Science.gov

Sample records for conventional high-field magnetic

  1. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  2. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  3. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  4. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  5. 24 segment high field permanent sextupole magnets

    NASA Astrophysics Data System (ADS)

    Vassiliev, A.; Nelyubin, V.; Koptev, V.; Kravtsov, P.; Lorentz, B.; Marik, H. J.; Mikirtytchiants, M.; Nekipelov, M.; Rathmann, F.; Paetz gen. Schieck, H.; Seyfarth, H.; Steffens, E.

    2000-09-01

    We report on the design, construction, and magnetic field measurements of a system of high field sextupole magnets made from NdFeB compounds. The magnets are utilized as a focusing system for neutral hydrogen (or deuterium) atoms in a polarized atomic beam source based on Stern-Gerlach spin separation. Each magnet consists of 24 segments of permanently magnetized material differing in remanence and coercivity to reduce demagnetization. According to quadratic extrapolation to the pole tip the magnetic flux density reaches values of up to B0=1.69 T. Three-dimensional field calculations using the MAFIA code were carried out to optimize the magnet performance and to avoid demagnetization by selecting appropriate materials for the individual segments. Measurements of the radial, azimuthal, and longitudinal magnetic flux density distributions were carried out by means of a small Hall probe (100×200×15 μm3). The measurements with the small probe permitted to extract experimentally higher order multipole components very close (˜100 μm) to the inner surface. Experimental values obtained are compared to predictions based on MAFIA calculations and on the Halbach formalism.

  6. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  7. Engineered Ceramic Insulators for High Field Magnets

    NASA Astrophysics Data System (ADS)

    Rice, J. A.

    2006-03-01

    High field magnet coils made from brittle A15 superconductors need to be rigidly contained by their support structure but yet be electrically insulated from it. Current insulators (end shoes, pole pieces, spacers, mandrels, etc.) are often made from coated metallic shapes that satisfy the mechanical and thermal requirements but are electrically unreliable. The insulating coating on the metal core too often chips or flakes, causing electrical shorts. Any replacement insulator materials must manage the thermal expansion mismatch to control the stress within the coil enabling the achievement of ultimate magnet performance. A novel ceramic insulator has been developed that eliminates the potential for shorting while maintaining high structural integrity and thermal performance. The insulator composition can be engineered to provide a thermal expansion that matches the coil expansion, minimizing detrimental stress on the superconductor. These ceramic insulators are capable of surviving high temperature heat treatments and are radiation resistant. The material can withstand high mechanical loads generated during magnet operation. These more robust insulators will lower the magnet production costs, which will help enable future devices to be constructed within budgetary restrictions.

  8. High-field permanent-magnet structures

    SciTech Connect

    Leupoid, H.A.

    1989-08-29

    This patent describes a permanent magnet structure. It comprises an azimuthally circumscribed section of a hollow hemispherical magnetic flux source, the magnetic orientation in the section with respect to the polar axis being substantially equal to twice the polar angle, a superconducting planar sheet abutting one flat face of the section along a longitudinal meridian, and at least one other planar sheet of selected material abutting another flat face of the section and perpendicular to the first-mentioned sheet.

  9. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  10. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  11. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  12. High Field Magnet Developments for the Future of High Field Compact Experiments

    NASA Astrophysics Data System (ADS)

    Grasso, G.; Coppi, B.

    2014-10-01

    The adoption of ``All Superconducting Hybrid'' (ASH) magnets for the design of new high field confinement machines with relatively long plasma current pulses has been considered. These consist of MgB2 superconducting coils, in the outer portion of the magnet, that operate at about 10 K like those adopted for the Ignitor vertical field coils, but can produce up to 10 T as in the case of the hybrid magnet with a copper core under construction at Grenoble. In the case of the envisioned ASH magnets the inner core will be made of high temperature superconductors capable of operating at very high fields. The inclusion of advanced solutions such as that concerning the coupled toroidal magnet and central solenoid system for new advanced machines is envisioned. Sponsored in part by the US DOE.

  13. Conductor Development for High Field Dipole Magnets

    SciTech Connect

    Scanlan, R.M.; Dietderich, D.R.; Higley, H.C.

    2000-03-01

    Historically, improvements in dipole magnet performance have been paced by improvements in the superconductor available for use in these magnets. The critical conductor performance parameters for dipole magnets include current density, piece length, effective filament size, and cost. Each of these parameters is important for efficient, cost effective dipoles, with critical current density being perhaps the most important. Several promising magnet designs for the next hadron collider or a muon collider require fields of 12 T or higber, i.e. beyond the reach of NbTi. The conductor options include Nb{sub 3}Sn, Nb{sub 3}Al, or the high temperature superconductors. Although these conductors have the potential to provide the combination of performance and cost required, none of them have been developed sufficiently at this point to satisfy all the requirements. This paper will review the status of each class of advanced conductor and discuss the remaining problems that require solutions before these new conductors can be considered as practical. In particular, the plans for a new program to develop Nb{sub 3}Sn and Nb{sub 3}Al conductors for high energy physics applications will be presented. Also, the development of a multikiloamp Bi-2212 cable for dipole magnet applications will be reported.

  14. Ultra-high-field superconducting magnets

    SciTech Connect

    Hoard, R.W.; Cornish, D.N.; Scanlan, R.M.; Zbasnik, J.P.; Leber, R.L.; Hickman, R.B.; Lee, J.D.

    1983-08-01

    The following topics are considered: (1) superfluid helium for advanced magnets, (2) conductor reinforcement, (3) designing a 20-T, 2-m bore solenoidal coil, (4) coil size and conductor properties, (5) axial forces on the coil, (6) effect of radiation on the coil systems, and (7) helium-II transient heat transfer and coil protection. (MOW)

  15. A High Field Magnet Design for A Future Hadron Collider

    SciTech Connect

    Gupta, R.; Chow, K.; Dietderich, D.; Gourlay, S.; Millos, G.; McInturff, A.; Scanlan, R.

    1998-09-01

    US high energy physics community is exploring the possibilities of building a Very Large Hadron Collider (VLHC) after the completion of LHC. This paper presents a high field magnet design option based on Nb{sub 3}Sn technology. A preliminary magnetic and mechanical design of a 14-16 T, 2-in-1 dipole based on the 'common coil design' approach is presented. The computer code ROXIE has been upgraded to perform the field quality optimization of magnets based on the racetrack coil geometry. A magnet R&D program to investigate the issues related to high field magnet designs is also outlined.

  16. Conventional magnetic superconductors

    SciTech Connect

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led to the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.

  17. Conventional magnetic superconductors

    DOE PAGES

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  18. Correlating Hemodynamic Magnetic Resonance Imaging with high-field Intracranial Vessel Wall Imaging in Stroke

    PubMed Central

    Langdon, Weston; Donahue, Manus J.; van der Kolk, Anja G.; Rane, Swati; Strother, Megan K.

    2014-01-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct. PMID:25426229

  19. Correlating hemodynamic magnetic resonance imaging with high-field intracranial vessel wall imaging in stroke.

    PubMed

    Langdon, Weston; Donahue, Manus J; van der Kolk, Anja G; Rane, Swati; Strother, Megan K

    2014-06-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct.

  20. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 and 4.2 K, in applied magnetic fields ranging to 70 kilogauss. A linear dependence of magnetization on applied field is observable in the high-field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is about 2.77 Bohr magnetons per ion.

  1. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 deg and 4.2 K, in applied magnetic fields ranging to 7 Teslas. A linear dependence of magnetization on applied field is observable in high field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is 2.77 + or - 0.08 Bohr magnetons per ion.

  2. Developments in materials for high-field magnets

    SciTech Connect

    Sims, J.R.; Hill, M.A.; Walsh, R.P.

    1993-10-01

    Results of the National High Magnetic Field Laboratory`s program of characterization of materials and fabrication techniques used in the construction of high-field pulsed magnets are reported. High-field pulsed magnets require conductors with high mechanical strength (750 MPa or greater YS at 77K) and high electrical conductivity (70% IACS or greater at RT). Electrical insulation and resin systems for vacuum impregnation with high compressive strength (500 MPa at 77K) and moderate thermal conductivity (1kW/mK at 77K) are also required. Developments and future plans for the characterization of new magnet material systems are discussed. Testing result are reported: Mechanical and fatigue testing, electrical conductivity testing and thermal expansion measurements of high strength, high conductivity conductors at cryogenic and room temperature, mechanical testing of a coil support material at cryogenic and room temperature, thermal expansion and thermal conductivity tests of an electrical insulating system at cryogenic temperatures.

  3. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  4. National Program on High Field Accelerator Magnet R&D

    SciTech Connect

    Apollinari, G.; Cooley, L.; Zlobin, A. V.; Caspi, S.; Gourlay, S.; Prestemon, S.; Larbalestier, D.; Gupta, R.; Wanderer, P.

    2014-09-26

    A National High-Field Magnet (HFM) Program is proposed as a thrust of the updated DOE-HEP General Accelerator R&D Program. The program responds to Recommendation 24 of the 2014 Particle Physics Project Prioritization Panel (P5) Report.

  5. Magnetostructural transitions in a frustrated magnet at high fields.

    PubMed

    Tsurkan, V; Zherlitsyn, S; Felea, V; Yasin, S; Skourski, Yu; Deisenhofer, J; von Nidda, H-A Krug; Lemmens, P; Wosnitza, J; Loidl, A

    2011-06-17

    Ultrasound and magnetization studies of bond-frustrated ZnCr(2)S(4) spinel are performed in static magnetic fields up to 18 T and in pulsed fields up to 62 T. At temperatures below the antiferromagnetic transition at T(N1)≈14  K, the sound velocity as a function of the magnetic field reveals a sequence of steps followed by plateaus indicating a succession of crystallographic structures with constant stiffness. At the same time, the magnetization evolves continuously with a field up to full magnetic polarization without any plateaus in contrast to geometrically frustrated chromium oxide spinels. The observed high-field magnetostructural states are discussed within a H-T phase diagram taking into account the field and temperature evolution of three coexisting spin structures and subsequent lattice transformations induced by the magnetic field.

  6. High Field Magnet R&D in the USA

    SciTech Connect

    Gourlay, Stephen A.

    2003-06-24

    Accelerator magnet technology is currently dominated by the use of NbTi superconductor. New and more demanding applications for superconducting accelerator magnets require the use of alternative materials. Several programs in the US are taking advantage of recent improvements in Nb{sub 3}Sn to develop high field magnets for new applications. Highlights and challenges of the US R&D program are presented along with the status of conductor development. In addition, a new R&D focus, the US LHC Accelerator Research Program, will be discussed.

  7. High Field Magnet R&D in the USA

    SciTech Connect

    Gourlay, S.A.

    2003-10-01

    Accelerator magnet technology is currently dominated by the use of NbTi superconductor. New and more demanding applications for superconducting accelerator magnets require the use of alternative materials. Several programs in the US are taking advantage of recent improvements in Nb{sub 3}Sn to develop high field magnets for new applications. Highlights and challenges of the US R and D program are presented along with the status of conductor development. In addition, a new R and D focus, the US LHC Accelerator Research Program, will be discussed.

  8. High field magnetic resonance imaging of rodents in cardiovascular research.

    PubMed

    Vanhoutte, Laetitia; Gerber, Bernhard L; Gallez, Bernard; Po, Chrystelle; Magat, Julie; Jean-Luc, Balligand; Feron, Olivier; Moniotte, Stéphane

    2016-07-01

    Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed.

  9. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    SciTech Connect

    Dr. Scott Campbell Dr. Terry Holesinger Dr. Ybing Huang

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have

  10. High-field small animal magnetic resonance oncology studies

    NASA Astrophysics Data System (ADS)

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, chemical exchange saturation transfer imaging and hyperpolarized 13C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.

  11. A COMMON COIL DESIGN FOR HIGH FIELD 2 IN 1 ACCELERATOR MAGNETS.

    SciTech Connect

    GUPTA,R.

    2002-05-12

    A common coil design concept for 2-in-1 superconducting accelerator magnets is presented. It practically eliminates the major problems in the ends of high field magnets built with either high temperature superconductors (HTS) or conventional superconductors. Racetrack coils, consisting of rectangular blocks built with either superconducting tapes or cables, are common to both apertures with each aperture containing one half of each coil. The ends are easy to wind with the conductors experiencing little strain. The overall magnet design, construction and tooling are also expected to be simpler than in the conventional cosine theta magnets. The concept is also suitable for superferric and combined function magnet designs. A modular design for an HTS based R&D magnet is also presented.

  12. Towards Integrated Design and Modeling of High Field Accelerator Magnets

    SciTech Connect

    Caspi, S.; Ferracin, P.

    2006-06-01

    The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.

  13. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  14. Stepped impedance resonators for high-field magnetic resonance imaging.

    PubMed

    Akgun, Can E; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J Thomas

    2014-02-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high-field magnetic resonance imaging. In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections, referred to as stepped impedance resonators (SIRs), is investigated. Single-element simulation results in free space and in a phantom at 7 T (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 T in a phantom and human head illustrate the improvements in a transmit magnetic field, as well as RF efficiency (transmit magnetic field versus specific absorption rate) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements.

  15. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  16. High field superconducting window-frame beam transport magnets

    SciTech Connect

    Allinger, J.; Carroll, A.; Danby, G.; Devito, B.; Jackson, J.; Leonhardt, W.; Prodell, A.; Skarita, J.

    1983-05-01

    The window-frame design for high field superconducting beam transport magnets was first applied to two, 2 m long, 4 T modules of an 8/sup 0/ bending magnet which has operated for nine years in the primary proton beam line at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). The design of two 1.5 m long, 7.6 cm cold bore superconducting window-frame magnets, described in this paper, intended for the external proton beam transport system at the AGS incorporated evolutionary changes. These magnets generated a maximum aperture field of 6.8 T with a peak field in the dipole coil of 7.1 T. Measured fields are very accurate and are compared to values calculated using the computer programs LINDA and POISSON. Results of quench propagation studies demonstrate the excellent thermal stability of the magnets. The magnets quench safely without energy extraction at a maximum current density, J = 130 kA/cm/sup 2/ in the superconductor, correspoding to J = 57.6 kA/cm/sup 2/ overall in the conductor at B = 6.7 T.

  17. Developments at the High Field Magnet Laboratory in Nijmegen

    NASA Astrophysics Data System (ADS)

    Perenboom, J. A. A. J.; Maan, J. C.; van Breukelen, M. R.; Wiegers, S. A. J.; den Ouden, A.; Wulffers, C. A.; van der Zande, W. J.; Jongma, R. T.; van der Meer, A. F. G.; Redlich, B.

    2013-03-01

    The High Field Magnet Laboratory at the Radboud University Nijmegen is rapidly expanding its capabilities. The developments encompass both organizational changes and new possibilities for research. The organization of the HFML was strengthened as a consequence of stronger participation of the Foundation for Fundamental Research on Matter (FOM), and an increase of the core-funding. This change makes that HFML is now considered on a national level as large research facility that operates at an international scale. At the same time work is underway to build new and powerful magnets, and provide electromagnetic radiation for magneto-spectroscopic studies. Electromagnetic radiation in the infrared and far-infrared spectrum will soon be available in the HFML with wavelengths between 3 μm and 1.5 mm, produced by the `FELIX' facility, comprising the long-wavelength free electron laser `FLARE' that in September 2011 produced its first light and the free electron lasers that have been moved from Rijnhuizen to Nijmegen. In magnet technology great strides are made to make magnets available for the user community with unprecedented performance: late in 2012 we hope to commission a new all-resistive magnet system that will generate a steady magnetic field as high as 38 T, by fully exploiting the maximum power of the installation, i.e. 20 MW, and using all available improvements in the design and construction of `Florida-Bitter' resistive magnets. We are also well underway with the design of a 45 T hybrid magnet system, using Nb3Sn superconductors and wind-and-react Cable-in-Conduit technology.

  18. Internal Stresses in Wires for High Field Magnets

    SciTech Connect

    Han, K.; Embury, J.D.; Lawson, A.C.; Von Dreele, R.B.; Wood, J.T.; Richardson, J.W. Jr.

    1998-10-01

    The codeformation of Cu-Ag or Cu-Nb composite wires used for high field magnets has a number of important microstructural consequences, including the production of very fine scale structures, the development of very high internal surface area to volume ratios during the drawing and the storage of defects at interphase interfaces. In addition, the fabrication and codeformation of phases which differ in crystal structure, thermal expansion, elastic modulus and lattice parameter lead to the development of short wavelength internal stresses. These internal stresses are measured by neutron diffraction and transmission electron microscopy as a function of the imposed drawing strain. The internal stresses lead to important changes in elastic plastic response which can be related to both magnet design and service life and these aspects will be described in detail.

  19. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  20. High-field magnetic resonance imaging using solenoid radiofrequency coils.

    PubMed

    Vegh, Viktor; Gläser, Philipp; Maillet, Donald; Cowin, Gary J; Reutens, David C

    2012-10-01

    High-resolution magnetic resonance imaging using dedicated high-field radiofrequency micro-coils at 16.4 T (700 MHz) was investigated. Specific solenoid coils primarily using silver and copper as conductors with enamel and polyurethane coatings were built to establish which coil configuration produces the best image. Image quality was quantified using signal-to-noise ratio and signal variation over regions of interest. Benchmarking was conducted using 5-mm diameter coils, as this size is comparable to an established coil of the same size. Our 1.4-mm-diameter coils were compared directly to each other, from which we deduce performance as a function of conductor material and coating. A variety of materials and conductor coatings allowed us to choose an optimal design, which we used to image a kidney section at 10-micron resolution. We applied zero-fill extrapolation to achieve 5-micron resolution.

  1. [Problems and chances of high field magnetic resonance imaging].

    PubMed

    Ladd, M E; Bock, M

    2013-05-01

    The spatial, temporal and spectral resolution in magnetic resonance imaging (MRI) is in many cases currently not sufficient to detect submillimeter lesions or to image the dynamics of the beating heart. At present MRI systems at 1.5 T and 3 T are the standard units for clinical imaging. The use of ultrahigh magnetic fields of 7 T and higher increases the signal-to-noise ratio, which holds promise for a significant improvement of the spatial and/or temporal resolution as well as for new contrast mechanisms. With 7 T MRI, images of the brain have been acquired routinely with a spatial resolution of 0.3 mm. The theoretical improvement of the signal-to-noise ratio is often not fully realized due to B1 inhomogeneities and contrast variations. With MRI at 7 T a notable increase in spatial resolution can be achieved. Methods such as time-of-flight MR angiography and susceptibility-weighted imaging (e.g. neurofunctional MRI, fMRI) profit especially from the higher field strengths. Transmission field inhomogeneities are still a major challenge for ultrahigh field (UHF) MRI and are also a partially unsolved safety problem. The use of UHF MRI is currently limited to special applications and the expected gain of the high field must be weighed against technical limitations in both image acquisition and interpretation.

  2. Project Overview of HTS Magnet for Ultra-high-field MRI System

    NASA Astrophysics Data System (ADS)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    A project to develop an ultra-high-field magnetic resonance imaging (MRI) system based on HTS magnets using (RE)Ba2Cu3O7 (REBCO; RE=rear earth) coils is underway. The project is supported by the Japanese Ministry of Economy, Trade and Industry and aims to establish magnet technologies for a whole-body 9.4 T MRI system. REBCO wires have high critical current density in high magnetic fields and high strength against hoop stresses, and therefore, MRI magnets using REBCO coils are expected to have cryogenic systems that are smaller, lighter, and simpler than the conventional ones. A major problem in using REBCO coils for MRI magnets is the huge irregular magnetic field generated by the screening current in REBCO tapes. Thus, the main purpose of this project is to make the influence of this screening current predictable and controllable. Fundamental technologies, including treatment of the screening currents, were studied via experiments and numerical simulations using small coils. Two types of model magnets are planned to be manufactured, and the knowledge gained in the development of the model magnets will be reflected in the magnet design of a whole-body 9.4 T MRI system.

  3. A low-cost, high-field-strength magnetic resonance imaging-compatible actuator.

    PubMed

    Secoli, Riccardo; Robinson, Matthew; Brugnoli, Michele; Rodriguez y Baena, Ferdinando

    2015-03-01

    To perform minimally invasive surgical interventions with the aid of robotic systems within a magnetic resonance imaging scanner offers significant advantages compared to conventional surgery. However, despite the numerous exciting potential applications of this technology, the introduction of magnetic resonance imaging-compatible robotics has been hampered by safety, reliability and cost concerns: the robots should not be attracted by the strong magnetic field of the scanner and should operate reliably in the field without causing distortion to the scan data. Development of non-conventional sensors and/or actuators is thus required to meet these strict operational and safety requirements. These demands commonly result in expensive actuators, which mean that cost effectiveness remains a major challenge for such robotic systems. This work presents a low-cost, high-field-strength magnetic resonance imaging-compatible actuator: a pneumatic stepper motor which is controllable in open loop or closed loop, along with a rotary encoder, both fully manufactured in plastic, which are shown to perform reliably via a set of in vitro trials while generating negligible artifacts when imaged within a standard clinical scanner.

  4. High Field Magnetization measurements of uranium dioxide single crystals (P08358- E003-PF)

    SciTech Connect

    Gofryk, K.; Harrison, N.; Jaime, M.

    2014-12-01

    Our preliminary high field magnetic measurements of UO2 are consistent with a complex nature of the magnetic ordering in this material, compatible with the previously proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies on well-oriented (<100 > and <111>) UO2 crystals are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states at high fields.

  5. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    SciTech Connect

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  6. Quasi permanent superconducting magnet of very high field

    NASA Technical Reports Server (NTRS)

    Ren, Y.; Liu, J.; Weinstein, R.; Chen, I. G.; Parks, D.; Xu, J.; Obot, V.; Foster, C.

    1993-01-01

    We report on persistent field in a quasi-permanent magnet made of high temperature superconductor. The material has an average of 40 percent molar excess of Y, relative to Y1Ba2Cu3O7 and has been irradiated with high energy light ions at 200 MeV. The magnet, which traps 1.52 T at 77.3 K, traps nearly 4 T at 64.5 K. No evidence of giant flux jump or sample cracking was observed.

  7. Quasi permanent superconducting magnet of very high field

    NASA Technical Reports Server (NTRS)

    Ren, Y.; Liu, J.; Weinstein, R.; Chen, I. G.; Parks, D.; Xu, J.; Obot, V.; Foster, C.

    1993-01-01

    We report on persistent field in a quasi-permanent magnet made of high temperature superconductor. The material has an average of 40 percent molar excess of Y, relative to Y1Ba2Cu3O7 and has been irradiated with high energy light ions at 200 MeV. The magnet, which traps 1.52 T at 77.3 K, traps nearly 4 T at 64.5 K. No evidence of giant flux jump or sample cracking was observed.

  8. Magnetic Semiconductor Quantum Wells in High Fields to 60 Tesla: Photoluminescence Linewidth Annealing at Magnetization Steps

    SciTech Connect

    Awschalom, D.D.; Crooker, S.A.; Lyo, S.K.; Rickel, D.G.; Samarth, N.

    1999-05-24

    Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of step-like reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,Mn)Se quantum wells between O and 60 Tesla. This disorder, measured through the linewidth of low temperature photoluminescence spectra drops abruptly at -19, 36, and 53 Tesla, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction.

  9. 15 Years of R&D on high field accelerator magnets at FNAL

    DOE PAGES

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  10. DOUBLE DEGENERATE MERGERS AS PROGENITORS OF HIGH-FIELD MAGNETIC WHITE DWARFS

    SciTech Connect

    Garcia-Berro, Enrique; Loren-Aguilar, Pablo; Aznar-Siguan, Gabriela; Torres, Santiago; Camacho, Judit

    2012-04-10

    High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here, we show that the hot, convective, differentially rotating corona present in the outer layers of the remnant of the merger of two degenerate cores can produce magnetic fields of the required strength that do not decay for long timescales. Using a state-of-the-art Monte Carlo simulator, we also show that the expected number of high-field magnetic white dwarfs produced in this way is consistent with that found in the solar neighborhood.

  11. Quench Protection of High Field Nb{sub 3}Sn Magnets for VLHC

    SciTech Connect

    Linda Imbasciati et al.

    2001-07-30

    Fermilab is developing high field magnets for a possible future VLHC. The high levels of stored energy in these magnets present significant challenges to the magnet quench protection. Simulation programs have been developed and used to analyze temperature and voltage distributions during a quench and to performed parametric studies on conductor and quench-heater requirements. This paper concludes with a proposal for a set of quench protection parameters for the VLHC magnets.

  12. 15 Years of R&D on high field accelerator magnets at FNAL

    SciTech Connect

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  13. 15 Years of R&D on high field accelerator magnets at FNAL

    SciTech Connect

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  14. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    SciTech Connect

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  15. High-field magnetization and magnetic phase diagram of α -Cu2V2O7

    NASA Astrophysics Data System (ADS)

    Gitgeatpong, G.; Suewattana, M.; Zhang, Shiwei; Miyake, A.; Tokunaga, M.; Chanlert, P.; Kurita, N.; Tanaka, H.; Sato, T. J.; Zhao, Y.; Matan, K.

    2017-06-01

    High-field magnetization of the spin-1 /2 antiferromagnet α -Cu2V2O7 was measured in pulsed magnetic fields of up to 56 T in order to study its magnetic phase diagram. When the field was applied along the easy axis (the a axis), two distinct transitions were observed at Hc 1=6.5 T and Hc 2=18.0 T. The former is a spin-flop transition typical for a collinear antiferromagnet and the latter is believed to be a spin-flip transition of canted moments. The canted moments, which are induced by the Dzyaloshinskii-Moriya interactions, anti-align for Hc 1magnetic susceptibility data. Contrary to our previous report in Phys. Rev. B 92, 024423 (2015), 10.1103/PhysRevB.92.024423, the dominant exchange interaction is between the third nearest-neighbor spins, which form zigzag spin chains that are coupled with one another through an intertwining network of the nonnegligible nearest and second nearest-neighbor interactions. In addition, elastic neutron scattering under the applied magnetic fields of up to 10 T reveals the incommensurate helical spin structure in the spin-flop state.

  16. New high homogeneity 55T pulsed magnet for high field NMR.

    PubMed

    Orlova, A; Frings, P; Suleiman, M; Rikken, G L J A

    2016-07-01

    Pulsed magnets can produce magnetic fields largely exceeding those achieved with resistive or even hybrid magnets. This kind of magnet is indispensable in studies of field-induced phenomena which occur only in high magnetic field. A new high homogeneous pulsed magnet capable of producing field up to 55T and specially designed for NMR experiments was built and tested. Experimentally observed homogeneity of magnetic field in central part of the magnet is 10ppm over a sample volume of 2-3mm(3) at 12T and 30ppm at 47T, which are the best values ever reported for a pulsed magnet. Reasons which affect the field profile and reduce homogeneity at high field are discussed.

  17. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  18. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, Fred; Hoard, Ronald W.

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  19. The spheromak as a prototype for ultra-high-field superconducting magnets

    SciTech Connect

    Furth, H.P.; Jardin, S.C.

    1987-08-01

    In view of current progress in the development of superconductor materials, the ultimate high-field limit of superconducting magnets is likely to be set by mechanical stress problems. Maximum field strength should be attainable by means of approximately force-free magnet windings having favorable ''MHD'' stability properties (so that small winding errors will not grow). Since a low-beta finite-flux-hole spheromak configuration qualifies as a suitable prototype, the theoretical and experimental spheromak research effort of the past decade has served to create a substantial technical basis for the design of ultra-high-field superconducting coils. 11 refs.

  20. High-field magnetization measurements on a ferromagnetic amorphous alloy from 295 to 5K

    SciTech Connect

    Szymczak, P. ); Graham, C.D. Jr. ); Gibbs, M.R.J. )

    1994-11-01

    Magnetization measurements on an amorphous ferromagnetic alloy Fe[sub 78](SiB)[sub 22] have been made over the temperature range from 5 to 295K and in fields to 5T, using a SQUID magnetometer and a superconducting magnet. As-received and field-annealed samples were measured. Having data over a range of temperatures allows the spin-wave contribution to the magnetization to be determined, and then subtracted. When the spin-wave contribution is removed, a substantial high-field susceptibility remains, which is independent of temperature. Attempts to fit the corrected curves to one of two theoretical equations were not conclusive, but the best fit seems to be to M = M[sub 0] + aH[sup [minus]0.5] + bH. The annealing treatment has no significant effect on the high-field magnetization.

  1. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  2. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice.

    PubMed

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Yang, Xiuhong

    2016-01-01

    The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B 0) inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained.

  3. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice

    PubMed Central

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Yang, Xiuhong

    2016-01-01

    The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B 0) inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained. PMID:27034951

  4. Quench problems of Nb3 Sn cosine theta high field dipole model magnets

    SciTech Connect

    Yamada, Ryuji; Wake, Masayoshi; /KEK, Tsukuba

    2004-12-01

    We have developed and tested several cosine theta high field dipole model magnets for accelerator application, utilizing Nb{sub 3}Sn strands made by MJR method and PIT method. With Rutherford cables made with PIT strand we achieved 10.1 Tesla central field at 2.2 K operation, and 9.5 Tesla at 4.5 K operation. The magnet wound with the MJR cable prematurely quenched at 6.8 Tesla at 4.5 K due to cryo-instability. Typical quench behaviors of these magnets are described for both types of magnets, HFDA-04 of MJR and HFDA-05 of PIT. Their characteristics parameters are compared on d{sub eff}, RRR, thermal conductivity and others, together with other historical Nb{sub 3}Sn magnets. It is suggested a larger RRR value is essential for the stability of the epoxy impregnated high field magnets made with high current density strands. It is shown that a magnet with a larger RRR value has a longer MPZ value and more stable, due to its high thermal conductivity and low resistivity.

  5. Development of superconducting magnet for high-field MR systems in China

    NASA Astrophysics Data System (ADS)

    Wang, Zanming; van Oort, Johannes M.; Zou, Mark X.

    2012-11-01

    In this paper we describe the development of superconducting magnets for high-field Magnetic Resonance Imaging (MRI) by various businesses and institutions in China. As the Chinese MR market rapidly expands, many foreign and domestic companies and research institutions are joining the race to meet the burgeoning demand by developing key MRI components for various magnetic field configurations. After providing a brief introduction to research on MRI superconducting magnets that dates back to the 1980s, the first large-bore 1.5 T superconducting magnet with 50-cm DSV for whole-body MRI - successfully developed and manufactured by AllTech Medical Systems in Chengdu, China-is presented and its specifications are described.

  6. Retinotopic mapping in cat visual cortex using high-field functional magnetic resonance imaging.

    PubMed

    Olman, Cheryl; Ronen, Itamar; Ugurbil, Kamil; Kim, Dae-Shik

    2003-12-30

    In the field of neuroscience, there has always been a need for imaging techniques that provide high-resolution, large field-of-view measurements of neural activity. Functional MRI has this capability, but the link between the blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal and neural activity is indirect. High magnetic field strengths (>3 T) improve the strength and specificity of the BOLD signal, but there are additional concerns about imaging artifacts at high field. We have tested the capabilities of ultra high field fMRI in the anesthetized juvenile cat, demonstrating rapid, non-invasive retinotopic mapping of early visual areas. Maps of topographic organization and measured cortical magnification factors are in good agreement with electrophysiological studies. Measurement precision was estimated at 1 mm. This mapping, performed with an MRI scanner at ultra high field (9.4 T), demonstrates the capabilities of high-resolution functional mapping of the visual system at ultra high field.

  7. High field superconducting magnets (12 T and greater) for fusion applications

    SciTech Connect

    Miller, J.R.; Summers, L.T.; Kerns, J.A.

    1986-07-09

    The technology for producing high fields in large superconducting magnets has increased greatly in recent years, but must increase still more in the future. In this paper, we examine the present state of the art vis-a-vis the needs of a next-generation fusion machine and outline a program to provide for those needs. We also highlight recent developments that suggest the program goals are within reach.

  8. A HIGH FIELD PULSED SOLENOID MAGNET FOR LIQUID METAL TARGET STUDIES.

    SciTech Connect

    KIRK,H.G.IAROCCI,M.SCADUTO,J.WEGGEL,R.J.MULHOLLAND,G.MCDONALD,K.T.

    2003-05-12

    The target system for a muon collider/neutrino factory requires the conjunction of an intense proton beam, a high-Z liquid target and a high-field solenoid magnet. We describe here the design parameters for a pulsed solenoid, including the magnet cryogenic system and power supply, that can generate transient fields of greater than 10T with a flat-tops on the order of 1 second. It is envisioned to locate this device at the Brookhaven AGS for proof-of-principle testing of a liquid-jet target system with pulses of le13 protons.

  9. High field magnetic resonance imaging of normal and pathologic human medulla oblongata.

    PubMed

    Vandersteen, M; Beuls, E; Gelan, J; Adriaensens, P; Vanormelingen, L; Palmers, Y; Freling, G

    1994-02-01

    High field proton magnetic resonance (MR) imaging has been applied to depict the MR appearance of the normal excised human cervicomedullary junction, based on which neuropathologic specimens can be described. More specifically, two normal cases and one case of Chiari deformity were imaged in the transverse, sagittal, and coronal dimensions using a 9.4 Tesla vertical bore magnet. The MR images of the normal specimens reveal most of the neuroanatomical microstructures described in literature. An accurate description of the Chiari deformity could be made by comparing the MR reference images with those of the pathologic specimen. All MR detected abnormalities were confirmed by histopathology, by which no additional lesions could be found.

  10. Design of a High Field Nb3Al Common Coil Magnet

    SciTech Connect

    Xu, Qingjin; Sasaki, Kenichi; Nakamoto, Tatsushi; Terashima, Akio; Tsuchiya, Kiyosumi; Yamamoto, Akira; Kikuchi, Akihiro; Takeuchi, Takao; Sabbi, GianLuca; Caspi, Shlomo; Ferracin, Paolo; Felice, Helene; Hafalia, Ray; Zlobin, Alexander; Barzi, Emauela; Yamada, Ryuji

    2009-10-19

    A high field Nb{sub 3}Al common coil magnet is under development as an R&D of 'Advanced Superconducting Magnets for the LHC Luminosity Upgrade', in the framework of the CERN-KEK cooperation program. The goal of this research is to demonstrate the feasibility of high field magnet wound with Nb{sub 3}Al cable. The common coil approach and the shell-based structure were adopted in the design of this magnet. Besides three Nb{sub 3}Al coils, two Nb{sub 3}Sn coils were included to increase the peak field of the whole magnet. The two types of coils were designed with different straight lengths to reduce the peak field of the Nb{sub 3}Sn coils. The peak fields of the Nb{sub 3}Al and Nb{sub 3}Sn coils are 13.1 T and 11.8 T respectively. An aluminum shell together with four aluminum rods applies stress to the coils to overcome the Lorenz force during excitation. Two different support structures for the superconducting coils were introduced in this paper. The development status is also presented.

  11. Formation of high-field magnetic white dwarfs from common envelopes.

    PubMed

    Nordhaus, Jason; Wellons, Sarah; Spiegel, David S; Metzger, Brian D; Blackman, Eric G

    2011-02-22

    The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.

  12. Formation of high-field magnetic white dwarfs from common envelopes

    PubMed Central

    Nordhaus, Jason; Wellons, Sarah; Spiegel, David S.; Metzger, Brian D.; Blackman, Eric G.

    2011-01-01

    The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion’s orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields. PMID:21300910

  13. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  14. Quantification of local geometric distortion in structural magnetic resonance images: Application to ultra-high fields.

    PubMed

    Lau, Jonathan C; Khan, Ali R; Zeng, Tony Y; MacDougall, Keith W; Parrent, Andrew G; Peters, Terry M

    2017-01-06

    Ultra-high field magnetic resonance imaging (MRI) provides superior visualization of brain structures compared to lower fields, but images may be prone to severe geometric inhomogeneity. We propose to quantify local geometric distortion at ultra-high fields in in vivo datasets of human subjects scanned at both ultra-high field and lower fields. By using the displacement field derived from nonlinear image registration between images of the same subject, focal areas of spatial uncertainty are quantified. Through group and subject-specific analysis, we were able to identify regions systematically affected by geometric distortion at air-tissue interfaces prone to magnetic susceptibility, where the gradient coil non-linearity occurs in the occipital and suboccipital regions, as well as with distance from image isocenter. The derived displacement maps, quantified in millimeters, can be used to prospectively evaluate subject-specific local spatial uncertainty that should be taken into account in neuroimaging studies, and also for clinical applications like stereotactic neurosurgery where accuracy is critical. Validation with manual fiducial displacement demonstrated excellent correlation and agreement. Our results point to the need for site-specific calibration of geometric inhomogeneity. Our methodology provides a framework to permit prospective evaluation of the effect of MRI sequences, distortion correction techniques, and scanner hardware/software upgrades on geometric distortion. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. High-field magnetization of Heusler compound Fe2Mn1 -xVxSi

    NASA Astrophysics Data System (ADS)

    Hiroi, Masahiko; Tazoko, Tomoya; Sano, Hiroaki; Shigeta, Iduru; Koyama, Keiichi; Kondo, Akihiro; Kindo, Koich; Manaka, Hirotaka; Terada, Norio

    2017-01-01

    Fe2MnSi exhibits a ferromagnetic transition at TC˜230 K and another transition to a phase with antiferromagnetic components at TA˜60 K. By substituting V for Mn, so as to obtain Fe2Mn1 -xVxSi , TA is revealed to decrease with x and then vanish around x ˜0.2 . In this study, the phase boundary of the transition at TA in the high-field range is found for 0 ≤x ≤0.15 with pulsed fields up to ˜70 T. The magnetization of Fe2Mn1 -xVxSi slowly increases even at the highest field of ˜70 T, though it occurs more gradually as x increases. We compare the magnetization for 0 ≤x ≤0.20 at 62 T with the Slater-Pauling rule, which holds when a Heusler compound is a half-metal, and find fairly good agreement. This suggests an intimate relation between the high-field phase and the half-metallic electronic structure, and that at the high-field limit the phase approaches the half-metallic state, which has been predicted by band-structure calculations.

  16. Identification and minimization of sources of temporal instabilities in high field (>23 T) resistive magnets

    NASA Astrophysics Data System (ADS)

    Soghomonian, Victoria; Sabo, M.; Powell, A.; Murphy, P.; Rosanske, Richard; Cross, T. A.; Schneider-Muntau, H. J.

    2000-07-01

    Resistive magnets offer very high field strengths, unmatched by superconducting technology. However, the spatial and temporal characteristics of raw magnetic fields generated by resistive high powered and water cooled magnets, are unadapted to most nuclear magnetic resonance (NMR) experiments. The National High Magnetic Field Laboratory has installed a 24 T (˜1 GHz 1H), 32 mm bore, 13 MW resistive magnet to study the feasibility of utilizing such fields for NMR applications. Herein we present our efforts in identifying, characterizing, and improving the temporal properties of the magnets. The temporal instabilities arise mainly from two sources: power supply ripple and inlet cooling water temperature variations. To compensate for power supply ripple, flux stabilization was employed, whereas for long term variations, arising from variations in the water temperature, a field frequency lock unit was utilized. Moreover, a novel flow based water temperature control scheme was implemented. The stabilization and improved control reduced the initial 16 ppm peak-to-peak variation to ˜2 ppm. Implementation of a field frequency lock unit further reduced the temporal variation to 0.8 ppm peak-to-peak. Sharp NMR linewidths — 1.7 ppm at full width at half height of 2H in liquid D2O — are observed in small volume samples, enabling moderate resolution NMR experiments to be performed at 24 T.

  17. High-field magnetic white dwarfs as the progeny of early-type stars?

    NASA Astrophysics Data System (ADS)

    Dobbie, P. D.; Külebi, B.; Casewell, S. L.; Burleigh, M. R.; Parker, Q. A.; Baxter, R.; Lawrie, K. A.; Jordan, S.; Koester, D.

    2013-01-01

    We present an analysis of the newly resolved components of two hot, double-degenerate systems, SDSS J074853.07+302543.5 + J074852.95+302543.4 and SDSS J150813.24+394504.9 + J150813.31+394505.6 (CBS 229). We confirm that each system has widely separated components (a > 100 au) consisting of a H-rich, non-magnetic white dwarf and a H-rich, high-field magnetic white dwarf (HFMWD). The masses of the non-magnetic degenerates are found to be larger than typical of field white dwarfs. We use these components to estimate the total ages of the binaries and demonstrate that both magnetic white dwarfs are the progeny of stars with Minit > 2 M⊙. We briefly discuss the traits of all known hot, wide, magnetic + non-magnetic double degenerates in the context of HFMWD formation theories. These are broadly consistent (chance probability, P ≈ 0.065) with HFMWDs forming primarily from early-type stars and, in the most succinct interpretation, link their magnetism to the fields of their progenitors. Our results do not, however, rule out that HFMWDs can form through close binary interactions and studies of more young, wide double degenerates are required to reach firm conclusions on these formation pathways.

  18. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  19. Cryogenic Design of the New High Field Magnet Test Facility at CERN

    NASA Astrophysics Data System (ADS)

    Benda, V.; Pirotte, O.; De Rijk, G.; Bajko, M.; Craen, A. Vande; Perret, Ph.; Hanzelka, P.

    In the framework of the R&D program related to the Large Hadron Collider (LHC) upgrades, a new High Field Magnet (HFM) vertical test bench is required. This facility located in the SM18 cryogenic test hall shall allow testing of up to 15 tons superconducting magnets with energy up to 10 MJ in a temperature range between 1.9 K and 4.5 K. The article describes the cryogenic architecture to be inserted in the general infrastructure of SM18 including the process and instrumentation diagram, the different operating phases including strategy for magnet cool down and warm up at controlled speed and quench management as well as the design of the main components.

  20. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    PubMed Central

    Plantinga, Birgit R.; Temel, Yasin; Roebroeck, Alard; Uludağ, Kâmil; Ivanov, Dimo; Kuijf, Mark L.; ter Haar Romenij, Bart M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target structures on routine clinical MR images, direct targeting of structures can be challenging. Non-clinical MR scanners with ultra-high magnetic field (7T or higher) have the potential to improve the quality of these images. This technology report provides an overview of the current possibilities of visualizing deep brain stimulation targets and their related structures with the aid of ultra-high field MRI. Reviewed studies showed improved resolution, contrast- and signal-to-noise ratios at ultra-high field. Sequences sensitive to magnetic susceptibility such as T2* and susceptibility weighted imaging and their maps in general showed the best visualization of target structures, including a separation between the subthalamic nucleus and the substantia nigra, the lamina pallidi medialis and lamina pallidi incompleta within the globus pallidus and substructures of the thalamus, including the ventral intermediate nucleus (Vim). This shows that the visibility, identification, and even subdivision of the small deep brain stimulation targets benefit from increased field strength. Although ultra-high field MR imaging is associated with increased risk of geometrical distortions, it has been shown that these distortions can be avoided or corrected to the extent where the effects are limited. The availability of ultra-high field MR scanners for humans seems to provide opportunities for a more accurate targeting for deep brain stimulation in patients with Parkinson's disease and related disorders. PMID:25414656

  1. Stress management as an enabling technology for high-field superconducting dipole magnets

    NASA Astrophysics Data System (ADS)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  2. 2D/3D quench simulation using ANSYS for epoxy impregnated Nb3Sn high field magnets

    SciTech Connect

    Ryuji Yamada et al.

    2002-09-19

    A quench program using ANSYS is developed for the high field collider magnet for three-dimensional analysis. Its computational procedure is explained. The quench program is applied to a one meter Nb{sub 3}Sn high field model magnet, which is epoxy impregnated. The quench simulation program is used to estimate the temperature and mechanical stress inside the coil as well as over the whole magnet. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for longer magnets.

  3. High-field superconducting window-frame beam-transport magnets

    SciTech Connect

    Allinger, J.; Carroll, A.; Danby, G.; DeVito, B.; Jackson, J.; Leonhardt, W.; Prodell, A.; Skarita, J.

    1982-01-01

    The window-frame design for high-field superconducting beam-transport magnets was first applied to two, 2-m-long, 4-T modules of an 8/sup 0/ bending magent which has operated for nine years in the primary proton beam line at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). The design of two 1.5-m long, 7.6-cm cold-bore superconducting windowframe magnets, described in this paper, intended for the external proton beam transport system at the AGS incorporated evolutionary changes. These magnets generated a maximum aperture field of 6.8 T with a peak field in the dipole coil of 7.1 T. Measured fields are very accurate and are compared to values calculated using the computer programs LINDA and POISSON. Results of quench-propagation studies demonstrate the excellent thermal stability of the magnets. The magnets quench safely without energy extraction at a maximum current density, J = 130 kA/cm/sup 2/ in the superconductor, corresponding to J = 57.6 kA/cm/sup 2/ overall the conductor at B = 6.7 T.

  4. High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging.

    PubMed

    Harris, Janna L; Yeh, Hung-Wen; Swerdlow, Russell H; Choi, In-Young; Lee, Phil; Brooks, William M

    2014-07-01

    Altered brain metabolism is likely to be an important contributor to normal cognitive decline and brain pathology in elderly individuals. To characterize the metabolic changes associated with normal brain aging, we used high-field proton magnetic resonance spectroscopy in vivo to quantify 20 neurochemicals in the hippocampus and sensorimotor cortex of young adult and aged rats. We found significant differences in the neurochemical profile of the aged brain when compared with younger adults, including lower aspartate, ascorbate, glutamate, and macromolecules, and higher glucose, myo-inositol, N-acetylaspartylglutamate, total choline, and glutamine. These neurochemical biomarkers point to specific cellular mechanisms that are altered in brain aging, such as bioenergetics, oxidative stress, inflammation, cell membrane turnover, and endogenous neuroprotection. Proton magnetic resonance spectroscopy may be a valuable translational approach for studying mechanisms of brain aging and pathology, and for investigating treatments to preserve or enhance cognitive function in aging.

  5. Tuning magnetic disorder in diluted magnetic semiconductors using high fields to 89 Tesla

    SciTech Connect

    Crooker, Scott A; Samarth, Nitin

    2008-01-01

    We describe recent and ongoing studies at the National High Magnetic Field Laboratory at Los Alamos using the new '100 Tesla Multi-Shot Magnet', which is presently delivering fields up to {approx}89 T during its commissioning. We discuss the first experiments performed in this magnet system, wherein the linewidth of low-temperature photoluminescence spectra was used to directly reveal the degree of magnetic alloy disorder 'seen' by excitons in single Zn{sub 0.80}Cd{sub 0.22}Mn{sub 0.08}Se quantum wells. The magnetic potential landscape in II-VI diluted magnetic semiconductors (DMS) is typically smoothed when the embedded Mn{sup 2+} spins align in an applied field. However, an important (but heretofore untested) prediction of current models of compositional disorder is that magnetic alloy fluctuations in many DMS compounds should increase again in very large magnetic fields approaching 100 T. We observed precisely this increase above {approx}70 T, in agreement with a simple model of magnetic alloy disorder.

  6. MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.

    SciTech Connect

    COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.; GANETIS,G.; GHOSH,A.; GUPTA,R.; HARRISON,M.; JAIN,A.; MARONE,A.; MURATORE,J.; PARKER,B.; SAMPSON,W.; SOIKA,R.; WANDERER,P.

    2002-08-04

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test results will be discussed.

  7. High-field magnetization and magnetic phase transition in CeOs2Al10

    NASA Astrophysics Data System (ADS)

    Kondo, Akihiro; Wang, Junfeng; Kindo, Koichi; Ogane, Yuta; Kawamura, Yukihiro; Tanimoto, Sakiyo; Nishioka, Takashi; Tanaka, Daiki; Tanida, Hiroshi; Sera, Masafumi

    2011-05-01

    We have studied the magnetization of CeOs2Al10 in high magnetic fields up to 55 T for H∥a and constructed the magnetic phase diagram for H∥a. The magnetization curve shows a concave H dependence below Tmax~40 K, which is higher than the transition temperature T0~29 K. The magnetic susceptibility along the a axis, χa, shows a smooth and continuous decrease down to ~20 K below Tmax~40 K without showing an anomaly at T0. From these two results, a Kondo singlet is formed below Tmax and coexists with the antiferromagnetic order below T0. We also propose that the larger suppression of the spin degrees of freedom along the a axis than along the c axis below Tmax is associated with the origin of the antiferromagnetic component.

  8. High-field, high-current-density, stable superconducting magnets for fusion machines

    SciTech Connect

    Lue, J.W.; Dresner, L.; Lubell, M.S.

    1989-01-01

    Designs for large fusion machines require high-performance superconducting magnets to reduce cost or increase machine performance. By employing force-flow cooling, cable-in-conduit conductor configuration, and NbTi superconductor, it is now possible to design superconducting magnets that operate a high fields (8-12 T) with high current densities (5-15 kA/cm/sup 2/ over the winding pack) in a stable manner. High current density leads to smaller, lighter, and thus less expensive coils. The force-flow cooling provides confined helium, full conductor insulation, and a rigid winding pack for better load distribution. The cable-in-conduit conductor configuration ensures a high stability margin for the magnet. The NbTi superconductor has reached a good engineering material standard. Its strain-insensitive critical parameters are particularly suitable for complex coil windings of a stellarator machine. The optimization procedure for such a conductor design, developed over the past decade, is summarized here. If desired a magnet built on the principles outlines in this paper can be extended to a field higher than the design value without degrading its stability by simply lowering the operating temperature below 4.2 K. 11 refs., 3 figs.

  9. Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets

    SciTech Connect

    Kennth Marken

    2006-08-11

    the project start and that date a substantial shift in the MRI marketplace occurred, with rapid growth for systems at higher fields (1.5 T and above) and a consequent decline in the low field market (<1.0 T). While the project aim appeared technically attainable at that time, the conclusion was reached that the system and market economics do not warrant additional investment. The program was redirected to develop BSCCO 2212 multifilament wire development for high field superconducting magnets for NMR and other scientific research upon an agreement between DOE and Oxford Instruments, Superconducting Technology. The work t took place between September, 2004 and the project end in early 2006 was focused on 2212 multifilamentary wire. This report summarizes the technical achievements both in 2212 dip coated for an HTS MRI system and in BSCCO 2212 multifilamentary wire for high field magnets.

  10. An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets.

    PubMed

    Hahn, Seung-Yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu

    2009-06-01

    This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet.

  11. An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets

    PubMed Central

    Hahn, Seung-yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet. PMID:20407595

  12. ADVANCED MAGNETIC RESONANCE IMAGING OF CEREBRAL CAVERNOUS MALFORMATIONS: I. HIGH FIELD IMAGING OF EXCISED HUMAN LESIONS

    PubMed Central

    Shenkar, Robert; Venkatasubramanian, Palamadai N.; Zhao, Jin-cheng; Batjer, H. Hunt; Wyrwicz, Alice M.; Awad, Issam A.

    2008-01-01

    Objectives We hypothesized that structural details would be revealed in cerebral cavernous malformations (CCMs) through the use of high field magnetic resonance (MR) and confocal microscopy, which have not been described previously. The structural details of CCMs excised from human patients were sought by examination with high field MR imaging, and correlated with confocal microscopy of the same specimens. Novel features of CCM structure are outlined, including methodological limitations, venues for future research and possible clinical implications. Methods CCM lesions excised from four patients were fixed in 2% paraformaldehyde and subjected to high resolution MR imaging at 9.4 or 14.1 Tesla by spin-echo and gradient recalled echo methods. Histological validation of angioarchitecture was conducted on thick sections of CCM lesions using fluorescent probes to endothelium under confocal microscopy. Results Images of excised human CCM lesions were acquired with proton density-weighted, T1-weighted, T2-weighted spin echo and T2*-weighted gradient-recalled echo MR. These images revealed large “bland” regions with thin walled caverns, and “honeycombed” regions with notable capillary proliferation and smaller caverns surrounding larger caverns. Proliferating capillaries and caverns of various sizes were also associated with the wall of apparent larger blood vessels in the lesions. Similar features were confirmed within thick sections of CCMs by confocal microscopy. MR relaxation times in different regions of interest suggested the presence of different states of blood breakdown products in areas with apparent angiogenic proliferative activity. Conclusions The high field MR imaging techniques demonstrate novel features of CCM angioarchitecture, visible at near histological resolution, including regions with apparently different biologic activity. These preliminary observations will motivate future research, correlating lesion biologic and clinical activity with

  13. Tunable High-Field Magnetization in Strongly Exchange-Coupled Freestanding Co/CoO Core/Shell Coaxial Nanowires.

    PubMed

    Salazar-Alvarez, German; Geshev, Julian; Agramunt-Puig, Sebastià; Navau, Carles; Sanchez, Alvaro; Sort, Jordi; Nogués, Josep

    2016-08-31

    The exchange bias properties of Co/CoO coaxial core/shell nanowires were investigated with cooling and applied fields perpendicular to the wire axis. This configuration leads to unexpected exchange-bias effects. First, the magnetization value at high fields is found to depend on the field-cooling conditions. This effect arises from the competition between the magnetic anisotropy and the Zeeman energies for cooling fields perpendicular to the wire axis. This allows imprinting predefined magnetization states to the antiferromagnetic (AFM) shell, as corroborated by micromagnetic simulations. Second, the system exhibits a high-field magnetic irreversibility, leading to open hysteresis loops attributed to the AFM easy axis reorientation during the reversal (effect similar to athermal training). A distinct way to manipulate the high-field magnetization in exchange-biased systems, beyond the archetypical effects, was thus experimentally and theoretically demonstrated.

  14. High-field electron transport in GaN under crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Kochelap, V. A.; Korotyeyev, V. V.; Syngayivska, G. I.; Varani, L.

    2015-10-01

    High-field electron transport studied in crossed electric and magnetic fields in bulk GaN with doping of 1016 cm-3, compensation around 90% at the low lattice temperature (30 K). It was found the range of the magnetic and electric fields where the non-equilibrium electron distribution function has a complicated topological structure in the momentum space with a tendency to the formation of the inversion population. Field dependences of dissipative and Hall components of the drift velocity were calculated for the samples with short- and open- circuited Hall contacts in wide ranges of applied electric (0 — 20 kV/cm) and magnetic (1 — 10 T) fields. For former sample, field dependences of dissipative and Hall components of the drift velocity have a non-monotonic behavior. The dissipative component has the inflection point which corresponds to the maximum point of the Hall component. For latter sample, the drift velocity demonstrate a usual sub-linear growth without any critical points. We found that GaN samples with controlled resistance of the Hall circuit can be utilized as a electronic high-power switch.

  15. Advances in high-field magnetic resonance spectroscopy in Alzheimer's disease.

    PubMed

    Zhang, Ningnannan; Song, Xiaowei; Bartha, Robert; Beyea, Steven; D'Arcy, Ryan; Zhang, Yunting; Rockwood, Kenneth

    2014-05-01

    Alzheimer's disease (AD) affects several important molecules in brain metabolism. The resulting neurochemical changes can be quantified non-invasively in localized brain regions using in vivo single-voxel proton magnetic resonance spectroscopy (SV 1H MRS). Although the often heralded diagnostic potential of MRS in AD largely remains unfulfilled, more recent use of high magnetic fields has led to significantly improved signal-to-noise ratios and spectral resolutions, thereby allowing clinical applications with increased measurement reliability. The present article provides a comprehensive review of SV 1H MRS studies on AD at high magnetic fields (3.0 Tesla and above). This review suggests that patterned regional differences and longitudinal alterations in several neurometabolites are associated with clinically established AD. Changes in multiple metabolites are identifiable even at early stages of AD development. By combining information of neurochemicals in different brain regions revealing either pathological or compensatory changes, high field MRS can be evaluated in AD diagnosis and in the detection of treatment effects. To achieve this, standardization of data acquisition and analytical approaches is needed.

