Strain gage measurement errors in the transient heating of structural components
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1993-01-01
Significant strain-gage errors may exist in measurements acquired in transient thermal environments if conventional correction methods are applied. Conventional correction theory was modified and a new experimental method was developed to correct indicated strain data for errors created in radiant heating environments ranging from 0.6 C/sec (1 F/sec) to over 56 C/sec (100 F/sec). In some cases the new and conventional methods differed by as much as 30 percent. Experimental and analytical results were compared to demonstrate the new technique. For heating conditions greater than 6 C/sec (10 F/sec), the indicated strain data corrected with the developed technique compared much better to analysis than the same data corrected with the conventional technique.
Tannamala, Pavan Kumar; Azhagarasan, Nagarasampatti Sivaprakasam; Shankar, K Chitra
2013-01-01
Conventional casting techniques following the manufacturers' recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Experimental design, in vitro study, lab settings. Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. The mean marginal gap by conventional technique (34.02 μm) is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm). As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.
Laser cleaning of steel for paint removal
NASA Astrophysics Data System (ADS)
Chen, G. X.; Kwee, T. J.; Tan, K. P.; Choo, Y. S.; Hong, M. H.
2010-11-01
Paint removal is an important part of steel processing for marine and offshore engineering. For centuries, a blasting techniques have been widely used for this surface preparation purpose. But conventional blasting always has intrinsic problems, such as noise, explosion risk, contaminant particles, vibration, and dust. In addition, processing wastes often cause environmental problems. In recent years, laser cleaning has attracted much research effort for its significant advantages, such as precise treatment, and high selectivity and flexibility in comparison with conventional cleaning techniques. In the present study, we use this environmentally friendly technique to overcome the problems of conventional blasting. Processed samples are examined with optical microscopes and other surface characterization tools. Experimental results show that laser cleaning can be a good alternative candidate to conventional blasting.
Andritzky, Juliane; Rossol, Melanie; Lischer, Christoph; Auer, Joerg A
2005-01-01
To compare the precision obtained with computer-assisted screw insertion for treatment of mid-sagittal articular fractures of the distal phalanx (P3) with results achieved with a conventional technique. In vitro experimental study. Thirty-two cadaveric equine limbs. Four groups of 8 limbs were studied. Either 1 or 2 screws were inserted perpendicular to an imaginary axial fracture of P3 using computer-assisted surgery (CAS) or conventional technique. Screw insertion time, predetermined screw length, inserted screw length, fit of the screw, and errors in placement were recorded. CAS technique took 15-20 minutes longer but resulted in greater precision of screw length and placement compared with the conventional technique. Improved precision in screw insertion with CAS makes insertion of 2 screws possible for repair of mid-sagittal P3 fractures. CAS although expensive improves precision in screw insertion into P3 and consequently should yield improved clinical outcome.
NASA Astrophysics Data System (ADS)
Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun
2001-05-01
In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.
Yuenyongviwat, Varah; Tuntarattanapong, Pakjai; Tangtrakulwanich, Boonsin
2016-01-11
Internal fixation is one treatment for femoral neck fracture. Some devices and techniques reported improved accuracy and decreased fluoroscopic time. However, these are not widely used nowadays due to the lack of available special instruments and techniques. To improve the surgical procedure, the authors designed a new adjustable drill guide and tested the efficacy of the device. The authors developed a new adjustable drill guide for cannulated screw guide wire insertion for multiple screw fixation. Eight orthopaedic surgeons performed the experimental study to evaluate the efficacy of this device. Each surgeon performed guide wire insertion for multiple screw fixation in six synthetic femurs: three times with the new device and three times with the conventional technique. The fluoroscopic time, operative time and surgeon satisfaction were evaluated. In the operations with the new adjustable drill guide, the fluoroscopic and operative times were significantly lower than the operations with the conventional technique (p < 0.05). The mean score for the level of satisfaction of this device was also statistically significantly better (p = 0.02) than the conventional technique. The fluoroscopic and operative times with the new adjustable drill guide were reduced for multiple screw fixation of femoral neck fracture and the satisfaction of the surgeons was good.
Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling
Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang
2014-01-01
Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265
Detection of swine-origin influenza A (H1N1) viruses using a paired surface plasma waves biosensor
NASA Astrophysics Data System (ADS)
Su, Li-Chen; Chang, Ying-Feng; Li, Ying-Chang; Hsieh, Jo-Ping; Lee, Cheng-Chung; Chou, Chien
2010-08-01
In order to enhance the sensitivity of conventional rapid test technique for the detection of swine-origin influenza A (H1N1) viruses (S-OIVs), we used a paired surface plasma waves biosensor (PSPWB) based on SPR in conjunction with an optical heterodyne technique. Experimentally, PSPWB showed a 125-fold improvement at least in the S-OIV detection as compared to conventional enzyme linked immunosorbent assay. Moreover, the detection limit of the PSPWB for the S-OIV detection was enhanced 250-fold in buffer at least in comparison with that of conventional rapid influenza diagnostic test.
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
Compelled Body Weight Shift Technique to Facilitate Rehabilitation of Individuals with Acute Stroke.
Mohapatra, Sambit; Eviota, Aileen C; Ringquist, Keir L; Muthukrishnan, Sri Ranjini; Aruin, Alexander S
2012-05-01
The study evaluates the effectiveness of Compelled Body Weight Shift (CBWS) approach in the rehabilitation of individuals with stroke. CBWS involves a forced shift of body weight towards a person's affected side by means of a shoe insert that establishes a lift of the nonaffected lower extremity. Eleven patients with acute stroke were randomly assigned to experimental and control groups. The experimental group received a two-week conventional physical therapy combined with CBWS and the control group received only a two-week conventional therapy. Weight bearing, Gait velocity, Berg's Balance, and Fugl-Meyer's Scores were recorded before and after the intervention. Weight bearing on the affected side increased in the experimental group and decreased in the control group. The increase in gait velocity with treatment was significant in both the groups ( P < 0.05). However, experimental group ( P = 0.01) demonstrated larger improvements in gait velocity compared to the control group ( P = 0.002). Berg Balance and Fugl-Meyer scores increased for both the groups. The implementation of a two-week intervention with CBWS resulted in the improvement in weight bearing and gait velocity of individuals with acute stroke. The present preliminary study suggests that CBWS technique could be implemented as an adjunct to conventional rehabilitation program for individuals with acute stroke.
Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique
NASA Technical Reports Server (NTRS)
Jobson, D. J.; Katzberg, S. J.; Spiers, R. B., Jr.
1977-01-01
The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower.
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1996-01-01
Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Zheng, X; Liu, H
Purpose: This study is to evaluate the feasibility of simultaneously integrated boost (SIB) to hypoxic subvolume (HTV) in nasopharyngeal carcinomas under the guidance of 18F-Fluoromisonidazole (FMISO) PET/CT using a novel non-uniform volumetric modulated arc therapy (VMAT)technique. Methods: Eight nasopharyngeal carcinoma patients treated with conventional uniform VMAT were retrospectively analyzed. For each treatment, actual conventional uniform VMAT plan with two or more arcs (2–2.5 arcs, totally rotating angle < 1000o) was designed with dose boost to hopxic subvolume (total dose, 84Gy) in the gross tumor volme (GTV) under the guidance of 18F- FMISO PET/CT. Based on the same dataset, experimental singlemore » arc non-uniform VAMT plans were generated with the same dose prescription using customized software tools. Dosimetric parameters, quality assurance and the efficiency of the treatment delivery were compared between the uniform and non-uniform VMAT plans. Results: To develop the non-uniform VMAT technique, a specific optimization model was successfully established. Both techniques generate high-quality plans with pass rate (>98%) with the 3mm, 3% criterion. HTV received dose of 84.1±0.75Gy and 84.1±1.2Gy from uniform and non-uniform VMAT plans, respectively. In terms of target coverage and dose homogeneity, there was no significant statistical difference between actual and experimental plans for each case. However, for critical organs at risk (OAR), including the parotids, oral cavity and larynx, dosimetric difference was significant with better dose sparing form experimental plans. Regarding plan implementation efficiency, the average machine time was 3.5 minutes for the actual VMAT plans and 3.7 minutes for the experimental nonuniform VMAT plans (p>0.050). Conclusion: Compared to conventional VMAT technique, the proposed non-uniform VMAT technique has the potential to produce efficient and safe treatment plans, especially in cases with complicated anatomical structures and demanding dose boost to subvolumes.« less
Operational Evaluation of Self-Paced Instruction in U.S. Army Training.
1979-01-01
one iteration of each course, and the on -going refinement and adjustment of managerial techniques. Research Approach A quasi - experimental approach was...research design employed experimental and control groups , posttest only with non-random groups . The design dealt with the six major areas identified as...course on Interpersonal Communications were conducted in the conventional, group -paced manner. Experimental course materials. Wherever possible, existing
Practical uncertainty reduction and quantification in shock physics measurements
Akin, M. C.; Nguyen, J. H.
2015-04-20
We report the development of a simple error analysis sampling method for identifying intersections and inflection points to reduce total uncertainty in experimental data. This technique was used to reduce uncertainties in sound speed measurements by 80% over conventional methods. Here, we focused on its impact on a previously published set of Mo sound speed data and possible implications for phase transition and geophysical studies. However, this technique's application can be extended to a wide range of experimental data.
Compelled Body Weight Shift Technique to Facilitate Rehabilitation of Individuals with Acute Stroke
Mohapatra, Sambit; Eviota, Aileen C.; Ringquist, Keir L.; Muthukrishnan, Sri Ranjini; Aruin, Alexander S.
2014-01-01
Background The study evaluates the effectiveness of Compelled Body Weight Shift (CBWS) approach in the rehabilitation of individuals with stroke. CBWS involves a forced shift of body weight towards a person’s affected side by means of a shoe insert that establishes a lift of the nonaffected lower extremity. Methods Eleven patients with acute stroke were randomly assigned to experimental and control groups. The experimental group received a two-week conventional physical therapy combined with CBWS and the control group received only a two-week conventional therapy. Weight bearing, Gait velocity, Berg’s Balance, and Fugl-Meyer’s Scores were recorded before and after the intervention. Results Weight bearing on the affected side increased in the experimental group and decreased in the control group. The increase in gait velocity with treatment was significant in both the groups (P < 0.05). However, experimental group (P = 0.01) demonstrated larger improvements in gait velocity compared to the control group (P = 0.002). Berg Balance and Fugl-Meyer scores increased for both the groups. Conclusion The implementation of a two-week intervention with CBWS resulted in the improvement in weight bearing and gait velocity of individuals with acute stroke. The present preliminary study suggests that CBWS technique could be implemented as an adjunct to conventional rehabilitation program for individuals with acute stroke. PMID:25530888
Gaming via Computer Simulation Techniques for Junior College Economics Education. Final Report.
ERIC Educational Resources Information Center
Thompson, Fred A.
A study designed to answer the need for more attractive and effective economics education involved the teaching of one junior college economics class by the conventional (lecture) method and an experimental class by computer simulation techniques. Econometric models approximating the "real world" were computer programed to enable the experimental…
ERIC Educational Resources Information Center
Chantoem, Rewadee; Rattanavich, Saowalak
2016-01-01
This research compares the English language achievements of vocational students, their reading and writing abilities, and their attitudes towards learning English taught with just-in-time teaching techniques through web technologies and conventional methods. The experimental and control groups were formed, a randomized true control group…
Electromagnetically induced acoustic emission—novel NDT technique for damage evaluation
NASA Astrophysics Data System (ADS)
Finkel, P.; Godinez, V.; Miller, R.; Finlayson, R.
2001-04-01
A recently developed electromagnetically induced acoustic emission technique (EM AE) which can be used for damage assessment of thin walled conducting structures is described. This technique allows a structure to be loaded locally by applying an electromagnetic field in order to produce an AE response, which may be captured by conventional or fiber optic (FO) AE sensors. The advantage of this technique is that the localized dynamic stresses induced by a short current pulse in the presence of an external magnetic field aid in the detection of cracks. Also, it is shown that electromagnetic stimulation can be applied to enhance conventional ultrasonics by modulation of the scattered signal from the defect (EM UT). Experimental data is presented for the case of a fatigue crack near rivet holes in thin walled aluminum structures.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1984-01-01
A unified control synthesis methodology for complex and/or non-conventional flight vehicles are developed. Prediction techniques for the handling characteristics of such vehicles and pilot parameter identification from experimental data are addressed.
ERIC Educational Resources Information Center
de Berg, Kevin; Chapman, Ken
1996-01-01
Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)
Jiang, Zhi-quan; Hu, Ke-liang
2016-03-01
In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.
Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient
Dongaonkar, R. M.; Laine, G. A.; Stewart, R. H.
2011-01-01
Microvascular permeability to water is characterized by the microvascular filtration coefficient (Kf). Conventional gravimetric techniques to estimate Kf rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate Kf estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce Kf from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to Kf and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of Kf in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique. PMID:21346245
NASA Technical Reports Server (NTRS)
Cramer, J. M.; Pal, S.; Marshall, W. M.; Santoro, R. J.
2003-01-01
Contents include the folloving: 1. Motivation. Support NASA's 3d generation launch vehicle technology program. RBCC is promising candidate for 3d generation propulsion system. 2. Approach. Focus on ejector mode p3erformance (Mach 0-3). Perform testing on established flowpath geometry. Use conventional propulsion measurement techniques. Use advanced optical diagnostic techniques to measure local combustion gas properties. 3. Objectives. Gain physical understanding of detailing mixing and combustion phenomena. Establish an experimental data set for CFD code development and validation.
Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.
Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y
2018-03-08
Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mücke, Thomas; Ritschl, Lucas M; Balasso, Andrea; Wolff, Klaus-Dietrich; Mitchell, David A; Liepsch, Dieter
2014-01-01
The end-to-side anastomosis is frequently used in microvascular free flap transfer, but detailed rheological analyses are not available. The purpose of this study was to introduce a new modified end-to-side (Opened End-to-Side, OES-) technique and compare the resulting flow pattern to a conventional technique. The new technique was based on a bi-triangulated preparation of the branching-vessel end, resulting in a "fish-mouthed" opening. We performed two different types of end-to-side anastomoses in forty pig coronary arteries and produced one elastic, true-to-scale silicone rubber model of each anastomosis. Then we installed the transparent models in a circulatory experimental setup that simulated the physiological human blood flow. Flow velocity was measured with the one-component Laser-Doppler-Anemometer system, recording flow axial and perpendicular to the model at four defined cross-sections for seven heart cycles in each model. Maximal and minimal axial velocities ranged in the conventional model between 0.269 and -0.122 m/s and in the experimental model between 0.313 and -0.153 m/s. A less disturbed flow velocity distribution was seen in the experimental model distal to the anastomosis. The OES-technique showed superior flow profiles distal to the anastomosis with minor tendencies of flow separation and represents a new alternative for end-to-side anastomosis. Copyright © 2013 Wiley Periodicals, Inc.
Electronic cigarette substitution in the experimental tobacco marketplace: A review.
Bickel, Warren K; Pope, Derek A; Kaplan, Brent A; Brady DeHart, W; Koffarnus, Mikhail N; Stein, Jeffrey S
2018-04-24
The evolution of science derives, in part, from the development and use of new methods and techniques. Here, we discuss one development that may have impact on the understanding of tobacco regulatory science: namely, the application of behavioral economics to the complex tobacco marketplace. The purpose of this paper is to review studies that examine conditions impacting the degree to which electronic nicotine delivery system (ENDS) products substitute for conventional cigarettes in the Experimental Tobacco Marketplace (ETM). Collectively, the following factors constitute the current experimental understanding of conditions that will affect ENDS use and substitution for conventional cigarettes: increasing the base price of conventional cigarettes, increasing taxation of conventional cigarettes, subsidizing the price of ENDS products, increasing ENDS nicotine strength, and providing narratives that illustrate the potential health benefits of ENDS consumption in lieu of conventional cigarettes. Each of these factors are likely moderated by consumer characteristics, which include prior ENDS use, ENDS use risk perception, and gender. Overall, the ETM provides a unique method to explore and identify the conditions by which various nicotine products may interact with one another that mimics the real world. In addition, the ETM permits the efficacy of a broad range of potential nicotine policies and regulations to be measured prior to governmental implementation. Copyright © 2017. Published by Elsevier Inc.
Comprehensive Space-Object Characterization using Spectrally Compressive Polarimetric Sensing
2015-04-08
90o, 45o, and 135o polarization channels for lin- ear polarization state estimation. This linear polarimetry would satisfy several applications without...persive element. This technique eliminates mechanical movements that hinder conventional polarimetry . The experimental results show clear spatial
Computer assessment of atherosclerosis from angiographic images
NASA Technical Reports Server (NTRS)
Selzer, R. H.; Blankenhorn, D. H.; Brooks, S. H.; Crawford, D. W.; Cashin, W. L.
1982-01-01
A computer method for detection and quantification of atherosclerosis from angiograms has been developed and used to measure lesion change in human clinical trials. The technique involves tracking the vessel edges and measuring individual lesions as well as the overall irregularity of the arterial image. Application of the technique to conventional arterial-injection femoral and coronary angiograms is outlined and an experimental study to extend the technique to analysis of intravenous angiograms of the carotid and cornary arteries is described.
Okamoto, Takuma; Sakaguchi, Atsushi
2017-03-01
Generating acoustically bright and dark zones using loudspeakers is gaining attention as one of the most important acoustic communication techniques for such uses as personal sound systems and multilingual guide services. Although most conventional methods are based on numerical solutions, an analytical approach based on the spatial Fourier transform with a linear loudspeaker array has been proposed, and its effectiveness has been compared with conventional acoustic energy difference maximization and presented by computer simulations. To describe the effectiveness of the proposal in actual environments, this paper investigates the experimental validation of the proposed approach with rectangular and Hann windows and compared it with three conventional methods: simple delay-and-sum beamforming, contrast maximization, and least squares-based pressure matching using an actually implemented linear array of 64 loudspeakers in an anechoic chamber. The results of both the computer simulations and the actual experiments show that the proposed approach with a Hann window more accurately controlled the bright and dark zones than the conventional methods.
Reinforcing the role of the conventional C-arm--a novel method for simplified distal interlocking.
Windolf, Markus; Schroeder, Josh; Fliri, Ladina; Dicht, Benno; Liebergall, Meir; Richards, R Geoff
2012-01-25
The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required.Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses.
A Discriminative Approach to EEG Seizure Detection
Johnson, Ashley N.; Sow, Daby; Biem, Alain
2011-01-01
Seizures are abnormal sudden discharges in the brain with signatures represented in electroencephalograms (EEG). The efficacy of the application of speech processing techniques to discriminate between seizure and non-seizure states in EEGs is reported. The approach accounts for the challenges of unbalanced datasets (seizure and non-seizure), while also showing a system capable of real-time seizure detection. The Minimum Classification Error (MCE) algorithm, which is a discriminative learning algorithm with wide-use in speech processing, is applied and compared with conventional classification techniques that have already been applied to the discrimination between seizure and non-seizure states in the literature. The system is evaluated on 22 pediatric patients multi-channel EEG recordings. Experimental results show that the application of speech processing techniques and MCE compare favorably with conventional classification techniques in terms of classification performance, while requiring less computational overhead. The results strongly suggests the possibility of deploying the designed system at the bedside. PMID:22195192
Pandey, Suraj; Mehta, D. S.
2013-01-01
Background: The aim of the present study was to evaluate and compare the conventional (macro-surgical) and microsurgical approach in performing the free rotated papilla autograft combined with coronally advanced flap surgery in treatment of localized gingival recession. Materials and Methods: A total of 20 sites from 10 systemically healthy patients were selected for the study. The selected sites were randomly divided into experimental site A and experimental site B by using the spilt mouth design. Conventional (macro-surgical) approach for site A and micro-surgery for site B was applied in performing the free rotated papilla autograft combined with coronally advanced flap. Recession depth (RD), recession width (RW) clinical attachment level (CAL.) and width of keratinized tissue (WKT.) were recorded at baseline, 3 months and 6 months post-operatively. Results: Both (macro- and microsurgery) groups showed significant clinical improvement in all the parameters (RD, RW, CAL and WKT). However, on comparing both the groups, these parameters did not reach statistical significance. Conclusion: Both the surgical procedures were equally effective in treatment of localized gingival recession by the free rotated papilla autograft technique combined with coronally advanced flap. However, surgery under magnification (microsurgery) may be clinically better than conventional surgery in terms of less post-operative pain and discomfort experienced by patients at the microsurgical site. PMID:24554888
Ghost imaging via optical parametric amplification
NASA Astrophysics Data System (ADS)
Li, Hong-Guo; Zhang, De-Jian; Xu, De-Qin; Zhao, Qiu-Li; Wang, Sen; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2015-10-01
We investigate theoretically and experimentally thermal light ghost imaging where the light transmitted through the object as the seed light is amplified by an optical parametric amplifier (OPA). In conventional lens imaging systems with OPA, the spectral bandwidth of OPA dominates the image resolution. Theoretically, we prove that in ghost imaging via optical parametric amplification (GIOPA) the bandwidth of OPA will not affect the image resolution. The experimental results show that for weak seed light the image quality in GIOPA is better than that of conventional ghost imaging. Our work may be valuable in remote sensing with ghost imaging technique, where the light passed through the object is weak after a long-distance propagation.
Experimental diode laser-assisted microvascular anastomosis.
Reali, U M; Gelli, R; Giannotti, V; Gori, F; Pratesi, R; Pini, R
1993-05-01
An experimental study to evaluate a diode-laser approach to microvascular end-to-end anastomoses is reported. Studies were carried out on the femoral arteries and veins of Wistar rats, and effective welding of vessel tissue was obtained at low laser power, by enhancing laser absorption with indocyanine green (Cardio-green) solution. The histologic and surgical effects of this laser technique were examined and compared with those of conventional microvascular sutured anastomoses.
Rahana, A R; Ng, S P; Leong, C F; Rahimah, M D
2011-10-01
This study evaluated the effect of human semen cryopreservation using an ultra-low temperature technique with a mechanical freezer at -85°C as an alternative method to the conventional liquid nitrogen technique at -196°C. This was a prospective experimental study conducted in the Medically Assisted Conception unit, Department of Obstetrics and Gynaecology, National University Hospital, Malaysia from January 1, 2006 to April 30, 2007. All normozoospermic semen samples were included in the study. The concentration, motility and percentage of intact DNA of each semen sample were assessed before and after freezing and thawing on Days 7 and 30 post freezing. Sperm cryopreservation at -85°C was comparable to the conventional liquid nitrogen technique for a period of up to 30 days in a normozoospermic sample. There was no statistical difference in concentration (Day 7 p-value is 0.1, Day 30 p-value is 0.2), motility (Day 7 p-value is 0.9, Day 30 p-value is 0.5) and proportion of intact DNA (Day 7 p-value is 0.1, Day 30 p-value is 0.2) between the ultra-low temperature technique and conventional liquid nitrogen cryopreservation at Days 7 and 30 post thawing. This study clearly demonstrates that short-term storage of sperm at -85°C could be a viable alternative to conventional liquid nitrogen cryopreservation at -196°C due to their comparable post-thaw results.
NQR: From imaging to explosives and drugs detection
NASA Astrophysics Data System (ADS)
Osán, Tristán M.; Cerioni, Lucas M. C.; Forguez, José; Ollé, Juan M.; Pusiol, Daniel J.
2007-02-01
The main aim of this work is to present an overview of the nuclear quadrupole resonance (NQR) spectroscopy capabilities for solid state imaging and detection of illegal substances, such as explosives and drugs. We briefly discuss the evolution of different NQR imaging techniques, in particular those involving spatial encoding which permit conservation of spectroscopic information. It has been shown that plastic explosives and other forbidden substances cannot be easily detected by means of conventional inspection techniques, such as those based on conventional X-ray technology. For this kind of applications, the experimental results show that the information inferred from NQR spectroscopy provides excellent means to perform volumetric and surface detection of dangerous explosive and drug compounds.
Nett, Michael; Avelar, Rui; Sheehan, Michael; Cushner, Fred
2011-03-01
Standard medial parapatellar arthrotomies of 10 cadaveric knees were closed with either conventional interrupted absorbable sutures (control group, mean of 19.4 sutures) or a single running knotless bidirectional barbed absorbable suture (experimental group). Water-tightness of the arthrotomy closure was compared by simulating a tense hemarthrosis and measuring arthrotomy leakage over 3 minutes. Mean total leakage was 356 mL and 89 mL in the control and experimental groups, respectively (p = 0.027). Using 8 of the 10 knees (4 closed with control sutures, 4 closed with an experimental suture), a tense hemarthrosis was again created, and iatrogenic suture rupture was performed: a proximal suture was cut at 1 minute; a distal suture was cut at 2 minutes. The impact of suture rupture was compared by measuring total arthrotomy leakage over 3 minutes. Mean total leakage was 601 mL and 174 mL in the control and experimental groups, respectively (p = 0.3). In summary, using a cadaveric model, arthrotomies closed with a single bidirectional barbed running suture were statistically significantly more water-tight than those closed using a standard interrupted technique. The sample size was insufficient to determine whether the two closure techniques differed in leakage volume after suture rupture.
Advanced Feedback Methods in Information Retrieval.
ERIC Educational Resources Information Center
Salton, G.; And Others
1985-01-01
In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…
CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system
NASA Astrophysics Data System (ADS)
Nagarajan, Booma; Reddy Sathi, Rama
2016-01-01
This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.
Mitigation of time-varying distortions in Nyquist-WDM systems using machine learning
NASA Astrophysics Data System (ADS)
Granada Torres, Jhon J.; Varughese, Siddharth; Thomas, Varghese A.; Chiuchiarelli, Andrea; Ralph, Stephen E.; Cárdenas Soto, Ana M.; Guerrero González, Neil
2017-11-01
We propose a machine learning-based nonsymmetrical demodulation technique relying on clustering to mitigate time-varying distortions derived from several impairments such as IQ imbalance, bias drift, phase noise and interchannel interference. Experimental results show that those impairments cause centroid movements in the received constellations seen in time-windows of 10k symbols in controlled scenarios. In our demodulation technique, the k-means algorithm iteratively identifies the cluster centroids in the constellation of the received symbols in short time windows by means of the optimization of decision thresholds for a minimum BER. We experimentally verified the effectiveness of this computationally efficient technique in multicarrier 16QAM Nyquist-WDM systems over 270 km links. Our nonsymmetrical demodulation technique outperforms the conventional QAM demodulation technique, reducing the OSNR requirement up to ∼0.8 dB at a BER of 1 × 10-2 for signals affected by interchannel interference.
X-ray phase contrast tomography by tracking near field speckle
Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal
2015-01-01
X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237
Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren
2016-01-01
Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words.
Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren
2016-01-01
Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605
Ramírez-Carrasco, A; Butrón-Téllez Girón, C; Sanchez-Armass, O; Pierdant-Pérez, M
2017-01-01
Background and Objective . Anxiety/pain are experiences that make dental treatment difficult for children, especially during the time of anesthesia. Hypnosis is used in pediatric clinical situations to modify thinking, behavior, and perception as well as, recently, in dentistry; therefore the aim of this study was to evaluate the effectiveness of hypnosis combined with conventional behavior management techniques during infiltration anesthetic. Methods . Anxiety/pain were assessed with the FLACC scale during the anesthetic moment, as well as heart rate variability and skin conductance before and during the anesthetic moment, between the control and experimental group. Results . A marginal statistical difference ( p = 0.05) was found in the heart rate between baseline and anesthetic moment, being lower in the hypnosis group. No statistically significant differences were found with the FLACC scale or in the skin conductance ( p > 0.05). Conclusion . Hypnosis combined with conventional behavior management techniques decreases heart rate during anesthetic infiltration showing that there may be an improvement in anxiety/pain control through hypnotic therapy.
Ramírez-Carrasco, A.; Butrón-Téllez Girón, C.; Sanchez-Armass, O.
2017-01-01
Background and Objective. Anxiety/pain are experiences that make dental treatment difficult for children, especially during the time of anesthesia. Hypnosis is used in pediatric clinical situations to modify thinking, behavior, and perception as well as, recently, in dentistry; therefore the aim of this study was to evaluate the effectiveness of hypnosis combined with conventional behavior management techniques during infiltration anesthetic. Methods. Anxiety/pain were assessed with the FLACC scale during the anesthetic moment, as well as heart rate variability and skin conductance before and during the anesthetic moment, between the control and experimental group. Results. A marginal statistical difference (p = 0.05) was found in the heart rate between baseline and anesthetic moment, being lower in the hypnosis group. No statistically significant differences were found with the FLACC scale or in the skin conductance (p > 0.05). Conclusion. Hypnosis combined with conventional behavior management techniques decreases heart rate during anesthetic infiltration showing that there may be an improvement in anxiety/pain control through hypnotic therapy. PMID:28490941
NASA Technical Reports Server (NTRS)
Garmestai, H.; Harris, K.; Lourenco, L.
1997-01-01
Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.
Reinforcing the role of the conventional C-arm - a novel method for simplified distal interlocking
2012-01-01
Background The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. Methods The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required. Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. Results A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). Conclusions In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses. PMID:22276698
Comparison of Pictorial Techniques for Guiding Performance During Training.
ERIC Educational Resources Information Center
Miller, Elmo E.
An experimental program was conducted to develop effective methods for producing and utilizing filmed demonstrations and instructional manuals. Four variations on conventional filmed demonstrations were evaluated: 1) revising an Army film through repeated tryouts with novices, 2) stopping the projector after each step is demonstrated to allow…
ERIC Educational Resources Information Center
Fernandes, Tania; Kolinsky, Regine; Ventura, Paulo
2009-01-01
This study combined artificial language learning (ALL) with conventional experimental techniques to test whether statistical speech segmentation outputs are integrated into adult listeners' mental lexicon. Lexicalization was assessed through inhibitory effects of novel neighbors (created by the parsing process) on auditory lexical decisions to…
Breakthrough for Disadvantaged Youth.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC.
Evaluations have been made of 55 early (1963-66) experimental and demonstration projects conducted in 18 states and the District of Columbia under the Manpower Development and Training Act of 1962 to reach and serve youth for whom the conventional approaches, techniques, and personnel seemed inadequate. Experiences and results of the projects are…
Techniques of Australian forest planning
Australian Forestry Council
1978-01-01
Computer modeling has been extensively adopted for Australian forest planning over the last ten years. It has been confined almost entirely to the plantations of fast-growing species for which adequate inventory, growth, and experimental data are available. Stand simulation models have replaced conventional yield tables and enabled a wide range of alternative...
Design of a digital voice data compression technique for orbiter voice channels
NASA Technical Reports Server (NTRS)
1975-01-01
Candidate techniques were investigated for digital voice compression to a transmission rate of 8 kbps. Good voice quality, speaker recognition, and robustness in the presence of error bursts were considered. The technique of delayed-decision adaptive predictive coding is described and compared with conventional adaptive predictive coding. Results include a set of experimental simulations recorded on analog tape. The two FM broadcast segments produced show the delayed-decision technique to be virtually undegraded or minimally degraded at .001 and .01 Viterbi decoder bit error rates. Preliminary estimates of the hardware complexity of this technique indicate potential for implementation in space shuttle orbiters.
Farid, Karim A; Mostafa, Yehya A; Kaddah, Mohammed A; El-Sharaby, Fouad Aly
2014-10-01
The aim of this study was to evaluate corticotomy-facilitated orthodontics (CFO) using piezosurgery versus conventional rotary instruments. Ten healthy adult male mongrel dogs of comparable age with a complete set of permanent dentition with average weights between 13-17 kilograms were used. CFO using conventional rotary instruments versus piezosurgery was performed on each dog in a split mouth design. For every dog, mandibular 2nd premolar retraction on each side was attempted after extracting 3rd premolars followed by corticotomy-facilitated orthodontics using conventional rotary surgical burs on the left side and an ultrasonic piezosurgery system on the right side of the same animal. Intraoral measurements of the rate of tooth movement were taken with a sliding caliper. Measurements were performed by the same operator at the time of surgery (appliance delivery) and every month for six months. The dogs were sacrificed after six months from initiation of tooth movement to evaluate the amount of tooth movement for both conventional rotary and piezosurgery corticotomy techniques. A statistically significantly higher mean amount of tooth movement for conventional rotary instrument versus the piezosurgery corticotomy technique was observed at all time intervals. Tooth movement was 1.6 times faster when CFO was done using conventional rotary instruments as compared to a piezosurgery device.
Magnetic tweezers for the measurement of twist and torque.
Lipfert, Jan; Lee, Mina; Ordu, Orkide; Kerssemakers, Jacob W J; Dekker, Nynke H
2014-05-19
Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a "conventional" magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the "conventional" magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansonnens, L.; Schmidt, H.; Howling, A.A.
The electromagnetic standing wave effect can become the main source of nonuniformity limiting the use of very high frequency in large area reactors exceeding 1 m{sup 2} required for industrial applications. Recently, it has been proposed and shown experimentally in a cylindrical reactor that a shaped electrode in place of the conventional flat electrode can be used in order to suppress the electromagnetic standing wave nonuniformity. In this study, we show experimental measurements demonstrating that the shaped electrode technique can also be applied in large area rectangular reactors. We also present results of electromagnetic screening by a conducting substrate whichmore » has important consequences for industrial application of the shaped electrode technique.« less
Fiber fault location utilizing traffic signal in optical network.
Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi
2013-10-07
We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.
2017-01-01
In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less
Using X-ray absorption to probe sulfur oxidation states in complex molecules
NASA Astrophysics Data System (ADS)
Vairavamurthy, A.
1998-10-01
X-ray absorption near-edge structure (XANES) spectroscopy offers an important non-destructive tool for determining oxidation states and for characterizing chemical speciation. The technique was used to experimentally verify the oxidation states of sulfur in different types of complex molecules because there are irregularities and uncertainties in assigning the values traditionally. The usual practice of determining oxidation states involves using a set of conventional rules. The oxidation state is an important control in the chemical speciation of sulfur, ranging from -2 to +6 in its different compounds. Experimental oxidation-state values for various types of sulfur compounds, using their XANES peak-energy positions, were assigned from a scale in which elemental sulfur and sulfate are designated as 0 and +6, respectively. Because these XANES-based values differed considerably from conventionally determined oxidation states for most sulfur compounds, a new term 'oxidation index' was coined to describe them. The experimental values were closer to those conventional values obtained by assigning shared electrons to the more electronegative atoms than to those based on other customary rules for assigning them. Because the oxidation index is distinct and characteristic for each different type of sulfur functionality, it becomes an important parameter for characterizing sulfur species, and for experimentally verifying uncertain oxidation states.
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.
1999-02-01
Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.
Rossol, Melanie; Gygax, Diego; Andritzky-Waas, Juliane; Zheng, Guoyan; Lischer, Christoph J; Zhang, Xuan; Auer, Joerg A
2008-01-01
To (1) evaluate and compare computer-assisted surgery (CAS) with conventional screw insertion (conventional osteosynthesis [COS]) for treatment of equine abaxial distal phalanx fractures; (2) compare planned screw position with actual postoperative position; and (3) determine preferred screw insertion direction. Experimental study. Cadaveric equine limbs (n=32). In 8 specimens each, a 4.5 mm cortex bone screw was inserted in lag fashion in dorsopalmar (plantar) direction using CAS or COS. In 2 other groups of 8, the screws were inserted in opposite direction. Precision of CAS was determined by comparison of planned and actual screw position. Preferred screw direction was also assessed for CAS and COS. In 4 of 6 direct comparisons, screw positioning was significantly better with CAS. Results of precision analysis for screw position were similar to studies published in human medicine. None of evaluated criteria identified a preferred direction for screw insertion. For abaxial fractures of the distal phalanx, superior precision in screw position is achieved with CAS technique compared with COS technique. Abaxial fractures of the distal phalanx lend themselves to computer-assisted implantation of 1 screw in a dorsopalmar (plantar) direction. Because of the complex anatomic relationships, and our results, we discourage use of COS technique for repair of this fracture type.
Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping
2016-01-01
In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes. PMID:27782088
Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping
2016-10-22
In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.
[Bases and methods of suturing].
Vogt, P M; Altintas, M A; Radtke, C; Meyer-Marcotty, M
2009-05-01
If pharmaceutic modulation of scar formation does not improve the quality of the healing process over conventional healing, the surgeon must rely on personal skill and experience. Therefore a profound knowledge of wound healing based on experimental and clinical studies supplemented by postsurgical means of scar management and basic techniques of planning incisions, careful tissue handling, and thorough knowledge of suturing remain the most important ways to avoid abnormal scarring. This review summarizes the current experimental and clinical bases of surgical scar management.
Experimental investigation of a page-oriented Lippmann holographic data storage system
NASA Astrophysics Data System (ADS)
Pauliat, Gilles; Contreras, Kevin
2010-06-01
Lippmann photography is a more than one century old interferometric process invented for recording colored images in thick black and white photographic emulsions. After a comparison between this photographic process and Denisyuk holography, we feature some hints to apply this technique to high density data storage by wavelength multiplexing in a page-oriented approach in thick media. For the first time we experimentally investigate this approach. We anticipated that this storage architecture should allow capacities as large as for conventional holography.
NASA Astrophysics Data System (ADS)
Dogan, Mevlut; Ulu, Melike; Gennerakis, Giannis; Zouros, Theo J. M.
2014-04-01
A new hemispherical deflector analyzer (HDA) which is designed for electron energy analysis in atomic collisions has been constructed and tested. Using the crossed beam technique at the electron spectrometer, test measurements were performed for electron beam (200 eV) - Helium atoms interactions. These first experimental results show that the paracentric entries give almost twice as good resolution as that for the conventional entry. Supporting simulations of the entire lens+HDA spectrometer are found in relatively good agreement with experiment.
Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo
2016-04-25
Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal stenosis, the use of PM and DTI techniques reduces decompression levels and increases safety and benefits of surgery.
Nanosilica coating for bonding improvements to zirconia.
Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin
2013-01-01
Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution-gelatin (sol-gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water-mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol-gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol-gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol-gel technique represents a promising method for producing silica coatings on zirconia.
Nanosilica coating for bonding improvements to zirconia
Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin
2013-01-01
Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. PMID:24179333
Montserrat-Bosch, Marta; Figueiredo, Rui; Nogueira-Magalhães, Pedro; Arnabat-Dominguez, Josep; Valmaseda-Castellón, Eduard; Gay-Escoda, Cosme
2014-07-01
To compare the efficacy and complication rates of two different techniques for inferior alveolar nerve blocks (IANB). A randomized, triple-blind clinical trial comprising 109 patients who required lower third molar removal was performed. In the control group, all patients received an IANB using the conventional Halsted technique, whereas in the experimental group, a modified technique using a more inferior injection point was performed. A total of 100 patients were randomized. The modified technique group showed a significantly higher onset time in the lower lip and chin area, and was frequently associated to a lingual electric discharge sensation. Three failures were recorded, 2 of them in the experimental group. No relevant local or systemic complications were registered. Both IANB techniques used in this trial are suitable for lower third molar removal. However, performing an inferior alveolar nerve block in a more inferior position (modified technique) extends the onset time, does not seem to reduce the risk of intravascular injections and might increase the risk of lingual nerve injuries.
Paqué, Frank; Zehnder, Matthias; De-Deus, Gustavo
2011-10-01
A preparation technique with only 1 single instrument was proposed on the basis of the reciprocating movement of the F2 ProTaper instrument. The present study was designed to quantitatively assess canal preparation outcomes achieved by this technique. Twenty-five extracted human mandibular first molars with 2 separate mesial root canals were selected. Canals were randomly assigned to 1 of the 2 experimental groups: group 1, rotary conventional preparation by using ProTaper, and group 2, reciprocate instrumentation with 1 single ProTaper F2 instrument. Specimens were scanned initially and after root canal preparation with an isotropic resolution of 20 μm by using a micro-computed tomography system. The following parameters were assessed: changes in dentin volume, percentage of shaped canal walls, and degree of canal transportation. In addition, the time required to reach working length with the F2 instrument was recorded. Preoperatively, there were no differences regarding root canal curvature and volume between experimental groups. Overall, instrumentation led to enlarged canal shapes with no evidence of preparation errors. There were no statistical differences between the 2 preparation techniques in the anatomical parameters assessed (P > .01), except for a significantly higher canal transportation caused by the reciprocating file in the coronal canal third. On the other hand, preparation was faster by using the single-file technique (P < .01). Shaping outcomes with the single-file F2 ProTaper technique and conventional ProTaper full-sequence rotary approach were similar. However, the single-file F2 ProTaper technique was markedly faster in reaching working length. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Inverse boundary-layer theory and comparison with experiment
NASA Technical Reports Server (NTRS)
Carter, J. E.
