Marolf, Angela; Blaik, Margaret; Ackerman, Norman; Watson, Elizabeth; Gibson, Nicole; Thompson, Margret
2008-01-01
The role of digital imaging is increasing as these systems are becoming more affordable and accessible. Advantages of computed radiography compared with conventional film/screen combinations include improved contrast resolution and postprocessing capabilities. Computed radiography's spatial resolution is inferior to conventional radiography; however, this limitation is considered clinically insignificant. This study prospectively compared digital imaging and conventional radiography in detecting small volume pneumoperitoneum. Twenty cadaver dogs (15-30 kg) were injected with 0.25, 0.25, and 0.5 ml for 1 ml total of air intra-abdominally, and radiographed sequentially using computed and conventional radiographic technologies. Three radiologists independently evaluated the images, and receiver operating curve (ROC) analysis compared the two imaging modalities. There was no statistical difference between computed and conventional radiography in detecting free abdominal air, but overall computed radiography was relatively more sensitive based on ROC analysis. Computed radiographic images consistently and significantly demonstrated a minimal amount of 0.5 ml of free air based on ROC analysis. However, no minimal air amount was consistently or significantly detected with conventional film. Readers were more likely to detect free air on lateral computed images than the other projections, with no significant increased sensitivity between film/screen projections. Further studies are indicated to determine the differences or lack thereof between various digital imaging systems and conventional film/screen systems.
Sanyal, Parikshit; Ganguli, Prosenjit; Barui, Sanghita; Deb, Prabal
2018-01-01
The Pap stained cervical smear is a screening tool for cervical cancer. Commercial systems are used for automated screening of liquid based cervical smears. However, there is no image analysis software used for conventional cervical smears. The aim of this study was to develop and test the diagnostic accuracy of a software for analysis of conventional smears. The software was developed using Python programming language and open source libraries. It was standardized with images from Bethesda Interobserver Reproducibility Project. One hundred and thirty images from smears which were reported Negative for Intraepithelial Lesion or Malignancy (NILM), and 45 images where some abnormality has been reported, were collected from the archives of the hospital. The software was then tested on the images. The software was able to segregate images based on overall nuclear: cytoplasmic ratio, coefficient of variation (CV) in nuclear size, nuclear membrane irregularity, and clustering. 68.88% of abnormal images were flagged by the software, as well as 19.23% of NILM images. The major difficulties faced were segmentation of overlapping cell clusters and separation of neutrophils. The software shows potential as a screening tool for conventional cervical smears; however, further refinement in technique is required.
Peregrino, Antonio Augusto de Freitas; Vianna, Cid Manso de Mello; de Almeida, Carlos Eduardo Veloso; Gonzáles, Gabriela Bittencourt; Machado, Samara Cristina Ferreira; Costa e Silva, Frances Valéria; Rodrigues, Marcus Paulo da Silva
2012-01-01
A cost-effectiveness analysis was conducted in screening for breast cancer. The use of conventional mammography, digital and magnetic resonance imaging were compared with natural disease history as a baseline. A Markov model projected breast cancer in a group of 100,000 women for a 30 year period, with screening every two years. Four distinct scenarios were modeled: (1) the natural history of breast cancer, as a baseline, (2) conventional film mammography, (3) digital mammography and (4) magnetic resonance imaging. The costs of the scenarios modeled ranged from R$ 194.216,68 for natural history, to R$ 48.614.338,31, for screening with magnetic resonance imaging. The difference in effectiveness between the interventions ranged from 300 to 78.000 years of life gained in the cohort. The ratio of incremental cost-effectiveness in terms of cost per life-year gains, conventional mammographic screening has produced an extra year for R$ 13.573,07. The ICER of magnetic resonance imaging was R$ 2.904.328,88, compared to no screening. In conclusion, it is more cost-effective to perform the screening with conventional mammography than other technological interventions.
Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro
2012-03-01
To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.
Liu, Tao; Thibos, Larry; Marin, Gildas; Hernandez, Martha
2014-01-01
Conventional aberration analysis by a Shack-Hartmann aberrometer is based on the implicit assumption that an injected probe beam reflects from a single fundus layer. In fact, the biological fundus is a thick reflector and therefore conventional analysis may produce errors of unknown magnitude. We developed a novel computational method to investigate this potential failure of conventional analysis. The Shack-Hartmann wavefront sensor was simulated by computer software and used to recover by two methods the known wavefront aberrations expected from a population of normally-aberrated human eyes and bi-layer fundus reflection. The conventional method determines the centroid of each spot in the SH data image, from which wavefront slopes are computed for least-squares fitting with derivatives of Zernike polynomials. The novel 'global' method iteratively adjusted the aberration coefficients derived from conventional centroid analysis until the SH image, when treated as a unitary picture, optimally matched the original data image. Both methods recovered higher order aberrations accurately and precisely, but only the global algorithm correctly recovered the defocus coefficients associated with each layer of fundus reflection. The global algorithm accurately recovered Zernike coefficients for mean defocus and bi-layer separation with maximum error <0.1%. The global algorithm was robust for bi-layer separation up to 2 dioptres for a typical SH wavefront sensor design. For 100 randomly generated test wavefronts with 0.7 D axial separation, the retrieved mean axial separation was 0.70 D with standard deviations (S.D.) of 0.002 D. Sufficient information is contained in SH data images to measure the dioptric thickness of dual-layer fundus reflection. The global algorithm is superior since it successfully recovered the focus value associated with both fundus layers even when their separation was too small to produce clearly separated spots, while the conventional analysis misrepresents the defocus component of the wavefront aberration as the mean defocus for the two reflectors. Our novel global algorithm is a promising method for SH data image analysis in clinical and visual optics research for human and animal eyes. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Zheng, Yingyan; Xiao, Zebin; Zhang, Hua; She, Dejun; Lin, Xuehua; Lin, Yu; Cao, Dairong
2018-04-01
To evaluate the discriminative value of conventional magnetic resonance imaging between benign and malignant palatal tumors. Conventional magnetic resonance imaging features of 130 patients with palatal tumors confirmed by histopathologic examination were retrospectively reviewed. Clinical data and imaging findings were assessed between benign and malignant tumors and between benign and low-grade malignant salivary gland tumors. The variables that were significant in differentiating benign from malignant lesions were further identified using logistic regression analysis. Moreover, imaging features of each common palatal histologic entity were statistically analyzed with the rest of the tumors to define their typical imaging features. Older age, partially defined and ill-defined margins, and absence of a capsule were highly suggestive of malignant palatal tumors, especially ill-defined margins (β = 6.400). The precision in determining malignant palatal tumors achieved a sensitivity of 92.8% and a specificity of 85.6%. In addition, irregular shape, ill-defined margins, lack of a capsule, perineural spread, and invasion of surrounding structures were more often associated with low-grade malignant salivary gland tumors. Conventional magnetic resonance imaging is useful for differentiating benign from malignant palatal tumors as well as benign salivary gland tumors from low-grade salivary gland malignancies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Lee, Seung Hyun; Lee, Young Han; Hahn, Seok; Yang, Jaemoon; Song, Ho-Taek; Suh, Jin-Suck
2017-01-01
Background Synthetic magnetic resonance imaging (MRI) allows reformatting of various synthetic images by adjustment of scanning parameters such as repetition time (TR) and echo time (TE). Optimized MR images can be reformatted from T1, T2, and proton density (PD) values to achieve maximum tissue contrast between joint fluid and adjacent soft tissue. Purpose To demonstrate the method for optimization of TR and TE by synthetic MRI and to validate the optimized images by comparison with conventional shoulder MR arthrography (MRA) images. Material and Methods Thirty-seven shoulder MRA images acquired by synthetic MRI were retrospectively evaluated for PD, T1, and T2 values at the joint fluid and glenoid labrum. Differences in signal intensity between the fluid and labrum were observed between TR of 500-6000 ms and TE of 80-300 ms in T2-weighted (T2W) images. Conventional T2W and synthetic images were analyzed for diagnostic agreement of supraspinatus tendon abnormalities (kappa statistics) and image quality scores (one-way analysis of variance with post-hoc analysis). Results Optimized mean values of TR and TE were 2724.7 ± 1634.7 and 80.1 ± 0.4, respectively. Diagnostic agreement for supraspinatus tendon abnormalities between conventional and synthetic MR images was excellent (κ = 0.882). The mean image quality score of the joint space in optimized synthetic images was significantly higher compared with those in conventional and synthetic images (2.861 ± 0.351 vs. 2.556 ± 0.607 vs. 2.750 ± 0.439; P < 0.05). Conclusion Synthetic MRI with optimized TR and TE for shoulder MRA enables optimization of soft-tissue contrast.
Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan
2018-05-01
The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.
NASA Astrophysics Data System (ADS)
Lisitsa, Y. V.; Yatskou, M. M.; Apanasovich, V. V.; Apanasovich, T. V.