  16. Microstructure and jc Improvements in Multifilamentary Bi-2212/Ag Wires for High Field Magnet Applications

    NASA Astrophysics Data System (ADS)

    Miao, H.; Meinesz, M.; Czabaj, B.; Parrell, J.; Hong, S.

    2008-03-01

    Bi-2212/Ag conductor is one of the most promising materials for extending the field strength of superconducting magnets over present low temperature superconductor systems. From the view point of practical application, Bi-2212/Ag round wires have significant advantages over more typical HTS tape conductors, such as no anisotropy, and easier handling and coil winding, which allows considerable flexibility in the magnet design. Recent development efforts at Oxford Superconducting Technology have been aimed at manufacturing high quality multifilamentary Bi-2212/Ag round wires with the varied sizes to fabricate HTS insert coils for high field magnet applications. However, further improvement of critical current density (Jc) and engineering current density (JE) in larger diameter wires is desirable for practical applications. Recent results show a strong dependence of the wire JE and Jc performance on its microstructure, in particularly, the interface of Bi-2212/Ag. Significant improvements of microstructure and Jc have resulted from the optimization of wire size and filament numbers, but not obviously on starting powder fill factors. The highest JE of 320 A/mm2 (non-Ag Jc of 1103 A/mm2) at 4.2 K, 25 T was obtained in 1.15 mm wire with 85×19 filament configuration.

  17. High field nuclear magnetic resonance in transition metal substituted BaFe2As2

    NASA Astrophysics Data System (ADS)

    Garitezi, T. M.; Lesseux, G. G.; Rosa, P. F. S.; Adriano, C.; Reyes, A. P.; Kuhns, P. L.; Pagliuso, P. G.; Urbano, R. R.

    2014-05-01

    We report high field 75As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe2As2 single crystals displaying same structural/magnetic transition T0≃128 K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency νQ≃2.57(1) MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe2As2 compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe-As tetrahedra, must be the most probable tuning parameter to determine T0 in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T0 suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe2As2 [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].

  18. Disorder-induced domain wall velocity shift at high fields in perpendicularly magnetized thin films

    NASA Astrophysics Data System (ADS)

    Voto, Michele; Lopez-Diaz, Luis; Torres, Luis; Moretti, Simone

    2016-11-01

    Domain wall dynamics in a perpendicularly magnetized system is studied by means of micromagnetic simulations in which disorder is introduced as a dispersion of both the easy-axis orientation and the anisotropy constant over regions reproducing a granular structure of the material. High field dynamics show a linear velocity-field relationship and an additional grain size dependent velocity shift, weakly dependent on both applied field and intrinsic Gilbert's damping parameter. We find the origin of this velocity shift in the nonhomogeneous in-plane effective field generated by the tilting of anisotropy easy axis introduced by disorder. We show that a one-dimensional analytical approach cannot predict the observed velocities and we augment it with the additional dissipation of energy arising from internal domain wall dynamics triggered by disorder. This way we prove that the main cause of higher velocity is the ability of the domain wall to irradiate energy into the domains, acquired with a precise feature of disorder.

  19. High field septum magnet using a superconducting shield for the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Barna, Dániel

    2017-04-01

    A zero-field cooled superconducting shield is proposed to realize a high-field (3-4 T) septum magnet for the Future Circular Collider hadron-hadron (FCC-hh) ring. Three planned prototypes using different materials and technical solutions are presented, which will be used to evaluate the feasibility of this idea as a part of the FCC study. The numerical simulation methods are described to calculate the field patterns around such a shield. A specific excitation current configuration is presented that maintains a fairly homogeneous field outside of a rectangular shield in a wide range of field levels from 0 to 3 Tesla. It is shown that a massless septum configuration (with an opening in the shield) is also possible and gives satisfactory field quality with realistic superconducting material properties.

  20. High-field magnetic resonance imaging of the human temporal lobe☆

    PubMed Central

    Colon-Perez, Luis M.; King, Michael; Parekh, Mansi; Boutzoukas, Angelique; Carmona, Eduardo; Couret, Michelle; Klassen, Rosemary; Mareci, Thomas H.; Carney, Paul R.

    2015-01-01

    Background Emerging high-field diffusion weighted MR imaging protocols, along with tractography, can elucidate microstructural changes associated with brain disease at the sub-millimeter image resolution. Epilepsy and other neurological disorders are accompanied by structural changes in the hippocampal formation and associated regions; however, these changes can be subtle and on a much smaller scale than the spatial resolution commonly obtained by current clinical magnetic resonance (MR) protocols in vivo. Methods We explored the possibility of studying the organization of fresh tissue with a 17.6 Tesla magnet using diffusion MR imaging and tractography. The mesoscale organization of the temporal lobe was estimated using a fresh unfixed specimen obtained from a subject who underwent anterior temporal lobectomy for medically refractory temporal lobe epilepsy (TLE). Following ex vivo imaging, the tissue was fixed, serial-sectioned, and stained for correlation with imaging. Findings We resolved tissue microstructural organizational features in the temporal lobe from diffusion MR imaging and tractography in fresh tissue. Conclusions Fresh ex vivo MR imaging, along with tractography, revealed complex intra-temporal structural variation corresponding to neuronal cell body layers, dendritic fields, and axonal projection systems evident histologically. This is the first study to describe in detail the human temporal lobe structural organization using high-field MR imaging and tractography. By preserving the 3-dimensional structures of the hippocampus and surrounding structures, specific changes in anatomy may inform us about the changes that occur in TLE in relation to the disease process and structural underpinnings in epilepsy-related memory dysfunction. PMID:26413472

  1. High-field magnetization of band ferromagnets Co2 YAl ( Y = Ti, V, Cr, Mn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Korolev, A. V.; Weber, H. W.

    2016-12-01

    The temperature dependences of the magnetization of ferromagnetic Heusler alloys Co2 YAl, where Y = Ti, V, Cr, Mn, Fe, and Ni have been studied at H = 50 kOe in the range 2 K < T < 1100 K. It is shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  2. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    NASA Astrophysics Data System (ADS)

    Marrufo, O.; Vasquez, F.; Solis, S. E.; Rodriguez, A. O.

    2011-04-01

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  3. Flux pinning study of RE barium coper oxide coated conductors for high field magnet applications

    NASA Astrophysics Data System (ADS)

    Xu, Aixia

    REBa2Cu3O7-δ (REBCO, RE = rare earth) coated conductor (CC) holds great promise for high field magnet applications owing to its strong irreversibility field (Hirr), low electromagnetic anisotropy (γ2), and high critical current density (Jc). The work of this thesis is tightly related to the development of the funded 32 T, all-superconducting magnet project at the NHMFL. My concern is thus for understanding the optimizing of the working parameters of REBCO CC at low temperatures T, and very high magnetic fields H, focusing on how to enhance Ic and to reduce its angular dependence. Increasing the active cross-section is a direct and economical strategy to enhance the current-carrying capability for REBCO coated conductors. Unfortunately, the high Jc in thin REBCO layers is seldom sustained in thick layers because of difficulties of thick film growth control. In the presence of strong 3D (pin separation far less than film thickness) pins, a high and thickness-independent (Jc) should result. One of major tasks of this thesis is to explore what are the effective strong 3D pins that develop a high and thickness-independent Jc. High and weak thickness-dependent Jc at 77 K is obtained on most recent coated conductors, and BZO nanorods and RE2O 3 nanoparticles are identified as strong 3D pins contributing to this respectable Jc performance. At 77 K, we found that the strong pinning of BZO nanorods remains at least up to 9 T, whereas the strong pinning of RE2O3 nanoparticles gradually evolves to weak collective pinning as the irreversibility field is approached. The second principal part of this thesis concentrates on understanding and minimizing the angular dependence of Jc. Our study is based on the following procedure. First, we investigated the angular dependence of Jc (Jc(θ)) in the working condition of the future 32 T all-superconducting magnet, i.e. 4.2 K and high magnetic field up to 31 T. Our work shows that the low temperature Jc(θ) is Ginzburg-Landau-like at

  4. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Verweij, A.P.; Wake, M.; Willering, G; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  5. A Method to Localize RF B1 Field in High-Field Magnetic Resonance Imaging Systems

    PubMed Central

    Yoo, Hyoungsuk; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    In high-field magnetic resonance imaging (MRI) systems, B0 fields of 7 and 9.4 T, the RF field shows greater inhomogeneity compared to clinical MRI systems with B0 fields of 1.5 and 3.0 T. In multichannel RF coils, the magnitude and phase of the input to each coil element can be controlled independently to reduce the nonuniformity of the RF field. The convex optimization technique has been used to obtain the optimum excitation parameters with iterative solutions for homogeneity in a selected region of interest. The pseudoinverse method has also been used to find a solution. The simulation results for 9.4- and 7-T MRI systems are discussed in detail for the head model. Variation of the simulation results in a 9.4-T system with the number of RF coil elements for different positions of the regions of interest in a spherical phantom are also discussed. Experimental results were obtained in a phantom in the 9.4-T system and are compared to the simulation results and the specific absorption rate has been evaluated. PMID:22929360

  6. Tracking superparamagnetic iron oxide labeled monocytes in brain by high-field magnetic resonance imaging.

    PubMed

    Zelivyanskaya, Marina L; Nelson, Jay A; Poluektova, Larissa; Uberti, Mariano; Mellon, Melissa; Gendelman, Howard E; Boska, Michael D

    2003-08-01

    Inflammatory cells, most notably mononuclear phagocytes (MP; macrophages and microglia), play a critical role in brain homeostasis, repair and disease. One important event in cellular biodynamics is how MP move in and throughout the nervous system. Prior studies have focused principally on cell migration across the blood-brain barrier during neuroinflammatory processes with little work done on cell movement within the brain. During the past decade our laboratories have studied the role of MP in HIV-1-associated dementia (HAD). In HAD MP incite sustained glial inflammatory reactions causing significant neuronal damage. To extend these works we investigated cell movement in brain and its influence for disease in a novel co-registration system integrating neuropathology with high-field magnetic resonance imaging (MRI). Human monocytes labeled with superparamagnetic iron oxide particles were injected into the brain of severe combined immunodeficient (SCID) mice. MRI was recorded 1, 7, and 14 days after cell injection. MRI co-registered with histology verified that the MRI signal modification was due to the labeled cells. MRI showed human monocyte-derived macrophages along the injection site, the corpus callosum, the ventricular system and in other brain sites. These data support the idea that cell migration can be monitored in vivo and provides an opportunity to assess monocyte mobility in brain and its affects on neurodegenerative processes and notably HAD.

  7. Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging.

    PubMed

    Cohen, M S; DuBois, R M; Zeineh, M M

    2000-08-01

    The well-known variability in the distribution of high frequency electromagnetic fields in the human body causes problems in the analysis of structural information in high field magnetic resonance images. We describe a method of compensating for the purely intensity-based effects. In our simple and rapid correction algorithm, we first use statistical means to determine the background image noise level and the edges of the image features. We next populate all "noise" pixels with the mean signal intensity of the image features. These data are then smoothed by convolution with a gaussian filter using Fourier methods. Finally, the original data that are above the noise level are normalized to the smoothed images, thereby eliminating the lowest spatial frequencies in the final, corrected data. Processing of a 124 slice, 256 x 256 volume dataset requires under 70 sec on a laptop personal computer. Overall, the method is less prone to artifacts from edges or from sensitivity to absolute head position than are other correction techniques. Following intensity correction, the images demonstrated obvious qualitative improvement and, when subjected to automated segmentation tools, the accuracy of segmentation improved, in one example, from 35.3% to 84.7% correct, as compared to a manually-constructed gold standard.

  8. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging.

    PubMed

    Bogdanov, G; Ludwig, R

    2002-03-01

    The performance modeling of RF resonators at high magnetic fields of 4.7 T and more requires a physical approach that goes beyond conventional lumped circuit concepts. The treatment of voltages and currents as variables in time and space leads to a coupled transmission line model, whereby the electric and magnetic fields are assumed static in planes orthogonal to the length of the resonator, but wave-like along its longitudinal axis. In this work a multiconductor transmission line (MTL) model is developed and successfully applied to analyze a 12-element unloaded and loaded microstrip line transverse electromagnetic (TEM) resonator coil for animal studies. The loading involves a homogeneous cylindrical dielectric insert of variable radius and length. This model formulation is capable of estimating the resonance spectrum, field distributions, and certain types of losses in the coil, while requiring only modest computational resources. The boundary element method is adopted to compute all relevant transmission line parameters needed to set up the transmission line matrices. Both the theoretical basis and its engineering implementation are discussed and the resulting model predictions are placed in context with measurements. A comparison between a conventional lumped circuit model and this distributed formulation is conducted, showing significant departures in the resonance response at higher frequencies. This MTL model is applied to simulate two small-bore animal systems: one of 7.5-cm inner diameter, tuned to 200 MHz (4.7 T for proton imaging), and one of 13.36-cm inner diameter, tuned to both 200 and 300 MHz (7 T).

  9. Magnetic resonance spectroscopy editing techniques of coupled spin systems at high field

    NASA Astrophysics Data System (ADS)

    Snyder, Jeff

    , the effect of radiofrequency interference effects was studied at high field to investigate signal losses due to reduced excitation and refocusing in spectroscopic images. Possible differences between coupled and uncoupled spin systems were investigated in spectroscopic imaging at 4.7 T.

  10. Assessment of Abdominal Fat Using High-field Magnetic Resonance Imaging and Anthropometric and Biochemical Parameters.

    PubMed

    Al-Radaideh, Ali; Tayyem, Reema; Al-Fayomi, Kholoud; Nimer, Nisreen; Malkawi, Amer; Al-Zu Bi, Rana; Agraib, Lana; Athamneh, Imad; Hijjawi, Nawal

    2016-12-01

    To measure the abdominal subcutaneous fat (SF) and visceral fat (VF) volumes using high-field magnetic resonance imaging (MRI) and to investigate their association with selected anthropometric and biochemical parameters among obese and nonobese apparently healthy participants. A cross-sectional study was conducted by recruiting 167 healthy participants. Abdominal scans were acquired at 3T MRI, and the SF and VF were segmented and their volumes were calculated. Selected anthropometric and biochemical measurements were also determined. A significant difference (P < 0.05) was observed between normal body weight and overweight and obese participants for SF and VF, total abdominal fat volumes, leptin, resistin, adiponectin and waist circumference. Waist circumferences were measured by tape and MRI. Findings revealed that MRI-measured fat volumes were different between males and females and had a significant (P < 0.01) strong positive correlation with body mass index, leptin, resistin and WC and had a negative correlation with adiponectin level. MRI-measured fat volumes were found to correlate moderately with interleukin-6 and weakly with cholesterol, serum triglyceride and low-density lipoprotein. Except for cholesterol, all measured biochemical variables and abdominal fat volumes in the current study were significantly associated with body mass index. All anthropometric and biochemical parameters showed weak-to-strong associations with the MRI-measured fat volumes. Abdominal fat distribution was different between males and females and their correlations with some lipid profiles were found to be sex dependent. These findings revealed that MRI can be used as an alternative tool for obesity assessment. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  11. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.

    PubMed

    Glover, Paul M; Watkins, Roger H; O'Neill, George C; Ackerley, Rochelle; Sanchez-Panchuelo, Rosa; McGlone, Francis; Brookes, Matthew J; Wessberg, Johan; Francis, Susan T

    2017-10-01

    Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current <7μA, 200μs pulses) of individual mechanoreceptive afferents produces appropriate and robust responses during fMRI and MEG. This custom-built MRI- and MEG-compatible stimulator overcomes issues with existing INMS approaches; it allows well-controlled switching between recording and stimulus mode, prevents electrical shocks because of long cable lengths, permits unlimited patterns of stimulation, and provides a system with improved work-flow and participant comfort. We demonstrate that the requirements for an INMS-integrated system, which can be used with both fMRI and MEG imaging systems, have been fully met. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Magnetic properties of superconducting GdBa2Cu3O(6 + delta) at low temperature and high field

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Shapira, Y.; Hor, P. H.; Meng, R. L.; Chu, C. W.

    1988-01-01

    The magnetization of antiferromagnetic superconducting GdBa2Cu3O(6 + delta) has been measured for T in the range of 1.5 - 4.2 K for magnetic fields up to about 20 T. It is found that all Gd(3+) spins are nearly parallel at very high fields, and that this saturated spin subsystem coexists with superconductivity. Below the Neel temperature, 2.22 K, the transition from the 'canted' phase to the paramagnetic phase is observed by the application of a high magnetic field. The temperature dependence of this phase transition is also reported.

  13. High-field EPR study of a ReCl4(CN)2 molecular magnet building block

    NASA Astrophysics Data System (ADS)

    Liu, Junjie; Harris, T. David; Long, Jeffrey; Hill, Stephen

    2011-03-01

    Slow magnetic relaxation has been observed in the single-chain magnet (DMF)4 MReCl 4 (CN)2 (M = Mn, Fe, Co, Ni) [D. Harris et al., J. Am. Chem. Soc. 132, 3980 (2010)]. The ReCl 4 (CN)2 (1) molecule has been synthesized in which the local environment of the Re IV ion is same as in the single-chain magnet. Electron Paramagnetic Resonance (EPR) measurements have been performed on single crystal of complex 1 to determine the magnetic anisotropy of the Re IV ions. Both intra and inter Kramer's doublet transitions are observed in high-field (up to 36T) EPR experiments. The data indicate a significant axial anisotropy of the easy-plane type (D> 0) , withsizeablerhombic E term. In light of these findings, we are developing a theoretical model to account for the slow relaxation in the single-chain magnet.

  14. High field magnetic behavior in Boron doped Fe2VAl Heusler alloys

    NASA Astrophysics Data System (ADS)

    Venkatesh, Ch.; Vasundhara, M.; Srinivas, V.; Rao, V. V.

    2016-11-01

    We have investigated the magnetic behavior of Fe2VAl1-xBx (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the Tc, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (MS) for the x=0 alloy at higher magnetic fields which is absent at lower fields (<50 kOe), while the Boron doped samples show feeble MS at lower fields. The origin of this short range correlation is due to presence of dilute magnetic heterogeneous phases which are not detected from the X-ray diffraction method.

  15. Magnetic Gearing Versus Conventional Gearing in Actuators for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Puchhammer, Gregor

    2014-01-01

    Magnetic geared actuators (MGA) are designed to perform highly reliable, robust and precise motion on satellite platforms or aerospace vehicles. The design allows MGA to be used for various tasks in space applications. In contrast to conventional geared drives, the contact and lubrication free force transmitting elements lead to a considerable lifetime and range extension of drive systems. This paper describes the fundamentals of magnetic wobbling gears (MWG) and the deduced inherent characteristics, and compares conventional and magnetic gearing.

  16. Fabrication and test results of a high field, Nb3Sn superconducting racetrack dipole magnet

    SciTech Connect

    Benjegerdes, R.; Bish, P.; Byford, D.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.; Hannaford, R.; Higley, H.; Jackson, A.; Lietzke, A.; Liggins, N.; McInturff, A.D.; O'Neill, J.; Palmerston, E.; Sabbi, G.; Scanlan, R.M.; Swanson, J.

    2001-06-15

    The LBNL Superconducting Magnet Program is extending accelerator magnet technology to the highest possible fields. A 1 meter long, racetrack dipole magnet, utilizing state-of-the-art Nb{sub 3}Sn superconductor, has been built and tested. A record dipole filed of 14.7 Tesla has been achieved. Relevant features of the final assembly and tested results are discussed.

  17. Studies of $${\\rm Nb}_{3}{\\rm Sn}$$ Strands Based on the Restacked-Rod Process for High Field Accelerator Magnets

    DOE PAGES

    Barzi, E.; Bossert, M.; Gallo, G.; ...

    2011-12-21

    A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.

  18. Analytical studies of advanced high-field designs: 20-tesla large-bore superconducting magnets

    SciTech Connect

    Hoard, R.W.; Cornish, D.N.; Scanlan, R.M.; Zbasnik, J.P.; Leber, R.L.; Hickman, R.B.; Lee, J.D.

    1983-09-30

    Several emerging technologies have been combined in a conceptual design study demonstrating the feasibility of producing ultrahigh magnetic fields from large-bore superconducting solenoid magnets. Several designs have been produced that approach peak fields of 20-T in 2.0-m diameter inner bores. The analytical expressions comprising the main features of CONDUCTOR and ADVMAGNET, the two computer programs used in the design of these advanced magnets, are also discussed. These magnets and design techniques will make a paramount contribution to the national mirror-fusion endeavor and to the newly emerging field of nuclear magnetic resonance (NMR) whole-body scanners.

  19. Limits of NbTi and Nb3Sn, and development of W& R Bi-2212 High Field Accelerator Magnets

    SciTech Connect

    Cheng, Daniel; Dietderich, Daniel; Ferrracin, Paolo; Prestemon, Soren; Sabbi, GianLuca; Scanlan, Ron; Godeke, A.

    2007-06-01

    NbTi accelerator dipoles are limited to magnetic fields (H) of about 10 T, due to an intrinsic upper critical field (H{sub c2}) limitation of 14 T. To surpass this restriction, prototype Nb{sub 3}Sn magnets are being developed which have reached 16 T. We show that Nb{sub 3}Sn dipole technology is practically limited to 17 to 18 T due to insufficient high field pinning, and intrinsically to 20 to 22 T due to H{sub c2} limitations. Therefore, to obtain magnetic fields approaching 20 T and higher, a material is required with a higher H{sub c2} and sufficient high field pinning capacity. A realistic candidate for this purpose is Bi-2212, which is available in round wires and sufficient lengths for the fabrication of coils based on Rutherford-type cables. We initiated a program to develop the required technology to construct accelerator magnets from 'wind-and-react' (W&R) Bi-2212 coils. We outline the complications that arise through the use of Bi-2212, describe the development paths to address these issues, and conclude with the design of W&R Bi-2212 sub-scale magnets.

  20. Cortical mapping and frameless stereotactic navigation in the high-field intraoperative magnetic resonance imaging suite

    PubMed Central

    Weingarten, David M.; Asthagiri, Ashok R.; Butman, John A.; Sato, Susumu; Wiggs, Edythe A.; Damaska, Bonita; Heiss, John D.

    2013-01-01

    Frameless stereotactic neuronavigation provides tracking of surgical instruments on radiographic images and orients the surgeon to tumor margins at surgery. Bipolar electrical stimulation mapping (ESM) delineates safe limits for resection of brain tumors adjacent to eloquent cortex. These standard techniques could complement the capability of intraoperative MR (iMR) imaging to evaluate for occult residual disease during surgery and promote more complete tumor removal. The use of frameless neuronavigation in the high-field iMR imaging suite requires that a few pieces of standard equipment be replaced by nonferromagnetic instruments. Specific use of ESM in a high-field iMR imaging suite has not been reported in the literature. To study whether frameless neuronavigation and electrical stimulation mapping could be successfully integrated in the high-field iMR imaging suite, the authors employed these modalities in 10 consecutive cases involving patients undergoing conscious craniotomy for primary brain tumors located in or adjacent to eloquent cortices. Equipment included a custom high-field MR imaging–compatible head holder and dynamic reference frame attachment, a standard MR imaging–compatible dynamic reference frame, a standard MR imaging machine with a table top that could be translated to a pedestal outside the 5-gauss line for the operative intervention, and standard neuronavigational and cortical stimulation equipment. Both ESM and frameless stereotactic guidance were performed outside the 5-gauss line. The presence of residual neoplasm was evaluated using iMR imaging; resection was continued until eloquent areas were encountered or iMR imaging confirmed complete removal of any residual tumor. Mapping identified essential language (5 patients), sensory (6), and motor (7) areas. The combined use of frameless stereotactic navigation, ESM, and iMR imaging resulted in complete radiographic resection in 7 cases and resection to an eloquent margin in 3 cases

  1. High-field QCPMG NMR of large quadrupolar patterns using resistive magnets.

    PubMed

    Hung, Ivan; Shetty, Kiran; Ellis, Paul D; Brey, William W; Gan, Zhehong

    2009-12-01

    Spectroscopy in a high magnetic field reduces second-order quadrupolar shift while increasing chemical shift. It changes the scale between quadrupolar and chemical shift of half-integer quadrupolar spins. The application of QCPMG multiple echo for acquiring large quadrupolar pattern under the high magnetic field of a 25 T resistive magnet is presented for acquiring large quadrupolar patterns. It shows that temporal field fluctuations and spatial homogeneity of the Keck magnet at the NHMFL contribute about +/- 20 ppm in line broadening. NMR patterns which have breadths of hundreds to thousands of kilohertz can be efficiently recorded using a combination of QCPMG and magnetic field stepping with negligible hindrance from the inhomogeneity and field fluctuations of powered magnets.

  2. Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications.

    PubMed

    Barnsley, Lester C; Carugo, Dario; Owen, Joshua; Stride, Eleanor

    2015-11-07

    A key challenge in the development of magnetic drug targeting (MDT) as a clinically relevant technique is designing systems that can apply sufficient magnetic force to actuate magnetic drug carriers at useful tissue depths. In this study an optimisation routine was developed to generate designs of Halbach arrays consisting of multiple layers of high grade, cubic, permanent magnet elements, configured to deliver the maximum pull or push force at a position of interest between 5 and 50 mm from the array, resulting in arrays capable of delivering useful magnetic forces to depths past 20 mm. The optimisation routine utilises a numerical model of the magnetic field and force generated by an arbitrary configuration of magnetic elements. Simulated field and force profiles of optimised arrays were evaluated, also taking into account the forces required for assembling the array in practice. The resultant selection for the array, consisting of two layers, was then constructed and characterised to verify the simulations. Finally the array was utilised in a set of in vitro experiments to demonstrate its capacity to separate and retain microbubbles loaded with magnetic nanoparticles against a constant flow. The optimised designs are presented as light-weight, inexpensive options for applying high-gradient, external magnetic fields in MDT applications.

  3. Using High-Field Magnetic Resonance Imaging to Estimate Distensibility of the Middle Cerebral Artery

    PubMed Central

    Warnert, Esther A.H.; Verbree, Jasper; Wise, Richard G.; van Osch, Matthias J.P.

    2016-01-01

    Background Although cerebral arterial stiffness may be an important marker for cerebrovascular health, there is not yet a measurement that accurately reflects the distensibility of major intracranial arteries. Herein, we aim to noninvasively measure distension of the human middle cerebral artery (MCA). Methods Ten healthy volunteers (age: 30.3 ± 10.8 years) underwent ultra-high-field (7-tesla) MRI scanning. Time-of-flight angiography and phase-contrast flow imaging were used to locate the M1 segment of the MCA and to determine the occurrence of systole and diastole. High-resolution cross-sectional cardiac triggered T2-weighted images of the M1 segment of the MCA were acquired in systole and diastole. Results The average distension of the MCA area from diastole to systole was 2.58% (range: 0.08%-6.48%). There was no significant correlation between MCA distension and the pulsatility index, calculated from the phase-contrast flow velocity profiles. Conclusion These results lead to the first noninvasive image-based estimation of distensibility of the MCA (approx. 5.8 × 10-4 mm Hg-1) and demonstrate that ultra-high-field MRI could be a promising tool for investigating distensibility of intracranial arteries in relation to cerebrovascular pathology. PMID:27449212

  4. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    PubMed Central

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  5. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    PubMed

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  6. Thermal and mechanical effects of quenches on Nb{sub 3}Sn high field hadron collider magnets

    SciTech Connect

    Ryuji Yamada et al.

    2001-11-05

    Thermal and its resulting mechanical stress due to quenches inside short and long epoxy impregnated Nb{sub 3}Sn high field magnets are studied with a quench simulation program, Kuench, and ANSYS program. For the protection of a long high field magnet, we have to use heaters to dump the stored energy uniformly inside the magnet, after detection of a spontaneous quench. The time delay of starting a forced quench with heaters, is estimated using ANSYS. Using this information, the thermal distribution in two-dimensional magnet cross section is studied. First a one meter model magnet with a dump resistor is used to estimate the effects and then a 10 meter long magnet is studied. The two-dimensional temperature distributions in the magnet cross sections are recorded every 5 ms, and visually displayed. With this visual animation displays we can understand intuitively the thermal and quench propagation in 2-dimensional field. The quenching cables get heated locally much more than the surrounding material and non-quenching conductor cables. With a one meter magnet with a dump resistor of 30 m{Omega}, typically only the quench starting cables and its neighbor cables get heated up to 100 K without significant effects from the heaters. With a10 meter magnet, heaters cause the quenches to most of the conductor blocks. The quench initiating cables get up to 250 to 300 K in 100 ms, but the surrounding and wedges are not heated up significantly. This causes the excessive stress in the quenching conductors and in their insulation material locally. The stress and strain in the conductor as well as in the insulation become excessive, and they are studied using the ANSYS stress analysis, using Von Mises criterion. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for the extended ten meter long magnet [1].

  7. Propagation of magnetic avalanches in Mn12Ac at high field sweep rates.

    PubMed

    Decelle, W; Vanacken, J; Moshchalkov, V V; Tejada, J; Hernández, J M; Macià, F

    2009-01-16

    Time-resolved measurements of the magnetization reversal in single crystals of Mn12Ac in pulsed magnetic fields, at magnetic field sweep rates from 1.5 kT/s up to 7 kT/s, suggest a new process that cannot be scaled onto a deflagrationlike propagation driven by heat diffusion. The sweep rate dependence of the propagation velocity, increasing from a few 100 m/s up to the speed of sound in Mn12Ac, indicates the existence of two new regimes at the highest sweep rates, with a transition around 4 kT/s that can be understood as a magnetic deflagration-to-detonation transition.

  8. Design and analysis of high-field quasi-continuous magnets

    SciTech Connect

    Boenig, H.J.; Campbell, L.J.; Rickel, D.G.; Rogers, J.D.; Schillig, J.B.; Sims, J.R.; Pernambuco-Wise, P.; Schneider-Muntau, H.J.; Van Bockstal, L.

    1993-10-01

    Pulsed magnets of 60 tesla or more with a flat-top of 100 ms (quasi-continuous) are among the user facilities to be provided by the NHMFL. The design of such magnets is constrained by available materials and thermal recycle time. The design path discussed here tailors materials and current densities or independent concentric coils. The progressive design steps are Illustrated by a specific example of an eight-coil, 60T magnet. In the preliminary design stage closed form calculations of magnetic, structural, thermal, and electrical circuit behavior are used to achieve a practical design that meets Initial requirements. Design refinement incorporates finite element analyses and test results on materials, fabrication and prototypes. Higher fields are possible without large changes.

  9. A portable high-field pulsed magnet system for x-ray scattering studies.

    SciTech Connect

    Islam, Z.; Ruff, J.P.C.; Nojiri, H.; Matsuda, Y. H.; Ross, K. A.; Gaulin, B. D.; Qu, Z.; Lang, J. C.

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (- 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  10. Progress with high-field superconducting magnets for high-energy colliders

    SciTech Connect

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors. Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.

  11. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  12. The LLNL HFTF (High-Field Test Facility): A flexible superconducting test facility for fusion magnet development

    SciTech Connect

    Miller, J.R.; Chaplin, M.R.; Leber, R.L.; Rosdahl, A.R.

    1987-09-17

    The High-Field Test Facility (HFTF) is a flexible and, in many ways, unique facility at Lawrence Livermore National Laboratory (LLNL) for providing the test capabilities needed to develop the superconducting magnet systems of the next generation fusion machines. The superconducting coil set in HFTF has been operated successfully at LLNL, but in its original configuration, its utility as a test facility was somewhat restricted and cryogenic losses were intolerable. A new cryostat for the coil set allows the magnet system to remain cold indefinitely so the system is available on short notice to provide high fields (about 11 T) inside a reasonably large test volume (0.3-m diam). The test volume is physically and thermally isolated from the coil volume, allowing test articles to be inserted and removed without disturbing the coil cryogenic volume, which is maintained by an on-line refrigerator. Indeed, with the proper precautions, it is even unnecessary to drop the field in the HFTF during such an operation. The separate test volume also allows reduced temperature operation without the expense and complication of subcooling the entire coil set (about 20-t cold mass). The HFTF has thus become a key facility in the LLNL magnet development program, where the primary goal is to demonstrate the technology for producing fields to 15 T with winding-pack current densities of 40 A.mm/sup -2/ in coils sized for fusion applications. 4 refs., 4 figs., 1 tab.

  13. Monitoring of pistachio (Pistacia Vera) ripening by high field nuclear magnetic resonance spectroscopy.

    PubMed

    Sciubba, Fabio; Avanzato, Damiano; Vaccaro, Angela; Capuani, Giorgio; Spagnoli, Mariangela; Di Cocco, Maria Enrica; Tzareva, Irina Nikolova; Delfini, Maurizio

    2017-04-01

    The metabolic profiling of pistachio (Pistacia vera) aqueous extracts from two different cultivars, namely 'Bianca' and 'Gloria', was monitored over the months from May to September employing high field NMR spectroscopy. A large number of water-soluble metabolites were assigned by means of 1D and 2D NMR experiments. The change in the metabolic profiles monitored over time allowed the pistachio development to be investigated. Specific temporal trends of amino acids, sugars, organic acids and other metabolites were observed and analysed by multivariate Partial Least Squares (PLS) analysis. Statistical analysis showed that while in the period from May to September there were few differences between the two cultivars, the ripening rate was different.

  14. Recent Test Results of the High Field Nb3Sn Dipole Magnet HD2

    SciTech Connect

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Felice, H.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Lietzke, A. F.; Lizarazo, J.; Sabbi, G.; Wang, X.

    2009-10-19

    The 1 m long Nb{sub 3}Sn dipole magnet HD2, fabricated and tested at Lawrence Berkeley National Laboratory, represents a step towards the development of block-type accelerator quality magnets operating in the range of 13-15 T. The magnet design features two coil modules composed of two layers wound around a titanium-alloy pole. The layer 1 pole includes a round cutout to provide room for a bore tube with a clear aperture of 36 mm. After a first series of tests where HD2 reached a maximum bore field of 13.8 T, corresponding to an estimated peak field on the conductor of 14.5 T, the magnet was disassembled and reloaded without the bore tube and with a clear aperture increased to 43 mm. We describe in this paper the magnet training observed in two consecutive tests after the removal of the bore tube, with a comparison of the quench performance with respect to the previous tests. An analysis of the voltage signals recorded before and after training quenches is then presented and discussed, and the results of coil visual inspections reported.

  15. Windows on the human body--in vivo high-field magnetic resonance research and applications in medicine and psychology.

    PubMed

    Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph S; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried

    2010-01-01

    Analogous to the evolution of biological sensor-systems, the progress in "medical sensor-systems", i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given.

  16. Research and Development of Wires and Cables for High-Field Accelerator Magnets

    SciTech Connect

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-04-01

    The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-proton (pp) collider. This paper describes the multi-decade R&D investment in the Nb3Sn superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting Nb3Sn wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the Nb3Sn technology to its limits for future pp colliders.

  17. Research and Development of Nb3Sn Wires and Cables for High-Field Accelerator Magnets

    NASA Astrophysics Data System (ADS)

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-04-01

    The latest strategic plans for high energy physics endorse steadfast superconducting magnet technology R&D for future energy frontier facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV-scale proton-proton (pp) collider. This paper describes the multi-decade R&D investment in the Nb3Sn superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting Nb3Sn wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the Nb3Sn technology to its limits for future pp colliders.

  18. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    SciTech Connect

    Flanagan, Gene

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  19. Design of HQ -- a High Field Large Bore Nb3Sn Quadrupole Magnet for LARP

    SciTech Connect

    Felice, H.; Ambrosio, G.; Anerella, M.; Bossert, R.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Ghosh, A. K.; Hafalia, R.; Hannaford, C. R.; Kashikhin, V.; Schmalze, J.; Prestemon, S.; Sabbi, G. L.; Wanderer, P.; Zlobin, A. V.

    2008-08-17

    In support of the Large Hadron Collider luminosity upgrade, a large bore (120 mm) Nb{sub 3}Sn quadrupole with 15 T peak coil field is being developed within the framework of the US LHC Accelerator Research Program (LARP). The 2-layer design with a 15 mm wide cable is aimed at pre-stress control, alignment and field quality while exploring the magnet performance limits in terms of gradient, forces and stresses. In addition, HQ will determine the magnetic, mechanical, and thermal margins of Nb{sub 3}Sn technology with respect to the requirements of the luminosity upgrade at the LHC.

  20. Insert Coil Test for HEP High Field Magnets Using YBCO Coated Conductor Tapes

    SciTech Connect

    Lombardo, V.; Barzi, E.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2011-06-15

    The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields of 30-50 T. In this paper we present progress in insert coil development using commercially available YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} Coated Conductor. Technological aspects covered in the development, including coil geometry, insulation, manufacturing process and testing are summarized and discussed. Test results of double pancake coils operated in liquid nitrogen and liquid helium are presented and compared with the performance of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} tape short samples.

  1. AC loss evaluation of an HTS insert for high field magnet cooled by cryocoolers

    NASA Astrophysics Data System (ADS)

    Kajikawa, Kazuhiro; Awaji, Satoshi; Watanabe, Kazuo

    2016-12-01

    AC losses in a high temperature superconducting (HTS) insert coil for 25-T cryogen-free superconducting magnet during its initial energization are numerically calculated under the assumption of slab approximation. The HTS insert consisting of 68 single pancakes wound using coated conductors generates a central magnetic field of 11.5 T in addition to the contribution of 14.0 T from a set of low temperature superconducting (LTS) outsert coils. Both the HTS insert and the LTS coils are cooled using cryocoolers, and energized simultaneously up to the central field of 25.5 T with a constant ramp rate for 60 min. The influences of the magnitudes and orientations of locally applied magnetic fields, magnetic interactions between turns and transport currents flowing in the windings are taken into account in the calculations of AC losses. The locally applied fields are separated into axial and radial components, and the individual contributions of these field components to the AC losses are simply summed up to obtain the total losses. The AC losses due to the axial fields become major in the beginning of energization, whereas the total losses monotonically increase with time after the AC losses due to the radial fields become major.

  2. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    SciTech Connect

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  3. High-field functional magnetic resonance imaging of vocalization processing in marmosets

    PubMed Central

    Sadagopan, Srivatsun; Temiz-Karayol, Nesibe Z.; Voss, Henning U.

    2015-01-01

    Vocalizations are behaviorally critical sounds, and this behavioral importance is reflected in the ascending auditory system, where conspecific vocalizations are increasingly over-represented at higher processing stages. Recent evidence suggests that, in macaques, this increasing selectivity for vocalizations might culminate in a cortical region that is densely populated by vocalization-preferring neurons. Such a region might be a critical node in the representation of vocal communication sounds, underlying the recognition of vocalization type, caller and social context. These results raise the questions of whether cortical specializations for vocalization processing exist in other species, their cortical location, and their relationship to the auditory processing hierarchy. To explore cortical specializations for vocalizations in another species, we performed high-field fMRI of the auditory cortex of a vocal New World primate, the common marmoset (Callithrix jacchus). Using a sparse imaging paradigm, we discovered a caudal-rostral gradient for the processing of conspecific vocalizations in marmoset auditory cortex, with regions of the anterior temporal lobe close to the temporal pole exhibiting the highest preference for vocalizations. These results demonstrate similar cortical specializations for vocalization processing in macaques and marmosets, suggesting that cortical specializations for vocal processing might have evolved before the lineages of these species diverged. PMID:26091254

  4. One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature.

    PubMed

    Liu, Guoquan; Levien, Marcel; Karschin, Niels; Parigi, Giacomo; Luchinat, Claudio; Bennati, Marina

    2017-07-01

    Nuclear magnetic resonance (NMR) is a fundamental spectroscopic technique for the study of biological systems and materials, molecular imaging and the analysis of small molecules. It detects interactions at very low energies and is thus non-invasive and applicable to a variety of targets, including animals and humans. However, one of its most severe limitations is its low sensitivity, which stems from the small interaction energies involved. Here, we report that dynamic nuclear polarization in liquid solution and at room temperature can enhance the NMR signal of (13)C nuclei by up to three orders of magnitude at magnetic fields of ∼3 T. The experiment can be repeated within seconds for signal averaging, without interfering with the sample magnetic homogeneity. The method is therefore compatible with the conditions required for high-resolution NMR. Enhancement of (13)C signals on various organic compounds opens up new perspectives for dynamic nuclear polarization as a general tool to increase the sensitivity of liquid NMR.

  5. One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Guoquan; Levien, Marcel; Karschin, Niels; Parigi, Giacomo; Luchinat, Claudio; Bennati, Marina

    2017-07-01

    Nuclear magnetic resonance (NMR) is a fundamental spectroscopic technique for the study of biological systems and materials, molecular imaging and the analysis of small molecules. It detects interactions at very low energies and is thus non-invasive and applicable to a variety of targets, including animals and humans. However, one of its most severe limitations is its low sensitivity, which stems from the small interaction energies involved. Here, we report that dynamic nuclear polarization in liquid solution and at room temperature can enhance the NMR signal of 13C nuclei by up to three orders of magnitude at magnetic fields of ∼3 T. The experiment can be repeated within seconds for signal averaging, without interfering with the sample magnetic homogeneity. The method is therefore compatible with the conditions required for high-resolution NMR. Enhancement of 13C signals on various organic compounds opens up new perspectives for dynamic nuclear polarization as a general tool to increase the sensitivity of liquid NMR.

  6. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.

    PubMed

    Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F

    2004-01-30

    A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.

  7. Development of Rutherford-type cables for high field accelerator magnets at Fermilab

    SciTech Connect

    Andreev, N.; Barzi, E.; Borissov, E.; Elementi, L.; Kashikhin, V.S.; Lombardo, V.; Rusy, A.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2006-08-01

    Fermilab's cabling facility has been upgraded to a maximum capability of 42 strands. This facility is being used to study the effect of cabling on the performance of the various strands, and for the development and fabrication of cables in support of the ongoing magnet R&D programs. Rutherford cables of various geometries, packing factors, with and without a stainless steel core, were fabricated out of Cu alloys, NbTi, Nb{sub 3}Al, and various Nb{sub 3}Sn strands. The parameters of the upgraded cabling machine and results of cable R&D efforts at Fermilab are reported.

  8. NMR in pulsed high-field magnets and application to high-T(C) superconductors.

    PubMed

    Stork, H; Bontemps, P; Rikken, G L J A

    2013-09-01

    This article deals with the implementation of Nuclear Magnetic Resonance (NMR) experiments in pulsed magnetic fields at the pulsed-field facility of the Laboratoire National des Champs Magnétiques Intenses and its application to the high-T(C) superconductor YBa2Cu3O6.51. The experimental setup is described in detail, including a low-temperature probe head adapted for pulsed fields. An entire paragraph is dedicated to the discussion of NMR in pulsed field and the introduction of an advanced deconvolution technique making use of the induction voltage in an additional pick-up coil. The (63)Cu/(65)Cu NMR experiments on an YBa2Cu3O6.51 single crystal were performed at 2.5K during a field pulse of 46.8-T-amplitude. In the recorded spectrum the (63)Cu center line and high-frequency satellites as well as the (65)Cu center line are identified and are compared with results in literature.

  9. [Orbital vasculonervous network and orbital surgical compartments by high field magnetic resonance].

    PubMed

    Hernández González, L C; Suárez Suárez, E; Dos Santos Bernardo, V; Junceda Moreno, J; Recio Rodríguez, M; Martínez De Vega, V; Viaño López, J

    2003-10-01

    To elucidate the possibilities and indications of high-resolution magnetic resonance imaging (MRI) in the study of the orbit and its contents. Orbital anatomy was studied in sliced specimens of fifteen fresh frozen cadavers and the results were compared with those obtained in thirty asymptomatic subjects who underwent a magnetic resonance with 1.5 Tesla equipment. The information obtained was used to interpret the findings in twenty-two patients with various orbital diseases. High-resolution MRI allows visualization of structures difficult to assess previously, like the cerebrospinal fluid (CSF) surrounding the optic nerve, the complete intraorbital route and the exit of the third cranial nerve, the ophthalmic artery and the intraorbital relationships of the sixth cranial nerve, which can be clearly differentiated from the lateral rectus muscle. High-resolution MRI is a very useful tool for the study of the orbit and its content. It provides accurate diagnoses through non-invasive procedures and facilitates the planning of the surgical approaches by improving the visualization of pathologic orbital structures. lcarlos@correo.uniovi.es

  10. NMR in pulsed high-field magnets and application to high-TC superconductors

    NASA Astrophysics Data System (ADS)

    Stork, H.; Bontemps, P.; Rikken, G. L. J. A.

    2013-09-01

    This article deals with the implementation of Nuclear Magnetic Resonance (NMR) experiments in pulsed magnetic fields at the pulsed-field facility of the Laboratoire National des Champs Magnétiques Intenses and its application to the high-TC superconductor YBa2Cu3O6.51. The experimental setup is described in detail, including a low-temperature probe head adapted for pulsed fields. An entire paragraph is dedicated to the discussion of NMR in pulsed field and the introduction of an advanced deconvolution technique making use of the induction voltage in an additional pick-up coil. The 63Cu/65Cu NMR experiments on an YBa2Cu3O6.51 single crystal were performed at 2.5 K during a field pulse of 46.8-T-amplitude. In the recorded spectrum the 63Cu center line and high-frequency satellites as well as the 65Cu center line are identified and are compared with results in literature.

  11. Quench absorption coils: a quench protection concept for high-field superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Mentink, M.; Salmi, T.

    2017-06-01

    A quench protection concept based on coupled secondary coils is studied for inductively transferring energy out of a quenching superconducting dipole and thus limiting the peak hotspot temperature. So-called ‘quench absorption coils’ are placed in close proximity to the superconducting coils and are connected in series with a diode for the purpose of preventing current transformation during regular operation. During a quench, current is then transformed into the quench absorption coils so that a significant fraction of the stored magnetic energy is dissipated in the these coils. Numerical calculations are performed to determine the impact of such a concept and to evaluate the dimensions of the quench absorption coils needed to obtain significant benefits. A previously constructed 15 T Nb3Sn block coil is taken as a reference layout. Finite-element calculations are used to determine the combined inductive and thermal response of this system and these calculations are validated with a numerical model using an adiabatic approximation. The calculation results indicate that during a quench the presence of the quench absorption coils reduces the energy dissipated in the superconducting coils by 45% and reduces the hotspot temperature by over 100 K. In addition, the peak resistive voltage over the superconducting coils is significantly reduced. This suggests that this concept may prove useful for magnet designs in which the hotspot temperature is a design driver.

  12. Magnetic resonance anatomy of the proximal metacarpal region of the horse described from images acquired from low- and high-field magnets.

    PubMed

    Nagy, Annamaria; Dyson, Sue

    2009-01-01

    While low-field magnetic resonance (MR) images can provide useful information in the investigation of proximal metacarpal region pain, an in-depth knowledge of anatomy and comparison with more detailed high-field images are essential to understand the meaning of different signal intensities within tissues. This anatomic description is based on low-field and high-field MR examination of 30 cadaver metacarpal regions of mature horses with no history of carpal or proximal metacarpal pain. Normal MR anatomy is described and is illustrated by high-field and low-field MR images in transverse, sagittal and dorsal planes. Normal anatomic variations of soft tissue and osseous structures are discussed. Differences between the signal intensity and definition of tissues on high-field and low-field MR images and in different pulse sequences are highlighted. Several structures could be evaluated in both high-field and low-field images that cannot easily be imaged using radiography and ultrasonography, including the abaxial margins of the suspensory ligament, the interosseous ligaments between the metacarpal bones and the carpometacarpal ligaments. Structures that have previously not been described in detail were also identified.

  13. Development of superconductors for applications in high-field, high-current-density magnets for fusion research

    SciTech Connect

    Summers, L.T.; Miller, J.R.

    1986-09-26

    The development of large-bore, high-field magnets for fusion energy applications requires a system approach to both magnet and conductor design. At Lawrence Livermore National Laboratory (LLNL), the criteria used to choose superconductors include: strain tolerance, radiation tolerance, heat removal, stability, fabricability, and cost. We report on the performance of industrially produced, prototype, Ti-modified Nb/sub 3/Sn wires developed with LLNL support. Wire performance characteristics evaluated include critical current as a function of magnetic field, temperature, and applied strain. Tests were performed to determine how this performance translates to the performance of a cable-in-conduit conductor system using this wire. An alternative to Nb/sub 3/Sn superconductors is NbN, which is strain and radiation insensitive. We report preliminary efforts to produce multifilamentary NbN conductors by liquid-metal infiltration of NbN-coated, high-strength fibers. In addition, we discuss the fabrication of multifilamentary NbN conductors and their possible impact on magnet design.

  14. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    PubMed Central

    Duan, Qi; Duyn, Jeff H.; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Sodickson, Daniel K.; Brown, Ryan

    2014-01-01

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B1+ mapping, B1+ shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties. PMID:25281973

  15. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications.

    PubMed

    Duan, Qi; Duyn, Jeff H; Gudino, Natalia; de Zwart, Jacco A; van Gelderen, Peter; Sodickson, Daniel K; Brown, Ryan

    2014-10-01

    In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar-agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B₁(+) mapping, B₁(+) shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.

  16. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    SciTech Connect

    Duan, Qi Duyn, Jeff H.; Gudino, Natalia; Zwart, Jacco A. de; Gelderen, Peter van; Sodickson, Daniel K.; Brown, Ryan

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.

  17. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    SciTech Connect

    Usmani, Nawaid; Sloboda, Ron; Kamal, Wafa; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John; Monajemi, Tara

    2011-07-01

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  18. Comparison of High-field and Low-field Magnetic Resonance Imaging of Stifle Joint Disorders in Dogs.

    PubMed

    Przeworski, A; Adamiak, Z; Głodek, J

    2016-09-01

    The most common cause of hindlimb lameness in dogs is cranial cruciate ligament rupture. In 48-77.3% of the population this trauma leads to secondary damage of the meniscus. Depending on the magnetic strength of the used device, different diagnostic accuracy can be achieved. The examination sensitivity of magnetic resonance imaging is affected by many factors which are independent of diagnostic strength, such as correct positioning of the patient, size of the stifle joint examined, or selection of the right protocol of sequences. Sensitivity of meniscus damage detection was 100% and 90%, respectively, in high- and low-field magnetic resonance. The best results were reported during examination of the stifle in dogs above 10 kg b.w. at a flexion angle of 145°, and in sagittal and dorsal planes. Regardless of the magnetic strength applied, imaging of the whole cranial cruciate ligament is difficult. Moreover, MRI allows the detection of the first signs of osteoarthritis, which were observed 4 and 6 weeks after rupture of the cranial cruciate ligament using high and low-field MRI. This also applies to lesions in the subchondral bone or a bone marrow which occurred in association with insufficiency of the stifle joint, and were mainly localized in the epiphysis of the femur and tibia. The present article provides a comparison of different examination protocols and images of damaged stifle structures, such as menisci, ligaments and bones of the stifle joint visualized with low-field and high-field magnetic resonance. Magnetic resonance arthrography is also discussed.

  19. Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field

    PubMed Central

    Raven, Erika P.; Duyn, Jeff H.

    2016-01-01

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain–heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain–heart interactions. PMID:27044994

  20. A conventional point of view on active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Chen, H. Ming; Dill, Jim

    1993-01-01

    Active magnetic bearings used in rotating machinery should be designed as locally controlled, independent devices similar to other types of bearings. The functions of control electronics and power amplifiers can be simply and explicitly related to general bearing properties such as load capacity, stiffness, and damping. The dynamics of a rotor and its supporting active magnetic bearings are analyzed in a modified conventional method with an extended state vector containing the bearing state variables.

  1. Manufacture and Testing of a High Field Gradient Magnetic Fractionation System for Quantitative Detection of Plasmodium falciparum Gametocytes

    NASA Astrophysics Data System (ADS)

    Karl, Stephan; Woodward, Robert C.; Davis, Timothy M. E.; St. Pierre, Tim G.

    2010-12-01

    Plasmodium falciparum is the most dangerous of the human malaria parasite species and accounts for millions of clinical episodes of malaria each year in tropical countries. The pathogenicity of Plasmodium falciparum is a result of its ability to infect erythrocytes where it multiplies asexually over 48 h or develops into sexual forms known as gametocytes. If sufficient male and female gametocytes are taken up by a mosquito vector, it becomes infectious. Therefore, the presence and density of gametocytes in human blood is an important indicator of human-to-mosquito transmission of malaria. Recently, we have shown that high field gradient magnetic fractionation improves gametocyte detection in human blood samples. Here we present two important new developments. Firstly we introduce a quantitative approach to replace the previous qualitative method and, secondly, we describe a novel method that enables cost-effective production of the magnetic fractionation equipment required to carry out gametocyte quantification. We show that our custom-made magnetic fractionation equipment can deliver results with similar sensitivity and convenience but for a small fraction of the cost.

  2. Comparison Between Nb3Al and Nb3Sn Strands and Cables for High Field Accelerator Magnets

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Barzi, E.; Chlachidze, G.; Rusy, A.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Velev, V.; Wake, M.; Zlobin, A.V.; /Fermilab

    2010-01-01

    The Nb{sub 3}Al small racetrack magnet, SR07, has been successfully built and tested to its short sample limit beyond 10 Tesla without any training. Thus the practical application of Nb{sub 3}Al strands for high field accelerator magnets is established. The characteristics of the representative F4 strand and cable, are compared with the typical Nb{sub 3}Sn strand and cable. It is represented by the OST high current RRP Nb{sub 3}Sn strand with 108/127 configuration. The effects of Rutherford cabling to both type strands are explained and the inherent problem of the Nb{sub 3}Sn strand is discussed. Also the test results of two representative small racetrack magnets are compared from the stand point of Ic values, and training. The maximum current density of the Nb{sub 3}Al strands is still smaller than that of the Nb{sub 3}Sn strands, but if we take into account of the stress-strain characteristics, Nb{sub 3}Al strands become somewhat favorable in some applications.

  3. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method.

    PubMed

    Wang, Shumin; Duyn, Jeff H

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  4. Development of Ta-matrix Nb3Al Strand and Cable for High-Field Accelerator Magnet

    SciTech Connect

    Tsuchiya, K.; Ghosh, A.; Kikuchi, A.; Takeuchi, T.; Banno, N.; Iijima, Y.; Nimori, S.; Takigawa, H.; Terashima, A.; Nakamoto, T.; Kuroda, Y.; Maruyama, M.; Takao, T.; Tanaka, K.; Nakagawa, K.; Barzi, E.; Yamada, R.; Zlobin, A.

    2011-08-03

    Research and development of Nb{sub 3}Al strands and cables for a high field accelerator magnet is ongoing under the framework of the CERN-KEK collaboration. In this program, new Ta-matrix Nb{sub 3}Al strands were developed and their mechanical properties and superconducting properties were studied. The non-Cu J{sub c} values of these strands were 750 {approx} 800 A/mm{sup 2} at 15 T and 4.2 K. Using these strands, test fabrication of 27-strand Rutherford cable was carried out in collaboration with NIMS and Fermilab. The properties of the strands extracted from the cable were examined and it was found that there was no degradation of the superconducting properties of the strands. In this paper, we report the fabrication of the strands and the cable in brief and present some of the results obtained by studying their properties.

