optical absorbance of the irradiated gel samples was determined by both of conventional spectrophotometer and the fabricated OCT system at 632 nm. Furthermore, these irradiated vials were scanned by a 1.5 T MRI. The slope of the curves was extracted as the dose-response sensitivity. The R2-dose sensitivity measured by MRI method was 0.1904 and 0.113 for NIPAM and PAGAT gels, respectively. The optical dose sensitivity obtained by conventional spectrophotometer and the fabricated optical scanner was 0.0453 and 0.0442 for NIPAM gels and 0.0244 and 0.0242 for PAGAT gels, respectively. The scanning results of the absorbed dose values showed that the new OCT and conventional spectrophotometer were in fair agreement. From the results, it could be concluded that the fabricated system is able to quantize the absorbed dose values in polymer gel samples with acceptable accuracy. PMID:26120572
REACTOR HAVING NaK-UO$sub 2$ SLURRY HELICALLY POSITIONED IN A GRAPHITE MODERATOR
Rodin, M.B.; Carter, J.C.
1962-05-15
A reactor utilizing 20% enriched uranium consists of a central graphite island in cylindrical form, with a spiral coil of tubing fitting against the central island. An external graphite moderator is placed around the central island and coil. A slurry of uranium dioxide dispersed in alkali metal passes through the coil to transfer heat externally to the reactor. There are also conventional controls for regulating the nuclear reaction. (AEC)
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance
Liuzzi, Raffaele; Savino, Federica; D’Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Background Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2–12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. Methods LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0–10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. Results The TLD-100 dose-response curves were obtained. In the dose range of 0–10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). Conclusions This study demonstrates that the TLD dose response, for doses ≤10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided. PMID:26427065