2015-09-01
We have developed an algorithm for segmentation of cancer cell nuclei in three-channel luminescent images of microbiological specimens. The algorithm is based on using a correlation between fluorescence signals in the detection channels for object segmentation, which permits complete automation of the data analysis procedure. We have carried out a comparative analysis of the proposed method and conventional algorithms implemented in the CellProfiler and ImageJ software packages. Our algorithm has an object localization uncertainty which is 2-3 times smaller than for the conventional algorithms, with comparable segmentation accuracy.
Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications
NASA Astrophysics Data System (ADS)
Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David
2017-10-01
The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.
Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki
2017-12-01
The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.
Tani, Kazuki; Mio, Motohira; Toyofuku, Tatsuo; Kato, Shinichi; Masumoto, Tomoya; Ijichi, Tetsuya; Matsushima, Masatoshi; Morimoto, Shoichi; Hirata, Takumi
2017-01-01
Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.
He, Jingzhen; Zu, Yuliang; Wang, Qing; Ma, Xiangxing
2014-12-01
The purpose of this study was to determine the performance of low-dose computed tomography (CT) scanning with integrated circuit (IC) detector in defining fine structures of temporal bone in children by comparing with the conventional detector. The study was performed with the approval of our institutional review board and the patients' anonymity was maintained. A total of 86 children<3 years of age underwent imaging of temporal bone with low-dose CT (80 kV/150 mAs) equipped with either IC detector or conventional discrete circuit (DC) detector. The image noise was measured for quantitative analysis. Thirty-five structures of temporal bone were further assessed and rated by 2 radiologists for qualitative analysis. κ Statistics were performed to determine the agreement reached between the 2 radiologists on each image. Mann-Whitney U test was used to determine the difference in image quality between the 2 detector systems. Objective analysis showed that the image noise was significantly lower (P<0.001) with the IC detector than with the DC detector. The κ values for qualitative assessment of the 35 fine anatomical structures revealed high interobserver agreement. The delineation for 30 of the 35 landmarks (86%) with the IC detector was superior to that with the conventional DC detector (P<0.05) although there were no differences in the delineation of the remaining 5 structures (P>0.05). The low-dose CT images acquired with the IC detector provide better depiction of fine osseous structures of temporal bone than that with the conventional DC detector.
[An improved medical image fusion algorithm and quality evaluation].
Chen, Meiling; Tao, Ling; Qian, Zhiyu
2009-08-01
Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.
Dual-energy x-ray image decomposition by independent component analysis
NASA Astrophysics Data System (ADS)
Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang
2001-09-01
The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.
Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki
2017-10-01
This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.
Allen, R W; Harnsberger, H R; Shelton, C; King, B; Bell, D A; Miller, R; Parkin, J L; Apfelbaum, R I; Parker, D
1996-08-01
To determine whether unenhanced high-resolution T2-weighted fast spin-echo MR imaging provides an acceptable and less expensive alternative to contrast-enhanced conventional T1-weighted spin-echo MR techniques in the diagnosis of acoustic schwannoma. We reviewed in a blinded fashion the records of 25 patients with pathologically documented acoustic schwannoma and of 25 control subjects, all of whom had undergone both enhanced conventional spin-echo MR imaging and unenhanced fast spin-echo MR imaging of the cerebellopontine angle/internal auditory canal region. The patients were imaged with the use of a quadrature head receiver coil for the conventional spin-echo sequences and dual 3-inch phased-array receiver coils for the fast spin-echo sequences. The size of the acoustic schwannomas ranged from 2 to 40 mm in maximum dimension. The mean maximum diameter was 12 mm, and 12 neoplasms were less than 10 mm in diameter. Acoustic schwannoma was correctly diagnosed on 98% of the fast spin-echo images and on 100% of the enhanced conventional spin-echo images. Statistical analysis of the data using the kappa coefficient demonstrated agreement beyond chance between these two imaging techniques for the diagnosis of acoustic schwannoma. There is no statistically significant difference in the sensitivity and specificity of unenhanced high-resolution fast spin-echo imaging and enhance T1-weighted conventional spin-echo imaging in the detection of acoustic schwannoma. We believe that the unenhanced high-resolution fast spin-echo technique provides a cost-effective method for the diagnosis of acoustic schwannoma.
Environmental scanning electron microscope imaging examples related to particle analysis.
Wight, S A; Zeissler, C J
1993-08-01
This work provides examples of some of the imaging capabilities of environmental scanning electron microscopy applied to easily charged samples relevant to particle analysis. Environmental SEM (also referred to as high pressure or low vacuum SEM) can address uncoated samples that are known to be difficult to image. Most of these specimens are difficult to image by conventional SEM even when coated with a conductive layer. Another area where environmental SEM is particularly applicable is for specimens not compatible with high vacuum, such as volatile specimens. Samples from which images were obtained that otherwise may not have been possible by conventional methods included fly ash particles on an oiled plastic membrane impactor substrate, a one micrometer diameter fiber mounted on the end of a wire, uranium oxide particles embedded in oil-bearing cellulose nitrate, teflon and polycarbonate filter materials with collected air particulate matter, polystyrene latex spheres on cellulosic filter paper, polystyrene latex spheres "loosely" sitting on a glass slide, and subsurface tracks in an etched nuclear track-etch detector. Surface charging problems experienced in high vacuum SEMs are virtually eliminated in the low vacuum SEM, extending imaging capabilities to samples previously difficult to use or incompatible with conventional methods.
Song, Y; Yoon, Y C; Chong, Y; Seo, S W; Choi, Y-L; Sohn, I; Kim, M-J
2017-08-01
To compare the abilities of conventional magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) in differentiating between benign and malignant soft-tissue tumours (STT). A total of 123 patients with STT who underwent 3 T MRI, including diffusion-weighted imaging (DWI), were retrospectively analysed using variate conventional MRI parameters, ADC mean and ADC min . For the all-STT group, the correlation between the malignant STT conventional MRI parameters, except deep compartment involvement, compared to those of benign STT were statistically significant with univariate analysis. Maximum diameter of the tumour (p=0.001; odds ratio [OR], 8.97) and ADC mean (p=0.020; OR, 4.30) were independent factors with multivariate analysis. For the non-myxoid non-haemosiderin STT group, signal heterogeneity on axial T1-weighted imaging (T1WI; p=0.017), ADC mean , and ADC min (p=0.001, p=0.001), showed significant differences with univariate analysis between malignancy and benignity. Signal heterogeneity in axial T1WI (p=0.025; OR, 12.64) and ADC mean (p=0.004; OR, 33.15) were independent factors with multivariate analysis. ADC values as well as conventional MRI parameters were useful in differentiating between benign and malignant STT. The ADC mean was the most powerful diagnostic parameter in non-myxoid non-haemosiderin STT. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Clinical equivalence assessment of T2 synthesized pediatric brain magnetic resonance imaging.
Kerleroux, Basile; Kober, Tobias; Hilbert, Tom; Serru, Maxence; Sirinelli, Dominique; Morel, Baptiste
2018-05-04
Automated synthetic magnetic resonance imaging (MRI) provides qualitative, weighted image contrasts as well as quantitative information from one scan and is well-suited for various applications such as analysis of white matter disorders. However, the synthesized contrasts have been poorly evaluated in pediatric applications. The purpose of this study was to compare the image quality of synthetic T2 to conventional turbo spin echo (TSE) T2 in pediatric brain MRI. This was a mono-center prospective study. Synthetic and conventional MRI acquisitions at 1.5 Tesla were performed for each patient during the same session using a prototype accelerated T2 mapping sequence package (TA synthetic =3:07min, TA conventional =2:33min). Image sets were blindly and randomly analyzed by pediatric neuro-radiologists. Global image quality, morphologic legibility of standard structures and artifacts were assessed using a 4-point Likert scale. Inter-observer kappa agreements were calculated. The capability of the synthesized contrasts and conventional TSE T2 to discern normal and pathologic cases was evaluated. Sixty patients were included. The overall diagnostic quality of the synthesized contrasts was non-inferior to conventional imaging scale (p=0.06). There was no significant difference in the legibility of normal and pathological anatomic structures of synthetized and conventional TSE T2 (all p > 0.05) as well as for artifacts except for phase encoding (p=0.008). Interobserver agreement was good to almost perfect (kappa between 0.66 and 1). T2 synthesized contrasts, which also provides quantitative T2 information that could be useful, could be suggested as an equivalent technique in pediatric neuro-imaging, compared to conventional TSE T2. Copyright © 2018. Published by Elsevier Masson SAS.
NASA Technical Reports Server (NTRS)
Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.
1974-01-01
Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.
Application of photogrammetry for analysis of occlusal contacts.