  5. Windows on the Human Body – in Vivo High-Field Magnetic Resonance Research and Applications in Medicine and Psychology

    PubMed Central

    Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph. S.; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried

    2010-01-01

    Analogous to the evolution of biological sensor-systems, the progress in “medical sensor-systems”, i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given. PMID:22219684

  6. Transsphenoidal Resection of Sellar Tumors Using High-Field Intraoperative Magnetic Resonance Imaging

    PubMed Central

    Szerlip, Nicholas J.; Zhang, Yi-Chen; Placantonakis, Dimitris G.; Goldman, Marc; Colevas, Kara B.; Rubin, David G.; Kobylarz, Eric J.; Karimi, Sasan; Girotra, Monica; Tabar, Viviane

    2011-01-01

    There has been increasing experience in the utilization of intraoperative magnetic resonance imaging (iMRI) for intracranial surgery. Despite this trend, only a few U.S centers have examined the use of this technology for transsphenoidal resection of tumors of the sella. We present the largest series in North America examining the role of iMRI for pituitary adenoma resection. We retrospectively reviewed our institutional experience of 59-patients who underwent transsphenoidal procedures for sellar and suprasellar tumors with iMRI guidance. Of these, 52 patients had a histological diagnosis of pituitary adenoma. The technical results of this subgroup were examined. A 1.5-T iMRI was integrated with the BrainLAB (Feldkirchen, Germany) neuronavigation system. The majority (94%) of tumors in our series were macroadenomas. Seventeen percent of tumors were confined to the sella, 49% had suprasellar extensions without involvement of the cavernous sinus, 34% had frank cavernous sinus invasion. All patients underwent at least one iMRI, and 19% required one or more additional sets of intraoperative imaging. In 58% of patients, iMRI led to the surgeon attempting more resection. A gross total resection was obtained in 67% of the patients with planned total resections. There was one case of permanent postoperative diabetes insipidus and no other instances of new hormone replacement. In summary, iMRI was most useful for tumors of the sella with and without suprasellar extension where the information from the iMRI extended the complete resection rate from 40 to 72% and 55 to 88%, respectively. As one would expect, it did not substantially increase the rate of resection of tumors with cavernous sinus invasion. Overall, iMRI was particularly useful in guiding resection safely, aiding in clinical decision making, and allowing identification and preservation of the pituitary stalk and normal pituitary gland. Limitations of the iMRI include a need for additional personnel and training

  7. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32

    PubMed Central

    Kummer, K.; Fondacaro, A.; Jimenez, E.; Velez-Fort, E.; Amorese, A.; Aspbury, M.; Yakhou-Harris, F.; van der Linden, P.; Brookes, N. B.

    2016-01-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  8. Endometrium evaluation with high-field (3-Tesla) magnetic resonance imaging in patients submitted to uterine leiomyoma embolization

    PubMed Central

    Jacobs, Monica Amadio Piazza; Nasser, Felipe; Zlotnik, Eduardo; Messina, Marcos de Lorenzo; Baroni, Ronaldo Hueb

    2013-01-01

    ABSTRACT Objective: To evaluate the endometrial alterations related to embolization of uterine arteries for the treatment of symptomatic uterine leiomyomatosis (pelvic pain and/or uterine bleeding) by means of high-field (3-Tesla) magnetic resonance. Methods: This is a longitudinal and prospective study that included 94 patients with a clinical and imaging diagnosis of symptomatic uterine leiomyomatosis, all of them treated by embolization of the uterine arteries. The patients were submitted to evaluations by high-field magnetic resonance of the pelvis before and 6 months after the procedure. Specific evaluations were made of the endometrium on the T2-weighted sequences, and on the T1-weighted sequences before and after the intravenous dynamic infusion of the paramagnetic contrast. In face of these measures, statistical analyses were performed using Student's t test for comparison of the results obtained before and after the procedure. Results: An average increase of 20.9% was noted in the endometrial signal on T2-weighted images obtained after the uterine artery embolization procedure when compared to the pre-procedure evaluation (p=0.0004). In the images obtained with the intravenous infusion of paramagnetic contrast, an average increase of 18.7% was noted in the post-embolization intensity of the endometrial signal, compared to the pre-embolization measure (p<0.035). Conclusion: After embolization of the uterine arteries, there was a significant increase of the endometrial signal on the T2-weighted images and on the post-contrast images, inferring possible edema and increased endometrial flow. Future studies are needed to assess the clinical impact of these findings. PMID:23579745

  9. Evaluation of radio frequency microcoils as nuclear magnetic resonance detectors in low-homogeneity high-field superconducting magnets

    NASA Astrophysics Data System (ADS)

    Wright, A. C.; Neideen, T. A.; Magin, R. L.; Norcross, J. A.

    1998-11-01

    We describe here experiments evaluating the performance of solenoidal radio frequency probes having submillimeter dimensions (microcoils) as detectors for liquid nuclear magnetic resonance (NMR) in very low-homogeneity (100 ppm/cm) magnetic fields. Performance is based on the measured H2O linewidth. A series of solenoidal microcoils having sample volumes 8, 53, and 593 nl were filled with distilled H2O and evaluated for smallest obtainable unshimmed NMR spectral linewidths in a vertical bore superconducting magnet, stabilized at 5.9 T (1H frequency=250 MHz). The smallest microcoil (472 μm diameter) gave a smallest H2O linewidth of 525 Hz, 25 times smaller than that from a standard 5.7 mm probe. Linewidth increased approximately as the square root of sample volume. For comparison, shimmed H2O linewidths using the same microcoils in a high-homogeneity (0.1 ppm/cm) NMR magnet were also measured. Shimmed linewidths in the high-homogeneity magnet were two orders of magnitude smaller and exhibited a similar dependence on volume. The results demonstrate that by using microcoils the volume over which the polarizing magnetic field must meet a specified homogeneity can be significantly reduced, which would be advantageous for smaller, less expensive NMR systems.

  10. Multicomponent analysis of radiolytic products in human body fluids using high field proton nuclear magnetic resonance (NMR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Grootveld, Martin C.; Herz, Herman; Haywood, Rachel; Hawkes, Geoffrey E.; Naughton, Declan; Perera, Anusha; Knappitt, Jacky; Blake, David R.; Claxson, Andrew W. D.

    1994-05-01

    High field proton Hahn spin-echo nuclear magnetic resonance (NMR) spectroscopy has been employed to investigate radiolytic damage to biomolecules present in intact human body fluids. γ-Radiolysis of healthy or rheumatoid human serum (5.00 kGy) in the presence of atmospheric O 2 gave rise to reproducible elevations in the concentration of NMR-detectable acetate which are predominantly ascribable to the prior oxidation of lactate to pyruvate by hydroxyl radical (·OH) followed by oxidative decarboxylation of pyruvate by radiolytically-generated hydrogen peroxide (H 2O 2) and/or further ·OH radical. Increases in the serum levels of non-protein-bound, low-molecular-mass components such as citrate and glutamine were also observed subsequent to γ-radiolysis, an observation which may reflect their mobilisation from protein binding-sites by ·OH radical, superoxide anion and/or H 2O 2. Moreover, substantial radiolytically-mediated elevations in the concentration of serum formate were also detectable. In addition to the above modifications, γ-radiolysis of inflammatory knee-joint synovial fluid (SF) generated a low-molecular-mass oligosaccharide species derived from the radiolytic fragmentation of hyaluronate. The radiolytically-mediated production of acetate in SF samples was markedly greater than that observed in serum samples, a consequence of the much higher levels of ·OH radical-scavenging lactate present. Indeed, increases in SF acetate concentration were detectable at doses as low as 48 Gy. We conclude that high field proton NMR analysis provides much useful information regarding the relative radioprotectant abilities of endogenous components and the nature, status and levels of radiolytic products generated in intact biofluids. We also suggest that NMR-detectable radiolytic products with associated toxicological properties (e.g. formate) may play a role in contributing to the deleterious effects observed following exposure of living organisms to sources of

  11. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary.

    PubMed

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1beta, were analyzed by RT-PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1beta, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage.

  12. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary

    PubMed Central

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1β, were analyzed by RT–PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1β, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage. PMID:16831232

  13. Recent progress towards developing a high field, high-T(sub c) superconducting magnet for magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.

    1992-01-01

    This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.

  14. Recent progress towards developing a high field, high-T(sub c) superconducting magnet for magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.

    1992-01-01

    This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.

  15. High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis.

    PubMed

    Schmierer, Klaus; Parkes, Harold G; So, Po-Wah; An, Shu F; Brandner, Sebastian; Ordidge, Roger J; Yousry, Tarek A; Miller, David H

    2010-03-01

    .9; SD = 5 versus 22.6 ms; SD = 4.7; P < 0.01). Associations were detected between phosphorylated neurofilament and myelin basic protein (r = 0.58, P < 0.01), myelin basic protein and T(2) (r = -0.59, P < 0.01), and neuronal density and T(1) (r = -0.57, P < 0.01). All indices correlated with duration of tissue fixation, however, including the latter in the analysis did not fundamentally affect the associations described. Our data show that T(2)-weighted magnetic resonance imaging at 9.4 T enables detection of cortical grey matter lesion in post-mortem multiple sclerosis brain. The quantitative associations suggest that in cortical grey matter T(1) may be a predictor of neuronal density, and T(2) of myelin content (and-secondarily-axons). Successful translation of these results into in vivo studies using high field magnetic resonance imaging (e.g. 3 T and 7 T) will improve the assessment of cortical pathology and thereby have an impact on the diagnosis and natural history studies of patients with multiple sclerosis, as well as clinical trial designs for putative treatments to prevent cortical demyelination and neuronal loss.

  16. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  17. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus.

    PubMed

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods.

  18. Numerical modelling of thermal effects in rats due to high-field magnetic resonance imaging (0.5 1 GHz)

    NASA Astrophysics Data System (ADS)

    Trakic, Adnan; Crozier, Stuart; Liu, Feng

    2004-12-01

    A finite-difference time-domain (FDTD) thermal model has been developed to compute the temperature elevation in the Sprague Dawley rat due to electromagnetic energy deposition in high-field magnetic resonance imaging (MRI). The field strengths examined ranged from 11.75-23.5 T (corresponding to 1H resonances of 0.5-1 GHz) and an N-stub birdcage resonator was used to both transmit radio-frequency energy and receive the MRI signals. With an in-plane resolution of 1.95 mm, the inhomogeneous rat phantom forms a segmented model of 12 different tissue types, each having its electrical and thermal parameters assigned. The steady-state temperature distribution was calculated using a Pennes 'bioheat' approach. The numerical algorithm used to calculate the induced temperature distribution has been successfully validated against analytical solutions in the form of simplified spherical models with electrical and thermal properties of rat muscle. As well as assisting with the design of MRI experiments and apparatus, the numerical procedures developed in this study could help in future research and design of tumour-treating hyperthermia applicators to be used on rats in vivo.

  19. Numerical modelling of thermal effects in rats due to high-field magnetic resonance imaging (0.5-1 GHZ).

    PubMed

    Trakic, Adnan; Crozier, Stuart; Liu, Feng

    2004-12-21

    A finite-difference time-domain (FDTD) thermal model has been developed to compute the temperature elevation in the Sprague Dawley rat due to electromagnetic energy deposition in high-field magnetic resonance imaging (MRI). The field strengths examined ranged from 11.75-23.5 T (corresponding to 1H resonances of 0.5-1 GHz) and an N-stub birdcage resonator was used to both transmit radio-frequency energy and receive the MRI signals. With an in-plane resolution of 1.95 mm, the inhomogeneous rat phantom forms a segmented model of 12 different tissue types, each having its electrical and thermal parameters assigned. The steady-state temperature distribution was calculated using a Pennes 'bioheat' approach. The numerical algorithm used to calculate the induced temperature distribution has been successfully validated against analytical solutions in the form of simplified spherical models with electrical and thermal properties of rat muscle. As well as assisting with the design of MRI experiments and apparatus, the numerical procedures developed in this study could help in future research and design of tumour-treating hyperthermia applicators to be used on rats in vivo.

  20. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    PubMed

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.

  1. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    DOE PAGES

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; ...

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A)2[Co(NO3)4] with different countercations, Ph4P+ (1), MePh3P+ (2), and Ph4As+ (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to the zero-field splitting (2(D2 + 3E2)1/2) from 22.5(2) cm–1 inmore » 1 to 26.6(3) cm–1 in 2 and 11.1(5) cm–1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm–1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.« less

  2. Role of high-field intraoperative magnetic resonance imaging on a multi-image fusion-guided stereotactic biopsy of the basal ganglia: A case report.

    PubMed

    Sun, Xiang; Chen, Zhijuan; Yang, Shuyuan; Zhang, Jianning; Yue, Shuyuan; Wang, Zengguang; Yang, Weidong

    2015-01-01

    The aim of the present case study was to investigate the advantages of intraoperative magnetic resonance imaging (iMRI) on the real-time guidance and monitoring of a stereotactic biopsy. The study describes a patient with intracranial lesions, which were examined by conventional MRI and diffusion tensor imaging using a 1.5T intraoperative MRI system. The digital and pre-operative positron emission/computed tomography image data were transferred to a BrainLAB planning workstation, and a variety of images were automatically fused. The BrainLAB software was then used to reconstruct the corticospinal tract (CST) and create a three-dimensional display of the anatomical association between the CST and the brain lesions. A Leksell surgical planning workstation was used to identify the ideal target site and a reasonable needle track for the biopsy. The 1.5T iMRI was used to effectively monitor the intracranial condition during the brain biopsy procedure. Post-operatively, the original symptoms of the patient were not aggravated and no further neurological deficits were apparent. The histopathological diagnosis of non-Hodgkin's B-cell lymphoma was made. Using high-field iMRI, the multi-image fusion-guided stereotactic brain biopsy allows for a higher positive rate of biopsy and a lower incidence of complications. The approach of combining multi-image fusion images with the frame-based stereotactic biopsy may be clinically useful for intracranial lesions of deep functional areas.

  3. Mental rotation studied by functional magnetic resonance imaging at high field (4 tesla): performance and cortical activation.

    PubMed

    Tagaris, G A; Kim, S G; Strupp, J P; Andersen, P; Uğurbil, K; Georgopoulos, A P

    1997-07-01

    We studied the performance and cortical activation patterns during a mental rotation task (Shepard & Metzler, 1971) using functional magnetic resonance imaging (fMlU) at high field (4 Tesla). Twenty-four human subjects were imaged (fMRI group), whereas six additional subjects performed the task without being imaged (control group). All subjects were shown pairs of perspective drawings of 31, objects and asked to judge whether they were the same or mirror images. The measures of performance examined included (1) the percentage of errors, (2) the speed of performance, calculated as the inverse of the average response time, and (3) the rate of rotation for those object pairs correctly identified as "same." We found the following: (1) Subjects in the fMRI group performed well outside and inside the magnet, and, in the latter case, before and during data acquisition. Moreover, performance over time improved in the same manner as in the control group. These findings indicate that exposure to high magnetic fields does not impair performance in mental rotation. (2) Functional activation data were analyzed from 16 subjects of the fMRI goup. Several cortical areas were activated during task performance. The relations between the measures of performance above and the magnitude of activation of specific cortical areas were investigated by anatomically demarcating these areas of interest and calculating a normalized activation for each one of them. (3) We used the multivariate technique of hierarchical tree modeling to determine functional clustering among areas of interest and performance measures. Two main branches were distinguished: One comprised areas in the right hemisphere and the extrastriate and superior parietal lobules bilaterally, whereas the other comprised areas of the left hemisphere and the frontal pole bilaterally; all three performance measures above clustered with the former branch. Specifically, performance outcome ("percentage of errors") clustered with the

  4. Beneficial impact of high-field intraoperative magnetic resonance imaging on the efficacy of pediatric low-grade glioma surgery.

    PubMed

    Roder, Constantin; Breitkopf, Martin; Ms; Bisdas, Sotirios; Freitas, Rousinelle da Silva; Dimostheni, Artemisia; Ebinger, Martin; Wolff, Markus; Tatagiba, Marcos; Schuhmann, Martin U

    2016-03-01

    significance. Moreover, PFS was highly significantly better in patients with CRs than in those with incomplete resections (p < 0.001). Significantly better surgical results (CR) and PFS were achieved after using iMRI in patients in whom total resections were intended. Therefore, the use of high-field iMRI is strongly recommended for electively planned LGG resections in pediatric patients.

  5. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field

    PubMed Central

    Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2015-01-01

    Introduction Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey’s head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. Methods The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. Results The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. Conclusion The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system. PMID:26066653

  6. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field.

    PubMed

    Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2015-01-01

    Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.

  7. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  8. Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI.

    PubMed

    Tysiak, Eva; Asbach, Patrick; Aktas, Orhan; Waiczies, Helmar; Smyth, Maureen; Schnorr, Joerg; Taupitz, Matthias; Wuerfel, Jens

    2009-08-06

    Gadopentate dimeglumine (Gd-DTPA) enhanced magnetic resonance imaging (MRI) is widely applied for the visualization of blood brain barrier (BBB) breakdown in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the potential of magnetic nanoparticles to detect macrophage infiltration by MRI was demonstrated. We here investigated a new class of very small superparamagnetic iron oxide particles (VSOP) as novel contrast medium in murine adoptive-transfer EAE. EAE was induced in 17 mice via transfer of proteolipid protein specific T cells. MR images were obtained before and after application of Gd-DTPA and VSOP on a 7 Tesla rodent MR scanner. The enhancement pattern of the two contrast agents was compared, and correlated to histology, including Prussian Blue staining for VSOP detection and immunofluorescent staining against IBA-1 to identify macrophages/microglia. Both contrast media depicted BBB breakdown in 42 lesions, although differing in plaques appearances and shapes. Furthermore, 13 lesions could be exclusively visualized by VSOP. In the subsequent histological analysis, VSOP was localized to microglia/macrophages, and also diffusely dispersed within the extracellular matrix. VSOP showed a higher sensitivity in detecting BBB alterations compared to Gd-DTPA enhanced MRI, providing complementary information of macrophage/microglia activity in inflammatory plaques that has not been visualized by conventional means.

  9. Beyond blood brain barrier breakdown – in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI

    PubMed Central

    Tysiak, Eva; Asbach, Patrick; Aktas, Orhan; Waiczies, Helmar; Smyth, Maureen; Schnorr, Joerg; Taupitz, Matthias; Wuerfel, Jens

    2009-01-01

    Background Gadopentate dimeglumine (Gd-DTPA) enhanced magnetic resonance imaging (MRI) is widely applied for the visualization of blood brain barrier (BBB) breakdown in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the potential of magnetic nanoparticles to detect macrophage infiltration by MRI was demonstrated. We here investigated a new class of very small superparamagnetic iron oxide particles (VSOP) as novel contrast medium in murine adoptive-transfer EAE. Methods EAE was induced in 17 mice via transfer of proteolipid protein specific T cells. MR images were obtained before and after application of Gd-DTPA and VSOP on a 7 Tesla rodent MR scanner. The enhancement pattern of the two contrast agents was compared, and correlated to histology, including Prussian Blue staining for VSOP detection and immunofluorescent staining against IBA-1 to identify macrophages/microglia. Results Both contrast media depicted BBB breakdown in 42 lesions, although differing in plaques appearances and shapes. Furthermore, 13 lesions could be exclusively visualized by VSOP. In the subsequent histological analysis, VSOP was localized to microglia/macrophages, and also diffusely dispersed within the extracellular matrix. Conclusion VSOP showed a higher sensitivity in detecting BBB alterations compared to Gd-DTPA enhanced MRI, providing complementary information of macrophage/microglia activity in inflammatory plaques that has not been visualized by conventional means. PMID:19660125

  10. Magnetic properties of Zn doped Co{sub 2}Y hexaferrite by using high-field Mössbauer spectroscopy

    SciTech Connect

    Tae Lim, Jung; Sung Kim, Chul

    2014-05-07

    The polycrystalline samples of Ba{sub 2}Co{sub 2−x}Zn{sub x}Fe{sub 12}O{sub 22} (x = 0.5, 1.0, 1.5) were synthesized by using solid-state-reaction method. From the XRD patterns, analyzed by Rietveld refinement, the prepared samples are found to be single-phased with rhombohedral structure (R-3m). The magnetic properties of samples were investigated with vibrating sample magnetometer, and high-field Mössbauer spectrometer. From the zero-field-cooled curves under 100 Oe between 4.2 and 740 K, we observe that the samples show spin transition from helicalmagnetic to ferrimagnetic order. With increasing Zn ion concentration, the spin transition temperature (T{sub s}) and Curie temperature (T{sub C}) decrease linearly. We have obtained Zero-field Mössbauer spectra of all samples at various temperatures ranging from 4.2 to 650 K, and analyzed the spectra below T{sub C} as six-sextets for Fe sites. From the temperature dependence of hyperfine field (H{sub hf}), we have noticed an abrupt change in H{sub hf} at T{sub s}. In addition, Mössbauer spectra of all samples at 4.2 K were taken with applied field ranging from 0 to 50 kOe, indicating the canting angle between applied field and H{sub hf} decreased with increasing Zn concentration.

  11. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Shen, Tengming; Li, Pei; Jiang, Jianyi; Cooley, Lance; Tompkins, John; McRae, Dustin; Walsh, Robert

    2015-06-01

    INCONEL X750 for various high-field magnet applications.

  12. High strength kiloampere Bi 2 Sr 2 CaCu 2 O x cables for high-field magnet applications

    DOE PAGES

    Shen, Tengming; Li, Pei; Jiang, Jianyi; ...

    2015-04-17

    -Cr-Al and high strength of INCONEL X750 for various high-field magnet applications.« less

  13. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging.

    PubMed

    Ni, Dalong; Zhang, Jiawen; Bu, Wenbo; Zhang, Chen; Yao, Zhenwei; Xing, Huaiyong; Wang, Jing; Duan, Fei; Liu, Yanyan; Fan, Wenpei; Feng, Xiaoyuan; Shi, Jianlin

    2016-01-01

    It is well-known that multimodal imaging can integrate the advantages of different imaging modalities by overcoming their individual limitations. As ultra-high field magnetic resonance imaging (MRI) will be inevitably used in future MRI/X-ray computed tomography (CT) scanner, it is highly expected to develop high-performance nano-contrast agents for ultra-high field MR and CT dual-modality imaging, which has not been reported yet. Moreover, specific behavior of nano-contrast agents for ultra-high field MRI is a challenging work and still remains unknown. Herein, a novel type of NaHoF4 nanoparticles (NPs) with varied particle sizes were synthesized and explored as high-performance dual-modality contrast agents for ultra-high field MR and CT imaging. The specific X-ray absorption and MR relaxivity enhancements with varied nanoparticle diameters (3 nm, 7 nm, 13 nm and 29 nm) under different magnetic field (1.5/3.0/7.0 T) are investigated. Based on experimental results and theoretical analysis, the Curie and dipolar relaxation mechanisms of NaHoF4 NPs are firstly separated. Our results will greatly promote the future medical translational development of the NaHoF4 nano-contrast agents for ultra-high field MR/CT dual-modality imaging applications.

  14. Determination of the intersublattice exchange interactions in GdCo12-xFexB6 (x = 0-3) intermetallic compounds by high field magnetization measurements

    NASA Astrophysics Data System (ADS)

    Diop, L. V. B.; Isnard, O.; Skourski, Y.; Ballon, G.

    2013-05-01

    High field magnetization measurements up to 60 T on free powder samples from GdCo12-xFexB6 (x = 0-3) compounds are reported. The data were used to evaluate the microscopic exchange interaction integral, JGd-3d, between Gd and 3d (Co,Fe) spins. The systems are ferrimagnets; they order magnetically between TC = 95 K for x = 3 and TC = 165 K for x = 0. The low temperature magnetization curves as well as the temperature dependence of intrinsic magnetic parameters are determined by magnetic measurements in pulsed magnetic field. The average magnetic moment ⟨μCo+Fe⟩ per mean transition metal atom (Co + Fe) is small and increases with increasing Fe concentration from 0.44 μΒ for x = 0 to 0.51 μΒ for x = 3 at T = 4 K. From high field magnetization curves, a value of JGd-3d/kB = -4.65 K is derived for x = 0, whereas mean field approximation yields a much larger 3d-3d exchange integral of JCo-Co/kB = 105 K. The obtained results reveal an increase of -JGd-3d/kB with Fe concentration. For x = 0.5, the intersublattice coefficient nGd-3d is found to keep an almost constant value of 5.87 ± 0.13 T*f.u.*μB-1 whatever the temperature in the 2 to 60 K range.

  15. New 30 kA power system at Fermilab and its use for measuring the effects of ripple current on the performance of superconducting high field magnets

    SciTech Connect

    Carcagno, R.; Feher, S.; Garvey, J.; Jaskierny, W.; Lamm, M.; Makulski, A.; Orris, D.F.; Pfeffer, H.; Tartaglia, M.; Tompkins, J.; Wolff, D.; /Fermilab

    2004-12-01

    A new 30 kA, 30 V dc Power System was designed, built, and commissioned at Fermilab for testing Superconducting High Field Magnets. This system has been successfully supporting operations at the Fermilab Magnet Test Facility since April 2002. It is based on six commercial 150 kW Power Energy Industries power supply modules and the following in-house modules: six 720 Hz filters, two 15 kA/1kV dc solid-state dump switch, and a 3 MJ/30 kA/1 kV dc dump resistor. Additional inhouse electronic components were designed and built to provide precise current regulation and distribution of current and current rate of change. An industrial-type Programmable Logic Controller system was used to provide equipment interlocks and monitoring. This paper summarizes studies on the influence of characteristics of this new power system--such as ripple current--on the performance of High Field Superconducting magnets.

  16. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    SciTech Connect

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; Hunter, Seth C.; Zhang, Yi-Quan; Chen, Xue-Tai; Sun, Yi-Chen; Wang, Zhenxing; Song, You; Podlesnyak, Andrey A.; Ouyang, Zhong-Wen; Xue, Zi-Ling

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A)2[Co(NO3)4] with different countercations, Ph4P+ (1), MePh3P+ (2), and Ph4As+ (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to the zero-field splitting (2(D2 + 3E2)1/2) from 22.5(2) cm–1 in 1 to 26.6(3) cm–1 in 2 and 11.1(5) cm–1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm–1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.

  17. Magic angle effect in normal collateral ligaments of the distal interphalangeal joint in horses imaged with a high-field magnetic resonance imaging system.

    PubMed

    Werpy, Natasha M; Ho, Charles P; Kawcak, Christopher E

    2010-01-01

    Distal forelimb specimens of eight skeletally mature horses were imaged using proton density turbo spin echo, T1-weighted spoiled gradient echo, T2*-weighted gradient echo, short tau inversion recovery and T2-weighted fast spin echo sequences with the limb parallel to the main magnetic field, and with angulation of the limb relative to the main magnetic field. The magic angle effect can be identified in the collateral ligaments of the distal interphalangeal joint when imaged in a high-field magnetic resonance (MR) imaging system with a horizontally oriented main magnetic field. This effect has previously been described in the collateral ligaments of the distal interphalangeal joint in a low-field system with a vertically oriented main magnetic field. The curvature of the ligaments places the fibers at the magic angle in both horizontally and vertically orientated main magnetic fields. This effect can be identified on short time of echo sequences and impacts the signal pattern of the ligaments at the level of the middle phalanx with the limb in a neutral position and with angulation of the limb. Magic angle effect should be considered as a possible cause of an asymmetrical signal pattern, depending on the positioning of the limb and the sequences used for imaging, when evaluating the collateral ligaments of the distal interphalangeal joint on images acquired with a high-field MR imaging system that has a horizontally oriented main magnetic field.

  18. Evaluation of Magnetic Resonance Imaging-Compatible Needles and Interactive Sequences for Musculoskeletal Interventions Using an Open High-Field Magnetic Resonance Imaging Scanner

    SciTech Connect

    Wonneberger, Uta; Schnackenburg, Bernhard; Streitparth, Florian Walter, Thula Rump, Jens Teichgraeber, Ulf K. M.

    2010-04-15

    In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0{sup o} to 90{sup o}) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring was assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width <3.5 mm, tip error <2 mm) at 45{sup o} to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNR{sub Muscle/Needle} >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.

  19. The connective tissue and ligaments of the distal interphalangeal joint: a review and investigation using ultra-high field 16.4 Tesla magnetic resonance imaging.

    PubMed

    Slattery, D; Aland, C; Durbridge, G; Cowin, G

    2014-05-01

    This study reviews the literature on the anatomy of the connective tissues surrounding the distal interphalangeal joint and further characterizes the three-dimensional relationships of these structures with ultra-high field magnetic resonance imaging. Ten cadaver fingers, fixed in a solution of 5% agar and 4% formalin, were imaged utilising an ultrashield 16.4 Tesla ultra-high field magnetic resonance imaging, yielding a total of 4000 images. Images were analysed using Osirix™ (version 5.5.1 32 bit edition) for three-dimensional reconstruction. We found numerous conflicting descriptions of the connective tissue structures around the distal interphalangeal joint. Based upon our literature review and imaging studies we have defined precisely Cleland's ligaments, the oblique proximal septum, Grayson's ligaments, the dorsal plate, and the interosseous ligaments of the distal interphalangeal joint.

  20. Randomized trial for superiority of high field strength intra-operative magnetic resonance imaging guided resection in pituitary surgery.

    PubMed

    Tandon, Vivek; Raheja, Amol; Suri, Ashish; Chandra, P Sarat; Kale, Shashank S; Kumar, Rajinder; Garg, Ajay; Kalaivani, Mani; Pandey, Ravindra M; Sharma, Bhawani S

    2017-03-01

    Till date there are no randomized trials to suggest the superiority of intra-operative magnetic resonance imaging (IOMRI) guided trans-sphenoidal pituitary resection over two dimensional fluoroscopic (2D-F) guided resections. We conducted this trial to establish the superiority of IOMRI in pituitary surgery. Primary objective was to compare extent of tumor resection between the two study arms. It was a prospective, randomized, outcome assessor and statistician blinded, two arm (A: IOMRI, n=25 and B: 2D-F, n=25), parallel group clinical trial. 4 patients from IOMRI group cross-over to 2D-F group and were consequently analyzed in latter group, based on modified intent to treat method. A total of 50 patients were enrolled till completion of trial (n=25 in each study arm). Demographic profile and baseline parameters were comparable among the two arms (p>0.05) except for higher number of endoscopic procedures and experienced neurosurgeons (>10years) in arm B (p=0.02, 0.002 respectively). Extent of resection was similar in both study arms (A, 94.9% vs B, 93.6%; p=0.78), despite adjusting for experience of operating surgeon and use of microscope/endoscope for surgical resection. We observed that use of IOMRI helped optimize the extent of resection in 5/20 patients (25%) for pituitary tumor resection in-group A. Present study failed to observe superiorty of IOMRI over conventional 2D-F guided resection in pituitary macroadenoma surgery. By use of this technology, younger surgeons could validate their results intra-operatively and hence could increase EOR without causing any increase in complications.

  1. Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging.

    PubMed

    Wu, Jin-Song; Shou, Xue-Fei; Yao, Cheng-Jun; Wang, Yong-Fei; Zhuang, Dong-Xiao; Mao, Ying; Li, Shi-Qi; Zhou, Liang-Fu

    2009-07-01

    To evaluate the applicability of low-field intraoperative magnetic resonance imaging (iMRI) during transsphenoidal surgery of pituitary macroadenomas. Fifty-five transsphenoidal surgeries were performed for macroadenomas (modified Hardy's Grade II-IV) resections. All of the surgical processes were guided by real-time updated contrast T1-weighted coronal and sagittal images, which were acquired with 0.15 Tesla PoleStar N20 iMRI (Medtronic Navigation, Louisville, CO). The definitive benefits as well as major drawbacks of low-field iMRI in transsphenoidal surgery were assessed with respect to intraoperative imaging, tumor resection control, comparison with early postoperative high-field magnetic resonance imaging, and follow-up outcomes. Intraoperative imaging revealed residual tumor and guided extended tumor resection in 17 of 55 cases. As a result, the percentage of gross total removal of macroadenomas increased from 58.2% to 83.6%. The accuracy of imaging evaluation of low-field iMRI was 81.8%, compared with early postoperative high-field MRI (Correlation coefficient, 0.677; P < 0.001). A significantly lower accuracy was identified with low-field iMRI in 6 cases with cavernous sinus invasion (33.3%) in contrast to the 87.8% found with other sites (Fisher's exact test, P < 0.001). The PoleStar N20 low-field iMRI navigation system is a promising tool for safe, minimally invasive, endonasal, transsphenoidal pituitary macroadenomas resection. It enables neurosurgeons to control the extent of tumor resection, particularly for suprasellar tumors, ensuring surgical accuracy and safety, and leading to a decreased likelihood of repeat surgeries. However, this technology is still not satisfying in estimating the amount of the parasellar residual tumor invading into cavernous sinus, given the false or uncertain images generated by low-field iMRI in this region, which are difficult to discriminate between tumor remnant and blood within the venous sinus.

  2. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    NASA Astrophysics Data System (ADS)

    Chen, Peng

    As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn

  3. Magnetic phase transition of high-pressure phase (VO)2P2O7 studied by high-field ESR measurements

    NASA Astrophysics Data System (ADS)

    Hiraka, K.; Nagasaka, Y.; Kunimoto, T.; Inagaki, Y.; Okubo, S.; Ohta, H.; Saito, T.; Azuma, M.; Takano, M.

    2004-05-01

    The high-pressure phase of (VO)2P2O7 (HP-VOPO) is a S=1/2 Heisenberg antiferromagnetic alternating chain compound with one spin gap. The high-field ESR measurements of the HP-VOPO single crystal have been performed using the pulsed magnetic field up to 30T. Small anomaly is observed in ESR mode for both a- and b-axis. The linewidth became broad around Bc=20T when the field is applied along the a- and b-axis. The magnetic state of HP-VOPO above Bc will be discussed.

  4. Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.

    PubMed

    Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu

    2013-01-11

    Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process.

  5. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4.

    PubMed

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-03-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr-Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases.

  6. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4

    PubMed Central

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-01-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038

  7. High field solenoids for muon cooling

    SciTech Connect

    Green, M.A.; Eyssa, Y.; Kenny, S.; Miller, J.R.; Prestemon, S.

    1999-09-08

    The proposed cooling system for the muon collider will consist of a 200 meter long line of alternating field straight solenoids interspersed with bent solenoids. The muons are cooled in all directions using a 400 mm long section liquid hydrogen at high field. The muons are accelerated in the forward direction by about 900 mm long, 805 MHz RF cavities in a gradient field that goes from 6 T to -6 T in about 300 mm. The high field section in the channel starts out at an induction of about 2 T in the hydrogen. As the muons proceed down the cooling channel, the induction in the liquid hydrogen section increases to inductions as high as 30 T. The diameter of the liquid hydrogen section starts at 750 mm when the induction is 2 T. As the induction in the cooling section goes up, the diameter of the liquid hydrogen section decreases. When the high field induction is 30 T, the diameter of the liquid hydrogen section is about 80 mm. When the high field solenoid induction is below 8.5 T or 9T, niobium titanium coils are proposed for generating .the magnetic field. Above 8.5 T or 9 T to about 20 T, graded niobium tin and niobium titanium coils would be used at temperatures down to 1.8 K. Above 20 T, a graded bybrid magnet system is proposed, where the high field magnet section (above 20 T) is either a conventional water cooled coil section or a water cooled Bitter type coil. Two types of superconducting coils have been studied. They include; epoxy impregnated intrinsically stable coils, and cable in conduit conductor (CICC) coils with helium in the conduit.

  8. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    NASA Astrophysics Data System (ADS)

    Spencer, B. F.; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.; Graham, D. M.

    2016-05-01

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 1012 cm-2 and 9000 cm2 V-1 s-1 at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m0.

  9. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies.

    PubMed

    Islam, Zahirul; Ruff, Jacob P C; Nojiri, Hiroyuki; Matsuda, Yasuhiro H; Ross, Kathryn A; Gaulin, Bruce D; Qu, Zhe; Lang, Jonathan C

    2009-11-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  10. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    SciTech Connect

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-11-15

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields ({approx}1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  11. Magnetic resonance anatomy of the carpus of the horse described from images acquired from low-field and high-field magnets.

    PubMed

    Nagy, Annamaria; Dyson, Sue

    2011-01-01

    Cadaver carpi of 30 mature horses with no history of carpal or proximal metacarpal pain were examined using low-field (0.27 T) and high-field (1.5 T) magnetic resonance imaging (MRI). Normal MRI anatomy in transverse, sagittal, and dorsal plane images was determined by comparison with anatomical specimens and standard texts. Subchondral bone and cortical bone thickness measurements were obtained from standardised sites. There was variable subchondral bone thickness in the radius and carpal bones; subchondral bone thickness was consistently larger at dorsal compared with palmar sites in the proximal row of carpal bones. The endosteal surface of the subchondral bone was smooth. The shape of the ulnar carpal bone was variable and one or more small osseous fragments were identified palmar to the bone in 5/30 limbs. There was no evidence to suggest that these were pathological fractures or avulsions of the lateral palmar intercarpal ligament. The amount of muscle tissue in the superficial and deep digital flexor tendons in the proximal aspect of the carpus varied, but none was present at the level of the middle carpal joint and distally. Several structures could be evaluated that cannot be imaged using radiography, ultrasonography, or arthroscopy, including the transverse intercarpal ligaments, the radiocarpal ligament, the short palmar carpal ligaments, and the carpometacarpal ligaments. Anatomical variations not previously described were identified, including the layers of the medial aspect of the carpal fascia. Knowledge of the variation in MRI appearance of the carpus of nonlame horses is helpful for interpretation of MR images of lame horses. © 2011 Veterinary Radiology & Ultrasound.

  12. Fe Substitution Effect on the High-Field Magnetization in the Kondo Semiconductor CeRu2Al10

    NASA Astrophysics Data System (ADS)

    Kondo, Akihiro; Kindo, Koichi; Nohara, Hiroki; Nakamura, Michio; Tanida, Hiroshi; Sera, Masafumi; Nishioka, Takashi

    2017-02-01

    The magnetization of the Fe substitution system in the Kondo semiconductor CeRu2Al10 was measured in high magnetic fields of up to 72 T with the magnetic field (H) along the a-axis. The magnetization curve indicates that the critical field from the antiferromagnetic (AFM) phase to the paramagnetic one (Hcp) shows an increase from ˜51 (x = 0) to ˜60 T (x = 0.7) owing to the Fe substitution. The Fe concentration dependence of Hcp is similar to that of the magnitude of the energy of the spin gap. The degree of the concave H dependence of the magnetization curve, which is the characteristic feature for H ∥ a in CeT2Al10 (T = Ru, Os), is not strongly enhanced by the Fe substitution. This may be due to the suppression of the strong anisotropy of the hybridization between the conduction band and the localized 4f shell along the a-axis. These results reveal that the spin gap of the present system consists of at least two components, the gap due to the spin (Kondo) singlet formation and the anisotropy gap of the AF magnon.

  13. [Orthodontic brackets in high field MR imaging: experimental evaluation of magnetic field interactions at 3.0 Tesla].

    PubMed

    Kemper, J; Klocke, A; Kahl-Nieke, B; Adam, G

    2005-12-01

    To evaluate static magnetic field interactions for 32 commonly used orthodontic brackets in a 3.0 T magnetic resonance imaging (MRI) system. 32 orthodontic brackets consisting of a steel alloy (n = 27), a cobalt-chromium alloy (n = 2), ceramic (n = 1), ceramic with a steel slot (n = 1), and titanium (n = 1) from 13 different manufacturers were tested for magnetic field interactions in a static magnetic field at 3.0 T (Gyroscan Intera 3.0 T, Philips Medical Systems, Best, Netherlands). The magnetic deflection force F (z) [mN] was evaluated by determining the deflection angle beta [ degrees ] using the established deflection angle test according to the ASTM guidelines. The magnetic-field-induced rotational force F (rot) or torque was qualitatively determined using a 5-point grading scale (0: no torque; + 4: very strong torque). In 18 of the 32 brackets, the deflection angle beta was found to be > 45 degrees and the translational force exceeded the gravitational force F (G) on the particular bracket (F (z): 1.2 - 45.7 mN). The translational force F (z) was found to be up to 68.5 times greater than the gravitational force F (G) (F (z)/F (G): 1.4 - 68.5). The rotational force F (rot) was correspondingly high (+ 3/+ 4) for those brackets. For the remaining 14 objects, the deflection angles were < 45 degrees and the torque measurements ranged from 0 to + 2. The static magnetic field did not affect the titanium bracket and the ceramic bracket. No measurable translational and rotational forces were found. Of the 32 brackets investigated for magnetic field interactions at 3.0 T, 18 (56.25 %) were unsafe in the MR environment according to the ASTM guidelines. However, the forces measured were minimal compared to the forces generally necessary for dislodging these bonded orthodontic brackets from tooth surfaces. The implications of these results for orthodontic patients undergoing MR examinations at 3 Tesla are discussed.

  14. Accelerated mapping of magnetic susceptibility using 3D planes-on-a-paddlewheel (POP) EPI at ultra-high field strength.

    PubMed

    Stäb, Daniel; Bollmann, Steffen; Langkammer, Christian; Bredies, Kristian; Barth, Markus

    2017-04-01

    With the advent of ultra-high field MRI scanners in clinical research, susceptibility based MRI has recently gained increasing interest because of its potential to assess subtle tissue changes underlying neurological pathologies/disorders. Conventional, but rather slow, three-dimensional (3D) spoiled gradient-echo (GRE) sequences are typically employed to assess the susceptibility of tissue. 3D echo-planar imaging (EPI) represents a fast alternative but generally comes with echo-time restrictions, geometrical distortions and signal dropouts that can become severe at ultra-high fields. In this work we assess quantitative susceptibility mapping (QSM) at 7 T using non-Cartesian 3D EPI with a planes-on-a-paddlewheel (POP) trajectory, which is created by rotating a standard EPI readout train around its own phase encoding axis. We show that the threefold accelerated non-Cartesian 3D POP EPI sequence enables very fast, whole brain susceptibility mapping at an isotropic resolution of 1 mm and that the high image quality has sufficient signal-to-noise ratio in the phase data for reliable QSM processing. The susceptibility maps obtained were comparable with regard to QSM values and geometric distortions to those calculated from a conventional 4 min 3D GRE scan using the same QSM processing pipeline. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. First observation of amino acid side chain dynamics in membrane proteins using high field deuterium nuclear magnetic resonance spectroscopy

    SciTech Connect

    Kinsey, R.A.; Kintanar, A.; Tsai, M.D.; Smith, R.L.; Janes, N.; Oldfield, E.

    1981-05-10

    The first deuterium NMR spectra of an individual membrane protein, bacteriohodopsin in the purple membrane of Halobacterium halobium R1 has been obtained. Biosynthetic isotopic enrichment with (gamma-2H6) valine and high field Fourier transform operation permitted rapid data acquisition on intact membranes, including measurement of relaxation times. At some temperatures high quality spectra could be obtained in less than 1 s. (U-14C)Valine tracer studies indicate that less than or equal to 2% of valine added to the growth medium is broken down and incorporated into other membrane constituents. The NMR results indicate that the valine side chain is a rather rigid structure. Motion about C alpha-C beta is slow (less than 10(5) s-1) at growth temperature, while motion about C beta-C gamma is as expected fast (much greater than 10(5) s-1) at all accessible temperatures. The activation energy for methyl group rotation from spin-lattice relaxation data between -75 and 53 degrees C is approximately 2.4 kcal/mol, in good agreement with previous 1H NMR studies on solid alkanes. Preliminary data on (gamma-2H6)valine-labeled Acholeplasma laidlawii B (PG9) cell membranes are also presented. Results strongly suggest that it should now be possible to observe in great detail the motions of any type of amino acid side chain in membrane proteins, including the effects of lipid composition on protein dynamics.

  16. High field magnetic transitions in the mixed holmium-yttrium iron garnet Ho(0.43)Y(2.57)Fe(5)O(12).

    PubMed

    Bouguerra, A; Khène, S; de Brion, S; Chouteau, G; Fillion, G

    2005-01-12

    High static magnetic field magnetization measurements have been performed up to 23 T on Ho(0.43)Y(2.57)Fe(5)O(12) single crystals at helium temperature (T = 4.2 K) with fields applied along the three main cubic axes: [Formula: see text], [Formula: see text] and [Formula: see text]. The change from the spontaneous ferrimagnetic structure in zero magnetic field to the fully ferromagnetic one in high field takes place through several intermediate phases separated by transitions with step-like magnetization behaviour, but without any observed hysteresis. Using the effective spin Hamiltonian approximation, we show that the general features of these transitions can be accounted for by a large magnetocristalline anisotropy of the Ho(3+) moments of the uniaxial type along the local z axis of each rare-earth site. The model is in better agreement with the experiments than its Ising limit, widely used before, but is still unsuccessful in predicting the 'umbrella' magnetic structures found by previous neutron and NMR experiments.

  17. Limits of NbTi and Nb3Sn, and Development of W&R Bi-2212 HighField Accelerator Magnets

    SciTech Connect

    Godeke, A.; Cheng, D.; Dietderich, D.R.; Ferracin, P.; Prestemon,S.O.; Sabbi, G.; Scanlan, R.M.

    2006-12-01

    NbTi accelerator dipoles are limited to magnetic fields (H)of about 10 T, due to an intrinsic upper critical field(Hc2) limitationof 14 T. To surpass this restriction, prototype Nb3Sn magnets are beingdeveloped which have reached 16 T. We show that Nb3Sn dipole technologyis practically limited to 17 to 18 T due to insufficient high fieldpinning, and intrinsically to 20 to 22 T due to Hc2 limitations.Therefore, to obtain magnetic fields approaching 20 T and higher, amaterial is required with a higher Hc2 and sufficient high field pinningcapacity. A realistic candidate for this purpose is Bi-2212, which isavailable in roundwires and sufficient lengths for the fabrication ofcoils based on Rutherford-type cables. We initiated a program to developthe required technology to construct accelerator magnets from'windand-react' (W&R) Bi-2212 coils. We outline the complicationsthat arise through the use of Bi-2212, describe the development paths toaddress these issues, and conclude with the design of W&R Bi-2212sub-scale magnets.

  18. The design of the inelastic neutron scattering mode for the Extreme Environment Diffractometer with the 26 T High Field Magnet

    NASA Astrophysics Data System (ADS)

    Bartkowiak, Maciej; Stüßer, Norbert; Prokhnenko, Oleksandr

    2015-10-01

    The Extreme Environment Diffractometer is a neutron time-of-flight instrument, designed to work with a constant-field hybrid magnet capable of reaching fields over 26 T, unprecedented in neutron science; however, the presence of the magnet imposes both spatial and technical limitations on the surrounding instrument components. In addition to the existing diffraction and small-angle neutron scattering modes, the instrument will operate also in an inelastic scattering mode, as a direct time-of-flight spectrometer. In this paper we present the Monte Carlo ray-tracing simulations, the results of which illustrate the performance of the instrument in the inelastic-scattering mode. We describe the focussing neutron guide and the chopper system of the existing instrument and the planned design for the instrument upgrade. The neutron flux, neutron spatial distribution, divergence distribution and energy resolution are calculated for standard instrument configurations.

  19. Preliminary Observations on Sensitivity and Specificity of Magnetization Transfer Asymmetry for Imaging Myelin of Rat Brain at High Field

    PubMed Central

    Kim, Jae-Woong; Choi, Jiye; Cho, Janggeun; Lee, Chulhyun; Jeon, Daejong; Park, Sung-Hong

    2015-01-01

    Magnetization transfer ratio (MTR) has been often used for imaging myelination. Despite its high sensitivity, the specificity of MTR to myelination is not high because tissues with no myelin such as muscle can also show high MTR. In this study, we propose a new magnetization transfer (MT) indicator, MT asymmetry (MTA), as a new method of myelin imaging. The experiments were performed on rat brain at 9.4 T. MTA revealed high signals in white matter and significantly low signals in gray matter and muscle, indicating that MTA has higher specificity than MTR. Demyelination and remyelination studies demonstrated that the sensitivity of MTA to myelination was as high as that of MTR. These experimental results indicate that MTA can be a good biomarker for imaging myelination. In addition, MTA images can be efficiently acquired with an interslice MTA method, which may accelerate clinical application of myelin imaging. PMID:26413534

  20. Preliminary Observations on Sensitivity and Specificity of Magnetization Transfer Asymmetry for Imaging Myelin of Rat Brain at High Field.

    PubMed

    Kim, Jae-Woong; Choi, Jiye; Cho, Janggeun; Lee, Chulhyun; Jeon, Daejong; Park, Sung-Hong

    2015-01-01

    Magnetization transfer ratio (MTR) has been often used for imaging myelination. Despite its high sensitivity, the specificity of MTR to myelination is not high because tissues with no myelin such as muscle can also show high MTR. In this study, we propose a new magnetization transfer (MT) indicator, MT asymmetry (MTA), as a new method of myelin imaging. The experiments were performed on rat brain at 9.4 T. MTA revealed high signals in white matter and significantly low signals in gray matter and muscle, indicating that MTA has higher specificity than MTR. Demyelination and remyelination studies demonstrated that the sensitivity of MTA to myelination was as high as that of MTR. These experimental results indicate that MTA can be a good biomarker for imaging myelination. In addition, MTA images can be efficiently acquired with an interslice MTA method, which may accelerate clinical application of myelin imaging.

  1. Design of a triple resonance magic angle sample spinning probe for high field solid state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Martin, Rachel W.; Paulson, Eric K.; Zilm, Kurt W.

    2003-06-01

    Standard design and construction practices used in building nuclear magnetic resonance (NMR) probes for the study of solid state samples become difficult if not entirely impractical to implement as the 1H resonance frequency approaches the self resonance frequency of commercial capacitors. We describe an approach that utilizes short variable transmission line segments as tunable reactances. Such an approach effectively controls stray reactances and provides a higher Q alternative to ceramic chip capacitors. The particular probe described is built to accommodate a 2.5 mm magic angle spinning rotor system, and is triply tuned to 13C, 15N, and 1H frequencies for use at 18.8 T (200, 80, and 800 MHz, respectively). Isolation of the three radio frequency (rf) channels is achieved using both a rejection trap and a transmission line notch filter. The compact geometry of this design allows three channels with high power handling capability to fit in a medium bore (63 mm) magnet. Extended time variable temperature operation is integral to the mechanical design, enabling the temperature control necessary for investigation of biological macromolecules. Accurate measurement of the air temperature near the sample rotor is achieved using a fiber optic thermometer, which does not interfere with the rf electronics. We also demonstrate that acceptable line shapes are only readily achieved using zero magnetic susceptibility wire in construction of the sample coil. Computer simulation of the circuit aided in the physical design of the probe. Representative data illustrating the efficiency, rf homogeneity, and signal to noise factor of the probe are presented.

  2. Characterization of Alloys with Potential for Application in Cable-in-Conduit Conductors for High-Field Superconducting Magnets

    SciTech Connect

    Walsh, R.P.; Miller, J.R.; Toplosky, V.J.

    2004-06-28

    Since the introduction of the cable-in-conduit conductor (CICC) concept, a variety of alloys have been proposed for fabricating the jacket. The jacket provides primary containment of the supercritical helium coolant and is typically also the primary structural component for the magnet. These functions create requirements for strength, toughness, weldability, and fabricability in tubular form. When the CICC uses Nb3Sn, there are additional requirements to accommodate the manufacturing and heat-treatment processes for the superconductor as well as its strain-sensitive performance during operation. Both of the present favorite jacket alloys, Incoloy 908 and modified (ultra-low carbon) 316LN, have both demonstrated acceptable functionality as well as a few undesirable features. In this paper, we present data from cryogenic mechanical tests on a group of heat-resistant, high-strength superalloys that appear to offer equal or better mechanical performance (e.g. strength, toughness, and modulus) while mitigating the undesirable aspects (e.g. SAGBO in the case of I908 and thermal-expansion mismatch with Nb3Sn in the case of 316LN). Data are presented for each alloy in the as-received and aged conditions. These alloys are presently being considered as candidates for use in the next-generation hybrid magnet for the NHMFL but may also be of interest to the fusion and energy storage communities.

  3. Observation of high field DHVA-effect and induced magnetism in single crystal TiBe/sub 2/

    SciTech Connect

    van Deursen, A.P.J.; van Ruitenbeek, J.M.; Verhoef, W.A.; de Vroomen, A.R.; Smith, J.L.; de Groot, R.A.; Koelling, D.D.; Mueller, F.M.

    1981-01-01

    Recently much interest has been given to itinerant magnetism in cubic Laves phase or C15 materials. Primarily this stems from the discussion of the relationship of p-state pairing and ferromagnetism in ZrZn/sub 2/ by Enz and Matthias, and the possibility of triplet superconductivity. The most recent work in this field has focused on the isoelectronic, isostructural material TiBe/sub 2/, and the possibility that this material is metamagnetic. That TiBe/sub 2/ is close to some form of magnetic instability can be infered indirectly from the peaked nature of its density of states near the fermi level, but also from the observation of ferromagnetism in TiBe/sub 2-x/Cu/sub x/, when x is greater than about 0.15. In this paper a single crystal of pure TiBe/sub 2/ is considered in fields larger than 15 Tesla (T) and at a temperature of 1.3/sup 0/K.

  4. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K

    SciTech Connect

    Nagendran, R.; Thirumurugan, N.; Chinnasamy, N.; Janawadkar, M. P.; Sundar, C. S.

    2011-01-15

    We present the design, fabrication, integration, testing, and calibration of a high field superconducting quantum interference device (SQUID) magnetometer. The system is based on dc SQUID sensor with flux locked loop readout electronics. The design is modular and all the subsystems have been fabricated in the form of separate modules in order to simplify the assembly and for ease of maintenance. A novel feature of the system is that the current induced in the pickup loop is distributed as inputs to two different SQUID sensors with different strengths of coupling in order to improve the dynamic range of the system. The SQUID magnetometer has been calibrated with yttrium iron garnet (YIG) sphere as a standard reference material. The calibration factor was determined by fitting the measured flux profile of the YIG sphere to that expected for a point dipole. Gd{sub 2}O{sub 3} was also used as another reference material for the calibration and the effective magnetic moment of the Gd{sup 3+} could be evaluated from the temperature dependent magnetization measurements. The sensitivity of the system has been estimated to be about 10{sup -7} emu at low magnetic fields and about 10{sup -5} emu at high magnetic fields {approx}7 T.

  5. Limits of NbTi and Nb3Sn, and Development of W&R Bi-2212 HighField Accelerator Magnets

    SciTech Connect

    Godeke, A.; Cheng, D.; Dietderich, D.R.; Ferracin, P.; Prestemon,S.O.; Sa bbi, G.; Scanlan, R.M.

    2006-09-01

    NbTi accelerator dipoles are limited to magneticfields (H)of about 10 T, due to an intrinsic upper critical field (Hc2) limitationof 14 T. To surpass this restriction, prototype Nb3Sn magnets are beingdeveloped which have reached 16 T. We show that Nb3Sn dipole technologyis practically limited to 17 to 18 T due to insufficient high fieldpinning, and intrinsically to 20 to 22 T due to Hc2 limitations.Therefore, to obtain magnetic fields approaching 20 T and higher, amaterial is required with a higher Hc2 and sufficient high field pinningcapacity. A realistic candidate for this purpose is Bi-2212, which isavailable in roundwires and sufficient lengths for the fabrication ofcoils based on Rutherford-type cables. We initiated a program to developthe required technology to construct accelerator magnets from'windand-react' (W&R) Bi-2212 coils. We outline the complicationsthat arise through the use of Bi-2212, describe the development paths toaddress these issues, and conclude with the design of W&R Bi-2212sub-scale magnets.

  6. An equation for the quench propagation velocity valid for high field magnet use of REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Bonura, M.; Senatore, C.