1978-01-01
Inverse boundary layer computational procedures, which permit nonsingular solutions at separation and reattachment, are presented. In the first technique, which is for incompressible flow, the displacement thickness is prescribed; in the second technique, for compressible flow, a perturbation mass flow is the prescribed condition. The pressure is deduced implicitly along with the solution in each of these techniques. Laminar and turbulent computations, which are typical of separated flow, are presented and comparisons are made with experimental data. In both inverse procedures, finite difference techniques are used along with Newton iteration. The resulting procedure is no more complicated than conventional boundary layer computations. These separated boundary layer techniques appear to be well suited for complete viscous-inviscid interaction computations.
Characterization of the spectral phase of an intense laser at focus via ionization blueshift
Mittelberger, D. E.; Nakamura, K.; Lehe, R.; ...
2016-01-01
An in situ diagnostic for verifying the spectral phase of an intense laser pulse at focus is shown. This diagnostic relies on measuring the effect of optical compression on ionization-induced blueshifting of the laser spectrum. Experimental results from the Berkeley Lab Laser Accelerator, a laser source rigorously characterized by conventional techniques, are presented and compared with simulations to illustrate the utility of this technique. These simulations show distinguishable effects from second-, third-, and fourth-order spectral phase.
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.
Effectiveness of Mind Mapping in English Teaching among VIII Standard Students
ERIC Educational Resources Information Center
Hallen, D.; Sangeetha, N.
2015-01-01
The aim of the study is to find out the effectiveness of mind mapping technique over conventional method in teaching English at high school level (VIII), in terms of Control and Experimental group. The sample of the study comprised, 60 VIII Standard students in Tiruchendur Taluk. Mind Maps and Achievement Test (Pretest & Posttest) were…
AN EXPERIMENTAL STUDY UTILIZING CLOSED-CIRCUIT TELEVISION IN THE TEACHING OF DENTAL TECHNIQUES.
ERIC Educational Resources Information Center
MORRISON, ARTHUR H.
CLOSED CIRCUIT TELEVISION WAS WELL RECEIVED BY DENTISTRY STUDENTS AT NEW YORK UNIVERSITY BUT FAILED TO YIELD SIGNIFICANT GAINS IN ACHIEVEMENT OVER CONVENTIONAL INSTRUCTION. TWENTY-ONE NULL HYPOTHESES WERE TESTED ON 154 MALE SOPHOMORE STUDENTS, WHO WERE DIVIDED INTO GWO GROUPS, HALF BEING INSTRUCTED TO A LARGE EXTENT VIA CCTV, TV CLASS, AND HALF…
Radiographic applications of spatial frequency multiplexing
NASA Technical Reports Server (NTRS)
Macovski, A.
1981-01-01
The application of spacial frequency encoding techniques which allow different regions of the X-ray spectrum to be encoded on conventional radiographs was studied. Clinical considerations were reviewed, as were experimental studies involving the encoding and decoding of X-ray images at different energies and the subsequent processing of the data to produce images of specific materials in the body.
Revising the lower statistical limit of x-ray grating-based phase-contrast computed tomography.
Marschner, Mathias; Birnbacher, Lorenz; Willner, Marian; Chabior, Michael; Herzen, Julia; Noël, Peter B; Pfeiffer, Franz
2017-01-01
Phase-contrast x-ray computed tomography (PCCT) is currently investigated as an interesting extension of conventional CT, providing high soft-tissue contrast even if examining weakly absorbing specimen. Until now, the potential for dose reduction was thought to be limited compared to attenuation CT, since meaningful phase retrieval fails for scans with very low photon counts when using the conventional phase retrieval method via phase stepping. In this work, we examine the statistical behaviour of the reverse projection method, an alternative phase retrieval approach and compare the results to the conventional phase retrieval technique. We investigate the noise levels in the projections as well as the image quality and quantitative accuracy of the reconstructed tomographic volumes. The results of our study show that this method performs better in a low-dose scenario than the conventional phase retrieval approach, resulting in lower noise levels, enhanced image quality and more accurate quantitative values. Overall, we demonstrate that the lower statistical limit of the phase stepping procedure as proposed by recent literature does not apply to this alternative phase retrieval technique. However, further development is necessary to overcome experimental challenges posed by this method which would enable mainstream or even clinical application of PCCT.
Guo, Yi; Lebel, R Marc; Zhu, Yinghua; Lingala, Sajan Goud; Shiroishi, Mark S; Law, Meng; Nayak, Krishna
2016-05-01
To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.
Color digital halftoning taking colorimetric color reproduction into account
NASA Astrophysics Data System (ADS)
Haneishi, Hideaki; Suzuki, Toshiaki; Shimoyama, Nobukatsu; Miyake, Yoichi
1996-01-01
Taking colorimetric color reproduction into account, the conventional error diffusion method is modified for color digital half-toning. Assuming that the input to a bilevel color printer is given in CIE-XYZ tristimulus values or CIE-LAB values instead of the more conventional RGB or YMC values, two modified versions based on vector operation in (1) the XYZ color space and (2) the LAB color space were tested. Experimental results show that the modified methods, especially the method using the LAB color space, resulted in better color reproduction performance than the conventional methods. Spatial artifacts that appear in the modified methods are presented and analyzed. It is also shown that the modified method (2) with a thresholding technique achieves a good spatial image quality.
NASA Astrophysics Data System (ADS)
Saremi, Mohsen; Keyvani, Ahmad; Heydarzadeh Sohi, Mahmoud
Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.
Correcting For Seed-Particle Lag In LV Measurements
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Gartrell, Luther R.; Kamemoto, Derek Y.
1994-01-01
Two experiments conducted to evaluate effects of sizes of seed particles on errors in LV measurements of mean flows. Both theoretical and conventional experimental methods used to evaluate errors. First experiment focused on measurement of decelerating stagnation streamline of low-speed flow around circular cylinder with two-dimensional afterbody. Second performed in transonic flow and involved measurement of decelerating stagnation streamline of hemisphere with cylindrical afterbody. Concluded, mean-quantity LV measurements subject to large errors directly attributable to sizes of particles. Predictions of particle-response theory showed good agreement with experimental results, indicating velocity-error-correction technique used in study viable for increasing accuracy of laser velocimetry measurements. Technique simple and useful in any research facility in which flow velocities measured.
Trying to detect gas-phase ions? Understanding Ion Mobility Spectrometry
Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.
2014-01-01
Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, especially mass spectrometry as identification approach and multi-capillary column as pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data is treated, and the influences of the experimental parameters in both a conventional drift time IMS (DTIMS) and a miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The current review article is preceded by a companion review article which details the current instrumentation and to the sections that configures both a conventional DTIMS and FAIMS devices. Those reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465248
Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.
Singh, Vivek Kumar; Rai, Awadhesh Kumar
2011-09-01
We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.
Imbalanced Learning for Functional State Assessment
NASA Technical Reports Server (NTRS)
Li, Feng; McKenzie, Frederick; Li, Jiang; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
This paper presents results of several imbalanced learning techniques applied to operator functional state assessment where the data is highly imbalanced, i.e., some function states (majority classes) have much more training samples than other states (minority classes). Conventional machine learning techniques usually tend to classify all data samples into majority classes and perform poorly for minority classes. In this study, we implemented five imbalanced learning techniques, including random undersampling, random over-sampling, synthetic minority over-sampling technique (SMOTE), borderline-SMOTE and adaptive synthetic sampling (ADASYN) to solve this problem. Experimental results on a benchmark driving lest dataset show thai accuracies for minority classes could be improved dramatically with a cost of slight performance degradations for majority classes,
NASA Astrophysics Data System (ADS)
Zhu, Li; Najafizadeh, Laleh
2017-06-01
We investigate the problem related to the averaging procedure in functional near-infrared spectroscopy (fNIRS) brain imaging studies. Typically, to reduce noise and to empower the signal strength associated with task-induced activities, recorded signals (e.g., in response to repeated stimuli or from a group of individuals) are averaged through a point-by-point conventional averaging technique. However, due to the existence of variable latencies in recorded activities, the use of the conventional averaging technique can lead to inaccuracies and loss of information in the averaged signal, which may result in inaccurate conclusions about the functionality of the brain. To improve the averaging accuracy in the presence of variable latencies, we present an averaging framework that employs dynamic time warping (DTW) to account for the temporal variation in the alignment of fNIRS signals to be averaged. As a proof of concept, we focus on the problem of localizing task-induced active brain regions. The framework is extensively tested on experimental data (obtained from both block design and event-related design experiments) as well as on simulated data. In all cases, it is shown that the DTW-based averaging technique outperforms the conventional-based averaging technique in estimating the location of task-induced active regions in the brain, suggesting that such advanced averaging methods should be employed in fNIRS brain imaging studies.
Sousa, Cláudia Maria; Moreira, Luis; Coimbra, Daniela; Machado, Jorge; Greten, Henry J
2015-07-01
Musicians are a prone group to suffer from working-related musculoskeletal disorder (WRMD). Conventional solutions to control musculoskeletal pain include pharmacological treatment and rehabilitation programs but their efficiency is sometimes disappointing. The aim of this research is to study the immediate effects of Tuina techniques on WRMD of professional orchestra musicians from the north of Portugal. We performed a prospective, controlled, single-blinded, randomized study. Professional orchestra musicians with a diagnosis of WRMD were randomly distributed into the experimental group (n=39) and the control group (n=30). During an individual interview, Chinese diagnosis took place and treatment points were chosen. Real acupoints were treated by Tuina techniques into the experimental group and non-specific skin points were treated into the control group. Pain was measured by verbal numerical scale before and immediately after intervention. After one treatment session, pain was reduced in 91.8% of the cases for the experimental group and 7.9% for the control group. Although results showed that Tuina techniques are effectively reducing WRMD in professional orchestra musicians of the north of Portugal, further investigations with stronger measurements, double-blinding designs and bigger simple sizes are needed.
Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren
2013-01-01
To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice. A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope. The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.
Atmospheric absorption measurements in the region of 1 mm wavelength.
NASA Technical Reports Server (NTRS)
Emery, R.
1972-01-01
A Froome-type plasma-metal-junction device (1962) was used in high-resolution radiation transmission measurements in the atmosphere at wavelengths from 0.5 to 3.0 mm. The experimental and theoretical results for water vapor absorption lines in two submillimeter wavelength windows were compared, showing that this technique provided a much higher wavelength accuracy than more conventional optical-type spectroscopy.
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Lee, F. C.
1984-01-01
Problems caused by input filter interaction and conventional input filter design techniques are discussed. The concept of feedforward control is modeled with an input filter and a buck regulator. Experimental measurement and comparison to the analytical predictions is carried out. Transient response and the use of a feedforward loop to stabilize the regulator system is described. Other possible applications for feedforward control are included.
Worthmann, Brian M; Song, H C; Dowling, David R
2015-12-01
Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.
Simulations of multi-contrast x-ray imaging using near-field speckles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre
2016-01-28
X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukamel, Shaul, E-mail: smukamel@uci.edu; Bakker, Huib J.
Multidimensional signals are generated by subjecting molecules to sequences of short optical pulses and recording correlation plots related to the various controlled delay periods. These techniques which span all the way from the THz to the x-ray regimes provide qualitatively new structural and dynamical molecular information not available from conventional one-dimensional techniques. This issue surveys the recent experimental and theoretical progresses in this rapidly developing 20 year old field which illustrates the novel insights provided by multidimensional techniques into electronic and nuclear motions. It should serve as a valuable source for experts in the field and help introduce newcomers tomore » this exciting and challenging branch of nonlinear spectroscopy.« less
Three-dimensional x-ray inspection of food products
NASA Astrophysics Data System (ADS)
Graves, Mark; Batchelor, Bruce G.; Palmer, Stephen C.
1994-09-01
Modern food production techniques operate at high speed and sometimes fill several containers simultaneously; individual containers never become available for inspection by conventional x- ray systems. There is a constant demand for improved methods for detecting foreign bodies, such as glass, plastic, wood, stone, animal remains, etc. These requirements lead to significant problems with existing inspection techniques, which are susceptible to noise and are unable to detect long thin contaminants reliably. Experimental results demonstrate these points. The paper proposes the use of two x-ray inspection systems, with orthogonal beams to overcome these difficulties.
Montserrat-Bosch, Marta; Nogueira-Magalhães, Pedro; Arnabat-Dominguez, Josep; Valmaseda-Castellón, Eduard; Gay-Escoda, Cosme
2014-01-01
Objectives: To compare the efficacy and complication rates of two different techniques for inferior alveolar nerve blocks (IANB). Study Design: A randomized, triple-blind clinical trial comprising 109 patients who required lower third molar removal was performed. In the control group, all patients received an IANB using the conventional Halsted technique, whereas in the experimental group, a modified technique using a more inferior injection point was performed. Results: A total of 100 patients were randomized. The modified technique group showed a significantly higher onset time in the lower lip and chin area, and was frequently associated to a lingual electric discharge sensation. Three failures were recorded, 2 of them in the experimental group. No relevant local or systemic complications were registered. Conclusions: Both IANB techniques used in this trial are suitable for lower third molar removal. However, performing an inferior alveolar nerve block in a more inferior position (modified technique) extends the onset time, does not seem to reduce the risk of intravascular injections and might increase the risk of lingual nerve injuries. Key words:Dental anesthesia, inferior alveolar nerve block, lidocaine, third molar, intravascular injection. PMID:24608204
[Experimental research on the effect of nanophase ceramics on osteoblasts functions].
Wen, Bo; Chen, Zhiqing; Jiang, Yinshan; Yang, Zhengwen; Xu, Yongzhong
2005-06-01
In order to study the cytocompatibility of nanophase hydroxyapatite ceramic in vitro, we prepared hydroxyapatite by use of the wet chemistry techniques. The grain size of hydroxyapatite of interest to the present study was determined by scanning electron microscopy and atomic force microscopy with image analysis software. Primary culture of osteoblast from rat calvaria was established. Protein content, synthesis of alkaline phosphatase and deposition of calcium-containing mineral by osteoblasts cultured on nanophase hydroxyapatite ceramics and on conventional hydroxyapatite ceramics for 7, 14, 21 and 28 days were examined. The results showed that the average surface grain size of the nanophase and that of the conventional HA compact formulations was 55 (nanophase) and 780 (conventional) nm, respectively. More importantly, compared to the synthesis of alkaline phosphatase and deposition of calcium-containing mineral by osteoblasts cultured on nanophase was significantly greater than that on conventional ceramics after 21 and 28 days. The cytocompatibility was significantly greater on nanophase HA than on conventional formulations of the same ceramic.
A mechanism to derive more truthful willingness to accept values for renewable energy systems.
Radmehr, Mehrshad; Willis, Ken; Metcalf, Hugh
2018-01-01
This paper examines and compares households' willingness to accept (WTA)/willingness to pay (WTP) ratio for solar power equipment on their premises through both a novel experimental approach and conventional techniques. The experimental approach was administered by using a Becker-DeGroot-Marschak method and cheap talk, with open-ended questions of WTA/WTP. The results were quite striking. The ratio for the incentivised approach was 1.08:1; whereas for the conventional approach it was 3.5:1. The findings suggest that the hypothesis that WTP equals WTA cannot be rejected for the incentivised mechanism, and it appears to control for the individual's strategic behaviour bias as a treatment against over-estimating WTA and under-estimating WTP. The findings also provide some policy implications for Northern Cyprus: the government can set lower financial incentives to increase the solar power installed capacity on the island.
A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components
NASA Astrophysics Data System (ADS)
Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa
2016-10-01
Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Feilong; Data Storage Institute, A*STAR Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608; Goolaup, Sarjoosing
2016-08-28
In this work, we present an efficient method for characterizing the spin orbit torque field-like term in an in-plane magnetized system using the harmonic measurement technique. This method does not require a priori knowledge of the planar and anomalous hall resistances and is insensitive to non-uniformity in magnetization, as opposed to the conventional harmonic technique. We theoretically and experimentally demonstrate that the field-like term in the Ta/Co/Pt film stack with in-plane magnetic anisotropy can be obtained by an in-plane transverse field sweep as expected, and magnetization non-uniformity is prevented by the application of fixed magnetic field. The experimental results aremore » in agreement with the analytical calculations.« less
Optimum decoding and detection of a multiplicative amplitude-encoded watermark
NASA Astrophysics Data System (ADS)
Barni, Mauro; Bartolini, Franco; De Rosa, Alessia; Piva, Alessandro
2002-04-01
The aim of this paper is to present a novel approach to the decoding and the detection of multibit, multiplicative, watermarks embedded in the frequency domain. Watermark payload is conveyed by amplitude modulating a pseudo-random sequence, thus resembling conventional DS spread spectrum techniques. As opposed to conventional communication systems, though, the watermark is embedded within the host DFT coefficients by using a multiplicative rule. The watermark decoding technique presented in the paper is an optimum one, in that it minimizes the bit error probability. The problem of watermark presence assessment, which is often underestimated by state-of-the-art research on multibit watermarking, is addressed too, and the optimum detection rule derived according to the Neyman-Pearson criterion. Experimental results are shown both to demonstrate the validity of the theoretical analysis and to highlight the good performance of the proposed system.
Feasibility Study for Casting of High Temperature Refractory Superalloy Composites
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
1998-01-01
Abstract This study investigated the feasibility of using conventional casting technique to fabricate refractory wires reinforced superalloy composites. These composites were being developed for advanced rocket engine turbine blades and other high temperature applications operating up to 2000 F. Several types of refractory metal wires such as W- Th, W-Re, Mo-Hf-C and W-HF-C reinforced waspaloy were experimentally cast and heat treated at 2000 F up to 48 hrs. Scanning electron microscope analysis was conducted in regions adjacent to the wire-matrix interface to determine the reaction zone and chemical compatibility resulting from material interdiffusion. It was concluded that fabrication using conventional casting may be feasible because the wire-matrix reaction zone thickness was comparable to similar composites produced by arc-sprayed monotape with hot isostatic pressing technique, Moreover, it was also found that the chemical compatibility could be improved significantly through a slight modification of the superalloy matrix compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi, E-mail: yiguo@usc.edu; Zhu, Yinghua; Lingala, Sajan Goud
Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm{sup 3}, FOV 22 × 22 × 4.2 cm{sup 3}, and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm{sup 3}, and broader coverage 22 × 22 × 19 cm{sup 3}. Temporal resolution was 5 smore » for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.« less
Biodiesel production from low cost and renewable feedstock
NASA Astrophysics Data System (ADS)
Gude, Veera G.; Grant, Georgene E.; Patil, Prafulla D.; Deng, Shuguang
2013-12-01
Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.
Yuzhen Li
2009-01-01
Previous studies have shown a high correspondence between tree height measurements acquired from airborne LiDAR and that those measured using conventional field techniques. Though these results are very promising, most of the studies were conducted over small experimental areas and tree height was measured carefully or using expensive instruments in the field, which is...
Analysis Techniques, Materials, and Methods for Treatment of Thermal Bridges in Building Envelopes
2013-08-01
effects of the R-value for given increment of time ............................................. 89 64 Crystals on a post-conditioned Aspen Aerogel ... aerogel on specific sites compared to conventional polyurethane foam insulation. Figures 55 and 56 show two examples of preliminary parametric... Aerogel , and (4) Honeywell’s polyurethane. Table 14 lists the four tested insulation ma- terials, their experimental thermal properties (derived
Design Methodology and Experimental Verification of Serpentine/Folded Waveguide TWTs
2016-03-17
FW), oscillation, serpentine, stopband, traveling -wave tube (TWT), vacuum electronics. I. INTRODUCTION DEVELOPMENT of high-power broadband vacuum elec...tron devices (VEDs) beyond Ka-band using conventional coupled-cavity and helix traveling -wave tube (TWT) RF cir- cuit fabrication techniques is...between the two positions is simply ks times the relative distance along the waveguide axis. However, from the beam–wave interaction standpoint, the
ERIC Educational Resources Information Center
Naviglio, Daniele; Montesano, Domenico; Gallo, Monica
2015-01-01
Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…
Pulmonary fat embolism after reamed and unreamed nailing of femoral fractures.
Högel, F; Gerlach, U V; Südkamp, N P; Müller, C A
2010-12-01
To determine whether reamed or unreamed intramedullary nailing of femoral fractures results in higher incidence of pulmonary fat embolism, three different methods of intramedullary nailing were compared in sheep. To analyze the presence of bone marrow fat embolism in pulmonary arteries, histological evaluation was undertaken using a quantitative computer-assisted measurement system. In this experimental model of 27 female Swiss alpine sheep, an osteotomy of the proximal femur was conducted in each animal. Then, the animals were divided into three groups according to the method of treatment: two different reamed intramedullary nailing techniques and an unreamed nailing technique were used. In the first group "ER" (experimental reamer; n=9), the nail was inserted after reaming with an experimental reamer; in the second group "CR" (conventional reamer; n=7), the intramedullary nail was inserted after reaming with the conventional AO-reamer. In the third group "UN" (unreamed; n=8) unreamed nailing was performed. During the operation procedure intramedullary pressure was measured in the distal fragment. After sacrificing the animals, quantitative histological analyses of bone marrow fat embolism in pulmonary arteries were done using osmium tetroxide fixation and staining of the fat. The measurement of intramedullary pressure showed significantly lower values for reamed nailing than for the unreamed technique. The quantitative histological evaluation of lung vessels concerning bone marrow fat embolism revealed a statistically significant difference between reamed and unreamed insertion of the nail: 7.77%±6.93 (ER) and 6.66%±5.61 (CR) vs. 16.25%±10.05 (UN) (p<0.05) of the assessed lung vessels were filled with fat emboli. However, no difference was found between the traditional and experimental reamer. Intramedullary nailing after reaming is a safe procedure with low systemic embolisation when compared to the unreamed insertion of the nail. Copyright © 2010 Elsevier Ltd. All rights reserved.
MOSAIC - A space-multiplexing technique for optical processing of large images
NASA Technical Reports Server (NTRS)
Athale, Ravindra A.; Astor, Michael E.; Yu, Jeffrey
1993-01-01
A technique for Fourier processing of images larger than the space-bandwidth products of conventional or smart spatial light modulators and two-dimensional detector arrays is described. The technique involves a spatial combination of subimages displayed on individual spatial light modulators to form a phase-coherent image, which is subsequently processed with Fourier optical techniques. Because of the technique's similarity with the mosaic technique used in art, the processor used is termed an optical MOSAIC processor. The phase accuracy requirements of this system were studied by computer simulation. It was found that phase errors of less than lambda/8 did not degrade the performance of the system and that the system was relatively insensitive to amplitude nonuniformities. Several schemes for implementing the subimage combination are described. Initial experimental results demonstrating the validity of the mosaic concept are also presented.
Functional Dynamics of Hexameric Helicase Probed by Hydrogen Exchange and Simulation
Radou, Gaël; Dreyer, Frauke N.; Tuma, Roman; Paci, Emanuele
2014-01-01
The biological function of large macromolecular assemblies depends on their structure and their dynamics over a broad range of timescales; for this reason, it is a significant challenge to investigate these assemblies using conventional experimental techniques. One of the most promising experimental techniques is hydrogen-deuterium exchange detected by mass spectrometry. Here, we describe to our knowledge a new computational method for quantitative interpretation of deuterium exchange kinetics and apply it to a hexameric viral helicase P4 that unwinds and translocates RNA into a virus capsid at the expense of ATP hydrolysis. Room-temperature dynamics probed by a hundred nanoseconds of all-atom molecular dynamics simulations is sufficient to predict the exchange kinetics of most sequence fragments and provide a residue-level interpretation of the low-resolution experimental results. The strategy presented here is also a valuable tool to validate experimental data, e.g., assignments, and to probe mechanisms that cannot be observed by x-ray crystallography, or that occur over timescales longer than those that can be realistically simulated, such as the opening of the hexameric ring. PMID:25140434
An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique
NASA Astrophysics Data System (ADS)
Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.
2018-05-01
To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.
Single-shot polarimetry imaging of multicore fiber.
Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé
2016-05-01
We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.
Compton imaging tomography technique for NDE of large nonuniform structures
NASA Astrophysics Data System (ADS)
Grubsky, Victor; Romanov, Volodymyr; Patton, Ned; Jannson, Tomasz
2011-09-01
In this paper we describe a new nondestructive evaluation (NDE) technique called Compton Imaging Tomography (CIT) for reconstructing the complete three-dimensional internal structure of an object, based on the registration of multiple two-dimensional Compton-scattered x-ray images of the object. CIT provides high resolution and sensitivity with virtually any material, including lightweight structures and organics, which normally pose problems in conventional x-ray computed tomography because of low contrast. The CIT technique requires only one-sided access to the object, has no limitation on the object's size, and can be applied to high-resolution real-time in situ NDE of large aircraft/spacecraft structures and components. Theoretical and experimental results will be presented.
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
NASA Astrophysics Data System (ADS)
Aoki, Michio; Juang, Jia-Yang
2018-02-01
Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.
Special raster scanning for reduction of charging effects in scanning electron microscopy.
Suzuki, Kazuhiko; Oho, Eisaku
2014-01-01
A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.
Manikandan, N
2007-04-01
To determine the effect of facial neuromuscular re-education over conventional therapeutic measures in improving facial symmetry in patients with Bell's palsy. Randomized controlled trial. Neurorehabilitation unit. Fifty-nine patients diagnosed with Bell's palsy were included in the study after they met the inclusion criteria. Patients were randomly divided into two groups: control (n = 30) and experimental (n = 29). Control group patients received conventional therapeutic measures while the facial neuromuscular re-education group patients received techniques that were tailored to each patient in three sessions per day for six days per week for a period of two weeks. All the patients were evaluated using a Facial Grading Scale before treatment and after three months. The Facial Grading Scale scores showed significant improvement in both control (mean 32 (range 9.7-54) to 54.5 (42.2-71.7)) and the experimental (33 (18-43.5) to 66 (54-76.7)) group. Facial Grading Scale change scores showed that experimental group (27.5 (20-43.77)) improved significantly more than the control group (16.5 (12.2-24.7)). Analysis of Facial Grading Scale subcomponents did not show statistical significance, except in the movement score (12 (8-16) to 24 (12-18)). Individualized facial neuromuscular re-education is more effective in improving facial symmetry in patients with Bell's palsy than conventional therapeutic measures.
Radiofrequency ablation for benign thyroid nodules.
Bernardi, S; Stacul, F; Zecchin, M; Dobrinja, C; Zanconati, F; Fabris, B
2016-09-01
Benign thyroid nodules are an extremely common occurrence. Radiofrequency ablation (RFA) is gaining ground as an effective technique for their treatment, in case they become symptomatic. Here we review what are the current indications to RFA, its outcomes in terms of efficacy, tolerability, and cost, and also how it compares to the other conventional and experimental treatment modalities for benign thyroid nodules. Moreover, we will also address the issue of treating with this technique patients with cardiac pacemakers (PM) or implantable cardioverter-defibrillators (ICD), as it is a rather frequent occurrence that has never been addressed in detail in the literature.
Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick; Klein, Vladislav
2011-01-01
Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.
NASA Astrophysics Data System (ADS)
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun
2002-06-01
Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.
NASA Technical Reports Server (NTRS)
Smith, C. W.; Bhateley, I. C.
1976-01-01
Two techniques for extending the range of applicability of the basic vortex-lattice method are discussed. The first improves the computation of aerodynamic forces on thin, low-aspect-ratio wings of arbitrary planforms at subsonic Mach numbers by including the effects of leading-edge and tip vortex separation, characteristic of this type wing, through use of the well-known suction-analogy method of E. C. Polhamus. Comparisons with experimental data for a variety of planforms are presented. The second consists of the use of the vortex-lattice method to predict pressure distributions over thick multi-element wings (wings with leading- and trailing-edge devices). A method of laying out the lattice is described which gives accurate pressures on the top and part of the bottom surface of the wing. Limited comparisons between the result predicted by this method, the conventional lattice arrangement method, experimental data, and 2-D potential flow analysis techniques are presented.
Ferreira, Cimara Fortes; Shafter, Mohamed Amer; Jain, Vinay; Wicks, Russel Anthony; Linder, Erno; Ledo, Carlos Alberto da Silva
2018-02-13
Extruded cement during dental implant crown cementation may cause peri-implant diseases if not removed adequately. Evaluate the efficiency of removal of cement after cementation of implant crowns using an experimental "circular crisscross flossing technique (CCCFT) flossing technique, compared to the conventional "C" shape flossing technique (CSFT). Twenty-four patients rendered 29 experimental and 29 control crowns. Prefabricated abutments were secured to the implant with the margins at least 1 mm subgingivally. The abutments were scanned using CADCAM technology and Emax crowns were fabricated in duplicates. Each crown was cemented separately and excess cement was removed using the CSFT and the CCFT techniques. After completion of cementation was completed, the screw access holes were accessed and the crown was unscrewed along with the abutment. The samples were disinfected using 70% ethanol for 10 minutes. Crowns were divided into 4 parts using a marker in order to facilitate measurement data collection. Vertical and horizontal measurements were made for extruded cement for each control and experimental groups by means of a digital microscope. One-hundred and seventeen measurements were made for each group. Mann-Whitney test was applied to verify statistical significance between the groups. The CCFT showed a highly statistically significant result (104.8 ± 13.66, p<0.0001) for cement removal compared with the CSFT (291.8 ± 21.96, p<0.0001). The vertical lengths of the extruded cement showed a median of 231.1 µm (IQR = 112.79 -398.39) and 43.62 µm (IQR = 0 - 180.21) for the control and the experimental flossing techniques, respectively. The horizontal length of the extruded cement showed a median of 987.1 µm (IQR = 476.7 - 1,933.58) and 139.2 µm (IQR = 0 - 858.28) for the control and the experimental flossing techniques, respectively. The CCFT showed highly statistically significant less cement after implant crowns cementation when compared with the CSFT.
Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar
2013-01-01
Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.
Linden, Ariel; Yarnold, Paul R
2016-12-01
Program evaluations often utilize various matching approaches to emulate the randomization process for group assignment in experimental studies. Typically, the matching strategy is implemented, and then covariate balance is assessed before estimating treatment effects. This paper introduces a novel analytic framework utilizing a machine learning algorithm called optimal discriminant analysis (ODA) for assessing covariate balance and estimating treatment effects, once the matching strategy has been implemented. This framework holds several key advantages over the conventional approach: application to any variable metric and number of groups; insensitivity to skewed data or outliers; and use of accuracy measures applicable to all prognostic analyses. Moreover, ODA accepts analytic weights, thereby extending the methodology to any study design where weights are used for covariate adjustment or more precise (differential) outcome measurement. One-to-one matching on the propensity score was used as the matching strategy. Covariate balance was assessed using standardized difference in means (conventional approach) and measures of classification accuracy (ODA). Treatment effects were estimated using ordinary least squares regression and ODA. Using empirical data, ODA produced results highly consistent with those obtained via the conventional methodology for assessing covariate balance and estimating treatment effects. When ODA is combined with matching techniques within a treatment effects framework, the results are consistent with conventional approaches. However, given that it provides additional dimensions and robustness to the analysis versus what can currently be achieved using conventional approaches, ODA offers an appealing alternative. © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Roth, Mark C. (Inventor); Smith, Russell W. (Inventor); Sikora, Joseph G. (Inventor); Rivers, H. Kevin (Inventor); Johnston, William M. (Inventor)
2016-01-01
An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.
NASA Astrophysics Data System (ADS)
Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu
2017-11-01
Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.
Dynamic Deformation Behavior of Soft Material Using Shpb Technique and Pulse Shaper
NASA Astrophysics Data System (ADS)
Lee, Ouk Sub; Cho, Kyu Sang; Kim, Sung Hyun; Han, Yong Hwan
This paper presents a modified Split Hopkinson Pressure Bar (SHPB) technique to obtain compressive stress strain data for NBR rubber materials. An experimental technique with a modified the conventional SHPB has been developed for measuring the compressive stress strain responses of materials with low mechanical impedance and low compressive strengths, such as the rubber and the polymeric material. This paper uses an aluminum pressure bar to achieve a closer impedance match between the pressure bar and the specimen materials. In addition, a pulse shaper is utilized to lengthen the rising time of the incident pulse to ensure dynamic stress equilibrium and homogeneous deformation of NBR rubber materials. It is found that the modified technique can determine the dynamic deformation behavior of rubbers more accurately.
Downscaling of conventional laser cladding technique to microengineering
NASA Astrophysics Data System (ADS)
del Val, J.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Quintero, F.; Pou, J.
To get an adequate response to the high increase of micro-products demand, new techniques have been developed by different types of industries in the last years. One approach is to adapt the laser surface cladding technique to the scale of microengineering. A new experimental configuration has been developed based on a highly stable high power laser with a high beam quality and a micro-feeder adequate to supply submicron particles. This work collects our efforts to extend the operation range of the laser cladding to the laser micro-cladding in order to produce micro-coatings. The viability of this new technique has been demonstrated by depositing coatings with geometrical characteristics in the micrometer range (minimum values obtained: 32 μm of width and 12 μm of height).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal
2016-03-21
X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less
Damage of composite structures: Detection technique, dynamic response and residual strength
NASA Astrophysics Data System (ADS)
Lestari, Wahyu
2001-10-01
Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.
NASA Astrophysics Data System (ADS)
Cao, H.; Kalashnikov, M.; Osvay, K.; Khodakovskiy, N.; Nagymihaly, R. S.; Chvykov, V.
2018-04-01
A combination of a polarization-encoded (PE) and a conventional multi-pass amplifier was studied to overcome gain narrowing in the Ti:sapphire active medium. The seed spectrum was pre-shaped and blue-shifted during PE amplification and was then further broadened in a conventional, saturated multi-pass amplifier, resulting in an overall increase of the amplified bandwidth. Using this technique, seed pulses of 44 nm were amplified and simultaneously spectrally broadened to 57 nm without the use of passive spectral corrections. The amplified pulse after the PE amplifier was recompressed to 19 fs. The supported simulations confirm all aspects of experimental operation.
NASA Astrophysics Data System (ADS)
Sharma, K.; Abdul Khudus, M. I. M.; Alam, S. U.; Bhattacharya, S.; Venkitesh, D.; Brambilla, G.
2018-01-01
Relative performance and detection limit of conventional, amplified, and gain-clamped cavity ring-down techniques (CRDT) in all-fiber configurations are compared experimentally for the first time. Refractive index measurement using evanescent field in tapered fibers is used as a benchmark for the comparison. The systematic optimization of a nested-loop configuration in gain-clamped CRDT is also discussed, which is crucial for achieving a constant gain in a CRDT experiment. It is found that even though conventional CRDT has the lowest standard error in ring-down time (Δτ), the value of ring-down time (τ) is very small, thus leading to poor detection limit. Amplified CRDT provides an improvement in τ, albeit with two orders of magnitude higher Δτ due to amplifier noise. The nested-loop configuration in gain-clamped CRDT helps in reducing Δτ by an order of magnitude as compared to amplified CRDT whilst retaining the improvement in τ. A detection limit of 1 . 03 × 10-4 RIU at refractive index of 1.322 with a 3 mm long and 4.5 μm diameter tapered fiber is demonstrated with the gain-clamped CRDT.
Comparison of dual and single exposure techniques in dual-energy chest radiography.
Ho, J T; Kruger, R A; Sorenson, J A
1989-01-01
Conventional chest radiography is the most effective tool for lung cancer detection and diagnosis; nevertheless, a high percentage of lung cancer tumors are missed because of the overlap of lung nodule image contrast with bone image contrast in a chest radiograph. Two different energy subtraction strategies, dual exposure and single exposure techniques, were studied for decomposing a radiograph into bone-free and soft tissue-free images to address this problem. For comparing the efficiency of these two techniques in lung nodule detection, the performances of the techniques were evaluated on the basis of residual tissue contrast, energy separation, and signal-to-noise ratio. The evaluation was based on both computer simulation and experimental verification. The dual exposure technique was found to be better than the single exposure technique because of its higher signal-to-noise ratio and greater residual tissue contrast. However, x-ray tube loading and patient motion are problems.
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Pini, Roberto; Iacoangeli, Maurizio; Giannoni, Luca; Fortuna, Damiano; Di Cicco, Emiliano; Corbara, Sylwia; Dallari, Stefano
2014-05-01
Laser bonding is a promising minimally invasive approach, emerging as a valid alternative to conventional suturing techniques. It shows widely demonstrated advantages in wound treatment: immediate closuring effect, minimal inflammatory response and scar formation, reduced healing time. This laser based technique can overcome the difficulties in working through narrow surgical corridors (e.g. the modern "key-hole" surgery as well as the endoscopy setting) or in thin tissues that are impossible to treat with staples and/or stitches. We recently proposed the use of chitosan matrices, stained with conventional chromophores, to be used in laser bonding of vascular tissue. In this work we propose the same procedure to perform laser bonding of vocal folds and dura mater repair. Laser bonding of vocal folds is proposed to avoid the development of adhesions (synechiae), after conventional or CO2 laser surgery. Laser bonding application in neurosurgery is proposed for the treatment of dural defects being the Cerebro Spinal Fluid leaks still a major issue. Vocal folds and dura mater were harvested from 9-months old porks and used in the experimental sessions within 4 hours after sacrifice. In vocal folds treatment, an IdocyanineGreen-infused chitosan patch was applied onto the anterior commissure, while the dura mater was previously incised and then bonded. A diode laser emitting at 810 nm, equipped with a 600 μm diameter optical fiber was used to weld the patch onto the tissue, by delivering single laser spots to induce local patch/tissue adhesion. The result is an immediate adhesion of the patch to the tissue. Standard histology was performed, in order to study the induced photothermal effect at the bonding sites. This preliminary experimental activity shows the advantages of the proposed technique in respect to standard surgery: simplification of the procedure; decreased foreign-body reaction; reduced inflammatory response; reduced operating times and better handling in depth.
Performance of high area ratio nozzles for a small rocket thruster
NASA Technical Reports Server (NTRS)
Kushida, R. O.; Hermel, J.; Apfel, S.; Zydowicz, M.
1986-01-01
Theoretical estimates of supersonic nozzle performance have been compared to experimental test data for nozzles with an area ratio of 100:1 conical and 300:1 optimum contour, and 300:1 nozzles cut off at 200:1 and 100:1. These tests were done on a Hughes Aircraft Company 5 lbf monopropellant hydrazine thruster with chamber pressures ranging from 25 to 135 psia. The analytic method used is the conventional inviscid method of characteristic with correction for laminar boundary layer displacement and drag. Replacing the 100:1 conical nozzle with the 300:1 contoured nozzle resulted in an improvement in thrust performance of 0.74 percent at chamber pressure of 25 psia to 2.14 percent at chamber pressure of 135 psia. The data is significant because it is experimental verification that conventional nozzle design techniques are applicable even where the boundary layer is laminar and displaces as much as 35 percent of the flow at the nozzle exit plane.
NASA Astrophysics Data System (ADS)
Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.
2018-03-01
We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.
The depiction of Alboran Sea Gyre during Donde Va? using remote sensing and conventional data
NASA Technical Reports Server (NTRS)
Laviolette, P. E.
1984-01-01
Experienced oceanographic investigators have come to realize that remote sensing techniques are most successful when applied as part of programs of integrated measurements aimed at solving specific oceanographic problems. A good example of such integration occurred during the multi-platform international experiment, Donde Va? in the Alboran Sea during the period June through October, 1982. The objective of Donde Va? was to derive the interrelationship of the Atlantic waters entering the Mediterranean Sea and the Alboran Sea Gyre. The experimental plan conceived solely with this objective in mind consisted of a variety of remote sensing and conventional platforms: three ships, three aircraft, five current moorings, two satellites and a specialized beach radar (CODAR). Integrated analyses of these multiple-data sets are still being conducted. However, the initial results show detailed structure of the incoming Atlantic jet and Alboran Sea Gyre that would not have been possible by conventional means.