Shigeta, Yuko; Hirabayashi, Rio; Ikawa, Tomoko; Kihara, Takuya; Ando, Eriko; Hirai, Shinya; Fukushima, Shunji; Ogawa, Takumi
2013-04-01
The conventional 2D-analysis methods for occlusal contacts provided limited information on tooth morphology. This present study aims to detect 3D positional information of occlusal contacts from 2D-photos via photogrammetry. We propose an image processing solution for analysis of occlusal contacts and facets via the black silicone method and a photogrammetric technique. The occlusal facets were reconstructed from a 2D-photograph data-set of inter-occlusal records into a 3D image via photogrammetry. The configuration of the occlusal surface was reproduced with polygons. In addition, the textures of the occlusal contacts were mapped to each polygon. DIFFERENCE FROM CONVENTIONAL METHODS: Constructing occlusal facets with 3D polygons from 2D-photos with photogrammetry was a defining characteristic of this image processing technique. It allowed us to better observe findings of the black silicone method. Compared with conventional 3D analysis using a 3D scanner, our 3D models did not reproduce the detail of the anatomical configuration. However, by merging the findings of the inter-occlusal record, the deformation of mandible and the displacement of periodontal ligaments under occlusal force were reflected in our model. EFFECT OR PERFORMANCE: Through the use of polygons in the conversion of 2D images to 3D images, we were able to define the relation between the location and direction of the occlusal contacts and facets, which was difficult to detect via conventional methods. Through our method of making a 3D polygon model, the findings of inter-occlusal records which reflected the jaw/teeth behavior under occlusal force could be observed 3-dimensionally. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Improving Arterial Spin Labeling by Using Deep Learning.
Kim, Ki Hwan; Choi, Seung Hong; Park, Sung-Hong
2018-05-01
Purpose To develop a deep learning algorithm that generates arterial spin labeling (ASL) perfusion images with higher accuracy and robustness by using a smaller number of subtraction images. Materials and Methods For ASL image generation from pair-wise subtraction, we used a convolutional neural network (CNN) as a deep learning algorithm. The ground truth perfusion images were generated by averaging six or seven pairwise subtraction images acquired with (a) conventional pseudocontinuous arterial spin labeling from seven healthy subjects or (b) Hadamard-encoded pseudocontinuous ASL from 114 patients with various diseases. CNNs were trained to generate perfusion images from a smaller number (two or three) of subtraction images and evaluated by means of cross-validation. CNNs from the patient data sets were also tested on 26 separate stroke data sets. CNNs were compared with the conventional averaging method in terms of mean square error and radiologic score by using a paired t test and/or Wilcoxon signed-rank test. Results Mean square errors were approximately 40% lower than those of the conventional averaging method for the cross-validation with the healthy subjects and patients and the separate test with the patients who had experienced a stroke (P < .001). Region-of-interest analysis in stroke regions showed that cerebral blood flow maps from CNN (mean ± standard deviation, 19.7 mL per 100 g/min ± 9.7) had smaller mean square errors than those determined with the conventional averaging method (43.2 ± 29.8) (P < .001). Radiologic scoring demonstrated that CNNs suppressed noise and motion and/or segmentation artifacts better than the conventional averaging method did (P < .001). Conclusion CNNs provided superior perfusion image quality and more accurate perfusion measurement compared with those of the conventional averaging method for generation of ASL images from pair-wise subtraction images. © RSNA, 2017.
The utility of indocyanine green fluorescence imaging during robotic adrenalectomy.
Colvin, Jennifer; Zaidi, Nisar; Berber, Eren
2016-08-01
Indocyanine green (ICG) has been used for medical imaging since 1950s, but has more recently become available for use in minimally invasive surgery owing to improvements in technology. This study investigates the use of ICG florescence to guide an accurate dissection by delineating the borders of adrenal tumors during robotic adrenalectomy (RA). This prospective study compared conventional robotic view with ICG fluorescence imaging in 40 consecutive patients undergoing RA. Independent, non-blinded observers assessed how accurately ICG fluorescence delineated the borders of adrenal tumors compared to conventional robotic view. A total of 40 patients underwent 43 adrenalectomies. ICG imaging was superior, equivalent, or inferior to conventional robotic view in 46.5% (n = 20), 25.6% (n = 11), and 27.9% (n = 12) of the procedures. On univariate analysis, the only parameter that predicted the superiority of ICG imaging over conventional robotic view was the tumor type, with adrenocortical tumors being delineated more accurately on ICG imaging compared to conventional robotic view. This study demonstrates the utility of ICG to guide the dissection and removal of adrenal tumors during RA. A simple reproducible method is reported, with a detailed description of the utility based on tumor type, approach and side. J. Surg. Oncol. 2016;114:153-156. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Jeon, Ji Young; Lee, Min Hee; Lee, Sang Hoon; Shin, Myung Jin
2016-01-01
Objective: To evaluate the usefulness of adding diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping to conventional 3.0-T MRI to differentiate between benign and malignant superficial soft-tissue masses (SSTMs). Methods: The institutional review board approved this study and informed consent was waived. The authors retrospectively analyzed conventional MR images including diffusion-weighted images (b-values: 0, 400, 800 s mm−2) in 60 histologically proven SSTMs (35 benign and 25 malignant) excluding lipomas. Two radiologists independently evaluated the conventional MRI alone and again with the additional DWI for the evaluation of malignant masses. The mean ADC values measured within an entire mass and the contrast-enhancing solid portion were used for quantitative analysis. Diagnostic performances were compared using receiver-operating characteristic analysis. Results: For an inexperienced reader, using only conventional MRI, the sensitivity, specificity and accuracy were 84%, 80% and 81.6%, respectively. When combining conventional MRI and DWI, the sensitivity, specificity and accuracy were 96%, 85.7% and 90%, respectively. Additional DWI influenced the improvement of the rate of correct diagnosis by 8.3% (5/60). For an experienced reader, additional DWI revealed the same accuracy of 86.7% without added value on the correct diagnosis. The group mean ADCs of malignant SSTMs were significantly lower than that of benign SSTMs (p < 0.001). The best diagnostic performance with respect to differentiation of SSTMs could be obtained when conventional MRI was assessed in combination with DWI. Conclusion: Adding qualitative and quantitative DWI to conventional MRI can improve the diagnostic performance for the differentiation between benign and malignant SSTMs. Advances in knowledge: Because the imaging characteristics of many malignant superficial soft-tissue lesions overlap with those of benign ones, inadequate surgical resection due to misinterpretation of MRI often occurs. Adding DWI to conventional MRI yields greater diagnostic performances [area under the receiver-operating characteristic curve (AUC), 0.83–0.99] than does the use of conventional MRI alone (AUC, 0.71–0.93) in the evaluation of malignant superficial masses by inexperienced readers. PMID:26892266
Tabatabaee, Reza M; Rasouli, Mohammad R; Maltenfort, Mitchell G; Fuino, Robert; Restrepo, Camilo; Oliashirazi, Ali
2018-04-01
Image-based and imageless computer-assisted total knee arthroplasty (CATKA) has become increasingly popular. This study aims to compare outcomes, including perioperative complications and transfusion rate, between CATKA and conventional total knee arthroplasty (TKA), as well as between image-based and imageless CATKA. Using the 9th revision of the International Classification of Diseases codes, we queried the Nationwide Inpatient Sample database from 2005 to 2011 to identify unilateral conventional TKA, image-based, and imageless CATKAs as well as in-hospital complications and transfusion rates. A total of 787,809 conventional TKAs and 13,246 CATKAs (1055 image-based and 12,191 imageless) were identified. The rate of CATKA increased 23.13% per year from 2005 to 2011. Transfusion rates in conventional TKA and CATKA cases were 11.73% and 8.20% respectively (P < .001) and 6.92% in image-based vs 8.27% in imageless (P = .023). Perioperative complications occurred in 4.50%, 3.47%, and 3.41% of cases after conventional, imageless, and imaged-based CATKAs, respectively. Using multivariate analysis, perioperative complications were significantly higher in conventional TKA compared to CATKA (odds ratio = 1.17, 95% confidence interval 1.03-1.33, P = .01). There was no significant difference between imageless and image-based CATKA (P = .34). Length of hospital stay and hospital charges were not significantly different between groups (P > .05). CATKA has low complication rates and may improve patient outcomes after TKA. CATKA, especially the image-based technique, may reduce in-hospital complications and transfusion without increasing hospital charges and length of hospital stay significantly. Large prospective studies with long follow-up are required to verify potential benefits of CATKA. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.
2018-03-01
We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.
Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F; Erlandsson, Kjell; Sharir, Tali; Roth, Nathaniel; Waddington, Wendy A; Berman, Daniel S; Ell, Peter J
2010-08-01
We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5+/-11.8 years of age, 16 men) were injected with 74 MBq of (201)Tl (rest) and 250 MBq (99m)Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest (201)Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress (99m)Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest (201)Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest (201)Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, p<0.0001 for all). In six patients stress perfusion defects were significantly larger on stress DR D-SPECT images, and five of these patients were imaged earlier by D-SPECT than by conventional SPECT. Fast and high-quality simultaneous DR MPI is feasible with D-SPECT in a single imaging session with comparable diagnostic performance and image quality to conventional SPECT and to a separate rest (201)Tl D-SPECT acquisition.