    2016-06-01

    Based on a study of the thermophysical properties, we derived a practical formula for the normal zone propagation velocity appropriate for REBa2Cu3O7-x coated conductors in high magnetic fields. An analytical expression to evaluate the current sharing temperature as a function of the operating conditions is also proposed. The presented study has allowed us to account for experimental results not fully understood in the framework of the models widely used in the literature. In particular, we provided a fundamental understanding of the experimental evidence that the normal zone propagation velocity in REBa2Cu3O7-x coated conductors can be mainly determined by the operating current, regardless of the applied field and temperature.

  7. Tracking of systemically administered mononuclear cells in the ischemic brain by high-field magnetic resonance imaging.

    PubMed

    Stroh, Albrecht; Zimmer, Claus; Werner, Nikos; Gertz, Karen; Weir, Kathrine; Kronenberg, Golo; Steinbrink, Jens; Mueller, Susanne; Sieland, Katharina; Dirnagl, Ulrich; Nickenig, Georg; Endres, Matthias

    2006-11-15

    This study was designed to track systemically administered mononuclear cells (MNCs) in the ischemic mouse brain using 7 T magnetic resonance imaging (MRI). Splenectomized wild-type mice were subjected to brain ischemia by 30 or 60 min filamentous occlusion of the middle cerebral artery (MCAo) and reperfusion. Spleen-derived MNCs were labeled with very small superparamagnetic iron-oxide particles (VSOP) and transfused into recipient mice 30 min, 8 h, or 24 h after MCAo via the tail vein. High-resolution MRI sequences were designed to monitor the dynamics of brain ischemia and to observe the migration and engraftment of transfused cells into the ischemic brain. T2*-weighted (gradient-echo) hypointense signal changes became apparent at 24-48 h after transfusion, were typically associated with the ischemic lesion border, and could be followed up to 5 weeks after the insult. Such presumed MNC-associated signal changes in MRI were confirmed by histochemical detection of iron (Prussian blue staining) and detection of constitutively expressed green fluorescent protein (GFP) in a subset of animals transfused with MNCs derived from GFP transgenic mice. Taken together, our results demonstrate that brain engraftment of systemically administered mononuclear cells can be visualized non-invasively over time and space using high-resolution MRI.

  8. Clinical indications for high-field 1.5 T intraoperative magnetic resonance imaging and neuro-navigation for neurosurgical procedures. Review of initial 100 cases.

    PubMed

    Maesawa, Satoshi; Fujii, Masazumi; Nakahara, Norimoto; Watanabe, Tadashi; Saito, Kiyoshi; Kajita, Yasukazu; Nagatani, Tetsuya; Wakabayashi, Toshihiko; Yoshida, Jun

    2009-08-01

    Initial experiences are reviewed in an integrated operation theater equipped with an intraoperative high-field (1.5 T) magnetic resonance (MR) imager and neuro-navigation (BrainSUITE), to evaluate the indications and limitations. One hundred consecutive cases were treated, consisting of 38 gliomas, 49 other tumors, 11 cerebrovascular diseases, and 2 functional diseases. The feasibility and usefulness of the integrated theater were evaluated for individual diseases, focusing on whether intraoperative images (including diffusion tensor imaging) affected the surgical strategy. The extent of resection and outcomes in each histological category of brain tumors were examined. Intraoperative high-field MR imaging frequently affected or modified the surgical strategy in the glioma group (27/38 cases, 71.1%), but less in the other tumor group (13/49 cases, 26.5%). The surgical strategy was not modified in cerebrovascular or functional diseases, but the success of procedures and the absence of complications could be confirmed. In glioma surgery, subtotal or greater resection was achieved in 22 of the 31 patients (71%) excluding biopsies, and intraoperative images revealed tumor remnants resulting in the extension of resection in 21 of the 22 patients (95.4%), the highest rate of extension among all types of pathologies. The integrated neuro-navigation improved workflow. The best indication for intraoperative high-field MR imaging and integrated neuro-navigation is brain tumors, especially gliomas, and is supplementary in assuring quality in surgery for cerebrovascular or functional diseases. Immediate quality assurance is provided in several types of neurosurgical procedures.

  9. Assessment of female ballet dancers' ankles in the en pointe position using high field strength magnetic resonance imaging.

    PubMed

    Russell, Jeffrey A; Yoshioka, Hiroshi

    2016-08-01

    The en pointe position of the ankle in ballet is extreme. Previously, magnetic resonance imaging (MRI) of ballet dancers' ankles en pointe was confined to a low field, open MR device. To develop a reproducible ankle MRI protocol for ballet dancers en pointe and to assess the positions of the key structures in the dancers ankles. Six female ballet dancers participated; each was randomly assigned to stand en pointe while one of her feet and ankles was splinted with wooden rods affixed with straps or to begin with the ankle in neutral position. She lay in an MR scanner with the ankle inside a knee coil for en pointe imaging and inside an ankle/foot coil for neutral position imaging. Proton density weighted images with and without fat suppression and 3D water excitation gradient recalled echo images were obtained en pointe and in neutral position in sagittal, axial, and coronal planes. We compared the bones, cartilage, and soft tissues within and between positions. No difficulties using the protocol were encountered. En pointe the posterior articular surface of the tibial plafond was incongruent with the talar dome and rested on the posterior talus. The posterior edge of the plafond impinged Kager's fat pad. All participants exhibited one or more small ganglion cysts about the ankle and proximal foot, as well as fluid accumulation in the flexor and fibularis tendon sheaths. Our MRI protocol allows assessment of female ballet dancers' ankles in the extreme plantar flexion position in which the dancers perform. We consistently noted incongruence of the talocrural joint and convergence of the tibia, talus, and calcaneus posteriorly. This protocol may be useful for clinicians who evaluate dancers. © The Foundation Acta Radiologica 2015.

  10. Analysis of 137 Patients Who Underwent Endoscopic Transsphenoidal Pituitary Adenoma Resection Under High-Field Intraoperative Magnetic Resonance Imaging Navigation.

    PubMed

    Zhang, Huaping; Wang, Fuyu; Zhou, Tao; Wang, Peng; Chen, Xiaolei; Zhang, Jiashu; Zhou, Dingbiao

    2017-08-01

    Pure endoscopic resection has become the most popular surgical approach for pituitary adenoma. Intraoperative magnetic resonance imaging (iMRI) systems have been in use for endoscopic resection of pituitary adenomas. This study aimed to evaluate the effectiveness of iMRI and neuroimaging navigation techniques during endoscopic endonasal transsphenoidal surgery of pituitary adenomas. Data from 137 patients who underwent resection of endoscopic pituitary adenoma under 1.5T iMRI navigation were collected and analyzed. Of patients, 92 underwent complete resection and 45 had residual tumor on real-time iMRI. Twenty-three patients underwent further surgery, and total resection was achieved in 19. Extent of total resection increased from 67.15% to 81.02%. iMRI revealed 3 patients with bleeding in the surgical area, which was successfully treated during the surgery. Review images obtained 3 months after surgery showed 26 patients with residual tumor; 14 patients had the same volume as intraoperatively, and 12 patients had a volume less than that observed intraoperatively. Residual tumor volume in the suprasellar region was less than that seen intraoperatively in 11 of 15 (73.3%) patients. The use of iMRI and neuronavigation not only leads to a higher rate of tumor resection but also helps in detecting and removing hematomas in the surgical area. Follow-up examinations of extent of residual tumor at 3 months postoperatively were consistent with intraoperative results. Residual tumor volume in the suprasellar region was usually less than that observed intraoperatively. Copyright © 2017. Published by Elsevier Inc.

  11. An Ultra-High Field Magnetic Resonance Spectroscopy Study of Post Exercise Lactate, Glutamate and Glutamine Change in the Human Brain

    PubMed Central

    Dennis, Andrea; Thomas, Adam G.; Rawlings, Nancy B.; Near, Jamie; Nichols, Thomas E.; Clare, Stuart; Johansen-Berg, Heidi; Stagg, Charlotte J.

    2015-01-01

    During strenuous exercise there is a progressive increase in lactate uptake and metabolism into the brain as workload and plasma lactate levels increase. Although it is now widely accepted that the brain can metabolize lactate, few studies have directly measured brain lactate following vigorous exercise. Here, we used ultra-high field magnetic resonance spectroscopy of the brain to obtain static measures of brain lactate, as well as brain glutamate and glutamine after vigorous exercise. The aims of our experiment were to (a) track the changes in brain lactate following recovery from exercise, and (b) to simultaneously measure the signals from brain glutamate and glutamine. The results of our experiment showed that vigorous exercise resulted in a significant increase in brain lactate. Furthermore, both glutamate and glutamine were successfully resolved, and as expected, although contrary to some previous reports, we did not observe any significant change in either amino acid after exercise. We did however observe a negative correlation between glutamate and a measure of fitness. These results support the hypothesis that peripherally derived lactate is taken up by the brain when available. Our data additionally highlight the potential of ultra-high field MRS as a non-invasive way of measuring multiple brain metabolite changes with exercise. PMID:26732236

  12. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    SciTech Connect

    Spencer, B. F. Smith, W. F.; Hibberd, M. T.; Dawson, P.; Graham, D. M.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.

  13. APS-U Definitions of Signs and Conventions Related to Magnets

    SciTech Connect

    Doose, Charles; Jain, Animesh

    2014-08-21

    The APS-U is planned to be a 4th generation hard X-ray light source utilizing a multi-bend achromat (MBA) magnet lattice. The MBA lattice will be installed in the existing APS storage ring enclosure. The stored electron beam will circulate clockwise when viewed from above. The X-ray beamlines will for the most part exit at the same source points as the present APS. This document defines the signs and conventions related to the APS-U MBA magnets. Included in this document are: the local magnet coordinate system, definitions of mechanical and magnetic centers, definitions of multipole field errors, magnetic roll angle, and magnet polarities.

  14. High field pulsed microwiggler

    SciTech Connect

    Warren, R.W.

    1990-12-31

    This paper describes a microwiggler assembly which produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180{degrees} relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.

  15. High field pulsed microwiggler

    SciTech Connect

    Warren, R.W.

    1990-01-01

    This paper describes a microwiggler assembly which produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180{degrees} relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.

  16. High-Field Open versus Short-Bore Magnetic Resonance Imaging of the Spine: A Randomized Controlled Comparison of Image Quality

    PubMed Central

    Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    Background The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Methods Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. Results The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34–37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). Conclusions In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. Trial Registration ClinicalTrials.gov NCT00715806 PMID:24391767

  17. Dysprosium-Modified Tobacco Mosaic Virus Nanoparticles for Ultra-High-Field Magnetic Resonance and Near-Infrared Fluorescence Imaging of Prostate Cancer.

    PubMed

    Hu, He; Zhang, Yifan; Shukla, Sourabh; Gu, Yuning; Yu, Xin; Steinmetz, Nicole F

    2017-09-26

    The increasing prevalence of ultra-high-field magnetic resonance imaging (UHFMRI) in biomedical research and clinical settings will improve the resolution and diagnostic accuracy of MRI scans. However, better contrast agents are needed to achieve a satisfactory signal-to-noise ratio. Here, we report the synthesis of a bimodal contrast agent prepared by loading the internal cavity of tobacco mosaic virus (TMV) nanoparticles with a dysprosium (Dy(3+)) complex and the near-infrared fluorescence (NIRF) dye Cy7.5. The external surface of TMV was conjugated with an Asp-Gly-Glu-Ala (DGEA) peptide via a polyethylene glycol linker to target integrin α2β1. The resulting nanoparticle (Dy-Cy7.5-TMV-DGEA) was stable and achieved a high transverse relaxivity in ultra-high-strength magnetic fields (326 and 399 mM(-1) s(-1) at 7 and 9.4 T, respectively). The contrast agent was also biocompatible (low cytotoxicity) and targeted PC-3 prostate cancer cells and tumors in vitro and in vivo as confirmed by bimodal NIRF imaging and T2-mapping UHFMRI. Our results show that Dy-Cy7.5-TMV-DGEA is suitable for multiscale MRI scanning from the cellular level to the whole body, particularly in the context of UHFMRI applications.

  18. Magnetic Shielding for High Fields

    DTIC Science & Technology

    2007-11-02

    nonlinear and eminently non-dispersive switching networks (such as banks of fast diodes ) have large bandwidths. Because of this simulation we believe...function of the form f z c t( )+ 0 . Here c0 and η0 correspond to speed of light and impedance in free space. In view of this, Taylor expansion of the...for space applications, added weight rarely has a high cost penalty and a light material with very good SE must meet these cost constraints. The

  19. A high-field 3He metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Collier, G.; Pałasz, T.; Wojna, A.; Głowacz, B.; Suchanek, M.; Olejniczak, Z.; Dohnalik, T.

    2013-05-01

    After being hyperpolarized using the technique of Metastability Exchange Optical Pumping (MEOP), 3He can be used as a contrast agent for lung magnetic resonance imaging (MRI). MEOP is usually performed at low magnetic field (˜1 mT) and low pressure (˜1 mbar), which results in a low magnetization production rate. Polarization preserving compression with a compression ratio of order 1000 is also required. It was demonstrated in sealed cells that high nuclear polarization values can be obtained at higher pressures with MEOP, if performed at high magnetic field (non-standard conditions). In this work, the feasibility of building a high-field polarizer that operates within a commercial 1.5 T scanner was evaluated. Preliminary measurements of nuclear polarization with sealed cells filled at different 3He gas pressures (1.33 to 267 mbar) were performed. The use of an annular shape for the laser beam increased by 25% the achievable nuclear polarization equilibrium value (Meq) at 32 and 67 mbar as compared to a Gaussian beam shape. Meq values of 66.4% and 31% were obtained at 32 and 267 mbar, respectively, and the magnetization production rate was increased by a factor of 10 compared to the best results obtained under standard conditions. To study the reproducibility of the method in a polarizing system, the same experiments were performed with small cells connected to a gas handling system. Despite careful cleaning procedure, the purity of the 3He gas could not be matched to that of the sealed cells. Consequently, the polarization build-up times were approximately 3 times longer in the 20-30 mbar range of pressure than those obtained for the 32 mbar sealed cell. However, reasonable Meq values of 40%-60% were achieved in a 90 ml open cell. Based on these findings, a novel compact polarizing system was designed and built. Its typical output is a 3He gas flow rate of 15 sccm with a polarization of 33%. In-vivo lung MRI ventilation images (Signal to Noise Ratio (SNR) of

  20. High-field magnetization study of [Cu(pyz){sub 2} (HF{sub 2})]PF{sub 6} : an s = 1/2 quasi-two-dimensional Heisenberg magnet.

    SciTech Connect

    Cizmar, E.; Ozerov, M.; Skourski, Y.; Zvyagin, S. A.; Schlueter, J. A.; Manson, J. L.; Wosnitza, J.; Materials Science Division; Dresden High Magnetic Field Lab.; Safarik Univ.; Eastern Washington Univ.

    2010-04-01

    We report on pulsed-field magnetization studies of the quasi-two-dimensional spin system [Cu(pyz){sub 2}(HF{sub 2})]PF{sub 6}. The magnetization saturates at B{sub C}{sup ab} = 37.5 T and B{sub C}{sup c} = 33.8 T for in-plane and out-of-plane orientations of the applied magnetic field, respectively. In addition, the angular dependence of the g-factor studied by electron-spin resonance reveals orbital overlap in the ab plane suggesting a quasi-two-dimensional square-lattice network of Cu spins. It is argued that the high-field behavior is governed by the two-dimensional nature of the spin correlations due to the large anisotropy of the exchange couplings.

  1. Assessment of Age-Related Morphometric Changes of Subcortical Structures in Healthy People Using Ultra-High Field 7 Tesla Magnetic Resonance Imaging

    PubMed Central

    Wang, Xue-Yuan; Zhao, Lei; Yu, Tao; Qiao, Liang; Ni, Duan-Yu; Zhang, Guo-Jun; Li, Yong-Jie

    2016-01-01

    Objective: To assess the age-related morphometric changes of subcortical structures in healthy people. Materials and Methods: Ultra-high field 7 tesla magnetic resonance (MR) imaging in humans was used to visualize the subcortical structures of healthy young, middle-aged and elderly participants. Using the magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) sequence, we assessed the visibility of the margins of the thalamus and white matter in the thalamus, as well as the anterior commissure (AC) and posterior commissure (PC) length, the maximal height of the thalamus, the half width of the third ventricle and the distance between the AC and the center of the mammillothalamic tract (MTT) at the level of the AC-PC plane. All quantitative data were statistically evaluated. Results: The AC-PC length did not differ significantly among the three groups. The maximal height of the thalamus decreased with age (rs(53) = −0.719, p < 0.001). The half width of the third ventricle (rs(53) = 0.705, p < 0.001) and the distance between the AC and the center of the MTT (rs(53) = 0.485, p < 0.001) increased with age. The distance between the AC and the center of the MTT of the young and the elderly participants differed significantly (p = 0.007). Conclusion: The AC-PC length is not a good candidate for proportional correction during atlas-to-patient registration. The maximal height of the thalamus and the half width of the third ventricle correlated strongly with age, and the MTT position in relation to the AC shifted posteriorly as age increased. These age-related morphometric changes of subcortical structures should be considered in targeting for functional neurosurgery. PMID:27725800

  2. Chemical spray pyrolysis of Tl-Ba-Ca-Cu-O high-T(sub c) superconductors for high-field bitter magnets

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Zhang, John G.; Squillante, Michael R.; Hermann, A. M.; Duan, H. M.; Andrews, Robert J.; Kelliher, Warren C.

    1991-01-01

    The deposition of Tl-Ba-Ca-Cu-O thick films by spray pyrolyzing a Ba-Ca-Cu-O precursor film and diffusing thallium into the film to form the superconducting phase is examined. This approach was taken to reduce exposure to thallium and its health and safety hazards. The Tl-Ba-Ca-Cu-O system was selected because it has very attractive features which make it appealing to device and manufacturing engineering. Tl-Ba-Ca-Cu-O will accommodate a number of superconducting phases. This attribute makes it very forgiving to stoichiometric fluctuations in the bulk and film. It has excellent thermal and chemical stability, and appears to be relatively insensitive to chemical impurities. Oxygen is tightly bound into the systems, consequently there is no orthorhombic (conductor) to tetragonal (insulator) transition which would affect a component's lifetime. More significantly, the thallium based superconductors appear to have harder magnetic properties than the other high-Tc oxide ceramics. Estimates using magnetoresistance measurements indicate that at 77 K Tl2Ba2CaCu2O10 will have an upper critical field, H(sub c2) fo 26 Tesla for applied fields parallel to the c-axis and approximately 1000 Tesla for fields oriented in the a-b plane. Results to date have shown that superconducting films can be reproducibly deposited on 100 oriented MgO substrates. One film had a zero resistance temperature of 111.5 K. Furthermore, x ray diffraction analysis of the films showed preferential c-axis orientation parallel to the plane of the substrate. These results have now made it possible to consider the manufacture of a superconducting tape wire which can be configured into a topology useful for high-field magnet designs. The research which leads to the preparation of these films and plans for further development are reviewed.

  3. Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI.

    PubMed

    Dyke, Katherine; Pépés, Sophia E; Chen, Chen; Kim, Soyoung; Sigurdsson, Hilmar P; Draper, Amelia; Husain, Masud; Nachev, Parashkev; Gowland, Penelope A; Morris, Peter G; Jackson, Stephen R

    2017-03-09

    Imbalances in glutamatergic (excitatory) and GABA (inhibitory) signalling within key brain networks are thought to underlie many brain and mental health disorders, and for this reason there is considerable interest in investigating how individual variability in localised concentrations of these molecules relate to brain disorders. Magnetic resonance spectroscopy (MRS) provides a reliable means of measuring, in vivo, concentrations of neurometabolites such as GABA, glutamate and glutamine that can be correlated with brain function and dysfunction. However, an issue of much debate is whether the GABA observed and measured using MRS represents the entire pool of GABA available for measurement (i.e., metabolic, intracellular, and extracellular) or is instead limited to only some portion of it. GABA function can also be investigated indirectly in humans through the use of non-invasive transcranial magnetic stimulation (TMS) techniques that can be used to measure cortical excitability and GABA-mediated physiological inhibition. To investigate this issue further we collected in a single session both types of measurement, i.e., TMS measures of cortical excitability and physiological inhibition and ultra-high-field (7 T) MRS measures of GABA, glutamate and glutamine, from the left sensorimotor cortex of the same group of right-handed individuals. We found that TMS and MRS measures were largely uncorrelated with one another, save for the plateau of the TMS IO curve that was negatively correlated with MRS-Glutamate (Glu) and intra-cortical facilitation (10ms ISI) that was positively associated with MRS-Glutamate concentration. These findings are consistent with the view that the GABA concentrations measured using the MRS largely represent pools of GABA that are linked to tonic rather than phasic inhibition and thus contribute to the inhibitory tone of a brain area rather than GABAergic synaptic transmission.

  4. Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2(*) and magnetic susceptibility.

    PubMed

    Marques, José P; Khabipova, Diana; Gruetter, Rolf

    2017-02-15

    In this manuscript, the use of quantitative imaging at ultra-high field is evaluated as a mean to study cyto and myelo-architecture of the cortex. The quantitative contrasts used are the longitudinal relaxation rate (R1), apparent transverse relaxation rate (R2(*)) and quantitative susceptibility mapping (QSM). The quantitative contrasts were computed using high resolution in-vivo (0.65mm isotropic) brain data acquired at 7T. The performance of the different quantitative approaches was evaluated by visualizing the contrast between known highly myelinated primary sensory cortex regions and the neighbouring cortex. The transition from the inner layers to the outer layers (from white matter to the pial surface) of the human cortex, which is known to have varying cyto- and myelo architecture, was evaluated. The across cortex and through depth behaviour observed for the different quantitative maps was in good agreement between the different subjects, clearly allowing the differentiation between different Brodmann regions, suggesting these features could be used for individual cortical brain parcellation. While both R1 and R2(*) maps decrease monotonically from the white matter to the pial surface due to the decrease of myelin and iron between these regions, magnetic susceptibility maps have a more complex behaviour reflecting its opposing sensitivity to myelin and iron concentration.

  5. Low-field and high-field magnetic resonance contrast imaging of magnetoferritin as a pathological model system of iron accumulation

    NASA Astrophysics Data System (ADS)

    Strbak, Oliver; Balejcikova, Lucia; Baciak, Ladislav; Kovac, Jozef; Masarova-Kozelova, Marta; Krafcik, Andrej; Dobrota, Dusan; Kopcansky, Peter

    2017-09-01

    Various pathological processes including neurodegenerative disorders are associated with the accumulation of iron, while it is believed that a precursor of iron accumulation is ferritin. Physiological ferritin is due to low relaxivity, which results in only weak detection by magnetic resonance imaging (MRI) techniques. On the other hand, pathological ferritin is associated with disrupted iron homeostasis and structural changes in the mineral core, and should increase the hypointensive artefacts in MRI. On the basis of recent findings in respect to the pathological ferritin structure, we prepared the magnetoferritin particles as a possible pathological ferritin model system. The particles were characterised with dynamic light scattering, as well as with superconducting quantum interference device measurements. With the help of low-field (0.2 T) and high-field (4.7 T) MRI standard T 2-weighted protocols we found that it is possible to clearly distinguish between native ferritin as a physiological model system, and magnetoferritin as a pathological model system. Surprisingly, the T 2-weighted short TI inversion recovery protocol at low-field system showed the optimum contrast differentiation. Such findings are highly promising for exploiting the use of iron accumulation as a noninvasive diagnostics tool of pathological processes, where the magnetoferritin particles could be utilised as MRI iron quantification calibration samples.

  6. A high-field magnetic resonance imaging spectrometer using an oven-controlled crystal oscillator as the local oscillator of its radio frequency transceiver.

    PubMed

    Liang, Xiao; Tang, Xin; Tang, Weinan; Gao, Jia-Hong

    2014-09-01

    A home-made high-field magnetic resonance imaging (MRI) spectrometer with multiple receiving channels is described. The radio frequency (RF) transceiver of the spectrometer consists of digital intermediate frequency (IF) circuits and corresponding mixing circuits. A direct digital synthesis device is employed to generate the IF pulse; the IF signal from a down-conversion circuit is sampled and followed by digital quadrature detection. Both the IF generation and the IF sampling use a 50 MHz clock. An oven-controlled crystal oscillator, which has outstanding spectral purity and a compact circuit, is used as the local oscillator of the RF transceiver. A digital signal processor works as the pulse programmer of the spectrometer, as a result, 32 control lines can be generated simultaneously while an event is triggered. Field programmable gate array devices are utilized as the auxiliary controllers of the IF generation, IF receiving, and gradient control. High performance, including 1 μs time resolution of the soft pulse, 1 MHz receiving bandwidth, and 1 μs time resolution of the gradient waveform, is achieved. High-quality images on a 1.5 T MRI system using the spectrometer are obtained.

  7. Performance improvement of magnetic gear and efficiency comparison with conventional mechanical gear

    NASA Astrophysics Data System (ADS)

    Nakamura, Kenji; Fukuoka, Michinari; Ichinokura, Osamu

    2014-05-01

    Magnetic gears can transmit torque without any mechanical contact. Hence, they have low vibration, no wear, and fatigue, which ensure maintenance-free operation. There are various types of magnetic gears. Among them, a planetary type magnetic gear, which consists of coaxial inner and outer rotors with surface-mounted permanent magnet and ferromagnetic stationary parts called pole-pieces, has recently attracted interest since it offers higher torque than other type magnetic gears. This paper presents a comprehensive investigation of the influence of geometry and position of the pole-pieces on torque characteristic based on finite element analysis and experiment. Surveyed parameters of the pole-pieces include lengths in the radial and axial directions and position in the radial direction. Finally, it is demonstrated that the maximum torque of the improved prototype magnetic gear is increased by 45% and the maximum efficiency achieves up to about 99%, which is equal to or more than a conventional planetary type mechanical gear.

  8. COMPARISON OF NONCONTRAST COMPUTED TOMOGRAPHY AND HIGH-FIELD MAGNETIC RESONANCE IMAGING IN THE EVALUATION OF GREAT DANES WITH CERVICAL SPONDYLOMYELOPATHY

    PubMed Central

    Martin-Vaquero, Paula; Da Costa, Ronaldo C.; Drost, Wm Tod

    2014-01-01

    Computed tomography (CT) provides excellent bony detail, whereas magnetic resonance (MR) imaging is superior in evaluating the neural structures. The purpose of this prospective study was to assess interobserver and intermethod agreement in the evaluation of cervical vertebral column morphology and lesion severity in Great Danes with cervical spondylomyelopathy by use of noncontrast CT and high-field MR imaging. Fifteen client-owned affected Great Danes were enrolled. All dogs underwent noncontrast CT under sedation and MR imaging under general anesthesia of the cervical vertebral column. Three observers independently evaluated the images to determine the main site of spinal cord compression, direction and cause of the compression, articular process joint characteristics, and presence of foraminal stenosis. Overall intermethod agreement, intermethod agreement for each observer, overall interobserver agreement, and interobserver agreement between pairs of observers were calculated by use of kappa (κ) statistics. The highest overall intermethod agreements were obtained for the main site of compression and direction of compression with substantial agreements (κ = 0.65 and 0.62, respectively), whereas the lowest was obtained for right-sided foraminal stenosis (κ = 0.39, fair agreement). For both imaging techniques, the highest and lowest interobserver agreements were recorded for the main site of compression and degree of articular joint proliferation, respectively. While different observers frequently agree on the main site of compression using both imaging techniques, there is considerable variation between modalities and among observers when assessing articular process characteristics and foraminal stenosis. Caution should be exerted when comparing image interpretations from multiple observers. PMID:24547789

  9. [Detection and evaluation of cartilage defects in the canine stifle joint - an ex vivo study using high-field magnetic resonance imaging].

    PubMed

    Flatz, K M; Glaser, C; Flatz, W H; Reiser, M F; Matis, U

    2014-01-01

    The aim of our study was to implement and test an imaging protocol for the detection and evaluation of standardised cartilage defects using high-field magnetic resonance imaging (MRI) and to determine its limitations. A total of 84 cartilage defects were created in the femoral condyles of euthanized dogs with a minimum body mass of 25 kg. The cartilage defects had a depth of 0.3 to 1.0 mm and a diameter of 1 to 5 mm. T1-FLASH-3D-WE-sequences with an isotropic voxel size of 0.5 x 0.5 x 0.5 mm and an anisotropic voxel size of 0.3 x 0.3 x 0.8 mm were used. In addition to quantitative evaluation of the cartilage defects, the sig- nal intensities, signal-to-noise ratios and contrast-to-noise ratios of the cartilage were determined. Of special interest were the limita- tions in identifying and delineating the standardised cartilage defects. With the anisotropic voxel size, more cartilage defects were detectable. Our results demonstrated that cartilage defects as small as 3.0 mm in diameter and 0.4 mm in depth were reliably detected using anisotropic settings. Cartilage defects below this size were not reliably detected. We found that for optimal delineation of the joint cartilage and associated defects, a higher in-plane resolution with a larger slice thickness should be used, corresponding to the anisotropic settings employed in this study. For the delineation of larger cartilage defects, both the anisotropic and isotropic imaging methods can be used.

  10. High strength kiloampere Bi$$_2$$Sr$$_2$$CaCu$$_2$$O$$_x$$ cables for high-field magnet applications

    DOE PAGES

    Shen, Tengming; Li, Pei; Jiang, Jianyi; ...

    2015-04-17

    strength of INCONEL X750 for various high-field magnet applications.« less

  11. Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas.

    PubMed

    Sylvester, Peter T; Evans, John A; Zipfel, Gregory J; Chole, Richard A; Uppaluri, Ravindra; Haughey, Bruce H; Getz, Anne E; Silverstein, Julie; Rich, Keith M; Kim, Albert H; Dacey, Ralph G; Chicoine, Michael R

    2015-02-01

    The clinical benefit of combined intraoperative magnetic resonance imaging (iMRI) and endoscopy for transsphenoidal pituitary adenoma resection has not been completely characterized. This study assessed the impact of microscopy, endoscopy, and/or iMRI on progression-free survival, extent of resection status (gross-, near-, and sub-total resection), and operative complications. Retrospective analyses were performed on 446 transsphenoidal pituitary adenoma surgeries at a single institution between 1998 and 2012. Multivariate analyses were used to control for baseline characteristics, differences during extent of resection status, and progression-free survival analysis. Additional surgery was performed after iMRI in 56/156 cases (35.9%), which led to increased extent of resection status in 15/156 cases (9.6%). Multivariate ordinal logistic regression revealed no increase in extent of resection status following iMRI or endoscopy alone; however, combining these modalities increased extent of resection status (odds ratio 2.05, 95% CI 1.21-3.46) compared to conventional transsphenoidal microsurgery. Multivariate Cox regression revealed that reduced extent of resection status shortened progression-free survival for near- versus gross-total resection [hazard ratio (HR) 2.87, 95% CI 1.24-6.65] and sub- versus near-total resection (HR 2.10; 95% CI 1.00-4.40). Complication comparisons between microscopy, endoscopy, and iMRI revealed increased perioperative deaths for endoscopy versus microscopy (4/209 and 0/237, respectively), but this difference was non-significant considering multiple post hoc comparisons (Fisher exact, p = 0.24). Combined use of endoscopy and iMRI increased pituitary adenoma extent of resection status compared to conventional transsphenoidal microsurgery, and increased extent of resection status was associated with longer progression-free survival. Treatment modality combination did not significantly impact complication rate.

  12. Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas

    PubMed Central

    Sylvester, Peter T.; Evans, John A.; Zipfel, Gregory J.; Chole, Richard A.; Uppaluri, Ravindra; Haughey, Bruce H.; Getz, Anne E.; Silverstein, Julie; Rich, Keith M.; Kim, Albert H.; Dacey, Ralph G.

    2014-01-01

    Purpose The clinical benefit of combined intraoperative magnetic resonance imaging (iMRI) and endoscopy for transsphenoidal pituitary adenoma resection has not been completely characterized. This study assessed the impact of microscopy, endoscopy, and/or iMRI on progression-free survival, extent of resection status (gross-, near-, and subtotal resection), and operative complications. Methods Retrospective analyses were performed on 446 transsphenoidal pituitary adenoma surgeries at a single institution between 1998 and 2012. Multivariate analyses were used to control for baseline characteristics, differences during extent of resection status, and progression-free survival analysis. Results Additional surgery was performed after iMRI in 56/156 cases (35.9 %), which led to increased extent of resection status in 15/156 cases (9.6 %). Multivariate ordinal logistic regression revealed no increase in extent of resection status following iMRI or endoscopy alone; however, combining these modalities increased extent of resection status (odds ratio 2.05, 95 % CI 1.21–3.46) compared to conventional transsphenoidal microsurgery. Multivariate Cox regression revealed that reduced extent of resection status shortened progression-free survival for near- versus gross-total resection [hazard ratio (HR) 2.87, 95 % CI 1.24–6.65] and sub- versus near-total resection (HR 2.10; 95 % CI 1.00–4.40). Complication comparisons between microscopy, endoscopy, and iMRI revealed increased perioperative deaths for endoscopy versus microscopy (4/209 and 0/237, respectively), but this difference was non-significant considering multiple post hoc comparisons (Fisher exact, p = 0.24). Conclusions Combined use of endoscopy and iMRI increased pituitary adenoma extent of resection status compared to conventional transsphenoidal microsurgery, and increased extent of resection status was associated with longer progression-free survival. Treatment modality combination did not significantly impact

  13. The effects of the use of piezoelectric motors in a 1.5-Tesla high-field magnetic resonance imaging system (MRI).

    PubMed

    Wendt, O; Oellinger, J; Lüth, T C; Felix, R; Boenick, U

    2000-01-01

    This paper presents the results of an experimental investigation with two different rotatory piezomotors in a closed 1.5 Tesla high-field MRI. The focus of the investigation was on testing the functionality of these motors within the MRI and to determining the image interference they caused. To obtain a differentiated estimate of the interference the motors were tested in both the passive (turned off, i.e. without current flow) and active (turned on, i.e. with current flow) state during MRI scanning. Three different types of sequences were used for the test: Spin-Echo (SE), Gradient-Echo (GE) and Echo-Planar Imaging (EPI). A plastic container filled with a gadolinium-manganese solution was used for representation of the artefacts. The motors investigated were placed parallel to the container at predetermined distances during the experiment. The results show that the motors investigated suffered no functional limitations in the magnetic field of the MRI but, depending on the type of motor, the measurement distance and the state of the motor, the motors had different effects on the sequence images. A motor in the off-state placed immediately next to the object to be measured mainly causes artefacts because of its material properties. If, on the other hand, the piezomotor is in the on-state images with strong noise result when the motor is immediately next to the object being measured. The images regain their normal quality when the motor is approximately at a distance of 1 m from the object being investigated. Driving the motor inside the MRI, therefore, is only to be recommended during the pauses in scanning: this delivers artefact-free images if minimal, motor-specific distances are kept to. With regard to the three different types of sequences it was determined that the SE sequence was the least sensitive and the EPI sequence the most sensitive to disturbance. The GE sequence showed only minimal differences to the SE sequence with regard to signal-to-noise ratios

  14. [Intraoperative high-field magnetic resonance imaging combined with functional neuronavigation in resection of low-grade temporal lobe tumors involving optic radiation].

    PubMed

    Bai, Shaocong; Chen, Xiaolei; Geng, Jiefeng; Wu, Dongdong; Yu, Xinguang; Xu, Bainan

    2015-05-01

    To investigate the clinical value of high-field-strength intraoperative magnetic resonance imaging (iMRI) combined with optic radiation neuro-navigation for the resection of temporal lobe low-grade gliomas. From April 2009 to September 2013, 65 patients with temporal lobe low-grade gliomas (WHO grade II) involving optic radiation were operated with iMRI and functional neuro-navigation. Diffusion tensor imaging (DTI) based fiber tracking was used to delineate optic radiation. The reconstructed optic radiations were integrated into a navigation system, in order to achieve intraoperative microscopic-based functional neuro-navigation. iMRI was used to update the images for both optic radiations and residual tumors. Volumetric analyses were performed using 3D Slicer for pre- and intra-operative tumor volumes in all cases. All patients were evaluated for visual field deficits preoperatively and postoperatively. The Student t test was used to evaluate the average rate of extent of resection between groups. Spearman rank correlation analysis was used to assess correlations between predictors and epilepsy prognosis. Preoperative tumor volumes were (78±40) cm3. In 29 cases, iMRI scan detected residual tumor that could be further resected, and extent of resection were increased from 76.2% to 92.7% (t=7.314, P<0.01). In 19 cases (29.2%), gross total resection was accomplished, and iMRI contributed directly to 8 of these cases. Postsurgical follow-up period varied from 13 months to 59 months, mean (33±13) months. Tumor progression were observed in 3 patients, newly developed or deteriorated visual field defects occurred in 4 patients (6.2%). For patients with pre-operative seizures, Engel Class I were achieved for 89.7% of them. Spearman rank correlation analysis revealed that seizure outcome (Engel Class) was related to increased excision of ratio (r=-0.452, P=0.004, 95% CI: -0.636--0.261) and larger tumors (r=0.391, P=0.014, 95% CI: 0.178-0.484). With iMRI and functional

  15. Investigation of Ag-sheathed multi-filamentary Bi2Sr 2CaCu2O8-x superconducting round wires processed with overpressure, for high field magnets

    NASA Astrophysics Data System (ADS)

    Matras, Maxime

    The need for electromagnets that generate fields >20 T has grown in numerous applications,, especially in high energy physics and NMR research. Conventional resistive magnets require a tremendous amount of power to generate these fields. In contrast superconducting magnets require significantly smaller amounts of power. The low temperature superconductors are limited to fields below 25 T, whereas high temperature superconductors (HTS) show large critical current density above 25 T. Ag-sheathed Bi2Sr2CaCu2O x (2212) multifilamentary round wire is the only HTS that can be made as a round wire with isotropic electrical behavior in magnetic field, and it has a high irreversibility field at 4.2 K. These properties make 2212 an ideal candidate for high-field magnets. Only recently has the critical current density (Jc) in 2212 been increased to a value that makes it a viable magnet material. In the past, the gas-filled porosity in the as-drawn 2212 filaments agglomerated into filament-size bubbles during the heat treatment of the wire at 1 atm. These bubbles severely limited the supercurrent flow in the wire and the gases in the bubbles could also expand at high temperature generating 2212 leakage. The bubbles and leakage were eliminated using overpressure (OP) processing, which was recently developed for 2212 at the Applied Superconductivity Center. OP processing uses a gas that isostatically compresses the Ag wire during the entire heat treatment of the wire, which eliminates the bubbles and prevents leakage. My studies showed that using OP at 100 atm increases Jc by 800 % compared to the conventional processing at 1 atm. This makes 2212 round wire a very competitive candidate for high-field magnets. The wire compression with OP is the key to reach high J c and it was studied as a function of time and temperature to optimize the densification process. We found that the wire diameter decreases by 3.8 +/- 0.3% after the full OP heat treatment (OP-HT) at 50 atm and by 3

  16. Magnetic resonance imaging of hindfoot involvement in patients with spondyloarthritides: comparison of low-field and high-field strength units.

    PubMed

    Eshed, Iris; Althoff, Christian E; Feist, Eugen; Minden, Kirsten; Schink, Tania; Hamm, Bernd; Hermann, Kay-Geert A

    2008-01-01

    To compare MRI evaluation of a painful hindfoot of patients with spondyloarthritides (SpA) on low-field (0.2 T) versus high-field (1.5 T) MRI. Patients with SpA and hindfoot pain were randomly referred to either high-field or low-field MRI. Twenty-seven patients were evaluated (male/female: 17:10; mean age: 39+/-1.4 years). Fifteen patients were examined by low-field and 12 by high-field MRI. Two patients (evaluated by high-field MRI) were excluded. Images were separately read by two radiologists who later reached a consensus. In each patient the prevalence of erosions, fluid, synovitis or bone marrow edema of the hindfoot joints, tendinosis or tenosynovitis of tendons, enthesitis of the plantar fascia and Achilles tendon and retrocalcaneal bursitis were recorded. Clinical and demographic parameters were comparable between both groups. MRI evaluation of joints and tendons of the hindfoot revealed no significant differences in patients with SpA groups for all parameters. Analyzing all joints or tendons together, there was no statistically significant difference between the two groups. Low-field and high-field MRI provide comparable information for evaluation of inflammatory hindfoot involvement. Thus, low-field MRI can be considered as a reliable diagnostic tool for the detection of hindfoot abnormalities in SpA patients.

  17. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  18. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  19. Conventional and anisotropic magnetic entropy change in HoAl2 ferromagnetic compound

    NASA Astrophysics Data System (ADS)

    Gil, L. A.; Campoy, J. C. P.; Plaza, E. J. R.; de Souza, M. V.

    2016-07-01

    In this paper, we present theoretical investigations on the conventional and anisotropic magnetocaloric effects in the cubic HoAl2 ferromagnetic compound. They are investigated in terms of a Hamiltonian that takes into account the Zeeman and exchange magnetic interactions, and crystalline electric field. In this study we have explored recent experimental results in HoAl2 single crystals and polycrystalline samples. HoAl2 presents a spin reorientation transition at 20 K and different signatures of this phenomenon are reproduced in our calculations. In addition, we have calculated the anisotropic variation of magnetic entropy that corresponds to a rotation of a HoAl2 single crystal from its [110] towards its [100] direction in the presence of a constant applied magnetic field. The intensity of the anisotropic effect is twice that one of the conventional effect at spin reorientation region. A subtle signature of the spin reorientation is also observed in the [111] direction. We conclude that the crystal electric field term plays the principal role to describe the main magnetic characteristics of the system, not being necessary to include in the Hamiltonian others effects such as elastic or high order magnetic interactions.

  20. High-field magnetic behavior and forced-ferromagnetic state in an ErF e11TiH single crystal

    NASA Astrophysics Data System (ADS)

    Kostyuchenko, N. V.; Zvezdin, A. K.; Tereshina, E. A.; Skourski, Y.; Doerr, M.; Drulis, H.; Pelevin, I. A.; Tereshina, I. S.

    2015-09-01

    The crystal-field and exchange parameters are determined for the single-crystalline hydride ErF e11TiH compound by analyzing the experimental magnetization curves obtained in magnetic fields of up to 60 T. By using the calculated parameters we succeeded in modeling theoretical magnetization curves for ErF e11TiH up to 200 S and to study in detail the transition from ferrimagnetic to a ferromagnetic state in the applied magnetic field.

  1. Studies of ${\\rm Nb}_{3}{\\rm Sn}$ Strands Based on the Restacked-Rod Process for High Field Accelerator Magnets

    SciTech Connect

    Barzi, E.; Bossert, M.; Gallo, G.; Lombardo, V.; Turrioni, D.; Yamada, R.; Zlobin, A. V.

    2011-12-21

    A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.

  2. Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization, 79Br NQR, and 125Te NMR

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Choi, K.-Y.; Berger, H.; Büchner, B.; Grafe, H.-J.

    2012-11-01

    We present high-field magnetization and 79Br nuclear quadrupole resonance (NQR) and 125Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+ (S=1/2) tetrahedral system Cu2Te2O5Br2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate T1-1 at T0=13.5 K. In the paramagnetic state, T1-1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intratetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.

  3. Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field

    SciTech Connect

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-07-15

    Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

  4. The effect of DC Joule-heating on magnetic structure of conventional amorphous wires

    NASA Astrophysics Data System (ADS)

    Aştefănoaei, Iordana; Stancu, Alexandru; Chiriac, Horia

    2007-09-01

    In this paper, we determined the effect of DC Joule-heating on magnetic structure of conventional amorphous wires starting from the stresses that appear during preparation process. For a specified value of applied electrical DC current to some amorphous wires, we have analyzed the thermal stresses that appear during the thermal treatment and we calculated the radius of axial magnetic domain (cylindrical inner core) that results after the preparation and annealing processes. We have obtained that: (a) the total stresses (owing to the successive heating, crystallization and cooling) depend strongly on the applied electrical DC current and the radius of the wires; (b) the axial magnetic domain is bigger for the wire having a bigger radius; (c) the cylindrical inner core enlarges significantly after DC Joule-heating; and (d) smaller internal stresses are obtained at smaller values of the wire's radius.

  5. Passive catheter tracking using MRI: comparison of conventional and magnetization-prepared FLASH.

    PubMed

    Green, Jordin D; Omary, Reed A; Finn, J Paul; Tang, Richard; Li, Yongzhong; Carr, James; Li, Debiao

    2002-07-01

    To compare a magnetization-prepared gradient-echo (GRE) sequence with a conventional GRE sequence for visualizing contrast agent-filled catheters. Passive visualization of endovascular catheters using MRI was compared between two imaging sequences: 1) inversion recovery (IR)-fast low angle shot (FLASH), and 2) conventional FLASH. Two-dimensional projection images of the catheters filled with 4% diluted contrast agent in a phantom and the aorta of swine were obtained with each sequence with a temporal resolution of two frames per second. We compared background suppression and catheter visibility using the catheter-to-background signal ratio and the ratings of two radiologists. In the phantom, IR-FLASH allowed for a 200% increase in catheter-to-background ratio (p < 0.01) and improved depiction of catheters over conventional FLASH. In swine, the IR-FLASH images showed a statistically significant improvement of 80% (p < 0.001) over conventional FLASH in all comparisons of the catheter-to-background signal ratio, and an improvement of 160% (p < 0.05) in comparison with the radiologists' observations. This study shows that IR-FLASH is a better technique for passive tracking of contrast agent-filled catheters than conventional FLASH. Copyright 2002 Wiley-Liss, Inc.

  6. Postmortem cardiovascular magnetic resonance imaging in fetuses and children: a masked comparison study with conventional autopsy.

    PubMed

    Taylor, Andrew M; Sebire, Neil J; Ashworth, Michael T; Schievano, Silvia; Scott, Rosemary J; Wade, Angie; Chitty, Lyn S; Robertson, Nikki; Thayyil, Sudhin

    2014-05-13

    Perinatal and pediatric autopsies have declined worldwide in the past decade. We compared the diagnostic accuracy of postmortem, cardiovascular magnetic resonance (CMR) imaging with conventional autopsy and histopathology assessment in fetuses and children. We performed postmortem magnetic resonance imaging in 400 fetuses and children, using a 1.5-T Siemens Avanto magnetic resonance scanner before conventional autopsy. A pediatric CMR imager reported the CMR images, masked to autopsy information. The pathologists were masked to the information from CMR images. The institutional research ethics committee approved the study, and parental consent was obtained. Assuming a diagnostic accuracy of 50%, 400 cases were required for a 5% precision of estimate. Three cases were excluded from analysis, 2 with no conventional autopsy performed and 1 with insufficient CMR sequences performed. Thirty-eight CMR data sets were nondiagnostic (37 in fetuses ≤24 weeks; 1 in a fetus >24 weeks). In the remaining 359 cases, 44 cardiac abnormalities were noted at autopsy. Overall sensitivity and specificity (95% confidence interval) of CMR was 72.7% (58.2-83.7%) and 96.2% (93.5-97.8%) for detecting any cardiac pathology, with positive and negative predictive values of 72.7% (58.2-83.7%) and 96.2% (93.5-97.8%), respectively. Higher sensitivity of 92.6% (76.6-97.9%), specificity of 99.1% (97.4-99.7%), positive predictive value of 89.3% (72.8-96.3%), and negative predictive value of 99.4% (97.8-99.8%) were seen for major structural heart disease. Postmortem CMR imaging may be a useful alternative to conventional cardiac autopsy in fetuses and children for detecting cardiac abnormalities. http://www.clinicaltrials.gov. Unique identifier: NCT01417962.

  7. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    PubMed

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-12-01

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba2Cu3O7-x (REBCO, RE: rare earth) conductors have an advantage over Bi2Sr2Ca2Cu3O10-x (Bi-2223) and Bi2Sr2CaCu2O8-x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. High-field magnetization studies of spin-dimer behaviors on low-dimensional spin systems, LiCu2-xZnxO2 and FeTe3O7X (X = Cl, Br)

    NASA Astrophysics Data System (ADS)

    Her, J. L.; Hsu, H. C.; Matsuda, Y. H.; Kindo, K.; Chou, C. C.; Yang, H. D.; Berger, H.; Chou, F. C.

    2013-03-01

    High-field magnetization of two kinds of low-dimensional spin system was studied in pulsed magnets. Several anomalies were clearly observed in dm/dH curves of doped LiCu2-xZnxO2 (x = 0.07) at low temperatures (1.3 K < T < 20 K). When temperature decreases, the anomalies sharper / splits at certain critical temperatures which are related to the formation of isolated spin-dimer and spin freezing state. A field-induced spin density wave state was suggested to exist at high magnetic fields. The doping of Zn2+ ions breaks the spin-chain of Cu2+ ions, leading to the formation of isolated spin-dimers and lowering the critical field of formation of spin density state. The magnetization process measurements were preformed on another series of samples, FeTe3O7X (X = Cl, Br), which has spin-dimer, formed by Fe3+ ions, at low temperatures and magnetic fields up to 100 T. At low temperatures, the magnetization processes show four step-like structures, which have nearly equal spaces of 25 T. Both samples show similar behavior. These steps are considered to be the magnetic excitation of the antiferromagnetic spin-dimers.

  9. Exchange and crystal field in Sm-based magnets. I. Inelastic neutron scattering and high-field magnetization study of Sm2Fe17 and Sm2Fe17N3

    NASA Astrophysics Data System (ADS)

    Sippel, A.; Jahn, L.; Loewenhaupt, M.; Eckert, D.; Kerschl, P.; Handstein, A.; Müller, K.-H.; Wolf, M.; Kuz'Min, M. D.; Steinbeck, L.; Richter, M.; Teresiak, A.; Bewley, R.

    2002-02-01

    A peak is detected in the high-energy inelastic neutron scattering spectra of Sm2Fe17 and Sm2Fe17N3, which is associated with the intermultiplet transition in the 4f shell of samarium. The peak in the nitride Sm2Fe17N3 is situated at a lower energy (163 meV) as compared with the parent compound Sm2Fe17 (177 meV). The peak position provides direct information on the strength of the exchange field on Sm in both compounds: Bex=380 and 270 T in Sm2Fe17 and Sm2Fe17N3, respectively. The 30% reduction in Bex as a result of nitrogenating Sm2Fe17 is consistent with the earlier discovered similar effect in Gd2Fe17. High-field (B<=50 T) magnetization curves have been measured on an oriented powder sample of Sm2Fe17N3 and analyzed using the newly determined Bex. The leading crystal field parameter is thus found to be A02=-28 meV.

  10. [High field MR imaging: magnetic field interactions of aneurysm clips, coronary artery stents and iliac artery stents with a 3.0 Tesla MR system].

    PubMed

    Sommer, T; Maintz, D; Schmiedel, A; Hackenbroch, M; Hofer, U; Urbach, H; Pavlidis, C; Träber, F; Schild, H; Höher, M

    2004-05-01

    To evaluate magnetic field interactions of commonly used biomedical implants at 3.0 Tesla. Fourteen aneurysm clips designed for permanent placement in intracranial aneurysms, 19 coronary artery stents and 20 iliac artery stents were evaluated in an actively shielded compact 3.0 T MR system (Intera, Philips Medical Systems, Best, The Netherlands, length of magnet 1.57 m). The magnetic deflection forces (translational movement) were evaluated as follows: The implants were suspended by a fine string and placed in the magnet bore at the location of the maximum magnetic field gradient. The translational forces F (z) were calculated from the measured angle of deflection from the vertical axis. The magnetic field-induced torque (rotational forces) was evaluated as follows: Each implant was placed in the center of the magnetic bore parallel to the static magnetic field B0 (position 0 degrees ). Any possible displacement of the implant was noted on a millimeter scale and any torque qualitatively evaluated using a 5 point grading scale (0: no torque; + 4: very strong torque). The implant was turned in steps of 45 degrees, and the procedure was repeated to encompass a full 360 degrees rotation. In 52 of the 53 devices tested, the deflection force (deflection angle: range 0-21 degrees, translational force: range 0-3.8 mN) was less than the gravitational force (i.e., the implant's weight). These devices (n = 52/53) did not show any alignment to or rotation in the magnetic field at any of the various 45 degrees -increment positions corresponding to a qualitative torque evaluation of grade 0/4. One device (n = 1/53), an iliac artery stent made of stainless steel (Zenith, Cook, Mönchengladbach, BRD), was found to have deflection forces (deflection angle 88 degrees translational force 299 mN) greatly exceeding the gravitational force as well as a pronounced torque (grade 4/4). Out of 53 biomedical implants evaluated for magnetic field interactions at 3.0 T, one iliac artery stent

  11. [Physiological approach to peripheral neuropathy. Conventional nerve conduction studies and magnetic motor root stimulation].

    PubMed

    Ugawa, Yoshikazu

    2004-11-01

    In this communication, I first show some points we should mind in the conventional peripheral nerve conduction studies and later present clinical usefulness of motor root stimulation for peripheral neuropathy. CONVENTIONAL NERVE CONDUCTION STUDIES (NCS): The most important point revealed by the conventional NCSs is whether neuropathy is due to axonal degeneration or demyelinating process. Precise clinical examination with this neurophysiological information leads us to a diagnosis and treatment. Poor clinical examination makes these findings useless. Long standing axonal degeneration sometimes induces secondary demyelination at the most distal part of involved nerves. On the other hand, severe segmental demyelination often provokes secondary axonal degeneration at distal parts to the site of demyelination. These secondary changes show the same abnormal neurophysiological findings as those of the primary involvement. We should be careful of this possibility when interpreting the results of NCS. NCS of sensory nerves is not good at revealing demyelinating process. Mild temporal dispersion of potentials often reduces an amplitude of SNAP or loss of responses, which usually suggests axonal degeneration, because of short duration of sensory nerve potentials. MOTOR ROOT STIMULATION IN PERIPHERAL NEUROPATHY: Magnetic stimulation with a coil placed over the spine activates motor roots and evokes EMG responses from upper and lower limb muscles. The site of activation with this method was determined to be where the motor roots exit from the spinal canal (intervertebral foramina) (J Neurol Neurosurg Psychiatry 52 (9): 1025-1032, 1989) because induced currents are very dense at such a foramen made by electric resistant bones. In several kinds of peripheral neuropathy, this method has been used to detect a lesion at a proximal part of the peripheral nerves which can not be detected by the conventional NCSs. I present a few cases in whom motor root stimulation had a clinical

  12. Can we evaluate cranial aneurysms on conventional brain magnetic resonance imaging?

    PubMed

    Caliskan, Emine; Pekcevik, Yeliz; Kaya, Adnan

    2016-01-01

    To evaluate the contribution of conventional brain magnetic resonance imaging (MRI) for the determination of intracranial aneurysms. Brain MRI and computed tomography angiography (CTA) of 45 patients (29 women and 16 men; age range, 32-80 years) with aneurysm were analyzed. A comparison was made between brain MRI and CTA based on size and presence of aneurysm. The comparisons between MRI and CTA were investigated through Bland-Altman graphics, receiver operating characteristic curve, and Kappa statistics. Fifty-seven aneurysms were evaluated. Forty-five percent of 57 aneurysms on CTA were detected on conventional brain MRI. A significant correlation was found between CTA and brain MRI in the diagnosis of aneurysm (P < 0.05). In an analysis of the size measurement, a significant correlation was observed between CTA and brain MRI. Seventy-seven percent of aneurysms <4 mm was not detected and the efficiency of MRI in the detection of aneurysms <4 mm was found to be low. Aneurysms can also be appreciated on conventional brain MRI, and vascular structures should be reviewed carefully while analyzing brain MRI.

  13. Magnetic fabric results from DSDP Holes 380A (Black Sea) and 524 (South Atlantic) sediment cores: A case study for the comparison between low and high field torque magnetometer measurements

    NASA Astrophysics Data System (ADS)

    Folami, S. L.; Hailwood, E. A.