Tölle, Pia; Köhler, Christof; Marschall, Roland; Sharifi, Monir; Wark, Michael; Frauenheim, Thomas
2012-08-07
The conventional polymer electrolyte membrane (PEM) materials for fuel cell applications strongly rely on temperature and pressure conditions for optimal performance. In order to expand the range of operating conditions of these conventional PEM materials, mesoporous functionalised SiO(2) additives are developed. It has been demonstrated that these additives themselves achieve proton conductivities approaching those of conventional materials. However, the proton conduction mechanisms and especially factors influencing charge carrier mobility under different hydration conditions are not well known and difficult to separate from concentration effects in experiments. This tutorial review highlights contributions of atomistic computer simulations to the basic understanding and eventual design of these materials. Some basic introduction to the theoretical and computational framework is provided to introduce the reader to the field, the techniques are in principle applicable to a wide range of other situations as well. Simulation results are directly compared to experimental data as far as possible.
Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A
2010-10-11
We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.
The landing flare: An analysis and flight-test investigation
NASA Technical Reports Server (NTRS)
Seckel, E.
1975-01-01
Results are given of an extensive investigation of conventional landing flares in general aviation type airplanes. A wide range of parameters influencing flare behavior are simulated in experimental landings in a variable-stability Navion. The most important feature of the flare is found to be the airplane's deceleration in the flare. Various effects on this are correlated in terms of the average flare load factor. Piloting technique is extensively discussed. Design criteria are presented.
Assessment of Response Surface Models using Independent Confirmation Point Analysis
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2010-01-01
This paper highlights various advantages that confirmation-point residuals have over conventional model design-point residuals in assessing the adequacy of a response surface model fitted by regression techniques to a sample of experimental data. Particular advantages are highlighted for the case of design matrices that may be ill-conditioned for a given sample of data. The impact of both aleatory and epistemological uncertainty in response model adequacy assessments is considered.
ERIC Educational Resources Information Center
Weinstock, Donald J.
A personal account of an English instructor's experiences with poetry therapy--the use of poetry to help people get in touch with, and begin dealing with, their problems and feelings--is provided in this paper. Among the topics dealt with are the following: the scope of poetry therapy, the instructor's early dissatisfactions with traditional…
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-01-01
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526
Orbital engineering of nickelates in three-component heterostructures
NASA Astrophysics Data System (ADS)
Disa, Ankit; Kumah, Divine; Malashevich, Andrei; Chen, Hanghui; Ismail-Beigi, Sohrab; Walker, Fred; Ahn, Charles; Specht, Eliot; Arena, Dario
2015-03-01
The orbital configuration of complex oxides dictates the emergence of a wide range of properties, including metal-insulator transitions, interfacial magnetism, and high-temperature superconductivity. In this work, we experimentally demonstrate a novel method for achieving large and tunable orbital polarizations in nickelates. The technique is based on leveraging three-component, atomically layered superlattices to yield a combination of inversion symmetry breaking, charge transfer, and polar distortions. In the system we studied, composed of LaTiO3/LaNiO3/LaAlO3, we use synchrotron x-ray diffraction and spectroscopy to characterize these properties and show that they lead to fully broken orbital degeneracy in the nickelate layer consistent with a single-band Fermi surface. Furthermore, we show that this system is widely tunable and enables quasi-continuous orbital control unachievable by conventional strain and confinement-based approaches. This technique provides an experimentally realizable route for accessing and studying novel orbitally dependent quantum phenomena.
NASA Technical Reports Server (NTRS)
Williams, R. J.
1986-01-01
The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or floatation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacites with small quantities of gas which are recirculated over the sample is described. This system should be adaptable to reduced gravity space experiments requiring redox control. Experiments done conventionally and those done using this technique yield identical results done in a 1-g field.
In-line phase contrast micro-CT reconstruction for biomedical specimens.
Fu, Jian; Tan, Renbo
2014-01-01
X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-04-21
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.
NASA Astrophysics Data System (ADS)
Takahashi, Kazuki; Taki, Hirofumi; Onishi, Eiko; Yamauchi, Masanori; Kanai, Hiroshi
2017-07-01
Epidural anesthesia is a common technique for perioperative analgesia and chronic pain treatment. Since ultrasonography is insufficient for depicting the human vertebral surface, most examiners apply epidural puncture by body surface landmarks on the back such as the spinous process and scapulae without any imaging, including ultrasonography. The puncture route to the epidural space at thoracic vertebrae is much narrower than that at lumber vertebrae, and therefore, epidural anesthesia at thoracic vertebrae is difficult, especially for a beginner. Herein, a novel imaging method is proposed based on a bi-static imaging technique by making use of the transmit beam width and direction. In an in vivo experimental study on human thoracic vertebrae, the proposed method succeeded in depicting the vertebral surface clearly as compared with conventional B-mode imaging and the conventional envelope method. This indicates the potential of the proposed method in visualizing the vertebral surface for the proper and safe execution of epidural anesthesia.
Digital Versus Conventional Impressions in Fixed Prosthodontics: A Review.
Ahlholm, Pekka; Sipilä, Kirsi; Vallittu, Pekka; Jakonen, Minna; Kotiranta, Ulla
2018-01-01
To conduct a systematic review to evaluate the evidence of possible benefits and accuracy of digital impression techniques vs. conventional impression techniques. Reports of digital impression techniques versus conventional impression techniques were systematically searched for in the following databases: Cochrane Central Register of Controlled Trials, PubMed, and Web of Science. A combination of controlled vocabulary, free-text words, and well-defined inclusion and exclusion criteria guided the search. Digital impression accuracy is at the same level as conventional impression methods in fabrication of crowns and short fixed dental prostheses (FDPs). For fabrication of implant-supported crowns and FDPs, digital impression accuracy is clinically acceptable. In full-arch impressions, conventional impression methods resulted in better accuracy compared to digital impressions. Digital impression techniques are a clinically acceptable alternative to conventional impression methods in fabrication of crowns and short FDPs. For fabrication of implant-supported crowns and FDPs, digital impression systems also result in clinically acceptable fit. Digital impression techniques are faster and can shorten the operation time. Based on this study, the conventional impression technique is still recommended for full-arch impressions. © 2016 by the American College of Prosthodontists.
In Vivo Measurement of Glenohumeral Joint Contact Patterns
NASA Astrophysics Data System (ADS)
Bey, Michael J.; Kline, Stephanie K.; Zauel, Roger; Kolowich, Patricia A.; Lock, Terrence R.
2009-12-01
The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral). Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.
Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments
NASA Technical Reports Server (NTRS)
Clotfelter, W. N.; Hoop, J. M.; Duren, P. C.
1975-01-01
Ultrasonic studies are described which are specifically directed toward the quantitative measurement of randomly located defects previously found in aluminum welds with radiography or with dye penetrants. Experimental radiographic studies were also made to optimize techniques for welds of the thickness range to be used in fabricating the External Tank of the Space Shuttle. Conventional and innovative ultrasonic techniques were applied to the flaw size measurement problem. Advantages and disadvantages of each method are discussed. Flaw size data obtained ultrasonically were compared to radiographic data and to real flaw sizes determined by destructive measurements. Considerable success was achieved with pulse echo techniques and with 'pitch and catch' techniques. The radiographic work described demonstrates that careful selection of film exposure parameters for a particular application must be made to obtain optimized flaw detectability. Thus, film exposure techniques can be improved even though radiography is an old weld inspection method.
Detection of gaseous oxygen using temperature tuned laser diodes
NASA Technical Reports Server (NTRS)
Fox, Curtis W.; Disimile, Peter J.
1990-01-01
The development of an optical differential absorption technique using laser diodes is discussed. The technique is being developed as a solution to overcome the difficulties imposed by conventional liquid rocket propulsion system leak detection such as damage to the engine, cumbersome equipment, and excessive amounts of time. The detection of O2 at atmospheric pressure and temperature using laser diodes is demonstrated. Also, it is shown that, by temperature tuning the laser diode, the wavelength was shifted to a level where the oxygen absorption peaks are found. The levels of transmission determined via experimental means and those calculated from spectral data are found to be in close agreement.
Park, Jong Kang; Rowlands, Christopher J; So, Peter T C
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.
Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484
CO2-laser-assisted microsurgical anastomosis in reconstructive microsurgery
NASA Astrophysics Data System (ADS)
Kiyoshige, Yoshiro
1996-01-01
Since 1984, the author used a low output carbon dioxide laser for microsurgical anastomoses in the experimental investigation with rats. The series of experiments demonstrates the following characteristics, in comparison with conventional microsurgical anastomoses: ease in technique; less time consumption; equivalency of patency rate and bursting pressure; but only about 50% of the tensile strength of manual suture anastomosis. These findings suggested that low output carbon dioxide laser has the potential for clinical application. Then this technique has been applied in six clinical cases with digital replantations and free vascularized flap since 1988. The procedure offers increased safety and speed in reconstructive microsurgery.
Oh, Paul; Lee, Sukho; Kang, Moon Gi
2017-01-01
Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method. PMID:28657602
Oh, Paul; Lee, Sukho; Kang, Moon Gi
2017-06-28
Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.
Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona
2013-07-08
In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).
Comparative Analysis Between Computed and Conventional Inferior Alveolar Nerve Block Techniques.
Araújo, Gabriela Madeira; Barbalho, Jimmy Charles Melo; Dias, Tasiana Guedes de Souza; Santos, Thiago de Santana; Vasconcellos, Ricardo José de Holanda; de Morais, Hécio Henrique Araújo
2015-11-01
The aim of this randomized, double-blind, controlled trial was to compare the computed and conventional inferior alveolar nerve block techniques in symmetrically positioned inferior third molars. Both computed and conventional anesthetic techniques were performed in 29 healthy patients (58 surgeries) aged between 18 and 40 years. The anesthetic of choice was 2% lidocaine with 1: 200,000 epinephrine. The Visual Analogue Scale assessed the pain variable after anesthetic infiltration. Patient satisfaction was evaluated using the Likert Scale. Heart and respiratory rates, mean time to perform technique, and the need for additional anesthesia were also evaluated. Pain variable means were higher for the conventional technique as compared with computed, 3.45 ± 2.73 and 2.86 ± 1.96, respectively, but no statistically significant differences were found (P > 0.05). Patient satisfaction showed no statistically significant differences. The average computed technique runtime and the conventional were 3.85 and 1.61 minutes, respectively, showing statistically significant differences (P <0.001). The computed anesthetic technique showed lower mean pain perception, but did not show statistically significant differences when contrasted to the conventional technique.
Biogasification of community-derived biomass and solid wastes in a pilot-scale SOLCON reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.
1988-01-01
The Institute of Gas Technology has developed a novel, solids- concentrating (SOLCON) bioreactor to convert a variety of individual or mixed feedstocks (biomass and wastes) to methane at higher rates and efficiencies than those obtained from conventional high-rate anaerobic digesters. The biogasification studies are being conducted in a pilot-scale experimental test unit (ETU) located in the Walt Disney World Resort Complex, Orlando, Florida. This paper describes the ETU facility, the logistics of feedstock integration, the SOLCON reactor design and operating techniques, and the results obtained during 4 years of stable, uninterrupted operation with different feedstocks. The SOLCON reactor consistently outperformedmore » the conventional stirred-tank reactor by 20% to 50%.« less
A study on pseudo interface wave technique for CRDM weld defects in nuclear power plants
NASA Astrophysics Data System (ADS)
Lee, Jaesun; Park, Junpil; Cho, Younho; Huh, Hyung; Park, Keun-Bae; Kim, Dong-Ok
2015-03-01
The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundary conditions and the experimental result shows a possibility of the defect detection on J-groove weld.
Nobukawa, Teruyoshi; Nomura, Takanori
2017-01-23
Digital super-resolution holographic data storage based on Hermitian symmetry is proposed to store digital data in a tiny area of a medium. In general, reducing a recording area with an aperture leads to the improvement in the storage capacity of holographic data storage. Conventional holographic data storage systems however have a limitation in reducing a recording area. This limitation is called a Nyquist size. Unlike the conventional systems, our proposed system can overcome the limitation with the help of a digital holographic technique and digital signal processing. Experimental result shows that the proposed system can record and retrieve a hologram in a smaller area than the Nyquist size on the basis of Hermitian symmetry.
Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan
2012-11-05
We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.
An efficient ensemble learning method for gene microarray classification.
Osareh, Alireza; Shadgar, Bita
2013-01-01
The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.
A hot-cracking mitigation technique for welding high-strength aluminum alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y.P.; Dong, P.; Zhang, J.
2000-01-01
A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weldmore » pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).« less
Ethylene resistance in flowering ornamental plants – improvements and future perspectives
Olsen, Andreas; Lütken, Henrik; Hegelund, Josefine Nymark; Müller, Renate
2015-01-01
Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques. PMID:26504580
A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Parker, P. A.; Morton, M.; Draper, N.; Line, W.
2001-01-01
This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas
2010-01-01
An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.
Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition.
Waghmare, Govind V; Rathod, Virendra K
2016-09-01
The present work demonstrates the hydrolysis of waste cooking oil (WCO) under solvent free condition using commercial available immobilized lipase (Novozyme 435) under the influence of ultrasound irradiation. The process parameters were optimized using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound intensity. It has been observed that ultrasound-assisted lipase-catalyzed hydrolysis of WCO would be a promising alternative for conventional methods. A maximum conversion of 75.19% was obtained at mild operating parameters: molar ratio of oil to water (buffer pH 7) 3:1, catalyst loading of 1.25% (w/w), lower ultrasound power 100W (ultrasound intensity - 7356.68Wm(-2)), duty cycle 50% and temperature (50°C) in a relatively short reaction time (2h). The activation energy and thermodynamic study shows that the hydrolysis reaction is more feasible when ultrasound is combined with mechanical agitation as compared with the ultrasound alone and simple conventional stirring technique. Application of ultrasound considerably reduced the reaction time as compared to conventional reaction. The successive use of the catalyst for repetitive cycles under the optimum experimental conditions resulted in a loss of enzymatic activity and also minimized the product conversion. Copyright © 2016. Published by Elsevier B.V.
Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar
NASA Technical Reports Server (NTRS)
Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.
2003-01-01
A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.
Molecular Simulations of Adsorption and Diffusion in Silicalite.
NASA Astrophysics Data System (ADS)
Snurr, Randall Quentin
The adsorption and diffusion of hydrocarbons in the zeolite silicalite have been studied using molecular simulations. The simulations use an atomistic description of zeolite/sorbate interactions and are based on principles of statistical mechanics. Emphasis was placed on developing new simulation techniques to allow complex systems relevant to industrial applications in catalysis and separations processes to be studied. Adsorption isotherms and heats of sorption for methane in silicalite were calculated from grand canonical Monte Carlo (GCMC) simulations and also from molecular dynamics (MD) simulations accompanied by Widom test particle insertions. Good agreement with experimental data from the literature was found. The adsorption thermodynamics of aromatic species in silicalite at low loading was predicted by direct evaluation of the configurational integrals. Good agreement with experiment was obtained for the Henry's constants and the heats of adsorption. Molecules were predicted to be localized in the channel intersections at low loading. At higher loading, conventional GCMC simulations were found to be infeasible. Several variations of the GCMC technique were developed incorporating biased insertion moves. These new techniques are much more efficient than conventional GCMC and allow for the prediction of adsorption isotherms of tightly-fitting aromatic molecules in silicalite. Our simulations when combined with experimental evidence of a phase change in the zeolite structure at intermediate loading provide an explanation of the characteristic steps seen in the experimental isotherms. A hierarchical atomistic/lattice model for studying these systems was also developed. The hierarchical model is more than an order of magnitude more efficient computationally than direct atomistic simulation. Diffusion of benzene in silicalite was studied using transition-state theory (TST). Such an approach overcomes the time-scale limitations of using MD simulations for studying sorbate dynamics. Predicted diffusion coefficients were found to be too low compared to experiment. This was attributed to the assumption of a rigid zeolite structure in the calculations and the use of a harmonic approximation for calculating the TST rate constants. Details of sorbate motion were also investigated.
Space charge distributions in insulating polymers: A new non-contacting way of measurement.
Marty-Dessus, D; Ziani, A C; Petre, A; Berquez, L
2015-04-01
A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.
Giro, Gabriela; Tovar, Nick; Marin, Charles; Bonfante, Estevam A.; Jimbo, Ryo; Suzuki, Marcelo; Janal, Malvin N.; Coelho, Paulo G.
2013-01-01
Objectives. To test the hypothesis that there would be no differences in osseointegration by reducing the number of drills for site preparation relative to conventional drilling sequence. Methods. Seventy-two implants were bilaterally placed in the tibia of 18 beagle dogs and remained for 1, 3, and 5 weeks. Thirty-six implants were 3.75 mm in diameter and the other 36 were 4.2 mm. Half of the implants of each diameter were placed under a simplified technique (pilot drill + final diameter drill) and the other half were placed under conventional drilling where multiple drills of increasing diameter were utilized. After euthanisation, the bone-implant samples were processed and referred to histological analysis. Bone-to-implant contact (BIC) and bone-area-fraction occupancy (BAFO) were assessed. Statistical analyses were performed by GLM ANOVA at 95% level of significance considering implant diameter, time in vivo, and drilling procedure as independent variables and BIC and BAFO as the dependent variables. Results. Both techniques led to implant integration. No differences in BIC and BAFO were observed between drilling procedures as time elapsed in vivo. Conclusions. The simplified drilling protocol presented comparable osseointegration outcomes to the conventional protocol, which proved the initial hypothesis. PMID:23431303
Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna
2015-01-01
This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems.
Heat transfer monitoring by means of the hot wire technique and finite element analysis software.
Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E
2014-01-01
It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheng, Gui-Juan; Zhang, Xinhao; Chung, Lung Wa; Xu, Liping; Wu, Yun-Dong
2015-02-11
Understanding the mechanisms of chemical reactions, especially catalysis, has been an important and active area of computational organic chemistry, and close collaborations between experimentalists and theorists represent a growing trend. This Perspective provides examples of such productive collaborations. The understanding of various reaction mechanisms and the insight gained from these studies are emphasized. The applications of various experimental techniques in elucidation of reaction details as well as the development of various computational techniques to meet the demand of emerging synthetic methods, e.g., C-H activation, organocatalysis, and single electron transfer, are presented along with some conventional developments of mechanistic aspects. Examples of applications are selected to demonstrate the advantages and limitations of these techniques. Some challenges in the mechanistic studies and predictions of reactions are also analyzed.
Multispectral Wavefronts Retrieval in Digital Holographic Three-Dimensional Imaging Spectrometry
NASA Astrophysics Data System (ADS)
Yoshimori, Kyu
2010-04-01
This paper deals with a recently developed passive interferometric technique for retrieving a set of spectral components of wavefronts that are propagating from a spatially incoherent, polychromatic object. The technique is based on measurement of 5-D spatial coherence function using a suitably designed interferometer. By applying signal processing, including aperture synthesis and spectral decomposition, one may obtains a set of wavefronts of different spectral bands. Since each wavefront is equivalent to the complex Fresnel hologram at a particular spectrum of the polychromatic object, application of the conventional Fresnel transform yields 3-D image of different spectrum. Thus, this technique of multispectral wavefronts retrieval provides a new type of 3-D imaging spectrometry based on a fully passive interferometry. Experimental results are also shown to demonstrate the validity of the method.
Low-emittance tuning of storage rings using normal mode beam position monitor calibration
NASA Astrophysics Data System (ADS)
Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.
2011-07-01
We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.
Stöggl, Thomas; Müller, Erich; Lindinger, Stefan
2008-09-01
The aims of the study were to: (1) adapt the "double-push" technique from inline skating to cross-country skiing; (2) compare this new skiing technique with the conventional skate skiing cross-country technique; and (3) test the hypothesis that the double-push technique improves skiing speed in a short sprint. 13 elite skiers performed maximum-speed sprints over 100 m using the double-push skate skiing technique and using the conventional "V2" skate skiing technique. Pole and plantar forces, knee angle, cycle characteristics, and electromyography of nine lower body muscles were analysed. We found that the double-push technique could be successfully transferred to cross-country skiing, and that this new technique is faster than the conventional skate skiing technique. The double-push technique was 2.9 +/- 2.2% faster (P < 0.001), which corresponds to a time advantage of 0.41 +/- 0.31 s over 100 m. The double-push technique had a longer cycle length and a lower cycle rate, and it was characterized by higher muscle activity, higher knee extension amplitudes and velocities, and higher peak foot forces, especially in the first phase of the push-off. Also, the foot was more loaded laterally in the double-push technique than in the conventional skate skiing technique.
Kutkut, Ahmad; Abu-Hammad, Osama; Frazer, Robert
2016-01-01
Impression techniques for implant restorations can be implant level or abutment level impressions with open tray or closed tray techniques. Conventional implant-abutment level impression techniques are predictable for maximizing esthetic outcomes. Restoration of the implant traditionally requires the use of the metal or plastic impression copings, analogs, and laboratory components. Simplifying the dental implant restoration by reducing armamentarium through incorporating conventional techniques used daily for crowns and bridges will allow more general dentists to restore implants in their practices. The demonstrated technique is useful when modifications to implant abutments are required to correct the angulation of malpositioned implants. This technique utilizes conventional crown and bridge impression techniques. As an added benefit, it reduces costs by utilizing techniques used daily for crowns and bridges. The aim of this report is to describe a simplified conventional impression technique for custom abutments and modified prefabricated solid abutments for definitive restorations. PMID:29563457
Low-high junction theory applied to solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.
1974-01-01
Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2005-01-01
High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.
Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.
2009-01-01
A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.
Moura, Renata Vasconcellos; Kojima, Alberto Noriyuki; Saraceni, Cintia Helena Coury; Bassolli, Lucas; Balducci, Ivan; Özcan, Mutlu; Mesquita, Alfredo Mikail Melo
2018-05-01
The increased use of CAD systems can generate doubt about the accuracy of digital impressions for angulated implants. The aim of this study was to evaluate the accuracy of different impression techniques, two conventional and one digital, for implants with and without angulation. We used a polyurethane cast that simulates the human maxilla according to ASTM F1839, and 6 tapered implants were installed with external hexagonal connections to simulate tooth positions 17, 15, 12, 23, 25, and 27. Implants 17 and 23 were placed with 15° of mesial angulation and distal angulation, respectively. Mini cone abutments were installed on these implants with a metal strap 1 mm in height. Conventional and digital impression procedures were performed on the maxillary master cast, and the implants were separated into 6 groups based on the technique used and measurement type: G1 - control, G2 - digital impression, G3 - conventional impression with an open tray, G4 - conventional impression with a closed tray, G5 - conventional impression with an open tray and a digital impression, and G6 - conventional impression with a closed tray and a digital impression. A statistical analysis was performed using two-way repeated measures ANOVA to compare the groups, and a Kruskal-Wallis test was conducted to analyze the accuracy of the techniques. No significant difference in the accuracy of the techniques was observed between the groups. Therefore, no differences were found among the conventional impression and the combination of conventional and digital impressions, and the angulation of the implants did not affect the accuracy of the techniques. All of the techniques exhibited trueness and had acceptable precision. The variation of the angle of the implants did not affect the accuracy of the techniques. © 2018 by the American College of Prosthodontists.
Accurate lithography simulation model based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki
2017-07-01
Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.
Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)
NASA Technical Reports Server (NTRS)
Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael
1993-01-01
The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.
Ötvös, Sándor B; Mándity, István M; Fülöp, Ferenc
2011-08-01
A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.
Two-Photon Fluorescence Correlation Spectroscopy
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Fischer, David G.
2002-01-01
We will describe a two-photon microscope currently under development at the NASA Glenn Research Center. It is composed of a Coherent Mira 900 tunable, pulsed Titanium:Sapphire laser system, an Olympus Fluoview 300 confocal scanning head, and a Leica DM IRE inverted microscope. It will be used in conjunction with a technique known as fluorescence correlation spectroscopy (FCS) to study intracellular protein dynamics. We will briefly explain the advantages of the two-photon system over a conventional confocal microscope, and provide some preliminary experimental results.
Virtual reality in laparoscopic surgery.
Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg
2004-01-01
Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.
Elevation of liquidus temperature in a gel-derived Na2O-SiO2 glass
NASA Technical Reports Server (NTRS)
Weinberg, M. C.; Neilson, G. F.
1983-01-01
The liquidus temperatures of a 19 wt% soda-silica glass prepared by gel and conventional techniques were determined. X-ray diffraction measurements of the glasses which were heat-treated at several temperatures were used to experimentally determine the liquidus temperatures. It was found that the gel-derived glass has an elevated liquidus. This result is discussed in relation to the previous discovery that the immiscibility temperature of this gel-derived glass is elevated
Zhang, T; Godavarthi, C; Chaumet, P C; Maire, G; Giovannini, H; Talneau, A; Prada, C; Sentenac, A; Belkebir, K
2015-02-15
Tomographic diffractive microscopy is a marker-free optical digital imaging technique in which three-dimensional samples are reconstructed from a set of holograms recorded under different angles of incidence. We show experimentally that, by processing the holograms with singular value decomposition, it is possible to image objects in a noisy background that are invisible with classical wide-field microscopy and conventional tomographic reconstruction procedure. The targets can be further characterized with a selective quantitative inversion.
Simultaneous measurements of bulk moduli and particle dynamics in a sheared colloidal glass
NASA Astrophysics Data System (ADS)
Massa, Michael V.; Eisenmann, Christoph; Kim, Chanjoong; Weitz, David A.
2007-03-01
We present a novel study of glassy colloidal systems, using a stress-controlled rheometer in conjunction with a confocal microscope. This experimental setup combines the measurement of bulk moduli, using conventional rheology, with the ability to track the motion of individual particles, through confocal microscopy techniques. We explore the response of the system to applied shear, by simultaneously monitoring the macroscopic relaxation and microscopic particle dynamics, under conditions from the quiescent glass to a shear-melted liquid.
Dynamic single sideband modulation for realizing parametric loudspeaker
NASA Astrophysics Data System (ADS)
Sakai, Shinichi; Kamakura, Tomoo
2008-06-01
A parametric loudspeaker, that presents remarkably narrow directivity compared with a conventional loudspeaker, is newly produced and examined. To work the loudspeaker optimally, we prototyped digitally a single sideband modulator based on the Weaver method and appropriate signal processing. The processing techniques are to change the carrier amplitude dynamically depending on the envelope of audio signals, and then to operate the square root or fourth root to the carrier amplitude for improving input-output acoustic linearity. The usefulness of the present modulation scheme has been verified experimentally.
An Information Retrieval Approach for Robust Prediction of Road Surface States.
Park, Jae-Hyung; Kim, Kwanho
2017-01-28
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods.
Do, Thanh Nhut; Gelin, Maxim F; Tan, Howe-Siang
2017-10-14
We derive general expressions that incorporate finite pulse envelope effects into a coherent two-dimensional optical spectroscopy (2DOS) technique. These expressions are simpler and less computationally intensive than the conventional triple integral calculations needed to simulate 2DOS spectra. The simplified expressions involving multiplications of arbitrary pulse spectra with 2D spectral response function are shown to be exactly equal to the conventional triple integral calculations of 2DOS spectra if the 2D spectral response functions do not vary with population time. With minor modifications, they are also accurate for 2D spectral response functions with quantum beats and exponential decay during population time. These conditions cover a broad range of experimental 2DOS spectra. For certain analytically defined pulse spectra, we also derived expressions of 2D spectra for arbitrary population time dependent 2DOS spectral response functions. Having simpler and more efficient methods to calculate experimentally relevant 2DOS spectra with finite pulse effect considered will be important in the simulation and understanding of the complex systems routinely being studied by using 2DOS.
An Information Retrieval Approach for Robust Prediction of Road Surface States
Park, Jae-Hyung; Kim, Kwanho
2017-01-01
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods. PMID:28134859
Whole-angle spherical retroreflector using concentric layers of homogeneous optical media.
Oakley, John P
2007-03-01
Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.
Memon, Sarfaraz
2014-12-01
A stable centric occlusal position that shows no evidence of occlusal disease should not be altered. Confirmative restorative dentistry deals with making restorations that are in harmony with existing jaw relations. Conventional techniques for construction have been unsuccessful in producing a prosthesis that can be inserted without minor intraoral occlusal adjustment. This study was conducted to evaluate the benefits of the double casting technique with FGP over the conventional casting technique. Ten patients with root canal treated maxillary molar were selected for the fabrication of metal crown. Two techniques, one involving the conventional fabrication and other using functionally generated path with double casting were used to fabricate the prosthesis. A comparison based on various parameters which was done between the two techniques. The change in the height of castings for the double casting group was less compared to the conventional group and was highly statistically significant (P < 0.001). The time taken for occlusal correction was significantly lower in double casting group than the conventional group (P < 0.001). The patient satisfaction (before occlusal correction) indicated better satisfaction for double casting group compared to conventional (P < 0.01). The functionally generated path with double casting technique resulted in castings which had better dimensional accuracy, less occlusal correction and better patient satisfaction compared to the conventional castings.
Alam, K; Mitrofanov, A V; Silberschmidt, V V
2011-03-01
Bone drilling is widely used in orthopaedics and surgery; it is a technically demanding surgical procedure. Recent technological improvements in this area are focused on efforts to reduce forces in bone drilling. This study focuses on forces and a torque required for conventional and ultrasonically-assisted tool penetration into fresh bovine cortical bone. Drilling tests were performed with two drilling techniques, and the influence of drilling speed, feed rate and parameters of ultrasonic vibration on the forces and torque was studied. Ultrasonically-assisted drilling (UAD) was found to reduce a drilling thrust force and torque compared to conventional drilling (CD). The mechanism behind lower levels of forces and torque was explored, using high-speed filming of a drill-bone interaction zone, and was linked to the chip shape and character of its formation. It is expected that UAD will produce holes with minimal effort and avoid unnecessary damage and accompanying pain during the incision. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
A phase space model of Fourier ptychographic microscopy
Horstmeyer, Roarke; Yang, Changhuei
2014-01-01
A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray diffractive imaging. Our mathematical framework demonstrates that under ideal illumination conditions, conventional ptychography and FPM both produce datasets that are mathematically linked by a linear transformation. We hope this finding encourages the future cross-pollination of ideas between two otherwise unconnected experimental imaging procedures. In addition, the coherence state of the illumination source used by each imaging platform is critical to successful operation, yet currently not well understood. We apply our mathematical framework to demonstrate that partial coherence uniquely alters both conventional ptychography’s and FPM’s captured data, but up to a certain threshold can still lead to accurate resolution-enhanced imaging through appropriate computational post-processing. We verify this theoretical finding through simulation and experiment. PMID:24514995
An evaluation of three experimental processes for two-dimensional transonic tests
NASA Technical Reports Server (NTRS)
Zuppardi, Gennaro
1989-01-01
The aerodynamic measurements in conventional wind tunnels usually suffer from the interference effects of the sting supporting the model and the test section walls. These effects are particularly severe in the transonic regime. Sting interference effects can be overcome through the Magnetic Suspension technique. Wall effects can be alleviated by: testing airfoils in conventional, ventilated tunnels at relatively small model to tunnel size ratios; treatment of the tunnel wall boundary layers; or by utilization of the Adaptive Wall Test Section (AWTS) concept. The operating capabilities and results from two of the foremost two-dimensional, transonic, AWTS facilities in existence are assessed. These facilities are the NASA 0.3-Meter Transonic Cryogenic Tunnel and the ONERA T-2 facility located in Toulouse, France. In addition, the results derived from the well known conventional facility, the NAE 5 ft x 5 ft Canadian wind tunnel will be assessed. CAST10/D0A2 Airfoil results will be used in all of the evaluations.
Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.
2018-01-01
Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673
Miniaturization of Microwave Ablation Antennas
NASA Astrophysics Data System (ADS)
Luyen, Hung
Microwave ablation (MWA) is a promising minimally invasive technique for the treatment of various types of cancers as well as non-oncological diseases. In MWA, an interstitial antenna is typically used to deliver microwave energy to the diseased tissue and heat it up to lethal temperature levels that induce cell death. The desired characteristics of the interstitial antenna include a narrow diameter to minimize invasiveness of the treatment, a low input reflection coefficient at the operating frequency, and a localized heating zone. Most interstitial MWA antennas are fed by coaxial cables and designed for operation at either 915 MHz or 2.45 GHz. Coax-fed MWA antennas are commonly equipped with coaxial baluns to achieve localized heating. However, the conventional implementation of coaxial baluns increases the overall diameters of the antennas and therefore make them more invasive. It is highly desirable to develop less invasive antennas with shorter active lengths and smaller diameters for MWA applications. In this work, we demonstrate the feasibility of using higher frequency microwaves for tissue ablation and present several techniques for decreasing diameters of MWA antennas. First, we investigated MWA at higher frequencies by conducting numerical and experimental studies to compare ablation performance at 10 GHz and 1.9 GHz. Simulation and ex vivo ablation experiment results demonstrate comparable ablation zone dimensions achieved at these two frequencies. Operating at higher frequencies enables interstitial antennas with shorter active lengths. This can be combined with smaller-diameter antenna designs to create less invasive applicators or allow integration of multiple radiating elements on a single applicator to have better control and customization of the heating patterns. Additionally, we present three different coax-fed antenna designs and a non-coaxial-based balanced antenna that have smaller-diameter configurations than conventional coax-fed balun-equipped antennas. The antennas were evaluated and optimized in electromagnetic and thermal simulations. Then prototypes of these antennas were fabricated and experimentally characterized in ex vivo ablation experiments. Simulation and experimental results are in good agreement and demonstrate that the proposed antennas provide good impedance matching and localized heating patterns at their operating frequencies while having about 30% smaller diameters compared to conventional coax-fed balun-equipped MWA antennas.
Yuzbasioglu, Emir; Kurt, Hanefi; Turunc, Rana; Bilir, Halenur
2014-01-30
The purpose of this study was to compare two impression techniques from the perspective of patient preferences and treatment comfort. Twenty-four (12 male, 12 female) subjects who had no previous experience with either conventional or digital impression participated in this study. Conventional impressions of maxillary and mandibular dental arches were taken with a polyether impression material (Impregum, 3 M ESPE), and bite registrations were made with polysiloxane bite registration material (Futar D, Kettenbach). Two weeks later, digital impressions and bite scans were performed using an intra-oral scanner (CEREC Omnicam, Sirona). Immediately after the impressions were made, the subjects' attitudes, preferences and perceptions towards impression techniques were evaluated using a standardized questionnaire. The perceived source of stress was evaluated using the State-Trait Anxiety Scale. Processing steps of the impression techniques (tray selection, working time etc.) were recorded in seconds. Statistical analyses were performed with the Wilcoxon Rank test, and p < 0.05 was considered significant. There were significant differences among the groups (p < 0.05) in terms of total working time and processing steps. Patients stated that digital impressions were more comfortable than conventional techniques. Digital impressions resulted in a more time-efficient technique than conventional impressions. Patients preferred the digital impression technique rather than conventional techniques.
Phonological studies of the new gas-induced agitated reactor using computational fluid dynamics.
Yang, T C; Hsu, Y C; Wang, S F
2001-06-01
An ozone-induced agitated reactor has been found to be very effective in degrading industrial wastewater. However, the cost of the ozone generation as well as its short residence time in reactors has restricted its application in a commercial scale. An innovated gas-induced draft tube installed inside a conventional agitated reactor was proved to effectively retain the ozone in a reactor. The setup was demonstrated to significantly promote the ozone utilization rate up to 96% from the conventional rate of 60% above the onset speed. This work investigates the mixing mechanism of an innovated gas-induced reactor for the future scale-up design by using the technique of computational fluid dynamics. A three-dimensional flow model was proposed to compute the liquid-gas free surface as well as the flow patterns inside the reactor. The turbulent effects generated by two 45 degrees pitch-blade turbines were considered and the two phases mixing phenomena were also manipulated by the Eulerian-Eulerian techniques. The consistency of the free surface profiles and the fluid flow patterns proved a good agreement between computational results and the experimental observation.
Adjustable bipod flexures for mounting mirrors in a space telescope.
Kihm, Hagyong; Yang, Ho-Soon; Moon, Il Kweon; Yeon, Jeong-Heum; Lee, Seung-Hoon; Lee, Yun-Woo
2012-11-10
A new mirror mounting technique applicable to the primary mirror in a space telescope is presented. This mounting technique replaces conventional bipod flexures with flexures having mechanical shims so that adjustments can be made to counter the effects of gravitational distortion of the mirror surface while being tested in the horizontal position. Astigmatic aberration due to the gravitational changes is effectively reduced by adjusting the shim thickness, and the relation between the astigmatism and the shim thickness is investigated. We tested the mirror interferometrically at the center of curvature using a null lens. Then we repeated the test after rotating the mirror about its optical axis by 180° in the horizontal setup, and searched for the minimum system error. With the proposed flexure mount, the gravitational stress at the adhesive coupling between the mirror and the mount is reduced by half that of a conventional bipod flexure for better mechanical safety under launch loads. Analytical results using finite element methods are compared with experimental results from the optical interferometer. Vibration tests verified the mechanical safety and optical stability, and qualified their use in space applications.
Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu
2014-08-04
We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, andmore » results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.« less
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
Aoki, Michio
2018-01-01
Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894
A case study of application of guided waves for detecting corrosion in pipelines
NASA Astrophysics Data System (ADS)
Rostami, Javad; Safizadeh, Mir Saeed
2012-05-01
Every year noticeable amount of money is spent on fixing and replacing the damaged pipes which carry gas and fuel. Since there is a possibility for a catastrophic failure, knowing the proper time of this repair is of great importance. Because significant proportion of failures is due to wall thinning of pipes because of the corrosion, detecting the wall thinning has been a main part of nondestructive testing of pipes. There are wide variety of NDT techniques to detect this kind of defect such as conventional ultrasonic, eddy current, radiography etc. but some of these techniques, for example conventional ultrasonic needs the insulation of pipes removed and in some other cases such as radiography the test is not done at a reasonable speed. A new method of nondestructive testing of pipes which has the potential to test a long distance in a short period of time and does not need the whole insulation removed, has drawn a lot of attention. In this paper, the ability of ultrasonic guided waves for detecting corrosion in gas pipelines is experimentally investigated.
Preparation of alpha sources using magnetohydrodynamic electrodeposition for radionuclide metrology.
Panta, Yogendra M; Farmer, Dennis E; Johnson, Paula; Cheney, Marcos A; Qian, Shizhi
2010-02-01
Expanded use of nuclear fuel as an energy resource and terrorist threats to public safety clearly require the development of new state-of-the-art technologies and improvement of safety measures to minimize the exposure of people to radiation and the accidental release of radiation into the environment. The precision in radionuclide metrology is currently limited by the source quality rather than the detector performance. Electrodeposition is a commonly used technique to prepare massless radioactive sources. Unfortunately, the radioactive sources prepared by the conventional electrodeposition method produce poor resolution in alpha spectrometric measurements. Preparing radioactive sources with better resolution and higher yield in the alpha spectrometric range by integrating magnetohydrodynamic convection with the conventional electrodeposition technique was proposed and tested by preparing mixed alpha sources containing uranium isotopes ((238)U, (234)U), plutonium ((239)Pu), and americium ((241)Am) for alpha spectrometric determination. The effects of various parameters such as magnetic flux density, deposition current and time, and pH of the sample solution on the formed massless radioactive sources were also experimentally investigated. Copyright 2009 Elsevier Inc. All rights reserved.
Nanoscale live cell optical imaging of the dynamics of intracellular microvesicles in neural cells.
Lee, Sohee; Heo, Chaejeong; Suh, Minah; Lee, Young Hee
2013-11-01
Recent advances in biotechnology and imaging technology have provided great opportunities to investigate cellular dynamics. Conventional imaging methods such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy are powerful techniques for cellular imaging, even at the nanoscale level. However, these techniques have limitations applications in live cell imaging because of the experimental preparation required, namely cell fixation, and the innately small field of view. In this study, we developed a nanoscale optical imaging (NOI) system that combines a conventional optical microscope with a high resolution dark-field condenser (Cytoviva, Inc.) and halogen illuminator. The NOI system's maximum resolution for live cell imaging is around 100 nm. We utilized NOI to investigate the dynamics of intracellular microvesicles of neural cells without immunocytological analysis. In particular, we studied direct, active random, and moderate random dynamic motions of intracellular microvesicles and visualized lysosomal vesicle changes after treatment of cells with a lysosomal inhibitor (NH4Cl). Our results indicate that the NOI system is a feasible, high-resolution optical imaging system for live small organelles that does not require complicated optics or immunocytological staining processes.