NASA Astrophysics Data System (ADS)
Chauhan, H.; Krishna Mohan, B.
2014-11-01
The present study was undertaken with the objective to check effectiveness of spectral similarity measures to develop precise crop spectra from the collected hyperspectral field spectra. In Multispectral and Hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to select precise crop spectra from the set of field spectra. Conventionally crop spectra are developed after rejecting outliers based only on broad-spectrum analysis. Here a successful attempt has been made to develop precise crop spectra based on spectral similarity. As unevaluated data usage leads to uncertainty in the image classification, it is very crucial to evaluate the data. Hence, notwithstanding the conventional method, the data precision has been performed effectively to serve the purpose of the present research work. The effectiveness of developed precise field spectra was evaluated by spectral discrimination measures and found higher discrimination values compared to spectra developed conventionally. Overall classification accuracy for the image classified by field spectra selected conventionally is 51.89% and 75.47% for the image classified by field spectra selected precisely based on spectral similarity. KHAT values are 0.37, 0.62 and Z values are 2.77, 9.59 for image classified using conventional and precise field spectra respectively. Reasonable higher classification accuracy, KHAT and Z values shows the possibility of a new approach for field spectra selection based on spectral similarity measure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yi; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo; Song, Jie
Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162more » robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6). Conclusion: Quantitative analysis identified novel {sup 18}F-fluorodeoxyglucose positron emission tomography image features that showed improved prognostic value over conventional imaging metrics. If validated in large, prospective cohorts, the new prognostic signature might be used to identify patients for individualized risk-adaptive therapy.« less
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Rapid in vivo vertical tissue sectioning by multiphoton tomography
NASA Astrophysics Data System (ADS)
Batista, Ana; Breunig, Hans Georg; König, Karsten
2018-02-01
A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavroidis, P; Boci, N; Kostopoulos, S
2015-06-15
Purpose: The aim of this present study is to increase bandwidth (BW) and echo train length (ETL) in Proton Density Turbo Spin Echo (PD TSE) sequences with and without fat saturation (FS) as well as in Turbo Inversion Recovery Magnitude sequences (TIRM) in order to assess whether these sequences are capable of reducing susceptibility artifacts. Methods: We compared 1) TIRM coronal (COR) with the same sequence with increased both BW and ETL 2) Conventional PD TSE sagittal (SAG) with FS with an increased BW 3) Conventional PD TSE SAG without FS with an increased BW 4) Conventional PD TSE SAGmore » without FS with increased both BW and ETL. A quantitative analysis was performed to measure the extent of the susceptibility artifacts. Furthermore, a qualitative analysis was performed by two radiologists in order to evaluate the susceptibility artifacts, image distortion and fat suppression. The depiction of cartilage, menisci, muscles, tendons and bone marrow were also qualitatively analyzed. Results: The quantitative analysis found that the modified TIRM sequence is significantly superior to the conventional one regarding the extent of the susceptibility artifacts. In the qualitative analysis, the modified TIRM sequence was superior to the corresponding conventional one in eight characteristics out of ten that were analyzed. The modified PD TSE with FS was superior to the corresponding conventional one regarding the susceptibility artifacts, image distortion and depiction of bone marrow and cartilage while achieving effective fat saturation. The modified PD TSE sequence without FS with a high (H) BW was found to be superior corresponding to the conventional one in the case of cartilage. Conclusion: Consequently, TIRM sequence with an increased BW and ETL is proposed for producing images of high quality and modified PD TSE with H BW for smaller metals, especially when FS is used.« less
Han, Yeon-Hee; Lim, Seok Tae; Jeong, Hwan-Jeong; Sohn, Myung-Hee
2016-06-01
The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with (18)F-fluoro-2-deoxyglucose positron emission tomography with CT ((18)F-FDG PET/CT) compared with conventional lung setting image of (18)F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with (18)F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of (18)F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of (18)F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of (18)F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were <1 cm in size. The sensitivity, specificity, and diagnostic accuracy of the modalities were 60.6 %, 85.2 %, and 71.1 % for conventional lung setting image and 83.3 %, 88.9 %, and 85.8 % for additional LD-HRCT. By ROC analysis, the area under the ROC curve (AUC) of conventional lung setting image and additional LD-HRCT were 0.712 and 0.827 respectively. Additional LD-HRCT with maximum inspiration was superior to conventional lung setting image of (18)F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer (P < 0.05).
Enhancement of automated blood flow estimates (ENABLE) from arterial spin-labeled MRI.
Shirzadi, Zahra; Stefanovic, Bojana; Chappell, Michael A; Ramirez, Joel; Schwindt, Graeme; Masellis, Mario; Black, Sandra E; MacIntosh, Bradley J
2018-03-01
To validate a multiparametric automated algorithm-ENhancement of Automated Blood fLow Estimates (ENABLE)-that identifies useful and poor arterial spin-labeled (ASL) difference images in multiple postlabeling delay (PLD) acquisitions and thereby improve clinical ASL. ENABLE is a sort/check algorithm that uses a linear combination of ASL quality features. ENABLE uses simulations to determine quality weighting factors based on an unconstrained nonlinear optimization. We acquired a set of 6-PLD ASL images with 1.5T or 3.0T systems among 98 healthy elderly and adults with mild cognitive impairment or dementia. We contrasted signal-to-noise ratio (SNR) of cerebral blood flow (CBF) images obtained with ENABLE vs. conventional ASL analysis. In a subgroup, we validated our CBF estimates with single-photon emission computed tomography (SPECT) CBF images. ENABLE produced significantly increased SNR compared to a conventional ASL analysis (Wilcoxon signed-rank test, P < 0.0001). We also found the similarity between ASL and SPECT was greater when using ENABLE vs. conventional ASL analysis (n = 51, Wilcoxon signed-rank test, P < 0.0001) and this similarity was strongly related to ASL SNR (t = 24, P < 0.0001). These findings suggest that ENABLE improves CBF image quality from multiple PLD ASL in dementia cohorts at either 1.5T or 3.0T, achieved by multiparametric quality features that guided postprocessing of dementia ASL. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:647-655. © 2017 International Society for Magnetic Resonance in Medicine.
Li, Huan-Huan; Zhu, Hui; Yue, Lei; Fu, Yi; Grimm, Robert; Stemmer, Alto; Fu, Cai-Xia; Peng, Wei-Jun
2018-05-01
To investigate the feasibility and diagnostic value of free-breathing, radial, stack-of-stars three-dimensional (3D) gradient echo (GRE) sequence ("golden angle") on dynamic contrast-enhanced (DCE) MRI of gastric cancer. Forty-three gastric cancer patients were divided into cooperative and uncooperative groups. Respiratory fluctuation was observed using an abdominal respiratory gating sensor. Those who breath-held for more than 15 s were placed in the cooperative group and the remainder in the uncooperative group. The 3-T MRI scanning protocol included 3D GRE and conventional breath-hold VIBE (volume-interpolated breath-hold examination) sequences, comparing images quantitatively and qualitatively. DCE-MRI parameters from VIBE images of normal gastric wall and malignant lesions were compared. For uncooperative patients, 3D GRE scored higher qualitatively, and had higher SNRs (signal-to-noise ratios) and CNRs (contrast-to-noise ratios) than conventional VIBE quantitatively. Though 3D GRE images scored lower in qualitative parameters compared with conventional VIBE for cooperative patients, it provided images with fewer artefacts. DCE parameters differed significantly between normal gastric wall and lesions, with higher Ve (extracellular volume) and lower Kep (reflux constant) in gastric cancer. The free-breathing, golden-angle, radial stack-of-stars 3D GRE technique is feasible for DCE-MRI of gastric cancer. Dynamic enhanced images can be used for quantitative analysis of this malignancy. • Golden-angle radial stack-of-stars VIBE aids gastric cancer MRI diagnosis. • The 3D GRE technique is suitable for patients unable to suspend respiration. • Method scored higher in the qualitative evaluation for uncooperative patients. • The technique produced images with fewer artefacts than conventional VIBE sequence. • Dynamic enhanced images can be used for quantitative analysis of gastric cancer.
Reliable enumeration of malaria parasites in thick blood films using digital image analysis.