    1991-08-01

    Magnetic fabric (anisotropy) measurements have been made on samples of Quaternary sediments from DSDP Hole 380A (Black Sea) and Tertiary and Cretaceous nannofossil oozes, marls and volcanoclastic sandstones from the Southeast flank of the Walvis Ridge at Hole 524, recovered during Legs 42B and 73 of the International Program of Ocean Drilling (IPOD). The fabric was determined by means of both a low field and a high field torque magnetometer. The overall results from the low field measurements are similar to those from the high field measurements. The results from both sets of measurements indicate the existence of a NE-SW lineation at Hole 380A and a NW-SE lineation at Hole 524. For Hole 380A some of the individual parameters show slight differences in values for the low field and high field torque measurements while for Hole 524 these individual parameters compare favourably and indicate an approximately one-to-one correspondence. In general the fabric is better defined at Hole 524 than at Hole 380A. Anisotropy measurements sometimes were found to be greatly affected by the shape of the sample. This apparent ‘shape-effect’ appears to be more prevalent in the high field than in the low field measurements. In addition, for Holes 380A and 524 some samples show deformational-style fabric characteristics on one instrument and depositional-style characteristics on the other. The reasons for these differences and how the effects on the anisotropy data can be removed or minimised are described in this paper.

  14. Application of Metabolic 13C Labeling in Conjunction with High-Field Nuclear Magnetic Resonance Spectroscopy for Comparative Conformational Analysis of High Mannose-Type Oligosaccharides

    PubMed Central

    Kamiya, Yukiko; Yanagi, Kotaro; Kitajima, Toshihiko; Yamaguchi, Takumi; Chiba, Yasunori; Kato, Koichi

    2013-01-01

    High mannose-type oligosaccharides are enzymatically trimmed in the endoplasmic reticulum, resulting in various processing intermediates with exposed glycotopes that are recognized by a series of lectins involved in glycoprotein fate determination in cells. Although recent crystallographic data have provided the structural basis for the carbohydrate recognition of intracellular lectins, atomic information of dynamic oligosaccharide conformations is essential for a quantitative understanding of the energetics of carbohydrate–lectin interactions. Carbohydrate NMR spectroscopy is useful for characterizing such conformational dynamics, but often hampered by poor spectral resolution and lack of recombinant techniques required to produce homogeneous glycoforms. To overcome these difficulties, we have recently developed a methodology for the preparation of a homogeneous high mannose-type oligosaccharide with 13C labeling using a genetically engineered yeast strain. We herein successfully extended this method to result in the overexpression of 13C-labeled Man9GlcNAc2 (M9) with a newly engineered yeast strain with the deletion of four genes involved in N-glycan processing. This enabled high-field NMR analyses of 13C-labeled M9 in comparison with its processing product lacking the terminal mannose residue ManD2. Long-range NOE data indicated that the outer branches interact with the core in both glycoforms, and such foldback conformations are enhanced upon the removal of ManD2. The observed conformational variabilities might be significantly associated with lectins and glycan-trimming enzymes. PMID:24970159

  15. Structural, morphological, optical and magnetic properties of Co3O4 nanoparticles prepared by conventional method

    NASA Astrophysics Data System (ADS)

    Gopinath, S.; Sivakumar, K.; Karthikeyen, B.; Ragupathi, C.; Sundaram, R.

    2016-07-01

    Cobalt oxide (Co3O4) is one of the favorable nanoparticles (NPs) that possesses many remarkable properties so that it can be used in medicine, chemistry, environment, energy, information, industry, and so on. In this study, the crystalline Co3O4 nanoparticles (NPs) were successfully prepared by an efficient conventional method technique from an using different fuels. In the present paper, pure phase and well-dispersed Co3O4 were synthesized via the starch and aqueous ammonia solution in the stoichiometric fuel compositions. The structure and morphology of by way of organized Co3O4 nanoparticles were characterized by the structural analysis, electron microscopy studies, and optical properties studies. Magnetic properties exposed that the Co3O4 nanoparticles had ferromagnetic performance at room temperature with saturation magnetization of 71.09 emu/g. The results revealed that the changing the precursor led to great effects on the crystal size, emission peaks, and the reaction time of preparing the Co3O4 NPs. The significant feature of this manuscript is that the effects of different precursors on the structural magnetic and optical properties of Co3O4 NPs were investigated for the first time. The average particle size of samples (A and B) 23.6 and 22.2 nm, respectively.

  16. Quantified T1 as an adjunct to apparent diffusion coefficient for early infarct detection: a high-field magnetic resonance study in a rat stroke model.

    PubMed

    Kaur, J; Tuor, U I; Zhao, Z; Petersen, J; Jin, A Y; Barber, P A

    2009-06-01

    Thrombolytic treatment for acute stroke has focused attention on accurate identification of injured vs. salvageable brain tissue, particularly if reperfusion occurs. However, our knowledge of differences in acute magnetic resonance imaging changes between transient and permanent ischemia and how they reflect permanently damaged tissue remain incomplete. Magnetic resonance imaging characteristics vary widely following ischemia and, at acute times, T1, T2 or apparent diffusion coefficient quantification may differentiate viable tissue from that destined to infarct. High-resolution magnetic resonance imaging was performed at 9.4 T following permanent or transient (90 min) middle cerebral artery occlusion in spontaneously hypertensive male rats or Wistar rats. Within 30 min, quantified maps of the apparent diffusion coefficient, T1, and T2 were performed and measures determined for sequences in the infarct and compared with that in the contralateral region. Lesion area for each magnetic resonance imaging sequence (T1, T2, apparent diffusion coefficient, and perfusion maps) was delineated for different time points using quantitative threshold measures and compared with final histological damage. Early extensive changes in T1 following both transient and permanent middle cerebral artery occlusion provided a sensitive early indicator of the final infarct area. Following reperfusion, small but measurable early T2 changes indicative of early development of vasogenic edema occurred in the transient but not permanent groups. In transient middle cerebral artery occlusion, at 70 min apparent diffusion coefficient decreased (P<0.001) and then pseudonormalized at 150 min. In permanent middle cerebral artery occlusion, apparent diffusion coefficient declined over time. Lesion area detected using T1 maps exceeded that with T2 and apparent diffusion coefficient at 70 and 150 min in both groups (P<0.001). The results indicate that, independent of reperfusion, quantified T1 is

  17. Medical treatment of horses with deep digital flexor tendon injuries diagnosed with high-field-strength magnetic resonance imaging: 118 cases (2000-2010).

    PubMed

    Lutter, John D; Schneider, Robert K; Sampson, Sarah N; Cary, Julie A; Roberts, Greg D; Vahl, Christopher I

    2015-12-01

    To describe the location and severity of deep digital flexor tendon (DDFT) lesions diagnosed by means of high-field-strength MRI in horses and to identify variables associated with return to activity following medical treatment. Retrospective case series. 118 horses. Medical records of horses with DDFT injury diagnosed with MRI over a 10-year period (2000-2010) and treated medically (intrasynovial administration of corticosteroids and sodium hyaluronan, rest and rehabilitation, or both) were reviewed. History, signalment, use, results of lameness examination and diagnostic local anesthesia, MRI findings, and treatment details were recorded. Outcome was obtained by telephone interview or follow-up examination. Horses were grouped by predictor variables and analyzed with logistic regression to identify significant effects. Overall, of 97 horses available for follow-up (median time to follow-up, 5 years; range, 1 to 12 years), 59 (61%) returned to activity for a mean duration of 22.6 months (median, 18 months; range, 3 to 72 months), with 25 (26%) still sound at follow-up. Of horses with mild, moderate, and severe injury, 21 of 29 (72%), 20 of 36 (56%), and 18 of 32 (56%), respectively, returned to use. Horses treated with intrasynovial corticosteroid injection and 6 months of rest and rehabilitation returned to use for a significantly longer duration than did horses treated without rest. Western performance horses returned to use for a significantly longer duration than did English performance horses. Results of the present study suggested that outcome for horses with DDFT injuries treated medically depended on injury severity, presence of concurrent injury to other structures in the foot, type of activity, and owner compliance with specific treatment recommendations. Although some horses successfully returned to prior activity, additional treatment options are needed to improve outcome in horses with severe injuries and to improve long-term prognosis.

  18. Magnetic interactions between a [4Fe-4S]1+ cluster and a flavin mononucleotide radical in the enzyme trimethylamine dehydrogenase: A high-field electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Fournel, Andre; Gambarelli, Serge; Guigliarelli, Bruno; More, Claude; Asso, Marcel; Chouteau, Gerard; Hille, Russ; Bertrand, Patrick

    1998-12-01

    Trimethylamine dehydrogenase is a bacterial enzyme which contains two redox centers: a flavin mononucleotide (FMN) group which constitutes the active site and a [4Fe-4S]1+,2+ cluster which transfers the electrons provided by the FMN to an electron-transferring flavoprotein. According to the x-ray crystal structure, the center-to-center distance is equal to 12 Å and the nearest atoms of the two centers are separated by a 4 Å gap. Although this arrangement does not appear especially favorable for mediating strong magnetic interactions, a triplet state electron paramagnetic resonance (EPR) spectrum arising from the intercenter magnetic coupling is observed at X band (9 GHz) when the enzyme is reduced by its substrate. In earlier work, the temperature dependence of this spectrum and its analysis based on a triplet state spin Hamiltonian were used to propose the range (0.8-100 cm-1) for the parameter J0 of the isotropic interaction J0SA.SB, but neither the magnitude of J0 nor its sign could be further specified [R. C. Stevenson, W. R. Dunham, R. H. Sands, T. P. Singer, and H. Beinert, Biochim. Biophys. Acta 869, 81 (1986)]. In the present work, we have studied the interaction EPR spectrum in the range 9-340 GHz. Numerical simulations based on a spin Hamiltonian describing a system of two S=1/2 interacting spins allowed us to determine the full set of parameters describing the magnetic interactions between the FMN radical and the [4Fe-4S]1+ cluster. In particular, our study demonstrates that the coupling is antiferromagnetic with J0=+0.72 cm-1. Although this value corresponds to the lower limit of the range proposed previously, it still appears markedly larger than those measured in biological systems in which a similar arrangement of two paramagnetic centers is found.

  19. Multifilamentary Nb{sub 3}Sn superconductors on the base of high-tin alloyed bronzes for high-field magnets

    SciTech Connect

    Sverdlov, V.Y.; Tikhonovsky, M.A.; Tikhinsky, G.F.; Kondratov, A.A.; Rudycheva, T.Y.; Klimenko, E.Y.; Novikov, S.I.

    1996-07-01

    Multifilamentary Nb{sub 3}Sn superconductors have been fabricated due to the worked out technology of deformed bronze with increased content of tin (16...18wt%) production. Studies have been made of the effects of bronze composition and thermal treatment conditions on the overall critical current density of multifilamentary Nb{sub 3}Sn superconductors. It is shown, that the use of the bronze with increased content of tin as well as bronze alloying with titanium improves the superconducting properties of composites, especially in high magnetic fields.

  20. High-field magnetic resonance imaging of structural alterations in first-episode, drug-naive patients with major depressive disorder

    PubMed Central

    Chen, Z; Peng, W; Sun, H; Kuang, W; Li, W; Jia, Z; Gong, Q

    2016-01-01

    Previous structural imaging studies have found evidence of brain morphometric changes in patients with major depressive disorder (MDD), but these studies rarely excluded compounding effects of certain important factors, such as medications and long duration of illnesses. Furthermore, the neurobiological mechanism of the macroscopic findings of structural alterations in MDD patients remains unclear. In this study, we utilized magnetization transfer imaging, a quantitative measure of the macromolecular structural integrity of brain tissue, to identify biophysical alterations, which are represented by a magnetization transfer ratio (MTR), in MDD patients. To ascertain whether MTR changes occur independent of volume loss, we also conduct voxel-based morphometry (VBM) analysis. The participants included 27 first-episode, drug-naive MDD patients and 28 healthy controls matched for age and gender. Whole-brain voxel-based analysis was used to compare MTR and gray matter volume across groups and to analyse correlations between MTR and age, symptom severity, and illness duration. The patients exhibited significantly lower MTR in the left superior parietal lobule and left middle occipital gyrus compared with healthy controls, which may be related to the attentional and cognitive dysfunction in MDD patients. The VBM analysis revealed significantly increased gray matter volume in right postcentral gyrus in MDD patients. These findings in first-episode, drug-naive MDD patients may reflect microstructural gray matter changes in the parietal and occipital cortices close to illness onset that existed before volume loss, and thus potentially provide important new insight into the early neurobiology of depression. PMID:27824357

  1. High-field magnetic resonance imaging of structural alterations in first-episode, drug-naive patients with major depressive disorder.

    PubMed

    Chen, Z; Peng, W; Sun, H; Kuang, W; Li, W; Jia, Z; Gong, Q

    2016-11-08

    Previous structural imaging studies have found evidence of brain morphometric changes in patients with major depressive disorder (MDD), but these studies rarely excluded compounding effects of certain important factors, such as medications and long duration of illnesses. Furthermore, the neurobiological mechanism of the macroscopic findings of structural alterations in MDD patients remains unclear. In this study, we utilized magnetization transfer imaging, a quantitative measure of the macromolecular structural integrity of brain tissue, to identify biophysical alterations, which are represented by a magnetization transfer ratio (MTR), in MDD patients. To ascertain whether MTR changes occur independent of volume loss, we also conduct voxel-based morphometry (VBM) analysis. The participants included 27 first-episode, drug-naive MDD patients and 28 healthy controls matched for age and gender. Whole-brain voxel-based analysis was used to compare MTR and gray matter volume across groups and to analyse correlations between MTR and age, symptom severity, and illness duration. The patients exhibited significantly lower MTR in the left superior parietal lobule and left middle occipital gyrus compared with healthy controls, which may be related to the attentional and cognitive dysfunction in MDD patients. The VBM analysis revealed significantly increased gray matter volume in right postcentral gyrus in MDD patients. These findings in first-episode, drug-naive MDD patients may reflect microstructural gray matter changes in the parietal and occipital cortices close to illness onset that existed before volume loss, and thus potentially provide important new insight into the early neurobiology of depression.

  2. Dosimetric Impact of Using a Virtual Couch Shift for Online Correction of Setup Errors for Brain Patients on an Integrated High-Field Magnetic Resonance Imaging Linear Accelerator.

    PubMed

    Ruschin, Mark; Sahgal, Arjun; Tseng, Chia-Lin; Sonier, Marcus; Keller, Brian; Lee, Young

    2017-07-01

    To quantify the dosimetric impact of using virtual couch shift (VCS) for correcting setup errors in glioblastoma multiforme (GBM) patients treated on a magnetic resonance imaging (MRI)-linac. Six GBM patients treated with 60 Gy (30 fractions) were selected for this simulation study. For each case, 2 reference plans were generated in the MRL treatment planning system: With (WIB) and with no (NOB) MRI B field present. Subsequently, 2-mm, 4-mm, and 6-mm translational errors were simulated and corrected for using a VCS method based on shift-only, warm start segment weight (SWO), and segment weight and shape (SSO) optimization. The resulting distributions were compared with the reference plan using planning target volume (PTV) homogeneity index (HI), conformity index (CI), organs at risk (OAR) maximum dose (D0.01cc), and OAR median dose (D50). A simulated 30-fraction treatment was constructed to evaluate the cumulative effect of daily corrections. Feasibility and workflow for correcting rotations were also assessed. All reference plans were deemed clinically acceptable with respect to PTV and OAR objectives. The difference in HI (ΔHI) between corrected and reference was not statistically significant between WIB and NOB (P=.89). The average ΔHI was +0.8%, -0.1%, and -1.0% for shift-only, SWO, and SSO, respectively, with a statistically significant difference (P<.001) for shift-only versus SWO and SSO. The CI remained unchanged (mean ΔCI = -0.01) between the corrected and reference plans, with no statistically significant dependence on magnetic field presence, correction method, or shift magnitude or orientation. The brainstem D50 on average decreased with SWO and SSO; however, D0.01cc increased by a median value of 1.2%, 1.9%, and 2.0% for shift-only, SWO, and SSO, respectively. For other OARs, D0.01cc decreased using SWO or SSO. For the simulated treatment and rotational corrections, similar trends were measured. For translational errors in brain MRI

  3. A volume birdcage coil with an adjustable sliding tuner ring for neuroimaging in high field vertical magnets: ex and in vivo applications at 21.1 T

    PubMed Central

    Qian, Chunqi; Masad, Ihssan S.; Rosenberg, Jens T.; Elumalai, Malathy; Brey, William W.; Grant, Samuel C.; Gor’kov, Peter L.

    2012-01-01

    A tunable 900 MHz transmit/receive volume coil was constructed for 1H MR imaging of biological samples in a 21.1 T vertical bore magnet. To accommodate a diverse range of specimen and RF loads at such a high frequency, a sliding-ring adaptation of a low-pass birdcage was implemented through simultaneous alteration of distributed capacitance. To make efficient use of the constrained space inside the vertical bore, a modular probe design was implemented with a bottom-adjustable tuning and matching apparatus. The sliding ring coil displays good homogeneity and sufficient tuning range for different samples of various dimensions representing large span of RF loads. High resolution in vivo and ex vivo images of large rats (up to 350 g), mice and human postmortem tissues were obtained to demonstrate coil functionality and to provide examples of potential applications at 21.1 T. PMID:22750638

  4. T1 and susceptibility contrast at high fields

    NASA Astrophysics Data System (ADS)

    Neelavalli, Jaladhar

    Clinical imaging at high magnetic field strengths (≥ 3Tesla) is sought after primarily due to the increased signal strength available at these fields. This increased SNR can be used to perform: (a) high resolution imaging in the same time as at lower field strengths; (b) the same resolution imaging with much faster acquisition; and (c) functional MR imaging (fMRI), dynamic perfusion and diffusion imaging with increased sensitivity. However they are also associated with increased power deposition (SAR) due to increase in imaging frequency and longer T1 relaxation times. Longer T1s mean longer imaging times for generating good T1 contrast images. On the other hand for faster imaging, at high fields fast spin echo or magnetization prepared sequences are conventionally proposed which are, however, associated with high SAR values. Imaging with low SAR is more and more important as we move towards high fields and particularly for patients with metallic implants like pacemakers or deep brain stimulator. The SAR limit acceptable for these patients is much less than the limit acceptable for normal subjects. A new method is proposed for imaging at high fields with good contrast with simultaneous reduction in power deposition. Further, T1 based contrast optimization problem in FLASH imaging is considered for tissues with different T1s but same spin densities. The solution providing optimal imaging parameters is simplified for quick and easy computation in a clinical setting. The efficacy of the simplification is evaluated and practical limits under which the simplification can be applied are worked out. The phase difference due to variation in magnetic susceptibility property among biological tissues is another unique source of contrast which is different from the conventional T1, T2 and T2* contrast. This susceptibility based phase contrast has become more and more important at high fields, partly due to contrast generation issues due to longer T 1s and shorter T2s and

  5. Primary percutaneous coronary intervention by magnetic navigation compared with conventional wire technique.

    PubMed

    Patterson, Mark S; Dirksen, Maurits T; Ijsselmuiden, Alexander J; Amoroso, Giovanni; Slagboom, Ton; Laarman, Gerrit-Jan; Schultz, Carl; van Domburg, Ron T; Serruys, Patrick W; Kiemeneij, Ferdinand

    2011-06-01

    Aims Comparison of magnetic guidewire navigation in percutaneous coronary intervention (MPCI) vs. conventional percutaneous coronary intervention (CPCI) for the treatment of acute myocardial infarction. Methods and results We compared 65 sequential patients (mean age 61 ± 15 years) undergoing primary MPCI with those of 405 patients undergoing CPCI (mean age 61 ± 13 years). The major endpoint was contrast media use. Technical success and procedural outcomes were evaluated. Clinical demographics and angiographic characteristics of the two groups were similar, except for fewer patients with previous coronary artery bypass grafting (CABG) and hypertension in the CPCI group and fewer patients with diabetes in the MPCI group. The technical success rate was high in both the MPCI and CPCI groups (95.4 vs. 98%). There was significantly less contrast media usage in the MPCI compared with the CPCI group, median reduction of contrast media of 30 mL with an OR = 0.41 (0.21-0.81). Fluoroscopy times were significantly reduced for MPCI compared with CPCI, median reduction of 7.2 min with an OR = 0.42 (0.20-0.79). Conclusion This comparison indicates the feasibility and non-inferiority of magnetic navigation in performing primary PCI and suggests the possibility of reductions in contrast media use and fluoroscopy time compared with CPCI.

  6. Atomic scale structure of amorphous aluminum oxyhydroxide, oxide and oxycarbide films probed by very high field (27)Al nuclear magnetic resonance.

    PubMed

    Baggetto, L; Sarou-Kanian, V; Florian, P; Gleizes, A N; Massiot, D; Vahlas, C

    2017-03-15

    The atomic scale structure of aluminum in amorphous alumina films processed by direct liquid injection chemical vapor deposition from aluminum tri-isopropoxide (ATI) and dimethyl isopropoxide (DMAI) is investigated by solid-state (27)Al nuclear magnetic resonance (SSNMR) using a very high magnetic field of 20.0 T. This study is performed as a function of the deposition temperature in the range 300-560 °C, 150-450 °C, and 500-700 °C, for the films processed from ATI, DMAI (+H2O), and DMAI (+O2), respectively. While the majority of the films are composed of stoichiometric aluminum oxide, other samples are partially or fully hydroxylated at low temperature, or contain carbidic carbon when processed from DMAI above 500 °C. The quantitative analysis of the SSNMR experiments reveals that the local structure of these films is built from AlO4, AlO5, AlO6 and Al(O,C)4 units with minor proportions of the 6-fold aluminum coordination and significant amounts of oxycarbides in the films processed from DMAI (+O2). The aluminum coordination distribution as well as the chemical shift distribution indicate that the films processed from DMAI present a higher degree of structural disorder compared to the films processed from ATI. Hydroxylation leads to an increase of the 6-fold coordination resulting from the trend of OH groups to integrate into AlO6 units. The evidence of an additional environment in films processed from DMAI (+O2) by (27)Al SSNMR and first-principle NMR calculations on Al4C3 and Al4O4C crystal structures supports that carbon is located in Al(O,C)4 units. The concentration of this coordination environment strongly increases with increasing process temperature from 600 to 700 °C favoring a highly disordered structure and preventing from crystallizing into γ-alumina. The obtained results are a valuable guide to the selection of process conditions for the CVD of amorphous alumina films with regard to targeted applications.

  7. High field magnetotransport and point contact Andreev reflection measurements on CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br—Degenerate magnetic semiconductor single crystals

    SciTech Connect

    Borisov, K. Coey, J. M. D.; Stamenov, P.; Alaria, J.

    2014-05-07

    Single crystals of the metallically degenerate fully magnetic semiconductors CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br have been prepared by the Chemical Vapour Transport method, using either Se or Br as transport agents. The high-quality, millimetre-sized, octahedrally faceted, needle- and platelet-shaped crystals are characterised by means of high field magnetotransport (μ{sub 0}H≤ 14 T) and Point Contact Andreev Reflection. The relatively high spin polarisation observed |P|>0.56, together with the relatively low minority carrier effective mass of 0.25 m{sub e}, and long scattering time  10{sup −13} s, could poise these materials for integration in low- and close-to-room temperature minority injection bipolar heterojunction transistor demonstrations.

  8. On Young Neutron Stars as Propellers and Accretors with Conventional Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Alpar, M. Ali

    2001-06-01

    The similarity of rotation periods of the anomalous X-ray pulsars (AXPs), the soft gamma-ray repeaters (SGRs), and the dim isolated thermal neutron stars (DTNs) suggests a common mechanism with an asymptotic spin-down phase, extending through the propeller and early accretion stages. The DTNs are interpreted as sources in the propeller stage. Their luminosities arise from frictional heating in the neutron star. If the 8.4 s rotation period of the DTN RX J0720.4-3125 is close to its rotational equilibrium period, the estimated propeller torque indicates a magnetic field in the 1012 G range. The mass inflow rate onto the propeller is on the order of the accretion rates of the AXPs. The limited range of rotation periods, taken to be close to equilibrium periods, and conventional magnetic fields in the range 5×1011 to 5×1012 G correspond to a range of mass inflow rates 3.2×1014 g s-1magnetic fields and equilibrium periods. The source of the mass inflow is a remnant accretion disk formed as part of the fallback during the supernova explosion. These classes of sources thus represent the alternative pathways for those neutron stars that do not become radio pulsars. For the highest mass inflow rates the propeller action may support enough circumstellar material so that the optical thickness to electron scattering destroys the X-ray beaming, and the rotation period is not observable. These are the radio-quiet neutron stars at the centers of supernova remnants Cas A, Puppis A, RCW 103, and 296.5+10. The statistics and ages of DTNs suggest that sources in the propeller phase are quite common, maybe accounting for the majority of neutron stars formed in supernovae. AXPs are the rare cases whose M history has allowed them to evolve rapidly to the post-propeller accretion phase. The different classes represent alternative pathways rather than consecutive phases of evolution

  9. [Analysis of Cost-effectiveness of screening for breast cancer with conventional mammography, digital and magnetic resonance imaging].

    PubMed

    Peregrino, Antonio Augusto de Freitas; Vianna, Cid Manso de Mello; de Almeida, Carlos Eduardo Veloso; Gonzáles, Gabriela Bittencourt; Machado, Samara Cristina Ferreira; Costa e Silva, Frances Valéria; Rodrigues, Marcus Paulo da Silva

    2012-01-01

    A cost-effectiveness analysis was conducted in screening for breast cancer. The use of conventional mammography, digital and magnetic resonance imaging were compared with natural disease history as a baseline. A Markov model projected breast cancer in a group of 100,000 women for a 30 year period, with screening every two years. Four distinct scenarios were modeled: (1) the natural history of breast cancer, as a baseline, (2) conventional film mammography, (3) digital mammography and (4) magnetic resonance imaging. The costs of the scenarios modeled ranged from R$ 194.216,68 for natural history, to R$ 48.614.338,31, for screening with magnetic resonance imaging. The difference in effectiveness between the interventions ranged from 300 to 78.000 years of life gained in the cohort. The ratio of incremental cost-effectiveness in terms of cost per life-year gains, conventional mammographic screening has produced an extra year for R$ 13.573,07. The ICER of magnetic resonance imaging was R$ 2.904.328,88, compared to no screening. In conclusion, it is more cost-effective to perform the screening with conventional mammography than other technological interventions.

  10. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS STUDY GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES,…

  11. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…

  12. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND…

  13. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, SUPPLEMENTARY…

  14. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS STUDY GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES,…

  15. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND…

  16. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…

  17. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, SUPPLEMENTARY…

  18. Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling.

    PubMed

    Öztürk, Ceyda Nur; Albayrak, Songül

    2016-05-01

    Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.

  19. Imaging modalities in hand osteoarthritis - status and perspectives of conventional radiography, magnetic resonance imaging, and ultrasonography

    PubMed Central

    2011-01-01

    Hand osteoarthritis (OA) is very frequent in middle-aged and older women and men in the general population. Currently, owing to high feasibility and low costs, conventional radiography (CR) is the method of choice for evaluation of hand OA. CR provides a two-dimensional picture of bony changes, such as osteophytes, erosions, cysts, and sclerosis, and joint space narrowing as an indirect measure of cartilage loss. There are several standardized scoring methods for evaluation of radiographic hand OA. The scales have shown similar reliability, validity, and sensitivity to change, and no conclusion about the preferred instrument has been drawn. Patients with hand OA may experience pain, stiffness, and physical disability, but the associations between radiographic findings and clinical symptoms are weak to moderate and vary across studies. OA is, indeed, recognized to involve the whole joint, and modern imaging techniques such as ultrasound (US) and magnetic resonance imaging (MRI) could be valuable tools for better evaluation of hand OA. Standardized scoring methods have been proposed for both modalities. Several studies have examined the validity of US features in hand OA, whereas knowledge of the validity of MRI is more limited. However, both synovitis (detected by either US or MRI) and MRI-defined bone marrow lesions have been associated with pain, indicating that treatment of inflammation is important for pain management in hand OA. Both US and MRI have shown better sensitivity than CR in detection of erosions, and this may indicate that erosive hand OA may be more common than previously thought. PMID:22189142

  20. Neuronavigated vs. conventional repetitive transcranial magnetic stimulation method for virtual lesioning on the Broca's area.

    PubMed

    Kim, Woo Jin; Min, Yu Sun; Yang, Eun Joo; Paik, Nam-Jong

    2014-01-01

    This study was undertaken to test the hypothesis that repetitive transcranial magnetic stimulation (rTMS) using a neuronavigational TMS system (nTMS) to the Broca's area would elicit greater virtual aphasia than rTMS using the conventional TMS method (cTMS). Eighteen healthy subjects underwent a randomized crossover experiment to induce virtual aphasia by targeting the Brodmann area 44 and 45 for nTMS, and F3 of international 10-20 system for cTMS. Reaction time for a picture naming task and the reaction duration for a six-digit number naming task were measured before and after each session of stimulation, and compared between the cTMS and nTMS. The stability of the coil positioning on the target was measured by depicting the variability of talairach coordinates (x, y, z) of the sampled stimulation localizations. At baseline, outcome variables were comparable between cTMS and nTMS. nTMS induced significant delays in reaction time from 944.0 ± 203.4 msec to 1304.6 ± 215.7 msec (p < 0.001) and reaction duration from 1780.5 ± 286.8 msec to 1914.9 ± 295.6 msec (p < 0.001) compared with baseline, whereas cTMS showed no significant changes (p = 0.959 and p = 0.179, respectively). The mean talairach space coordinates of nTMS demonstrated greater consistency of localization of stimulation with the target, and the error range relative to the target was narrower for the nTMS compared with the cTMS (p < 0.001). nTMS leads to more robust neuromodulation of Broca's area, resulting in delayed verbal reaction time as well as more accurate targeting of the intended stimulation location, demonstrating superiority of nTMS over cTMS for therapeutic use of rTMS in neurorehabilitation. © 2013 International Neuromodulation Society.

  1. Antenna development for high field plasma imaging

    SciTech Connect

    Kong, X.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-10-15

    Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) are two microwave nonperturbing plasma visualization techniques that employ millimeter-wave imaging arrays with lens-coupled planar antennas, yielding time-resolved images of temperature (via ECEI) and electron density (via MIR) fluctuations within high temperature magnetic fusion plasmas. A series of new planar antennas have been developed that extend this technology to frequencies as high as 220 GHz for use on high field plasma devices with toroidal fields in excess of 3 T. Antenna designs are presented together with theoretical calculations, simulations, and experimental measurements.

  2. Antenna development for high field plasma imaginga)

    NASA Astrophysics Data System (ADS)

    Kong, X.; Domier, C. W.; Luhmann, N. C.

    2010-10-01

    Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) are two microwave nonperturbing plasma visualization techniques that employ millimeter-wave imaging arrays with lens-coupled planar antennas, yielding time-resolved images of temperature (via ECEI) and electron density (via MIR) fluctuations within high temperature magnetic fusion plasmas. A series of new planar antennas have been developed that extend this technology to frequencies as high as 220 GHz for use on high field plasma devices with toroidal fields in excess of 3 T. Antenna designs are presented together with theoretical calculations, simulations, and experimental measurements.

  3. Antenna development for high field plasma imaging.

    PubMed

    Kong, X; Domier, C W; Luhmann, N C

    2010-10-01

    Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) are two microwave nonperturbing plasma visualization techniques that employ millimeter-wave imaging arrays with lens-coupled planar antennas, yielding time-resolved images of temperature (via ECEI) and electron density (via MIR) fluctuations within high temperature magnetic fusion plasmas. A series of new planar antennas have been developed that extend this technology to frequencies as high as 220 GHz for use on high field plasma devices with toroidal fields in excess of 3 T. Antenna designs are presented together with theoretical calculations, simulations, and experimental measurements.

  4. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    SciTech Connect

    Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.

  5. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    DOE PAGES

    Malik, V.; Goodwill, J.; Mallapragada, S.; ...

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less

  6. Electrically detected and conventional magnetic resonance investigation of surface and bulk states in polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Castro, Fernando A.; Graeff, Carlos F. O.

    2007-04-01

    Electrically detected magnetic resonance (EDMR) and electron paramagnetic resonance (EPR) were used to investigate emeraldine base polyaniline films. The magnetic susceptibility presented a Curie (localized spins)—Pauli (delocalized spins) transition at 240 K, when we also observed a transition in the dependence of the g factor with temperature (T). Peak-to-peak linewidth decreases with increasing temperature, reflecting that motional narrowing limits the hyperfine and dipolar broadening in this polymer. EDMR spectra could only be observed above 250 K in accordance to EPR results. Surface and bulk transport could be separated and their analysis reflected the effect of magnetic interaction with oxygen.

  7. 3D-Printed Permanent Magnets Outperform Conventional Versions, Conserve Rare Materials

    SciTech Connect

    Paranthaman, Parans

    2016-11-01

    Researchers at the Department of Energy’s Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials. The project is part of DOE’s Critical Materials Institute (CMI), which seeks ways to eliminate and reduce reliance on rare earth metals and other materials critical to the success of clean energy technologies.

  8. 3D-Printed Permanent Magnets Outperform Conventional Versions, Conserve Rare Materials

    ScienceCinema

    Paranthaman, Parans

    2016-11-23

    Researchers at the Department of Energy’s Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials. The project is part of DOE’s Critical Materials Institute (CMI), which seeks ways to eliminate and reduce reliance on rare earth metals and other materials critical to the success of clean energy technologies.

  9. Globally conditioned Granger causality in brain-brain and brain-heart interactions: a combined heart rate variability/ultra-high-field (7 T) functional magnetic resonance imaging study.

    PubMed

    Duggento, Andrea; Bianciardi, Marta; Passamonti, Luca; Wald, Lawrence L; Guerrisi, Maria; Barbieri, Riccardo; Toschi, Nicola

    2016-05-13

    The causal, directed interactions between brain regions at rest (brain-brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain-heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain-brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain-brain and brain-heart interactions reflecting

  10. Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys

    NASA Astrophysics Data System (ADS)

    Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.

    2016-05-01

    Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.

  11. High strength kiloampere Bi 2 Sr 2 CaCu 2 O x cables for high-field magnet applications

    SciTech Connect

    Shen, Tengming; Li, Pei; Jiang, Jianyi; Cooley, Lance; Tompkins, John; McRae, Dustin; Walsh, Robert

    2015-04-17

    proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al and high strength of INCONEL X750 for various high-field magnet applications.

  12. Development project of high-field facilities at NRIM

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Kiyoshi, T.; Asano, T.; Itoh, K.; Takeuchi, T.; Wada, H.; Maeda, H.

    1990-06-01

    Several high field facilities are now being developed at the National Research Institute for Metals. The systems of a 80 T class long-pulsed magnet and a 20 T class large-bore superconducting magnet are under construction. The primary design of a 40 T class hybrid magnet with relevant facilities has been worked out as a result of the first stage research and development study.

  13. Optimization of the magnetic horn for the nuSTORM non-conventional neutrino beam using the genetic algorithm

    DOE PAGES

    Liu, A.; Bross, A.; Neuffer, D.

    2015-05-28

    This paper describes the strategy for optimizing the magnetic horn for the neutrinos from STORed Muons (nuSTORM) facility. The nuSTORM magnetic horn is the primary collection device for the secondary particles generated by bombarding a solid target with 120 GeV protons. As a consequence of the non-conventional beamline designed for nuSTORM, the requirements on the horn are different from those for a conventional neutrino beamline. At nuSTORM, muons decay while circulating in the storage ring, and the detectors are placed downstream of the production straight so as to be exposed to the neutrinos from muon decay. nuSTORM aims at preciselymore » measuring the neutrino cross sections, and providing a definitive statement about the existence of sterile neutrinos. The nuSTORM horn aims at focusing the pions into a certain phase space so that more muons from pion decay can be accepted by the decay ring. The paper demonstrates a numerical method that was developed to optimize the horn design to gain higher neutrino flux from the circulating muons. A Genetic Algorithm (GA) was applied to the simultaneous optimization of the two objectives in this study. In conclusion, the application of the technique discussed in this paper is not limited to either the nuSTORM facility or muon based facilities, but can be used for other neutrino facilities that use magnetic horns as collection devices.« less

  14. Optimization of the magnetic horn for the nuSTORM non-conventional neutrino beam using the genetic algorithm

    SciTech Connect

    Liu, A.; Bross, A.; Neuffer, D.

    2015-05-28

    This paper describes the strategy for optimizing the magnetic horn for the neutrinos from STORed Muons (nuSTORM) facility. The nuSTORM magnetic horn is the primary collection device for the secondary particles generated by bombarding a solid target with 120 GeV protons. As a consequence of the non-conventional beamline designed for nuSTORM, the requirements on the horn are different from those for a conventional neutrino beamline. At nuSTORM, muons decay while circulating in the storage ring, and the detectors are placed downstream of the production straight so as to be exposed to the neutrinos from muon decay. nuSTORM aims at precisely measuring the neutrino cross sections, and providing a definitive statement about the existence of sterile neutrinos. The nuSTORM horn aims at focusing the pions into a certain phase space so that more muons from pion decay can be accepted by the decay ring. The paper demonstrates a numerical method that was developed to optimize the horn design to gain higher neutrino flux from the circulating muons. A Genetic Algorithm (GA) was applied to the simultaneous optimization of the two objectives in this study. In conclusion, the application of the technique discussed in this paper is not limited to either the nuSTORM facility or muon based facilities, but can be used for other neutrino facilities that use magnetic horns as collection devices.

  15. Does Breast Magnetic Resonance Imaging Combined With Conventional Imaging Modalities Decrease the Rates of Surgical Margin Involvement and Reoperation?

    PubMed Central

    Lai, Hung-Wen; Chen, Chih-Jung; Lin, Ying-Jen; Chen, Shu-Ling; Wu, Hwa-Koon; Wu, Yu-Ting; Kuo, Shou-Jen; Chen, Shou-Tung; Chen, Dar-Ren

    2016-01-01

    Abstract The objective of this study was to assess whether preoperative breast magnetic resonance imaging (MRI) combined with conventional breast imaging techniques decreases the rates of margin involvement and reexcision. Data on patients who underwent surgery for primary operable breast cancer were obtained from the Changhua Christian Hospital (CCH) breast cancer database. The rate of surgical margin involvement and the rate of reoperation were compared between patients who underwent conventional breast imaging modalities (Group A: mammography and sonography) and those who received breast MRI in addition to conventional imaging (Group B: mammography, sonography, and MRI). A total of 1468 patients were enrolled in this study. Among the 733 patients in Group A, 377 (51.4%) received breast-conserving surgery (BCS) and 356 (48.6%) received mastectomy. Among the 735 patients in Group B, 348 (47.3%) received BCS and 387 (52.7%) received mastectomy. There were no significant differences in operative method between patients who received conventional imaging alone and those that received MRI and conventional imaging (P = 0.13). The rate of detection of pathological multifocal/multicentric breast cancer was markedly higher in patients who received preoperative MRI than in those who underwent conventional imaging alone (14.3% vs 8.6%, P < 0.01). The overall rate of surgical margin involvement was significantly lower in patients who received MRI (5.0%) than in those who received conventional imaging alone (9.0%) (P < 0.01). However, a significant reduction in rate of surgical margin positivity was only observed in patients who received BCS (Group A, 14.6%; Group B, 6.6%, P < 0.01). The overall BCS reoperation rates were 11.7% in the conventional imaging group and 3.2% in the combined MRI group (P < 0.01). There were no significant differences in rate of residual cancer in specimens obtained during reoperation between the 2 preoperative imaging groups

  16. Structural and magnetic properties of conventional and microwave treated Ni-Zr doped barium strontium hexaferrite

    SciTech Connect

    Kanagesan, S.; Jesurani, S.; Velmurugan, R.; Prabu, S.; Kalaivani, T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Saturation magnetization increases whereas the coercivity decreases. Black-Right-Pointing-Pointer The transition from hard phase to soft phase. Black-Right-Pointing-Pointer Therefore, it is used for high-density magnetic recording applications. -- Abstract: M-type hexaferrites of component B{sub 0.5}Sr{sub 0.5}Fe{sub 12-2x}Ni{sub x}Zr{sub x}O{sub 19} were investigated. The XRD patterns show single phase of the magnetoplumbite barium strontium ferrite and no other phases were present. Significant increase in line broadening of the XRD patterns was observed indicating a decrease of grain size. The samples exhibit well defined crystallization; all of them are hexagonal platelet grains. As the substitution level increased x = 0.2-0.8 mol%, the grains are agglomerated and the average diameter increased. The H{sub c} decreases remarkably with increasing Ni and Zr ions content. It was found that the particle size could be effectively decreased and coercivity H{sub c} could easily be controlled by varying the concentration (x) without significantly decreasing saturation magnetization. In particular, Ba{sub 0.5}Sr{sub 0.5}Fe{sub 12-2x}Ni{sub x}Zr{sub x}O{sub 19} with x = 0.2, 0.4, 0.6, 0.8 mol% has suitable magnetic characteristics with particle size small enough for high-density magnetic recording applications.

  17. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons.

    PubMed

    Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-08-31

    This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion.

  18. Comparison of conventional autopsy and magnetic resonance imaging in determining the cause of sudden death in the young

    PubMed Central

    2014-01-01

    Background Sudden death in the young is a tragic complication of a number of medical diseases. There is limited data regarding the utility of post-mortem Magnetic Resonance (MR) imaging and Computer Tomography (CT) scanning in determining the cause of sudden death. This study sought to compare the accuracy of post-mortem cross-sectional imaging (MR and CT) with the conventional autopsy in determining the cause of sudden death in the young. Methods Consecutive patients from 2010 to 2012 (aged 1–35 years) who had sudden death were included. Patients were scanned by CT and 1.5 T MR imaging prior to the conventional autopsy being performed. The primary outcome was diagnostic congruence between imaging and conventional autopsy. Results In 17 patients studied, the mean age at death was 23 ± 11 years, with a male predominance (n = 12; 71%). The most common cause of death was a primary cardiac pathology (n = 8; 47%), including ARVC (24%) and ischemic heart disease (12%). Non-cardiac causes identified included pulmonary embolism (6%), and aortic dissection (6%). MR imaging correctly identified the diagnosis in 12 patients who subsequently had positive findings at conventional autopsy, while the diagnosis in the remaining 5 cases remained unexplained. MR imaging was found to be highly sensitive (100%) with a high negative (100%) and positive (80%) predictive value. Conclusions Dedicated post-mortem MR imaging of the heart and brain is a useful modality in determining the cause of sudden death in children and young adults, particularly in situations where a conventional autopsy cannot be performed for logistic, cultural or personal reasons. PMID:24947895

  19. Differences between conventional and non-conventional MRI techniques in Parkinson’s disease

    PubMed Central

    Baglieri, Annalisa; Marino, Maria Adele; Morabito, Rosa; Di Lorenzo, Giuseppe; Bramanti, Placido; Marino, Silvia

    2013-01-01

    Summary Magnetic resonance imaging (MRI) provides an in vivo assessment of cortical and subcortical regions affected in Parkinson’s disease (PD). This review summarizes the most important conventional and non-conventional MRI techniques applied in this field. Standard neuroimaging techniques have played a marginal role in the diagnosis and follow-up of PD, essentially being used only to discriminate atypical syndromes from PD, to exclude secondary causes such as vascular lesions, and to confirm the absence of specific imaging features found in atypical parkinsonisms. However, non-conventional MRI techniques, i.e. new neuroimaging approaches such as magnetic resonance spectroscopy, diffusion tensor imaging, and functional MRI, may allow the detection of structural, functional and metabolic changes useful not only for differential diagnosis, but also for early diagnosis and outcome and treatment monitoring in PD. In addition, we illustrate the advantages of high-field MRI over lower magnetic fields, highlighting the great potential of advanced neuroimaging techniques. PMID:24125556

  20. Office-based versus high-field strength MRI: diagnostic and technical considerations.

    PubMed

    Sanal, Hatice Tuba; Cardoso, Fabiano; Chen, Lina; Chung, Christine

    2009-03-01

    Low-field office magnetic resonance scanners have been an exciting, innovative, and controversial development in medical imaging. These units boost cost efficiency, with ease of installation and no additional external radiofrequency shielding necessary. The open design enables imaging of those who are claustrophobic and overweight, and offer the potential of dynamic imaging for athletes. Experienced centers have reported that the diagnostic accuracy obtained with office-based systems is satisfactory and comparable with that of high-field systems. However, with the advantages afforded by these convenient units, some significant limitations owing primarily to decreased signal-to-noise ratio of low-field MR imaging and lower image quality compared with conventional high-field magnetic resonance scanners. In this article, we comprehensively reviewed the literature focusing on the diagnostic accuracy of low-field imaging with respect to individual joints and the major pathology that occur in these joints. According to most studies, there are still a number of patients in whom clinical treatment is affected owing to under or misdiagnosis by low-field MR imaging. For clinicians and radiologists who are an integral part of this office-based diagnostic system, it is important to be knowledgeable of the potential limitations of these low-field scanners compared with conventional systems. Specialized training and expertize is required to optimize imaging parameters, and provide quality control and accurate interpretation.

  1. [Conventional and diffusion-weighted magnetic resonance imaging and proton spectroscopy in MELAS].

    PubMed

    Casimiro, Carlos; Martins, Joana; Nunes, César; Parreira, Tiago; Batista, Sónia; Cordeiro, Miguel; Matias, Fernando; Rebelo, Olinda; Freitas, Pedro

    2012-01-01

    MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is a mitochondrial hereditary dysfunction in which the physiopathological mechanism of cerebral lesions is not totally understood as yet. Typically, these lesions are described as having normal to increased apparent diffusion coefficient (ADC), and this has been used to distinguish stroke-like lesions from ischemic lesions. Notwithstanding this, within the last few years, there have been reports of diffusion restriction in stroke-like episodes. Analysis of the diffusion characteristics on serial magnetic resonance imaging (MRI) over a 16 month period, on a patient with MELAS and stroke-like lesions, to investigate the controversial changes of the ADC, reported in the last years. Evaluation of the proton spectroscopy changes in stroke-like lesions and apparently spared brain. We performed four serial magnetic resonance imaging (MRI), including two stroke-like episodes, in a 28-year-old man with MELAS (mitochondrial DNA mutation A3243G). Qualitative analysis of the magnetic resonance images, including the single voxel spectroscopy and ADC maps, with analysis of evolution patterns of the last ones. Both MRI that were performed during those episodes of stroke-like lesion revealed areas of diffusion restriction, coexisting areas of high ADC. During the chronic phase, there was a regression of those changes. Proton spectroscopy showed the presence of lactate and reduction of N-acetyl aspartate peak in stroke-like lesion and the presence of lactate in apparently spared brain. All alterations that were recorded strengthen the view that cytotoxic oedema can occur in stroke-like lesions. Thus, their presence should not weaken the possibility of MELAS, especially if those lesions affect the temporal, parietal and/or occipital lobes, or if they predominantly involve the cortical gray matter, spanning vascular borders and if proton spectroscopy reveals lactate peak in the apparently spared brain.

  2. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.

    2016-12-01

    As a promising candidate system to realize topological superconductivity, the system of a 3D topological insulator (TI) grown on top of the s -wave superconductor has been extensively studied. To access the topological superconductivity experimentally, the 3D TI sample must be thin enough to allow for Cooper pair tunneling to the exposed surface of TI. The use of magnetically ordered dopants to break time-reversal symmetry may allow the surface of a TI to host Majorana fermion, which are believed to be a signature of topological superconductivity. In this work, we study a magnetically-doped thin film TI-superconductor hybrid system. Considering the proximity induced order parameter in thin film of TI, we analyze the gap closing points of the Hamiltonian and draw the phase diagram as a function of relevant parameters: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological superconductivity in thin film TI-superconductor hybrid systems. In addition, we further perform numerical analysis on a TI proximity coupled to an s -wave superconductor and find that, due to the spin-momentum locked nature of the surface states in TI, the induced s -wave order parameter of the surface states persists even at large magnitude of the Zeeman energy.

  3. The Mechanical Design Optimization of a High Field HTS Solenoid

    SciTech Connect

    Lalitha, SL; Gupta, RC

    2015-06-01

    This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.

  4. Analysis of enlarged images using time-of-flight magnetic resonance angiography, computed tomography, and conventional angiography.

    PubMed

    Heo, Yeong-Cheol; Lee, Hae-Kag; Yang, Han-Jun; Cho, Jae-Hwan

    2014-12-01

    This study aimed to assess the accuracy of time-of-flight magnetic resonance angiography, computed tomography, and conventional angiography in depicting the actual length of the blood vessels. Three-dimensional time-of-flight magnetic resonance angiography and computed tomography angiography were performed using a flow phantom model that was 2.11 mm in diameter and had a total area of 0.26 cm(2). After this, volume rendering technique and the maximum intensity projection method as well as two-dimensional digital subtraction angiography and three-dimensional rotational angiography based on conventional angiography were conducted. For three-dimensional time-of-flight magnetic resonance angiography, 8 channel sensitivity encoding (SENSE) head coil for the 3.0 Tesla equipment was used. Fluid was added to the normal saline solution at various rates, such as 11.4, 20.0, 31.4, 40.0, 51.5, 60.0, 71.5, 80.1, 91.5, and 100.1 cm/s using an automatic contrast media injector. Each image was thoroughly examined. After reconstructing the image using the maximum intensity projection method, the length of the conduit in the center of the coronal plane was measured 30 times. After performing computed tomography angiography with the 64-channel CT scanner and 16-channel CT scanner, the images were sent to TeraRecon. Then, the length of the conduit in the center of the coronal plane of each image was measured 30 times after reconstructing the images using volume rendering and maximum intensity projection techniques. For conventional angiography, three-dimensional rotational angiography and two-dimensional digital subtraction angiography were used. Images obtained by three-dimensional rotational angiography were reconstructed and enhanced by 33, 50, and 100 % in the 128 Matrix and the 256 Matrix, respectively on the Xtra Vision workstation. The maximum intensity projection was used for the reconstruction, and the length of the conduit was measured 30 times in the center of the coronal

  5. Feasibility of using high temperature superconducting magnets and conventional magnetic loop antennas to attract or repel objects at the space station

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1989-01-01

    A study was undertaken to see if magnetic forces can be used at the Space Station to attract or repel spacecrafts such as the Orbital Manuevering Vehicle (OMV) or the Orbiter. A large magnet, in the form of a current loop, is assumed to be placed at the Space Station and another one on the spacecraft. The expression for the force between the two dipoles (loops) is obtained. Using a force of 15 Newtons (3.4 pounds) in order to move the spacecraft, the number of ampere-turn needed in the current loops was calculated at various distances between them. The expression for the force of attraction between a current loop and a soft magnetic material was also examined and the number of amp-turn needed to provide a force of one-tenth of a pound at various distances is also calculated. This one tenth of a pound force would be used in a life line system for the retrieval of an adrift crewman or tool at the Space Station. The feasibility of using conventional antenna on the Station and the incoming vehicle for attraction or repulsion was also examined.

  6. Feasibility of using high temperature superconducting magnets and conventional magnetic loop antennas to attract or repel objects at the space station

    NASA Astrophysics Data System (ADS)

    Randhawa, Manjit S.

    1989-02-01

    A study was undertaken to see if magnetic forces can be used at the Space Station to attract or repel spacecrafts such as the Orbital Manuevering Vehicle (OMV) or the Orbiter. A large magnet, in the form of a current loop, is assumed to be placed at the Space Station and another one on the spacecraft. The expression for the force between the two dipoles (loops) is obtained. Using a force of 15 Newtons (3.4 pounds) in order to move the spacecraft, the number of ampere-turn needed in the current loops was calculated at various distances between them. The expression for the force of attraction between a current loop and a soft magnetic material was also examined and the number of amp-turn needed to provide a force of one-tenth of a pound at various distances is also calculated. This one tenth of a pound force would be used in a life line system for the retrieval of an adrift crewman or tool at the Space Station. The feasibility of using conventional antenna on the Station and the incoming vehicle for attraction or repulsion was also examined.

  7. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging.

    PubMed

    García-Lorenzo, Daniel; Francis, Simon; Narayanan, Sridar; Arnold, Douglas L; Collins, D Louis

    2013-01-01

    Magnetic resonance (MR) imaging is often used to characterize and quantify multiple sclerosis (MS) lesions in the brain and spinal cord. The number and volume of lesions have been used to evaluate MS disease burden, to track the progression of the disease and to evaluate the effect of new pharmaceuticals in clinical trials. Accurate identification of MS lesions in MR images is extremely difficult due to variability in lesion location, size and shape in addition to anatomical variability between subjects. Since manual segmentation requires expert knowledge, is time consuming and is subject to intra- and inter-expert variability, many methods have been proposed to automatically segment lesions. The objective of this study was to carry out a systematic review of the literature to evaluate the state of the art in automated multiple sclerosis lesion segmentation. From 1240 hits found initially with PubMed and Google scholar, our selection criteria identified 80 papers that described an automatic lesion segmentation procedure applied to MS. Only 47 of these included quantitative validation with at least one realistic image. In this paper, we describe the complexity of lesion segmentation, classify the automatic MS lesion segmentation methods found, and review the validation methods applied in each of the papers reviewed. Although many segmentation solutions have been proposed, including some with promising results using MRI data obtained on small groups of patients, no single method is widely employed due to performance issues related to the high variability of MS lesion appearance and differences in image acquisition. The challenge remains to provide segmentation techniques that work in all cases regardless of the type of MS, duration of the disease, or MRI protocol, and this within a comprehensive, standardized validation framework. MS lesion segmentation remains an open problem.

  8. Role of magnetic resonance imaging in the planning of breast cancer treatment strategies: comparison with conventional imaging techniques.

    PubMed

    França, Luciana Karla Lira; Bitencourt, Almir Galvão Vieira; Paiva, Hugo Lamartine Souza; Silva, Caroline Baptista; Pereira, Nara Pacheco; Paludo, Jociana; Graziano, Luciana; Guatelli, Camila Souza; de Souza, Juliana Alves; Marques, Elvira Ferreira

    2017-01-01

    To assess the role of magnetic resonance imaging (MRI) in the planning of breast cancer treatment strategies. The study included 160 women diagnosed with breast cancer, who underwent breast MRI for preoperative staging. Using Pearson's correlation coefficient (r), we compared the size of the primary tumor, as determined by MRI, by conventional imaging (mammography and ultrasound), and in the pathological examination (gold standard). The identification of lesions not identified in previous examinations was also evaluated, as was its influence on treatment planning. The mean age of the patients was 52.2 years (range, 30-81 years), and the most common histological type was invasive ductal carcinoma (in 60.6% of the patients). In terms of the tumor size determined, MRI correlated better with the pathological examination than did mammography (r = 0.872 vs. 0.710) or ultrasound (r = 0.836 vs. 0.704). MRI identified additional lesions in 53 patients (33.1%), including malignant lesions in 20 (12.5%), which led to change in the therapeutic planning in 23 patients (14.4%). Breast MRI proved to be more accurate than conventional imaging in determining the dimensions of the main tumor and was able to identify lesions not identified by other methods evaluated, which altered the therapeutic planning in a significant proportion of cases.