Vaidya, Sharad; Parkash, Hari; Bhargava, Akshay; Gupta, Sharad
2014-01-01
Abundant resources and techniques have been used for complete coverage crown fabrication. Conventional investing and casting procedures for phosphate-bonded investments require a 2- to 4-h procedure before completion. Accelerated casting techniques have been used, but may not result in castings with matching marginal accuracy. The study measured the marginal gap and determined the clinical acceptability of single cast copings invested in a phosphate-bonded investment with the use of conventional and accelerated methods. One hundred and twenty cast coping samples were fabricated using conventional and accelerated methods, with three finish lines: Chamfer, shoulder and shoulder with bevel. Sixty copings were prepared with each technique. Each coping was examined with a stereomicroscope at four predetermined sites and measurements of marginal gaps were documented for each. A master chart was prepared for all the data and was analyzed using Statistical Package for the Social Sciences version. Evidence of marginal gap was then evaluated by t-test. Analysis of variance and Post-hoc analysis were used to compare two groups as well as to make comparisons between three subgroups . Measurements recorded showed no statistically significant difference between conventional and accelerated groups. Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.
Birgül, Ozlem; Eyüboğlu, B Murat; Ider, Y Ziya
2003-11-07
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging is adopted. A reconstruction algorithm based on the sensitivity matrix relation between conductivity and only one component of magnetic flux distribution is used. Therefore, the requirement for object rotation is eliminated. Once the relative conductivity distribution is found, it is scaled using the peripheral voltage measurements to obtain the absolute conductivity distribution. Images of several insulator and conductor objects in saline filled phantoms are reconstructed. The L2 norm of relative error in conductivity values is found to be 13%, 17% and 14% for three different conductivity distributions.
Soto, Marcelo A; Lu, Xin; Martins, Hugo F; Gonzalez-Herraez, Miguel; Thévenaz, Luc
2015-09-21
In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured spectra gives a resonance (correlation) peak at a frequency detuning that is proportional to the local refractive index difference between the two orthogonal polarization axes of the fiber. In this way the method enables local phase birefringence measurements at any position along optical fibers, so that any longitudinal fluctuation can be precisely evaluated with metric spatial resolution. The method has been experimentally validated by measuring fibers with low and high birefringence, such as standard single-mode fibers as well as conventional polarization-maintaining fibers. The technique has potential applications in the characterization of optical fibers for telecommunications as well as in distributed optical fiber sensing.
Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng
2013-09-01
A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.
2017-01-01
Though structured illumination (SI) microscopy is a popular imaging technique conventionally associated with fluorescent super-resolution, recent works have suggested its applicability towards sub-diffraction resolution coherent imaging with quantitative endogenous biological contrast. Here, we demonstrate that SI can efficiently integrate together the principles of fluorescent super-resolution and coherent synthetic aperture to achieve 3D dual-modality sub-diffraction resolution, fluorescence and refractive-index (RI) visualizations of biological samples. We experimentally demonstrate this framework by introducing a SI microscope capable of 3D sub-diffraction resolution fluorescence and RI imaging, and verify its biological visualization capabilities by experimentally reconstructing 3D RI/fluorescence visualizations of fluorescent calibration microspheres as well as alveolar basal epithelial adenocarcinoma (A549) and human colorectal adenocarcinmoa (HT-29) cells, fluorescently stained for F-actin. This demonstration may suggest SI as an especially promising imaging technique to enable future biological studies that explore synergistically operating biophysical/biochemical and molecular mechanisms at sub-diffraction resolutions. PMID:29296504
Accuracy of Conventional and Digital Radiography in Detecting External Root Resorption
Mesgarani, Abbas; Haghanifar, Sina; Ehsani, Maryam; Yaghub, Samereh Dokhte; Bijani, Ali
2014-01-01
Introduction: External root resorption (ERR) is associated with physiological and pathological dissolution of mineralized tissues by clastic cells and radiography is one of the most important methods in its diagnosis. The aim of this experimental study was to evaluate the accuracy of conventional intraoral radiography (CR) in comparison with digital radiographic techniques, i.e. charge-coupled device (CCD) and photo-stimulable phosphor (PSP) sensors, in detection of ERR. Methods and Materials: This study was performed on 80 extracted human mandibular premolars. After taking separate initial periapical radiographs with CR technique, CCD and PSP sensors, the artificial defects resembling ERR with variable sizes were created in apical half of the mesial, distal and buccal surfaces of the teeth. Ten teeth were used as control samples without any resorption. The radiographs were then repeated with 2 different exposure times and the images were observed by 3 observers. Data were analyzed using SPSS version 17 and chi-squared and Cohen’s Kappa tests with 95% confidence interval (CI=95%). Result: The CCD had the highest percentage of correct assessment compared to the CR and PSP sensors, although the difference was not significant (P=0.39). It was shown that the higher dosage of radiation increases the accuracy of diagnosis; however, it was only significant for CCD sensor (P=0.02). Also, the accuracy of diagnosis increased with the increase in the size of lesion (P=0.001). Conclusion: Statistically significant difference was not observed for accurate detection of ERR by conventional and digital radiographic techniques. PMID:25386202
Jadhav, Vivek Dattatray; Motwani, Bhagwan K; Shinde, Jitendra; Adhapure, Prasad
2017-01-01
The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. The results of the t -test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness.
Invariant domain watermarking using heaviside function of order alpha and fractional Gaussian field.
Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed
2015-01-01
Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness.
Invariant Domain Watermarking Using Heaviside Function of Order Alpha and Fractional Gaussian Field
Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed
2015-01-01
Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness. PMID:25884854
High-resolution bottom-loss estimation using the ambient-noise vertical coherence function.
Muzi, Lanfranco; Siderius, Martin; Quijano, Jorge E; Dosso, Stan E
2015-01-01
The seabed reflection loss (shortly "bottom loss") is an important quantity for predicting transmission loss in the ocean. A recent passive technique for estimating the bottom loss as a function of frequency and grazing angle exploits marine ambient noise (originating at the surface from breaking waves, wind, and rain) as an acoustic source. Conventional beamforming of the noise field at a vertical line array of hydrophones is a fundamental step in this technique, and the beamformer resolution in grazing angle affects the quality of the estimated bottom loss. Implementation of this technique with short arrays can be hindered by their inherently poor angular resolution. This paper presents a derivation of the bottom reflection coefficient from the ambient-noise spatial coherence function, and a technique based on this derivation for obtaining higher angular resolution bottom-loss estimates. The technique, which exploits the (approximate) spatial stationarity of the ambient-noise spatial coherence function, is demonstrated on both simulated and experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopper, Kenneth D.; Grenko, Ronald T.; Fisher, Alicia I.
1996-09-15
Purpose: To test the value of the nonaspiration, or capillary, biopsy technique by experimental comparison with the conventional fine-needle aspiration technique using various needle gauges and lengths. Methods: On fresh hepatic and renal tissue from five autopsies, multiple biopsy specimens were taken with 20, 22, and 23-gauge Chiba needles of 5, 10, 15, and 20-cm length, using the aspiration technique and the capillary technique. The resultant specimens were graded on the basis of a grading scheme by a cytopathologist who was blinded to the biopsy technique. Results: The capillary technique obtained less background blood or clot which could obscure diagnosticmore » tissue, although not significantly different from the aspiration technique (p= 0.2). However, for the amount of cellular material obtained, retention of appropriate architecture, and mean score, the capillary technique performed statistically worse than aspiration biopsy (p < 0.01). In addition, with decreasing needle caliber (increasing needle gauge) and increasing length, the capillary biopsy was inferior to the aspiration biopsy. Conclusion: The capillary biopsy technique is inferior to the aspiration technique according to our study. When the capillary technique is to be applied, preference should be given to larger caliber, shorter needles.« less
High-resolution CT assessment of the pediatric airways: structure and function
NASA Astrophysics Data System (ADS)
Kramer, Sandra S.; Hoffman, Eric A.; Amirav, Israel
1994-05-01
The airway has always been a central focus for respiratory pathology in infants and children. Imaging of the larynx, trachea, and the central bronchi can be readily accomplished by radiographic or conventional CT techniques. Newer high resolution CT (HRCT) techniques have extended our view of the bronchi peripherally to the limits of scanner resolution, i.e., to bronchial generations 7 - 9, and rapid volumetric CT data acquisitions have made it possible to follow the same lung anatomic level through the rapidly occurring changes in a series of experimental protocols. These techniques together with a custom designed computer software program for image display and analysis have enabled us to objectively study changes in airway caliber and lung density that occurred in an animal mode of airway reactivity and thereby relate structure with function in the airways.
Farjood, Ehsan; Vojdani, Mahroo; Torabi, Kiyanoosh; Khaledi, Amir Ali Reza
2017-01-01
Given the limitations of conventional waxing, computer-aided design and computer-aided manufacturing (CAD-CAM) technologies have been developed as alternative methods of making patterns. The purpose of this in vitro study was to compare the marginal and internal fit of metal copings derived from wax patterns fabricated by rapid prototyping (RP) to those created by the conventional handmade technique. Twenty-four standardized brass dies were milled and divided into 2 groups (n=12) according to the wax pattern fabrication method. The CAD-RP group was assigned to the experimental group, and the conventional group to the control group. The cross-sectional technique was used to assess the marginal and internal discrepancies at 15 points on the master die by using a digital microscope. An independent t test was used for statistical analysis (α=.01). The CAD-RP group had a total mean (±SD) for absolute marginal discrepancy of 117.1 (±11.5) μm and a mean marginal discrepancy of 89.8 (±8.3) μm. The conventional group had an absolute marginal discrepancy 88.1 (±10.7) μm and a mean marginal discrepancy of 69.5 (±15.6) μm. The overall mean (±SD) of the total internal discrepancy, separately calculated as the axial internal discrepancy and occlusal internal discrepancy, was 95.9 (±8.0) μm for the CAD-RP group and 76.9 (±10.2) μm for the conventional group. The independent t test results showed significant differences between the 2 groups. The CAD-RP group had larger discrepancies at all measured areas than the conventional group, which was statistically significant (P<.01). Within the limitations of this in vitro study, the conventional method of wax pattern fabrication produced copings with better marginal and internal fit than the CAD-RP method. However, the marginal and internal fit for both groups were within clinically acceptable ranges. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Reddy, M Rami; Singh, U C; Erion, Mark D
2004-05-26
Free-energy perturbation (FEP) is considered the most accurate computational method for calculating relative solvation and binding free-energy differences. Despite some success in applying FEP methods to both drug design and lead optimization, FEP calculations are rarely used in the pharmaceutical industry. One factor limiting the use of FEP is its low throughput, which is attributed in part to the dependence of conventional methods on the user's ability to develop accurate molecular mechanics (MM) force field parameters for individual drug candidates and the time required to complete the process. In an attempt to find an FEP method that could eventually be automated, we developed a method that uses quantum mechanics (QM) for treating the solute, MM for treating the solute surroundings, and the FEP method for computing free-energy differences. The thread technique was used in all transformations and proved to be essential for the successful completion of the calculations. Relative solvation free energies for 10 structurally diverse molecular pairs were calculated, and the results were in close agreement with both the calculated results generated by conventional FEP methods and the experimentally derived values. While considerably more CPU demanding than conventional FEP methods, this method (QM/MM-based FEP) alleviates the need for development of molecule-specific MM force field parameters and therefore may enable future automation of FEP-based calculations. Moreover, calculation accuracy should be improved over conventional methods, especially for calculations reliant on MM parameters derived in the absence of experimental data.
Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I
2012-12-21
A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Space charge distributions in insulating polymers: A new non-contacting way of measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marty-Dessus, D., E-mail: marty@laplace.univ-tlse.fr; Ziani, A. C.; Berquez, L.
2015-04-15
A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. Thesemore » predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.« less
Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem
Fawzy El-Sayed, Karim M.; Dörfer, Christof E.
2016-01-01
The human gingiva, characterized by its outstanding scarless wound healing properties, is a unique tissue and a pivotal component of the periodontal apparatus, investing and surrounding the teeth in their sockets in the alveolar bone. In the last years gingival mesenchymal stem/progenitor cells (G-MSCs), with promising regenerative and immunomodulatory properties, have been isolated and characterized from the gingival lamina propria. These cells, in contrast to other mesenchymal stem/progenitor cell sources, are abundant, readily accessible, and easily obtainable via minimally invasive cell isolation techniques. The present review summarizes the current scientific evidence on G-MSCs' isolation, their characterization, the investigated subpopulations, the generated induced pluripotent stem cells- (iPSC-) like G-MSCs, their regenerative properties, and current approaches for G-MSCs' delivery. The review further demonstrates their immunomodulatory properties, the transplantation preconditioning attempts via multiple biomolecules to enhance their attributes, and the experimental therapeutic applications conducted to treat multiple diseases in experimental animal models in vivo. G-MSCs show remarkable tissue reparative/regenerative potential, noteworthy immunomodulatory properties, and primary experimental therapeutic applications of G-MSCs are very promising, pointing at future biologically based therapeutic techniques, being potentially superior to conventional clinical treatment modalities. PMID:27313628
Experimental study on the healing process following laser welding of the cornea.
Rossi, Francesca; Pini, Roberto; Menabuoni, Luca; Mencucci, Rita; Menchini, Ugo; Ambrosini, Stefano; Vannelli, Gabriella
2005-01-01
An experimental study evaluating the application of laser welding of the cornea and the subsequent healing process is presented. The welding of corneal wounds is achieved after staining the cut walls with a solution of the chromophore indocyanine green, and irradiating them with a diode laser (810 nm) operating at low power (60 to 90 mW). The result is a localized heating of the cut, inducing controlled welding of the stromal collagen. In order to optimize this technique and to study the healing process, experimental tests, simulating cataract surgery and penetrating keratoplasty, were performed on rabbits: conventional and laser-induced suturing of corneal wounds were thus compared. A follow-up study 7 to 90 days after surgery was carried out by means of objective and histological examinations, in order to optimize the welding technique and to investigate the subsequent healing process. The analyses of the laser-welded corneas evidenced a faster and more effective restoration of the architecture of the stroma. No thermal damage of the welded stroma was detected, nor were there foreign body reactions or other inflammatory processes. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.
Fiber-Drawn Metamaterial for THz Waveguiding and Imaging
NASA Astrophysics Data System (ADS)
Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu; Habib, Md. Samiul; Hayashi, Juliano Grigoleto; Tuniz, Alessandro; Tang, Xiaoli; Anthony, Jessienta; Lwin, Richard; Argyros, Alexander; Fleming, Simon C.; Kuhlmey, Boris T.
2017-09-01
In this paper, we review the work of our group in fabricating metamaterials for terahertz (THz) applications by fiber drawing. We discuss the fabrication technique and the structures that can be obtained before focusing on two particular applications of terahertz metamaterials, i.e., waveguiding and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28.
2014-01-01
Background The purpose of this study was to compare two impression techniques from the perspective of patient preferences and treatment comfort. Methods Twenty-four (12 male, 12 female) subjects who had no previous experience with either conventional or digital impression participated in this study. Conventional impressions of maxillary and mandibular dental arches were taken with a polyether impression material (Impregum, 3 M ESPE), and bite registrations were made with polysiloxane bite registration material (Futar D, Kettenbach). Two weeks later, digital impressions and bite scans were performed using an intra-oral scanner (CEREC Omnicam, Sirona). Immediately after the impressions were made, the subjects’ attitudes, preferences and perceptions towards impression techniques were evaluated using a standardized questionnaire. The perceived source of stress was evaluated using the State-Trait Anxiety Scale. Processing steps of the impression techniques (tray selection, working time etc.) were recorded in seconds. Statistical analyses were performed with the Wilcoxon Rank test, and p < 0.05 was considered significant. Results There were significant differences among the groups (p < 0.05) in terms of total working time and processing steps. Patients stated that digital impressions were more comfortable than conventional techniques. Conclusions Digital impressions resulted in a more time-efficient technique than conventional impressions. Patients preferred the digital impression technique rather than conventional techniques. PMID:24479892
An evaluation of student and clinician perception of digital and conventional implant impressions.
Lee, Sang J; Macarthur, Robert X; Gallucci, German O
2013-11-01
The accuracy and efficiency of digital implant impressions should match conventional impressions. Comparisons should be made with clinically relevant data. The purpose of this study was to evaluate the difficulty level and operator's perception between dental students and experienced clinicians when making digital and conventional implant impressions. Thirty experienced dental professionals and 30 second-year dental students made conventional and digital impressions of a single implant model. A visual analog scale (VAS) and multiple-choice questionnaires were used to assess the participant's perception of difficulty, preference, and effectiveness. Wilcoxon signed-rank test within the groups and Wilcoxon rank-sum test between the groups were used for statistical analysis (α=.05). On a 0 to 100 VAS, the student group scored a mean difficulty level of 43.1 (±18.5) for the conventional impression technique and 30.6 (±17.6) for the digital impression technique (P=.006). The clinician group scored a mean (standard deviation) difficulty level of 30.9 (±19.6) for conventional impressions and 36.5 (±20.6) for digital impressions (P=.280). Comparison between groups showed a mean difficulty level with the conventional impression technique significantly higher in the student group (P=.030). The digital impression was not significantly different between the groups (P=.228). Sixty percent of the students preferred the digital impression and 7% the conventional impression; 33% expressed no preference. In the clinician group, 33% preferred the digital impression and 37% the conventional impression; 30% had no preference. Seventy-seven percent of the student group felt most effective with digital impressions, 10% with conventional impressions, and 13% with either technique, whereas 40% of the clinician group chose the digital impression as the most effective technique, 53% the conventional impression, and 7% either technique. The conventional impression was more difficult to perform for the student group than the clinician group; however, the difficulty level of the digital impression was the same in both groups. It was also determined that the student group preferred the digital impression as the most efficient impression technique, and the clinician group had an even distribution in the choice of preferred and efficient impression techniques. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan; Ramirez-Giraldo, Juan Carlos
2014-06-15
Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: Themore » proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to measure spectra from the clinical system across a range of angular trajectories [−15°, 15°] and spectrum settings (80, 100, 120, 140 kVp). Results: At 140 kVp, the proposed technique was comparable to the conventional technique in terms of the mean energy difference (MED, −0.29 keV) and the normalized root mean square difference (NRMSD, 0.84%) from the comparison standard compared to 0.64 keV and 1.56%, respectively, with the conventional technique. The average absolute MEDs and NRMSDs across kVp settings and angular trajectories were less than 0.61 keV and 3.41%, respectively, which indicates a high level of estimation accuracy and stability. Conclusions: An angle-dependent estimation technique of CT x-ray spectra from rotational transmission measurements was proposed. Compared with the conventional technique, the proposed method simplifies the measurement procedures and enables incident spectral estimation for a wide range of angular trajectories. The proposed technique is suitable for rigorous research objectives as well as routine clinical quality control procedures.« less
Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs
NASA Astrophysics Data System (ADS)
Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.
Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.
Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna
2015-01-01
This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems. PMID:26576419
Luck, Camilla C; Lipp, Ottmar V
2016-02-01
Electrodermal activity in studies of human fear conditioning is often scored by distinguishing two electrodermal responses occurring during the conditional stimulus-unconditional stimulus interval. These responses, known as first interval responding (FIR) and second interval responding (SIR), are reported to be differentially sensitive to the effects of orienting and anticipation. Recently, the FIR/SIR scoring convention has been questioned, with some arguing in favor of scoring a single response within the entire conditional stimulus-unconditional stimulus interval (entire interval responding, EIR). EIR can be advantageous in practical terms but may fail to capture experimental effects when manipulations produce dissociations between orienting and anticipation. As an illustration, we rescored the data reported by Luck and Lipp (2015b) using both FIR/SIR and EIR scoring techniques and provide evidence that the EIR scoring technique fails to detect the effects of instructed extinction, an experimental manipulation which produces a dissociation between orienting and anticipation. Thus, using a technique that scores electrodermal response indices of fear conditioning in multiple latency windows is recommended. Copyright © 2015 Elsevier B.V. All rights reserved.
Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.
Gupta, Vishal; Pandey, Pulak M; Gupta, Ravi K; Mridha, Asit R
2017-03-01
Bone drilling is common in orthopedic procedures and the heat produced during conventional experimental drilling often exceeds critical temperature of 47 °C and induces thermal osteonecrosis. The osteonecrosis may be the reason for impaired healing, early loosening and implant failure. This study was undertaken to control the temperature rise by interrupted cutting and reduced friction effects at the interface of drill tool and the bone surface. In this work, rotary ultrasonic drilling technique with diamond abrasive particles coated on the hollow drill tool without any internal or external cooling assistance was used. Experiments were performed at room temperature on the mid-diaphysis sections of fresh pig bones, which were harvested immediately after sacrifice of the animal. Both rotary ultrasonic drilling on bone and conventional surgical drilling on bone were performed in a five set of experiments on each process using identical constant process parameters. The maximum temperature of each trial was recorded by K-type thermocouple device. Ethylenediaminetetraacetic acid decalcification was done for microscopic examination of bone. In this comparative procedure, rotary ultrasonic drilling on bone produced much lower temperature, that is, 40.2 °C ± 0.4 °C and 40.3 °C ± 0.2 °C as compared to that of conventional surgical drilling on bone, that is, 74.9 °C ± 0.8 °C and 74.9 °C ± 0.6 °C with respect to thermocouples fixed at first and second position, respectively. The conventional surgical drilling on bone specimens revealed gross tissue burn, microscopic evidence of thermal osteonecrosis and tissue injury in the form of cracks due to the generated force during drilling. But our novel technique showed no such features. Rotary ultrasonic drilling on bone technique is robust and superior to other methods for drilling as it induces no thermal osteonecrosis and does not damage the bone by generating undue forces during drilling.
Recent developments in fast kurtosis imaging
NASA Astrophysics Data System (ADS)
Hansen, Brian; Jespersen, Sune N.
2017-09-01
Diffusion kurtosis imaging (DKI) is an extension of the popular diffusion tensor imaging (DTI) technique. DKI takes into account leading deviations from Gaussian diffusion stemming from a number of effects related to the microarchitecture and compartmentalization in biological tissues. DKI therefore offers increased sensitivity to subtle microstructural alterations over conventional diffusion imaging such as DTI, as has been demonstrated in numerous reports. For this reason, interest in routine clinical application of DKI is growing rapidly. In an effort to facilitate more widespread use of DKI, recent work by our group has focused on developing experimentally fast and robust estimates of DKI metrics. A significant increase in speed is made possible by a reduction in data demand achieved through rigorous analysis of the relation between the DKI signal and the kurtosis tensor based metrics. The fast DKI methods therefore need only 13 or 19 images for DKI parameter estimation compared to more than 60 for the most modest DKI protocols applied today. Closed form solutions also ensure rapid calculation of most DKI metrics. Some parameters can even be reconstructed in real time, which may be valuable in the clinic. The fast techniques are based on conventional diffusion sequences and are therefore easily implemented on almost any clinical system, in contrast to a range of other recently proposed advanced diffusion techniques. In addition to its general applicability, this also ensures that any acceleration achieved in conventional DKI through sequence or hardware optimization will also translate directly to fast DKI acquisitions. In this review, we recapitulate the theoretical basis for the fast kurtosis techniques and their relation to conventional DKI. We then discuss the currently available variants of the fast DKI methods, their strengths and weaknesses, as well as their respective realms of application. These range from whole body applications to methods mostly suited for spinal cord or peripheral nerve, and analysis specific to brain white matter. Having covered these technical aspects, we proceed to review the fast kurtosis literature including validation studies, organ specific optimization studies and results from clinical applications.
Jadhav, Vivek Dattatray; Motwani, Bhagwan K.; Shinde, Jitendra; Adhapure, Prasad
2017-01-01
Aims: The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. Settings and Design: This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. Materials and Methods: A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. Statistical Analysis Used: The results of the t-test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. Results: For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Conclusions: Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness. PMID:29042726
Quantum interpolation for high-resolution sensing
Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola
2017-01-01
Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy. PMID:28196889
Quantum interpolation for high-resolution sensing.
Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola
2017-02-28
Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.
Kinetics of intercalation of lithium into NbSe3 and TiS2 cathodes
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Nagasubramanian, G.; Di Stefano, S.; Bankston, C. P.
1992-01-01
Titanium disulfide and niobium triselenide are two well-studied candidate materials for positive electrodes in rechargeable lithium cells. A comparative study of the kinetics of intercalation of lithium in both the cathodes is made here based on various electrochemical techniques, i.e., linear polarization, potentiodynamic polarization, and ac impedance under different experimental conditions such as prismatic or disk configuration of fresh, partially discharged, or cycled electrode. Further, the diffusion coefficients of lithium ions in these cathodes are estimated under these conditions using conventional techniques, i.e., ac impedance, chronocoulometry, chronoamperometry, and current pulse relaxation. Based on the values of the diffusion coefficients, the applicability of these methods for the determination of diffusion coefficients is discussed.
Copy-move forgery detection utilizing Fourier-Mellin transform log-polar features
NASA Astrophysics Data System (ADS)
Dixit, Rahul; Naskar, Ruchira
2018-03-01
In this work, we address the problem of region duplication or copy-move forgery detection in digital images, along with detection of geometric transforms (rotation and rescale) and postprocessing-based attacks (noise, blur, and brightness adjustment). Detection of region duplication, following conventional techniques, becomes more challenging when an intelligent adversary brings about such additional transforms on the duplicated regions. In this work, we utilize Fourier-Mellin transform with log-polar mapping and a color-based segmentation technique using K-means clustering, which help us to achieve invariance to all the above forms of attacks in copy-move forgery detection of digital images. Our experimental results prove the efficiency of the proposed method and its superiority to the current state of the art.
Optimal Draft requirement for vibratory tillage equipment using Genetic Algorithm Technique
NASA Astrophysics Data System (ADS)
Rao, Gowripathi; Chaudhary, Himanshu; Singh, Prem
2018-03-01
Agriculture is an important sector of Indian economy. Primary and secondary tillage operations are required for any land preparation process. Conventionally different tractor-drawn implements such as mouldboard plough, disc plough, subsoiler, cultivator and disc harrow, etc. are used for primary and secondary manipulations of soils. Among them, oscillatory tillage equipment is one such type which uses vibratory motion for tillage purpose. Several investigators have reported that the requirement for draft consumption in primary tillage implements is more as compared to oscillating one because they are always in contact with soil. Therefore in this paper, an attempt is made to find out the optimal parameters from the experimental data available in the literature to obtain minimum draft consumption through genetic algorithm technique.
Jeon, Young-Chan; Jeong, Chang-Mo
2017-01-01
PURPOSE The purpose of this study was to compare the fit of cast gold crowns fabricated from the conventional and the digital impression technique. MATERIALS AND METHODS Artificial tooth in a master model and abutment teeth in ten patients were restored with cast gold crowns fabricated from the digital and the conventional impression technique. The forty silicone replicas were cut in three sections; each section was evaluated in nine points. The measurement was carried out by using a measuring microscope and I-Soultion. Data from the silicone replica were analyzed and all tests were performed with α-level of 0.05. RESULTS 1. The average gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. 2. In marginal and internal axial gap of cast gold crowns, no statistical differences were found between the two impression techniques. 3. The internal occlusal gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. CONCLUSION Both prostheses presented clinically acceptable results with comparing the fit. The prostheses fabricated from the digital impression technique showed more gaps, in respect of occlusal surface. PMID:28243386
Current State of Theoretical and Experimental Studies of the Voltage-Dependent Anion Channel (VDAC)
Noskov, Sergei Yu.; Rostovtseva, Tatiana K.; Chamberlin, Adam C.; Teijido, Oscar; Jiang, Wei; Bezrukov, Sergey M.
2016-01-01
Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane provides a controlled pathway for respiratory metabolites in and out of the mitochondria. In spite of the wealth of experimental data from structural, biochemical, and biophysical investigations, the exact mechanisms governing selective ion and metabolite transport, especially the role of titratable charged residues and interactions with soluble cytosolic proteins, remain hotly debated in the field. The computational advances hold a promise to provide a much sought-after solution to many of the scientific disputes around solute and ion transport through VDAC and hence, across the mitochondrial outer membrane. In this review, we examine how Molecular Dynamics, Free Energy, and Brownian Dynamics simulations of the large β-barrel channel, VDAC, advanced our understanding. We will provide a short overview of non-conventional techniques and also discuss examples of how the modeling excursions into VDAC biophysics prospectively aid experimental efforts. PMID:26940625
Ab initio structure prediction of silicon and germanium sulfides for lithium-ion battery materials
NASA Astrophysics Data System (ADS)
Hsueh, Connie; Mayo, Martin; Morris, Andrew J.
Conventional experimental-based approaches to materials discovery, which can rely heavily on trial and error, are time-intensive and costly. We discuss approaches to coupling experimental and computational techniques in order to systematize, automate, and accelerate the process of materials discovery, which is of particular relevance to developing new battery materials. We use the ab initio random structure searching (AIRSS) method to conduct a systematic investigation of Si-S and Ge-S binary compounds in order to search for novel materials for lithium-ion battery (LIB) anodes. AIRSS is a high-throughput, density functional theory-based approach to structure prediction which has been successful at predicting the structures of LIBs containing sulfur and silicon and germanium. We propose a lithiation mechanism for Li-GeS2 anodes as well as report new, theoretically stable, layered and porous structures in the Si-S and Ge-S systems that pique experimental interest.
Dual-Mode Combustion of Hydrogen in a Mach 5, Continuous-Flow Facility
NASA Technical Reports Server (NTRS)
Goyne, C. P.; McDaniel, J. C.; Quagliaroli, T. M.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.
2001-01-01
Results of an experimental and numerical study of a dual-mode scramjet combustor are reported. The experiment consisted of a direct-connect test of a Mach 2 hydrogen-air combustor with a single unswept-ramp fuel injector. The flow stagnation enthalpy simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and a particle-imaging laser diagnostic technique. The particle imaging was enabled through the development of a new apparatus for seeding fine silicon dioxide particles into the combustor fuel stream. Numerical simulations of the combustor were performed using the GASP code. The modeling, and much of the experimental work, focused on the supersonic combustion mode. Reasonable agreement was observed between experimental and numerical wall pressure distributions. However, the numerical model was unable to predict accurately the effects of combustion on the fuel plume size, penetration, shape, and axial growth.
Fröba, Andreas P; Kremer, Heiko; Leipertz, Alfred
2008-10-02
The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) [EMIM][EtSO 4] (1-ethyl-3-methylimidazolium ethylsulfate), [EMIM][NTf 2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), [EMIM][N(CN) 2] (1-ethyl-3-methylimidazolium dicyanimide), and [OMA][NTf 2] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS). A vibrating tube densimeter was used for the measurement of density at temperatures from (273.15 to 363.15) K and the results have an expanded uncertainty ( k = 2) of +/-0.02%. Using an Abbe refractometer, the refractive index was measured for temperatures between (283.15 and 313.15) K with an expanded uncertainty ( k = 2) of about +/-0.0005. The interfacial tension was obtained from the pendant drop technique at a temperature of 293.15 K with an expanded uncertainty ( k = 2) of +/-1%. For higher and lower temperatures, the interfacial tension was estimated by an adequate prediction scheme based on the datum at 293.15 K and the temperature dependence of density. For the ILs studied within this work, at a first order approximation, the quantity directly accessible by the SLS technique was the ratio of surface tension to dynamic viscosity. By combining the experimental results of the SLS technique with density and interfacial tension from conventional techniques, the dynamic viscosity could be obtained for temperatures between (273.15 and 333.15) K with an estimated expanded uncertainty ( k = 2) of less than +/-3%. The measured density, refractive index, and viscosity are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the expanded uncertainties ( k = 2). Besides a comparison with the literature, the influence of structural variations on the thermophysical properties of the ILs is discussed in detail. The viscosities mostly agree with values reported in the literature within the combined estimated expanded uncertainties ( k = 2) of the measurements while our density and interfacial tension data differ by more than +/-1% and +/-5%.
A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Zhuang, Yu
1997-01-01
In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.
Performance evaluation of a two detector camera for real-time video.
Lochocki, Benjamin; Gambín-Regadera, Adrián; Artal, Pablo
2016-12-20
Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.
Sequential experimental design based generalised ANOVA
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Chowdhury, Rajib
2016-07-01
Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.
Sequential experimental design based generalised ANOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Souvik, E-mail: csouvik41@gmail.com; Chowdhury, Rajib, E-mail: rajibfce@iitr.ac.in
Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover,more » generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.« less
Water-oil separation performance of technical textiles used for marine pollution disasters.
Seddighi, Mahdi; Hejazi, Sayyed Mahdi
2015-07-15
Oil is principally one of the most important energy sources in the world. However, as long as oil is explored and transported for being used, there will be the risk of the spillage into the marine environment. The use of technical textiles, i.e. fibrous beds, is a conventional separation technique for oil/water emulsion since it is efficient and easy to design. In this paper, the recovery of oil by technical textiles was mathematically modeled based on the structural parameters of textile and the capillary mechanism. Eleven types of commercial technical textiles with different properties were prepared for the experimental program. The experimental design included fiber type (polypropylene and polyester), fabric type (woven and/or nonwoven), fabric thickness and fabric areal density. Consequently, the absorption capacities of different technical textile samples were derived by the use of theoretical and experimental methods. The results show that there is a well fitness between theoretical outputs and experimental data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Bin; Seong, Baekhoon; Lee, Jaehyun; Nguyen, VuDat; Cho, Daehyun; Byun, Doyoung
2017-09-06
A one-step sub-micrometer-scale electrohydrodynamic (EHD) inkjet three-dimensional (3D)-printing technique that is based on the drop-on-demand (DOD) operation for which an additional postsintering process is not required is proposed. Both the numerical simulation and the experimental observations proved that nanoscale Joule heating occurs at the interface between the charged silver nanoparticles (Ag-NPs) because of the high electrical contact resistance during the printing process; this is the reason why an additional postsintering process is not required. Sub-micrometer-scale 3D structures were printed with an above-35 aspect ratio via the use of the proposed printing technique; furthermore, it is evident that the designed 3D structures such as a bridge-like shape can be printed with the use of the proposed printing technique, allowing for the cost-effective fabrication of a 3D touch sensor and an ultrasensitive air flow-rate sensor. It is believed that the proposed one-step printing technique may replace the conventional 3D conductive-structure printing techniques for which a postsintering process is used because of its economic efficiency.
[Navigated drilling for femoral head necrosis. Experimental and clinical results].
Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S
2007-05-01
In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.
Single-molecule techniques in biophysics: a review of the progress in methods and applications.
Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J M; Leake, Mark C
2018-02-01
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Single-molecule techniques in biophysics: a review of the progress in methods and applications
NASA Astrophysics Data System (ADS)
Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J. M.; Leake, Mark C.
2018-02-01
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in ‘force spectroscopy’ techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Out-of-equilibrium body potential measurements in pseudo-MOSFET for sensing applications
NASA Astrophysics Data System (ADS)
Benea, Licinius; Bawedin, Maryline; Delacour, Cécile; Ionica, Irina
2018-05-01
The aim of this paper is to present the out-of-equilibrium body potential behaviour in the Ψ-MOSFET configuration. Consistent measurements in this experimental setup succeeded in providing a substantial understanding of its characteristics in the depletion region. The final objective of this work is to envision this new measurement technique for biochemical sensor applications. Among its advantages, the most important are its simplicity, the good sensitivity, the measurement of a potential instead of a current and the low bias needed for detection compared to the conventional drain current measurements.
NASA Astrophysics Data System (ADS)
Psyk, Verena; Scheffler, Christian; Linnemann, Maik; Landgrebe, Dirk
2017-10-01
Compared to conventional joining techniques, electromagnetic pulse welding offers important advantages especially when it comes to dissimilar material connections as e.g. copper aluminum welds. However, due to missing guidelines and tools for process design, the process has not been widely implemented in industrial production, yet. In order to contribute to overcoming this obstacle, a combined numerical and experimental process analysis for electromagnetic pulse welding of Cu-DHP and EN AW-1050 was carried out and the results were consolidated in a quantitative collision parameter based process window.
Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring
NASA Technical Reports Server (NTRS)
Sharma, M.; Brooks, R. E.
1980-01-01
Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.
Remote sensing of wet lands in irrigated areas
NASA Technical Reports Server (NTRS)
Ham, H. H.
1972-01-01
The use of airborne remote sensing techniques to: (1) detect drainage problem areas, (2) delineate the problem in terms of areal extent, depth to the water table, and presence of excessive salinity, and (3) evaluate the effectiveness of existing subsurface drainage facilities, is discussed. Experimental results show that remote sensing, as demonstrated in this study and as presently constituted and priced, does not represent a practical alternative as a management tool to presently used visual and conventional photographic methods in the systematic and repetitive detection and delineation of wetlands.
Analysis of signal to noise enhancement using a highly selective modulation tracking filter
NASA Technical Reports Server (NTRS)
Haden, C. R.; Alworth, C. W.
1972-01-01
Experiments are reported which utilize photodielectric effects in semiconductor loaded superconducting resonant circuits for suppressing noise in RF communication systems. The superconducting tunable cavity acts as a narrow band tracking filter for detecting conventional RF signals. Analytical techniques were developed which lead to prediction of signal-to-noise improvements. Progress is reported in optimization of the experimental variables. These include improved Q, new semiconductors, improved optics, and simplification of the electronics. Information bearing signals were passed through the system, and noise was introduced into the computer model.
Characterization of Stereo Vision Performance for Roving at the Lunar Poles
NASA Technical Reports Server (NTRS)
Wong, Uland; Nefian, Ara; Edwards, Larry; Furlong, Michael; Bouyssounouse, Xavier; To, Vinh; Deans, Matthew; Cannon, Howard; Fong, Terry
2016-01-01
Surface rover operations at the polar regions of airless bodies, particularly the Moon, are of particular interest to future NASA science missions such as Resource Prospector (RP). Polar optical conditions present challenges to conventional imaging techniques, with repercussions to driving, safeguarding and science. High dynamic range, long cast shadows, opposition and white out conditions are all significant factors in appearance. RP is currently undertaking an effort to characterize stereo vision performance in polar conditions through physical laboratory experimentation with regolith simulants, obstacle distributions and oblique lighting.
Embedded Bragg grating fiber optic sensor for composite flexbeams
NASA Astrophysics Data System (ADS)
Bullock, Daniel; Dunphy, James; Hufstetler, Gerard
1993-03-01
An embedded fiber-optic (F-O) sensor has been developed for translaminar monitoring of the structural integrity of composites, with a view to application in composite helicopter flexbeams for bearingless main rotor hubs. This through-thickness strain sensor is much more sensitive than conventional in-plane embedded F-O sensors to ply delamination, on the basis of a novel insertion technique and innovative Bragg grating sensor. Experimental trials have demonstrated the detection by this means of potential failures in advance of the edge-delamination or crack-propagation effect.
Strain expansion-reduction approach
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Bharadwaj, Kedar
2018-02-01
Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.
ERIC Educational Resources Information Center
Mattox, Daniel V., Jr.
Research compared conventional and experimental methods of instruction in a teacher education media course. The conventional method relied upon factual presentations to heterogeneous groups, while the experimental utilized homogeneous clusters of students and stressed individualized instruction. A pretest-posttest, experimental-control group…
Beneito-Brotons, Rut; Peñarrocha-Oltra, David; Ata-Ali, Javier; Peñarrocha, María
2012-05-01
To compare a computerized intraosseous anesthesia system with the conventional oral anesthesia techniques, and analyze the latency and duration of the anesthetic effect and patient preference. A simple-blind prospective study was made between March 2007 and May 2008. Each patient was subjected to two anesthetic techniques: conventional and intraosseous using the Quicksleeper® system (DHT, Cholet, France). A split-mouth design was adopted in which each patient underwent treatment of a tooth with one of the techniques, and treatment of the homologous contralateral tooth with the other technique. The treatments consisted of restorations, endodontic procedures and simple extractions. The study series comprised 12 females and 18 males with a mean age of 36.8 years. The 30 subjects underwent a total of 60 anesthetic procedures. Intraosseous and conventional oral anesthesia caused discomfort during administration in 46.3% and 32.1% of the patients, respectively. The latency was 7.1±2.23 minutes for the conventional technique and 0.48±0.32 for intraosseous anesthesia--the difference being statistically significant. The depth of the anesthetic effect was sufficient to allow the patients to tolerate the dental treatments. The duration of the anesthetic effect in soft tissues was 199.3 minutes with the conventional technique versus only 1.6 minutes with intraosseous anesthesia--the difference between the two techniques being statistically significant. Most of the patients (69.7%) preferred intraosseous anesthesia. The described intraosseous anesthetic system is effective, with a much shorter latency than the conventional technique, sufficient duration of anesthesia to perform the required dental treatments, and with a much lesser soft tissue anesthetic effect. Most of the patients preferred intraosseous anesthesia.