Frean, John A
2009-09-23
Quantitation of malaria parasite density is an important component of laboratory diagnosis of malaria. Microscopy of Giemsa-stained thick blood films is the conventional method for parasite enumeration. Accurate and reproducible parasite counts are difficult to achieve, because of inherent technical limitations and human inconsistency. Inaccurate parasite density estimation may have adverse clinical and therapeutic implications for patients, and for endpoints of clinical trials of anti-malarial vaccines or drugs. Digital image analysis provides an opportunity to improve performance of parasite density quantitation. Accurate manual parasite counts were done on 497 images of a range of thick blood films with varying densities of malaria parasites, to establish a uniformly reliable standard against which to assess the digital technique. By utilizing descriptive statistical parameters of parasite size frequency distributions, particle counting algorithms of the digital image analysis programme were semi-automatically adapted to variations in parasite size, shape and staining characteristics, to produce optimum signal/noise ratios. A reliable counting process was developed that requires no operator decisions that might bias the outcome. Digital counts were highly correlated with manual counts for medium to high parasite densities, and slightly less well correlated with conventional counts. At low densities (fewer than 6 parasites per analysed image) signal/noise ratios were compromised and correlation between digital and manual counts was poor. Conventional counts were consistently lower than both digital and manual counts. Using open-access software and avoiding custom programming or any special operator intervention, accurate digital counts were obtained, particularly at high parasite densities that are difficult to count conventionally. The technique is potentially useful for laboratories that routinely perform malaria parasite enumeration. The requirements of a digital microscope camera, personal computer and good quality staining of slides are potentially reasonably easy to meet.
Li, Xiulei; Wang, Ling; Li, Yong; Song, Peiji
2017-10-01
This study aimed to investigate the value of diffusion-weighted imaging (DWI) in combination with conventional magnetic resonance imaging (MRI) for improving tumor detection in young patients treated with fertility-sparing surgery because of early cervical carcinoma. Fifty-four patients with stage Ia or Ib1 cervical carcinoma were enrolled into this study. Magnetic resonance examinations were performed for these patients using conventional MRI (including T1-weighted imaging, T2-weighted imaging, and dynamic contrast-enhanced MRI) and DWI. The apparent diffusion coefficient (ADC) values of cervical carcinoma were analyzed quantitatively and compared with that of adjacent epithelium. Sensitivity, positive predictive value, and accuracy of 2 sets of MRI sequences were calculated on the basis of histologic results, and the diagnostic ability of conventional MRI/DWI combinations was compared with that of conventional MRI. The mean ADC value from cervical carcinoma (mean, 786 × 10 mm/s ± 100) was significantly lower than that from adjacent epithelium (mean, 1352 × 10 mm/s ± 147) (P = 0.01). When the threshold ADC value set as 1010 × 10 mm/s, the sensitivity and specificity for differentiating cervical carcinoma from nontumor epithelium were 78.2% and 67.2%, respectively. The sensitivity and accuracy of conventional MRI for tumor detection were 76.0% and 70.4%, whereas the sensitivity and accuracy of conventional MRI/DWI combinations were 91.7% and 90.7%, respectively. Conventional MRI/DWI combinations revealed a positive predictive value of 97.8% and only 4 false-negative findings. The addition of DWI to conventional MRI considerably improves the sensitivity and accuracy of tumor detection in young patients treated with fertility-sparing surgery, which supports the inclusion quantitative analysis of ADC value in routine MRI protocol before fertility-sparing surgery.
The comparative effectiveness of conventional and digital image libraries.
McColl, R I; Johnson, A
2001-03-01
Before introducing a hospital-wide image database to improve access, navigation and retrieval speed, a comparative study between a conventional slide library and a matching image database was undertaken to assess its relative benefits. Paired time trials and personal questionnaires revealed faster retrieval rates, higher image quality, and easier viewing for the pilot digital image database. Analysis of confidentiality, copyright and data protection exposed similar issues for both systems, thus concluding that the digital image database is a more effective library system. The authors suggest that in the future, medical images will be stored on large, professionally administered, centrally located file servers, allowing specialist image libraries to be tailored locally for individual users. The further integration of the database with web technology will enable cheap and efficient remote access for a wide range of users.
Rasper, Michael; Nadjiri, Jonathan; Sträter, Alexandra S; Settles, Marcus; Laugwitz, Karl-Ludwig; Rummeny, Ernst J; Huber, Armin M
2017-06-01
To prospectively compare image quality and myocardial T 1 relaxation times of modified Look-Locker inversion recovery (MOLLI) imaging at 3.0 T (T) acquired with patient-adaptive dual-source (DS) and conventional single-source (SS) radiofrequency (RF) transmission. Pre- and post-contrast MOLLI T 1 mapping using SS and DS was acquired in 27 patients. Patient wise and segment wise analysis of T 1 times was performed. The correlation of DS MOLLI measurements with a reference spin echo sequence was analysed in phantom experiments. DS MOLLI imaging reduced T 1 standard deviation in 14 out of 16 myocardial segments (87.5%). Significant reduction of T 1 variance could be obtained in 7 segments (43.8%). DS significantly reduced myocardial T 1 variance in 16 out of 25 patients (64.0%). With conventional RF transmission, dielectric shading artefacts occurred in six patients causing diagnostic uncertainty. No according artefacts were found on DS images. DS image findings were in accordance with conventional T 1 mapping and late gadolinium enhancement (LGE) imaging. Phantom experiments demonstrated good correlation of myocardial T 1 time between DS MOLLI and spin echo imaging. Dual-source RF transmission enhances myocardial T 1 homogeneity in MOLLI imaging at 3.0 T. The reduction of signal inhomogeneities and artefacts due to dielectric shading is likely to enhance diagnostic confidence.
Kim, Hyunji; Cha, Joo Hee; Oh, Ha-Yeun; Kim, Hak Hee; Shin, Hee Jung; Chae, Eun Young
2014-07-01
To compare the performance of radiologists in the use of conventional ultrasound (US) and automated breast volume ultrasound (ABVU) for the characterization of benign and malignant solid breast masses based on breast imaging and reporting data system (BI-RADS) criteria. Conventional US and ABVU images were obtained in 87 patients with 106 solid breast masses (52 cancers, 54 benign lesions). Three experienced radiologists who were blinded to all examination results independently characterized the lesions and reported a BI-RADS assessment category and a level of suspicion of malignancy. The results were analyzed by calculation of Cohen's κ coefficient and by receiver operating characteristic (ROC) analysis. Assessment of the agreement of conventional US and ABVU indicated that the posterior echo feature was the most discordant feature of seven features (κ = 0.371 ± 0.225) and that orientation had the greatest agreement (κ = 0.608 ± 0.210). The final assessment showed substantial agreement (κ = 0.773 ± 0.104). The areas under the ROC curves (Az) for conventional US and ABVU were not statistically significant for each reader, but the mean Az values of conventional US and ABVU by multi-reader multi-case analysis were significantly different (conventional US 0.991, ABVU 0.963; 95 % CI -0.0471 to -0.0097). The means for sensitivity, specificity, positive predictive value, and negative predictive value of conventional US and ABVU did not differ significantly. There was substantial inter-observer agreement in the final assessment of solid breast masses by conventional US and ABVU. ROC analysis comparing the performance of conventional US and ABVU indicated a marginally significant difference in mean Az, but not in mean sensitivity, specificity, positive predictive value, or negative predictive value.
Intrahospital teleradiology from the emergency room
NASA Astrophysics Data System (ADS)
Fuhrman, Carl R.; Slasky, B. S.; Gur, David; Lattner, Stefanie; Herron, John M.; Plunkett, Michael B.; Towers, Jeffrey D.; Thaete, F. Leland
1993-09-01
Off-hour operations of the modern emergency room presents a challenge to conventional image management systems. To assess the utility of intrahospital teleradiology systems from the emergency room (ER), we installed a high-resolution film digitizer which was interfaced to a central archive and to a workstation at the main reading room. The system was designed to allow for digitization of images as soon as the films were processed. Digitized images were autorouted to both destinations, and digitized images could be laser printed (if desired). Almost real time interpretations of nonselected cases were performed at both locations (conventional film in the ER and a workstation in the main reading room), and an analysis of disagreements was performed. Our results demonstrate that in spite of a `significant' difference in reporting, `clinically significant differences' were found in less than 5% of cases. Folder management issues, preprocessing, image orientation, and setting reasonable lookup tables for display were identified as the main limitations to the systems' routine use in a busy environment. The main limitation of the conventional film was the identification of subtle abnormalities in the bright regions of the film. Once identified on either system (conventional film or soft display), all abnormalities were visible and detectable on both display modalities.
Baksi, B Güniz; Ermis, R Banu
2007-10-01
To test the efficacy of conventional radiometry with indirect digital image analysis in the assessment of the relative radiopacity of dental cements used as liners or bases compared to human enamel and dentin. Disks of 15 different dental cements, 5 mm in diameter and 2 mm thick, were exposed to radiation together with 2-mm-thick disks of enamel and dentin and an aluminum step wedge. Density was evaluated by digital transmission densitometry and with the histogram function of an image analysis program following digitization of the radiographs with a flatbed scanner. A higher number of dental cements were discriminated from both dentin and enamel with conventional radiographic densitometer. All the cements examined, except Ionoseal (Voco) and Ionobond (Voco), were more radiopaque than dentin. With both methods, Chelon-Silver (3M ESPE) had the highest radiopacity and glass-ionomer cements the lowest. Radiodensity of dental cements can be differentiated with a high probability with the conventional radiometric method.
Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Roysam, Badrinath; Minervini, Martha I.; Demetris, Anthony J
2013-01-01
Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. “-Omics” analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: a) spatial-temporal relationships; b) rare events/cells; c) complex structural context; and d) integration into a “systems” model. Nevertheless, except for immunostaining, no transformative advancements have “modernized” routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology - global “–omic” analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. PMID:22053785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Mi-Ae; Moore, Stephen C.; McQuaid, Sarah J.
Purpose: The authors have previously reported the advantages of high-sensitivity single-photon emission computed tomography (SPECT) systems for imaging structures located deep inside the brain. DaTscan (Isoflupane I-123) is a dopamine transporter (DaT) imaging agent that has shown potential for early detection of Parkinson disease (PD), as well as for monitoring progression of the disease. Realizing the full potential of DaTscan requires efficient estimation of striatal uptake from SPECT images. They have evaluated two SPECT systems, a conventional dual-head gamma camera with low-energy high-resolution collimators (conventional) and a dedicated high-sensitivity multidetector cardiac imaging system (dedicated) for imaging tasks related to PD.more » Methods: Cramer-Rao bounds (CRB) on precision of estimates of striatal and background activity concentrations were calculated from high-count, separate acquisitions of the compartments (right striata, left striata, background) of a striatal phantom. CRB on striatal and background activity concentration were calculated from essentially noise-free projection datasets, synthesized by scaling and summing the compartment projection datasets, for a range of total detected counts. They also calculated variances of estimates of specific-to-nonspecific binding ratios (BR) and asymmetry indices from these values using propagation of error analysis, as well as the precision of measuring changes in BR on the order of the average annual decline in early PD. Results: Under typical clinical conditions, the conventional camera detected 2 M counts while the dedicated camera detected 12 M counts. Assuming a normal BR of 5, the standard deviation of BR estimates was 0.042 and 0.021 for the conventional and dedicated system, respectively. For an 8% decrease to BR = 4.6, the signal-to-noise ratio were 6.8 (conventional) and 13.3 (dedicated); for a 5% decrease, they were 4.2 (conventional) and 8.3 (dedicated). Conclusions: This implies that PD can be detected earlier with the dedicated system than with the conventional system; therefore, earlier identification of PD progression should be possible with the high-sensitivity dedicated SPECT camera.« less
Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique
NASA Technical Reports Server (NTRS)
Jobson, D. J.; Katzberg, S. J.; Spiers, R. B., Jr.
1977-01-01
The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoaf, S.; APS Engineering Support Division
A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.
Passive Fully Polarimetric W-Band Millimeter-Wave Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.
2012-04-01
We present the theory, design, and experimental results obtained from a scanning passive W-band fully polarimetric imager. Passive millimeter-wave imaging offers persistent day/nighttime imaging and the ability to penetrate dust, clouds and other obscurants, including clothing and dry soil. The single-pixel scanning imager includes both far-field and near-field fore-optics for investigation of polarization phenomena. Using both fore-optics, a variety of scenes including natural and man-made objects was imaged and these results are presented showing the utility of polarimetric imaging for anomaly detection. Analysis includes conventional Stokes-parameter based approaches as well as multivariate image analysis methods.
NASA Astrophysics Data System (ADS)
Lemaitre, P.; Brunel, M.; Rondeau, A.; Porcheron, E.; Gréhan, G.
2015-12-01
According to changes in aircraft certifications rules, instrumentation has to be developed to alert the flight crews of potential icing conditions. The technique developed needs to measure in real time the amount of ice and liquid water encountered by the plane. Interferometric imaging offers an interesting solution: It is currently used to measure the size of regular droplets, and it can further measure the size of irregular particles from the analysis of their speckle-like out-of-focus images. However, conventional image processing needs to be speeded up to be compatible with the real-time detection of icing conditions. This article presents the development of an optimised algorithm to accelerate image processing. The algorithm proposed is based on the detection of each interferogram with the use of the gradient pair vector method. This method is shown to be 13 times faster than the conventional Hough transform. The algorithm is validated on synthetic images of mixed phase clouds, and finally tested and validated in laboratory conditions. This algorithm should have important applications in the size measurement of droplets and ice particles for aircraft safety, cloud microphysics investigation, and more generally in the real-time analysis of triphasic flows using interferometric particle imaging.
Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1
NASA Technical Reports Server (NTRS)
Wiley, C. A.; Chang, M. U.
1981-01-01
Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems.
Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.
Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse
2018-05-01
Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.
Warndahl, Brent A; Borisch, Eric A; Kawashima, Akira; Riederer, Stephen J; Froemming, Adam T
2018-04-01
To evaluate if Field of view Optimized and Constrained Undistorted Single shot (FOCUS) (GE Healthcare, Waukesha, WI) diffusion weighted images (DWI) provide more reliable imaging than conventional DWI, with non-inferior quantitative apparent diffusion coefficient (ADC) results. IRB approval was obtained for this study of 43 patients (44 exams, one patient with two visits) that underwent multiparametric prostate MRI with two DWI sequences and subsequent radical prostatectomy with histology as the gold standard. Randomized DWI sequence images were graded independently by two blinded experienced prostate MRI radiologists with a period of memory extinction between the two separate reading sessions. Blinded images were also reviewed head to head in a later session for direct comparison. Multiple parameters were measured from a region of interest in a dominant lesion as well as two control areas. Patient characteristics were collected by chart review. There was good correlation between the mean ADC value for lesions obtained by conventional and FOCUS DWI (ρ=0.85), with no trend toward any systematic difference, and equivalent correlation between ADC measurements and Gleason score. Agreement between the two readers was significantly higher for lesion ROI analysis with the FOCUS DWI derived ADC values (CCC 0.839) compared with the conventional ADC values (CCC 0.618; difference 0.221, 95% CI 0.01-0.46). FOCUS showed significantly better image quality scores (separate review: mean 2.17±0.6, p<0.001) compared to the conventional sequence (mean 2.65±0.6, p<0.001). In 13 cases the image quality was improved from grade of 3+ with conventional DWI to <3 with FOCUS DWI, a clinically meaningful improvement. Head-to-head blinded review found 61 ratings showed strong to slight preference for FOCUS, 13 no preference, and 14 slight preference for the conventional sequence. There was also a strong and equivalent correlation between both sequences and PIRADS version 2 grading (ρ=-0.56 and -0.58 for FOCUS and conventional, respectively, p<0.001 for both). FOCUS DWI of the prostate shows significant improvement in inter-reader agreement and image quality. As opposed to previous conflicting smaller studies, we found equivalent ADC metrics compared with the conventional DWI sequence, and preserved correlation with Gleason score. In 52% of patients the improved image quality with FOCUS had the potential to salvage exams with otherwise limited to non-diagnostic DWI. Copyright © 2017 Elsevier Inc. All rights reserved.
First experiences with in-vivo x-ray dark-field imaging of lung cancer in mice
NASA Astrophysics Data System (ADS)
Gromann, Lukas B.; Scherer, Kai; Yaroshenko, Andre; Bölükbas, Deniz A.; Hellbach, Katharina; Meinel, Felix G.; Braunagel, Margarita; Eickelberg, Oliver; Reiser, Maximilian F.; Pfeiffer, Franz; Meiners, Silke; Herzen, Julia
2017-03-01
Purpose: The purpose of the present study was to evaluate if x-ray dark-field imaging can help to visualize lung cancer in mice. Materials and Methods: The experiments were performed using mutant mice with high-grade adenocarcinomas. Eight animals with pulmonary carcinoma and eight control animals were imaged in radiography mode using a prototype small-animal x-ray dark-field scanner and three of the cancerous ones additionally in CT mode. After imaging, the lungs were harvested for histological analysis. To determine their diagnostic value, x-ray dark-field and conventional attenuation images were analyzed by three experienced readers in a blind assessment. Results radiographic imaging: The lung nodules were much clearer visualized on the dark-field radiographs compared to conventional radiographs. The loss of air-tissue interfaces in the tumor leads to a significant loss of x-ray scattering, reflected in a strong dark-field signal change. The difference between tumor and healthy tissue in terms of x-ray attenuation is significantly less pronounced. Furthermore, the signal from the overlaying structures on conventional radiographs complicates the detection of pulmonary carcinoma. Results CT imaging: The very first in-vivo CT-imaging results are quite promising as smaller tumors are often better visible in the dark-field images. However the imaging quality is still quite low, especially in the attenuation images due to un-optimized scanning parameters. Conclusion: We found a superior diagnostic performance of dark-field imaging compared to conventional attenuation based imaging, especially when it comes to the detection of small lung nodules. These results support the motivation to further develop this technique and translate it towards a clinical environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... considered but eliminated from detailed analysis include conventional uranium mining and milling, conventional mining and heap leach processing, alternative site location, alternate lixiviants, and alternate...'s Agencywide Document Access and Management System (ADAMS), which provides text and image files of...