  9. High field superconductor development and understanding

    SciTech Connect

    Larbalestier, David C.; Lee, Peter J.; Tarantini, Chiara

    2014-09-28

    All present circular accelerators use superconducting magnets to bend and to focus the particle beams. The most powerful of these machines is the large hadron collider (LHC) at CERN. The main ring dipole magnets of the LHC are made from Nb-Ti but, as the machine is upgraded to higher luminosity, more powerful magnets made of Nb3Sn will be required. Our work addresses how to make the Nb3Sn conductors more effective and more suitable for use in the LHC. The most important property of the superconducting conductor used for an accelerator magnet is that it must have very high critical current density, the property that allows the generation of high magnetic fields in small spaces. Nb3Sn is the original high field superconductor, the material which was discovered in 1960 to allow a high current density in the field of about 9 T. For the high luminosity upgrade of the LHC, much higher current densities in fields of about 12 Tesla will be required. The critical value of the current density is of order 2600 A/mm2 in a field of 12 Tesla. But there are very important secondary factors that complicate the attainment of this critical current density. The first is that the effective filament diameter must be no larger than about 40 µm. The second factor is that 50% of the cross-section of the Nb3Sn conductor that is pure copper must be protected from any poisoning by any Sn leakage through the diffusion barrier that protects the package of niobium and tin from which the Nb3Sn is formed by a high temperature reaction. These three, somewhat conflicting requirements, mean that optimization of the conductor is complex. The work described in this contract report addresses these conflicting requirements. They show that very sophisticated characterizations can uncover the way to satisfy all 3 requirements and they also suggest that the ultimate optimization of Nb3Sn is still not yet in sight

  10. High-field magnetization studies of spin-dimer behaviors on low-dimensional spin systems, LiCu2-xZnxO2 and FeTe3O7X (X = Cl, Br)

    NASA Astrophysics Data System (ADS)

    Her, J. L.; Hsu, H. C.; Matsuda, Y. H.; Kindo, K.; Chou, C. C.; Yang, H. D.; Berger, H.; Chou, F. C.

    2013-03-01

    Following our previous paper reporting enhancement of magnetic moment in powder Mn11Si19 (~30 microns in diameter), we report here on magnetic moment for smaller particles (~5 microns in diameter) at 5 K to 300 K. Apart from the larger particles case, magnetisation curves against field exhibit distinctive features of soft magnetic materials over the whole range of temperatures. We observed a sort of superparamagnetism in non-nanoparticles.

  11. Anatomy, Variants, and Pathologies of the Superior Glenohumeral Ligament: Magnetic Resonance Imaging with Three-Dimensional Volumetric Interpolated Breath-Hold Examination Sequence and Conventional Magnetic Resonance Arthrography

    PubMed Central

    Ogul, Hayri; Karaca, Leyla; Can, Cahit Emre; Pirimoglu, Berhan; Tuncer, Kutsi; Topal, Murat; Okur, Aylin

    2014-01-01

    The purpose of this review was to demonstrate magnetic resonance (MR) arthrography findings of anatomy, variants, and pathologic conditions of the superior glenohumeral ligament (SGHL). This review also demonstrates the applicability of a new MR arthrography sequence in the anterosuperior portion of the glenohumeral joint. The SGHL is a very important anatomical structure in the rotator interval that is responsible for stabilizing the long head of the biceps tendon. Therefore, a torn SGHL can result in pain and instability. Observation of the SGHL is difficult when using conventional MR imaging, because the ligament may be poorly visualized. Shoulder MR arthrography is the most accurately established imaging technique for identifying pathologies of the SGHL and associated structures. The use of three dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences produces thinner image slices and enables a higher in-plane resolution than conventional MR arthrography sequences. Therefore, shoulder MR arthrography using 3D VIBE sequences may contribute to evaluating of the smaller intraarticular structures such as the SGHL. PMID:25053912

  12. Anatomy, variants, and pathologies of the superior glenohumeral ligament: magnetic resonance imaging with three-dimensional volumetric interpolated breath-hold examination sequence and conventional magnetic resonance arthrography.

    PubMed

    Ogul, Hayri; Karaca, Leyla; Can, Cahit Emre; Pirimoglu, Berhan; Tuncer, Kutsi; Topal, Murat; Okur, Aylin; Kantarci, Mecit

    2014-01-01

    The purpose of this review was to demonstrate magnetic resonance (MR) arthrography findings of anatomy, variants, and pathologic conditions of the superior glenohumeral ligament (SGHL). This review also demonstrates the applicability of a new MR arthrography sequence in the anterosuperior portion of the glenohumeral joint. The SGHL is a very important anatomical structure in the rotator interval that is responsible for stabilizing the long head of the biceps tendon. Therefore, a torn SGHL can result in pain and instability. Observation of the SGHL is difficult when using conventional MR imaging, because the ligament may be poorly visualized. Shoulder MR arthrography is the most accurately established imaging technique for identifying pathologies of the SGHL and associated structures. The use of three dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences produces thinner image slices and enables a higher in-plane resolution than conventional MR arthrography sequences. Therefore, shoulder MR arthrography using 3D VIBE sequences may contribute to evaluating of the smaller intraarticular structures such as the SGHL.

  13. Hippocampal subfields at ultra high field MRI: An overview of segmentation and measurement methods.

    PubMed

    Giuliano, Alessia; Donatelli, Graziella; Cosottini, Mirco; Tosetti, Michela; Retico, Alessandra; Fantacci, Maria Evelina

    2017-02-11

    The hippocampus is one of the most interesting and studied brain regions because of its involvement in memory functions and its vulnerability in pathological conditions, such as neurodegenerative processes. In the recent years, the increasing availability of Magnetic Resonance Imaging (MRI) scanners that operate at ultra-high field (UHF), that is, with static magnetic field strength ≥7T, has opened new research perspectives. Compared to conventional high-field scanners, these systems can provide new contrasts, increased signal-to-noise ratio and higher spatial resolution, thus they may improve the visualization of very small structures of the brain, such as the hippocampal subfields. Studying the morphometry of the hippocampus is crucial in neuroimaging research because changes in volume and thickness of hippocampal subregions may be relevant in the early assessment of pathological cognitive decline and Alzheimer's Disease (AD). The present review provides an overview of the manual, semi-automated and fully automated methods that allow the assessment of hippocampal subfield morphometry at UHF MRI, focusing on the different hippocampal segmentation produced. © 2017 Wiley Periodicals, Inc.

  14. A method to assess the loss of a dipole antenna for ultra-high-field MRI.

    PubMed

    Chen, Gang; Collins, Christopher M; Sodickson, Daniel K; Wiggins, Graham C

    2017-06-19

    To describe a new bench measurement based on quality (Q) factors to estimate the coil noise relative to the sample noise of dipole antennas at 7 T. Placing a dipole antenna close to a highly conductive sample surrogate (HCSS) greatly reduces radiation loss, and using QHCSS gives a more accurate estimate of coil resistance than Qunloaded . Instead of using the ratio of unloaded and sample-loaded Q factors, the ratio of HCSS-loaded and sample-loaded Q factors should be used at ultra-high fields. A series of simulations were carried out to analyze the power budget of sample-loaded or HCSS-loaded dipole antennas. Two prototype dipole antennas were also constructed for bench measurements to validate the simulations. Simulations showed that radiation loss was suppressed when the dipole antenna was HCSS-loaded, and coil loss was largely the same as when the dipole was loaded by the sample. Bench measurements also showed good alignment with simulations. Using the ratio QHCSS /Qloaded gives a good estimate of the coil loss for dipole antennas at 7 T, and provides a convenient bench measurement to predict the body noise dominance of dipole antenna designs. The new approach also applies to conventional surface loop coils at ultra-high fields. Magn Reson Med 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. High field MREIT: setup and tissue phantom imaging at 11 T

    PubMed Central

    Sadleir, Rosalind; Grant, Samuel; Zhang, Sung Uk; Oh, Suk Hoon; Lee, Byung Il; Woo, Eung Je

    2008-01-01

    Magnetic resonance electrical impedance tomography (MREIT) has the potential to provide conductivity and current density images with high spatial resolution and accuracy. Recent experimental studies at a field strength of 3 T showed that the spatial resolution of conductivity and current density images may be similar to that of conventional MR images as long as enough current is injected, at least 20 mA when the object being imaged has a size similar to the human head. To apply the MREIT technique to image small conductivity changes using less injection current, we performed MREIT studies at 11 T field strength, where noise levels in measured magnetic flux density data are significantly lower. In this paper we present the experimental results of imaging biological tissues with different conductivity values using MREIT at 11 T. We describe technical difficulties encountered in using high-field MREIT systems and possible solutions. High-field MREIT is suggested as a research tool for obtaining accurate conductivity data from tissue samples and animal subjects. PMID:16636417

  16. "Molecular" MR imaging at high fields.

    PubMed

    Gore, John C; Zu, Zhongliang; Wang, Ping; Li, Hua; Xu, Junzhong; Dortch, Richard; Gochberg, Daniel F

    2017-05-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) have contributed considerably to clinical radiology, and a variety of MR techniques have been developed to evaluate pathological processes as well as normal tissue biology at the cellular and molecular level. However, in comparison to nuclear imaging, MRI has relatively poor sensitivity for detecting true molecular changes or for detecting the presence of targeted contrast agents, though these remain under active development. In recent years very high field (7T and above) MRI systems have been developed for human studies and these provide new opportunities and technical challenges for molecular imaging. We identify 5 types of intrinsic contrast mechanisms that do not require the use of exogenous agents but which can provide molecular and cellular information. We can derive information on tissue composition by (i) imaging different nuclei, especially sodium (ii) exploiting chemical shift differences as in MRS (iii) exploiting specific relaxation mechanisms (iv) exploiting tissue differences in the exchange rates of molecular species such as amides or hydroxyls and (v) differences in susceptibility. The increased signal strength at higher fields enables higher resolution images to be acquired, along with increased sensitivity to detecting subtle effects caused by molecular changes in tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. HIGH FIELD Q-SLOPE AND THE BAKING EFFECT

    SciTech Connect

    Ciovati, Gianluigi

    2009-11-01

    The performance of SRF cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing RF losses (high-field Q-slope), in the absence of field emission, which are often mitigated by a low temperature (100-140 °C, 12-48h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated at high temperature in the presence of a small partial pressure of nitrogen. Improvement of the cavity performances have been obtained, while surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

  18. Prospective comparison of conventional radiography, low-dose computed tomography and magnetic resonance imaging in monoclonal gammopathies.

    PubMed

    Minarik, Jiri; Krhovska, Petra; Hrbek, Jan; Pika, Tomas; Bacovsky, Jaroslav; Herman, Miroslav; Scudla, Vlastimil

    2016-06-01

    We carried out a prospective study in order to identify the best imaging approach for patients with newly diagnosed multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS). We assessed the extent of myeloma bone disease (MBD) in 112 individuals - 84 patients with MM and 28 individuals with MGUS. For the detection of osteolytic involvement we used whole-body magnetic resonance imaging (WB-MRI), low-dose computed tomography (LD-CT) and conventional radiography (CR). Each method assessed the presence of osteolytic involvement, compressive fractures and extramedullary involvement in the following regions: skull, spine and chest, pelvis and humerus and femur. We compared the difference in the number and extent of osteolytic involvement, especially the findings in CR negative patients. Conventional radiography showed no superiority in any of the evaluated regions, and failed in the detection of extramedullary massess and spine involvement. WB-MRI was best at imaging the spine including extramedullary involvement, however, detection of osteolytic lesions of the skull was limited in comparison with both CR and LD-CT. Both WB-MRI and LD-CT were comparable in imaging of lesions of pelvis, humerus, femur and the presence of extramedullary masses. LD-CT showed superiority in detection of skull lesions but lower sensitivity in spine compared to WB-MRI. Our results confirm that relying solely on CR in the diagnostics of MM is insufficient. We suggest that the most suitable method for primary assessment of osteolytic involvement in monoclonal gammopathies should include either whole-body MRI together with CR of the skull or, with an equivalent sensitivity, whole body LD-CT.

  19. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  20. Low-field MRI can be more sensitive than high-field MRI

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Truong, Milton L.; Chekmenev, Eduard Y.

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than those at 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters.

  1. Low-field MRI can be more sensitive than high-field MRI

    PubMed Central

    Coffey, Aaron M.; Truong, Milton

    2014-01-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization’ schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters. PMID:24239701

  2. Inverse field-based approach for simultaneous B₁ mapping at high fields - a phantom based study.

    PubMed

    Jin, Jin; Liu, Feng; Zuo, Zhentao; Xue, Rong; Li, Mingyan; Li, Yu; Weber, Ewald; Crozier, Stuart

    2012-04-01

    Based on computational electromagnetics and multi-level optimization, an inverse approach of attaining accurate mapping of both transmit and receive sensitivity of radiofrequency coils is presented. This paper extends our previous study of inverse methods of receptivity mapping at low fields, to allow accurate mapping of RF magnetic fields (B(1)) for high-field applications. Accurate receive sensitivity mapping is essential to image domain parallel imaging methods, such as sensitivity encoding (SENSE), to reconstruct high quality images. Accurate transmit sensitivity mapping will facilitate RF-shimming and parallel transmission techniques that directly address the RF inhomogeneity issue, arguably the most challenging issue of high-field magnetic resonance imaging (MRI). The inverse field-based approach proposed herein is based on computational electromagnetics and iterative optimization. It fits an experimental image to the numerically calculated signal intensity by iteratively optimizing the coil-subject geometry to better resemble the experiments. Accurate transmit and receive sensitivities are derived as intermediate results of the optimization process. The method is validated by imaging studies using homogeneous saline phantom at 7T. A simulation study at 300MHz demonstrates that the proposed method is able to obtain receptivity mapping with errors an order of magnitude less than that of the conventional method. The more accurate receptivity mapping and simultaneously obtained transmit sensitivity mapping could enable artefact-reduced and intensity-corrected image reconstructions. It is hoped that by providing an approach to the accurate mapping of both transmit and receive sensitivity, the proposed method will facilitate a range of applications in high-field MRI and parallel imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Magnetic resonance urography enhanced by gadolinium and diuretics: a comparison with conventional urography in diagnosing the cause of ureteric obstruction.

    PubMed

    Jung, P; Brauers, A; Nolte-Ernsting, C A; Jakse, G; Günther, R W

    2000-12-01

    To compare the ability of magnetic resonance urography (MRU), enhanced using gadolinium and frusemide diuresis, and conventional intravenous urography (IVU) to diagnose the cause of ureteric obstruction. The study included 82 patients in whom IVU showed or suggested obstruction and who also underwent MRU. The images from both methods were interpreted by various investigators independently; two evaluated the IVU and two others the MRU, the latter being unaware of the diagnosis after IVU. If the diagnosis remained unclear, further investigations (e.g. computed tomography, retrograde pyelography or ureteroscopy) were conducted. The diagnoses were ureteric calculi in 72 patients, ureteric tumours in eight and extra-ureteric tumours in two. In those with urolithiasis, the diagnosis was correct with IVU in 49 patients and with MRU in 64. The diagnosis in this group was incorrect with MRU in only two patients. The main reason for the failure of IVU was absent contrast medium excretion. Three of eight patients with ureteric tumours were correctly diagnosed by IVU but in three patients the diagnosis was incorrect. MRU correctly diagnosed seven of the eight patients in this group, with no false diagnosis. IVU is currently likely to remain the standard procedure for imaging the upper urinary tract, but this study shows the potential of MRU when enhanced with gadolinium and frusemide. MRU may be helpful if there is a dilated system with no excretory function, in pregnant women, in children and in those with contrast medium allergy.

  4. Iron free permanent magnet systems for charged particle beam optics

    SciTech Connect

    Lund, S.M.; Halbach, K.

    1995-09-03

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability.

  5. Left ventricular filling patterns in patients with previous myocardial infarction measured by conventional cine cardiac magnetic resonance.

    PubMed

    Rodríguez-Granillo, Gastón A; Mejía-Campillo, Marlon; Rosales, Miguel A; Bolzán, Gabriel; Ingino, Carlos; López, Federico; Degrossi, Elina; Lylyk, Pedro

    2012-04-01

    To explore left ventricular filling patterns in patients with a history of previous myocardial infarction (MI) using time-volume curves obtained from conventional cine-cardiac magnetic resonance (CMR) examinations. Consecutive patients with a history of previous MI who were referred for CMR evaluation constituted the study population, and a consecutive cohort of sex and age-matched patients with a normal CMR constituted the control group. The following CMR diastolic parameters were evaluated: peak filling rate (PFR), time to PFR (tPFR), normalised PFR adjusted for diastolic volume at PFR (nPFR), and percent RR interval between end systole and PFR. Fifty patients were included, 25 with a history of previous MI and 25 control. The mean age was 59.6 ± 13.9 years and 27 (54%) were male. Within the control group, age was significantly related to PFR (r = -0.53, p = 0.007), whereas among patients with previous MI age was not related to PFR (r = -0.16, p = 0.44). PFR (252.4 ± 96.7 ml/s vs. 316.0 ± 126.4 ml/s, p = 0.05) and nPFR (1.6 ± 1.2 vs. 3.3 ± 1.5, p < 0.001) were significantly lower in patients with previous MI, whereas no significant differences were detected regarding tPFR (143.0 ± 67.5 ms vs. 176.2 ± 83.9 ms, p = 0.13) and % RR to PFR (18.1 ± 9.7% vs. 20.6 ± 12.2%, p = 0.44). MI size was related to LV ejection fraction (r = -0.76, p < 0.001), PFR (r = -0.40, p = 0.004), nPFR (r = -0.52, p < 0.001) and left atrium area (r = 0.40, p = 0.004). Patients at the lowest PFR quartile (<200 ml/s) showed a larger MI size (Q1 26.5 ± 25.5%, Q2 15.5 ± 20.9%, Q3 6.3 ± 12.4%, Q4 8.8 ± 14.1%, p = 0.04). At multivariate analysis, MI size was the only independent predictor of the lowest PFR (p = 0.017). Infarct size has an impact on LV filling profiles, as assessed by conventional cine CMR without additional specific pulse sequences.

  6. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    SciTech Connect

    Ellens, N; Farahani, K

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  7. Detection of bone erosion in early rheumatoid arthritis: ultrasonography and conventional radiography versus non-contrast magnetic resonance imaging.

    PubMed

    Rahmani, Maryam; Chegini, Hosein; Najafizadeh, Seyed Reza; Azimi, Mohammad; Habibollahi, Peiman; Shakiba, Madjid

    2010-08-01

    Nowadays, there is a trend toward early diagnosis and treatment of rheumatoid arthritis (RA) especially in patients with early signs of bone erosion which can be detected by magnetic resonance imaging (MRI). The aim of following study is to compare the sensitivity and specificity of ultrasonography (US) and conventional radiography (CR) compared to MRI for early detection of bone erosion in RA patients. In 12 patients with RA diagnosis, 120 first to fifth metacarpophalangeal joints and 96 second to fifth proximal interphalangeal joints were examined. Non-contrast MRI, US and CR were performed for bone erosion evaluation. For further analysis, the patients were divided in two equal groups according to disease activity score (DAS28). The overall sensitivity and specificity of US compared to MRI in detecting bone erosion were 0.63 and 0.98, respectively with a considerable agreement (kappa = 0.68, p < 0.001). Sensitivity and specificity of CR compared to MRI in detecting bone erosion were 0.13 and 1.00, respectively (kappa = 0.20, p < 0.001). In patients with more active disease, the sensitivity and specificity were 0.67 and 0.99 (kappa = 0.74, p < 0.001) compared to 0.59 and 0.97 (kappa = 0.61, p < 0.001) for the rest of patients according to DAS28. Conclusively, these findings reveal an acceptable agreement between US and MRI for detection of bone erosion in patients with early RA but not CR. US might be considered as a valuable tool for early detection of bone erosion especially when MRI is not available or affordable. Besides, it seems the US could be more reliable when the disease is more active.

  8. Slow pathway radiofrequency ablation in patients with AVNRT: junctional rhythm is less frequent during magnetic navigation ablation than with the conventional technique.

    PubMed

    Ricard, Philippe; Latcu, Decebal Gabriel; Yaïci, Khelil; Zarqane, Naima; Saoudi, Nadir

    2010-01-01

    The occurrence of accelerated junctional rhythm (JR) during radiofrequency ablation of the slow pathway in patients with atrioventricular nodal reentrant tachycardia (AVNRT) is frequent. The aim of the present study was to compare the occurrence of JR during magnetic remote catheter ablation to the conventional manual ablation. Twenty six patients (males: seven; age: 51 + or - 15 years) underwent slow pathway ablation with magnetic navigation (MN) system (Niobe, Stereotaxis Inc., St. Louis, MO, USA) and were compared to a control group of 11 patients (males: three; age: 53 + or - 16 years) treated with conventional manual ablation. A 4-mm nonirrigated tip catheter was used in both groups with a maximum of 30 W and 60 degrees C. Acute success was obtained in all patients. In the MN group, three patients out of 24 had no junctional beat (JB) at all and seven patients had 10 or less JB. In contrast, in the conventional group no patient had less than 10 JB. The mean number of JB in the MN group was 66 + or - 94.9 (0-410) and 200 + or - 243.1 (43-914) in the control group (P = 0.019). In the MN group one patient had a first-degree atrioventricular block. No other complication occurred. Magnetic remote catheter ablation of AVNRT is effective and is associated with less JB than the manual conventional technique. Therefore, JB may not be considered as a mandatory indicator for successful AVNRT ablation with MN system.

  9. High field superconductor development and understanding project, Final Report

    SciTech Connect

    Larbalestier, David C.; Lee, Peter J.

    2009-07-15

    Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

  10. Theory of charge transport in diffusive normal metal/conventional superconductor point contacts in the presence of magnetic impurity

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Tanaka, Y.; Golubov, A. A.; Inoue, J.; Asano, Y.

    2006-01-01

    Charge transport in the diffusive normal metal/insulator/s-wave superconductor junctions is studied in the presence of the magnetic impurity for various situations, where we have used the Usadel equation with Nazarov's generalized boundary condition. It is revealed that the magnetic impurity scattering suppresses the proximity effect. Wide variety of the line shapes of the tunneling conductance is obtained. Only for high transparent junction the normalized conductance around zero voltage can be enhanced by the magnetic impurity scattering.

  11. Thermal effects of high-field (1.5 tesla) magnetic resonance imaging of the spine. Clinical experience above a specific absorption rate of 0.4 W/kg.

    PubMed

    Shellock, F G; Schaefer, D J; Grundfest, W; Crues, J V

    1986-01-01

    Current safety guidelines recommend limiting the exposure to radiofrequency (RF) radiation used for clinical magnetic resonance imaging to a whole body average specific absorption rate (SAR) of 0.4 W/kg. Since it may be desirable to image with SARs that exceed this level during MRI of the spine, we evaluated the thermal responses associated with these procedures. Body and skin temperatures were determined in 25 patients immediately before and after MRI. Since the eye is particularly susceptible to thermal injury, corneal temperature was also measured. High-resolution thermography was performed on three subjects to evaluate the surface heating pattern and identify potential thermal 'hot spots'. A 1.5 tesla/64 MHz MRI system with quadrature transmission and reception was used iN this study. The whole body average specific absorption rate ranged from 0.5 to 1.3 W/kg. Ambient conditions were room temperature 20-24 degrees C and relative humidity between 40 and 50 per cent. There was a slight but statistically significant (p less than 0.01) increase in body temperature after MRI (36.5 +/- 0.4 to 36.7 +/- 0.4 degrees C). Temperatures of the hand (30.4 +/- 1.4 to 31.2 +/- 1.0 degrees C), positioning isocenter (32.1 +/- 0.6 to 32.9 +/- 0.5), and cornea (32.5 +/- 0.6 to 32.9 +/- 0.5 degrees C) also increased a statistically significant amount. Thermographic imaging revealed normal heating patterns with no surface 'hot spots'. We conclude that the temperature changes associated with MRI of the spine at the SARs we studied were well below known thresholds for adverse effects and do not appear to be harmful to patients.

  12. Comparison of magnetic wire navigation with the conventional wire technique for percutaneous coronary intervention of chronic total occlusions: a randomised, controlled study.

    PubMed

    Roth, Christian; Berger, Rudolf; Scherzer, Sabine; Krenn, Lisa; Gangl, Clemens; Dalos, Daniel; Delle-Karth, Georg; Neunteufl, Thomas

    2016-08-01

    Wire crossing of a chronic total coronary occlusion (CTO) is time consuming and limited by the amount of contrast agent and time of radiation exposure. Magnetic wire navigation (MWN) might accelerate wire crossing by maintaining a coaxial vessel orientation. This study compares MWN with the conventional approach for recanalization of CTOs. Forty symptomatic patients with CTO were randomised to MWN (n = 20) or conventional approach (n = 20) for antegrade crossing of the occlusion. In the intention-to-treat analysis, MWN showed a shorter crossing time (412 versus 1131 s; p = 0.001), and, consequently, lower usage of contrast agent (primary endpoint 42 versus 116 ml; p = 0.01), and lower radiation exposure (dose-area product: 29 versus 80 Gy*cm(2); p = 0.002) during wire crossing compared to the conventional approach. Accordingly, in the per-protocol analysis, the wire-crossing rate was, in trend, higher using the conventional approach (17 of 31) compared to MWN (9 of 28; p = 0.08). The use of MWN for revascularisation of CTOs is feasible and reduces crossing time, use of contrast agent, and radiation exposure. However, due to a broader selection of wires, the conventional approach enables wire crossing in cases failed by MWN and seems to be the more successful choice.

  13. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  14. Absence of abnormal vessels in the subarachnoid space on conventional magnetic resonance imaging in patients with spinal dural arteriovenous fistulas.

    PubMed

    Miller, Timothy R; Eskey, Clifford J; Mamourian, Alexander C

    2012-05-01

    Spinal dural arteriovenous fistula (DAVF) is an uncommon condition that can be difficult to diagnose. This often results in misdiagnosis and treatment delay. Although conventional MRI plays an important role in the initial screening for the disease, the typical MRI findings may be absent. In this article, the authors present a series of 4 cases involving patients with angiographically proven spinal DAVFs who demonstrated cord T2 prolongation on conventional MRI but without abnormal subarachnoid flow voids or enhancement. These cases suggest that spinal DAVF cannot be excluded in symptomatic patients with cord edema based on conventional MRI findings alone. Dynamic Gd-enhanced MR angiography (MRA) was successful in demonstrating abnormal spinal vasculature in all 4 cases. This limited experience provides support for the role of spinal MRA in patients with abnormal cord signal and symptoms suggestive of DAVF even when typical MRI findings of a DAVF are absent.

  15. Scoping study for compact high-field superconducting net energy tokamaks

    NASA Astrophysics Data System (ADS)

    Mumgaard, R. T.; Greenwald, M.; Freidberg, J. P.; Wolfe, S. M.; Hartwig, Z. S.; Brunner, D.; Sorbom, B. N.; Whyte, D. G.

    2016-10-01

    The continued development and commercialization of high temperature superconductors (HTS) may enable the construction of compact, net-energy tokamaks. HTS, in contrast to present generation low temperature superconductors, offers improved performance in high magnetic fields, higher current density, stronger materials, higher temperature operation, and simplified assembly. Using HTS along with community-consensus confinement physics (H98 =1) may make it possible to achieve net-energy (Q>1) or burning plasma conditions (Q>5) in DIII-D or ASDEX-U sized, conventional aspect ratio tokamaks. It is shown that, by operating at high plasma current and density enabled by the high magnetic field (B>10T), the required triple products may be achieved at plasma volumes under 20m3, major radii under 2m, with external heating powers under 40MW. This is at the scale of existing devices operated by laboratories, universities and companies. The trade-offs in the core heating, divertor heat exhaust, sustainment, stability, and proximity to known plasma physics limits are discussed in the context of the present tokamak experience base and the requirements for future devices. The resulting HTS-based design space is compared and contrasted to previous studies on high-field copper experiments with similar missions. The physics exploration conducted with such HTS devices could decrease the real and perceived risks of ITER exploitation, and aid in quickly developing commercially-applicable tokamak pilot plants and reactors.

  16. Traveling Internal Plane-wave Synthesis (TIPS) for uniform B1 in high field MRI.

    PubMed

    Anderson, Adam W

    2017-02-01

    A new target-field approach to generating uniform radio frequency (RF) fields within the human body for high field MRI is described. The method involves producing a set of external fields which, after interaction with a dielectric object, superimpose to produce a traveling plane wave, exposing all spins to the same RF amplitude (B1) over a cycle of the harmonic field. Conceptually this is similar to conventional RF shimming, but uses a different RF source design, input data, and objective function. The method requires a detailed knowledge of the coupling between exterior field modes, produced by an array of RF sources, and field modes within the body. Given an estimate of the coupling matrix, the linear superposition of external modes that produces a desired internal target field can be determined. The new method is termed Traveling Internal Plane-wave Synthesis (TIPS). A simple design of a coil array is described that can, in principle, generate the required field modes. Simulations demonstrate that radio frequency magnetic fields of nearly uniform (<1% variation) magnitude can be produced within dielectric objects larger than a wavelength in size. If the dielectric medium has non-zero conductivity, traveling waves are attenuated as they traverse the object, but field uniformity within planar slices is preserved. For general 3D imaging, a superposition of plane waves can provide field focusing to balance conductive losses, thereby achieving nearly uniform-magnitude B1+ magnetic fields over a volume of interest.

  17. Does Breast Magnetic Resonance Imaging Combined With Conventional Imaging Modalities Decrease the Rates of Surgical Margin Involvement and Reoperation?: A Case-Control Comparative Analysis.

    PubMed

    Lai, Hung-Wen; Chen, Chih-Jung; Lin, Ying-Jen; Chen, Shu-Ling; Wu, Hwa-Koon; Wu, Yu-Ting; Kuo, Shou-Jen; Chen, Shou-Tung; Chen, Dar-Ren

    2016-05-01

    The objective of this study was to assess whether preoperative breast magnetic resonance imaging (MRI) combined with conventional breast imaging techniques decreases the rates of margin involvement and reexcision.Data on patients who underwent surgery for primary operable breast cancer were obtained from the Changhua Christian Hospital (CCH) breast cancer database. The rate of surgical margin involvement and the rate of reoperation were compared between patients who underwent conventional breast imaging modalities (Group A: mammography and sonography) and those who received breast MRI in addition to conventional imaging (Group B: mammography, sonography, and MRI).A total of 1468 patients were enrolled in this study. Among the 733 patients in Group A, 377 (51.4%) received breast-conserving surgery (BCS) and 356 (48.6%) received mastectomy. Among the 735 patients in Group B, 348 (47.3%) received BCS and 387 (52.7%) received mastectomy. There were no significant differences in operative method between patients who received conventional imaging alone and those that received MRI and conventional imaging (P = 0.13). The rate of detection of pathological multifocal/multicentric breast cancer was markedly higher in patients who received preoperative MRI than in those who underwent conventional imaging alone (14.3% vs 8.6%, P < 0.01). The overall rate of surgical margin involvement was significantly lower in patients who received MRI (5.0%) than in those who received conventional imaging alone (9.0%) (P < 0.01). However, a significant reduction in rate of surgical margin positivity was only observed in patients who received BCS (Group A, 14.6%; Group B, 6.6%, P < 0.01). The overall BCS reoperation rates were 11.7% in the conventional imaging group and 3.2% in the combined MRI group (P < 0.01). There were no significant differences in rate of residual cancer in specimens obtained during reoperation between the 2 preoperative imaging groups (Group A, 50

  18. High-field dipoles for future accelerators

    SciTech Connect

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  19. Background field coils for the High Field Test Facility

    SciTech Connect

    Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

    1980-09-22

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

  20. Efficacy of magnetic capture in comparison with conventional DNA isolation in a survey of Toxoplasma gondii in wild house mice.

    PubMed

    Juránková, Jana; Hůrková-Hofmannová, Lada; Volf, Jiří; Baláž, Vojtech; Piálek, Jaroslav

    2014-02-01

    Toxoplasma gondii is a zoonotic parasite with a world-wide distribution. House mice (Mus musculus) play an important role as a reservoir host in the parasite life cycle. However, their detection in mouse brain is limited because the host potentially harbours only a few tissue cysts. In order to improve the diagnosis, we tested a novel protocol for T. gondii detection in mice and compared this technique to a standard PCR-based protocol using a commercial kit for DNA isolation. Efficacy of magnetic capture for isolation of T. gondii DNA from whole host brains was tested in brain samples of laboratory mice spiked with 1 up to 10(4) tachyzoites. Real-time PCR revealed that even 1-5 tachyzoites can be detected after magnetic capture. Also this method is suitable to quantify parasite numbers in mouse brains with more than 10 tachyzoite equivalents. To assess the two techniques in wild mice, we employed a dataset consisting of 243 individuals. The prevalence of T. gondii detected by magnetic capture and qPCR and by commercial isolation and PCR was 1.2% and 0%, respectively. The magnetic capture and quantitative PCR seems to be a highly sensitive and specific diagnostic method for both laboratory research and wild population surveys.

  1. Using frequency-labeled exchange transfer to separate out conventional magnetization transfer effects from exchange transfer effects when detecting ParaCEST agents.

    PubMed

    Lin, Chien-Yuan; Yadav, Nirbhay N; Friedman, Joshua I; Ratnakar, James; Sherry, A Dean; van Zijl, Peter C M

    2012-04-01

    Paramagnetic chemical exchange saturation transfer agents combine the benefits of a large chemical shift difference and a fast exchange rate for sensitive MRI detection. However, the in vivo detection of these agents is hampered by the need for high B(1) fields to allow sufficiently fast saturation before exchange occurs, thus causing interference of large magnetization transfer effects from semisolid macromolecules. A recently developed approach named frequency-labeled exchange transfer utilizes excitation pulses instead of saturation pulses for detecting the exchanging protons. Using solutions and gel phantoms containing the europium (III) complex of DOTA tetraglycinate (EuDOTA-(gly)(-) (4) ), it is shown that frequency-labeled exchange transfer allows the separation of chemical exchange effects and magnetization transfer (MT) effects in the time domain, therefore allowing the study of the individual resonance of rapidly exchanging water molecules (k(ex) >10(4) s(-1) ) without interference from conventional broad-band MT.

  2. Microwave anneal effect on magnetic properties of Ni 0.6Zn 0.4Fe 2O 4 nano-particles prepared by conventional hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongzhu; Xie, Yanyu; Wang, Peihong; Ma, Yongqing; Jin, Shaowei; Liu, Xiansong

    2011-12-01

    Ni0.6Zn0.4Fe2O4 ferrite nano-particles with a crystallite size of about 20 nm were prepared by the conventional hydrothermal method, followed by annealing in a microwave oven for 7.5-15 min. The microstructure and magnetic properties of the samples were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The microwave annealing process has slight effect on the morphology and size of Ni0.6Zn0.4Fe2O4 ferrite nano-particles. However it reduces the lattice parameter and enhances the densification of the particles, and then greatly increases the saturation magnetization (50-56 emu/g) and coercive force of the samples as compared to the non-annealing condition. The microwave annealing process is an effective way to rapidly synthesize high performance ferrite nano-particle.

  3. A Three-Pronged Attack To Investigate the Electronic Structure of a Family of Ferromagnetic Fe4Ln2 Cyclic Coordination Clusters: A Combined Magnetic Susceptibility, High-Field/High-Frequency Electron Paramagnetic Resonance, and (57)Fe Mössbauer Study.

    PubMed

    Schmidt, Sebastian F M; Koo, Changhyun; Mereacre, Valeriu; Park, Jaena; Heermann, Dieter W; Kataev, Vladislav; Anson, Christopher E; Prodius, Denis; Novitchi, Ghenadie; Klingeler, Rüdiger; Powell, Annie K

    2017-05-01

    We present the synthesis, structure, magnetic properties, as well as the Mössbauer and electron paramagnetic resonance studies of a ring-shaped [Fe(III)4Ln(III)2(Htea)4(μ-N3)4(N3)3(piv)3] (Ln = Y 1, Gd 2, Tb 3, Dy 4, Ho 5, Er, 6) coordination cluster. The Dy, Tb, and Ho analogues show blocking of the magnetization at low temperatures without applied fields. The anisotropy of the 3d ion and the exchange interaction between 3d and 4f ions in Fe4Ln2 complexes are unambiguously determined by high-field/high-frequency electron paramagnetic resonance measurements at low temperature. Ferromagnetic exchange interaction JFe-Ln is found which decreases upon variation of the Ln ions to larger atomic numbers. This dependence is similar to the behavior shown in the effective barrier values of complexes 3-5. Further information about the anisotropy of the Ln(3+) ions was gathered with (57)Fe Mössbauer spectroscopy, and the combination of these methods provides detailed information regarding the electronic structure of these complexes.

  4. Nonlinear theory of pattern formation in ferrofluid films at high field strengths.

    PubMed

    Richardi, J; Pileni, M P

    2004-01-01

    When a magnetic field is applied to a thin layer of a suspension of magnetic nanoparticles (ferrofluid), the formation of labyrinthine and hexagonal patterns is observed. We introduce a theory to describe ferrofluid patterns at high field, where a nonlinear relationship between field and magnetization is expected. The computational difficulties due to the use of a nonlinear magnetization curve are solved by a reformulation of the magnetic energy equation. The evolution of the pattern size at intermediate and very high fields can be understood by an analysis of limiting cases of the magnetization curve. In particular, at a very high field the pattern size reaches a constant saturation value which has been recently confirmed by experiments. The field for the onset of a nonlinear behavior is shifted to higher field strength due to a demagnetization effect. This can partially explain the ability of linear approaches to reproduce experimental data even at a high field. Finally, the impact of the nonlinearity of the magnetization curve on the transition between hexagonal and labyrinthine patterns is discussed.

  5. [Chiasmal radionecrosis after irradiation of the sella turcica using a conventional dosage. Contribution of magnetic resonance imaging].

    PubMed

    Croisile, B; Piperno, D; Bascoulergue, Y; Romestaing, P; Trillet, M; Aimard, G; Perrin-Fayolle, M

    1990-01-01

    A 47 year-old man developed rapid visual loss, visual field defects and memory disturbances after radiotherapy with conventional doses for a pituitary metastasis from a renal carcinoma. CT and MRI did not show recurrent tumour, pituitary apoplexy or empty sella. Eventually, T2-weighted MRI images showed abnormal high signals in the optic chiasm, the left mesial temporal lobe and the right inferior frontal lobe, supporting the diagnosis of delayed radionecrosis. The role of chemotherapy associated with radiotherapy is discussed.

  6. Cavity resonator coil for high field magnetic resonance imaging.

    PubMed

    Solis, S E; Tomasi, D; Rodriguez, A O

    2007-01-01

    A variant coil of the high frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. This coil design is similar to the popular birdcage coil but it has the advantage that it can be easily built following the physical principles of the cavity resonators [1]. The equivalent circuit approach was used to compute the resonant frequency of this coil design, and compared the results with those frequency values obtained with theory. A transceiver coil composed of 4 cavities with a rod length of 4.5 cm, and a resonant frequency of 170.29 MHz was built. Phantom images were then acquired to test its viability using standard imaging sequences. The theory facilitates its development for high frequency MRI applications of animal models.

  7. Post mortem magnetic resonance imaging in the fetus, infant and child: A comparative study with conventional autopsy (MaRIAS Protocol)

    PubMed Central

    2011-01-01

    Background Minimally invasive autopsy by post mortem magnetic resonance (MR) imaging has been suggested as an alternative for conventional autopsy in view of the declining consented autopsy rates. However, large prospective studies rigorously evaluating the accuracy of such an approach are lacking. We intend to compare the accuracy of a minimally invasive autopsy approach using post mortem MR imaging with that of conventional autopsy in fetuses, newborns and children for detection of the major pathological abnormalities and/or determination of the cause of death. Methods/Design We recruited 400 consecutive fetuses, newborns and children referred for conventional autopsy to one of the two participating hospitals over a three-year period. We acquired whole body post mortem MR imaging using a 1.5 T MR scanner (Avanto, Siemens Medical Solutions, Enlargen, Germany) prior to autopsy. The total scan time varied between 90 to 120 minutes. Each MR image was reported by a team of four specialist radiologists (paediatric neuroradiology, paediatric cardiology, paediatric chest & abdominal imaging and musculoskeletal imaging), blinded to the autopsy data. Conventional autopsy was performed according to the guidelines set down by the Royal College of Pathologists (UK) by experienced paediatric or perinatal pathologists, blinded to the MR data. The MR and autopsy data were recorded using predefined categorical variables by an independent person. Discussion Using conventional post mortem as the gold standard comparator, the MR images will be assessed for accuracy of the anatomical morphology, associated lesions, clinical usefulness of information and determination of the cause of death. The sensitivities, specificities and predictive values of post mortem MR alone and MR imaging along with other minimally invasive post mortem investigations will be presented for the final diagnosis, broad diagnostic categories and for specific diagnosis of each system. Clinical Trial Registration

  8. Comparison of conventional magnetic resonance imaging and nonenhanced three dimensional time-of-flight magnetic resonance angiography findings between dogs with meningioma and dogs with intracranial histiocytic sarcoma: 19 cases (2010-2014).

    PubMed

    Ishikawa, Chieko; Ito, Daisuke; Kitagawa, Masato; Watari, Toshihiro

    2016-05-15

    OBJECTIVE To compare conventional MRI and nonenhanced 3-D time-of-flight (TOF) magnetic resonance angiography (MRA) findings between dogs with meningioma and dogs with intracranial histiocytic sarcoma (IHS). DESIGN Retrospective case series. ANIMALS 14 dogs with meningioma and 5 dogs with IHS. PROCEDURES Medical records of dogs with meningioma or IHS that were examined at a tertiary veterinary hospital from 2010 through 2014 and underwent 3-D TOF MRA in conjunction with conventional MRI were reviewed. Findings for conventional MRI and 3-D TOF MRA were compared between the 2 groups of dogs to evaluate whether there were any characteristics that could be used to differentiate meningioma from IHS. RESULTS Tumor type was significantly associated with signal intensity on conventional T2-weighted and fluid-attenuated inversion recovery MRI images; most meningiomas were hyperintense, and most IHSs were isointense or hypointense on those images. Tumor type was not associated with signal uniformity, tumor location, tumor origin, or the presence of edema, midline shift, or brain herniation. On MRA, blood vessels adjacent to the tumor were identified and characterized for 9 of 14 dogs with meningioma and all 5 dogs with IHS. Vessels adjacent to meningiomas were displaced in 8 of 9 dogs, whereas vessels adjacent to IHSs were not displaced. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated nonenhanced 3-D TOF MRA findings provided additional information that can be assessed in conjunction with conventional MRI findings to help differentiate meningiomas from IHSs in dogs.

  9. Localisation of the central sulcus region in glioma patients with three-dimensional fluid-attenuated inversion recovery and volume rendering: comparison with functional and conventional magnetic resonance.

    PubMed

    Willemse, Ronald B; Pouwels, Petra J W; Barkhof, Frederik; Vandertop, W Peter

    2011-04-01

    Volume rendering (VR) of three-dimensional (3D) fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) images shows regional intensity differences, reflecting the central sulcus (CS) region and occipital cortex. The purpose of this study was to determine whether 3D FLAIR with VR could be used as an alternative method to localise the CS region in comparison with functional and conventional MR-imaging in patients with perirolandic glioma. Eleven patients with intracranial gliomas were studied with single-slab 3D FLAIR including VR and conventional T1-weighted imaging. In all patients, preoperative functional magnetic resonance imaging (fMRI) was performed with a motor paradigm of the hand. The hypo-intense central gyri on 3D FLAIR with VR were interpreted as the CS area. Localisation of the motor hand knob on anatomical images and fMRI results were used for identification of the primary motor cortex. Anatomical localisation of the motor hand knob on T1-weighted images was possible in 91% of both hemispheres. In 73% of the affected hemispheres (AH) and 91% of the unaffected hemispheres (UH) the hand knob and CS region could be identified on 3D FLAIR axial and VR images, respectively. With one exception, fMRI activation confirmed the CS region as observed with 3D FLAIR with VR. Volume rendering of 3D FLAIR MR images shows central hypo-intensities frequently corresponding with the CS region. Two-dimensional localisation of the CS region on conventional T1-weighted images and fMRI seems favourable compared to 3D FLAIR. However, in selected cases, especially where fMRI is not possible or feasible, volume rendering with 3D FLAIR may enhance the 3D visualisation of gliomas in relation to the CS region which can be used as an alternative method in the presurgical structural and functional evaluation of neurosurgical patients.

  10. High-field/high-pressure ESR

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Okubo, S.; Ohta, H.

    2017-07-01

    We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans.

  11. Role of conventional magnetic resonance imaging in the screening of epilepsy with structural abnormalities: a pictorial essay

    PubMed Central

    Zhao, Xu; Zhou, Zhiqiang; Zhu, Wenzhen; Xiang, Hongbing

    2017-01-01

    Epilepsy is a chronic neurological disease with serious impact on patients and society. The causes of epilepsy comprise a heterogeneous group of disorders, rendering epilepsy diagnoses rather difficult and challenging. The primary role of MRI is to locate and define the probable anatomic epileptogenic lesions. In the developing countries, where functional MRI (fMRI) is not popular, conventional MRI (cMRI) becomes especially important in epilepsy diagnoses. Apart from that, an experienced radiologist can increase the diagnostic yield of MRI to epileptogenic lesions. Thus, we present a pictorial review focusing on the role of cMRI in the screening of epilepsy with structural abnormalities and highlighting the key findings on cMRI to help radiologists to be familiar with the characteristic findings. Considering the complexity and diversity of the structural abnormalities, we propse a mnemonic “MAGIC TVs” approach to reduce false negative diagnosis and improve the diagnosis rate. PMID:28721306

  12. High field – low energy muon ionization cooling channel

    DOE PAGES

    Sayed, Hisham Kamal; Palmer, Robert B.; Neuffer, David

    2015-09-04

    Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈ 300 μm–rad in transverse and ≈ 1–1.5 mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈ 50–25 μm–rad with an upper limit on the longitudinal emittance of ≈ 76 mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of lowmore » energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25–30 T and low momentum muon beam starting at 135 MeV/c and gradually decreasing. The cooling channel design presented here is the first to reach ≈ 50 micron scale emittance beam. As a result, we present the channel’s optimized design parameters including the focusing solenoid fields, absorber parameters and the transverse and longitudinal matching.« less

  13. High-field ESR in TDAE-C60

    NASA Astrophysics Data System (ADS)

    Blinc, R.; Cevc, P.; Arčon, D.; Omerzu, A.; Mehring, M.; Knorr, S.; Grupp, A.; Barra, A.-L.; Chouteau, G.

    1998-12-01

    The ESR spectra of TDAE-C60 single crystals have been measured between 30 MHz and 245 GHz both above and below Tc=16 K. No separate TDAE+ ESR signal has been seen even at high fields suggesting that the TDAE+ and C-60 spins are either strongly exchange coupled or that spin cancellation and charge separation of the TDAE ions take place. The nonlinear variation of the resonance frequency versus resonance field relation characteristic of ferromagnetic resonance has been observed only in the radio frequency but not in the microwave region. No second ``hard'' mode characteristic for a spin-canted ``weak'' ferromagnet could be observed between 0 and 100 kG. The additional fine structure seen in the high-field ESR spectra below Tc is due to standing spin-wave resonance. It allows for the determination of the exchange coupling constant J=60 K. The exchange field HE=448 kG is thus much larger than the anisotropy field HK=29 G determined from the ferromagnetic resonance data. The temperature dependence of the magnetization determined from the spin-wave resonance data can be indeed described by the Bloch T3/2 law as expected for an isotropic or nearly isotropic Heisenberg ferromagnet.

  14. Gun requirements to achieve high field spheromaks

    SciTech Connect

    Fowler, T K

    1999-03-04

    It is shown that a gun similar to that in the SSPX could demonstrate the high fields required for Pulsed Spheromak reactors merely by prolonging the pulse. Important considerations are choosing the voltage to exceed ohmic losses; designing the gun to avoid wasteful short-circuiting of current within the gun; and the injection efficiency factor, f, determined by the ''sag'' in the profile of {lambda} = {mu}{sub o}j/B. Typically f = 0.75 in experiments, giving an overall efficiency > 50 % if short-circuiting is avoided. Theoretical transport models agree qualitatively with the need for a finite gradient in h to pump in helicity by current-driven tearing modes and suggest that pressure-driven resistive modes would not compete with current-driven modes during a buildup to ohmic ignition.

  15. REVIEW OF HIGH FIELD Q SLOPE, CAVITY MEASUREMENTS

    SciTech Connect

    Gianluigi Ciovati

    2008-01-23

    One of the most interesting phenomenon occurring in superconducting radio-frequency (SRF) cavities made of bulk niobium is represented by a sharp decrease of the quality factor above peak surface magnetic field of about 90 mT and is referred to as "high field Q-slope" or "Q-drop". This phenomenon was observed first in 1997 and since then some effort was devoted to the understanding of the causes behind it. Still, no clear physical interpretation of the Q-drop has emerged, despite several attempts. In this contribution, I will review the experimental results for various cavities measured in many laboratories and I will try to identify common features and differences related to the Q-drop.

  16. REVIEW OF HIGH FIELD Q SLOPE, CAVITY MEASUREMENTS

    SciTech Connect

    Gianluigi Ciovati

    2008-01-23

    One of the most interesting phenomenon occurring in superconducting radio-frequency (SRF) cavities made of bulk niobium is represented by a sharp decrease of the quality factor above peak surface magnetic field of about 90 mT and is referred to as "high field Q-slope" or "Q-drop". This phenomenon was observed first in 1997 and since then some effort was devoted to the understanding of the causes behind it. Still, no clear physical interpretation of the Q-drop has emerged, despite several attempts. In this contribution, I will review the experimental results for various cavities measured in many laboratories and I will try to identify common features and differences related to the Q-drop.

  17. Bi-2212 round wire development for high field applications

    NASA Astrophysics Data System (ADS)

    Miao, H.; Huang, Y.; Hong, S.; Gerace, M.; Parrell, J.

    2014-05-01

    Oxford Superconducting Technology (OST) has been continuously improving Bi-2212 round wire performance because of its potential for application in high-field magnets (> 25 T). We focused on Bi-2212 wire configuration design, filament densification and reducing carbon and hydrogen contamination to improve the engineering critical current density (JE). Several wire configurations have been developed to meet different wire diameter and operating current requirements. The swaging, cold isostatic pressing (CIP) and over-pressure heat treatment processes have been demonstrated to effectively increase Bi-2212 filament mass density in the final wire and result in high performance over long length. The JE values exceeding 550 A/mm2 at 4.2 K, 15 T have been achieved on the CIPed 1 m long sample using a 10 bar over-pressure (OP) heat treatment. The twisted Bi-2212 wire significantly reduced ac loss without the critical current degradation.

  18. Post-mortem magnetic resonance foetal imaging: a study of morphological correlation with conventional autopsy and histopathological findings.

    PubMed

    Vullo, Annamaria; Panebianco, Valeria; Cannavale, Giuseppe; Aromatario, Mariarosaria; Cipolloni, Luigi; Frati, Paola; Santurro, Alessandro; Vullo, Francesco; Catalano, Carlo; Fineschi, Vittorio

    2016-11-01

    The aim of the present study is to offer our experience concerning post-mortem magnetic resonance (PMMR) in foetal death cases and an evaluation of the differences between the findings acquired by PMMR and by forensic autopsy. Fifteen foetuses were recruited from July 2014 to December 2015. These had suffered intrauterine death in women in the 21st to 38th week of gestation who were treated in the emergency department for non-perception of foetal movements. We performed a PMMR on foetuses, 3 ± 1 days on average from the time of death, and then a complete forensic autopsy was performed. All 15 foetuses were examined with a whole-body study protocol, starting from the skull, down to and including the lower limbs. The total time of examination ranged from 20 to 30 min in each case. The external evaluation and description of post-mortem phenomena (maceration), record of the weight and detection and the various measurements of foetal diameters were evaluated before performing autopsy. A complete histopathological study was performed in each case. Out of 15 cases examined, eight were negative for structural anatomical abnormalities and/or diseases, both in the preliminary radiological examination and the traditional autopsy. In the remaining seven cases, pathological findings were detected by PMMR with corresponding results at autopsy. PMMR can provide useful information on foetal medical conditions and result in improved diagnostic classification. It may enable the planning of a more suitable technique before proceeding to autopsy, including focusing on certain aspects of organ pathology otherwise not detectable. The association between PMMR, post-mortem examination and related histological study of the foetus-placenta unit could help reduce the percentage of cases in which the cause of foetal death remains unexplained. Lastly, it may allow a selective sampling of the organ in order to target histological investigations.

  19. Plain magnetic resonance imaging as an alternative in evaluating inflammation and bowel damage in inflammatory bowel disease--a prospective comparison with conventional magnetic resonance follow-through.

    PubMed

    Jesuratnam-Nielsen, Kayalvily; Løgager, Vibeke B; Rezanavaz-Gheshlagh, Bijan; Munkholm, Pia; Thomsen, Henrik S

    2015-05-01

    To compare prospectively the diagnostic accuracy of magnetic resonance imaging (MRI) without use of contrast medium orally or intravenously (plain MRI) with magnetic resonance follow-through (MRFT) in patients with inflammatory bowel disease (IBD). Plain MRI was carried out in addition to MRFT, to which the patients were referred. All patients underwent both examinations on the same day. For the evaluation, the bowel was divided into nine segments. Two radiologists, blinded to clinical findings, evaluated bowel wall thickness, diffusion weighted imaging (DWI), and other inflammatory changes in each bowel segments. Further, hyperenhancement of the bowel was also evaluated in MRFT. A total of 100 patients (40 males and 60 females; median age: 38.5; range: 19-90) were enrolled; 44 with Crohn's disease (CD), 25 with ulcerative colitis (UC), 24 with IBD unclassified (IBD-U), and 7 had other diagnosis. Sensitivity, specificity, and accuracy in CD ranged 50-86%, 93-94%, and 91-92% for wall thickening and 49-82%, 85-93%, and 84-89% for DWI, respectively. Sensitivity, specificity, and accuracy in UC range 0-40%, 87-100%, and 80-100% for wall thickening and 0-52%, 83-94% and 76-92% for DWI, respectively. The κ values for bowel wall thickening, DWI, and mural hyperenhancement were detected with fair agreement (κ = 0.26-0.39) at both MRI examinations, whereas only bowel wall thickening in MRFT were detected with moderate agreement (κ = 0.47) Conclusion. Plain MRI cannot currently replace MRFT in the workup of patients with IBD. Further research on plain MRI is needed to improve the protocol.

  20. Instantaneous Conventions

    PubMed Central

    Misyak, Jennifer; Noguchi, Takao; Chater, Nick

    2016-01-01

    Humans can communicate even with few existing conventions in common (e.g., when they lack a shared language). We explored what makes this phenomenon possible with a nonlinguistic experimental task requiring participants to coordinate toward a common goal. We observed participants creating new communicative conventions using the most minimal possible signals. These conventions, furthermore, changed on a trial-by-trial basis in response to shared environmental and task constraints. Strikingly, as a result, signals of the same form successfully conveyed contradictory messages from trial to trial. Such behavior is evidence for the involvement of what we term joint inference, in which social interactants spontaneously infer the most sensible communicative convention in light of the common ground between them. Joint inference may help to elucidate how communicative conventions emerge instantaneously and how they are modified and reshaped into the elaborate systems of conventions involved in human communication, including natural languages. PMID:27793986

  1. Topical report on subsurface fracture mapping from geothermal wellbores. Phase I. Pulsed radar techniques. Phase II. Conventional logging methods. Phase III. Magnetic borehole ranging

    SciTech Connect

    Hartenbaum, B.A.; Rawson, G.

    1980-09-01

    To advance the state-of-the-art in Hot Dry Rock technology, an evaluation is made of (i) the use of radar to map far-field fractures, (ii) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, and (iii) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. Improvements in both data interpretation techniques and high temperature operation are required. The surveying of one borehole from another appears feasible at ranges of up to 200 to 500 meters by using a low frequency magnetic field generated by a moderately strong dipole source (a solenoid) located in one borehole, a sensitive B field detector that traverses part of the second borehole, narrow band filtering, and special data inversion techniques.