Seruya, Mitchel; Fisher, Mark; Rodriguez, Eduardo D
2013-11-01
There has been rising interest in computer-aided design/computer-aided manufacturing for preoperative planning and execution of osseous free flap reconstruction. The purpose of this study was to compare outcomes between computer-assisted and conventional fibula free flap techniques for craniofacial reconstruction. A two-center, retrospective review was carried out on patients who underwent fibula free flap surgery for craniofacial reconstruction from 2003 to 2012. Patients were categorized by the type of reconstructive technique: conventional (between 2003 and 2009) or computer-aided design/computer-aided manufacturing (from 2010 to 2012). Demographics, surgical factors, and perioperative and long-term outcomes were compared. A total of 68 patients underwent microsurgical craniofacial reconstruction: 58 conventional and 10 computer-aided design and manufacturing fibula free flaps. By demographics, patients undergoing the computer-aided design/computer-aided manufacturing method were significantly older and had a higher rate of radiotherapy exposure compared with conventional patients. Intraoperatively, the median number of osteotomies was significantly higher (2.0 versus 1.0, p=0.002) and the median ischemia time was significantly shorter (120 minutes versus 170 minutes, p=0.004) for the computer-aided design/computer-aided manufacturing technique compared with conventional techniques; operative times were shorter for patients undergoing the computer-aided design/computer-aided manufacturing technique, although this did not reach statistical significance. Perioperative and long-term outcomes were equivalent for the two groups, notably, hospital length of stay, recipient-site infection, partial and total flap loss, and rate of soft-tissue and bony tissue revisions. Microsurgical craniofacial reconstruction using a computer-assisted fibula flap technique yielded significantly shorter ischemia times amidst a higher number of osteotomies compared with conventional techniques. Therapeutic, III.
Beneito-Brotons, Rut; Peñarrocha-Oltra, David; Ata-Ali, Javier
2012-01-01
Objective: To compare a computerized intraosseous anesthesia system with the conventional oral anesthesia techniques, and analyze the latency and duration of the anesthetic effect and patient preference. Design: A simple-blind prospective study was made between March 2007 and May 2008. Each patient was subjected to two anesthetic techniques: conventional and intraosseous using the Quicksleeper® system (DHT, Cholet, France). A split-mouth design was adopted in which each patient underwent treatment of a tooth with one of the techniques, and treatment of the homologous contralateral tooth with the other technique. The treatments consisted of restorations, endodontic procedures and simple extractions. Results: The study series comprised 12 females and 18 males with a mean age of 36.8 years. The 30 subjects underwent a total of 60 anesthetic procedures. Intraosseous and conventional oral anesthesia caused discomfort during administration in 46.3% and 32.1% of the patients, respectively. The latency was 7.1±2.23 minutes for the conventional technique and 0.48±0.32 for intraosseous anesthesia – the difference being statistically significant. The depth of the anesthetic effect was sufficient to allow the patients to tolerate the dental treatments. The duration of the anesthetic effect in soft tissues was 199.3 minutes with the conventional technique versus only 1.6 minutes with intraosseous anesthesia – the difference between the two techniques being statistically significant. Most of the patients (69.7%) preferred intraosseous anesthesia. Conclusions: The described intraosseous anesthetic system is effective, with a much shorter latency than the conventional technique, sufficient duration of anesthesia to perform the required dental treatments, and with a much lesser soft tissue anesthetic effect. Most of the patients preferred intraosseous anesthesia. Key words:Anesthesia, intraosseous, oral anesthesia, infiltrating, mandibular block, Quicksleeper®. PMID:22143722
Shadow-free single-pixel imaging
NASA Astrophysics Data System (ADS)
Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang
2017-11-01
Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.
Adaptive data rate control TDMA systems as a rain attenuation compensation technique
NASA Technical Reports Server (NTRS)
Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru
1993-01-01
Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.
Broadband quantitative NQR for authentication of vitamins and dietary supplements
NASA Astrophysics Data System (ADS)
Chen, Cheng; Zhang, Fengchao; Bhunia, Swarup; Mandal, Soumyajit
2017-05-01
We describe hardware, pulse sequences, and algorithms for nuclear quadrupole resonance (NQR) spectroscopy of medicines and dietary supplements. Medicine and food safety is a pressing problem that has drawn more and more attention. NQR is an ideal technique for authenticating these substances because it is a non-invasive method for chemical identification. We have recently developed a broadband NQR front-end that can excite and detect 14N NQR signals over a wide frequency range; its operating frequency can be rapidly set by software, while sensitivity is comparable to conventional narrowband front-ends over the entire range. This front-end improves the accuracy of authentication by enabling multiple-frequency experiments. We have also developed calibration and signal processing techniques to convert measured NQR signal amplitudes into nuclear spin densities, thus enabling its use as a quantitative technique. Experimental results from several samples are used to illustrate the proposed methods.
Improved Sizing of Impact Damage in Composites Based on Thermographic Response
NASA Technical Reports Server (NTRS)
Winfree, William P.; Howell Patricia A.; Leckey, Cara A.; Rogge, Matthew D.
2013-01-01
Impact damage in thin carbon fiber reinforced polymer composites often results in a relatively small region of damage at the front surface, with increasing damage near the back surface. Conventional methods for reducing the pulsed thermographic responses of the composite tend to underestimate the size of the back surface damage, since the smaller near surface damage gives the largest thermographic indication. A method is presented for reducing the thermographic data to produce an estimated size for the impact damage that is much closer to the size of the damage estimated from other NDE techniques such as microfocus x-ray computed tomography and pulse echo ultrasonics. Examples of the application of the technique to experimental data acquired on specimens with impact damage are presented. The method is also applied to the results of thermographic simulations to investigate the limitations of the technique.
Production and characterization of pure cryogenic inertial fusion targets
NASA Astrophysics Data System (ADS)
Boyd, B. A.; Kamerman, G. W.
An experimental cryogenic inertial fusion target generator and two optical techniques for automated target inspection are described. The generator produces 100 microns diameter solid hydrogen spheres at a rate compatible with fueling requirements of conceptual inertial fusion power plants. A jet of liquified hydrogen is disrupted into droplets by an ultrasonically excited nozzle. The droplets solidify into microspheres while falling through a chamber maintained below the hydrogen triple point pressure. Stable operation of the generator has been demonstrated for up to three hours. The optical inspection techniques are computer aided photomicrography and coarse diffraction pattern analysis (CDPA). The photomicrography system uses a conventional microscope coupled to a computer by a solid state camera and digital image memory. The computer enhances the stored image and performs feature extraction to determine pellet parameters. The CDPA technique uses Fourier transform optics and a special detector array to perform optical processing of a target image.
Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties
NASA Astrophysics Data System (ADS)
Biradar, N. S.; Raman, R.
AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.
Can Anomalous Amplification be Attained without Postselection?
Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I; Howell, John C
2016-03-11
We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.
Can Anomalous Amplification be Attained without Postselection?
NASA Astrophysics Data System (ADS)
Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.
2016-03-01
We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.
NASA Technical Reports Server (NTRS)
Chien, C. H.; Swinson, W. F.; Turner, J. L.; Moslehy, F. A.; Ranson, W. F.
1980-01-01
A method for measuring in-plane displacement of a rotating structure by using two laser speckle photographs is described. From the displacement measurements one can calculate strains and stresses due to a centrifugal load. This technique involves making separate speckle photographs of a test model. One photograph is made with the model loaded (model is rotating); the second photograph is made with no load on the model (model is stationary). A sandwich is constructed from the two speckle photographs and data are recovered in a manner similar to that used with conventional speckle photography. The basic theory, experimental procedures of this method, and data analysis of a simple rotating specimen are described. In addition the measurement of in-plane surface displacement components of a deformed solid, and the application of the coupled laser speckle interferometry and boundary-integral solution technique to two dimensional elasticity problems are addressed.
Simulation and Modeling in High Entropy Alloys
NASA Astrophysics Data System (ADS)
Toda-Caraballo, I.; Wróbel, J. S.; Nguyen-Manh, D.; Pérez, P.; Rivera-Díaz-del-Castillo, P. E. J.
2017-11-01
High entropy alloys (HEAs) is a fascinating field of research, with an increasing number of new alloys discovered. This would hardly be conceivable without the aid of materials modeling and computational alloy design to investigate the immense compositional space. The simplicity of the microstructure achieved contrasts with the enormous complexity of its composition, which, in turn, increases the variety of property behavior observed. Simulation and modeling techniques are of paramount importance in the understanding of such material performance. There are numerous examples of how different models have explained the observed experimental results; yet, there are theories and approaches developed for conventional alloys, where the presence of one element is predominant, that need to be adapted or re-developed. In this paper, we review of the current state of the art of the modeling techniques applied to explain HEAs properties, identifying the potential new areas of research to improve the predictability of these techniques.
Erdemci, Zeynep Yalçınkaya; Cehreli, S Burçak; Tirali, R Ebru
2014-01-01
This study's purpose was to investigate microleakage and marginal discrepancies in stainless steel crowns (SSCs) placed using conventional and Hall techniques and cemented with three different luting agents. Seventy-eight human primary maxillary second molars were randomly assigned to two groups (N=39), and SSCs were applied either with the Hall or conventional technique. These two groups were further subgrouped according to the material used for crown cementation (N=13 per group). Two specimens in each group were processed for scanning electron microscopy investigation. The extent of microleakage and marginal fit was quantified in millimeters on digitally photographed sections using image analysis software. The data were compared with a two-way independent and a two-way mixed analysis of variance (P=.05). The scores in the Hall group were significantly worse than those in the conventional technique group (P<.05). In both groups, resin cement displayed the lowest extent of microleakage, followed by glass ionomer and polycarboxylate cements (P<.05). Stainless steel crowns applied using the Hall technique displayed higher microleakage scores than those applied using the conventional technique, regardless of the cementation material. When the interaction of the material and technique was assessed, resin cement presented as the best choice for minimizing microleakage in both techniques.
AUDIOVISUAL RESOURCES ON THE TEACHING PROCESS IN SURGICAL TECHNIQUE
PUPULIM, Guilherme Luiz Lenzi; IORIS, Rafael Augusto; GAMA, Ricardo Ribeiro; RIBAS, Carmen Australia Paredes Marcondes; MALAFAIA, Osvaldo; GAMA, Mirnaluci
2015-01-01
Background: The development of didactic means to create opportunities to permit complete and repetitive viewing of surgical procedures is of great importance nowadays due to the increasing difficulty of doing in vivo training. Thus, audiovisual resources favor the maximization of living resources used in education, and minimize problems arising only with verbalism. Aim: To evaluate the use of digital video as a pedagogical strategy in surgical technique teaching in medical education. Methods: Cross-sectional study with 48 students of the third year of medicine, when studying in the surgical technique discipline. They were divided into two groups with 12 in pairs, both subject to the conventional method of teaching, and one of them also exposed to alternative method (video) showing the technical details. All students did phlebotomy in the experimental laboratory, with evaluation and assistance of the teacher/monitor while running. Finally, they answered a self-administered questionnaire related to teaching method when performing the operation. Results: Most of those who did not watch the video took longer time to execute the procedure, did more questions and needed more faculty assistance. The total exposed to video followed the chronology of implementation and approved the new method; 95.83% felt able to repeat the procedure by themselves, and 62.5% of those students that only had the conventional method reported having regular capacity of technique assimilation. In both groups mentioned having regular difficulty, but those who have not seen the video had more difficulty in performing the technique. Conclusion: The traditional method of teaching associated with the video favored the ability to understand and transmitted safety, particularly because it is activity that requires technical skill. The technique with video visualization motivated and arouse interest, facilitated the understanding and memorization of the steps for procedure implementation, benefiting the students performance. PMID:26734790
Ozaki, Yu-ichi; Uda, Shinsuke; Saito, Takeshi H; Chung, Jaehoon; Kubota, Hiroyuki; Kuroda, Shinya
2010-04-01
Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.
Experimental rotator cuff repair. A preliminary study.
Gerber, C; Schneeberger, A G; Perren, S M; Nyffeler, R W
1999-09-01
The repair of chronic, massive rotator cuff tears is associated with a high rate of failure. Prospective studies comparing different repair techniques are difficult to design and carry out because of the many factors that influence structural and clinical outcomes. The objective of this study was to develop a suitable animal model for evaluation of the efficacy of different repair techniques for massive rotator cuff tears and to use this model to compare a new repair technique, tested in vitro, with the conventional technique. We compared two techniques of rotator cuff repair in vivo using the left shoulders of forty-seven sheep. With the conventional technique, simple stitches were used and both suture ends were passed transosseously and tied over the greater tuberosity of the humerus. With the other technique, the modified Mason-Allen stitch was used and both suture ends were passed transosseously and tied over a cortical-bone-augmentation device. This device consisted of a poly(L/D-lactide) plate that was fifteen millimeters long, ten millimeters wide, and two millimeters thick. Number-3 braided polyester suture material was used in all of the experiments. In pilot studies (without prevention of full weight-bearing), most repairs failed regardless of the technique that was used. The simple stitch always failed by the suture pulling through the tendon or the bone; the suture material did not break or tear. The modified Mason-Allen stitch failed in only two of seventeen shoulders. In ten shoulders, the suture material failed even though the stitches were intact. Thus, we concluded that the modified Mason-Allen stitch is a more secure method of achieving suture purchase in the tendon. In eight of sixteen shoulders, the nonaugmented double transosseous bone-fixation technique failed by the suture pulling through the bone. The cortical-bone-augmentation technique never failed. In definite studies, prevention of full weight-bearing was achieved by fixation of a ten-centimeter-diameter ball under the hoof of the sheep. This led to healing in eight of ten shoulders repaired with the modified Mason-Allen stitch and cortical-bone augmentation. On histological analysis, both the simple-stitch and the modified Mason-Allen technique caused similar degrees of transient localized tissue damage. Mechanical pullout tests of repairs with the new technique showed a failure strength that was approximately 30 percent of that of an intact infraspinatus tendon at six weeks, 52 percent of that of an intact tendon at three months, and 81 percent of that of an intact tendon at six months. The repair technique with a modified Mason-Allen stitch with number-3 braided polyester suture material and cortical-bone augmentation was superior to the conventional repair technique. Use of the modified Mason-Allen stitch and the cortical-bone-augmentation device transferred the weakest point of the repair to the suture material rather than to the bone or the tendon. Failure to protect the rotator cuff post-operatively was associated with an exceedingly high rate of failure, even if optimum repair technique was used. Different techniques for rotator cuff repair substantially influence the rate of failure. A modified Mason-Allen stitch does not cause tendon necrosis, and use of this stitch with cortical-bone augmentation yields a repair that is biologically well tolerated and stronger in vivo than a repair with the conventional technique. Unprotected repairs, however, have an exceedingly high rate of failure even if optimum repair technique is used. Postoperative protection from tension overload, such as with an abduction splint, may be necessary for successful healing of massive rotator cuff tears.
Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V
2014-02-01
The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p < 0.05) than those castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.
NASA Technical Reports Server (NTRS)
Byrne, K. P.; Marshall, S. E.
1983-01-01
A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.
Heterodyne-detected dispersed vibrational echo spectroscopy.
Jones, Kevin C; Ganim, Ziad; Tokmakoff, Andrei
2009-12-24
We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.
Crystallography of ordered colloids using optical microscopy. 2. Divergent-beam technique.
Rogers, Richard B; Lagerlöf, K Peter D
2008-04-10
A technique has been developed to extract quantitative crystallographic data from randomly oriented colloidal crystals using a divergent-beam approach. This technique was tested on a series of diverse experimental images of colloidal crystals formed from monodisperse suspensions of sterically stabilized poly-(methyl methacrylate) spheres suspended in organic index-matching solvents. Complete sets of reciprocal lattice basis vectors were extracted in all but one case. When data extraction was successful, results appeared to be accurate to about 1% for lattice parameters and to within approximately 2 degrees for orientation. This approach is easier to implement than a previously developed parallel-beam approach with the drawback that the divergent-beam approach is not as robust in certain situations with random hexagonal close-packed crystals. The two techniques are therefore complimentary to each other, and between them it should be possible to extract quantitative crystallographic data with a conventional optical microscope from any closely index-matched colloidal crystal whose lattice parameters are compatible with visible wavelengths.
Alqahtani, Fawaz
2017-01-01
The purpose of this study was to determine the effect of two extraoral computer-aided design (CAD) and computer-aided manufacturing (CAM) systems, in comparison with conventional techniques, on the marginal fit of monolithic CAD/CAM lithium disilicate ceramic crowns. This is an in vitro interventional study. The study was carried out at the Department of Prosthodontics, School of Dentistry, Prince Sattam Bin Abdul-Aziz University, Saudi Arabia, from December 2015 to April 2016. A marginal gap of 60 lithium disilicate crowns was evaluated by scanning electron microscopy. In total, 20 pressable lithium disilicate (IPS e.max Press [Ivoclar Vivadent]) ceramic crowns were fabricated using the conventional lost-wax technique as a control group. The experimental all-ceramic crowns were produced based on a scan stone model and milled using two extraoral CAD/CAM systems: the Cerec group was fabricated using the Cerec CAD/CAM system, and the Trios group was fabricated using Trios CAD and milled using Wieland Zenotec CAM. One-way analysis of variance (ANOVA) and the Scheffe post hoc test were used for statistical comparison of the groups (α=0.05). The mean (±standard deviation) of the marginal gap of each group was as follows: the Control group was 91.15 (±15.35) µm, the Cerec group was 111.07 (±6.33) µm, and the Trios group was 60.17 (±11.09) µm. One-way ANOVA and the Scheffe post hoc test showed a statistically significant difference in the marginal gap between all groups. It can be concluded from the current study that all-ceramic crowns, fabricated using the CAD/CAM system, show a marginal accuracy that is acceptable in clinical environments. The Trios CAD group displayed the smallest marginal gap.
Yang, Jieping; Liu, Wei; Gao, Qinghong
2013-08-01
To evaluate the anesthetic effects and safety of Gow-Gates technique of inferior alveolar nerve block in impacted mandibular third molar extraction. A split-mouth study was designed. The bilateral impacted mandibular third molar of 32 participants were divided into Gow-Gates technique of inferior alveolar nerve block (Gow-Gates group) and conventional technique of inferior alveolar nerve block (conventional group) randomly with third molar extracted. The anesthetic effects and adverse events were recorded. All the participants completed the research. The anesthetic success rate was 96.9% in Gow-Gates group and 90.6% in conventional group with no statistical difference ( P= 0.317); but when comparing the anesthesia grade, Gow-Gates group had a 96.9% of grade A and B, and conventional group had a rate of 78.1% (P = 0.034). And the Gow-Gates group had a much lower withdrawn bleeding than conventional group (P = 0.025). Two groups had no hematoma. Gow-Gates technique had a reliable anesthesia effects and safety in impacted mandibular third molar extraction and could be chosen as a candidate for the conventional inferior alveolar nerve block.
Taguchi optimization of bismuth-telluride based thermoelectric cooler
NASA Astrophysics Data System (ADS)
Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank
2017-07-01
In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.
Laser angioplasty for cardiovascular disease
NASA Astrophysics Data System (ADS)
Okada, Masayoshi
2005-07-01
Recently, endovascular interventions such as balloon angioplasty, atherectomy and the stenting method, except for conventional surgery have been clinically employed for the patients with atheromatous plaques of the peripheral- and the coronary arteries, because the number of patients with arteriosclerosis is now increasing in the worldwide. Among these procedures, restenoses after endovascular interventions have been remarkably disclosed in 20-40 % of the patients who underwent percutaneous coronary interventions. Thus, there are still some problems in keeping long-term patency by means of endovascular techniques such as balloon angioplasty and atherectomy (1, 2). For reduction of these problems , laser angioplasty using Argon laser was applied experimentally and clinically. Based on excellent experimental studies, laser was employed for 115 patients with stenotic ,or obstructive lesions occluding more thasn 75 % of the peripheral and the coronary arteries angiographycally.
Sirisha, Kalam; Achaiah, Garlapati; Reddy, Vanga Malla
2010-06-01
A series of twenty new 4-substituted-2,6-dimethyl-3,5-bis-N-(heteroaryl)-carbamoyl-1,4-dihydropyridines have been prepared from a three-component one-pot condensation reaction of N-heteroaryl acetoacetamide, an aromatic/heteroaromatic aldehyde, and ammonium acetate under four different experimental conditions. Except for the conventional method, all the experimental conditions were simple, eco-friendly, economical, and the reactions were rapid and high-yielding. The methods employed have been compared in terms of yields, cost, and simplicity. The synthesized compounds were characterized by different spectroscopic techniques and evaluated for their in-vitro anticancer, antibacterial, and antitubercular activities. Amongst the compounds tested, compound 25 exhibited the highest anticancer activity while compounds 14 and 18 exhibited significant antibacterial and antitubercular activities.
Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F
2012-02-06
Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.
Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B
2017-10-25
Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Parracino, Stefano; Richetta, Maria; Gelfusa, Michela; Malizia, Andrea; Bellecci, Carlo; De Leo, Leonardo; Perrimezzi, Carlo; Fin, Alessandro; Forin, Marco; Giappicucci, Francesca; Grion, Massimo; Marchese, Giuseppe; Gaudio, Pasquale
2016-10-01
Urban air pollution causes deleterious effects on human health and the environment. To meet stringent standards imposed by the European Commission, advanced measurement methods are required. Remote sensing techniques, such as light detection and ranging (LiDAR), can be a valuable option for evaluating particulate matter (PM), emitted by vehicles in urban traffic, with high sensitivity and in shorter time intervals. Since air quality problems persist not only in large urban areas, a measuring campaign was specifically performed in a suburban area of Crotone, Italy, using both a compact LiDAR system and conventional instruments for real-time vehicle emissions monitoring along a congested road. First results reported in this paper show a strong dependence between variations of LiDAR backscattering signals and traffic-related air pollution levels. Moreover, time-resolved LiDAR data averaged in limited regions, directly above conventional monitoring stations at the border of an intersection, were found to be linearly correlated to the PM concentration levels with a correlation coefficient between 0.75 and 0.84.
Assessing a novel polymer-wick based electrode for EEG neurophysiological research.
Pasion, Rita; Paiva, Tiago O; Pedrosa, Paulo; Gaspar, Hugo; Vasconcelos, Beatriz; Martins, Ana C; Amaral, Maria H; Nóbrega, João M; Páscoa, Ricardo; Fonseca, Carlos; Barbosa, Fernando
2016-07-15
The EEG technique has decades of valid applications in clinical and experimental neurophysiology. EEG equipment and data analysis methods have been characterized by remarkable developments, but the skin-to-electrode signal transfer remains a challenge for EEG recording. A novel quasi-dry system - the polymer wick-based electrode - was developed to overcome the limitations of conventional dry and wet silver/silver-chloride (Ag/AgCl) electrodes for EEG recording. Nine participants completed an auditory oddball protocol with simultaneous EEG acquisition using both the conventional Ag/AgCl and the wick electrodes. Wick system successfully recorded the expected P300 modulation. Standard ERP analysis, residual random noise analysis, and single-trial analysis of the P300 wave were performed in order to compare signal acquired by both electrodes. It was found that the novel wick electrode performed similarly to the conventional Ag/AgCl electrodes. The developed wick electrode appears to be a reliable alternative for EEG research, representing a promising halfway alternative between wet and dry electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.
Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert
2011-04-01
To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.
2017-08-01
The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG consensus guidelines.
Methods for Multiloop Identification of Visual and Neuromuscular Pilot Responses.
Olivari, Mario; Nieuwenhuizen, Frank M; Venrooij, Joost; Bülthoff, Heinrich H; Pollini, Lorenzo
2015-12-01
In this paper, identification methods are proposed to estimate the neuromuscular and visual responses of a multiloop pilot model. A conventional and widely used technique for simultaneous identification of the neuromuscular and visual systems makes use of cross-spectral density estimates. This paper shows that this technique requires a specific noninterference hypothesis, often implicitly assumed, that may be difficult to meet during actual experimental designs. A mathematical justification of the necessity of the noninterference hypothesis is given. Furthermore, two methods are proposed that do not have the same limitations. The first method is based on autoregressive models with exogenous inputs, whereas the second one combines cross-spectral estimators with interpolation in the frequency domain. The two identification methods are validated by offline simulations and contrasted to the classic method. The results reveal that the classic method fails when the noninterference hypothesis is not fulfilled; on the contrary, the two proposed techniques give reliable estimates. Finally, the three identification methods are applied to experimental data from a closed-loop control task with pilots. The two proposed techniques give comparable estimates, different from those obtained by the classic method. The differences match those found with the simulations. Thus, the two identification methods provide a good alternative to the classic method and make it possible to simultaneously estimate human's neuromuscular and visual responses in cases where the classic method fails.
Excited-state dissociation dynamics of phenol studied by a new time-resolved technique
NASA Astrophysics Data System (ADS)
Lin, Yen-Cheng; Lee, Chin; Lee, Shih-Huang; Lee, Yin-Yu; Lee, Yuan T.; Tseng, Chien-Ming; Ni, Chi-Kung
2018-02-01
Phenol is an important model molecule for the theoretical and experimental investigation of dissociation in the multistate potential energy surfaces. Recent theoretical calculations [X. Xu et al., J. Am. Chem. Soc. 136, 16378 (2014)] suggest that the phenoxyl radical produced in both the X and A states from the O-H bond fission in phenol can contribute substantially to the slow component of photofragment translational energy distribution. However, current experimental techniques struggle to separate the contributions from different dissociation pathways. A new type of time-resolved pump-probe experiment is described that enables the selection of the products generated from a specific time window after molecules are excited by a pump laser pulse and can quantitatively characterize the translational energy distribution and branching ratio of each dissociation pathway. This method modifies conventional photofragment translational spectroscopy by reducing the acceptance angles of the detection region and changing the interaction region of the pump laser beam and the molecular beam along the molecular beam axis. The translational energy distributions and branching ratios of the phenoxyl radicals produced in the X, A, and B states from the photodissociation of phenol at 213 and 193 nm are reported. Unlike other techniques, this method has no interference from the undissociated hot molecules. It can ultimately become a standard pump-probe technique for the study of large molecule photodissociation in multistates.
A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback
NASA Astrophysics Data System (ADS)
Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki
Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.
Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Bahr, Christopher J.; Horne, William C.
2015-01-01
An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.
NASA Astrophysics Data System (ADS)
Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.
2005-01-01
Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.
Multi-mounted X-ray cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng
2018-04-01
As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.
Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours
NASA Astrophysics Data System (ADS)
Persico, Giacomo
2017-03-01
This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.
Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian
2013-01-01
Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969
Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António
2014-04-11
In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ullattuthodi, Sujana; Cherian, Kandathil Phillip; Anandkumar, R; Nambiar, M Sreedevi
2017-01-01
This in vitro study seeks to evaluate and compare the marginal and internal fit of cobalt-chromium copings fabricated using the conventional and direct metal laser sintering (DMLS) techniques. A master model of a prepared molar tooth was made using cobalt-chromium alloy. Silicone impression of the master model was made and thirty standardized working models were then produced; twenty working models for conventional lost-wax technique and ten working models for DMLS technique. A total of twenty metal copings were fabricated using two different production techniques: conventional lost-wax method and DMLS; ten samples in each group. The conventional and DMLS copings were cemented to the working models using glass ionomer cement. Marginal gap of the copings were measured at predetermined four points. The die with the cemented copings are standardized-sectioned with a heavy duty lathe. Then, each sectioned samples were analyzed for the internal gap between the die and the metal coping using a metallurgical microscope. Digital photographs were taken at ×50 magnification and analyzed using measurement software. Statistical analysis was done by unpaired t -test and analysis of variance (ANOVA). The results of this study reveal that no significant difference was present in the marginal gap of conventional and DMLS copings ( P > 0.05) by means of ANOVA. The mean values of internal gap of DMLS copings were significantly greater than that of conventional copings ( P < 0.05). Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.
Hagmeyer, Lars; Priegnitz, Christina; Kocher, Martin; Schilcher, Burkhart; Budach, Wilfried; Treml, Marcel; Stieglitz, Sven; Randerath, Winfried
2016-05-01
Conventional and electromagnetic navigation bronchoscopy (ENB) is generally used as a diagnostic tool in suspicious pulmonary nodules. The use of this technique for the placement of fiducial markers in patients with inoperable but early-stage lung cancer could present an innovative approach enabling risk-reduced therapy. We present seven clinical cases where conventional bronchoscopy and ENB were used as part of an experimental interdisciplinary approach to clinical management and therapy planning. In each case, we analyzed the clinical indication, endoscopic procedures and post-interventional outcome. In six patients (three females, three males) with peripheral non-small cell lung cancer (NSCLC), stage cT1cN0cM0, surgery and conventional stereotactic radiation therapy was not possible because of end-stage chronic obstructive pulmonary disease. ENB was used for fiducial marker placement prior to cyberknife radiotherapy. No procedure-related complications were observed. Complete remission could be achieved in four cases, partial remission in two cases and no relevant complications induced by radiotherapy were observed. In one male patient, an endoluminal relapse in the right lower lobe was diagnosed following a right upper lobe resection for a NSCLC. The tumor could not be clearly identified by computerized tomography, so that the bronchoscopic placement of a fiducial marker in the tumor was performed in order to allow stereotactic radiochemotherapy, by which complete remission could be achieved. Fiducial marker placement may be an interesting bronchoscopic technique in the interdisciplinary therapeutic approach to inoperable early-stage lung cancer. In the described cases, therapy planning was successful and no procedure-related complications were observed. © 2014 John Wiley & Sons Ltd.
Vagadia, Brinda Harish; Raghavan, Vijaya
2018-01-01
Soymilk is lower in calories compared to cow’s milk, since it is derived from a plant source (no cholesterol) and is an excellent source of protein. Despite the beneficial factors, soymilk is considered as one of the most controversial foods in the world. It contains serine protease inhibitors which lower its nutritional value and digestibility. Processing techniques for the elimination of trypsin inhibitors and lipoxygenase, which have shorter processing time and lower production costs are required for the large-scale manufacturing of soymilk. In this study, the suitable conditions of time and temperature are optimized during microwave processing to obtain soymilk with maximum digestibility with inactivation of trypsin inhibitors, in comparison to the conventional thermal treatment. The microwave processing conditions at a frequency of 2.45 GHz and temperatures of 70 °C, 85 °C and 100 °C for 2, 5 and 8 min were investigated and were compared to conventional thermal treatments at the same temperature for 10, 20 and 30 min. Response surface methodology is used to design and optimize the experimental conditions. Thermal processing was able to increase digestibility by 7% (microwave) and 11% (conventional) compared to control, while trypsin inhibitor activity reduced to 1% in microwave processing and 3% in conventional thermal treatment when compared to 10% in raw soybean. PMID:29316679
Hommerson, Paul; Khan, Amjad M; de Jong, Gerhardus J; Somsen, Govert W
2011-01-01
A major step forward in the development and application of capillary electrophoresis (CE) was its coupling to ESI-MS, first reported in 1987. More than two decades later, ESI has remained the principal ionization technique in CE-MS, but a number of other ionization techniques have also been implemented. In this review the state-of-the-art in the employment of soft ionization techniques for CE-MS is presented. First the fundamentals and general challenges of hyphenating conventional CE and microchip electrophoresis with MS are outlined. After elaborating on the characteristics and role of ESI, emphasis is put on alternative ionization techniques including sonic spray ionization (SSI), thermospray ionization (TSI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), matrix-assisted laser desorption ionization (MALDI) and continuous-flow fast atom bombardment (CF-FAB). The principle of each ionization technique is outlined and the experimental set-ups of the CE-MS couplings are described. The strengths and limitations of each ionization technique with respect to CE-MS are discussed and the applicability of the various systems is illustrated by a number of typical examples. Copyright © 2011 Wiley Periodicals, Inc.
Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed
2014-06-01
Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.
MEMS-based platforms for mechanical manipulation and characterization of cells
NASA Astrophysics Data System (ADS)
Pan, Peng; Wang, Wenhui; Ru, Changhai; Sun, Yu; Liu, Xinyu
2017-12-01
Mechanical manipulation and characterization of single cells are important experimental techniques in biological and medical research. Because of the microscale sizes and highly fragile structures of cells, conventional cell manipulation and characterization techniques are not accurate and/or efficient enough or even cannot meet the more and more demanding needs in different types of cell-based studies. To this end, novel microelectromechanical systems (MEMS)-based technologies have been developed to improve the accuracy, efficiency, and consistency of various cell manipulation and characterization tasks, and enable new types of cell research. This article summarizes existing MEMS-based platforms developed for cell mechanical manipulation and characterization, highlights their specific design considerations making them suitable for their designated tasks, and discuss their advantages and limitations. In closing, an outlook into future trends is also provided.
Reconstructing biochemical pathways from time course data.
Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago
2007-03-01
Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.
Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred
2011-10-01
A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.
Accelerated wavefront determination technique for optical imaging through scattering medium
NASA Astrophysics Data System (ADS)
He, Hexiang; Wong, Kam Sing
2016-03-01
Wavefront shaping applied on scattering light is a promising optical imaging method in biological systems. Normally, optimized modulation can be obtained by a Liquid-Crystal Spatial Light Modulator (LC-SLM) and CCD hardware iteration. Here we introduce an improved method for this optimization process. The core of the proposed method is to firstly detect the disturbed wavefront, and then to calculate the modulation phase pattern by computer simulation. In particular, phase retrieval method together with phase conjugation is most effective. In this way, the LC-SLM based system can complete the wavefront optimization and imaging restoration within several seconds which is two orders of magnitude faster than the conventional technique. The experimental results show good imaging quality and may contribute to real time imaging recovery in scattering medium.
Access-in-turn test architecture for low-power test application
NASA Astrophysics Data System (ADS)
Wang, Weizheng; Wang, JinCheng; Wang, Zengyun; Xiang, Lingyun
2017-03-01
This paper presents a novel access-in-turn test architecture (AIT-TA) for testing of very large scale integrated (VLSI) designs. In the proposed scheme, each scan cell in a chain receives test data from shift-in line in turn while pushing its test response to the shift-out line. It solves the power problem of conventional scan architecture to a great extent and suppresses significantly the switching activity during shift and capture operation with acceptable hardware overhead. Thus, it can help to implement the test at much higher operation frequencies resulting shorter test application time. The proposed test approach enhances the architecture of conventional scan flip-flops and backward compatible with existing test pattern generation and simulation techniques. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate effectiveness of the proposed low-power test application scheme.
Simultaneous Determination of Glass Transition Temperatures of Several Polymers.
He, Jiang; Liu, Wei; Huang, Yao-Xiong
2016-01-01
A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers.
Discriminant locality preserving projections based on L1-norm maximization.
Zhong, Fujin; Zhang, Jiashu; Li, Defang
2014-11-01
Conventional discriminant locality preserving projection (DLPP) is a dimensionality reduction technique based on manifold learning, which has demonstrated good performance in pattern recognition. However, because its objective function is based on the distance criterion using L2-norm, conventional DLPP is not robust to outliers which are present in many applications. This paper proposes an effective and robust DLPP version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based locality preserving between-class dispersion and the L1-norm-based locality preserving within-class dispersion. The proposed method is proven to be feasible and also robust to outliers while overcoming the small sample size problem. The experimental results on artificial datasets, Binary Alphadigits dataset, FERET face dataset and PolyU palmprint dataset have demonstrated the effectiveness of the proposed method.
Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.
Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao
2016-12-16
We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.
Methods for reducing pollutant emissions from jet aircraft
NASA Technical Reports Server (NTRS)
Butze, H. F.
1971-01-01
Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.
Structural correlation of the chalcogenide Ge40Se60 glass
NASA Astrophysics Data System (ADS)
Moharram, A. H.
2017-01-01
Binary Ge40Se60 glass was prepared using the melt-quench technique. The total structure factors, S( K), are obtained using the X-ray diffraction in the wave vector interval 0.28 ≤ K ≤ 6.5 Å-1. The appearance of the first sharp diffraction peak (FSDP) in the structure factor indicates the presence of the intermediate range order. Radial distribution functions, RDF( r), have been obtained using either the conventional (Fourier) transformation or the Monte Carlo simulation of the experimental X-ray data. The short range order parameters deduced from the Monte Carlo total correlation, T( r), functions are better than those obtained from the conventional (Fourier) T( r) data. Gaussian analyses of the total correlation function show that Ge2(Se1/2)6 molecular units are the basic structural units for the investigated Ge40Se60 glass.
Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow Focusing
NASA Astrophysics Data System (ADS)
Delrot, Paul; Modestino, Miguel A.; Gallaire, François; Psaltis, Demetri; Moser, Christophe
2016-08-01
The on-demand generation of viscous microdroplets to print functional or biological materials remains challenging using conventional inkjet-printing methods, mainly due to aggregation and clogging issues. In an effort to overcome these limitations, we implement a jetting method to print viscous microdroplets by laser-induced shockwaves. We experimentally investigate the dependence of the jetting regimes and the droplet size on the laser-pulse energy and on the inks' physical properties. The range of printable liquids with our device is significantly extended compared to conventional inkjet printers's performances. In addition, the laser-induced flow-focusing phenomenon allows us to controllably generate viscous microdroplets up to 210 mPa s with a diameter smaller than the nozzle from which they originated (200 μ m ). Inks containing proteins are printed without altering their functional properties, thus demonstrating that this jetting technique is potentially suitable for bioprinting.
Ma, Li; Stübinger, Stefan; Liu, Xi Ling; Schneider, Urs A; Lang, Niklaus P
2013-08-01
The purpose of this study was to compare bone healing of experimental osteotomies applying either piezosurgery or two different oscillating saw blades in a rabbit model. The 16 rabbits were randomly assigned into four groups to comply with observation periods of one, two, three and five weeks. In all animals, four osteotomy lines were performed on the left and right nasal bone using a conventional saw blade, a novel saw blade and piezosurgery. All three osteotomy techniques revealed an advanced gap healing starting after one week. The most pronounced new bone formation took place between two and three weeks, whereby piezoelectric surgery revealed a tendency to faster bone formation and remodelling. Yet, there were no significant differences between the three modalities. The use of a novel as well as the piezoelectric bone-cutting instrument revealed advanced bone healing with a favourable surgical performance compared to a traditional saw.
Introducing the VRT gas turbine combustor
NASA Technical Reports Server (NTRS)
Melconian, Jerry O.; Mostafa, Abdu A.; Nguyen, Hung Lee
1990-01-01
An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer model predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.
NASA Astrophysics Data System (ADS)
Srivastava, Y.; Srivastava, S.; Boriwal, L.
2016-09-01
Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.
Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui
2017-02-06
Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.
Killing rate of colony count by hydrodynamic cavitation due to square multi-orifice plates
NASA Astrophysics Data System (ADS)
Dong, Zhiyong; Zhao, Wenqian
2018-02-01
Currently,in water supply engineering, the conventional technique of disinfection by chlorination is employed to kill pathogenic microorganisms in raw water. However, chlorine reacts with organic compounds in water and generates disinfection byproducts (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs) etc. These byproducts are of carcinogenic, teratogenic and mutagenic effects, which seriously threaten human health. Hydrodynamic cavitation is a novel technique of drinking water disinfection without DBPs. Effects of orifice size, orifice number and orifice layout of multi-orifice plate, cavitation number, cavitation time and orifice velocity on killing pathogenic microorganisms by cavitation were investigated experimentally in a self-developed square multi-orifice plate-type hydrodynamic cavitation device. The experimental results showed that cavitation effects increased with decrease in orifice size and increase in orifice number, cavitation time and orifice velocity. Along with lowering in cavitation number, there was an increase in Reynolds shear stress,thus enhancing the killing rate of pathogenic microorganism in raw water. In addition, the killing rate by staggered orifice layout was greater than that by checkerboard-type orifice layout.
Electrochemically active biofilms: facts and fiction. A review
Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk
2014-01-01
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelec-trochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices. PMID:22856464
NASA Astrophysics Data System (ADS)
Capò Sànchez, J.; Huallpa, E.; Farina, P.; Padovese, L. R.; Goldenstein, H.