Satellite image analysis using neural networks
NASA Technical Reports Server (NTRS)
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
Effects of 99mTc-TRODAT-1 drug template on image quantitative analysis
Yang, Bang-Hung; Chou, Yuan-Hwa; Wang, Shyh-Jen; Chen, Jyh-Cheng
2018-01-01
99mTc-TRODAT-1 is a type of drug that can bind to dopamine transporters in living organisms and is often used in SPCT imaging for observation of changes in the activity uptake of dopamine in the striatum. Therefore, it is currently widely used in studies on clinical diagnosis of Parkinson’s disease (PD) and movement-related disorders. In conventional 99mTc-TRODAT-1 SPECT image evaluation, visual inspection or manual selection of ROI for semiquantitative analysis is mainly used to observe and evaluate the degree of striatal defects. However, these methods are dependent on the subjective opinions of observers, which lead to human errors, have shortcomings such as long duration, increased effort, and have low reproducibility. To solve this problem, this study aimed to establish an automatic semiquantitative analytical method for 99mTc-TRODAT-1. This method combines three drug templates (one built-in SPECT template in SPM software and two self-generated MRI-based and HMPAO-based TRODAT-1 templates) for the semiquantitative analysis of the striatal phantom and clinical images. At the same time, the results of automatic analysis of the three templates were compared with results from a conventional manual analysis for examining the feasibility of automatic analysis and the effects of drug templates on automatic semiquantitative analysis results. After comparison, it was found that the MRI-based TRODAT-1 template generated from MRI images is the most suitable template for 99mTc-TRODAT-1 automatic semiquantitative analysis. PMID:29543874
Yang, Li; Wang, Guobao; Qi, Jinyi
2016-04-01
Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.
NASA Astrophysics Data System (ADS)
Brun, F.; Intranuovo, F.; Mohammadi, S.; Domingos, M.; Favia, P.; Tromba, G.
2013-07-01
The technique used to produce a 3D tissue engineering (TE) scaffold is of fundamental importance in order to guarantee its proper morphological characteristics. An accurate assessment of the resulting structural properties is therefore crucial in order to evaluate the effectiveness of the produced scaffold. Synchrotron radiation (SR) computed microtomography (μ-CT) combined with further image analysis seems to be one of the most effective techniques to this aim. However, a quantitative assessment of the morphological parameters directly from the reconstructed images is a non trivial task. This study considers two different poly(ε-caprolactone) (PCL) scaffolds fabricated with a conventional technique (Solvent Casting Particulate Leaching, SCPL) and an additive manufacturing (AM) technique (BioCell Printing), respectively. With the first technique it is possible to produce scaffolds with random, non-regular, rounded pore geometry. The AM technique instead is able to produce scaffolds with square-shaped interconnected pores of regular dimension. Therefore, the final morphology of the AM scaffolds can be predicted and the resulting model can be used for the validation of the applied imaging and image analysis protocols. It is here reported a SR μ-CT image analysis approach that is able to effectively and accurately reveal the differences in the pore- and throat-size distributions as well as connectivity of both AM and SCPL scaffolds.
Isse, K; Lesniak, A; Grama, K; Roysam, B; Minervini, M I; Demetris, A J
2012-01-01
Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. "-Omics" analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: (a) spatial-temporal relationships; (b) rare events/cells; (c) complex structural context; and (d) integration into a "systems" model. Nevertheless, except for immunostaining, no transformative advancements have "modernized" routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology-global "-omic" analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. ©Copyright 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.
Video-based teleradiology for intraosseous lesions. A receiver operating characteristic analysis.
Tyndall, D A; Boyd, K S; Matteson, S R; Dove, S B
1995-11-01
Immediate access to off-site expert diagnostic consultants regarding unusual radiographic findings or radiographic quality assurance issues could be a current problem for private dental practitioners. Teleradiology, a system for transmitting radiographic images, offers a potential solution to this problem. Although much research has been done to evaluate feasibility and utilization of teleradiology systems in medical imaging, little research on dental applications has been performed. In this investigation 47 panoramic films with an equal distribution of images with intraosseous jaw lesions and no disease were viewed by a panel of observers with teleradiology and conventional viewing methods. The teleradiology system consisted of an analog video-based system simulating remote radiographic consultation between a general dentist and a dental imaging specialist. Conventional viewing consisted of traditional viewbox methods. Observers were asked to identify the presence or absence of 24 intraosseous lesions and to determine their locations. No statistically significant differences in modalities or observers were identified between methods at the 0.05 level. The results indicate that viewing intraosseous lesions of video-based panoramic images is equal to conventional light box viewing.
Cost-effective handling of digital medical images in the telemedicine environment.
Choong, Miew Keen; Logeswaran, Rajasvaran; Bister, Michel
2007-09-01
This paper concentrates on strategies for less costly handling of medical images. Aspects of digitization using conventional digital cameras, lossy compression with good diagnostic quality, and visualization through less costly monitors are discussed. For digitization of film-based media, subjective evaluation of the suitability of digital cameras as an alternative to the digitizer was undertaken. To save on storage, bandwidth and transmission time, the acceptable degree of compression with diagnostically no loss of important data was studied through randomized double-blind tests of the subjective image quality when compression noise was kept lower than the inherent noise. A diagnostic experiment was undertaken to evaluate normal low cost computer monitors as viable viewing displays for clinicians. The results show that conventional digital camera images of X-ray images were diagnostically similar to the expensive digitizer. Lossy compression, when used moderately with the imaging noise to compression noise ratio (ICR) greater than four, can bring about image improvement with better diagnostic quality than the original image. Statistical analysis shows that there is no diagnostic difference between expensive high quality monitors and conventional computer monitors. The results presented show good potential in implementing the proposed strategies to promote widespread cost-effective telemedicine and digital medical environments. 2006 Elsevier Ireland Ltd
Park, Hyun Jeong; Kim, Seong Hyun; Jang, Kyung Mi; Choi, Seo-youn; Lee, Soon Jin; Choi, Dongil
2014-04-01
To assess the added value of diffusion-weighted imaging (DWI) to conventional magnetic resonance imaging (MRI) for differentiating benign from malignant bile duct strictures. Twenty-seven patients with a benign stricture and 42 patients with a malignant stricture who had undergone gadoxetic acid-enhanced MRI with DWI were enrolled. Qualitative (signal intensity, dynamic enhancement pattern) and quantitative (wall thickness and length) analyses were performed. Two observers independently reviewed a set of conventional MRI and a combined set of conventional MRI and DWI, and receiver operating characteristic (ROC) curve analysis was assessed. Benign strictures showed isointensity (18.5-70.4 %) and a similar enhancement pattern (22.2 %) to that of normal bile duct more frequently than malignant strictures (0-40.5 % and 0 %) on conventional MRI (P < 0.05). Malignant strictures (90.5-92.9 %) showed hypervascularity on arterial and portal venous phase images more frequently than benign strictures (37.0-70.4 %) (P < 0.01) On DWI, all malignant strictures showed hyperintensity compared with benign cases (70.4 %) (P < 0.001). Malignant strictures were significantly thicker and longer than benign strictures (P < 0.001). The diagnostic performance of both observers improved significantly after additional review of DWI. Adding DWI to conventional MRI is more helpful for differentiating benign from malignant bile duct strictures than conventional MRI alone. • Accurate diagnosis and exclusion of benign strictures of bile duct are important. • Diffusion-weighted MRI helps to distinguish benign from malignant bile duct strictures. • DWI plus conventional MRI provides superior diagnostic accuracy to conventional MRI alone.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... (ADAMS), which provides text and image files of the NRC's public documents in the NRC Library at http... considered, but eliminated from detailed analysis, include conventional uranium mining and milling, conventional mining and heap leach processing, alternate lixiviants, and alternative wastewater disposal...
Zhu, Zheng; Zhao, Xin-ming; Zhao, Yan-feng; Wang, Xiao-yi; Zhou, Chun-wu
2015-01-01
To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. 26 patients (weight > 65kg and BMI ≥ 22) underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A). Another 21 patients (weight ≤ 65kg and BMI ≥ 22) were scanned with a conventional 120 kVp tube voltage for noise index (NI) of 11 with 450mgI/kg contrast material as control group (group B). GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD), signal-noise-ratio (SNR), contrast-noise-ratio (CNR) of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis. As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684). CT dose index (CTDI) values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000), respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B. The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol.