  2. A Nb sub 3 Sn high field dipole

    SciTech Connect

    McClusky, R.; Robins, K.E.; Sampson, W.B.

    1990-01-01

    A dipole magnet approximately 1 meter long with an 8 cm bore has been fabricated from cable made from Nb{sub 3}Sn multifilamentary strands. The coil consists of four layers of conductor wound in pairs to eliminate internal joints. Each set of layers is separately constrained with Kevlar-epoxy bands and the complete assembly clamped in a split laminated iron yoke. The inner coil pairs were wound before heat treating while the outer coils were formed from pre-reacted cable using conventional insulation. A NbTi version of the magnet was fabricated using SSC version of the magnet was fabricated using SSC conductor to test the construction techniques. This magnet reached a maximum central field of 7.6 Tesla, at 4.4K which is very close to the limit estimated from conductor measurements. The Nb{sub 3}Sn magnet, however, only reached a maximum field at 8.1T considerably short of the field expected from measurements on the inner cable. 7 refs., 5 figs.

  3. High field electrophoresis—computer simulations

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Kułakowski, K.

    2004-11-01

    We describe for the first time the results, obtained by means of a new two-dimensional version of a cellular automaton (2DA), designed for the simulation of the gel electrophoresis at high fields. The calculations are performed up to N=442 reptons. The results are compared with those from a modified version of the one-dimensional automaton (1DA), which has been constructed previously. The modification is that the movements of different parts of a molecule of DNA are treated as statistically independent events. This approach is applied also for 2DA. Main results are: (i) for long molecules (N≫1) the velocity v tends to a constant both for 1DA and 2DA; (ii) the diffusion coefficient D for 2DA increases with N; (iii) 2DA enables the formation of so-called hernias, i.e. fragments of DNA locally perpendicular to the molecule, and (iv) a direct observation of the geometration effect. The results (i) and (ii) mimic the experimental behavior at high electric fields. We also calculate a dimensionless quantity y=D/(Lv), where L=Na is the molecule length and a is the stiffness length. The discussion of y reveals the role of the length fluctuations.

  4. Flux-pinning mechanism of proximity-coupled planar defects in conventional superconductors: Evidence that magnetic pinning is the dominant pinning mechanism in niobium-titanium alloy

    NASA Astrophysics Data System (ADS)

    Cooley, L. D.; Lee, P. J.; Larbalestier, D. C.

    1996-03-01

    We propose that a magnetic pinning mechanism is the dominant flux-pinning mechanism of proximity-coupled, planar defects when the field is parallel to the defect. We find compelling evidence that this pinning mechanism is responsible for the strong flux-pinning force exerted by ribbon-shaped α-Ti precipitates and artificial pins in Nb-Ti superconductors, instead of the core pinning mechanism as has been hitherto widely believed. Because the elementary pinning force fp(H) is nonmonotonic when it is optimum (i.e., when the defect thickness t and the proximity length ξN have comparable dimensions), the total pinning force Fp(H) generally does not show temperature scaling. Characteristic changes in the magnitude and shape of Fp(H) at constant T but at different t/ξN (e.g., different Nb-Ti wire diameters) are also direct consequences of the pinning mechanism. The optimum flux-pinning state is a compromise between maximizing fp and getting the highest number density of pins. For a given defect composition this state is reached when t~ξN/3, while for varying defect composition the peak Fp gets higher when ξN is made shorter. Artificial pinning center Nb-Ti wires having short ξN pins appear to be vital for obtaining high Jc at high fields because only then is the elementary pinning force optimized at small pin thicknesses which permit a high number density of vortex-pin interactions and a large bulk pinning force. We find verification of our predictions in experimental Fp(H,T,t) data obtained on special laboratory-scale artificial pinning-center Nb-Ti wires.

  5. Semi-quantitative Assessment of Brain Maturation by Conventional Magnetic Resonance Imaging in Neonates with Clinically Mild Hypoxic-ischemic Encephalopathy

    PubMed Central

    Gao, Jie; Sun, Qin-Li; Zhang, Yu-Miao; Li, Yan-Yan; Li, Huan; Hou, Xin; Yu, Bo-Lang; Zhou, Xi-Hui; Yang, Jian

    2015-01-01

    Background: Mild hypoxic-ischemic encephalopathy (HIE) injury is becoming the major type in neonatal brain diseases. The aim of this study was to assess brain maturation in mild HIE neonatal brains using total maturation score (TMS) based on conventional magnetic resonance imaging (MRI). Methods: Totally, 45 neonates with clinically mild HIE and 45 matched control neonates were enrolled. Gestated age, birth weight, age after birth and postmenstrual age at magnetic resonance (MR) scan were homogenous in the two groups. According to MR findings, mild HIE neonates were divided into three subgroups: Pattern I, neonates with normal MR appearance; Pattern II, preterm neonates with abnormal MR appearance; Pattern III, full-term neonates with abnormal MR appearance. TMS and its parameters, progressive myelination (M), cortical infolding (C), involution of germinal matrix tissue (G), and glial cell migration bands (B), were employed to assess brain maturation and compare difference between HIE and control groups. Results: The mean of TMS was significantly lower in mild HIE group than it in the control group (mean ± standard deviation [SD] 11.62 ± 1.53 vs. 12.36 ± 1.26, P < 0.001). In four parameters of TMS scores, the M and C scores were significantly lower in mild HIE group. Of the three patterns of mild HIE, Pattern I (10 cases) showed no significant difference of TMS compared with control neonates, while Pattern II (22 cases), III (13 cases) all had significantly decreased TMS than control neonates (mean ± SD 10.56 ± 0.93 vs. 11.48 ± 0.55, P < 0.05; 12.59 ± 1.28 vs. 13.25 ± 1.29, P < 0.05). It was M, C, and GM scores that significantly decreased in Pattern II, while for Pattern III, only C score significantly decreased. Conclusions: The TMS system, based on conventional MRI, is an effective method to detect delayed brain maturation in clinically mild HIE. The conventional MRI can reveal the different retardations in subtle structures and development processes

  6. High-field MRI and mercury release from dental amalgam fillings.

    PubMed

    Mortazavi, S M J; Neghab, M; Anoosheh, S M H; Bahaeddini, N; Mortazavi, G; Neghab, P; Rajaeifard, A

    2014-04-01

    Mercury is among the most toxic nonradioactive elements which may cause toxicity even at low doses. Some studies showed release of mercury from dental amalgam fillings in individuals who used mobile phone. This study was conducted to assess the effect of high-field MRI on mercury release from dental amalgam filling. We studied two groups of students with identical tooth decays requiring a similar pattern of restorative dentistry. They were exposed to a magnetic flux density of 1.5 T produced by a MRI machine. 16 otherwise healthy students with identical dental decay participated in this study. They underwent similar restorative dentistry procedures and randomly divided into two groups of MRI-exposed and control arms. Urinary concentrations of mercury in the control subjects were measured before (hour 0) and 48 and 72 hrs after amalgam restoration, using cold vapor atomic absorption spectrometry. Urinary concentrations of mercury in exposed individuals were determined before (hour 0), and 24, 48, 72 and 96 hrs after amalgam restoration. Unlike control subjects, they underwent conventional brain MRI (15 min, 99 slices), 24 hrs after amalgam restoration. The mean±SD urinary mercury levels in MRI-exposed individuals increased linearly from a baseline value of 20.70±17.96 to 24.83±22.91 μg/L 72 hrs after MRI. In the control group, the concentration decreased linearly from 20.70±19.77 to 16.14±20.05 μg/L. The difference between urinary mercury in the exposed and control group, 72 hrs after MRI (96 h after restoration),was significant (p=0.046). These findings provide further support for the noxious effect of MRI (exposure to strong magnetic field)and release of mercury from dental amalgam fillings.

  7. A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures

    NASA Astrophysics Data System (ADS)

    Manikandan, A.; Sridhar, R.; Arul Antony, S.; Ramakrishna, Seeram

    2014-11-01

    Nanocrystalline magnetic spinel CoFe2O4 was synthesized by a simple microwave combustion method (MCM) using ferric nitrate, cobalt nitrate and Aloe vera plant extracted solution. For the comparative study, it was also prepared by a conventional combustion method (CCM). Powder X-ray diffraction, energy dispersive X-ray and selected-area electron diffraction results indicate that the as-synthesized samples have only single-phase spinel structure with high crystallinity and without the presence of other phase impurities. The crystal structure and morphology of the powders were revealed by high resolution scanning electron microscopy and transmission electron microscopy, show that the MCM products of CoFe2O4 samples contain sphere-like nanoparticles (SNPs), whereas the CCM method of samples consist of flake-like nanoplatelets (FNPs). The band gap of the samples was determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy. The magnetization (Ms) results showed a ferromagnetic behavior of the CoFe2O4 nanostructures. The Ms value of CoFe2O4-SNPs is higher i.e. 77.62 emu/g than CoFe2O4-FNPs (25.46 emu/g). The higher Ms value of the sample suggest that the MCM technique is suitable for preparing high quality nanostructures for magnetic applications. Both the samples were successfully tested as catalysts for the conversion of benzyl alcohol. The resulting spinel ferrites were highly selective for the oxidation of benzyl alcohol and exhibit important difference among their activities. It was found that CoFe2O4-SNPs catalyst show the best performance, whereby 99.5% selectivity of benzaldehyde was achieved at close to 93.2% conversion.

  8. U.S. EPA High-Field NMR Facility with Remote Accessibility

    EPA Science Inventory

    EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...

  9. U.S. EPA High-Field NMR Facility with Remote Accessibility

    EPA Science Inventory

    EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...

  10. Rapid brain MRI acquisition techniques at ultra-high fields

    PubMed Central

    Setsompop, Kawin; Feinberg, David A.; Polimeni, Jonathan R.

    2017-01-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher spatial resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, is a concurrent increased image encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI—particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development—such as the move from conventional 2D slice-by-slice imaging to more efficient Simultaneous MultiSlice (SMS) or MultiBand imaging (which can be viewed as “pseudo-3D” encoding) as well as full 3D imaging—have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multi-channel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. PMID:26835884

  11. Threats to ultra-high-field MRI

    NASA Astrophysics Data System (ADS)

    Le Bihan, Denis

    2009-08-01

    In 2004 the European Commission (EC) adopted a directive restricting occupational exposure to electromagnetic fields. This directive (2004/40/CE), which examines the possible health risks of the electromagnetic fields from mobile phones, Wi-Fi, Bluetooth and other devices, concluded that upper limits on radiation and applied electromagnetic fields are necessary to prevent workers from suffering any undue acute health effects. But although not initially intended, the biggest impact of the directive could be on magnetic resonance imaging (MRI), which is used in hospitals worldwide to produce images of unrivalled quality of the brain and other soft tissues.

  12. Microcalorimetry: Wide Temperature Range, High Field, Small Sample Measurements

    NASA Astrophysics Data System (ADS)

    Hellman, Frances

    2000-03-01

    We have used Si micromachining techniques to fabricate devices for measuring specific heat or other calorimetric signals from microgram-quantity samples over a temperature range from 1 to 900K in magnetic fields to date up to 8T. The devices are based on a relatively robust silicon nitride membrane with thin film heaters and thermometers. Different types of thermometers are used for different purposes and in different temperature ranges. These devices are particularly useful for thin film samples (typically 200-400 nm thick at present) deposited directly onto the membrane through a Si micromachined evaporation mask. They have also been used for small single crystal samples attached by conducting grease or solder, and for powder samples dissolved in a solvent and dropped onto devices. The measurement technique used (relaxation method) is particularly suited to high field measurements because the thermal conductance can be measured once in zero field and is field independent, while the time constant of the relaxation does not depend on thermometer calibration. Present development efforts include designs which show promise for time-resolved calorimetry measurements of biological samples in small amounts of water. Samples measured to date include amorphous magnetic thin films (a-TbFe2 and giant negative magnetoresistance a-Gd-Si alloys), empty and filled fullerenes (C_60, K_3C_60, C_82, La@C_82, C_84, and Sc_2@C_84), single crystal manganites (La_1-xSr_xMnO_3), antiferromagnetic multilayers (NiO/CoO, NiO/MgO, and CoO/MgO), and nanoparticle magnetic materials (CoO in a Ag matrix).

  13. Development of a patch antenna array RF coil for ultra-high field MRI.

    PubMed

    Nakajima, Manabu; Nakajima, Iwao; Obayashi, Shigeru; Nagai, Yuji; Obata, Takayuki; Hirano, Yoshiyuki; Ikehira, Hiroo

    2007-01-01

    In radiofrequency (RF) coil design for ultra-high-field magnetic resonance (MR) imaging, short RF wavelengths present various challenges to creating a big volume coil. When imaging a human body using an ultra-high magnetic field MR imaging system (magnetic flux density of 7 Tesla or more), short wavelength may induce artifacts from dielectric effect and other factors. To overcome these problems, we developed a patch antenna array coil (PAAC), which is a coil configured as a combination of patch antennas. We prototyped this type of coil for 7T proton MR imaging, imaged a monkey brain, and confirmed the coil's utility as an RF coil for ultra-high-field MR imaging.

  14. Application of imaging fusion combining contrast-enhanced ultrasound and magnetic resonance imaging in detection of hepatic cellular carcinomas undetectable by conventional ultrasound.

    PubMed

    Dong, Yi; Wang, Wen-Ping; Mao, Feng; Ji, Zheng-Biao; Huang, Bei-Jian

    2016-04-01

    The aim of this study is to explore the value of volume navigation image fusion-assisted contrast-enhanced ultrasound (CEUS) in detection for radiofrequency ablation guidance of hepatocellular carcinomas (HCCs), which were undetectable on conventional ultrasound. From May 2012 to May 2014, 41 patients with 49 HCCs were included in this study. All lesions were detected by dynamic magnetic resonance imaging (MRI) and planned for radiofrequency ablation but were undetectable on conventional ultrasound. After a bolus injection of 2.4 ml SonoVue® (Bracco, Italy), LOGIQ E9 ultrasound system with volume navigation system (version R1.0.5, GE Healthcare, Milwaukee, WI, USA) was used to fuse CEUS and MRI images. The fusion time, fusion success rate, lesion enhancement pattern, and detection rate were analyzed. Image fusions were conducted successfully in 49 HCCs, the technical success rate was 100%. The average fusion time was (9.2 ± 2.1) min (6-12 min). The mean diameter of HCCs was 25.2 ± 5.3 mm (mean ± SD), and mean depth was 41.8 ± 17.2 mm. The detection rate of HCCs using CEUS/MRI imaging fusion (95.9%, 47/49) was significantly higher than CEUS (42.9%, 21/49) (P < 0.05). For small HCCs (diameter, 1-2 cm), the detection rate using imaging fusion (96.9%, 32/33) was also significantly higher than CEUS (18.2%, 6/33) (P < 0.01). All HCCs displayed a rapid wash-in pattern in the arterial phase of CEUS. Imaging fusion combining CEUS and MRI is a promising technique to improve the detection, precise localization, and accurate diagnosis of undetectable HCCs on conventional ultrasound, especially small and atypical HCCs. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  15. Fabrication and Test Results of a Prototype, Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect

    Gourlay, S. A.; Chow, K.; Dietderich, D.R.; Gupta, R.; Hannaford, R.; Harnden, W.; Lietzke, A.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1998-09-01

    A prototype, Nb{sub 3}Sn superconducting magnet, utilizing a racetrack coil design has been built and tested. This magnet represents the first step in a recently implemented program to develop a high field, accelerator quality magnet. This magnet was constructed with coils wound from conductor developed for the ITER project, limiting the magnet to a field of 6-7 Tesla. Subsequent magnets in the program will utilize improved conductor, culminating in a magnet design capable of producing fields approaching 15 Tesla. The simple geometry is more suitable for the use of brittle superconductors necessary to eventually reach high field levels. In addition, fewer and simpler parts are used in fabricating these coils compared with the more conventional cosine theta cross section coils. The general fabrication steps, mechanical design and quench performance are discussed.

  16. High field transport of high performance black phosphorus transistors

    NASA Astrophysics Data System (ADS)

    Li, Tiaoyang; Zhang, Zhenfeng; Li, Xuefei; Huang, Mingqiang; Li, Sichao; Li, Shengman; Wu, Yanqing

    2017-04-01

    Black phosphorus is a layered material stacked together by weak van der Waals force with a direct bandgap and highly anisotropic electrical characteristics. Most of the previous reports focus on the low-field mobility of transistors based on SiO2 back gate dielectrics. Recently, black phosphorus transistors encapsulated with hexagonal boron nitride have been demonstrated with greatly improved mobility at low temperatures. However, this approach requires multiple dry transfer methods using both black phosphorus and boron nitride flakes, which are only available in small crystal sizes. Here, we demonstrated high performance black phosphorus transistors using atomic layer deposited high-κ HfO2 as a back gate dielectric. The maximum drain current density reaches 480 μA/μm at 300 K and a record high drain current 906 μA/μm at 20 K in a short channel 100 nm device based on HfO2, exhibiting excellent current-carrying capability and high field strength. Moreover, a side-by-side comparison on important figures-of-merit is carried out systematically for transistors based on HfO2 with those based on conventional SiO2, showing more than 50% performance improvement in mobility and over 8 times reduction in interface trap density.

  17. On-line high-performance liquid chromatography-ultraviolet-nuclear magnetic resonance method of the markers of nerve agents for verification of the Chemical Weapons Convention.

    PubMed

    Mazumder, Avik; Gupta, Hemendra K; Garg, Prabhat; Jain, Rajeev; Dubey, Devendra K

    2009-07-03

    This paper details an on-flow liquid chromatography-ultraviolet-nuclear magnetic resonance (LC-UV-NMR) method for the retrospective detection and identification of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the markers of the toxic nerve agents for verification of the Chemical Weapons Convention (CWC). Initially, the LC-UV-NMR parameters were optimized for benzyl derivatives of the APAs and AAPAs. The optimized parameters include stationary phase C(18), mobile phase methanol:water 78:22 (v/v), UV detection at 268nm and (1)H NMR acquisition conditions. The protocol described herein allowed the detection of analytes through acquisition of high quality NMR spectra from the aqueous solution of the APAs and AAPAs with high concentrations of interfering background chemicals which have been removed by preceding sample preparation. The reported standard deviation for the quantification is related to the UV detector which showed relative standard deviations (RSDs) for quantification within +/-1.1%, while lower limit of detection upto 16mug (in mug absolute) for the NMR detector. Finally the developed LC-UV-NMR method was applied to identify the APAs and AAPAs in real water samples, consequent to solid phase extraction and derivatization. The method is fast (total experiment time approximately 2h), sensitive, rugged and efficient.

  18. Diagnostic performance of magnetic resonance imaging in the assessment of periosteal reactions in bone sarcomas using conventional radiography as the reference

    PubMed Central

    de Sá Neto, José Luiz; Simão, Marcelo Novelino; Crema, Michel Daoud; Engel, Edgard Eduard; Nogueira-Barbosa, Marcello Henrique

    2017-01-01

    Objective: To evaluate the performance of magnetic resonance imaging (MRI) in detecting periosteal reactions and to compare MRI and conventional radiography (CR) in terms of the classification of periosteal reactions. Materials and Methods: Retrospective study of 42 consecutive patients (mean age, 22 years; 20 men) with a confirmed diagnosis of osteosarcoma or Ewing's sarcoma, MRI and CR images having been acquired pretreatment. Three blinded radiologists detected periosteal reactions and evaluated each periosteal reaction subtype in CR and MRI images: Codman's triangle; laminated; and spiculated. The CR was used as a benchmark to calculate the diagnostic performance. We used the kappa coefficient to assess interobserver reproducibility. A two-tailed Fisher's exact test was used in order to assess contingency between CR and MRI classifications. Results: In the detection of periosteal reactions, MRI showed high specificity, a high negative predictive value, and low-to-moderate sensitivity. For CR and for MRI, the interobserver agreement for periosteal reaction was almost perfect, whereas, for the classification of different subtypes of periosteal reaction, it was higher for the Codman's triangle subtype and lower for the spiculated subtype. There was no significant difference between MRI and CR in terms of the classifications (p < 0.05). Conclusion: We found no difference between MRI and CR in terms of their ability to classify periosteal reactions. MRI showed high specificity and almost perfect interobserver agreement for the detection of periosteal reactions. The interobserver agreement was variable for the different subtypes of periosteal reaction. PMID:28670029

  19. Safety of high speed guided ground transportation systems: Comparison of magnetic and electric fields of conventional and advanced electrified transportation systems. Final report, September 1992-March 1993

    SciTech Connect

    Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.

    1993-08-01

    Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.

  20. Generation and evaluation of an ultra-high-field atlas with applications in DBS planning

    NASA Astrophysics Data System (ADS)

    Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p <0.05) more accurate than a single-template in atlas-based segmentation and DBS target localization tasks. Conclusion The generated unbiased averaged templates provide better visualization of deep brain nuclei and an increase in accuracy over single-template and lower field strength atlases.

  1. Fuzzy cluster analysis of high-field functional MRI data.

    PubMed

    Windischberger, Christian; Barth, Markus; Lamm, Claus; Schroeder, Lee; Bauer, Herbert; Gur, Ruben C; Moser, Ewald

    2003-11-01

    Functional magnetic resonance imaging (fMRI) based on blood-oxygen level dependent (BOLD) contrast today is an established brain research method and quickly gains acceptance for complementary clinical diagnosis. However, neither the basic mechanisms like coupling between neuronal activation and haemodynamic response are known exactly, nor can the various artifacts be predicted or controlled. Thus, modeling functional signal changes is non-trivial and exploratory data analysis (EDA) may be rather useful. In particular, identification and separation of artifacts as well as quantification of expected, i.e. stimulus correlated, and novel information on brain activity is important for both, new insights in neuroscience and future developments in functional MRI of the human brain. After an introduction on fuzzy clustering and very high-field fMRI we present several examples where fuzzy cluster analysis (FCA) of fMRI time series helps to identify and locally separate various artifacts. We also present and discuss applications and limitations of fuzzy cluster analysis in very high-field functional MRI: differentiate temporal patterns in MRI using (a) a test object with static and dynamic parts, (b) artifacts due to gross head motion artifacts. Using a synthetic fMRI data set we quantitatively examine the influences of relevant FCA parameters on clustering results in terms of receiver-operator characteristics (ROC) and compare them with a commonly used model-based correlation analysis (CA) approach. The application of FCA in analyzing in vivo fMRI data is shown for (a) a motor paradigm, (b) data from multi-echo imaging, and (c) a fMRI study using mental rotation of three-dimensional cubes. We found that differentiation of true "neural" from false "vascular" activation is possible based on echo time dependence and specific activation levels, as well as based on their signal time-course. Exploratory data analysis methods in general and fuzzy cluster analysis in particular may

  2. Superconducting Materials, Magnets and Electric Power Applications

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  3. Clinical Tumor Dimensions May Be Useful to Prevent Geographic Miss in Conventional Radiotherapy of Uterine Cervix Cancer-A Magnetic Resonance Imaging-Based Study

    SciTech Connect

    Justino, Pitagoras Baskara; Baroni, Ronaldo; Blasbalg, Roberto; Andrade Carvalho, Heloisa de

    2009-06-01

    Purpose: To evaluate the risk of geographic miss associated with the classic four-field 'box' irradiation technique and to define the variables that predict this risk. Materials and Methods: The study population consisted of 80 patients with uterine cervix cancer seen between 2001 and 2006. Median age was 55 years (23-82 years), and 72 (90%) presented with squamous cell carcinoma. Most patients (68.7%) presented with locally advanced disease (IIb or more). Magnetic resonance imaging findings from before treatment were compared with findings from simulation of the conventional four-field 'box' technique done with rectal contrast. Study variables included tumor volume; involvement of vagina, parametrium, bladder, or rectum; posterior displacement of the anterior rectal wall; and tumor anteroposterior diameter (APD). Margins were considered adequate when the target volume (primary tumor extension, whole uterine body, and parametrium) was included within the field limits and were at least 1 cm in width. Results: Field limits were inadequate in 45 (56%) patients: 29 (36%) patients at the anterior and 28 (35%) at the posterior border of the lateral fields. Of these, 12 patients had both anterior and posterior miss, and this risk was observed in all stages of the disease (p = 0.076). Posterior displacement of the anterior rectal wall beyond S2-S3 was significantly correlated with the risk of geographic miss (p = 0.043). Larger tumors (APD 6 cm or above and volume above 50 cm{sup 3}) were also significantly correlated with this risk (p = 0.004 and p = 0.046, respectively). Conclusions: Posterior displacement of the anterior rectal wall, tumor APD, and volume can be used as guidance in evaluating the risk of geographic miss.

  4. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer.

    PubMed

    Möbius, K; Savitsky, A; Schnegg, A; Plato, M; Fuchst, M

    2005-01-07

    The last decade witnessed a tremendous growth in combined efforts of biologists, chemists and physicists to understand the dominant factors determining the specificity and directionality of transmembrane transfer processes in proteins. A large variety of experimental techniques is being used including X-ray and neutron diffraction, but also time-resolved optical, infrared and magnetic resonance spectroscopy. This is done in conjunction with genetic engineering strategies to construct site-specific mutants for controlled modification of the proteins. As a general perception of these efforts, the substantial influence of weak interactions within the protein and its membrane interfaces is recognized. The weak interactions are subject to subtle changes during the reaction cycle owing to the inherent flexibility of the protein-membrane complex. Specific conformational changes accomplish molecular-switch functions for the transfer process to proceed with optimum efficiency. Characteristic examples of time varying non-bonded interactions are specific H-patterns and/or polarity effects of the microenvironment. The present perception has emerged from the coupling of newly developed spectroscopic techniques - and advanced EPR certainly deserves credit in this respect - with newly developed computational strategies to interpret the experimental data in terms of protein structure and dynamics. By now, the partners of this coupling, particularly high-field EPR spectroscopy and DFT-based quantum theory, have reached a level of sophistication that applications to large biocomplexes are within reach. In this review, a few large paradigm biosystems are surveyed which were explored lately in our laboratory. Taking advantage of the improved spectral and temporal resolution of high-frequency/high-field EPR at 95 GHz/3.4 T and 360 GHz/12.9 T, as compared to conventional X-band EPR (9.5 GHz/0.34 T), three biosystems are characterized with respect to structure and dynamics: (1) Light

  5. Lattices for a high-field 30 TeV hadron collider

    SciTech Connect

    Peggs, S.; Dell, F.; Harrison, M.; Syphers, M.; Tepikian, S.

    1996-12-01

    Long arc cells would lead to major cost savings in a high field high T{sub c} hadron collider, operating in the regime of significant synchrotron radiation. Two such lattices, with half cell lengths of 110 and 260 m, are compared. Both allow flexible tuning, and have large dynamic apertures when dominated by chromatic sextupoles. Lattices with longer cells are much more sensitive to systematic magnet errors, which are expected to dominate.

  6. Apparatus and method for magnetically processing a specimen

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  7. Tricritical point from high-field magnetoelastic and metamagnetic effects in UN

    DOE PAGES

    Shrestha, K.; Antonio, D.; Jaime, M.; ...

    2017-07-26

    Uranium nitride (UN) is one of the most studied actinide materials as it is a promising fuel for the next generation of nuclear reactors. Despite large experimental and theoretical efforts, some of the fundamental questions such as degree of 5 f–electron localization/delocalization and its relationship to magneto-vibrational properties are not resolved yet. We show that the magnetostriction of UN measured in pulsed magnetic fields up to 65 T and below the Néel temperature is large and exhibits complex behavior with two transitions. While the high field anomaly is a field-induced metamagnetic-like transition and affects both magnetisation and magnetostriction, the lowmore » field anomaly does not contribute to the magnetic susceptibility. Our data suggest a change in the nature of the metamagnetic transition from first to second order-like at a tricritical point at T tri ~24 K and H tri ~52 T. The induced magnetic moment at 60 T might suggest that only one subset of magnetic moments has aligned along the field direction. Using the results obtained here we have constructed a magnetic phase diagram of UN. Our studies demonstrate that dilatometry in high fields is an effective method to investigate the magneto-structural coupling in actinide materials.« less

  8. Dosimetric Comparison between Three-Dimensional Magnetic Resonance Imaging-Guided and Conventional Two-Dimensional Point A-Based Intracavitary Brachytherapy Planning for Cervical Cancer

    PubMed Central

    Ren, Juan; Yuan, Wei; Wang, Ruihua; Wang, Qiuping; Li, Yi; Xue, Chaofan; Yan, Yanli; Ma, Xiaowei; Tan, Li; Liu, Zi

    2016-01-01

    Objective The purpose of this study was to comprehensively compare the 3-dimensional (3D) magnetic resonance imaging (MRI)-guided and conventional 2-dimensional (2D) point A-based intracavitary brachytherapy (BT) planning for cervical cancer with regard to target dose coverage and dosages to adjacent organs-at risk (OARs). Methods A total of 79 patients with cervical cancer were enrolled to receive 2D point A-based BT planning and then immediately to receive 3D planning between October 2011 and April 2013 at the First Hospital Affiliated to Xi’an Jiao Tong University (Xi’an, China). The dose-volume histogram (DVH) parameters for gross tumor volume (GTV), high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume (IR-CTV) and OARs were compared between the 2D and 3D planning. Results In small tumors, there was no significant difference in most of the DVHs between 2D and 3D planning (all p>0.05). While in big tumors, 3D BT planning significantly increased the DVHs for most of the GTV, HR-CTV and IR-CTV, and some OARs compared with 2D planning (all P<0.05). In 3D planning, DVHs for GTV, HR-CTV, IR-CTV and some OARs were significantly higher in big tumors than in small tumors (all p<0.05). In contrast, in 2D planning, DVHs for almost all of the HR-CTV and IR-CTV were significantly lower in big tumors (all p<0.05). In eccentric tumors, 3D planning significantly increased dose coverage but decreased dosages to OARs compared with 2D planning (p<0.05). In tumors invading adjacent tissues, the target dose coverage in 3D planning was generally significantly higher than in 2D planning (P<0.05); the dosages to the adjacent rectum and bladder were significantly higher but those to sigmoid colon were lower in 3D planning (all P<0.05). Conclusions 3D MRI image-guided BT planning exhibits advantages over 2D planning in a complex way, generally showing advantages for the treatment of cervical cancer except small tumors. PMID:27611853

  9. Liver metastases from colorectal cancer treated with conventional and antiangiogenetic chemotherapy: evaluation with liver computed tomography perfusion and magnetic resonance diffusion-weighted imaging.

    PubMed

    Anzidei, Michele; Napoli, Alessandro; Zaccagna, Fulvio; Cartocci, Gaia; Saba, Luca; Menichini, Guendalina; Cavallo Marincola, Beatrice; Marincola, Beatrice Cavallo; Marotta, Eugenio; Di Mare, Luisa; Catalano, Carlo; Passariello, Roberto

    2011-01-01

    The objectives of the study were to determine whether perfusion computed tomography (CT-p) and magnetic resonance diffusion-weighted imaging (MR-DWI) can allow evaluation of the effects of chemotherapy combined with antiangiogenetic treatment on liver metastases in patients with advanced colorectal cancer and to determine if changes in CT-p and MR-DWI correlate with the response to therapy as assessed by conventional Response Evaluation Criteria in Solid Tumors (RECIST). Eighteen patients with liver metastases from colorectal cancer underwent CT-p and MR-DWI before and 6 months after chemotherapy and antiangiogenetic treatment. Lesions were classified according to RECIST criteria (complete response [CR], partial response [PR], stable disease [SD], and progressive disease) and calculations of CT-p parameters including blood flow (BF), blood volume (BV), capillary permeability (CP), and MR-DWI apparent diffusion coefficient (ADC) values were performed; RECIST, CT-p, and MR-DWI measurements at baseline and follow-up were tested for statistically significant differences using the paired-samples t test. Baseline and follow-up perfusion parameters of the lesions were also compared on the basis of therapy response assessed by RECIST criteria using independent-samples t test. P < 0.05 was considered indicative of a statistically significant difference for all statistical test. Six patients (6/18; 33.3%) were classified as PR (), and the remaining 12 (12/18; 66.7%) were classified as SD. On a per-lesion basis, 2 (2/32; 6.3%) cannot be identified at follow-up, 6 (6/32; 18.8%) showed a decrease in size of more than 30%, and 24 (24/32; 75%) were substantially stable in size. No cases of progressive disease were demonstrated at follow-up. No statistically significant differences were demonstrated between PR, CR, and SD lesions for BF (P = 0.19), BV (P = 0.14), and ADC (P = 0.68) measurements, whereas CP was significantly higher in CR and PR lesions (P = 0.038). Considering

  10. Moon Convention

    NASA Image and Video Library

    2015-03-23

    People with similar jobs or interests hold conventions and meetings, so why shouldn't moons? Pandora, Prometheus, and Pan -- seen here, from right to left -- also appear to be holding some sort of convention in this image. Some moons control the structure of nearby rings via gravitational "tugs." The cumulative effect of the moon's tugs on the ring particles can keep the rings' edges from spreading out as they are naturally inclined to do, much like shepherds control their flock. Pan is a prototypical shepherding moon, shaping and controlling the locations of the inner and outer edges of the Encke gap through a mechanism suggested in 1978 to explain the narrow Uranian rings. However, though Prometheus and Pandora have historically been called "the F ring shepherd moons" due to their close proximity to the ring, it has long been known that the standard shepherding mechanism that works so well for Pan does not apply to these two moons. The mechanism for keeping the F ring narrow, and the roles played -- if at all -- by Prometheus and Pandora in the F ring's configuration are not well understood. This is an ongoing topic for study by Cassini scientists. This view looks toward the sunlit side of the rings from about 29 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 2, 2015. The view was obtained at a distance of approximately 1.6 million miles (2.6 million kilometers) from the rings and at a Sun-ring-spacecraft, or phase, angle of 86 degrees. Image scale is 10 miles (15 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18306

  11. Technical Note: Experimental results from a prototype high-field inline MRI-linac.

    PubMed

    Liney, G P; Dong, B; Begg, J; Vial, P; Zhang, K; Lee, F; Walker, A; Rai, R; Causer, T; Alnaghy, S J; Oborn, B M; Holloway, L; Metcalfe, P; Barton, M; Crozier, S; Keall, P

    2016-09-01

    The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enabling shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical challenges and solutions.

  12. Perspectives for the high field approach in fusion research and advances within the Ignitor Program

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.

    2015-05-01

    The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.

  13. Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function.

    PubMed

    Dumoulin, Serge O; Fracasso, Alessio; van der Zwaag, Wietske; Siero, Jeroen C W; Petridou, Natalia

    2017-01-16

    Human MRI scanners at ultra-high magnetic field strengths of 7 T and higher are increasingly available to the neuroscience community. A key advantage brought by ultra-high field MRI is the possibility to increase the spatial resolution at which data is acquired, with little reduction in image quality. This opens a new set of opportunities for neuroscience, allowing investigators to map the human cortex at an unprecedented level of detail. In this review, we present recent work that capitalizes on the increased signal-to-noise ratio available at ultra-high field and discuss the theoretical advances with a focus on sensory and motor systems neuroscience. Further, we review research performed at sub-millimeter spatial resolution and discuss the limits and the potential of ultra-high field imaging for structural and functional imaging in human cortex. The increased spatial resolution achievable at ultra-high field has the potential to unveil the fundamental computations performed within a given cortical area, ultimately allowing the visualization of the mesoscopic organization of human cortex at the functional and structural level.

  14. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays

    NASA Astrophysics Data System (ADS)

    Barnsley, Lester C.; Carugo, Dario; Aron, Miles; Stride, Eleanor

    2017-03-01

    The aim of this study was to characterize the behaviour of superparamagnetic particles in magnetic drug targeting (MDT) schemes. A 3-dimensional mathematical model was developed, based on the analytical derivation of the trajectory of a magnetized particle suspended inside a fluid channel carrying laminar flow and in the vicinity of an external source of magnetic force. Semi-analytical expressions to quantify the proportion of captured particles, and their relative accumulation (concentration) as a function of distance along the wall of the channel were also derived. These were expressed in terms of a non-dimensional ratio of the relevant physical and physiological parameters corresponding to a given MDT protocol. The ability of the analytical model to assess magnetic targeting schemes was tested against numerical simulations of particle trajectories. The semi-analytical expressions were found to provide good first-order approximations for the performance of MDT systems in which the magnetic force is relatively constant over a large spatial range. The numerical model was then used to test the suitability of a range of different designs of permanent magnet assemblies for MDT. The results indicated that magnetic arrays that emit a strong magnetic force that varies rapidly over a confined spatial range are the most suitable for concentrating magnetic particles in a localized region. By comparison, commonly used magnet geometries such as button magnets and linear Halbach arrays result in distributions of accumulated particles that are less efficient for delivery. The trajectories predicted by the numerical model were verified experimentally by acoustically focusing magnetic microbeads flowing in a glass capillary channel, and optically tracking their path past a high field gradient Halbach array.

  15. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays.

    PubMed

    Barnsley, Lester C; Carugo, Dario; Aron, Miles; Stride, Eleanor

    2017-03-21

    The aim of this study was to characterize the behaviour of superparamagnetic particles in magnetic drug targeting (MDT) schemes. A 3-dimensional mathematical model was developed, based on the analytical derivation of the trajectory of a magnetized particle suspended inside a fluid channel carrying laminar flow and in the vicinity of an external source of magnetic force. Semi-analytical expressions to quantify the proportion of captured particles, and their relative accumulation (concentration) as a function of distance along the wall of the channel were also derived. These were expressed in terms of a non-dimensional ratio of the relevant physical and physiological parameters corresponding to a given MDT protocol. The ability of the analytical model to assess magnetic targeting schemes was tested against numerical simulations of particle trajectories. The semi-analytical expressions were found to provide good first-order approximations for the performance of MDT systems in which the magnetic force is relatively constant over a large spatial range. The numerical model was then used to test the suitability of a range of different designs of permanent magnet assemblies for MDT. The results indicated that magnetic arrays that emit a strong magnetic force that varies rapidly over a confined spatial range are the most suitable for concentrating magnetic particles in a localized region. By comparison, commonly used magnet geometries such as button magnets and linear Halbach arrays result in distributions of accumulated particles that are less efficient for delivery. The trajectories predicted by the numerical model were verified experimentally by acoustically focusing magnetic microbeads flowing in a glass capillary channel, and optically tracking their path past a high field gradient Halbach array.

  16. Tumor Size of Invasive Breast Cancer on Magnetic Resonance Imaging and Conventional Imaging (Mammogram/Ultrasound): Comparison with Pathological Size and Clinical Implications.

    PubMed

    Haraldsdóttir, K H; Jónsson, Þ; Halldórsdóttir, A B; Tranberg, K-G; Ásgeirsson, K S

    2017-03-01

    In Landspitali University Hospital, magnetic resonance imaging is used non-selectively in addition to mammogram and ultrasound in the preoperative assessment of breast cancer patients. The aim of this study was to assess invasive tumor size on imaging, compare with pathological size and evaluate the impact of magnetic resonance imaging on the type of surgery performed. All women with invasive breast cancer, diagnosed in Iceland, between 2007 and 2009 were reviewed retrospectively. In all, 438 of 641 (68%) patients diagnosed had preoperative magnetic resonance imaging. Twelve patients treated with neoadjuvant chemotherapy were excluded and 65 patients with multifocal or contralateral disease were assessed separately. Correlations between microscopic and radiologic tumor sizes were relatively weak. All imaging methods were inaccurate especially for large tumors, resulting in an overall underestimation of tumor size for these tumors. Magnetic resonance imaging under- and overestimated pathological tumor size by more than 10 mm in 16/348 (4.6%) and 26/348 patients (7.5%), respectively. In 19 patients (73%), overestimation of size was seen exclusively on magnetic resonance imaging. For tumors under- or overestimated by magnetic resonance imaging, the mastectomy rates were 56% and 65%, respectively, compared to an overall mastectomy rate of 43%. Of 51 patients diagnosed with multifocal disease on pathology, 19 (37%) were diagnosed by mammogram or ultrasound and 40 (78%) by magnetic resonance imaging resulting in a total detection rate of 84% (43 patients). Fourteen (3%) patients were diagnosed preoperatively with contralateral disease. Of those tumors, all were detected on magnetic resonance imaging but seven (50%) were also detected on mammogram or ultrasound or both. Our results suggest that routine use of magnetic resonance imaging may result in both under- and overestimation of tumor size and increase mastectomy rates in a small proportion of patients. Magnetic

  17. NMR in High Fields and Field Gradients up to 42 T

    NASA Astrophysics Data System (ADS)

    Sigmund, Eric E.

    2002-03-01

    We describe nuclear magnetic resonance (NMR) experiments performed in fields as high as 42 T. This work was done at Northwestern University and the National High Magnetic Field Laboratory (NHMFL) with superconducting magnets, resistive Bitter-style electromagnets, and a superconducting-resistive hybrid magnet. After reviewing crucial probe and spectrometer design features, we describe the scientific and technical advantages that high field provides for two experiments. First, we studied the mixed state of the high-temperature superconductor YBa_2Cu_3O_7-x through ^17O NMR.[1] The NMR spectrum gives the field distribution associated with vortices which we use to selectively inspect regions inside and outside the vortex core. We use the spin-lattice relaxation rate (T_1-1) to probe the electronic density-of-states in this spatially resolved fashion. Second, we have studied ultraslow diffusion in glass-forming liquids such as glycerol. These studies use the high magnetic field gradient at the edge of the solenoid, which can exceed 200 T/m for the resistive magnets at the NHMFL. We employed a 4 K inductive shield to stabilize the fluctuations in the resistive magnets' applied field over the necessarily long timescales of a slow diffusion NMR experiment. We have also made use of fast frequency jumping to enhance signal-to-noise by circumventing the finite spatial excitation bandwidth imposed by the large gradient. We show NMR experiments of slow diffusion in glass-formers up to high field (H0 = 21 T, G = 220 T/m) that have resolved diffusivities as low as 10-10 cm^2/s. [1] V. F. Mitrovic et.al., Nature 413, 501-504 (2001).

  18. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy.

    PubMed

    Campanella, H; Jaafar, M; Llobet, J; Esteve, J; Vázquez, M; Asenjo, A; del Real, R P; Plaza, J A

    2011-12-16

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials-used in magnetic storage media-or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  19. Ultra-high field MTR and qR2* differentiates subpial cortical lesions from normal-appearing gray matter in multiple sclerosis.

    PubMed

    Jonkman, Laura E; Fleysher, Lazar; Steenwijk, Martijn D; Koeleman, Jan A; de Snoo, Teun-Pieter; Barkhof, Frederik; Inglese, Matilde; Geurts, Jeroen Jg

    2016-09-01

    Cortical gray matter (GM) demyelination is frequent and clinically relevant in multiple sclerosis (MS). Quantitative magnetic resonance imaging (qMRI) sequences such as magnetization transfer ratio (MTR) and quantitative R2* (qR2*) can capture pathological subtleties missed by conventional magnetic resonance imaging (MRI) sequences. Although differences in MTR and qR2* have been reported between lesional and non-lesional tissue, differences between lesion types or lesion types and myelin density matched normal-appearing gray matter (NAGM) have not been found or investigated. Identify quantitative differences in histopathologically verified GM lesion types and matched NAGM at ultra-high field strength. Using 7T post-mortem MRI, MRI lesions were marked on T2 images and co-registered to the calculated MTR and qR2* maps for further evaluation. In all, 15 brain slices were collected, containing a total of 74 cortical GM lesions and 45 areas of NAGM. Intracortical lesions had lower MTR and qR2* values compared to NAGM. Type I lesions showed lower MTR than type III lesions. Type III lesions showed lower MTR than matched NAGM, and type I and IV lesions showed lower qR2* than matched NAGM. qMRI at 7T can provide additional information on extent of cortical pathology, especially concerning subpial lesions. This may be relevant for monitoring disease progression and potential treatment effects. © The Author(s), 2015.

  20. Clastic sediment source characterisation using discrete and included magnetic particles their relationship to conventional petrographic methods in early Pleistocene fluvial glacial sediments, Upper Don River Basin (Russia)

    NASA Astrophysics Data System (ADS)

    Alekseeva, Veronika A.; Hounslow, Mark W.

    Data from mineral magnetics, heavy mineral and quartz grain micromorphology analysis are compared, from early Pleistocene glacial sediments in the River Don palaeo-valley (central part of the Russian Plain). The aim was to evaluate the relative sensitivity of discrete and included magnetic particle populations to depositional processes, sediment provenance and particle size fractionation. Two size fractions from each sample were used for the magnetic measurements, 0.5-1 and 0.25-0.5 mm, on both the original fractions and after acid dissolution to isolate the magnetic inclusions. Quartz micromorphology was assessed on the 0.25-0.5 mm fraction, and is an indicator of the depositional environment and transport process. This shows three morphological groups, whose abundance in each section appears unrelated to their geographic position in the palaeo-valley. The heavy mineral data on the 0.1-0.25 mm fraction, shows a difference in the relative content of sediment derived from a Scandinavian source, mainly reflected in the epidote and amphibole content. The content of Fe-oxides reflects this Scandinavian source by its larger magnetic abundance parameters and lesser haematite content. The discriminating power of magnetic data for separating sediment provenance is not the same across the two studied grain size fractions. The discrete magnetic particles seem to be more powerful in the finer fraction and the included magnetic particles in the coarser fraction. These data show that combined discrete and included mineral magnetic approach offers potentially complementary and powerful means of characterizing glacial sediments for purposes of provenance indication.

  1. NMR spectroscopy of hyperpolarized ^129Xe at high fields: Maintaining spin polarization after optical pumping.

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Kuzma, Nicholas N.; Lisitza, Natalia V.; Happer, William

    2003-05-01

    Spin-polarized ^129Xe has become an invaluable tool in nuclear magnetic resonance research, with applications ranging from medical imaging to high-resolution spectroscopy. High-field NMR studies using hyperpolarized xenon as a spectroscopic probe benefit from the high signal-to-noise ratios and large chemical shifts typical of optically-pumped noble gases. The experimental sensitivity is ultimately determined by the absolute polarization of the xenon in the sample, which can be substantially decreased during purification and transfer. NMR of xenon at high fields (9.4 Tesla) will be discussed, and potential mechanisms of spin relaxation during the distillation, storage(N. N. Kuzma, B. Patton, K. Raman, and W. Happer, Phys. Rev. Lett. 88), 147602 (2002)., and delivery of hyperpolarized xenon will be analyzed.

  2. Open Science CBS Neuroimaging Repository: Sharing ultra-high-field MR images of the brain.

    PubMed

    Tardif, Christine Lucas; Schäfer, Andreas; Trampel, Robert; Villringer, Arno; Turner, Robert; Bazin, Pierre-Louis

    2016-01-01

    Magnetic resonance imaging at ultra high field opens the door to quantitative brain imaging at sub-millimeter isotropic resolutions. However, novel image processing tools to analyze these new rich datasets are lacking. In this article, we introduce the Open Science CBS Neuroimaging Repository: a unique repository of high-resolution and quantitative images acquired at 7 T. The motivation for this project is to increase interest for high-resolution and quantitative imaging and stimulate the development of image processing tools developed specifically for high-field data. Our growing repository currently includes datasets from MP2RAGE and multi-echo FLASH sequences from 28 and 20 healthy subjects respectively. These datasets represent the current state-of-the-art in in-vivo relaxometry at 7 T, and are now fully available to the entire neuroimaging community. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  4. A green one-pot three-component synthesis of spirooxindoles under conventional heating conditions or microwave irradiation by using Fe3O4@SiO2-imid-PMAn magnetic porous nanospheres as a recyclable catalyst

    NASA Astrophysics Data System (ADS)

    Esmaeilpour, Mohsen; Javidi, Jaber; Divar, Masoumeh

    2017-02-01

    An efficient, green and environmentally procedure for the synthesis of spirooxindole derivatives has been developed by a one-pot three-component reaction of isatin derivatives, activated methylene, and 1,3-dicarbonyl compounds in the presence of Fe3O4@SiO2-imid-PMAn magnetic nanocatalyst under conventional heating conditions in water or microwave irradiation under solvent-free conditions. The reactions under conventional heating conditions were compared with the microwave-assisted reactions. The suggested method offers several advantages such as excellent yields, short reaction times, operational simplicity, a cleaner reaction, absence of any tedious workup or purification and ease of recovery and reusability of the catalyst by a magnetic field. In addition, the excellent catalytic performance in a water medium and the easy preparation, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. The catalyst can be easily recovered by a magnetic field and reused for six consecutive reaction cycles without significant loss of activity. Also, the morphology of Fe3O4@SiO2-imid-PMAn, particle size distribution and leaching of nano H3PMo12O40 (PMAn) after reaction cycles were investigated by scanning electron microscopy (SEM), dynamic light scattering (DLS), and inductively coupled plasma (ICP) analyzer.

  5. High field (14 T) magneto transport of Sm/PrFeAsO

    NASA Astrophysics Data System (ADS)

    Meena, R. S.; Singh, Shiva Kumar; Pal, Anand; Kumar, Anuj; Jha, R.; Rao, K. V. R.; Du, Y.; Wang, X. L.; Awana, V. P. S.

    2012-04-01

    We report high field magneto transport of Sm/PrFeAsO. Below spin density wave transition (TSDW), the magneto-resistance (MR) of Sm/PrFeAsO is positive and increasing with decreasing temperature. The MR of SmFeAsO is found to be 16%, whereas it is 21.5% in the case of PrFeAsO, at 2.5 K under applied magnetic field of 14 Tesla (T). In the case of SmFeAsO, the variation of isothermal MR with field below 20 K is nonlinear at lower magnetic fields (<2 T) and it is linear at moderately higher magnetic fields (H ≥ 3.5 T). On the other hand, PrFeAsO shows almost linear MR at all temperatures below 20 K. The anomalous behavior of MR being exhibited in PrFeAsO is originated from Dirac cone states. The stronger interplay of Fe and Pr ordered moments is responsible for this distinct behavior. PrFeAsO also shows a hump in resistivity (R-T) with a possible conduction band (FeAs) mediated ordering of Pr moments at around 12 K. However, the same is absent in SmFeAsO even down to 2 K. Our results of high field magneto-transport of up to 14 T brings about clear distinction between ground states of SmFeAsO and PrFeAsO.

  6. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  7. Potential traceable markers of organic matter in organic and conventional dairy manure using ultraviolet–visible and solid-state 13C nuclear magnetic resonance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Organic dairy (OD) production is drawing increasing attention because of public concerns about food safety, animal welfare and the potential environmental impacts of conventional dairy (CD) systems. However, very limited information is available on how organic farming practices affect the chemical ...

  8. Observation of Thermoelectric Currents in High-Field Superconductor-Ferromagnet Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Kolenda, S.; Wolf, M. J.; Beckmann, D.

    2016-03-01

    We report on the experimental observation of spin-dependent thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of the particle-hole symmetry, and are found to be in excellent agreement with recent theoretical predictions. The maximum Seebeck coefficient inferred from the data is about -100 μ V /K , much larger than commonly found in metallic structures. Our results directly prove the coupling of spin and heat transport in high-field superconductors.

  9. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  10. New types of high field pinning centers and pinning centers for the peak effect

    NASA Astrophysics Data System (ADS)

    Gajda, Daniel; Zaleski, Andrzej; Morawski, Andrzej; Hossain, Md Shahriar A.

    2017-08-01

    In this article, we report the results of a study that shows the existence of pinning centers inside grains and between grains in NbTi wires. We accurately show the ranges of magnetic fields in which the individual pinning centers operate. The pinning centers inside grains are activated in high magnetic fields above 6 T. We show the range of magnetic fields in which individual defects, dislocations, precipitates inside grains and substitutions in the crystal lattice can operate. We show the existence of a new kind of high field pinning center, which operates in high magnetic fields from 8 to ˜9.5 T. We indicate that dislocations create pinning centers in the range of magnetic fields from 6 to 8 T. In addition, our measurements suggest that the peak effect (increased critical current density (J c) near the upper critical field (B c2)) could be attributed to martensitic (needle-shaped) α‧-Ti inclusions inside grains. These centers are very important because they work very effectively in magnetic fields above 9.5-10 T. We also show that the α-Ti precipitates (between grains) with a thickness similar to the coherence length create pinning centers which work very effectively in magnetic fields from 3 to 6 T. In magnetic fields below 3 T, they act very efficiently in grain boundaries. The measurements indicate that the pinning centers created by dislocations only can be tested by transport measurements. This indicates that dislocations do not increase the magnetic critical current density (J cm). Cold drawing improves pinning centers at grain boundaries and increases the dislocation density, and cold-drawing pinning centers are responsible for the peak effect.

  11. Ultra-High Field Template-Assisted Target Selection for Deep Brain Stimulation Surgery.

    PubMed

    Lau, Jonathan C; MacDougall, Keith W; Arango, Miguel F; Peters, Terry M; Parrent, Andrew G; Khan, Ali R

    2017-07-01

    Template and atlas guidance are fundamental aspects of stereotactic neurosurgery. The recent availability of ultra-high field (7 Tesla) magnetic resonance imaging has enabled in vivo visualization at the submillimeter scale. In this Doing More with Less article, we describe our experiences with integrating ultra-high field template data into the clinical workflow to assist with target selection in deep brain stimulation (DBS) surgical planning. The creation of a high-resolution 7T template is described, generated from group data acquired at our center. A computational workflow was developed for spatially aligning the 7T template with standard clinical data and furthermore, integrating the derived imaging volumes into the surgical planning workstation. We demonstrate that our methodology can be effective for assisting with target selection in 2 cases: unilateral internal pallidum DBS for painful dystonia and bilateral subthalamic nucleus DBS for Parkinson's disease. In this article, we have described a workflow for the integration of high-resolution in vivo ultra-high field templates into the surgical navigation system as a means to assist with DBS planning. The method does not require any additional cost or time to the patient. Future work will include prospectively evaluating different templates and their impact on target selection. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  12. The High Field Compact Approach in Nuclear Fusion: Present and Foreseeable Developments vs. Damnatio Memoriae

    NASA Astrophysics Data System (ADS)

    Spillantini, P.; Coppi, B.; Grasso, G.

    2016-10-01

    A confirmation of the fact that the most promising approach, in the effort to demonstrate experimentally that fusion burning D-T plasmas can reach near-ignition conditions, is that of high field compact (HFC) machines, has come from recent analyses of confinement experiments conducted over the years. In fact, this approach can be adopted to begin investigations of D-D and D-3 He burning regimes. An important development that can be used in these experiments is that of high field super-conductor technology. This technology was pioneered with the adoption and design of the largest (vertical field) coils of the Ignitor machine using MgB2 super-conductors cooled to about 10oK. The use of hybrid magnets combining MgB2 and high temperature super-conductors to reach the needed high fields for all the machine components has been proposed also with a specific configuration for envisioned future experiments. A surprising occurrence, related to the ideas at the basis of the HFC machine approach has been the practice of the ``damnatio memoriae'' inflicted on their originators. Sponsored in part by the U.S. D.O.E.

  13. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  14. Evaluation of the dielectric constant for RF shimming at high field MRI

    NASA Astrophysics Data System (ADS)

    Jayatilake, Mohan; Storrs, Judd; Chu, Wen-Jang; Lee, Jing-Huei

    2010-10-01

    Optimal image quality for Magnetic Resonance Imaging (MRI) at high fields requires a homogeneous RF (B1) field; however, the dielectric properties of the human brain result in B1 field inhomogeneities and signal loss at the periphery of the head. These result from constructive and destructive RF interactions of complex wave behaviour, which become worse with increasing magnetic field strength. Placement of a shim object with high-dielectric constant adjacent to the body has been proposed as a method for reducing B1 inhomogeneity by altering wave propagation within the volume of interest. Selecting the appropriate permittivity and quantity of material for the shim is essential. Whereas previous work has determined the dielectric properties of the shim empirically, this work introduces an improved theoretical framework for determining the requisite dielectric constant of the passive shim material directly by increasing the axial or minimizing the radial propagation constant.