2011-10-01
Magnetic Barkhausen noise (MBN) was used to characterize the progress of austenite to martensite phase transformation while cooling steel specimens, using a conventional Barkhausen noise emission setup stimulated by an alternating magnetic field. The phase transformation was also followed by electrical resistivity measurements and by optical and scanning electron microscopy. MBN measurements on a AISI D2 tool steel austenitized at 1473 K and cooled to liquid nitrogen temperature presented a clear change near 225 K during cooling, corresponding to the MS (martensite start) temperature, as confirmed by resistivity measurements. Analysis of the resulting signals suggested a novel experimental technique that measures spontaneous magnetic emission during transformation, in the absence of any external field. Spontaneous magnetic noise emission measurements were registered in situ while cooling an initially austenitic sample in liquid nitrogen, showing that local microstructural changes, corresponding to an avalanche or "burst" phenomena, could be detected. This spontaneous magnetic emission (SME) can thus be considered a new experimental tool for the study of martensite transformations in ferrous alloys, at the same level as acoustic emission.
Retention of denture bases fabricated by three different processing techniques – An in vivo study
Chalapathi Kumar, V. H.; Surapaneni, Hemchand; Ravikiran, V.; Chandra, B. Sarat; Balusu, Srilatha; Reddy, V. Naveen
2016-01-01
Aim: Distortion due to Polymerization shrinkage compromises the retention. To evaluate the amount of retention of denture bases fabricated by conventional, anchorized, and injection molding polymerization techniques. Materials and Methods: Ten completely edentulous patients were selected, impressions were made, and master cast obtained was duplicated to fabricate denture bases by three polymerization techniques. Loop was attached to the finished denture bases to estimate the force required to dislodge them by retention apparatus. Readings were subjected to nonparametric Friedman two-way analysis of variance followed by Bonferroni correction methods and Wilcoxon matched-pairs signed-ranks test. Results: Denture bases fabricated by injection molding (3740 g), anchorized techniques (2913 g) recorded greater retention values than conventional technique (2468 g). Significant difference was seen between these techniques. Conclusions: Denture bases obtained by injection molding polymerization technique exhibited maximum retention, followed by anchorized technique, and least retention was seen in conventional molding technique. PMID:27382542
Side effects and complications of intraosseous anesthesia and conventional oral anesthesia.
Peñarrocha-Oltra, David; Ata-Ali, Javier; Oltra-Moscardó, María-José; Peñarrocha-Diago, María; Peñarrocha, Miguel
2012-05-01
To analyze the side effects and complications following intraosseous anesthesia (IA), comparing them with those of the conventional oral anesthesia techniques. A simple-blind, prospective clinical study was carried out. Each patient underwent two anesthetic techniques: conventional (local infiltration and locoregional anesthetic block) and intraosseous, for respective dental operations. In order to allow comparison of IA versus conventional anesthesia, the two operations were similar and affected the same two teeth in opposite quadrants. Heart rate was recorded in all cases before injection of the anesthetic solution and again 30 seconds after injection. The complications observed after anesthetic administration were recorded. A total of 200 oral anesthetic procedures were carried out in 100 patients. Both IA and conventional anesthesia resulted in a significant increase in heart rate, though the increase was greater with the latter technique. Incidents were infrequent with either anesthetic technique, with no significant differences between them. Regarding the complications, there were significant differences in pain at the injection site, with more intense pain in the case of IA (x2=3.532, p=0.030, Φ2=0.02), while the limitation of oral aperture was more pronounced with conventional anesthesia (x2=5.128, p<0.05, Φ2=0.014). Post-anesthetic biting showed no significant differences (x2=4.082, p=0.121, Φ2=0.009). Both anesthetic techniques significantly increased heart rate, and IA caused comparatively more pain at the injection site, while limited oral aperture was more frequent with conventional anesthesia. Post-anesthetic biting showed no significant differences between the two techniques.
Gülşen, İsmail; Ak, Hakan; Evcılı, Gökhan; Balbaloglu, Özlem; Sösüncü, Enver
2013-01-01
Background. In this retrospective study, we aimed to compare the results of two surgical techniques, conventional and transverse mini-incision. Materials and Methods. 95 patients were operated between 2011 and 2012 in Bitlis State Hospital. 50 patients were operated with conventional technique and 45 of them were operated with minimal transverse incision. Postoperative complications, incision site problems, and the time of starting to use their hands in daily activities were noted. Results. 95 patients were included in the study. The mean age was 48. 87 of them were female and 8 were male. There was no problem of incision site in both of the two surgical techniques. Only in one patient, anesthesia developed in minimal incision technique. The time of starting to use their hands in daily activities was 22,2 days and 17 days in conventional and minimal incision technique, respectively. Conclusion. Two surgical techniques did not show superiority to each other in terms of postoperative complications and incision site problems except the time of starting to use their hands in daily activities. PMID:24396607
Ferreira, Mayra Soares; Mangussi-Gomes, João; Ximendes, Roberta; Evangelista, Anne Rosso; Miranda, Eloá Lumi; Garcia, Leonardo Bomediano; Stamm, Aldo C
2018-01-01
Pharyngeal tonsil hyperplasia is the most frequent cause of nasal obstruction and chronic mouth breathing during childhood. Adenoidectomy is the procedure of choice for the resolution of these symptoms. It is not yet known, however, whether the conventional technique ("blind curettage") has been surpassed by more modern adenoidectomy techniques (video-assisted, with the aid of instruments). This study aimed to compare the conventional adenoidectomy technique with two other emerging techniques, performed in a reference otorhinolaryngology center. This is a prospective and observational study of 33 children submitted to adenoidectomy using 3 different techniques that were followed up for a period of 3 months after surgery. The patients were divided into 3 different groups, according to the adenoidectomy technique: Group A (conventional technique - "blind curettage"); Group B (video-assisted adenoidectomy with microdebrider); Group C (video-assisted adenoidectomy with radiofrequency - Coblation ® ). The surgical time of each procedure was measured, being considered from the moment of insertion of the mouth gag until complete hemostasis was achieved. The questionnaire for quality of life OSA-18 was applied to all caregivers on the day of the surgery and 30-90 days after the procedure. Postoperative complications were also analyzed. For the entire patient sample, there was an improvement in quality of life after the surgery (p < 0.05). When analyzing the evolution of OSA-18 index, all groups showed statistically significant improvement, for all assessed domains. There were no statistically significant differences between the 3 techniques assessed for quality of life improvement after the surgery (p > 0.05). Regarding the duration of the procedure, the conventional technique showed the shortest surgical time when compared to the others (p < 0.05). No postoperative complications were noted, for any patient. The adenoidectomy resulted in improvement of quality of life, and there were no major postoperative complications, for all operated children, regardless of the technique used. The conventional technique was faster when compared to the more modern adenoidectomy techniques. Copyright © 2017 Elsevier B.V. All rights reserved.
From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal
2016-02-01
X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G. M.; Parit, M. K.; Laha, R.
2016-05-06
Now a days, single molecule surface enhanced Raman spectroscopy (SMSERS) has become a fascinating tool for studying the structural properties, static and dynamic events of single molecules (instead of ensemble average), with the help of efficient plasmonic nanostructures. This is extremely useful in the field of proteomics because the structural properties of protein molecules are heterogeneous. Even though, SMSERS provides wealthy information about single molecules, it demands high quality surface enhanced Raman scattering (SERS) substrates. So far, a very few researchers succeeded in demonstrating the single molecule Raman scattering using conventional SERS technique. However, the experimental S/N of the Ramanmore » signal has been found to be very poor. Recently, with the help of photonic nanojet of an optical microsphere, we were able to enhance the SERS signal of a few molecules adsorbed on the SERS substrates (gold symmetric and asymmetric nanodimers and trimers dispersed on a glass slide). Herein, we report a few details about photonic nanojet mediated SERS technique, a few experimental results and a detailed theoretical study on symmetric and asymmetric nanosphere dimers to understand the dependence of localised surface plasmon resonance (LSPR) wavelength of a nanodimer on the nanogap size and polarization of the excitation light.« less
NASA Astrophysics Data System (ADS)
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-04-01
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-04-15
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
NASA Astrophysics Data System (ADS)
Latisma D, L.; Kurniawan, W.; Seprima, S.; Nirbayani, E. S.; Ellizar, E.; Hardeli, H.
2018-04-01
The purpose of this study was to see which method are well used with the Chemistry Triangle-oriented learning media. This quasi experimental research involves first grade of senior high school students in six schools namely each two SMA N in Solok city, in Pasaman and two SMKN in Pariaman. The sampling technique was done by Cluster Random Sampling. Data were collected by test and analyzed by one-way anova and Kruskall Wallish test. The results showed that the high school students in Solok learning taught by cooperative method is better than the results of student learning taught by conventional and Individual methods, both for students who have high initial ability and low-ability. Research in SMK showed that the overall student learning outcomes taught by conventional method is better than the student learning outcomes taught by cooperative and individual methods. Student learning outcomes that have high initial ability taught by individual method is better than student learning outcomes that are taught by cooperative method and for students who have low initial ability, there is no difference in student learning outcomes taught by cooperative, individual and conventional methods. Learning in high school in Pasaman showed no significant difference in learning outcomes of the three methods undertaken.
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-01-01
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features. PMID:27079888
Heinemann, Friedhelm; Hasan, Istabrak; Kunert-Keil, Christiane; Götz, Werner; Gedrange, Tomas; Spassov, Alexander; Schweppe, Janine; Gredes, Tomasz
2012-03-20
Over the past decade, coinciding with the appearance of a number of new ultrasonic surgical devices, there has been a marked increase in interest in the use of ultrasound in oral surgery and implantology as alternative osteotomy method. The aim of this study was the comparison of the effect of osteotomies performed using ultrasonic surgery (Piezosurgery(®)), sonic surgery SONICflex(®) and the conventional bur method on the heat generation within the bone underneath the osteotomy and light-microscopy observations of the bone at different cutting positions in porcine mandibular segments. It was found that the average heat generated by SONICflex(®) sonic device was close to that by conventional rotary bur (1.54-2.29°C), whereas Piezosurgery(®) showed a high generated heat up to 18.17°C. Histological investigations of the bone matrix adjacent to the defect radius showed intact osteocytes with all three instruments and similar wide damage diameter at the bottom region. SONICflex(®) showed smooth cutting surfaces with minimal damage in the upper defect zone. Finally, presented results showed that sonic surgery performed with SONICflex(®) is an alternative osteotomy method and can be used as an alternative to the conventional bur method. Copyright © 2011 Elsevier GmbH. All rights reserved.
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.
An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L
2017-06-02
The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey
2006-01-01
Tree height is an important variable in forest inventory programs but is typically time-consuming and costly to measure in the field using conventional techniques. Airborne light detection and ranging (LIDAR) provides individual tree height measurements that are highly correlated with field-derived measurements, but the imprecision of conventional field techniques does...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maple, M. Brian; Jeffries, Jason R.; Ho, Pei-Chun
Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the Universitymore » of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures ({approx}1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as well as future directions we plan to pursue.« less
NASA Technical Reports Server (NTRS)
McMillin, Naomi; Allen, Jerry; Erickson, Gary; Campbell, Jim; Mann, Mike; Kubiatko, Paul; Yingling, David; Mason, Charlie
1999-01-01
The objective was to experimentally evaluate the longitudinal and lateral-directional stability and control characteristics of the Reference H configuration at supersonic and transonic speeds. A series of conventional and alternate control devices were also evaluated at supersonic and transonic speeds. A database on the conventional and alternate control devices was to be created for use in the HSR program.
Modified fluoroscopy-guided sacroiliac joint injection: a technical report.
Liliang, Po-Chou; Liang, Cheng-Loong; Lu, Kang; Weng, Hui-Ching; Syu, Fei-Kai
2014-09-01
Sacroiliac joint (SIJ) injection can occasionally be challenging. We describe our experience in using conventional technique, and we developed an adjustment to overcome difficulties incurred. Conventional technique required superimposition of the posterior and anterior SIJ lines. If this technique failed to provide entry into the joint, fluoroscopy was slightly adjusted to obtain an oblique view. Of 50 SIJ injections, 29 (58%; 44-72%) were successfully performed using conventional technique. In another 21 procedures, 18 (85.7%; 64-99%) were subsequently completed using oblique view technique. The medial joint line, viewed from this angle, corresponded to the posterior joint line in 17 cases. The lateral joint line corresponded to the posterior joint line in one case. Oblique view technique can improve the success rate of SIJ injection. Wiley Periodicals, Inc.
Polarization manipulation in single refractive prism based holography lithography
NASA Astrophysics Data System (ADS)
Xiong, Wenjie; Xu, Yi; Xiao, Yujian; Lv, Xiaoxu; Wu, Lijun
2015-01-01
We propose theoretically and demonstrate experimentally a simple but effective strategy for polarization manipulation in single refractive prism based holographic lithography. By tuning the polarization of a single laser beam, we can obtain the pill shape interference pattern with a high-contrast where a complex optical setup and multiple polarizers are needed in the conventional holography lithography. Fabrication of pill shape two-dimensional polymer photonic crystals using one beam and one shoot holography lithography is shown as an example to support our theoretical results. This integrated polarization manipulation technique can release the crucial stability restrictions imposed on the multiple beams holography lithography.
Integrated circuit layer image segmentation
NASA Astrophysics Data System (ADS)
Masalskis, Giedrius; Petrauskas, Romas
2010-09-01
In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.
PWM Switching Strategy for Torque Ripple Minimization in BLDC Motor
NASA Astrophysics Data System (ADS)
Salah, Wael A.; Ishak, Dahaman; Hammadi, Khaleel J.
2011-05-01
This paper describes a new PWM switching strategy to minimize the torque ripples in BLDC motor which is based on sensored rotor position control. The scheme has been implemented using a PIC microcontroller to generate a modified Pulse Width Modulation (PWM) signals for driving power inverter bridge. The modified PWM signals are successfully applied to the next up-coming phase current such that its current rise is slightly delayed during the commutation instant. Experimental results show that the current waveforms of the modified PWM are smoother than that in conventional PWM technique. Hence, the output torque exhibits lower ripple contents.
CFD Approach To Investigate The Flow Characteristics In Bi-Directional Ventilated Disc Brake
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Yusoff, Mohd. Zamri; Shuaib, Norshah Hafeez; Thangaraju, Savithry K.
2010-06-01
This paper presents experimental and Computational Fluids Dynamics (CFD) investigations of the flow in ventilated brake discs. Development of an experiment rig with basic measuring devices are detailed out and following a validation study, the possible improvement in the brake cooling can be further analyzed using CFD analysis. The mass flow rate is determined from basic flow measurement technique following that the conventional bi-directional passenger car is simulated using commercial CFD software FLUENT™. The CFD simulation is used to investigate the flow characteristics in between blade flow of the bi-directional ventilated disc brake.
Fast ultrasonic wavelength tuning in X-ray experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E., E-mail: blagov-ae@mail.ru; Pisarevskii, Yu. V.; Koval’chuk, M. V.
2016-03-15
A method of tuning (scanning) X-ray beam wavelength based on modulation of the lattice parameter of X-ray optical crystal by an ultrasonic standing wave excited in it has been proposed and experimentally implemented. The double-crystal antiparallel scheme of X-ray diffraction, in which an ultrasonic wave is excited in the second crystal, is used in the experiment. The profile of characteristic line k{sub α1} of an X-ray tube with a molybdenum anode is recorded using both the proposed tuning scheme and conventional mechanical rotation of crystal. The results obtained by both techniques are in good agreement.
X-ray Fluorescence Holography: Principles, Apparatus, and Applications
NASA Astrophysics Data System (ADS)
Hayashi, Kouichi; Korecki, Pawel
2018-06-01
X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.
Vacuum infusion manufacturing and experimental characterization of Kevlar/epoxy composites
NASA Astrophysics Data System (ADS)
Ricciardi, M. R.; Giordano, M.; Langella, A.; Nele, L.; Antonucci, V.
2014-05-01
Epoxy/Kevlar composites have been manufactured by conventional Vacuum Infusion process and the Pulse Infusion technique. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The realized composite panel have been mechanically characterized by performing tensile and short beam shear tests according with the ASTM D3039 and ASTM D2344/D 2344M standard respectively in order to investigate the effect of Pulse Infusion on the tensile strength and ILSS.
Vacuum infusion manufacturing and experimental characterization of Kevlar/epoxy composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricciardi, M. R.; Giordano, M.; Antonucci, V.
2014-05-15
Epoxy/Kevlar composites have been manufactured by conventional Vacuum Infusion process and the Pulse Infusion technique. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The realized composite panel have been mechanically characterized by performing tensile and short beam shear tests according with the ASTM D3039 and ASTM D2344/D 2344M standard respectively in order to investigate the effect of Pulse Infusion on the tensile strength and ILSS.
Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.
Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam
2014-07-01
Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.
Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique
Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam
2014-01-01
Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050
Adapting line integral convolution for fabricating artistic virtual environment
NASA Astrophysics Data System (ADS)
Lee, Jiunn-Shyan; Wang, Chung-Ming
2003-04-01
Vector field occurs not only extensively in scientific applications but also in treasured art such as sculptures and paintings. Artist depicts our natural environment stressing valued directional feature besides color and shape information. Line integral convolution (LIC), developed for imaging vector field in scientific visualization, has potential of producing directional image. In this paper we present several techniques of exploring LIC techniques to generate impressionistic images forming artistic virtual environment. We take advantage of directional information given by a photograph, and incorporate many investigations to the work including non-photorealistic shading technique and statistical detail control. In particular, the non-photorealistic shading technique blends cool and warm colors into the photograph to imitate artists painting convention. Besides, we adopt statistical technique controlling integral length according to image variance to preserve details. Furthermore, we also propose method for generating a series of mip-maps, which revealing constant strokes under multi-resolution viewing and achieving frame coherence in an interactive walkthrough system. The experimental results show merits of emulating satisfyingly and computing efficiently, as a consequence, relying on the proposed technique successfully fabricates a wide category of non-photorealistic rendering (NPR) application such as interactive virtual environment with artistic perception.
A secure and robust information hiding technique for covert communication
NASA Astrophysics Data System (ADS)
Parah, S. A.; Sheikh, J. A.; Hafiz, A. M.; Bhat, G. M.
2015-08-01
The unprecedented advancement of multimedia and growth of the internet has made it possible to reproduce and distribute digital media easier and faster. This has given birth to information security issues, especially when the information pertains to national security, e-banking transactions, etc. The disguised form of encrypted data makes an adversary suspicious and increases the chance of attack. Information hiding overcomes this inherent problem of cryptographic systems and is emerging as an effective means of securing sensitive data being transmitted over insecure channels. In this paper, a secure and robust information hiding technique referred to as Intermediate Significant Bit Plane Embedding (ISBPE) is presented. The data to be embedded is scrambled and embedding is carried out using the concept of Pseudorandom Address Vector (PAV) and Complementary Address Vector (CAV) to enhance the security of the embedded data. The proposed ISBPE technique is fully immune to Least Significant Bit (LSB) removal/replacement attack. Experimental investigations reveal that the proposed technique is more robust to various image processing attacks like JPEG compression, Additive White Gaussian Noise (AWGN), low pass filtering, etc. compared to conventional LSB techniques. The various advantages offered by ISBPE technique make it a good candidate for covert communication.
Intraseptal anesthesia: a review of a relevant injection technique.
Woodmansey, Karl
2005-01-01
Although overshadowed by intraosseous anesthesia and the periodontal ligament injection, intraseptal anesthesia remains a useful local anesthesia technique for general dentists. Intraseptal anesthesia can be employed with safety and efficacy as an alternative to conventional local infiltration or regional nerve block injections. It also can serve as an adjunctive technique when conventional techniques fail to achieve adequate local anesthesia. This article reviews the intraseptal anesthesia technique, including its indications and limitations.
Hammad, Hamza Abed Al-Karim
2014-01-01
This article is a comparative study of medical experiments on persons with special needs in Islamic jurisprudence and Arab laws; United Arab Emirates (UAE) law as case study. The current study adopts a comparative analytical and descriptive approach. The conclusion of this study points out that the Convention on the Rights of Persons with Special Needs, ratified by a number of Arab States, including the United Arab Emirates, approves conducting medical experiments on persons with special needs, subject to their free consent. As a result of ratifying this Convention, a number of special laws were enacted to be enforced in the United Arab Emirates. On the other hand, this issue is controversial from an Islamic jurisprudence point of view. One group of jurisprudents permits conducting these experimentations if they are designed to treat the person involved, and prohibits such experimentations for scientific advancement. Other jurisprudents permit conducting medical experimentations on persons with special needs, whether the purpose of such experimentations is treatment of the disabled or achieving scientific advancement. The opinion of this group is consistent with the International Convention and the Arab laws in this respect. However, neither the Convention nor the Arab laws regulate this matter by specific and comprehensive conditions, as addressed by some contemporary scholars. It is recommended that the Convention and the Arab laws adopt these conditions. Additionally, the Convention does not state whether the experimentations may be conducted for the interest of the person with disability or for the purpose of scientific advancement. The text of the Convention is unclear and therefore requires further illumination.
Piro, M.H.A; Wassermann, F.; Grundmann, S.; ...
2017-05-23
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, M.H.A; Wassermann, F.; Grundmann, S.
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less
Side effects and complications of intraosseous anesthesia and conventional oral anesthesia
Peñarrocha-Oltra, David; Ata-Ali, Javier; Oltra-Moscardó, María J.; Peñarrocha, Miguel
2012-01-01
Objective: To analyze the side effects and complications following intraosseous anesthesia (IA), comparing them with those of the conventional oral anesthesia techniques. Material and method: A simple-blind, prospective clinical study was carried out. Each patient underwent two anesthetic techniques: conventional (local infiltration and locoregional anesthetic block) and intraosseous, for respective dental operations. In order to allow comparison of IA versus conventional anesthesia, the two operations were similar and affected the same two teeth in opposite quadrants. Heart rate was recorded in all cases before injection of the anesthetic solution and again 30 seconds after injection. The complications observed after anesthetic administration were recorded. Results: A total of 200 oral anesthetic procedures were carried out in 100 patients. Both IA and conventional anesthesia resulted in a significant increase in heart rate, though the increase was greater with the latter technique. Incidents were infrequent with either anesthetic technique, with no significant differences between them. Regarding the complications, there were significant differences in pain at the injection site, with more intense pain in the case of IA (x2=3.532, p=0.030, Φ2=0.02), while the limitation of oral aperture was more pronounced with conventional anesthesia (x2=5.128, p<0.05, Φ2=0.014). Post-anesthetic biting showed no significant differences (x2=4.082, p=0.121, Φ2=0.009). Conclusions: Both anesthetic techniques significantly increased heart rate, and IA caused comparatively more pain at the injection site, while limited oral aperture was more frequent with conventional anesthesia. Post-anesthetic biting showed no significant differences between the two techniques. Key words:Intraosseous anesthesia, oral anesthesia, mandibular block, heart rate, adrenalin, complications. PMID:22143716
CARS Spectral Fitting with Multiple Resonant Species using Sparse Libraries
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Magnotti, Gaetano
2010-01-01
The dual pump CARS technique is often used in the study of turbulent flames. Fast and accurate algorithms are needed for fitting dual-pump CARS spectra for temperature and multiple chemical species. This paper describes the development of such an algorithm. The algorithm employs sparse libraries, whose size grows much more slowly with number of species than a conventional library. The method was demonstrated by fitting synthetic "experimental" spectra containing 4 resonant species (N2, O2, H2 and CO2), both with noise and without it, and by fitting experimental spectra from a H2-air flame produced by a Hencken burner. In both studies, weighted least squares fitting of signal, as opposed to least squares fitting signal or square-root signal, was shown to produce the least random error and minimize bias error in the fitted parameters.
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Batiste, Susan N.; Sture, Stein; Curreri, Peter A. (Technical Monitor)
2002-01-01
A comprehensive experimental investigation was conducted to investigate the effects of loading condition and confining pressure on strength properties and instability phenomena in sands. A uniform sub-rounded to rounded natural silica sand known as F-75 Ottawa sand was used in the investigation. The results of a series on Conventional Triaxial Compression (CTC) experiments tested under very low confining pressures (0.05 - 1.30) kPa tested in a Microgravity environment abroad the NASA Space Shuttle are presented in addition to the results similar specimens tested in terrestrial laboratory to investigate the effect of confining pressure on the constitutive behavior of sands. The behavior of the CTC experiments is compared with the results of Plane Strain (PS) experiments. Computed tomography and other digital imaging techniques were used to study the development and evolution of shear bands.
Lobo, Rui F. M.; Santos, Diogo M. F.; Sequeira, Cesar A. C.; Ribeiro, Jorge H. F.
2012-01-01
Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam—thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption. PMID:28817043
Regional regularization method for ECT based on spectral transformation of Laplacian
NASA Astrophysics Data System (ADS)
Guo, Z. H.; Kan, Z.; Lv, D. C.; Shao, F. Q.
2016-10-01
Image reconstruction in electrical capacitance tomography is an ill-posed inverse problem, and regularization techniques are usually used to solve the problem for suppressing noise. An anisotropic regional regularization algorithm for electrical capacitance tomography is constructed using a novel approach called spectral transformation. Its function is derived and applied to the weighted gradient magnitude of the sensitivity of Laplacian as a regularization term. With the optimum regional regularizer, the a priori knowledge on the local nonlinearity degree of the forward map is incorporated into the proposed online reconstruction algorithm. Simulation experimentations were performed to verify the capability of the new regularization algorithm to reconstruct a superior quality image over two conventional Tikhonov regularization approaches. The advantage of the new algorithm for improving performance and reducing shape distortion is demonstrated with the experimental data.
The Sine Method: An Alternative Height Measurement Technique
Don C. Bragg; Lee E. Frelich; Robert T. Leverett; Will Blozan; Dale J. Luthringer
2011-01-01
Height is one of the most important dimensions of trees, but few observers are fully aware of the consequences of the misapplication of conventional height measurement techniques. A new approach, the sine method, can improve height measurement by being less sensitive to the requirements of conventional techniques (similar triangles and the tangent method). We studied...
Hot-wire anemometry in hypersonic helium flow
NASA Technical Reports Server (NTRS)
Wagner, R. D.; Weinstein, L. M.
1974-01-01
Hot-wire anemometry techniques are described that have been developed and used for hypersonic-helium-flow studies. The short run time available dictated certain innovations in applying conventional hot-wire techniques. Some examples are given to show the application of the techniques used. Modifications to conventional equipment are described, including probe modifications and probe heating controls.
Comparison of surgically induced astigmatism in patients with horizontal rectus muscle recession
Çakmak, Harun; Kocatürk, Tolga; Dündar, Sema Oruç
2014-01-01
AIM To compare surgically induced astigmatism (SIA) following horizontal rectus muscle recession surgery between suspension recession with both the “hang-back” technique and conventional recession technique. METHODS Totally, 48 eyes of 24 patients who had undergone horizontal rectus muscle recession surgery were reviewed retrospectively. The patients were divided into two groups. Twelve patients were operated on by the hang-back technique (Group 1), and 12 by the conventional recession technique (Group 2). SIA was calculated on the 1st wk, 1st and in the 3rd mo after surgery using the SIA calculator. RESULTS SIA was statistically higher in the Group 1 all postoperative follow-up. SIA was the highest in the 1st wk, and decreased gradually in both groups. CONCLUSION The suspension recession technique induced much more SIA than the conventional recession technique. This difference also continued in the following visits. Therefore, the refractive power should be checked postoperatively in order to avoid refractive amblyopia. Conventional recession surgery should be the preferred method so as to minimize the postoperative refractive changes in patients with amblyopia. PMID:25161948
NASA Technical Reports Server (NTRS)
Murphy, Andrew G.; Browne, David J.; Mirihanage, Wajira U.; Mathiesen, Ragnvald H.
2012-01-01
In the last decade synchrotron X-ray sources have fast become the tool of choice for performing in-situ high resolution imaging during alloy solidification. This paper presents the results of an experimental campaign carried out at the European Synchrotron Radiation Facility, using a Bridgman furnace, to monitor phenomena during solidification of Al-Cu alloys - specifically the onset of equiaxed dendrite coherency. Conventional experimental methods for determining coherency involve measuring the change in viscosity or measuring the change in thermal conductivity across the solidifying melt Conflicts arise when comparing the results of these experimental techniques to find a relationship between cooling rate and coherency fraction. It has been shown that the ratio of average velocity to the average grain diameter has an inversely proportional relationship to coherency fraction. In-situ observation therefore makes it possible to measure these values directly from acquired images sequences and make comparisons with published results.
NASA Technical Reports Server (NTRS)
Lee, Jonghyun; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Choo, Hahn; Liaw, Peter
2006-01-01
Responsive access to space requires re-use of components such as rocket nozzles that operate at extremely high temperatures. For such applications, new ultra-hightemperature materials that can operate over 2,000 C are required. At the temperatures higher than the fifty percent of the melting temperature, the characterization of creep properties is indispensable. Since conventional methods for the measurement of creep is limited below 1,700 C, a new technique that can be applied at higher temperatures is strongly demanded. This research develops a non-contact method for the measurement of creep at the temperatures over 2,300 C. Using the electrostatic levitator in NASA MSFC, a spherical sample was rotated to cause creep deformation by centrifugal acceleration. The deforming sample was captured with a digital camera and analyzed to measure creep deformation. Numerical and analytical analyses have also been conducted to compare the experimental results. Analytical, numerical, and experimental results showed a good agreement with one another.
Experimental investigation of complex circular Airy beam characteristics
NASA Astrophysics Data System (ADS)
Porfirev, A. P.; Fomchenkov, S. A.; Khonina, S. N.
2018-04-01
We demonstrate a new type of circular Airy beams, the so-called azimuthally modulated circular Airy beams, generated by utilizing a diffraction element, whose transmission function is the sum of the transmission function of the element generating a "petal" pattern and the transmission function of the element generating a circular Airy beam. We experimentally investigate the propagation dynamics of such beams and demonstrate that their autofocusing and selfhealing properties are strongly dependent on the number of generated petals. These beams are a combination of a conventional circular Airy beam and vortex laser beams (or their superpositions). Using a spatial light modulator, we demonstrate that these beams have unique properties such as autofocusing, "nondiffractive" propagation and self-healing after passing through an obstacle. The experimental results are in good agreement with the simulation. We believe that these results can be very useful for lensless laser fabrication and laser manipulation techniques, as well as for development of new filament plasma multi-channel formation methods.
A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology
Biró, István; Giugliano, Michele
2015-01-01
Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385
NASA Technical Reports Server (NTRS)
Schweikhhard, W. G.; Chen, Y. S.
1983-01-01
Publications prior to March 1981 were surveyed to determine inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamics at the engine-inlet interface of conventional aircraft (excluding V/STOL). The sixty-five publications found are briefly summarized and tabulated according to topic and are cross-referenced according to content and nature of the investigation (e.g., predictive, experimental, analytical and types of tests). Three appendices include lists of references, authors, organizations and agencies conducting the studies. Also, selected materials summaries, introductions and conclusions - from the reports are included. Few reports were found covering methods for predicting the probable maximum distortion. The three predictive methods found are those of Melick, Jacox and Motycka. The latter two require extensive high response pressure measurements at the compressor face, while the Melick Technique can function with as few as one or two measurements.
The Dynamics of Miscible Interfaces: Simulations
NASA Technical Reports Server (NTRS)
Meiburg, Eckart
2002-01-01
The goal of this experimental/computational investigation (joint with Prof Maxworthy at USC) has been to study the dynamics of miscible interfaces, both from a scientific and a practical point of view, and to prepare a related experiment to be flown on the International Space Station. In order to address these effects, we have focused experimental and computational investigations on miscible displacements in cylindrical capillary tubes, as well as in Hele-Shaw cells. Regarding the flow in a capillary tube, the question was addressed as to whether Korteweg stresses and/or divergence effects can potentially account for discrepancies observed between conventional Stokes flow simulations and experiments for miscible flows in capillary tubes. An estimate of the vorticity and streamfunction fields induced by the Kortewegs stresses was derived, which shows these stresses to result in the formation of a vortex ring structure near the tip of the concentration front. Through this mechanism the propagation velocity of the concentration front is reduced, in agreement with the experimental observations. Divergence effects, on the other hand, were seen to be very small, and they have a negligible influence on the tip velocity. As a result, it can be concluded that they are not responsible for the discrepancies between experiments and conventional Stokes simulations. A further part of our investigation focussed on the development of high-accuracy three-dimensional spectral element simulation techniques for miscible flows in capillary tubes, including the effects of variable density and viscosity. Towards this end, the conservation equations are treated in cylindrical coordinates.
Mino, Takuya; Maekawa, Kenji; Ueda, Akihiro; Higuchi, Shizuo; Sejima, Junichi; Takeuchi, Tetsuo; Hara, Emilio Satoshi; Kimura-Ono, Aya; Sonoyama, Wataru; Kuboki, Takuo
2015-04-01
The aim of this article was to investigate the accuracy in the reproducibility of full-arch implant provisional restorations to final restorations between a 3D Scan/CAD/CAM technique and the conventional method. We fabricated two final restorations for rehabilitation of maxillary and mandibular complete edentulous area and performed a computer-based comparative analysis of the accuracy in the reproducibility of the provisional restoration to final restoration between a 3D scanning and CAD/CAM (Scan/CAD/CAM) technique and the conventional silicone-mold transfer technique. Final restorations fabricated either by the conventional or Scan/CAD/CAM method were successfully installed in the patient. The total concave/convex volume discrepancy observed with the Scan/CAD/CAM technique was 503.50mm(3) and 338.15 mm(3) for maxillary and mandibular implant-supported prostheses (ISPs), respectively. On the other hand, total concave/convex volume discrepancy observed with the conventional method was markedly high (1106.84 mm(3) and 771.23 mm(3) for maxillary and mandibular ISPs, respectively). The results of the present report suggest that Scan/CAD/CAM method enables a more precise and accurate transfer of provisional restorations to final restorations compared to the conventional method. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Yuran; Wu, Di; Omoumi, Farid H.; Li, Yuhua; Wong, Molly Donovan; Ghani, Muhammad U.; Zheng, Bin; Liu, Hong
2018-02-01
The objective of this study was to demonstrate the capability of the high-energy in-line phase contrast imaging in detecting the breast tumors which are undetectable by conventional x-ray imaging but detectable by ultrasound. Experimentally, a CIRS multipurpose breast phantom with heterogeneous 50% glandular and 50% adipose breast tissue was imaged by high-energy in-line phase contrast system, conventional x-ray system and ultrasonography machine. The high-energy in-line phase contrast projection was acquired at 120 kVp, 0.3 mAs with the focal spot size of 18.3 μm. The conventional x-ray projection was acquired at 40 kVp, 3.3 mAs with the focal spot size of 22.26 μm. Both of the x-ray imaging acquisitions were conducted with a unique mean glandular dose of 0.08 mGy. As the result, the high-energy in-line phase contrast system was able to detect one lesion-like object which was also detected by the ultrasonography. This object was spherical shape with the length of about 12.28 mm. Also, the conventional x-ray system was not able to detect any objects. This result indicated the advantages provided by high-energy in-line phase contrast over conventional x-ray system in detecting lesion-like object under the same radiation dose. To meet the needs of current clinical strategies for high-density breasts screening, breast phantoms with higher glandular densities will be employed in future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu
2014-01-01
Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less
Pishnamaz, Miguel; Wilkmann, Christoph; Na, Hong-Sik; Pfeffer, Jochen; Hänisch, Christoph; Janssen, Max; Bruners, Philipp; Kobbe, Philipp; Hildebrand, Frank; Schmitz-Rode, Thomas; Pape, Hans-Christoph
2016-01-01
Electromagnetic tracking is a relatively new technique that allows real time navigation in the absence of radiation. The aim of this study was to prove the feasibility of this technique for the treatment of posterior pelvic ring fractures and to compare the results with established image guided procedures. Tests were performed in pelvic specimens (Sawbones®) with standardized sacral fractures (Type Denis I or II). A gel matrix simulated the operative approach and a cover was used to disable visual control. The electromagnetic setup was performed by using a custom made carbon reference plate and a prototype stainless steel K-wire with an integrated sensor coil. Four different test series were performed: Group OCT: Optical navigation using preoperative CT-scans; group O3D: Optical navigation using intraoperative 3-D-fluoroscopy; group Fluoro: Conventional 2-D-fluoroscopy; group EMT: Electromagnetic navigation combined with a preoperative Dyna-CT. Accuracy of screw placement was analyzed by standardized postoperative CT-scan for each specimen. Operation time and intraoperative radiation exposure for the surgeon was documented. All data was analyzed using SPSS (Version 20, 76 Chicago, IL, USA). Statistical significance was defined as p< 0.05. 160 iliosacral screws were placed (40 per group). EMT resulted in a significantly higher incidence of optimal screw placement (EMT: 36/40) compared to the groups Fluoro (30/40; p< 0.05) and OCT (31/40; p< 0.05). Results between EMT and O3D were comparable (O3D: 37/40; n.s.). Also, the operation time was comparable between groups EMT and O3D (EMT 7.62 min vs. O3D 7.98 min; n.s.), while the surgical time was significantly shorter compared to the Fluoro group (10.69 min; p< 0.001) and the OCT group (13.3 min; p< 0.001). Electromagnetic guided iliosacral screw placement is a feasible procedure. In our experimental setup, this method was associated with improved accuracy of screw placement and shorter operation time when compared with the conventional fluoroscopy guided technique and compared to the optical navigation using preoperative CT-scans. Further studies are necessary to rule out drawbacks of this technique regarding ferromagnetic objects.
Sow, Doudou; Dieng, Yémou; Haouchine, Djamal; Niang, Khadim; Niang, Thiane; Sylla, Khadime; Tine, Roger Clément; Ndiaye, Magatte; Ndiaye, Jean Louis; Faye, Babacar; Faye, Omar; Gaye, Oumar; Dieng, Thérèse; Izri, Arezki
2017-09-01
In the context of controlling intestinal parasites, accurate diagnosis is essential. Our objective was to evaluate the performance of new diagnostic kits compared to conventional microscopic methods in identifying intestinal parasites. Faeces collected in rural area in Senegal were subjected to several detection techniques. Thus, the sensitivity, specificity, positive and negative predictive values of new diagnostic techniques were compared to conventional merthiolate-iodine-formalin, conventional Bailenger and modified Ritchie. Furthermore, the kappa coefficient was calculated to evaluate the correlation between the new kit and those of modified Ritchie. Out of the 117 patients examined, 102 presented with a parasite, or prevalence of 87.1%. The Fumouze techniques proved to be as effective as the conventional methods in detecting flagellates and helminths with sensitivities ranging from 97 to 100%. However, conventional techniques were slightly more sensitive in identifying Endolimax nana and Blastocystis hominis . The correlation was nearly perfect (k = 0.83 and 1), respectively between Bailenger Fumouze, Iodesine Fumouze and modified Ritchie in identifying helminths while it was just acceptable (k = 0.27 and 0.28) in identifying B. hominis . The modified Ritchie technique routinely used in our laboratory remains a good diagnostic tool. However, the use of kit techniques was interesting when reading the pellet after concentration and the Colour KOP staining was a considerable contribution to the diagnosis of the vegetative forms. Therefore, it would be interesting to determine the cost of a stool test using Fumouze kit techniques to provide the most cost effective way.
Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement.
Omar, Ahmad A; Dutt, Manjul; Gmitter, Frederick G; Grosser, Jude W
2016-01-01
The genus Citrus contains numerous fresh and processed fruit cultivars that are economically important worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing opportunities. Citrus improvement by conventional methods alone has many limitations that can be overcome by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in many experimental approaches to cultivar improvement. This chapter provides a brief history of plant somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in biotechnology-facilitated citrus improvement techniques, such as somatic hybridization, somatic cybridization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transformation and Agrobacterium-mediated transformation of embryogenic cell suspension cultures.
Minimum envelope roughness pulse design for reduced amplifier distortion in parallel excitation.
Grissom, William A; Kerr, Adam B; Stang, Pascal; Scott, Greig C; Pauly, John M
2010-11-01
Parallel excitation uses multiple transmit channels and coils, each driven by independent waveforms, to afford the pulse designer an additional spatial encoding mechanism that complements gradient encoding. In contrast to parallel reception, parallel excitation requires individual power amplifiers for each transmit channel, which can be cost prohibitive. Several groups have explored the use of low-cost power amplifiers for parallel excitation; however, such amplifiers commonly exhibit nonlinear memory effects that distort radio frequency pulses. This is especially true for pulses with rapidly varying envelopes, which are common in parallel excitation. To overcome this problem, we introduce a technique for parallel excitation pulse design that yields pulses with smoother envelopes. We demonstrate experimentally that pulses designed with the new technique suffer less amplifier distortion than unregularized pulses and pulses designed with conventional regularization.
High field pulsed microwiggler comprising a conductive tube with periodically space slots
Warren, R.W.
1992-09-01
A microwiggler assembly produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180[degree] relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube. 10 figs.
High field pulsed microwiggler comprising a conductive tube with periodically space slots
Warren, Roger W.
1992-01-01
A microwiggler assembly produces large magnetic fields for oscillating ched particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180.degree. relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.
Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz
2013-09-01
Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Rodionov, S. N.; Martin, J. H.
1999-07-01
A novel approach to climate forecasting on an interannual time scale is described. The approach is based on concepts and techniques from artificial intelligence and expert systems. The suitability of this approach to climate diagnostics and forecasting problems and its advantages compared with conventional forecasting techniques are discussed. The article highlights some practical aspects of the development of climatic expert systems (CESs) and describes an implementation of such a system for the North Atlantic (CESNA). Particular attention is paid to the content of CESNA's knowledge base and those conditions that make climatic forecasts one to several years in advance possible. A detailed evaluation of the quality of the experimental real-time forecasts made by CESNA for the winters of 1995-1996, 1996-1997 and 1997-1998 are presented.
Edward, Joseph; Aziz, Mubarak A; Madhu Usha, Arjun; Narayanan, Jyothi K
2017-12-01
Extractions are routine procedures in dental surgery. Traditional extraction techniques use a combination of severing the periodontal attachment, luxation with an elevator, and removal with forceps. A new technique of extraction of maxillary third molar is introduced in this study-Joedds technique, which is compared with the conventional technique. One hundred people were included in the study, the people were divided into two groups by means of simple random sampling. In one group conventional technique of maxillary third molar extraction was used and on second Joedds technique was used. Statistical analysis was carried out with student's t test. Analysis of 100 patients based on parameters showed that the novel joedds technique had minimal trauma to surrounding tissues, less tuberosity and root fractures and the time taken for extraction was <2 min while compared to other group of patients. This novel technique has proved to be better than conventional third molar extraction technique, with minimal complications. If Proper selection of cases and right technique are used.
Single-incision Laparoscopic Surgery (SILS) in general surgery: a review of current practice.
Froghi, Farid; Sodergren, Mikael Hans; Darzi, Ara; Paraskeva, Paraskevas
2010-08-01
Single-incision laparoscopic surgery (SILS) aims to eliminate multiple port incisions. Although general operative principles of SILS are similar to conventional laparoscopic surgery, operative techniques are not standardized. This review aims to evaluate the current use of SILS published in the literature by examining the types of operations performed, techniques employed, and relevant complications and morbidity. This review considered a total of 94 studies reporting 1889 patients evaluating 17 different general surgical operations. There were 8 different access techniques reported using conventional laparoscopic instruments and specifically designed SILS ports. There is extensive heterogeneity associated with operating methods and in particular ways of overcoming problems with retraction and instrumentation. Published complications, morbidity, and hospital length of stay are comparable to conventional laparoscopy. Although SILS provides excellent cosmetic results and morbidity seems similar to conventional laparoscopy, larger randomized controlled trials are needed to assess the safety and efficacy of this novel technique.
Local Guided Wavefield Analysis for Characterization of Delaminations in Composites
NASA Technical Reports Server (NTRS)
Rogge, Matthew D.; Campbell Leckey, Cara A.
2012-01-01
Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations. Keywords: Ultrasonic wavefield imaging, Windowed Fourier transforms, Guided waves, Structural health monitoring, Nondestructive evaluation
Visualization of stress wave propagation via air-coupled acoustic emission sensors
NASA Astrophysics Data System (ADS)
Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan
2017-02-01
We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.
Spindle speed variation technique in turning operations: Modeling and real implementation
NASA Astrophysics Data System (ADS)
Urbikain, G.; Olvera, D.; de Lacalle, L. N. López; Elías-Zúñiga, A.
2016-11-01
Chatter is still one of the most challenging problems in machining vibrations. Researchers have focused their efforts to prevent, avoid or reduce chatter vibrations by introducing more accurate predictive physical methods. Among them, the techniques based on varying the rotational speed of the spindle (or SSV, Spindle Speed Variation) have gained great relevance. However, several problems need to be addressed due to technical and practical reasons. On one hand, they can generate harmful overheating of the spindle especially at high speeds. On the other hand, the machine may be unable to perform the interpolation properly. Moreover, it is not trivial to select the most appropriate tuning parameters. This paper conducts a study of the real implementation of the SSV technique in turning systems. First, a stability model based on perturbation theory was developed for simulation purposes. Secondly, the procedure to realistically implement the technique in a conventional turning center was tested and developed. The balance between the improved stability margins and acceptable behavior of the spindle is ensured by energy consumption measurements. Mathematical model shows good agreement with experimental cutting tests.
Advantage of spatial map ion imaging in the study of large molecule photodissociation
NASA Astrophysics Data System (ADS)
Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung
2017-07-01
The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.
Bithermal fatigue: A simplified alternative to thermomechanical fatigue
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.
1988-01-01
A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.
NASA Astrophysics Data System (ADS)
Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kazakov, Vadim S.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.
2017-04-01
This work presents method for performing precision macro-structure defects "tapers" and "up-tapers" written in conventional silica telecommunication multimode optical fibers by commercially available field fusion splicer with modified software settings and following writing fiber Bragg gratings over or near them. We developed technique for macrodefect geometry parameters estimation via analysis of photo-image performed after defect writing and displayed on fusion splicer screen. Some research results of defect geometry dependence on fusion current and fusion time values re-set in splicer program are represented that provided ability to choose their "the best" combination. Also experimental statistical researches concerned with "taper" and "up-taper" diameter stability as well as their insertion loss values during their writing under fixed corrected splicer program parameters were performed. We developed technique for FBG writing over or near macro-structure defect. Some results of spectral response measurements produced for short-length samples of multimode optical fiber with fiber Bragg gratings written over and near macro-defects prepared by using proposed technique are presented.
Mohammadi Ayenehdeh, Jamal; Niknam, Bahareh; Hashemi, Seyed Mahmoud; Rahavi, Hossein; Rezaei, Nima; Soleimani, Masoud; Tajik, Nader
2017-07-01
Islet transplantation could be an ideal alternative treatment to insulin therapy for type 1 diabetes Mellitus (T1DM). This clinical and experimental field requires a model that covers problems such as requiring a large number of functional and viable islets, the optimal transplantation site, and the prevention of islet dispersion. Hence, the methods of choice for isolation of functional islets and transplantation are crucial. The present study has introduced an experimental model that overcomes some critical issues in islet transplantation, including in situ pancreas perfusion by digestive enzymes through common bile duct. In comparison with conventional methods, we inflated the pancreas in Petri dishes with only 1 ml collagenase type XI solution, which was followed by hand-picking isolation or Ficoll gradient separation to purify the islets. Then we used a hydrogel composite in which the islets were embedded and transplanted into the peritoneal cavity of the streptozotocin-induced diabetic C57BL/6 mice. As compared to the yield of the classical methods, in our modified technique, the mean yield of isolation was about 130-200 viable islets/mouse pancreas. In vitro glucose-mediated insulin secretion assay indicated an appropriate response in isolated islets. In addition, data from in vivo experiments revealed that the allograft remarkably maintained blood glucose levels under 400 mg/dl and hydrogel composite prevents the passage of immune cells. In the model presented here, the rapid islet isolation technique and the application of biomimetic hydrogel wrapping of islets could facilitate islet transplantation procedures.
The effect of creative problem solving on students’ mathematical adaptive reasoning
NASA Astrophysics Data System (ADS)
Muin, A.; Hanifah, S. H.; Diwidian, F.
2018-01-01
This research was conducted to analyse the effect of creative problem solving (CPS) learning model on the students’ mathematical adaptive reasoning. The method used in this study was a quasi-experimental with randomized post-test only control group design. Samples were taken as many as two classes by cluster random sampling technique consisting of experimental class (CPS) as many as 40 students and control class (conventional) as many as 40 students. Based on the result of hypothesis testing with the t-test at the significance level of 5%, it was obtained that significance level of 0.0000 is less than α = 0.05. This shows that the students’ mathematical adaptive reasoning skills who were taught by CPS model were higher than the students’ mathematical adaptive reasoning skills of those who were taught by conventional model. The result of this research showed that the most prominent aspect of adaptive reasoning that could be developed through a CPS was inductive intuitive. Two aspects of adaptive reasoning, which were inductive intuitive and deductive intuitive, were mostly balanced. The different between inductive intuitive and deductive intuitive aspect was not too big. CPS model can develop student mathematical adaptive reasoning skills. CPS model can facilitate development of mathematical adaptive reasoning skills thoroughly.
Barrett, Matthew JP; Suresh, Vinod
2013-01-01
Neural activation triggers a rapid, focal increase in blood flow and thus oxygen delivery. Local oxygen consumption also increases, although not to the same extent as oxygen delivery. This ‘uncoupling' enables a number of widely-used functional neuroimaging techniques; however, the physiologic mechanisms that govern oxygen transport under these conditions remain unclear. Here, we explore this dynamic process using a new mathematical model. Motivated by experimental observations and previous modeling, we hypothesized that functional recruitment of capillaries has an important role during neural activation. Using conventional mechanisms alone, the model predictions were inconsistent with in vivo measurements of oxygen partial pressure. However, dynamically increasing net capillary permeability, a simple description of functional recruitment, led to predictions consistent with the data. Increasing permeability in all vessel types had the same effect, but two alternative mechanisms were unable to produce predictions consistent with the data. These results are further evidence that conventional models of oxygen transport are not sufficient to predict dynamic experimental data. The data and modeling suggest that it is necessary to include a mechanism that dynamically increases net vascular permeability. While the model cannot distinguish between the different possibilities, we speculate that functional recruitment could have this effect in vivo. PMID:23673433
Li, Qiang; Liu, Hao-Li; Chen, Wen-Shiang
2013-01-01
Previous studies developed ultrasound temperature-imaging methods based on changes in backscattered energy (CBE) to monitor variations in temperature during hyperthermia. In conventional CBE imaging, tracking and compensation of the echo shift due to temperature increase need to be done. Moreover, the CBE image does not enable visualization of the temperature distribution in tissues during nonuniform heating, which limits its clinical application in guidance of tissue ablation treatment. In this study, we investigated a CBE imaging method based on the sliding window technique and the polynomial approximation of the integrated CBE (ICBEpa image) to overcome the difficulties of conventional CBE imaging. We conducted experiments with tissue samples of pork tenderloin ablated by microwave irradiation to validate the feasibility of the proposed method. During ablation, the raw backscattered signals were acquired using an ultrasound scanner for B-mode and ICBEpa imaging. The experimental results showed that the proposed ICBEpa image can visualize the temperature distribution in a tissue with a very good contrast. Moreover, tracking and compensation of the echo shift were not necessary when using the ICBEpa image to visualize the temperature profile. The experimental findings suggested that the ICBEpa image, a new CBE imaging method, has a great potential in CBE-based imaging of hyperthermia and other thermal therapies. PMID:24260041
Xu, Jin-Peng; Wang, Mei-Xiao; Liu, Zhi Long; Ge, Jian-Feng; Yang, Xiaojun; Liu, Canhua; Xu, Zhu An; Guan, Dandan; Gao, Chun Lei; Qian, Dong; Liu, Ying; Wang, Qiang-Hua; Zhang, Fu-Chun; Xue, Qi-Kun; Jia, Jin-Feng
2015-01-09
Majorana fermions have been intensively studied in recent years for their importance to both fundamental science and potential applications in topological quantum computing. They are predicted to exist in a vortex core of superconducting topological insulators. However, it is extremely difficult to distinguish them experimentally from other quasiparticle states for the tiny energy difference between Majorana fermions and these states, which is beyond the energy resolution of most available techniques. Here, we circumvent the problem by systematically investigating the spatial profile of the Majorana mode and the bound quasiparticle states within a vortex in Bi(2)Te(3) films grown on a superconductor NbSe(2). While the zero bias peak in local conductance splits right off the vortex center in conventional superconductors, it splits off at a finite distance ∼20 nm away from the vortex center in Bi(2)Te(3). This unusual splitting behavior has never been observed before and could be possibly due to the Majorana fermion zero mode. While the Majorana mode is destroyed by the interaction between vortices, the zero bias peak splits as a conventional superconductor again. This work provides self-consistent evidences of Majorana fermions and also suggests a possible route to manipulating them.
Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming
2014-12-31
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.
Applications of Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.
2004-01-01
Initial steps in the application o f a low-order panel method computational fluid dynamic (CFD) code to the calculation of aircraft dynamic stability and control (S&C) derivatives are documented. Several capabilities, unique to CFD but not unique to this particular demonstration, are identified and demonstrated in this paper. These unique capabilities complement conventional S&C techniques and they include the ability to: 1) perform maneuvers without the flow-kinematic restrictions and support interference commonly associated with experimental S&C facilities, 2) easily simulate advanced S&C testing techniques, 3) compute exact S&C derivatives with uncertainty propagation bounds, and 4) alter the flow physics associated with a particular testing technique from those observed in a wind or water tunnel test in order to isolate effects. Also presented are discussions about some computational issues associated with the simulation of S&C tests and selected results from numerous surface grid resolution studies performed during the course of the study.
High-speed transport-of-intensity phase microscopy with an electrically tunable lens.
Zuo, Chao; Chen, Qian; Qu, Weijuan; Asundi, Anand
2013-10-07
We present a high-speed transport-of-intensity equation (TIE) quantitative phase microscopy technique, named TL-TIE, by combining an electrically tunable lens with a conventional transmission microscope. This permits the specimen at different focus position to be imaged in rapid succession, with constant magnification and no physically moving parts. The simplified image stack collection significantly reduces the acquisition time, allows for the diffraction-limited through-focus intensity stack collection at 15 frames per second, making dynamic TIE phase imaging possible. The technique is demonstrated by profiling of microlens array using optimal frequency selection scheme, and time-lapse imaging of live breast cancer cells by inversion the defocused phase optical transfer function to correct the phase blurring in traditional TIE. Experimental results illustrate its outstanding capability of the technique for quantitative phase imaging, through a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach with prosperous applications in micro-optics, life sciences and bio-photonics.
NASA Astrophysics Data System (ADS)
Pal, Siddharth; Basak, Aniruddha; Das, Swagatam
In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.
Stecher, David; Bronkers, Glenn; Noest, Jappe O.T.; Tulleken, Cornelis A.F.; Hoefer, Imo E.; van Herwerden, Lex A.; Pasterkamp, Gerard; Buijsrogge, Marc P.
2014-01-01
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated. PMID:25490000
NASA Astrophysics Data System (ADS)
Okawa, Tsutomu; Kaminishi, Tsukasa; Kojima, Yoshiyuki; Hirabayashi, Syuichi; Koizumi, Hisao
Business process modeling (BPM) is gaining attention as a measure of analysis and improvement of the business process. BPM analyses the current business process as an AS-IS model and solves problems to improve the current business and moreover it aims to create a business process, which produces values, as a TO-BE model. However, researches of techniques that connect the business process improvement acquired by BPM to the implementation of the information system seamlessly are rarely reported. If the business model obtained by BPM is converted into UML, and the implementation can be carried out by the technique of UML, we can expect the improvement in efficiency of information system implementation. In this paper, we describe a method of the system development, which converts the process model obtained by BPM into UML and the method is evaluated by modeling a prototype of a parts procurement system. In the evaluation, comparison with the case where the system is implemented by the conventional UML technique without going via BPM is performed.
Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...
2015-07-01
Few-photon ionization and relaxation processes in acetylene (C 2H 2) and ethane (C 2H 6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the samemore » FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less
Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics
Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna
2011-01-01
A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157
Study of statis and dynamic stress effects in nonlinear solids
NASA Technical Reports Server (NTRS)
Namkung, M.
1985-01-01
As the basic physical principles behind the low-field magnetoacoustic interactions have been unfolded, a new step in the present research had to be taken. First, the stress measurements began in samples obtained in real railroad wheel and rail materials. Second, the effect of texture, which is the prime obstacle of conventional NDE techniques, has been investigated. The first stage shows experimental results on these subjects again confirmed that the present technique is most suited for nondestructive stress characterization in steel components. The stress effects on the magnetoacoustic interaction obtained in a sample made from railroad rail which were very similar to those obtained previously in 1045 steel. These results being somewhat different from the results with low (1020) and high (1095) carbon steels, there seemed to be certain range of medium carbon steels having the same characteristics. Also, as expected from the model, the stress information obtained by this technique has been confirmed to be least affected by the presence of texture.
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-03-01
The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.
Fahimian, Benjamin; Yu, Victoria; Horst, Kathleen; Xing, Lei; Hristov, Dimitre
2013-12-01
External beam radiation therapy (EBRT) provides a non-invasive treatment alternative for accelerated partial breast irradiation (APBI), however, limitations in achievable dose conformity of current EBRT techniques have been correlated to reported toxicity. To enhance the conformity of EBRT APBI, a technique for conventional LINACs is developed, which through combined motion of the couch, intensity modulated delivery, and a prone breast setup, enables wide-angular coronal arc irradiation of the ipsilateral breast without irradiating through the thorax and contralateral breast. A couch trajectory optimization technique was developed to determine the trajectories that concurrently avoid collision with the LINAC and maintain the target within the MLC apertures. Inverse treatment planning was performed along the derived trajectory. The technique was experimentally implemented by programming the Varian TrueBeam™ STx in Developer Mode. The dosimetric accuracy of the delivery was evaluated by ion chamber and film measurements in phantom. The resulting optimized trajectory was shown to be necessarily non-isocentric, and contain both translation and rotations of the couch. Film measurements resulted in 93% of the points in the measured two-dimensional dose maps passing the 3%/3mm Gamma criterion. Preliminary treatment plan comparison to 5-field 3D-conformal, IMRT, and VMAT demonstrated enhancement in conformity, and reduction of the normal tissue V50% and V100% parameters that have been correlated with EBRT toxicity. The feasibility of wide-angular intensity modulated partial breast irradiation using motion of the couch has been demonstrated experimentally on a standard LINAC for the first time. For patients eligible for a prone setup, the technique may enable improvement of dose conformity and associated dose-volume parameters correlated with toxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Feasibility of ballistic strengthening exercises in neurologic rehabilitation.
Williams, Gavin; Clark, Ross A; Hansson, Jessica; Paterson, Kade
2014-09-01
Conventional methods for strength training in neurologic rehabilitation are not task specific for walking. Ballistic strength training was developed to improve the functional transfer of strength training; however, no research has investigated this in neurologic populations. The aim of this pilot study was to evaluate the feasibility of applying ballistic principles to conventional leg strengthening exercises in individuals with mobility limitations as a result of neurologic injuries. Eleven individuals with neurologic injuries completed seated and reclined leg press using conventional and ballistic techniques. A 2 × 2 repeated-measures analysis of variance was used to compare power measures (peak movement height and peak velocity) between exercises and conditions. Peak jump velocity and peak jump height were greater when using the ballistic jump technique rather than the conventional concentric technique (P < 0.01). These findings suggest that when compared with conventional strengthening exercises, the incorporation of ballistic principles was associated with increased peak height and peak velocities.
Shukla, Surabhi; Einstein, A; Shukla, Abhilasha; Mishra, Deepika
2015-01-01
Background: Liquid-based cytology (LBC), recommended in the mass screening of potentially malignant cervical and oral lesions, suffers from high cost owing to the use of expensive automated devices and materials. Considering the need for cost-effective LBC techniques, we evaluated the efficacy of an inexpensive manual LBC (MLBC) technique against conventional cytological technique in terms of specimen adequacy and smear quality of oral smears. Materials and Methods: Cytological samples were collected from 21 patients using a cytobrush device. After preparation of a conventional smear, the brush containing the remaining sample was immersed in the preservative vial. The preserved material was processed by an MLBC technique and subsequently, direct smears were made from the prepared cell button. Both conventional and MLBC smears were stained by routine Papanicolaou technique and evaluated by an independent observer for the thickness of the smear, cellular distribution, resolution/clarity of cells, cellular staining characteristics and the presence of unsatisfactory background/artifacts. Each parameter was graded as satisfactory; or satisfactory, but limited; or unsatisfactory. Chi-square test was used to compare the values obtained (significance set at P ≤ 0.05). Results: MLBC technique produced a significant number of satisfactory smears with regard to cell distribution, clarity/resolution, staining characteristics and background/artifacts compared to conventional methods. Conclusions: MLBC is a cost-effective cytological technique that may produce oral smears with excellent cytomorphology and longer storage life. PMID:26980958
Manufacturing implant supported auricular prostheses by rapid prototyping techniques.
Karatas, Meltem Ozdemir; Cifter, Ebru Demet; Ozenen, Didem Ozdemir; Balik, Ali; Tuncer, Erman Bulent
2011-08-01
Maxillofacial prostheses are usually fabricated on the models obtained following the impression procedures. Disadvantages of conventional impression techniques used in production of facial prosthesis are deformation of soft tissues caused by impression material and disturbance of the patient due to. Additionally production of prosthesis by conventional methods takes longer time. Recently, rapid prototyping techniques have been developed for extraoral prosthesis in order to reduce these disadvantages of conventional methods. Rapid prototyping technique has the potential to simplify the procedure and decrease the laboratory work required. It eliminates the need for measurement impression procedures and preparation of wax model to be performed by prosthodontists themselves In the near future this technology will become a standard for fabricating maxillofacial prostheses.
Funk, Anna L; Boisson, Sophie; Clasen, Thomas; Ensink, Jeroen H J
2013-06-01
The Kato-Katz, conventional ethyl-acetate sedimentation, and Midi Parasep(®) methods for diagnosing infection with soil-transmitted helminths were compared. The Kato-Katz technique gave the best overall diagnostic performance with the highest results in all measures (prevalence, faecal egg count, sensitivity) followed by the conventional ethyl-acetate and then the Midi Parasep(®) technique. The Kato-Katz technique showed a significantly higher faecal egg count and sensitivity for both hookworm and Trichuris as compared to the Midi Parasep(®) technique. The conventional ethyl-acetate technique produced smaller pellets and showed lower pellet mobility as compared to the Midi Parasep(®). Copyright © 2013 Elsevier B.V. All rights reserved.
Split-spectrum processing technique for SNR enhancement of ultrasonic guided wave.
Pedram, Seyed Kamran; Fateri, Sina; Gan, Lu; Haig, Alex; Thornicroft, Keith
2018-02-01
Ultrasonic guided wave (UGW) systems are broadly used in several branches of industry where the structural integrity is of concern. In those systems, signal interpretation can often be challenging due to the multi-modal and dispersive propagation of UGWs. This results in degradation of the signals in terms of signal-to-noise ratio (SNR) and spatial resolution. This paper employs the split-spectrum processing (SSP) technique in order to enhance the SNR and spatial resolution of UGW signals using the optimized filter bank parameters in real time scenario for pipe inspection. SSP technique has already been developed for other applications such as conventional ultrasonic testing for SNR enhancement. In this work, an investigation is provided to clarify the sensitivity of SSP performance to the filter bank parameter values for UGWs such as processing bandwidth, filter bandwidth, filter separation and a number of filters. As a result, the optimum values are estimated to significantly improve the SNR and spatial resolution of UGWs. The proposed method is synthetically and experimentally compared with conventional approaches employing different SSP recombination algorithms. The Polarity Thresholding (PT) and PT with Minimization (PTM) algorithms were found to be the best recombination algorithms. They substantially improved the SNR up to 36.9dB and 38.9dB respectively. The outcome of the work presented in this paper paves the way to enhance the reliability of UGW inspections. Copyright © 2017 Elsevier B.V. All rights reserved.
Occlusal contact of fixed implant prostheses using functional bite impression technique.
Suzuki, Yasunori; Shimpo, Hidemasa; Ohkubo, Chikahiro
2015-02-01
Functional bite impression (FBI) has been described as a definitive impression made under occlusal force after functional generated path (FGP) recording. This study compared the accuracy of occlusal contact of implant-fixed prostheses using the FBI technique and the conventional impression technique. Twelve subjects, each missing a single premolar or molar, were selected for this study. The conditions of the occlusal contacts were identified by the modified transillumination method. The occlusal contact condition was determined by comparing the rate of change in the occlusal contact area of the implant-fixed prostheses and both adjacent teeth before and after occlusal adjustment. The rate of change in the occlusal contact area using the FBI technique was 96%, and the rate using the conventional technique was 54%. The occlusal contact of implant prostheses using the FBI technique revealed better accuracy than that of the conventional technique. Regarding the FBI technique, a precise and functional prosthesis could be produced by completing the maxillomandibular registration, impression, and FGP at the same time.
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems
Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip
2017-01-01
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409
Geminiani, Alessandro; Weitz, Daniel S; Ercoli, Carlo; Feng, Changyong; Caton, Jack G; Papadimitriou, Dimitrios E V
2015-04-01
Sonic instruments may reduce perforation rates of the schneiderian membrane during lateral window sinus augmentation procedures. This study compares the incidence of membrane perforations using a sonic handpiece with an oscillating diamond insert versus a turbine handpiece with a conventional rotary diamond stone during lateral window sinus augmentation procedures. A retrospective chart analysis identified all lateral window sinus augmentation procedures done during a defined period. Among these procedures, those performed with a sonic handpiece and an oscillating diamond insert (experimental) and those performed with a conventional turbine and rotary diamond stone (conventional) were selected for this study. Reported occurrences of sinus membrane perforations during preparation of the osteotomy and elevation of the sinus membrane, as well as postoperative complications, were recorded and compared between treatment groups. Ninety-three consecutive patients were identified for a total of 130 sinus augmentation procedures (51 conventional, 79 experimental). Schneiderian membrane perforations were noted during preparation of the lateral window osteotomy in 27.5% of the sinuses in the conventional group and 12.7% of sinuses in the experimental group. During membrane elevation, perforations were noted in 43.1% of the sinuses in the conventional group and 25.3% of sinuses in the experimental group. Both differences in perforation rates were statistically significant (p < .05). There was no statistically significant difference in postoperative complications. In this study, the use of a sonic instrument to prepare the lateral window osteotomy during sinus elevation procedures resulted in a reduced perforation rate of the Schneiderian membrane compared with the conventional turbine instrument. © 2013 Wiley Periodicals, Inc.
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.
Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip
2017-01-31
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.
CALL, Prewriting Strategies, and EFL Writing Quantity
ERIC Educational Resources Information Center
Shafiee, Sajad; Koosha, Mansour; Afghar, Akbar
2015-01-01
This study sought to explore the effect of teaching prewriting strategies through different methods of input delivery (i.e. conventional, web-based, and hybrid) on EFL learners' writing quantity. In its quasi-experimental study, the researchers recruited 98 available sophomores, and assigned them to three experimental groups (conventional,…
Aggarwal, Sushil Kumar; Ankur, Bhatnagar; Jain, R K
2015-09-01
We have described a new technique of using ultra-thin silicon sheet (0.2 mm) between two transected bony ends for temporo-mandibular joint (TMJ) ankylosis in children with advantages of short operative time, minimal foreign material insertion and faster recovery time post-operatively which makes our technique a good alternative to conventional techniques. Our study is a non-randomized prospective study conducted on 10 children aged between 4 and 15 years who presented to our tertiary care institute with severe trismus after traumatic injury and were willing to undergo this new technique. The main outcome measure taken into consideration was difference between pre-operative, intra-operative (on table) and post-operative mouth opening (minimum 2 years follow-up). The pre-operative mouth opening in our cases varied from 1 to 5 mm. The intra-operative mouth opening achieved ranged from 2.8 to 3.2 cm. The mouth opening was about more than 2.7 cm in all our cases at 2 years of follow-up. Our technique is a good alternative to conventional techniques used for TMJ ankylosis in children but few more randomized controlled trials are required to assess its effectiveness in comparison to conventional techniques and for universal adoption of this technique.
The Investigation of Laparoscopic Instrument Movement Control and Learning Effect
Lin, Chiuhsiang Joe
2013-01-01
Laparoscopic surgery avoids large incisions for intra-abdominal operations as required in conventional open surgery. Whereas the patient benefits from laparoscopic techniques, the surgeon encounters new difficulties that were not present during open surgery procedures. However, limited literature has been published in the essential movement characteristics such as magnification, amplitude, and angle. For this reason, the present study aims to investigate the essential movement characteristics of instrument manipulation via Fitts' task and to develop an instrument movement time predicting model. Ten right-handed subjects made discrete Fitts' pointing tasks using a laparoscopic trainer. The experimental results showed that there were significant differences between the three factors in movement time and in throughput. However, no significant differences were observed in the improvement rate for movement time and throughput between these three factors. As expected, the movement time was rather variable and affected markedly by direction to target. The conventional Fitts' law model was extended by incorporating a directional parameter into the model. The extended model was shown to better fit the data than the conventional model. These findings pointed to a design direction for the laparoscopic surgery training program, and the predictive model can be used to establish standards in the training procedure. PMID:23984348
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lencioni, Riccardo, E-mail: riccardo.lencioni@med.unipi.it; Baere, Thierry de; Burrel, Marta
2012-10-15
Tranarterial chemoembolization (TACE) has been established by a meta-analysis of randomized controlled trials as the standard of care for nonsurgical patients with large or multinodular noninvasive hepatocellular carcinoma (HCC) isolated to the liver and with preserved liver function. Although conventional TACE with administration of an anticancer-in-oil emulsion followed by embolic agents has been the most popular technique, the introduction of embolic drug-eluting beads has provided an alternative to lipiodol-based regimens. Experimental studies have shown that TACE with drug-eluting beads has a safe pharmacokinetic profile and results in effective tumor killing in animal models. Early clinical experiences have confirmed that drug-elutingmore » beads provide a combined ischemic and cytotoxic effect locally with low systemic toxic exposure. Recently, the clinical value of a TACE protocol performed by using the embolic microsphere DC Bead loaded with doxorubicin (DEBDOX; drug-eluting bead doxorubicin) has been shown by randomized controlled trials. An important limitation of conventional TACE has been the inconsistency in the technique and the treatment schedules. This limitation has hampered the acceptance of TACE as a standard oncology treatment. Doxorubicin-loaded DC Bead provides levels of consistency and repeatability not available with conventional TACE and offers the opportunity to implement a standardized approach to HCC treatment. With this in mind, a panel of physicians took part in a consensus meeting held during the European Conference on Interventional Oncology in Florence, Italy, to develop a set of technical recommendations for the use of DEBDOX in HCC treatment. The conclusions of the expert panel are summarized.« less
Noninvasive detection of cardiovascular pulsations by optical Doppler techniques
NASA Astrophysics Data System (ADS)
Hong, HyunDae; Fox, Martin D.
1997-10-01
A system has been developed based on the measurement of skin surface vibration that can be used to detect the underlying vascular wall motion of superficial arteries and the chest wall. Data obtained from tissue phantoms suggested that the detected signals were related to intravascular pressure, an important clinical and physiological parameter. Unlike the conventional optical Doppler techniques that have been used to measure blood perfusion in skin layers and blood flow within superficial arteries, the present system was optimized to pick up skin vibrations. An optical interferometer with a 633-nm He:Ne laser was utilized to detect micrometer displacements of the skin surface. Motion velocity profiles of the skin surface near each superficial artery and auscultation points on a chest for the two heart valve sounds exhibited distinctive profiles. The theoretical and experimental results demonstrated that the system detected the velocity of skin movement, which is related to the time derivative of the pressure. The system also reduces the loading effect on the pulsation signals and heart sounds produced by the conventional piezoelectric vibration sensors. The system's sensitivity, which could be optimized further, was 366.2 micrometers /s for the present research. Overall, optical cardiovascular vibrometry has the potential to become a simple noninvasive approach to cardiovascular screening.
SQUID-detected FMR: Resonance in single crystalline and polycrystalline yttrium iron garnet
NASA Astrophysics Data System (ADS)
O'Reilly, J. M.; Stamenov, P.
2018-04-01
Here two new techniques for the detection of broadband (100 MHz-20 GHz) ferromagnetic resonance (FMR)/ferrimagnetic resonance in single and poly-crystalline materials, which rely on SQUID-based gradiometry detection of small changes in the magnetisation, are developed. In the first method, small changes in the along-the-applied-field projection of the coupled magnetic moment (Δmz) are detected as the material is driven into resonance. Absolute measurement of the longitudinal component of the magnetisation and the resonance induced lowering of this moment makes estimation of the precession cone angle accessible, which is typically difficult to extract using conventional cavity or stripline based detection methods. The second method invokes the change in Δmz with the resonance-induced thermal heating (d/mz d T ). Magnetisation dynamics in bulk Y3Fe5O12 are observed over a broad range of experimental temperatures (4 K-400 K) and fields (10-500 mT). The inhomogeneous microwave excitation allows for the observation of higher magnetostatic modes and the convenient tracking of very broad resonances. The two SQUID-detection techniques when combined with conventional broadband vector network analyser-FMR, low-frequency magnetic susceptibility, and DC magnetometry, all easily realised, essentially concurrently, using the same module, greatly expand the amount of static and dynamic information accessible.
Facial recognition using multisensor images based on localized kernel eigen spaces.
Gundimada, Satyanadh; Asari, Vijayan K
2009-06-01
A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.
NASA Astrophysics Data System (ADS)
Chuang, Cheng-Hung; Chen, Yen-Lin
2013-02-01
This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.
NASA Astrophysics Data System (ADS)
Khan, Md Mesbah-ul Ghani
Microchannels have several advantages over traditional large tubes. Heat transfer using microchannels recently have attracted significant research and industrial design interests. Open literatures leave with question on the applicability of classical macroscale theory in microchannels. Better understanding of heat transfer in various microchannel geometries and building experimental database are continuously urged. The purpose of this study is to contribute the findings and data to this emerging area through carefully designed and well controlled experimental works. The commercially important glycol-water mixture heat transfer fluid and multiport slab serpentine heat exchangers are encountered in heating and cooling areas, e.g. in automotive, aircraft, and HVAC industries. For a given heat duty, the large diameter tubes experience turbulent flow whereas the narrow channels face laminar flow and often developing flow. Study of low Reynolds number developing glycol-water mixture laminar flow in serpentine microchannel heat exchanger with parallel multi-port slab is not available in the open literature. Current research therefore experimentally investigates glycol-water mixture and water in simultaneously developing laminar flows. Three multiport microchannel heat exchangers; straight and serpentine slabs, are used for each fluid. Friction factors of glycol-water mixture and water flows in straight slabs are higher than conventional fully developed laminar flow. If a comprehensive pressure balance is introduced, the results are well compared with conventional Poiseuille theory. Similar results are found in serpentine slab. The pressure drop for the straight core is the highest, manifolds are the intermediate, and serpentine is the least; which are beneficial for heat exchangers. The heat transfer results in serpentine slab for glycol-water mixture and water are higher and could not be compared with conventional fully developed and developing flow correlations. New heat transfer correlations are therefore developed in current study. The experimental data are compared with improved scheme of modified Wilson Plot Technique and numerical simulation having the same geometries and operating conditions. Very good agreements in results were found in all cases. The presence of adiabatic serpentine bend in multi-port flat slab heat exchanger enhances more heat transfer with less pressure drop penalty as compared to the initial entrance condition caused by the inlet manifold.
Laserthermia on head and neck malignancies--experimental and clinical studies.
Ohyama, M; Nobori, T; Moriyama, I; Furuta, S; Shima, T
1988-01-01
In recent years, remarkable progress has been made in thermotherapy. However, there is little information on localized laser hyperthermia (laserthermia) or on conventional hyperthermia technique applied to head and neck cancers. We have developed a ceramic probe to insert into tumor tissue and irradiate the Nd:YAG laser omnidirectionally. This probe can heat a spherical range of 1.5 cm to 43 degrees C. This paper concerns experimental and clinical studies on the effectiveness of laserthermia using our technique in the tumor of head and neck regions. The results obtained were as follows: histological findings and biochemical studies of arachidonic acid metabolites on normal rabbit tongue after laserthermia showed very slight effect and relatively short duration of the concomitant inflammation. The combination of laserthermia and CDDP chemotherapy was found to give a much better cytocidal effect on the tumor tissue in nude mice implanted with human thyroid cancer cells. In a clinical study on 21 cases with head and neck cancers, four cases showed complete and 13 cases showed partial remission after combined treatments of laserthermia and radiochemotherapy. Both basic experimental and clinical results have indicated a role for laserthermia in the treatment of head and neck cancer. Possible uses include the treatment of early cancer as well as advanced or recurrent cancer, where its therapeutic effect may be increased by combination with radiotherapy or chemotherapy.
Vojdani, M; Torabi, K; Farjood, E; Khaledi, Aar
2013-09-01
Metal-ceramic crowns are most commonly used as the complete coverage restorations in clinical daily use. Disadvantages of conventional hand-made wax-patterns introduce some alternative ways by means of CAD/CAM technologies. This study compares the marginal and internal fit of copings cast from CAD/CAM and conventional fabricated wax-patterns. Twenty-four standardized brass dies were prepared and randomly divided into 2 groups according to the wax-patterns fabrication method (CAD/CAM technique and conventional method) (n=12). All the wax-patterns were fabricated in a standard fashion by means of contour, thickness and internal relief (M1-M12: representative of CAD/CAM group, C1-C12: representative of conventional group). CAD/CAM milling machine (Cori TEC 340i; imes-icore GmbH, Eiterfeld, Germany) was used to fabricate the CAD/CAM group wax-patterns. The copings cast from 24 wax-patterns were cemented to the corresponding dies. For all the coping-die assemblies cross-sectional technique was used to evaluate the marginal and internal fit at 15 points. The Student's t- test was used for statistical analysis (α=0.05). The overall mean (SD) for absolute marginal discrepancy (AMD) was 254.46 (25.10) um for CAD/CAM group and 88.08(10.67) um for conventional group (control). The overall mean of internal gap total (IGT) was 110.77(5.92) um for CAD/CAM group and 76.90 (10.17) um for conventional group. The Student's t-test revealed significant differences between 2 groups. Marginal and internal gaps were found to be significantly higher at all measured areas in CAD/CAM group than conventional group (p< 0.001). Within limitations of this study, conventional method of wax-pattern fabrication produced copings with significantly better marginal and internal fit than CAD/CAM (machine-milled) technique. All the factors for 2 groups were standardized except wax pattern fabrication technique, therefore, only the conventional group results in copings with clinically acceptable margins of less than 120um.
Vojdani, M; Torabi, K; Farjood, E; Khaledi, AAR
2013-01-01
Statement of Problem: Metal-ceramic crowns are most commonly used as the complete coverage restorations in clinical daily use. Disadvantages of conventional hand-made wax-patterns introduce some alternative ways by means of CAD/CAM technologies. Purpose: This study compares the marginal and internal fit of copings cast from CAD/CAM and conventional fabricated wax-patterns. Materials and Method: Twenty-four standardized brass dies were prepared and randomly divided into 2 groups according to the wax-patterns fabrication method (CAD/CAM technique and conventional method) (n=12). All the wax-patterns were fabricated in a standard fashion by means of contour, thickness and internal relief (M1-M12: representative of CAD/CAM group, C1-C12: representative of conventional group). CAD/CAM milling machine (Cori TEC 340i; imes-icore GmbH, Eiterfeld, Germany) was used to fabricate the CAD/CAM group wax-patterns. The copings cast from 24 wax-patterns were cemented to the corresponding dies. For all the coping-die assemblies cross-sectional technique was used to evaluate the marginal and internal fit at 15 points. The Student’s t- test was used for statistical analysis (α=0.05). Results: The overall mean (SD) for absolute marginal discrepancy (AMD) was 254.46 (25.10) um for CAD/CAM group and 88.08(10.67) um for conventional group (control). The overall mean of internal gap total (IGT) was 110.77(5.92) um for CAD/CAM group and 76.90 (10.17) um for conventional group. The Student’s t-test revealed significant differences between 2 groups. Marginal and internal gaps were found to be significantly higher at all measured areas in CAD/CAM group than conventional group (p< 0.001). Conclusion: Within limitations of this study, conventional method of wax-pattern fabrication produced copings with significantly better marginal and internal fit than CAD/CAM (machine-milled) technique. All the factors for 2 groups were standardized except wax pattern fabrication technique, therefore, only the conventional group results in copings with clinically acceptable margins of less than 120um. PMID:24724133
Liposomal Bupivacaine Injection Technique in Total Knee Arthroplasty.