  15. The primary motor area for voluntary diaphragmatic motion identified by high field fMRI.

    PubMed

    Nakayama, Takahiro; Fujii, Yukihiko; Suzuki, Kiyotaka; Kanazawa, Ichiro; Nakada, Tsutomu

    2004-06-01

    In order to identify the precise location of the primary motor area for the diaphragm with respect to the classical motor homunculus, functional magnetic resonance imaging (fMRI) experiments were performed utilizing independent component-cross correlation- sequential epoch (ICS) analysis on a high-field (3.0 Tesla) system. Activations which correlated with voluntary diaphragmatic motion mapped onto the area anterolateral to that for voluntary hand motion (internal control in ICS analysis). Multiple subject analysis yielded the primary motor cortex for the diaphragm to be (+/-48, -4, 47) in the Talairach and Tournoux coordinates. The results were highly consistent with the previously reported cortical area for the diaphragm determined by transcranial electrical/magnetic stimulation.

  16. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  17. High field dielectric properties of anisotropic polymer-ceramic composites

    SciTech Connect

    Tomer, V.; Randall, C. A.

    2008-10-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO{sub 3} particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems.

  18. Superior high-field current density in slightly Mg-deficient MgB2 tapes

    NASA Astrophysics Data System (ADS)

    Jiang, C. H.; Nakane, T.; Kumakura, H.

    2005-12-01

    A series of Fe-clad MgxB2 tapes with x varying from 0.5 to 1.2 was prepared by the in situ powder-in-tube method. Slightly Mg-deficient samples showed higher Jc in high magnetic fields, whereas samples with stoichiometric Mg or a slight excess of Mg exhibited better Jc in the low-field region. The sample with x =0.9 showed the best Jc in the applied magnetic field. The MgB2 core was porous in Mg-deficient tapes but with smaller grain sizes than the samples with a slight Mg excess due to insufficient grain growth. Some fine nanometer size grains were also observed in the B-rich samples. The enhanced grain boundary pinning due to the smaller grain size may explain the superior high-field Jc property of the slightly Mg-deficient MgB2 tapes. Our results indicate that preparing MgB2 samples with a slight excess of Mg may not be advantageous when developing devices for high-field applications.

  19. Collaboration of academia and industry for high field science

    NASA Astrophysics Data System (ADS)

    Kato, Y.

    2014-05-01

    Close collaboration between academia and industry is essential for opening frontiers of both science and industry. High performance photon detectors developed at industry are playing vital roles in science such as astronomy and high energy physics. Alternatively many advanced industrial and medical products came out of research in basic science. For advancement of high field science, closer collaboration between academia and industry is necessary to develop next generation high power lasers, which will also meet the needs in industry, medicine and energy.

  20. Hole-exciton interaction induced high field decay of magneto-electroluminescence in Alq{sub 3}-based organic light-emitting diodes at room temperature

    SciTech Connect

    Zhang, Tingting; Holford, D. F.; Gu, Hang; Kreouzis, T.; Zhang, Sijie E-mail: w.gillin@qmul.ac.uk; Gillin, W. P. E-mail: w.gillin@qmul.ac.uk

    2016-01-11

    The magnetic field effects on the electroluminescence of aluminium tris-(8-hydroxyqinoline) (Alq{sub 3}) based organic light emitting diodes have been investigated by varying the electron/hole ratio in the emissive layer. Experimental results reveal that a negative high field effect in the magneto-electroluminescence (MEL) can be found in devices with very low triplet exciton concentration at room temperature. This suggests triplet-triplet annihilation cannot be used to explain the negative high field MEL in the Alq{sub 3} system. Our results suggest that hole-exciton interaction may be the origin of the negative high field MEL and also, in parallel with this interaction, there is also the more common positive high field process occurring which has been tentatively attributed to electron-exciton interactions. The competition between these different processes decides the final shape of the MEL at high fields.

  1. High-Field Fractional Quantum Hall Effect in Optical Lattices

    SciTech Connect

    Palmer, R.N.; Jaksch, D.

    2006-05-12

    We consider interacting bosonic atoms in an optical lattice subject to a large simulated magnetic field. We develop a model similar to a bilayer fractional quantum Hall system valid near simple rational numbers of magnetic flux quanta per lattice cell. Then we calculate its ground state, magnetic lengths, fractional fillings, and find unexpected sign changes in the Hall current. Finally we study methods for detecting these novel features via shot noise and Hall current measurements.

  2. High-field paramagnetic Meissner effect and flux creep in low-T c Ti-V alloy superconductors

    NASA Astrophysics Data System (ADS)

    Matin, M.; Chattopadhyay, M. K.; Sharath Chandra, L. S.; Roy, S. B.

    2016-02-01

    We report an experimental study on the high-field paramagnetic Meissner effect (HFPME) performed by measuring both the temperature and time dependence of magnetization in the two compositions of superconducting Ti-V alloys where certain secondary phases are non-superconducting, and thereby act as efficient pinning centres for the flux lines. While spatially non-uniform flux density driven by flux line pinning at these secondary phases is the necessary condition for the observation of the HFPME, our study indicates that the flux creep effect plays a supplementary role to reinforce the HFPME. It is found that in the temperature and magnetic field regime of the HFPME, the field-cooled magnetization of these samples relaxes monotonically towards a more positive value with elapsed time. We comment on how this paramagnetic relaxation behaviour of the field-cooled magnetization is correlated with the unusual thermo-magnetic responses related to the HFPME.

  3. Magnetizing of permanent magnets using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  4. Indirect magnetic resonance lymphography of the head and neck of dogs using Gadofluorine M and a conventional gadolinium contrast agent: a pilot study.

    PubMed

    Mayer, Monique N; Kraft, Susan L; Bucy, Daniel S; Waldner, Cheryl L; Elliot, Kirsten M; Wiebe, Sheldon

    2012-10-01

    The purpose of this pilot study was to evaluate lymph node enhancement with an indirect magnetic resonance (MR) lymphography technique using 2 different contrast agents in the head and neck region of healthy dogs. Five dogs were imaged at various times after intradermal injection of gadoversetamide and Gadofluorine M (minimum of 1 week apart) in the right and left mandibular, temporal, and lateral neck regions. We observed consistent progressive enhancement with time in the mandibular, retropharyngeal, and superficial cervical lymph nodes. The node enhancement was comparable for both contrast agents. Contrast enhancement of the parotid lymph nodes was not seen. We conclude that this technique of indirect MR lymphography using either agent could be used to identify those lymph nodes at highest risk of metastatic disease in dogs with cancer, and to guide staging and treatment.

  5. Demountable, High field High-Temperature Superconductor TF coils for flexible steady-state fusion experiments

    NASA Astrophysics Data System (ADS)

    Michael, Phillip; Bromberg, Leslie; Vieira, Rui; Minervini, Joseph; Galea, Christopher; Hensley, Sarah; Whyte, Dennis

    2014-10-01

    The excellent properties of HTS materials (e.g., YBCO) at high fields and elevated temperatures (>20 K), offer operational advantages for fusion machines, but results in challenges. For fusion devices, the ability to disassemble the TF coil is very attractive as it provides direct access to maintain the vacuum vessel, first wall and other components in a timely manner. High current conductors, made from multiple thin tapes, are not available but are being developed. Quench protection is a serious issue with HTS magnets, and novel means are needed to detect normal zones and to quickly discharge the magnet. Potential cables designs, demountable magnets and solutions to quench and protection issues for an HTS TF magnet for the Vulcan device (long term PMI studies) will be described. We also describe means for making continuous, persistent loops with HTS tapes. These loops offer an alternative to expensive monoliths for field control for complex geometries, such as stellarator-like fields. Partially supported by US DOE DE-FC02-93ER54186.

  6. High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR

    PubMed Central

    Barnes, A.B.; Paëpe, G. De; van der Wel, P.C.A.; Hu, K.-N.; Joo, C.-G.; Bajaj, V.S.; Mak-Jurkauskas, M.L.; Sirigiri, J.R.; Herzfeld, J.; Temkin, R.J.; Griffin, R.G.

    2008-01-01

    Dynamic nuclear polarization (DNP) results in a substantial nuclear polarization enhancement through a transfer of the magnetization from electrons to nuclei. Recent years have seen considerable progress in the development of DNP experiments directed towards enhancing sensitivity in biological nuclear magnetic resonance (NMR). This review covers the applications, hardware, polarizing agents, and theoretical descriptions that were developed at the Francis Bitter Magnet Laboratory at Massachusetts Institute of Technology for high-field DNP experiments. In frozen dielectrics, the enhanced nuclear polarization developed in the vicinity of the polarizing agent can be efficiently dispersed to the bulk of the sample via 1H spin diffusion. This strategy has been proven effective in polarizing biologically interesting systems, such as nanocrystalline peptides and membrane proteins, without leading to paramagnetic broadening of the NMR signals. Gyrotrons have been used as a source of high-power (5–10 W) microwaves up to 460 GHz as required for the DNP experiments. Other hardware has also been developed allowing in situ microwave irradiation integrated with cryogenic magic-angle-spinning solid-state NMR. Advances in the quantum mechanical treatment are successful in describing the mechanism by which new biradical polarizing agents yield larger enhancements at higher magnetic fields. Finally, pulsed methods and solution experiments should play a prominent role in the future of DNP. PMID:19194532

  7. Numerical evaluation of E-fields induced by body motion near high-field MRI scanner.

    PubMed

    Crozier, S; Liu, F

    2004-01-01

    In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.

  8. RACETRACK MAGNET DESIGNS AND TECHNOLOGIES.

    SciTech Connect

    GUPTA, R.

    2006-04-03

    This paper presents a review of racetrack coil magnet designs and technologies for high field magnets that can be used in LHC upgrade. The designs presented here allow both ''Wind & React'' and ''React & Wind'' technologies as they are based on flat racetrack coils with large bend radii. Test results of the BNL 10.3 T ''React & Wind'' common coil magnet are also presented. A possible use of High Temperature Superconductors (HTS) in future high field accelerator magnets is examined.

  9. High field pulse plating; Gold on platinum electrodes

    SciTech Connect

    Segal, C.C.; Chase, A.B. ); Young, A.M. )

    1992-06-01

    In this paper a electrodeposition technique, high field pulse plating (HFPP), is explored over a wide range of experimental parameters. The experimental setup is fully described. Results are presented for gold plated onto platinum using pulse widths varying from 100-500 ns, at voltages between 10-40 V, and using repetition rates between 10-100 kHz. A conceptual model is presented for use in understanding trends that are experimentally observed. Scanning electronmicrograph photographs and optical reflectivity results demonstrate that a smoother surface is obtained with the HFPP process compared to dc plating.

  10. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  11. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention.

    PubMed

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud, Raghavender D; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-05-27

    A simple, sensitive and low temperature sample preparation method is developed for detection and identification of Chemical Warfare Agents (CWAs) and scheduled esters in organic liquid using magnetic dispersive solid phase extraction (MDSPE) followed by gas chromatography-mass spectrometry analysis. The method utilizes Iron oxide@Poly(methacrylic acid-co-ethylene glycol dimethacrylate) resin (Fe2O3@Poly(MAA-co-EGDMA)) as sorbent. Variants of these sorbents were prepared by precipitation polymerization of methacrylic acid-co-ethylene glycol dimethacrylate (MAA-co-EGDMA) onto Fe2O3 nanoparticles. Fe2O3@poly(MAA-co-EGDMA) with 20% MAA showed highest recovery of analytes. Extractions were performed with magnetic microspheres by MDSPE. Parameters affecting the extraction efficiency were studied and optimized. Under the optimized conditions, method showed linearity in the range of 0.1-3.0μgmL(-1) (r(2)=0.9966-0.9987). The repeatability and reproducibility (relative standard deviations (RSDs) %) were in the range of 4.5-7.6% and 3.4-6.2% respectively for organophosphorous esters in dodecane. Limits of detection (S/N=3/1) and limit of quantification (S/N=10/1) were found to be in the range of 0.05-0.1μgmL(-1) and 0.1-0.12μgmL(-1) respectively in SIM mode for selected analytes. The method was successfully validated and applied to the extraction and identification of targeted analytes from three different organic liquids i.e. n-hexane, dodecane and silicon oil. Recoveries ranged from 58.7 to 97.3% and 53.8 to 95.5% at 3μgmL(-1) and 1μgmL(-1) spiking concentrations. Detection of diethyl methylphosphonate (DEMP) and O-Ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) in samples provided by the Organization for Prohibition of Chemical Weapons Proficiency Test (OPCW-PT) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Magnetic resonance imaging of liver metastases: experimental comparison of anionic and conventional superparamagnetic iron oxide particles with a hepatobiliary contrast medium during dynamic and uptake phases.

    PubMed

    Kaufels, Nicola; Korn, Ronny; Wagner, Susanne; Schink, Tania; Hamm, Bernd; Taupitz, Matthias; Schnorr, Jörg

    2008-07-01

    To assess the contrast-enhancing effects of citrate-coated superparamagnetic iron oxide particles (VSOP-C184) in a rat liver tumor model using dynamic and delayed magnetic resonance imaging in comparison to carboxydextran-coated particles (ferucarbotran) and a hepatobiliary contrast medium (gadobenate dimeglumine). A total of 32 male rats with liver tumors (CC-531 colorectal carcinoma) were examined at 1.5 T with a T1-weighted dynamic series (3D gradient echo sequence) and T1-weighted and T2*-weighted images (2D gradient echo sequences) before and 15 and 90 minutes after injection. VSOP-C184 was investigated at doses of 0.015, 0.045, and 0.06 mmol Fe/kg, ferucarbotran at 0.015 mmol Fe/kg, and gadobenate dimeglumine at 0.025, 0.05, and 0.1 mmol Gd/kg. Liver-tumor contrast-to-noise ratio (CNR) was calculated and statistically compared. T1-weighted dynamic images: VSOP-C184 has significantly higher CNR values at a dose of 0,015 mmol Fe/kg than ferucarbotran at the same dose (P = 0.001). VSOP-C184 produces a significantly higher CNR at a dose of 0.045 mmol Fe/kg than gadobenate dimeglumine at a dose of 0.05 mmol Gd/kg (P = 0.019). At a dose of 0.06 mmol Fe/kg, the CNR for VSOP-C184 is significantly lower than that of gadobenate dimeglumine (0.1 mmol Gd/kg) (P = 0.005).T2-weighted delayed images: CNR values of VSOP-C184 are similar to those of ferucarbotran and are significantly higher than those of gadobenate dimeglumine (P < 0.05). On T1-weighted magnetic resonance imaging of liver tumors VSOP-C184 produces a high contrast comparable to that of a hepatobiliary contrast medium in addition to its contrast-enhancing effect in T2-weighted imaging.

  13. Understanding and manipulating the RF fields at high field MRI

    PubMed Central

    Ibrahim, Tamer S.; Hue, YiK-Kiong; Tang, Lin

    2015-01-01

    This paper presents a complete overview of the electromagnetics (radiofrequency aspect) of MRI at low and high fields. Using analytical formulations, numerical modeling (computational electromagnetics), and ultrahigh field imaging experiments, the physics that impacts the electromagnetic quantities associated with MRI, namely (1) the transmit field, (2) receive field, and (3) total electromagnetic power absorption, is analyzed. The physical interpretation of the above-mentioned quantities is investigated by electromagnetic theory, to understand ‘What happens, in terms of electromagnetics, when operating at different static field strengths?’ Using experimental studies and numerical simulations, this paper also examines the physical and technological feasibilities by which all or any of these specified electromagnetic quantities can be manipulated through techniques such as B1 shimming (phased array excitation) and signal combination using a receive array in order to advance MRI at high field strengths. Pertinent to this subject and with highly coupled coils operating at 7 T, this paper also presents the first phantom work on B1 shimming without B1 measurements. PMID:19621335

  14. High-field Hall resistivity and magnetoresistance of electron-doped Pr2-xCexCuO4-delta.

    PubMed

    Li, Pengcheng; Balakirev, F F; Greene, R L

    2007-07-27

    We report resistivity and Hall effect measurements in electron-doped Pr2-xCexCuO4-delta films in magnetic field up to 58 T. In contrast to hole-doped cuprates, we find a surprising nonlinear magnetic field dependence of Hall resistivity at high field in the optimally doped and overdoped films. We also observe a crossover from quadratic to linear field dependence of the positive magnetoresistance in the overdoped films. A spin density wave induced Fermi surface reconstruction model can be used to qualitatively explain both the Hall effect and magnetoresistance.

  15. The OMERACT-RAMRIS rheumatoid arthritis magnetic resonance imaging joint space narrowing score: intrareader and interreader reliability and agreement with computed tomography and conventional radiography.

    PubMed

    Døhn, Uffe Møller; Conaghan, Philip G; Eshed, Iris; Boonen, Annelies; Boyesen, Pernille; Peterfy, Charles G; Lillegraven, Siri; Ejbjerg, Bo; Gandjbakhch, Frederique; Bird, Paul; Foltz, Violaine; Genant, Harry K; Haavardsholm, Espen; McQueen, Fiona M; Østergaard, Mikkel

    2014-02-01

    To test the intrareader and interreader reliability of assessment of joint space narrowing (JSN) in rheumatoid arthritis (RA) wrist and metacarpophalangeal (MCP) joints on magnetic resonance imaging (MRI) and computed tomography (CT) using the newly proposed OMERACT-RAMRIS JSN scoring method, and to compare JSN assessment on MRI, CT, and radiography. After calibration of readers, MRI and CT images of the wrist and second to fifth MCP joints from 14 patients with RA and 1 healthy control were assessed twice for JSN by 3 readers, blinded to clinical and imaging data. Radiographs were scored by the Sharp/van der Heijde method. Intraclass correlation coefficients (ICC) and smallest detectable differences (SDD) were calculated, and the performance of various simplified scores was investigated. Both MRI and CT showed high intrareader (ICC ≥ 0.95) and interreader (ICC ≥ 0.94) reliability for total (wrist + MCP) assessment of JSN. Agreement was generally lower for MCP joints than for wrist joints, particularly for CT. Intrareader SDD for MCP/wrist/MCP + wrist were 1.2/6.1/6.4 JSN units for MRI, while 2.7/8.3/9.9 JSN units for CT. JSN on MRI and CT correlated moderately well with corresponding radiographic JSN scores (MCP 2-5: 0.49 and 0.56; wrist areas assessed by Sharp/van der Heijde: 0.80 and 0.95), and high ICC between scores on MRI and CT were demonstrated (MCP: 0.94; wrist: 0.92; MCP + wrist: 0.92). The OMERACT-RAMRIS MRI JSN scoring system showed high intrareader and interreader reliability, and high correlation with CT scores of JSN. The suggested JSN score may, after further validation in longitudinal studies, become a useful tool in RA clinical trials.

  16. The comparison of efficacy of different imaging techniques (conventional radiography, ultrasonography, magnetic resonance) in assessment of wrist joints and metacarpophalangeal joints in patients with psoriatic arthritis

    PubMed Central

    Sankowski, Artur Jacek; Łebkowska, Urszula Maria; Ćwikła, Jarosław; Walecka, Irena; Walecki, Jerzy

    2013-01-01

    Summary Background: Psoriatic arthritis (PsA) is a chronic inflammatory joint disease which develops in patients with psoriasis. The rheumatoid factor is characteristically absent in the serum of PsA patients. Etiology of the disease is still unclear but a number of genetic associations have been identified. Inheritance of the disease is multilevel and the role of environmental factors is emphasized. Immunology of PsA is also quite complex. Inflammation is caused by immunological reactions leading to a release of kinins. Destructive changes in bones usually appear after a few months from the onset of clinical symptoms. Material/Methods: PsA typically involves joints of the axial skeleton with an asymmetrical patern. The spectrum of symptoms includes inflammatory changes in attachments of articular capsules, tendons, and ligaments to bone surface. The disease can have a diverse clinical course but usually manifests as oligoarthritis. Results: Imaging plays an important role in the diagnosis of PsA. Classical radiography has been used for this purpose for over a hundred years. It allows to identify late stages of the disease, when bone tissue is affected. In the last 20 years however many new imaging modalities, such as ultrasonography (US), computed tomography (CT) and magnetic resonance (MR), have been developed and became important diagnostic tools for evaluating rheumatoid diseases. They enable the assessment and monitoring of early inflammatory changes. Conclusions: As a result, patients have earlier access to modern treatment and thus formation of destructive changes in joints can be markedly delayed or even avoided. PMID:23494635

  17. Fast Spectroscopic Imaging and Field Compensation Using Frequency Modulation at Ultra-High-Field

    NASA Astrophysics Data System (ADS)

    Jang, Albert Woo Ju

    The high energy phosphates (HEP) in the myocardium, which are critical to understanding the cardiac function in both normal and pathophysiologic states, can be assessed non-invasively in vivo using phosphorus-31 (31P) spectroscopy. Compared to proton, for the same volume and magnetic field strength, the available signal-to-noise (SNR) ratio of the HEP metabolites is orders of magnitude lower mainly due to its intrinsically low concentration. Hence, cardiac spectroscopy greatly benefits when performed at ultra-high-fields (UHF, ≥ 7 T), both in terms of increased SNR and increased spectroscopic resolution. However, at ultra-high-field strengths, complications arise from the RF transmit wavelength becoming comparable or smaller than the field-of-view (FOV), thus exhibiting wave-like behavior. Furthermore, even with the spectroscopic resolution afforded at UHF, measuring myocardial inorganic phosphate (Pi) is still a challenge and has been a major barrier in extracting the ATP turnover rate. Recently, an indirect way of extracting the ATP hydrolysis rate forgoing direct measurement of Pi was established. In this work, we combine this method with the T1 nom method to monitor the transmural distribution of forward creatine kinase reaction (kf,CK) and ATP hydrolysis rate (kr,ATPase) of the myocardium, effectively reducing data acquisition time by up to an order of magnitude. In addition, a new class of 2D FM pulses and multidimensional adiabatic pulses are presented, which can compensate for B1 inhomogeneity through its spatiotemporal properties. These pulses should be valuable for spectroscopic applications at ultra-high-fields.

  18. Shielding assessment of high field (QED) experiments at the ELI-NP 10 PW laser system.

    PubMed

    Popovici, M A; Mitu, I O; Căta-Danil, Gh; Negoit Ă, F; Ivan, C

    2017-03-20

    High field quantum electrodynamics experiments will be conducted in the E6 experimental area of the Extreme Light Infrastructure-Nuclear Physics building. Here electrons and protons will be accelerated up to relativistic energies by multi-petawatt laser beam-target interactions. In this respect, the requirements for radiological safety measures are similar to those associated with the operation of conventional high energy accelerators. The paper presents a FLUKA simulation approach to the shielding assessment of the individual experiments. Updated source terms were used in order to compute ambient dose equivalent rates throughout E6 and neighbouring areas and check the compliance of the results with legal dose constraints. We investigated the effectiveness of an 'all-purpose' beam dump at E6 and the practicality of local muon shielding.

  19. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    PubMed Central

    Jang, H.; Lee, W.-S.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Nie, L.; Maharaj, A. V.; Gerber, S.; Liu, Y.-J.; Mehta, A.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Burns, C. A.; Islam, Z.; Song, S.; Hastings, J.; Devereaux, T. P.; Shen, Z.-X.; Kivelson, S. A.; Kao, C.-C.; Zhu, D.; Lee, J.-S.

    2016-01-01

    The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate. PMID:27930313

  20. Sample-Induced RF Perturbations in High-Field, High-Resolution NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Crozier, Stuart; Brereton, Ian M.; Zelaya, Fernando O.; Roffmann, Wolfgang U.; Doddrell, David M.

    1997-05-01

    Conducting dielectric samples are often used in high-resolution experiments at high field. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred. Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect.

  1. An FEM approach for the characterization of the RF field homogeneity at high field.

    PubMed

    Guclu, C; Kashmar, G; Hacinliyan, A; Nalcioglu, O

    1997-01-01

    High field magnetic resonance offers new opportunities because of its high SNR and better spectral resolution for MRI and MRS. However, new problems also emerge at high field. As the field strength increases, the wavelength in the tissue becomes shorter and comparable with the body dimensions. This perturbs the field and also causes standing waves within the patient as a result of the impedance mismatching at the tissue interfaces. Due to the complexity of the boundary conditions and the solution of Maxwell's equations, an exact analytical calculation for a loaded RF resonator has not been possible. In this paper, we present a birdcage coil simulation study based on a 3D finite element method (FEM) model for the characterization of the field within the tissue. First, the accuracy of the FEM solutions is validated by the 2D analytical solutions at 64 and 223 MHz. In these solutions, the frequency dependence of the conductivity and permittivity is also taken into account. Then, a more realistic 3D model is studied. The results are compared with the experimental measurements. It is shown that the 3D model makes it possible to explore the effects of the end rings in the presence of a tissue sample inside the coil.

  2. Ideal charge-density-wave order in the high-field state of superconducting YBCO.

    PubMed

    Jang, H; Lee, W-S; Nojiri, H; Matsuzawa, S; Yasumura, H; Nie, L; Maharaj, A V; Gerber, S; Liu, Y-J; Mehta, A; Bonn, D A; Liang, R; Hardy, W N; Burns, C A; Islam, Z; Song, S; Hastings, J; Devereaux, T P; Shen, Z-X; Kivelson, S A; Kao, C-C; Zhu, D; Lee, J-S

    2016-12-20

    The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field ([Formula: see text]) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to [Formula: see text], given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an "ideal" disorder-free cuprate.

  3. Modified van Vaals-Bergman coaxial cable coil (lambda coil) for high-field imaging.

    PubMed

    Matsuzawa, H; Nakada, T

    1996-03-01

    An easily constructed, low-capacitive coupling volume coil based on the van Vaals-Bergman coaxial cable coil for high field imaging is described. The coil (designated "lambda coil") was constructed using two 5/4 length 50 omega coaxial cables matched to a 50 omega transmission line with LC bridge balun. The standing wave on the single 5/4 lambda length coaxial cable provides two points of current maxima in oppositional direction. Therefore, the four current elements necessary for effective B1 field generation can be obtained by two 5/4 lambda length coaxial cables arranged analogous to 1/2 lambda T-antenna. Capacitive coupling between the coil elements and conductive samples (i.e. animals) is minimized by simply retaining the shield of the coaxial cable for the area of voltage maxima. The lambda coil exhibited excellent performance as a volume coil with a high quality factor and highly homogeneous rf fields. Because of its dramatically simple architecture and excellent performance, the lambda coil configuration appears to be an economical alternative to the original van Vaals-Bergman design, especially for research facilities with a high field magnet and limited bore space.

  4. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    DOE PAGES

    Jang, H.; Lee, W. -S.; Nojiri, H.; ...

    2016-12-05

    Here, the existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well asmore » significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.« less

  5. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    SciTech Connect

    Jang, H.; Lee, W. -S.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Nie, L.; Maharaj, A. V.; Gerber, S.; Liu, Y. -J.; Mehta, A.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Burns, C. A.; Islam, Z.; Song, S.; Hastings, J.; Devereaux, T. P.; Shen, Z. -X.; Kivelson, S. A.; Kao, C. -C.; Zhu, D.; Lee, J. -S.

    2016-12-05

    Here, the existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.

  6. Combined acquisition technique (CAT) for high-field neuroimaging with reduced RF power.

    PubMed

    Choli, Morwan; Blaimer, Martin; Breuer, Felix A; Ehses, Philipp; Speck, Oliver; Bartsch, Andreas J; Jakob, Peter M

    2013-08-01

    Clinical 3 T MRI systems are rapidly increasing and MRI systems with a static field of 7 T or even more have been installed. The RF power deposition is proportional to the square of the static magnetic field strength and is characterized by the specific absorption rate (SAR). Therefore, there exist defined safety limits to avoid heating of the patient. Here, we describe a hybrid method to significantly reduce the SAR compared to a turbo-spin-echo (TSE) sequence. We investigate the potential benefits of a combined acquisition technique (CAT) for high-field neuroimaging at 3 and 7 T. The TSE/EPI CAT experiments were performed on volunteers and patients and compared with standard TSE and GRASE protocols. Problems and solutions regarding T2 weighted CAT imaging are discussed. We present in vivo images with T2 and proton density contrast obtained on 3 and 7 T with significant SAR reduction (up to 60%) compared with standard TSE. Image quality is comparable to TSE but CAT shows fewer artifacts than a GRASE sequence. CAT is a promising candidate for neuroimaging at high fields up to 7 T. The SAR reduction allows one to shorten the waiting time between two excitations or to image more slices thereby reducing the overall measurement time.

  7. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    DOE PAGES

    Jang, H.; Lee, W. -S.; Nojiri, H.; ...

    2016-12-05

    The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significantmore » correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. Furthermore, this is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.« less

  8. Initial experience of using high field strength intraoperative MRI for neurosurgical procedures.

    PubMed

    Raheja, Amol; Tandon, Vivek; Suri, Ashish; Sarat Chandra, P; Kale, Shashank S; Garg, Ajay; Pandey, Ravindra M; Kalaivani, Mani; Mahapatra, Ashok K; Sharma, Bhawani S

    2015-08-01

    We report our initial experience to optimize neurosurgical procedures using high field strength intraoperative magnetic resonance imaging (IOMRI) in 300 consecutive patients as high field strength IOMRI rapidly becomes the standard of care for neurosurgical procedures. Three sequential groups (groups A, B, C; n=100 each) were compared with respect to time management, complications and technical difficulties to assess improvement in these parameters with experience. We observed a reduction in the number of technical difficulties (p<0.001), time to induction (p<0.001) and total anesthesia time (p=0.007) in sequential groups. IOMRI was performed for neuronavigation guidance (n=252) and intraoperative validation of extent of resection (EOR; n=67). Performing IOMRI increased the EOR over and beyond the primary surgical attempt in 20.5% (29/141) and 18% (11/61) of patients undergoing glioma and pituitary surgery, respectively. Overall, EOR improved in 59.7% of patients undergoing IOMRI (40/67). Intraoperative tractography and real time navigation using re-uploaded IOMRI images (accounting for brain shift) helps in intraoperative planning to reduce complications. IOMRI is an asset to neurosurgeons, helping to augment the EOR, especially in glioma and pituitary surgery, with no significant increase in morbidity to the patient.

  9. High field X-ray diffraction measurements of Mn2Sb0.95Ge0.05

    NASA Astrophysics Data System (ADS)

    Wakamori, Taoto; Mitsui, Yoshifuru; Takahashi, Kohki; Umetsu, Rie Y.; Hiroi, Masahiko; Koyama, Keiichi

    2016-08-01

    Magnetization and high-field X-ray powder diffraction measurements were performed for Mn2Sb0.95Ge0.05 with a tetragonal structure in magnetic fields up to 5 T in the 10-300 K temperature range. For B = 0 T and 5 T, a first-order magnetic transition from a ferrimagnetic (FRI) to an antiferromagnetic (AFM) state occurred at Tt ˜ 180 K and 150 K, respectively, and were accompanied by an iso-structural transformation. For this transition from the AFM to FRI state, the lattice parameters a and c changed by |Δa/a| = 0.15% and by |Δc/c| = 0.47% at 180 K. The compound showed both metamagnetic transition from the AFM to FRI state with a hysteresis at the temperature just below Tt and magnetic field-induced iso-structural transformation.

  10. Progress in High-Field Optical Pumping of Alkali Metal Nuclei

    NASA Astrophysics Data System (ADS)

    Patton, B.; Ishikawa, K.; Jau, Y.-Y.; Happer, W.

    2006-05-01

    We present preliminary results of an attempt to polarize alkali metal nuclei via optical pumping in a large (9.4-tesla) magnetic field. NMR measurements of ^87Rb and ^133Cs films in optical cells will be reported. Depopulation pumping of alkalis can easily produce electron polarizations of order unity, as measured during spin-exchange optical pumping of noble gases [1]. At low magnetic fields (< ˜1 kG), the strong hyperfine coupling between the alkali electron and nucleus allows angular momentum exchange from one to the other, resulting in nuclear polarization enhancement through optical pumping. In the high magnetic fields required for NMR, however, this interaction is largely decoupled and electron-nuclear spin exchange must rely upon the δA I .S interaction induced by buffer gas collisions (also called the ``Carver rate''). High-field optical pumping experiments may allow for a more precise measurement of this rate, as well as yielding insight into the transfer of angular momentum from the polarized alkali vapor to the bulk alkali metal on the cell walls. The technical challenges of high-resolution NMR of alkali metals at 9.4 tesla will be discussed. 1. E. Babcock, I. Nelson, S. Kadlecek, et al., Physical Review Letters 91, 123003 (2003).

  11. High-field Zeeman and Paschen-Back effects at high pressure in oriented ruby

    NASA Astrophysics Data System (ADS)

    Millot, Marius; Broto, Jean-Marc; Gonzalez, Jesus

    2008-10-01

    High-field Zeeman and Paschen-Back effects have been observed in single crystals of ruby submitted to hydrostatic pressure up to 10 GPa. A specific setup with a miniature diamond-anvil cell has been developed to combine high pressure and pulsed magnetic fields and to perform magnetophotoluminescence measurements. Careful analysis of low-temperature (4.2 and 77 K) photoluminescence spectra with a 56 T magnetic field applied along the c axis allows for the rectification of the assignment of observed emission lines to corresponding Zeeman-split levels. Besides, the intrinsic Zeeman-splitting factors of excited states reveal a linear pressure-induced increase. This enhancement is a signature of an increase in trigonal distortion induced by hydrostatic pressure. Moreover, spectra with magnetic field perpendicular to crystallographic c axis exhibit a Paschen-Back effect reflecting the progressive alignment of Cr3+ ions spin along the applied field. However, no pressure modification is observed in this compound, contrarily to the Heisenberg-to-Ising spin character pressure-induced transition observed in alexandrite.

  12. Magnetization of ferromagnetic clusters

    SciTech Connect

    Onishi, Naoki; Bertsch, G.; Yabana, Kazuhiro

    1995-02-01

    The magnetization and deflection profiles of magnetic clusters in a Stern-Gerlach magnet are calculated for conditions under which the magnetic moment is fixed in the intrinsic frame of the cluster, and the clusters enter the magnetic field adiabatically. The predicted magnetization is monotonic in the Langevin parameter, the ratio of magnetic energy {mu}{sub 0}B to thermal energy k{sub B}T. In low field the average magnetization is 2/3 of the Langevin function. The high-field moment approaches saturation asymptotically as B{sup {minus}1/2} instead of the B{sup {minus}1} dependence in the Langevin function.

  13. Topical Developments in High-Field Dynamic Nuclear Polarization

    PubMed Central

    Kiesewetter, Matthew K.; Frantz, Derik K.; Walish, Joseph J.; Ravera, Enrico; Luchinat, Claudio; Swager, Timothy M.; Griffin, Robert G.

    2015-01-01

    We report our recent efforts directed at improving high-field DNP experiments. We investigated a series of thiourea nitroxide radicals and the associated DNP enhancements ranging from ε = 25 to 82 that demonstrate the impact of molecular structure on performance. We directly polarized low-gamma nuclei including 13C, 2H, and 17O using trityl via the cross effect. We discuss a variety of sample preparation techniques for DNP with emphasis on the benefit of methods that do not use a glass-forming cryoprotecting matrix. Lastly, we describe a corrugated waveguide for use in a 700 MHz / 460 GHz DNP system that improves microwave delivery and increases enhancements up to 50%. PMID:25977588

  14. Whole-globe biomechanics using high-field MRI.

    PubMed

    Voorhees, Andrew P; Ho, Leon C; Jan, Ning-Jiun; Tran, Huong; van der Merwe, Yolandi; Chan, Kevin; Sigal, Ian A

    2017-07-01

    The eye is a complex structure composed of several interconnected tissues acting together, across the whole globe, to resist deformation due to intraocular pressure (IOP). However, most work in the ocular biomechanics field only examines the response to IOP over smaller regions of the eye. We used high-field MRI to measure IOP induced ocular displacements and deformations over the whole globe. Seven sheep eyes were obtained from a local abattoir and imaged within 48 h using MRI at multiple levels of IOP. IOP was controlled with a gravity perfusion system and a cannula inserted into the anterior chamber. T2-weighted imaging was performed to the eyes serially at 0 mmHg, 10 mmHg, 20 mmHg and 40 mmHg of IOP using a 9.4 T MRI scanner. Manual morphometry was conducted using 3D visualization software to quantify IOP-induced effects at the globe scale (e.g. axial length and equatorial diameters) or optic nerve head scale (e.g. canal diameter, peripapillary sclera bowing). Measurement sensitivity analysis was conducted to determine measurement precision. High-field MRI revealed an outward bowing of the posterior sclera and anterior bulging of the cornea due to IOP elevation. Increments in IOP from 10 to 40 mmHg caused measurable increases in axial length in 6 of 7 eyes of 7.9 ± 5.7% (mean ± SD). Changes in equatorial diameter were minimal, 0.4 ± 1.2% between 10 and 40 mmHg, and in all cases less than the measurement sensitivity. The effects were nonlinear, with larger deformations at normal IOPs (10-20 mmHg) than at elevated IOPs (20-40 mmHg). IOP also caused measurable increases in the nasal-temporal scleral canal diameter of 13.4 ± 9.7% between 0 and 20 mmHg, but not in the superior-inferior diameter. This study demonstrates that high-field MRI can be used to visualize and measure simultaneously the effects of IOP over the whole globe, including the effects on axial length and equatorial diameter, posterior sclera displacement and bowing, and even

  15. High-Gain High-Field Fusion Plasma.

    PubMed

    Li, Ge

    2015-10-28

    A Faraday wheel (FW)-an electric generator of constant electrical polarity that produces huge currents-could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.

  16. High-field capture section for SLC positron source

    SciTech Connect

    Hoag, H.A.; Deruyter, H.; Kramer, J.; Yao, C.G.

    1986-05-01

    The positron source for SLC is being installed at the two-thirds point on the SLAC linac. Electron bunches at 33 GeV impinge upon a Tantalum/Tungsten target, producing showers of positrons with energies extending from approximately 2 to 20 MeV, with most positrons at the low end of this range. Positrons with low energies and finite transverse momenta slip phase during the processes of reacceleration and reinjection into the SLC system, increasing the energy spread and reducing the overall yield of the positron source. This reduction in yield has to be minimized by ''capturing'' the positrons with a high-field accelerator section placed as soon after the target as possible. The design, fabrication and RF testing of this accelerator section are described.

  17. Chemical preparation of high-field zinc oxide varistors

    SciTech Connect

    Dosch, R.G.; Kimball, K.M.

    1985-09-01

    Chemical preparation methods were developed for high-field ZnO varistors in which precipitation techniques were used to prepare precursor powders. Varistors were made by sintering uniaxially pressed pellets in the range of 675 to 740/sup 0/C in air. Varistor properties included electric fields(E) in the 10 to 100 kV/cm range at current densities(J) of 5A/cm/sup 2/, nonlinearity coefficients(..cap alpha..) greater than 30 at 2.5 less than or equal to J less than or equal to 5.0 A/cm/sup 2/, and densities in the range of 65 to 99% of theoretical depending both on sintering temperature and composition.

  18. Aluminum doping studies on high field ZnO varistors

    SciTech Connect

    Kimball, K.M.; Doughty, D.H.

    1987-08-01

    We have investigated the effect of Al doping on the physical and electronic properties of high field ZnO varistors. For this study, varistors containing 98.94 m/o ZnO, 0.25 m/o CoO, 0.25 m/o MnO, 0.56 m/o Bi/sub 2/O/sub 3/ and 0 to 200 ppM Al were prepared from powders obtained from solution precipitation techniques. Because of the amphoteric nature of aluminum oxides, precise control of pH and metal concentrations was necessary to assure complete incorporation of dopants. We observed inhibition of grain growth during sintering of varistor pellets at aluminum concentrations of 50 ppM and above. The measured electrical properties show increased switching fields and increased nonlinearity coefficients for Al doping levels of 50 to 200 ppM.

  19. High-field transport in two-dimensional graphene

    NASA Astrophysics Data System (ADS)

    Fang, Tian; Konar, Aniruddha; Xing, Huili; Jena, Debdeep

    2011-09-01

    Transport of carriers in two-dimensional graphene at high electric fields is investigated by combining semianalytical and Monte Carlo methods. A semianalytical high-field transport model based on the high rate of optical phonon emission provides useful estimates of the saturation currents in graphene. For developing a more accurate picture, the nonequilibrium (hot) phonon effect and the role of electron-electron scattering were studied using Monte Carlo simulations. Monte Carlo simulations indicate that the hot phonon effect plays a dominant role in current saturation, and electron-electron scattering strongly thermalizes the hot carrier population in graphene. We also find that electron-electron scattering removes negative differential resistance in graphene. Transient phenomenon such as velocity overshoot can be used to speed up graphene-based high-speed electronic devices by shrinking the channel length below 80 nm if electrostatic control can be exercised in the absence of a band gap.

  20. Intense THz radiation produced in organic salt crystals for high-field applications

    NASA Astrophysics Data System (ADS)

    Vicario, C.; Ruchert, C.; Hauri, C. P.

    2013-03-01

    Organic stilbazolium salt crystals pumped by intense, ultrashort mid-infrared laser have been investigated for efficient THz generation by optical rectification. In this paper we present our latest results in view of the generation of single-cycle and high-field THz transient in the THz gap (0.1-10 THz). The organic rectifiers like DAST, OH1 and DSTMS combine extremely large optical susceptibility with excellent velocity matching between the infrared pump and the THz radiation. Our simple collinear conversion scheme provides THz beams with excellent focusing properties and single cycle electric field larger than 1.5 MV/cm and magnetic field strength beyond 0.5 Tesla. The source can potentially cover the full THz gap at field strength which is barely provided by other THz sources. The THz pulse is carrier-envelope phase stable and the polarity of the field can be easily inverted.

  1. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment.

    PubMed

    Holley, A T; Broussard, L J; Davis, J L; Hickerson, K; Ito, T M; Liu, C-Y; Lyles, J T M; Makela, M; Mammei, R R; Mendenhall, M P; Morris, C L; Mortensen, R; Pattie, R W; Rios, R; Saunders, A; Young, A R

    2012-07-01

    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ̅ε=0.9985(4).

  2. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    NASA Astrophysics Data System (ADS)

    Holley, A. T.; Broussard, L. J.; Davis, J. L.; Hickerson, K.; Ito, T. M.; Liu, C.-Y.; Lyles, J. T. M.; Makela, M.; Mammei, R. R.; Mendenhall, M. P.; Morris, C. L.; Mortensen, R.; Pattie, R. W.; Rios, R.; Saunders, A.; Young, A. R.

    2012-07-01

    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be overline{ɛ }=0.9985(4).

  3. RESEARCH ON SPONTANEOUS MAGNETIZATION IN SOLID BODIES

    DTIC Science & Technology

    and structure in lanthanum manganite perovskite compounds spanning the transition between antiferromagnetism and ferromagnetism was performed using neutrons diffraction and high field magnetization techniques. (Author)

  4. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    NASA Astrophysics Data System (ADS)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress–strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  5. Susceptibility Contrast in High Field MRI of Human Brain as a Function of Tissue Iron Content

    PubMed Central

    Yao, Bing; Li, Tie-Qiang; van Gelderen, Peter; Shmueli, Karin; de Zwart, Jacco A.; Duyn, Jeff H.

    2009-01-01

    Magnetic susceptibility provides an important contrast mechanism for MRI. Increasingly, susceptibility-based contrast is being exploited to investigate brain tissue microstructure and to detect abnormal levels of brain iron as these have been implicated in a variety of neuro-degenerative diseases. However, it remains unclear to what extent magnetic susceptibility-related contrast at high field relates to actual brain iron concentrations. In this study, we performed susceptibility weighted imaging as a function of field strength on healthy brains in vivo and post-mortem brain tissues at 1.5T, 3T and 7T. Iron histology was performed on the tissue samples for comparison. The calculated susceptibility-related parameters R2* and signal frequency shift in four iron-rich regions (putamen, globus pallidus, caudate, and thalamus) showed an almost linear dependence (r=0.90 for R2*; r=0.83 for phase, p<0.01) on field strength, suggesting that potential ferritin saturation effects are not relevant to susceptibility-weighted contrast for field strengths up to 7T. The R2* dependence on the putative (literature-based) iron concentration was 0.048 Hz/Tesla/ppm. The histological data from brain samples confirmed the linear dependence of R2* on field strength and showed a slope against iron concentration of 0.0099 Hz/Tesla/ppm dry-weight, which is equivalent to 0.05 Hz/Tesla/ppm wet-weight and closely matched the calculated value in vivo. These results confirm the validity of using susceptibility-weighted contrast as an indicator of iron content in iron-rich brain regions. The absence of saturation effects opens the way to exploit the benefits of MRI at high field strengths for the detection of iron distributions with high sensitivity and resolution. PMID:19027861

  6. High-Field fMRI for Human Applications: An Overview of Spatial Resolution and Signal Specificity

    PubMed Central

    Olman, Cheryl A; Yacoub, Essa

    2011-01-01

    In the last decade, dozens of 7 Tesla scanners have been purchased or installed around the world, while 3 Tesla systems have become a standard. This increased interest in higher field strengths is driven by a demonstrated advantage of high fields for available signal-to-noise ratio (SNR) in the magnetic resonance signal. Functional imaging studies have additional advantages of increases in both the contrast and the spatial specificity of the susceptibility based BOLD signal. One use of this resultant increase in the contrast to noise ratio (CNR) for functional MRI studies at high field is increased image resolution. However, there are many factors to consider in predicting exactly what kind of resolution gains might be made at high fields, and what the opportunity costs might be. The first part of this article discusses both hardware and image quality considerations for higher resolution functional imaging. The second part draws distinctions between image resolution, spatial specificity, and functional specificity of the fMRI signals that can be acquired at high fields, suggesting practical limitations for attainable resolutions of fMRI experiments at a given field, given the current state of the art in imaging techniques. Finally, practical resolution limitations and pulse sequence options for studies in human subjects are considered. PMID:22216080

  7. High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments

    SciTech Connect

    G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, D. Griffis

    2010-02-01

    The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q slope), in the absence of field emission, which are often mitigated by low-temperature (100–140°C, 12–48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed at understanding the role of hydrogen on the high-field Q slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high-temperature heat treatments, while secondary ion mass spectroscopy surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

  8. High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments

    DOE PAGES

    G. Ciovati; Myneni, G.; Stevie, F.; ...

    2010-02-22

    Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less

  9. High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments

    SciTech Connect

    G. Ciovati; Myneni, G.; Stevie, F.; Maheshwari, P.; Griffis, D.

    2010-02-22

    Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

  10. TOPICAL REVIEW: Advances in high-field superconducting composites by addition of artificial pinning centres to niobium-titanium

    NASA Astrophysics Data System (ADS)

    Cooley, L. D.; Motowidlo, L. R.

    1999-08-01

    Artificial pinning-centre (APC) niobium-titanium composites attain critical current density Jc values higher than 4000 A mm-2 at 5 T, 4.2 K, surpassing the barrier reached by the conventional Nb-Ti composite process. At 2 T APC composites achieve more than double the Jc of conventional composites, making them particularly well suited for low-field applications. On the other hand, APC composites are inferior to conventional composites at 8 T, due to weak high-field pinning and reduced upper critical field. This review discusses fabrication techniques, microstructural development and superconducting and flux-pinning properties of APC composites. Key elements and underlying issues for achieving higher Jc are identified and discussed in terms of the current state of the art.

  11. High-field transport properties of a P-doped BaFe2As2 film on technical substrate.

    PubMed

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-12

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 10(5) A/cm(2) at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E - J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  12. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    PubMed Central

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis. PMID:28079117

  13. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E ‑ J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  14. High-Gain High-Field Fusion Plasma

    PubMed Central

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  15. High-Field Transport in Semiconducting Material and Devices.

    NASA Astrophysics Data System (ADS)

    Ahmad, Nisar

    1990-01-01

    Available from UMI in association with The British Library. Considering the developments and most recent technological innovations of semiconductor devices, it is important to investigate the ramifications of charge carrier transport in high electric field in modern semiconductor microstructures, where the electric fields are found to be necessarily high. The fundamental ideas of transport theory including the mobility -limiting scattering mechanisms are reviewed. The ideas of linear transport are extended and the derivation of the high-field distribution is described in a single-valley model appropriate for the band structures of silicon and germanium. The velocity-field profile obtained from this distribution function is compared with the experimental results on bulk (3-dimensional) samples of silicon and germanium. The two-band model of intrinsic transport in a high electric field is also included. The single valley distribution is applied to the multi-valley structures of CaAs and (InGa)As to explain the experimentally observed negative differential resistivity in bulk samples. The calculations are further extended to two dimensional quantum -well microstructures of GaAs and (InGa)As. The conditions necessary for negative differential resistivity in these microstructures to be observable is also discussed. The applications of the above ideas in modelling submicron -length channel field effect transistors (MOSFET's and MODFET's) is discussed. Suggestions for further future applications of the analysis are offered.

  16. Disruptions generated runaways in the FTU high field tokamak

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Esposito, B.; Maddaluno, G.; Martin-Solis, J. R.

    2001-10-01

    Disruptions in FTU are usually accompanied by the generation of a strong pulse of photoneutrons (YN 10^12n/s), resulting from photonuclear reactions induced by the bremsstrahlung radiation emitted when runaway electrons (REs) strike the plasma facing components. Measurements of YN during major disruptions on TS [1] showed variations of three orders of magnitude when the toroidal field Bt increases from 1.8T to 3.9T. Similar results were found on JT-60 [2], where no REs are produced for low Bt (<2.2T) and a large YN was measured for higher fields (up to 4T). The range of Bt available in FTU (4T-8T) allows to extend such analysis so that useful predictions can be obtained for operation in next-step high field tokamaks (IGNITOR, ITER). The dependence of YN on Bt is investigated in several FTU disruptions. YN increases with Bt for B_t=4T-6T, while no variation is found for B_t=6T-8T: the role played by ne and Ip on such trend is discussed. [1]P.Joyer,G.Martin,Contr.Fusion and Plasma Heating,Proc.17^thEPS Conf.Amsterdam(1990) [2]R.Yoshino et al.,Nucl.Fus.39 151 (1999)

  17. Evaluation of the Added Value of Diffusion-Weighted Imaging to Conventional Magnetic Resonance Imaging in Pancreatic Neuroendocrine Tumors and Comparison With 68Ga-DOTANOC Positron Emission Tomography/Computed Tomography.

    PubMed

    Farchione, Alessandra; Rufini, Vittoria; Brizi, Maria Gabriella; Iacovazzo, Donato; Larghi, Alberto; Massara, Roberto Maria; Petrone, Gianluigi; Poscia, Andrea; Treglia, Giorgio; De Marinis, Laura; Giordano, Alessandro; Rindi, Guido; Bonomo, Lorenzo

    2016-03-01

    The aims of this study were to investigate the added value of diffusion-weighted imaging (DWI) in pancreatic neuroendocrine tumor (pNET) evaluation and to compare magnetic resonance imaging (MRI) to Ga-DOTANOC positron emission tomography/computed tomography (PET/CT) results. Morphological MRI (T2-weighted [T2-w] + contrast-enhanced [CE] T1-w) and DWI (T2-w + DWI) and Ga-DOTANOC PET/CT in 25 patients/30 pNETs were retrospectively evaluated. Per-patient and per-lesion detection rates (pDR and lDR, respectively) were calculated. Apparent diffusion coefficient values were compared among pNET and surrounding and normal pancreas (control group, 18 patients). Apparent diffusion coefficient and standardized uptake value (SUV) values were compared among different grading and staging groups. No statistically significant differences in PET/CT and MRI session detection rates were found (morphological MRI and DW-MRI, 88% pDR and 87% lDR; combined evaluation, 92% pDR and 90% lDR; Ga-DOTANOC PET/CT, 88% pDR and 80% lDR). Consensus reading (morphological/DW-MRI + PET/CT) improved pDR and lDR (100%). Apparent diffusion coefficient mean value was significantly lower compared with surrounding and normal parenchyma (P < 0.01). The apparent diffusion coefficient and SUV values of pNETs among different grading and staging groups were not statistically different. Conventional MRI, DW-MRI + T2-w sequences, and Ga-DOTANOC PET/CT can be alternative tools in pNET detection. Diffusion-weighted MRI could be valuable in patients with clinical suspicion but negative conventional imaging findings. However, the consensus reading of the 3 techniques seems the best approach.

  18. Iron-chalcogenide FeSe(0.5)Te(0.5) Coated Superconducting Tapes for High Field Applications

    SciTech Connect

    Si, W.; Johnson, P.; Zhou, J.; Jie, Q.; Dimitrov, I.; Solovyov, V.; Jaroszynski, J.; Matias, V.; Sheehan, C.; Li, Q.

    2011-07-01

    The high upper critical field characteristic of the recently discovered iron-based superconducting chalcogenides opens the possibility of developing a new type of non-oxide high-field superconducting wires. In this work, we utilize a buffered metal template on which we grow a textured FeSe{sub 0.5}Te{sub 0.5} layer, an approach developed originally for high temperature superconducting coated conductors. These tapes carry high critical current densities (> 1 x 10{sup 4} A/cm{sup 2}) at about 4.2 K under magnetic field as high as 25 T, which are nearly isotropic to the field direction. This demonstrates a very promising future for iron chalcogenides for high field applications at liquid helium temperatures. Flux pinning force analysis indicates a point defect pinning mechanism, creating prospects for a straightforward approach to conductor optimization.

  19. Control and data acquisition systems for high field superconducting wigglers

    NASA Astrophysics Data System (ADS)

    Batrakov, A.; Ilyin, I.; Karpov, G.; Kozak, V.; Kuzin, M.; Kuper, E.; Mamkin, V.; Mezentsev, N.; Repkov, V.; Selivanov, A.; Shkaruba, V.

    2001-07-01

    This paper describes the control and DAQ system of superconducting wigglers with magnetic field range up to 10.3 T. The first version of the system controls a 7 T superconducting wiggler prepared for installation at Bessy-II (Germany). The second one controls a 10 T wiggler which is under testing now at the SPring-8 site (Japan). Both systems are based on VME apparatus. The set of specialized VME modules is elaborated to arrange wiggler power supply control, full time wiggler monitoring, and magnetic field high accuracy measurement and field stabilization. The software for the control of the wigglers is written in C language for VxWorks operation system for a Motorola-162 VME controller. The task initialization, stops and acquisition of the data can be done from the nearest personal computer (FTP host for VME), or from the remote system as well.

  20. High field electron spin resonance experiments on spin - Peierls compounds

    NASA Astrophysics Data System (ADS)

    Palme, W.; Schmidt, S.; Lüthi, B.; Boucher, J. P.; Weiden, M.; Hauptmann, R.; Geibel, C.; Revcolevschi, A.; Dhalenne, G.

    1998-05-01

    The spin-Peierls (SP) transition is still one of the most challenging effects in quasi-one-dimensional magnetism. A few years ago the first inorganic spin-Peierls compound CuGeO 3 with TSP=14.3 K was discovered, and recently α‧-NaV 2O 5 was found to be another inorganic SP system with the highest transition temperature so far observed: TSP=35 K. Electron spin resonance (ESR) is the only direct way to probe electron spin dynamics in magnetic fields higher than 12 T, where a transition to an incommensurate