Meneghini, R Michael; Bagsby, Deren; Ireland, Philip H; Ziemba-Davis, Mary; Lovro, Luke R
2017-01-01
Liposomal bupivacaine has gained popularity for pain control after total knee arthroplasty (TKA), yet its true efficacy remains unproven. We compared the efficacy of two different periarticular injection (PAI) techniques for liposomal bupivacaine with a conventional PAI control group. This retrospective cohort study compared consecutive patients undergoing TKA with a manufacturer-recommended, optimized injection technique for liposomal bupivacaine, a traditional injection technique for liposomal bupivacaine, and a conventional PAI of ropivacaine, morphine, and epinephrine. The optimized technique utilized a smaller gauge needle and more injection sites. Self-reported pain scores, rescue opioids, and side effects were compared. There were 41 patients in the liposomal bupivacaine optimized injection group, 60 in the liposomal bupivacaine traditional injection group, and 184 in the conventional PAI control group. PAI liposomal bupivacaine delivered via manufacturer-recommended technique offered no benefit over PAI ropivacaine, morphine, and epinephrine. Mean pain scores and the proportions reporting no or mild pain, time to first opioid, and amount of opioids consumed were not better with PAI liposomal bupivacaine compared with PAI ropivacaine, morphine, and epinephrine. The use of the manufacturer-recommended technique for PAI of liposomal bupivacaine does not offer benefit over a conventional, less expensive PAI during TKA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Technical Reports Server (NTRS)
Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David
2007-01-01
This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.
Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation.
Mohd Zubir, Mohd Nashrul; Shirinzadeh, Bijan; Tian, Yanling
2009-06-01
This paper describes the process of developing a microgripper that is capable of high precision and fidelity manipulation of micro-objects. The design adopts the concept of flexure-based hinges on its joints to provide the rotational motion, thus eliminating the inherent nonlinearities associated with the application of conventional rigid hinges. A combination of two modeling techniques, namely, pseudorigid body model and finite element analysis was utilized to expedite the prototyping procedure, which leads to the establishment of a high performance mechanism. A new hybrid compliant structure integrating cantilever beam and flexural hinge configurations within microgripper mechanism mainframe has been developed. This concept provides a novel approach to harness the advantages within each individual configuration while mutually compensating the limitations inherent between them. A wire electrodischarge machining technique was utilized to fabricate the gripper out of high grade aluminum alloy (Al 7075T6). Experimental studies were conducted on the model to obtain various correlations governing the gripper performance as well as for model verification. The experimental results demonstrate high level of compliance in comparison to the computational results. A high amplification characteristic and maximum achievable stroke of 100 microm can be achieved.
Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin
2016-03-04
Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.
Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study
NASA Astrophysics Data System (ADS)
Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.
2010-04-01
Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.
A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method
Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin
2016-01-01
Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications. PMID:26959020
Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation
NASA Astrophysics Data System (ADS)
Mohd Zubir, Mohd Nashrul; Shirinzadeh, Bijan; Tian, Yanling
2009-06-01
This paper describes the process of developing a microgripper that is capable of high precision and fidelity manipulation of micro-objects. The design adopts the concept of flexure-based hinges on its joints to provide the rotational motion, thus eliminating the inherent nonlinearities associated with the application of conventional rigid hinges. A combination of two modeling techniques, namely, pseudorigid body model and finite element analysis was utilized to expedite the prototyping procedure, which leads to the establishment of a high performance mechanism. A new hybrid compliant structure integrating cantilever beam and flexural hinge configurations within microgripper mechanism mainframe has been developed. This concept provides a novel approach to harness the advantages within each individual configuration while mutually compensating the limitations inherent between them. A wire electrodischarge machining technique was utilized to fabricate the gripper out of high grade aluminum alloy (Al 7075T6). Experimental studies were conducted on the model to obtain various correlations governing the gripper performance as well as for model verification. The experimental results demonstrate high level of compliance in comparison to the computational results. A high amplification characteristic and maximum achievable stroke of 100 μm can be achieved.
A novel productivity-driven logic element for field-programmable devices
NASA Astrophysics Data System (ADS)
Marconi, Thomas; Bertels, Koen; Gaydadjiev, Georgi
2014-06-01
Although various techniques have been proposed for power reduction in field-programmable devices (FPDs), they are still all based on conventional logic elements (LEs). In the conventional LE, the output of the combinational logic (e.g. the look-up table (LUT) in many field-programmable gate arrays (FPGAs)) is connected to the input of the storage element; while the D flip-flop (DFF) is always clocked even when not necessary. Such unnecessary transitions waste power. To address this problem, we propose a novel productivity-driven LE with reduced number of transitions. The differences between our LE and the conventional LE are in the FFs-type used and the internal LE organisation. In our LEs, DFFs have been replaced by T flip-flops with the T input permanently connected to logic value 1. Instead of connecting the output of the combinational logic to the FF input, we use it as the FF clock. The proposed LE has been validated via Simulation Program with Integrated Circuit Emphasis (SPICE) simulations for a 45-nm Complementary Metal-Oxide-Semiconductor (CMOS) technology as well as via a real Computer-Aided Design (CAD) tools on a real FPGA using the standard Microelectronic Center of North Carolina (MCNC) benchmark circuits. The experimental results show that FPDs using our proposal not only have 48% lower total power but also run 17% faster than conventional FPDs on average.
Fibre Optic Sensors for Selected Wastewater Characteristics
Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.
2013-01-01
Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131
Manufacturing Implant Supported Auricular Prostheses by Rapid Prototyping Techniques
Karatas, Meltem Ozdemir; Cifter, Ebru Demet; Ozenen, Didem Ozdemir; Balik, Ali; Tuncer, Erman Bulent
2011-01-01
Maxillofacial prostheses are usually fabricated on the models obtained following the impression procedures. Disadvantages of conventional impression techniques used in production of facial prosthesis are deformation of soft tissues caused by impression material and disturbance of the patient due to. Additionally production of prosthesis by conventional methods takes longer time. Recently, rapid prototyping techniques have been developed for extraoral prosthesis in order to reduce these disadvantages of conventional methods. Rapid prototyping technique has the potential to simplify the procedure and decrease the laboratory work required. It eliminates the need for measurement impression procedures and preparation of wax model to be performed by prosthodontists themselves In the near future this technology will become a standard for fabricating maxillofacial prostheses. PMID:21912504
Alqahtani, Fawaz
2017-01-01
Objective The purpose of this study was to determine the effect of two extraoral computer-aided design (CAD) and computer-aided manufacturing (CAM) systems, in comparison with conventional techniques, on the marginal fit of monolithic CAD/CAM lithium disilicate ceramic crowns. Study design This is an in vitro interventional study. Place and duration of study The study was carried out at the Department of Prosthodontics, School of Dentistry, Prince Sattam Bin Abdul-Aziz University, Saudi Arabia, from December 2015 to April 2016. Methodology A marginal gap of 60 lithium disilicate crowns was evaluated by scanning electron microscopy. In total, 20 pressable lithium disilicate (IPS e.max Press [Ivoclar Vivadent]) ceramic crowns were fabricated using the conventional lost-wax technique as a control group. The experimental all-ceramic crowns were produced based on a scan stone model and milled using two extraoral CAD/CAM systems: the Cerec group was fabricated using the Cerec CAD/CAM system, and the Trios group was fabricated using Trios CAD and milled using Wieland Zenotec CAM. One-way analysis of variance (ANOVA) and the Scheffe post hoc test were used for statistical comparison of the groups (α=0.05). Results The mean (±standard deviation) of the marginal gap of each group was as follows: the Control group was 91.15 (±15.35) µm, the Cerec group was 111.07 (±6.33) µm, and the Trios group was 60.17 (±11.09) µm. One-way ANOVA and the Scheffe post hoc test showed a statistically significant difference in the marginal gap between all groups. Conclusion It can be concluded from the current study that all-ceramic crowns, fabricated using the CAD/CAM system, show a marginal accuracy that is acceptable in clinical environments. The Trios CAD group displayed the smallest marginal gap. PMID:28352204
NASA Astrophysics Data System (ADS)
Han, Tao; Chen, Lingyun; Lai, Chao-Jen; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.
2009-02-01
Images of mastectomy breast specimens have been acquired with a bench top experimental Cone beam CT (CBCT) system. The resulting images have been segmented to model an uncompressed breast for simulation of various CBCT techniques. To further simulate conventional or tomosynthesis mammographic imaging for comparison with the CBCT technique, a deformation technique was developed to convert the CT data for an uncompressed breast to a compressed breast without altering the breast volume or regional breast density. With this technique, 3D breast deformation is separated into two 2D deformations in coronal and axial views. To preserve the total breast volume and regional tissue composition, each 2D deformation step was achieved by altering the square pixels into rectangular ones with the pixel areas unchanged and resampling with the original square pixels using bilinear interpolation. The compression was modeled by first stretching the breast in the superior-inferior direction in the coronal view. The image data were first deformed by distorting the voxels with a uniform distortion ratio. These deformed data were then deformed again using distortion ratios varying with the breast thickness and re-sampled. The deformation procedures were applied in the axial view to stretch the breast in the chest wall to nipple direction while shrinking it in the mediolateral to lateral direction re-sampled and converted into data for uniform cubic voxels. Threshold segmentation was applied to the final deformed image data to obtain the 3D compressed breast model. Our results show that the original segmented CBCT image data were successfully converted into those for a compressed breast with the same volume and regional density preserved. Using this compressed breast model, conventional and tomosynthesis mammograms were simulated for comparison with CBCT.
Islanding detection technique using wavelet energy in grid-connected PV system
NASA Astrophysics Data System (ADS)
Kim, Il Song
2016-08-01
This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.
A modeling technique for STOVL ejector and volume dynamics
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Barankiewicz, W. S.
1990-01-01
New models for thrust augmenting ejector performance prediction and feeder duct dynamic analysis are presented and applied to a proposed Short Take Off and Vertical Landing (STOVL) aircraft configuration. Central to the analysis is the nontraditional treatment of the time-dependent volume integrals in the otherwise conventional control-volume approach. In the case of the thrust augmenting ejector, the analysis required a new relationship for transfer of kinetic energy from the primary flow to the secondary flow. Extraction of the required empirical corrections from current steady-state experimental data is discussed; a possible approach for modeling insight through Computational Fluid Dynamics (CFD) is presented.
Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.
Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya
2013-12-30
We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.
Axial vibration control of melt structure of sodium nitrate in crystal growth process
NASA Astrophysics Data System (ADS)
Sadovskiy, Andrey; Sukhanova, Ekaterina; Belov, Stanislav; Kostikov, Vladimir; Zykova, Marina; Artyushenko, Maxim; Zharikov, Evgeny; Avetissov, Igor
2015-05-01
The melt structure evolution under the action of the low-frequency axial vibration control (AVC) technique was studied in situ by Raman spectroscopy for several complex chemical compound melts: sodium nitrate, margarine acid, paraffin mixture (C17-C20). The measurements were conducted in the temperature range from the melting point up to 60 °C above. Comparison of crystallization heats for AVC activated and steady melts with melting heats of AVC-CZ and conventional CZ produced powders allowed to propose the energy diagram of NaNO3 states for activated and non-activated melts and crystals based on DTA, XRD, DSC and Raman experimental data.
Real-time algorithm for acoustic imaging with a microphone array.
Huang, Xun
2009-05-01
Acoustic phased array has become an important testing tool in aeroacoustic research, where the conventional beamforming algorithm has been adopted as a classical processing technique. The computation however has to be performed off-line due to the expensive cost. An innovative algorithm with real-time capability is proposed in this work. The algorithm is similar to a classical observer in the time domain while extended for the array processing to the frequency domain. The observer-based algorithm is beneficial mainly for its capability of operating over sampling blocks recursively. The expensive experimental time can therefore be reduced extensively since any defect in a testing can be corrected instantaneously.
AlN based piezoelectric micromirror.
Shao, Jian; Li, Qi; Feng, Chuhuan; Li, Wei; Yu, Hongbin
2018-03-01
Aiming to pursue a micromirror possessing many desired characteristics, such as linear control, low power consumption, fast response, and easy fabrication, a new piezoelectric actuation strategy is presented. Different from conventional piezoelectric actuation cases, we first propose using AlN film as the active layer for actuating the micromirror. Owing to its good CMOS compatible deposition and patterning techniques, the AlN based piezoelectric micromirror has been successfully fabricated with a modified silicon-on-insulator-based microelectromechanical system (MEMS) process. At the same time, various mirror movement modes operating at high frequencies and excellent linear relationship between the movement and the control signal both have been experimentally demonstrated.
Transform-limited-pulse representation of excitation with natural incoherent light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chenu, Aurélia, E-mail: aurelia.chenu@utoronto.ca; Brumer, Paul, E-mail: pbrumer@chem.utoronto.ca
2016-01-28
The excitation of molecular systems by natural incoherent light relevant, for example, to photosynthetic light-harvesting is examined. We show that the result of linear excitation with natural incoherent light can be obtained using incident light described in terms of transform limited pulses, as opposed to conventional classical representations with explicit random character. The derived expressions allow for computations to be done directly for any thermal light spectrum using a simple wave function formalism and provide a route to the experimental determination of natural incoherent excitation using pulsed laser techniques. Pulses associated with solar and cosmic microwave background radiation are providedmore » as examples.« less
Heat-pump cool storage in a clathrate of freon
NASA Astrophysics Data System (ADS)
Tomlinson, J. J.
Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.
Reformulation of the relativistic conversion between coordinate time and atomic time
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1975-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring 'earth-bound' proper time or atomic time). After an interpretation in terms of relatively well-known concepts, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th, is used to explain the conventions required in the synchronization of a worldwide clock network and to analyze two synchronization techniques - portable clocks and radio interferometry. Finally, pertinent experimental tests of relativity are briefly discussed in terms of the reformulated time conversion.
Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping
2004-09-01
Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.
Mesoscopic Dynamical Differences from Quantum State Preparation in a Bose-Hubbard Trimer
NASA Astrophysics Data System (ADS)
Olsen, M. K.; Neely, T. W.; Bradley, A. S.
2018-06-01
Conventional wisdom is that quantum effects will tend to disappear as the number of quanta in a system increases, and the evolution of a system will become closer to that described by mean-field classical equations. In this Letter we combine newly developed theoretical and experimental techniques to propose and analyze an experiment using a Bose-Hubbard trimer where the opposite is the case. We find that differences in the preparation of a centrally evacuated trimer can lead to readily observable differences in the subsequent dynamics which increase with system size. Importantly, these differences can be detected by the simple measurements of atomic number.
Low-high junction theory applied to solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.
1973-01-01
Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined.
NASA Astrophysics Data System (ADS)
Ibarra Villalón, H. E.; Pottiez, O.; Bracamontes Rodriguez, Y. E.; Lauterio-Cruz, J. P.; Gomez Vieyra, A.
2018-06-01
In this paper, we report an experimental study of different dynamics taking place in a 20 m long passively mode-locked fibre ring laser in dual-wavelength operation, at 1531 nm and 1558 nm. For different polarization adjustments, self-starting mode locking is obtained, yielding different types of emission: bunches of solitons in quasi-stationary regime, a compact bunch of solitons coexisting with loose bunches of solitons, a noise-like pulse coexisting with bunches of solitons and a noise-like pulse displaying quasi-periodic fluctuations. In each regime, we extract information on the pulse dynamics from measurements of the temporal profile evolution using a 16 GHz real-time oscilloscope and, at the same time, we propose a phase-space diagram representation of the intensity versus the energy of the temporal profile of the pulses; the latter allows evidencing patterns that could not be identified using conventional measurement techniques.
NASA Astrophysics Data System (ADS)
Dogra, Sugandha; Singh, Jasveer; Lodh, Abhishek; Dilawar Sharma, Nita; Bandyopadhyay, A. K.
2011-02-01
This paper reports the behavior of a well-characterized pneumatic piston gauge in the pressure range up to 8 MPa through simulation using finite element method (FEM). Experimentally, the effective area of this piston gauge has been estimated by cross-floating to obtain A0 and λ. The FEM technique addresses this problem through simulation and optimization with standard commercial software (ANSYS) where the material properties of the piston and cylinder, dimensional measurements, etc are used as the input parameters. The simulation provides the effective area Ap as a function of pressure in the free deformation mode. From these data, one can estimate Ap versus pressure and thereby Ao and λ. Further, we have carried out a similar theoretical calculation of Ap using the conventional method involving the Dadson's as well as Johnson-Newhall equations. A comparison of these results with the experimental results has been carried out.
NASA Astrophysics Data System (ADS)
Kim, Sung-Man; Kwon, Ki-Keun
2017-07-01
The relatively unsatisfactory performance of optical wireless communication (OWC) with respect to WiFi and millimeter-wave communications has formed a key issue preventing its commercialization. We experimentally demonstrate an OWC technology using a combination of positive real-valued orthogonal frequency-division multiplexing (OFDM) and optical beamforming (OB). Due to the intensity-modulation and direct-detection aspects of OWC systems, a positive real-valued OFDM signal can be suitably utilized to maximize the OWC data rate. Further, the OB technique, which can focus laser light on a desired target, can be utilized to increase the OWC data rate and transmission distance. Our experimental results show that the received optical signal power and electrical signal increase by up to 42 and 25 dB, respectively. Further, the data rate increases by a factor of 200 with OB over the conventional approach.
Probing non-Hermitian physics with flying atoms
NASA Astrophysics Data System (ADS)
Wen, Jianming; Xiao, Yanhong; Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Jiang, Liang
2016-05-01
Non-Hermtian optical systems with parity-time (PT) symmetry provide new means for light manipulation and control. To date, most of experimental demonstrations on PT symmetry rely on advanced nanotechnologies and sophisticated fabrication techniques to manmade solid-state materials. Here, we report the first experimental realization of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, we observe essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold. Moreover, our system allows nonlocal interference of two spatially-separated fields as well as anti-PT assisted four-wave mixing. Besides, another intriguing feature offered by the system is refractionless (or unit-refraction) light propagation. Our results thus represent a significant advance in non-Hermitian physics by bridging a firm connection with the AMO field, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry can be anticipated.
Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses
NASA Astrophysics Data System (ADS)
Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto
2015-02-01
We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.
Sample flow switching techniques on microfluidic chips.
Pan, Yu-Jen; Lin, Jin-Jie; Luo, Win-Jet; Yang, Ruey-Jen
2006-02-15
This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stretz, L.A.; Bautista, R.G.
1976-01-01
The high-temperature heat content of liquid praseodymium was measured experimentally by the levitation calorimetry technique. The samples, ranging in size from 0.5 to 1.5 g, were simultaneously levitated and heated by a radiofrequency generator in an argon-helium mixture prior to being dropped into a conventional copper block drop calorimeter. Corrections were made for the convection and radiation losses during the fall of the sample from the levitation chamber into the calorimeter. The praseodymium data, from 1460 to 2289K, were fitted by the following equation where the indicated errors represent the average deviation of the experimental value from the value predictedmore » by the equation: H/sub T/ - H/sub 298/./sub 15/ = (41.57 +- 0.29) (T - 1208) + (41733 +- 197) J/mol. (auth)« less
Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avila, C.; Lopez, J.; Sanabria, J. C.
2005-12-15
Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated datamore » to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.« less
Mihata, Teruhisa; Fukuhara, Tetsutaro; Jun, Bong Jae; Watanabe, Chisato; Kinoshita, Mitsuo
2011-03-01
After rotator cuff repair, the shoulder is immobilized in various abduction positions. However, there is no consensus on the proper abduction angle. To assess the effect of shoulder abduction angle on the biomechanical properties of the repaired rotator cuff tendons among 3 types of double-row techniques. Controlled laboratory study. Thirty-two fresh-frozen porcine shoulders were used. A simulated rotator cuff tear was repaired by 1 of 3 double-row techniques: conventional double-row repair, transosseous-equivalent repair, and a combination of conventional double-row and bridging sutures (compression double-row repair). Each specimen underwent cyclic testing followed by tensile testing to failure at a simulated shoulder abduction angle of 0° or 40° on a material testing machine. Gap formation and failure loads were measured. Gap formation in conventional double-row repair at 0° (1.2 ± 0.5 mm) was significantly greater than that at 40° (0.5 ± 0.3mm, P = .01). The yield and ultimate failure loads for conventional double-row repair at 40° were significantly larger than those at 0° (P < .01), whereas those for transosseous-equivalent repair (P < .01) and compression double-row repair (P < .0001) at 0° were significantly larger than those at 40°. The failure load for compression double-row repair was the greatest among the 3 double-row techniques at both 0° and 40° of abduction. Bridging sutures have a greater effect on the biomechanical properties of the repaired rotator cuff tendon at a low abduction angle, and the conventional double-row technique has a greater effect at a high abduction angle. Proper abduction position after rotator cuff repair differs between conventional double-row repair and transosseous-equivalent repair. The authors recommend the use of the combined technique of conventional double-row and bridging sutures to obtain better biomechanical properties at both low and high abduction angles.
Lucente, Giuseppe; Lam, Steven; Schneider, Heike; Picht, Thomas
2018-02-01
Non-invasive pre-surgical mapping of eloquent brain areas with navigated transcranial magnetic stimulation (nTMS) is a useful technique linked to the improvement of surgical planning and patient outcomes. The stimulator output intensity and subsequent resting motor threshold determination (rMT) are based on the motor-evoked potential (MEP) elicited in the target muscle with an amplitude above a predetermined threshold of 50 μV. However, a subset of patients is unable to achieve complete relaxation in the target muscles, resulting in false positives that jeopardize mapping validity with conventional MEP determination protocols. Our aim is to explore the feasibility and reproducibility of a novel mapping approach that investigates how an increase of the MEP amplitude threshold to 300 and 500 μV affects subsequent motor maps. Seven healthy subjects underwent motor mapping with nTMS. RMT was calculated with the conventional methodology in conjunction with experimental 300- and 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of rMT stimulator intensity using the FDI as the target muscle. Motor mapping was possible in all patients with both the conventional and experimental setups. Motor area maps with a conventional 50-μV threshold showed poor correlation with 300-μV (α = 0.446, p < 0.001) maps, but showed excellent consistency with 500-μV motor area maps (α = 0.974, p < 0.001). MEP latencies were significantly less variable (23 ms for 50 μV vs. 23.7 ms for 300 μV vs. 23.7 ms for 500 μV, p < 0.001). A slight but significant increase of the electric field (EF) value was found (EF: 60.8 V/m vs. 64.8 V/m vs. 66 V/m p < 0.001). Our study demonstrates the feasibility of increasing the MEP detection threshold to 500 μV in rMT determination and motor area mapping with nTMS without losing precision.
Kim, Sung-Jae; Chun, Yong-Min; Kim, Sung-Hwan; Moon, Hong-Kyo; Jang, Jae-Won
2013-07-01
The purpose of this study was to compare four graft-tunnel angles (GTA), the femoral GTA formed by three different femoral tunneling techniques (the outside-in, a modified inside-out technique in the posterior sag position with knee hyperflexion, and the conventional inside-out technique) and the tibia GTA in 3-dimensional (3D) knee flexion models, as well as to examine the influence of femoral tunneling techniques on the contact pressure between the intra-articular aperture of the femoral tunnel and the graft. Twelve cadaveric knees were tested. Computed tomography scans were performed at different knee flexion angles (0°, 45°, 90°, and 120°). Femoral and tibial GTAs were measured at different knee flexion angles on the 3D knee models. Using pressure sensitive films, stress on the graft of the angulation of the femoral tunnel aperture was measured in posterior cruciate ligament reconstructed cadaveric knees. Between 45° and 120° of knee flexion, there were no significant differences between the outside-in and modified inside-out techniques. However, the femoral GTA for the conventional inside-out technique was significantly less than that for the other two techniques (p<0.001). In cadaveric experiments using pressure-sensitive film, the maximum contact pressure for the modified inside-out and outside-in technique was significantly lower than that for the conventional inside-out technique (p=0.024 and p=0.017). The conventional inside-out technique results in a significantly lesser GTA and higher stress at the intra-articular aperture of the femoral tunnel than the outside-in technique. However, the results for the modified inside-out technique are similar to those for the outside-in technique.
Simultaneous Determination of Glass Transition Temperatures of Several Polymers
He, Jiang; Liu, Wei; Huang, Yao-Xiong
2016-01-01
Aims A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Methods & Results Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. Conclusion The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers. PMID:26985670
Enhancing students’ mathematical problem posing skill through writing in performance tasks strategy
NASA Astrophysics Data System (ADS)
Kadir; Adelina, R.; Fatma, M.
2018-01-01
Many researchers have studied the Writing in Performance Task (WiPT) strategy in learning, but only a few paid attention on its relation to the problem-posing skill in mathematics. The problem-posing skill in mathematics covers problem reformulation, reconstruction, and imitation. The purpose of the present study was to examine the effect of WiPT strategy on students’ mathematical problem-posing skill. The research was conducted at a Public Junior Secondary School in Tangerang Selatan. It used a quasi-experimental method with randomized control group post-test. The samples were 64 students consists of 32 students of the experiment group and 32 students of the control. A cluster random sampling technique was used for sampling. The research data were obtained by testing. The research shows that the problem-posing skill of students taught by WiPT strategy is higher than students taught by a conventional strategy. The research concludes that the WiPT strategy is more effective in enhancing the students’ mathematical problem-posing skill compared to the conventional strategy.
Application of fiber tapers in astronomy
NASA Astrophysics Data System (ADS)
Marcel, Jaclyn; Haynes, Roger; Bland-Hawthorn, Joss
2006-06-01
Fiber tapers have the potential to significantly advance instrument technology into the realm of fully integrated optical systems. Our initial investigation was directed at the use of fiber tapers as f-ratio transformation devices. Using a technique developed for testing focal ratio degradation (FRD), a collimated light source was injected at different angles into various fiber taper samples and the far-field profile of the fiber output was observed. We compare the FRD present in the optical fiber tapers with conventional fibers and determine how effectively fiber tapers perform as image converters. We demonstrate that while silica fiber tapers may have slightly more intrinsic FRD than conventional fibers they still show promise as adiabatic mode transformers and are worth investigating further for their potential use in astronomical instruments. In this paper we present a brief review of the current status of fiber tapers with particular focus on the astronomical applications. We demonstrate the conservation of etendue in the taper transformation process and present the experimental results for a number of different taper profiles and manufacturers.
Heleno, Sandrina A; Diz, Patrícia; Prieto, M A; Barros, Lillian; Rodrigues, Alírio; Barreiro, Maria Filomena; Ferreira, Isabel C F R
2016-04-15
Ergosterol, a molecule with high commercial value, is the most abundant mycosterol in Agaricus bisporus L. To replace common conventional extraction techniques (e.g. Soxhlet), the present study reports the optimal ultrasound-assisted extraction conditions for ergosterol. After preliminary tests, the results showed that solvents, time and ultrasound power altered the extraction efficiency. Using response surface methodology, models were developed to investigate the favourable experimental conditions that maximize the extraction efficiency. All statistical criteria demonstrated the validity of the proposed models. Overall, ultrasound-assisted extraction with ethanol at 375 W during 15 min proved to be as efficient as the Soxhlet extraction, yielding 671.5 ± 0.5mg ergosterol/100 g dw. However, with n-hexane extracts with higher purity (mg ergosterol/g extract) were obtained. Finally, it was proposed for the removal of the saponification step, which simplifies the extraction process and makes it more feasible for its industrial transference. Copyright © 2015 Elsevier Ltd. All rights reserved.
"Crypto-Display" in Dual-Mode Metasurfaces by Simultaneous Control of Phase and Spectral Responses.
Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk
2018-06-26
Although conventional metasurfaces have demonstrated many promising functionalities in light control by tailoring either phase or spectral responses of subwavelength structures, simultaneous control of both responses has not been explored yet. Here, we propose a concept of dual-mode metasurfaces that enables simultaneous control of phase and spectral responses for two kinds of operation modes of transmission and reflection, respectively. In the transmission mode, the dual-mode metasurface acts as conventional metasurfaces by tailoring phase distribution of incident light. In the reflection mode, a reflected colored image is produced under white light illumination. We also experimentally demonstrate a crypto-display as one application of the dual-mode metasurface. The crypto-display looks a normal reflective display under white light illumination but generates a hologram that reveals the encrypted phase information under single-wavelength coherent light illumination. Because two operation modes do not affect each other, the crypto-display can have applications in security techniques.
Leonhartsberger, S; Lafferty, R M; Korneti, L
1993-09-01
Optimal conditions for both biomass formation and penicillin synthesis by a strain of Penicillium chrysogenum were determined when using a collagen-derived nitrogen source. Preliminary investigations were carried out in shaken flask cultures employing a planned experimental program termed the Graeco-Latin square technique (Auden et al., 1967). It was initially determined that up to 30% of a conventional complex nitrogen source such as cottonseed meal could be replaced by the collagen-derived nitrogen source without decreasing the productivity with respect to the penicillin yield. In the pilot scale experiments using a 30 l stirred tank type of bioreactor, higher penicillin yields were obtained when 70% of the conventional complex nitrogen source in the form of cottonseed meal was replaced by the collagen hydrolysate. Furthermore, the maximum rate of penicillin synthesis continued for over a longer period when using collagen hydrolysate as a complex nitrogen source. Penicillin synthesis rates were determined using a linear regression.
Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing
Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao
2016-01-01
We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250
Strain controlled cyclic tests on miniaturized specimens
NASA Astrophysics Data System (ADS)
Procházka, R.; Džugan, J.
2017-02-01
The paper is dealing with strain controlled cyclic tests using a non-contact strain measurement based on digital image correlation techniques on proportional sizes of conventional specimens. The cyclic behaviour of 34CrNiMo6 high-strength steel was investigated on miniaturized round specimens with diameter of 2mm that were compared with specimens in accordance with ASTM E606 standards. The cycle asymmetry coefficient was R= -1. This application is intended to be used for life time assessment of in service components in future work which enables to carried out a group of mechanical tests from a limited amount of the experimental material. The attention was paid to confirm the suitability of the proposed size miniaturization geometry, testing set up and procedure. The test results obtained enabled to construct Manson-Coffin curves and assess fatigue parameters. The purpose of this study is to present differences between cyclic curves and cyclic parameters which have been evaluated based on conventional and miniaturized specimens.
NASA Technical Reports Server (NTRS)
Sprowls, D. O.; Bucci, R. J.; Ponchel, B. M.; Brazill, R. L.; Bretz, P. E.
1984-01-01
A technique is demonstrated for accelerated stress corrosion testing of high strength aluminum alloys. The method offers better precision and shorter exposure times than traditional pass fail procedures. The approach uses data from tension tests performed on replicate groups of smooth specimens after various lengths of exposure to static stress. The breaking strength measures degradation in the test specimen load carrying ability due to the environmental attack. Analysis of breaking load data by extreme value statistics enables the calculation of survival probabilities and a statistically defined threshold stress applicable to the specific test conditions. A fracture mechanics model is given which quantifies depth of attack in the stress corroded specimen by an effective flaw size calculated from the breaking stress and the material strength and fracture toughness properties. Comparisons are made with experimental results from three tempers of 7075 alloy plate tested by the breaking load method and by traditional tests of statistically loaded smooth tension bars and conventional precracked specimens.
Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen
2016-12-01
Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.
NASA Technical Reports Server (NTRS)
Smith, A. C.
1982-01-01
Trace gases evolved from a polyimide film during its thermal curing stages have been studied using ion-induced nucleation mass spectrometry. The technique involved exposing the test gas sample to a low energy beta source and recording the masses of the ion-induced molecular clusters formed in the reaction chamber. On the basis of the experimentally observed molecular cluster spectra, it has been concluded that the dominant trace component had a molecular weight of 87 atomic mass units. This component has been identified as a molecule of dimethylacetamide (DMAC) which had been used as a solvent in the preparation of the test polyimide specimen. This identification has been further confirmed by comparing the spectra of the test gas sample and the DMAC calibration sample obtained with a conventional mass spectrometer. The advantages of the ion-induced nucleation mass spectrometer versus the conventional mass spectrometer are discussed.
2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.
Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J
2010-03-29
A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.
Introducing the VRT gas turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melconian, J.O.; Mostafa, A.A.; Nguyen, H.L.
An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer modelmore » predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.« less
Group investigation with scientific approach in mathematics learning
NASA Astrophysics Data System (ADS)
Indarti, D.; Mardiyana; Pramudya, I.
2018-03-01
The aim of this research is to find out the effect of learning model toward mathematics achievement. This research is quasi-experimental research. The population of research is all VII grade students of Karanganyar regency in the academic year of 2016/2017. The sample of this research was taken using stratified cluster random sampling technique. Data collection was done based on mathematics achievement test. The data analysis technique used one-way ANOVA following the normality test with liliefors method and homogeneity test with Bartlett method. The results of this research is the mathematics learning using Group Investigation learning model with scientific approach produces the better mathematics learning achievement than learning with conventional model on material of quadrilateral. Group Investigation learning model with scientific approach can be used by the teachers in mathematics learning, especially in the material of quadrilateral, which is can improve the mathematics achievement.
Charge transport mechanism in lead oxide revealed by CELIV technique
Semeniuk, O.; Juska, G.; Oelerich, J.-O.; Wiemer, M.; Baranovskii, S. D.; Reznik, A.
2016-01-01
Although polycrystalline lead oxide (PbO) belongs to the most promising photoconductors for optoelectronic and large area detectors applications, the charge transport mechanism in this material still remains unclear. Combining the conventional time-of-flight and the photo-generated charge extraction by linear increasing voltage (photo-CELIV) techniques, we investigate the transport of holes which are shown to be the faster carriers in poly-PbO. Experimentally measured temperature and electric field dependences of the hole mobility suggest a highly dispersive transport. In order to analyze the transport features quantitatively, the theory of the photo-CELIV is extended to account for the dispersive nature of charge transport. While in other materials with dispersive transport the amount of dispersion usually depends on temperature, this is not the case in poly-PbO, which evidences that dispersive transport is caused by the spatial inhomogeneity of the material and not by the energy disorder. PMID:27628537
System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.
2011-01-01
Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed
NASA Astrophysics Data System (ADS)
Khalsa, Guru; Benedek, Nicole A.
2018-03-01
Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.
Wang, Yue; Adalý, Tülay; Kung, Sun-Yuan; Szabo, Zsolt
2007-01-01
This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches. PMID:18172510
Unilateral robotic hybrid mini-maze: a novel experimental approach.
Moslemi, Mohammad; Rawashdeh, Badi; Meyer, Mark; Nguyen, Duy; Poston, Robert; Gharagozloo, Farid
2016-03-01
A complete Cox maze IV procedure is difficult to accomplish using current endoscopic and minimally invasive techniques. These techniques are hampered by inability to adequately dissect the posterior structures of the heart and place all necessary lesions. We present a novel approach, using robotic technology, that achieves placement of all the lesions of the complete maze procedure. In three cadaveric human models, the technical feasibility of using robotic instruments through the right chest to dissect the posterior structures of the heart and place all Cox maze lesions was performed. The entire posterior aspect of the heart was dissected in the cadaveric model facilitating successful placement of all Cox maze IV lesions with robotic assistance through minimally invasive incisions. The robotic Cox maze IV procedure through the novel right thoracic approach is feasible. This obviates the need for sternotomy and avoids the associated morbidity of the conventional Cox-maze procedure. Copyright © 2015 John Wiley & Sons, Ltd.
Classification-Based Spatial Error Concealment for Visual Communications
NASA Astrophysics Data System (ADS)
Chen, Meng; Zheng, Yefeng; Wu, Min
2006-12-01
In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.
Multi-Mounted X-Ray Computed Tomography.
Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng
2016-01-01
Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.
Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering
Choi, Yongki; Olsen, Tivoli J.; Sims, Patrick C.; Moody, Issa S.; Corso, Brad L.; Dang, Mytrang N.; Weiss, Gregory A.; Collins, Philip G.
2013-01-01
Single molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, non-fluorescent single molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems. PMID:23323846
Natural-orifice translumenal endoscopic surgery (NOTES): minimally invasive evolution or revolution?
Mohan, Helen M; O'Riordan, James M; Winter, Desmond C
2013-06-01
Since the first animal experimental laparoscopy in 1902, minimal access techniques have revolutionized surgery. Using the natural orifice dates back to at least the second century when Soranus performed a vaginal hysterectomy. The main difference between traditional endolumenal surgery and the translumenal approach of natural-orifice translumenal endoscopic surgery (NOTES) is the intentional puncture of a healthy organ in NOTES to access a cavity or other organ. The aim of this review was to examine the past, present, and potential future role of NOTES in the context of other developments in minimal access surgery. NOTES is at an early stage in its development and a convincing benefit over laparoscopy has not been demonstrated. Concerns regarding complications, for example of viscerotomy closure, have limited the widespread uptake of pure NOTES. However, it is likely that technological advances for NOTES surgery will enhance conventional laparoscopic and endoscopic techniques.
Perfect transmission at oblique incidence by trigonal warping in graphene P-N junctions
NASA Astrophysics Data System (ADS)
Zhang, Shu-Hui; Yang, Wen
2018-01-01
We develop an analytical mode-matching technique for the tight-binding model to describe electron transport across graphene P-N junctions. This method shares the simplicity of the conventional mode-matching technique for the low-energy continuum model and the accuracy of the tight-binding model over a wide range of energies. It further reveals an interesting phenomenon on a sharp P-N junction: the disappearance of the well-known Klein tunneling (i.e., perfect transmission) at normal incidence and the appearance of perfect transmission at oblique incidence due to trigonal warping at energies beyond the linear Dirac regime. We show that this phenomenon arises from the conservation of a generalized pseudospin in the tight-binding model. We expect this effect to be experimentally observable in graphene and other Dirac fermions systems, such as the surface of three-dimensional topological insulators.
NASA Astrophysics Data System (ADS)
Kwon, Jong Hwa; Choi, Jae Ick; Yook, Jong Gwan
In this paper, we design and manufacture a flanged double ridged waveguide with a tapered section as a sample holder for measuring the electromagnetic shielding effectiveness (SE) of planar material in broadband frequency ranges up to 10GHz. The proposed technique overcomes the limitations of the conventional ASTM D4935 test method at high frequencies. The simulation results for the designed sample holders agree well with the fabricated ones in consideration of the design specification of S11 < -20dB within the frequency range of 1-10GHz. To verify the proposed measurement apparatus, the measured SE data of the commercial shielding materials from 1 to 10GHz were indirectly compared with those obtained from the ASTM D4935 from 30MHz to 1GHz. We observed that the SE data obtained by using both experimental techniques agree with each other.
Tomographic phase microscopy and its biological applications
NASA Astrophysics Data System (ADS)
Choi, Wonshik
2012-12-01
Conventional interferometric microscopy techniques such as digital holographic microscopy and quantitative phase microscopy are often classified as 3D imaging techniques because a recorded complex field image can be numerically propagated to a different depth. In a strict sense, however, a single complex field image contains only 2D information on a specimen. The measured 2D image is only a subset of the 3D structure. For the 3D mapping of an object, multiple independent 2D images are to be taken, for example at multiple incident angles or wavelengths, and then combined by the so-called optical diffraction tomography (ODT). In this Letter, tomographic phase microscopy (TPM) is reviewed that experimentally realizes the concept of the ODT for the 3D mapping of biological cells in their native state, and some of its interesting biological and biomedical applications are introduced. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M
2014-01-01
Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insightsmore » into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintonen, Sakari, E-mail: sakari.sintonen@aalto.fi; Suihkonen, Sami; Jussila, Henri
2014-08-28
The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and themore » SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.« less
Mangano, Alessandro; Beretta, Matteo; Luongo, Giuseppe; Mangano, Carlo; Mangano, Francesco
2018-01-01
The objective of the present study was to compare patients' acceptability, comfort and stress with conventional and digital impressions. Thirty young orthodontic patients (15 males and 15 females) who had no previous experience of impressions were enrolled in this study. Conventional impressions for orthodontic study models of the dental arches were taken using an alginate impression material (Hydrogum ® , Zhermack Spa, Badia Polesine, Rovigo, Italy). Fifteen days later, digital impressions of both arches were acquired using an intraoral scanner (CS3600 ® , Carestream Dental, Rochester, NY, USA). Immediately after impression taking, patients' acceptability, comfort and stress were measured using two questionnaires and the State anxiety scale. Data showed no difference in terms of anxiety and stress; however, patients preferred the use of digital impressions systems instead of conventional impression techniques. Alginate impressions resulted as fast as digital impressions. Digital impressions resulted the most accepted and comfortable impression technique in young orthodontic patients, when compared to conventional techniques.
Design, realization and structural testing of a compliant adaptable wing
NASA Astrophysics Data System (ADS)
Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.
2015-10-01
This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.