Bochmann, Monika; Ludewig, E; Pees, M
2011-01-01
A conventional high-resolution screen-film system (Film Kodak MIN-R S, Kodak MIN-R 2000) was compared with an indirect digital detector system (Varian PaxScan 4030E) for use in radiography of lizards. A total of 20 bearded dragons (Pogona vitticeps ) with body masses between 123 g and 487 g were investigated by using conventional and digital image acquisition techniques. The digital image was taken with the same dose as well as half the dose of the conventional radiograph. The study was conducted semi-blinded as the x-ray images were encoded and randomised. Five veterinarians with clinical experience in reptile medicine served as observers. Exactly defined structures in three anatomical regions were assessed using a three-step scale. Furthermore, the overall quality of the respective region was evaluated using a five-step scale. Evaluation of the data was done by visual grading analysis. None of the structures examined was assessed to be of significantly inferior quality on the digital images in comparison to the conventional radiographs. The majority of the results demonstrated an equal quality of both systems. For assessment of the lung tissue and the pulmonary vessels as well as the overall assessment of the lung, the digital radiographs with full dose were rated to be significantly superior in comparison to the film-screen system. Furthermore, the joint contours of the shoulder and cubital joints and the overall assessments of the humerus and the caudal coelomic cavity were rated significantly better on digital images with full dose compared to those with reduced dose. The digital flat panel detector technique examined in this study is equal or superior to the conventional high-resolution screen-film system used. Nevertheless, the practicability of a dose reduction is limited in bearded dragons. Digital imaging systems are progressively being used in veterinary practice. The results of the study demonstrate the useful application of the digital detector systems in lizards.
Chang, Suyon; Han, Kyunghwa; Youn, Jong-Chan; Im, Dong Jin; Kim, Jin Young; Suh, Young Joo; Hong, Yoo Jin; Hur, Jin; Kim, Young Jin; Choi, Byoung Wook; Lee, Hye-Jeong
2018-05-01
Purpose To investigate the diagnostic utility of dual-energy computed tomography (CT)-based monochromatic imaging for myocardial delayed enhancement (MDE) assessment in patients with cardiomyopathy. Materials and Methods The institutional review board approved this prospective study, and informed consent was obtained from all participants who were enrolled in the study. Forty patients (27 men and 13 women; mean age, 56 years ± 15 [standard deviation]; age range, 22-81 years) with cardiomyopathy underwent cardiac magnetic resonance (MR) imaging and dual-energy CT. Conventional (120-kV) and monochromatic (60-, 70-, and 80-keV) images were reconstructed from the dual-energy CT acquisition. Subjective quality score, contrast-to-noise ratio (CNR), and beam-hardening artifacts were compared pairwise with the Friedman test at post hoc analysis. With cardiac MR imaging as the reference standard, diagnostic performance of dual-energy CT in MDE detection and its predictive ability for pattern classification were compared pairwise by using logistic regression analysis with the generalized estimating equation in a per-segment analysis. The Bland-Altman method was used to find agreement between cardiac MR imaging and CT in MDE quantification. Results Among the monochromatic images, 70-keV CT images resulted in higher subjective quality (mean score, 3.38 ± 0.54 vs 3.15 ± 0.43; P = .0067), higher CNR (mean, 4.26 ± 1.38 vs 3.93 ± 1.33; P = .0047), and a lower value for beam-hardening artifacts (mean, 3.47 ± 1.56 vs 4.15 ± 1.67; P < .0001) when compared with conventional CT. When compared with conventional CT, 70-keV CT showed improved diagnostic performance for MDE detection (sensitivity, 94.6% vs 90.4% [P = .0032]; specificity, 96.0% vs 94.0% [P = .0031]; and accuracy, 95.6% vs 92.7% [P < .0001]) and improved predictive ability for pattern classification (subendocardial, 91.5% vs 84.3% [P = .0111]; epicardial, 94.3% vs 73.5% [P = .0001]; transmural, 93.0% vs 77.7% [P = .0018]; mesocardial, 85.4% vs 69.2% [P = .0047]; and patchy. 84.4% vs 78.4% [P = .1514]). For MDE quantification, 70-keV CT showed a small bias 0.1534% (95% limits of agreement: -4.7013, 5.0080). Conclusion Dual-energy CT-based 70-keV monochromatic images improve MDE assessment in patients with cardiomyopathy via improved image quality and CNR and reduced beam-hardening artifacts when compared with conventional CT images. © RSNA, 2017 Online supplemental material is available for this article.
Zhang, Lei; Zeng, Zhi; Ji, Qiang
2011-09-01
Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.
Digital repeat analysis; setup and operation.
Nol, J; Isouard, G; Mirecki, J
2006-06-01
Since the emergence of digital imaging, there have been questions about the necessity of continuing reject analysis programs in imaging departments to evaluate performance and quality. As a marketing strategy, most suppliers of digital technology focus on the supremacy of the technology and its ability to reduce the number of repeats, resulting in less radiation doses given to patients and increased productivity in the department. On the other hand, quality assurance radiographers and radiologists believe that repeats are mainly related to positioning skills, and repeat analysis is the main tool to plan training needs to up-skill radiographers. A comparative study between conventional and digital imaging was undertaken to compare outcomes and evaluate the need for reject analysis. However, digital technology still being at its early development stages, setting a credible reject analysis program became the major task of the study. It took the department, with the help of the suppliers of the computed radiography reader and the picture archiving and communication system, over 2 years of software enhancement to build a reliable digital repeat analysis system. The results were supportive of both philosophies; the number of repeats as a result of exposure factors was reduced dramatically; however, the percentage of repeats as a result of positioning skills was slightly on the increase for the simple reason that some rejects in the conventional system qualifying for both exposure and positioning errors were classified as exposure error. The ability of digitally adjusting dark or light images reclassified some of those images as positioning errors.
Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca; Latson, Larry A; Bhatla, Puneet; Feng, Li; Axel, Leon
2017-01-01
Object Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMR). We evaluated whether a free-breathing (FB) radial imaging CCMR sequence with compressed sensing reconstruction (eXtra-Dimension (e.g. cardiac and respiratory phases) Golden-angle RAdial Sparse Parallel, or XD-GRASP) could provide better image quality than a conventional Cartesian breath-held (BH) sequence, in an unselected population of patients undergoing clinical CCMR. Material and Methods 101 patients who underwent BH and FB imaging in a mid-ventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a 5-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastole (ED) and end-systole (ES) left-ventricular areas were also measured and compared for both BH and FB images. Results Image quality was generally better with the BH cines (overall quality grade BH vs FB: 4 vs 2.9, p<0.001; noise 0.06 vs 0.08 p< 0.001; SNR grade: 4.1 vs 3, p<0.001), except for sharpness (p=0.48). There were no significant differences between BH and FB images regarding ED or ES areas (p=0.35 and 0.12). 18 of the 101 patients had impaired BH image quality (grades 1 or 2). In this subgroup, image quality of the FB images was better (p=0.0032), as was the SNR grade (p=0.003), but there were no significant differences regarding noise and sharpness (p=0.45, p=0.47). Conclusion Although FB XD-GRASP CCMR was visually inferior to conventional BH cardiac cine in general, it provided improved image quality in the subgroup of patients presenting respiratory motion-induced artifacts on breath-held images. PMID:29067539
Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca; Latson, Larry A; Bhatla, Puneet; Feng, Li; Axel, Leon
2018-02-01
Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMRI). We evaluated whether a free-breathing (FB) radial imaging CCMRI sequence with compressed sensing reconstruction [extradimensional (e.g. cardiac and respiratory phases) golden-angle radial sparse parallel, or XD-GRASP] could provide better image quality than a conventional Cartesian breath-held (BH) sequence in an unselected population of patients undergoing clinical CCMRI. One hundred one patients who underwent BH and FB imaging in a midventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a five-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastolic and end-systolic left ventricular areas were also measured and compared for both BH and FB images. Image quality was generally better with the BH cines (overall quality grade for BH vs FB images 4 vs 2.9, p < 0.001; noise 0.06 vs 0.08 p < 0.001; SNR grade 4.1 vs 3, p < 0.001), except for sharpness (p = 0.48). There were no significant differences between BH and FB images regarding end-diastolic or end-systolic areas (p = 0.35 and p = 0.12). Eighteen of the 101 patients had poor BH image quality (grade 1 or 2). In this subgroup, the quality of the FB images was better (p = 0.0032), as was the SNR grade (p = 0.003), but there were no significant differences regarding noise and sharpness (p = 0.45 and p = 0.47). Although FB XD-GRASP CCMRI was visually inferior to conventional BH CCMRI in general, it provided improved image quality in the subgroup of patients with respiratory-motion-induced artifacts on BH images.
Hiremath, S B; Muraleedharan, A; Kumar, S; Nagesh, C; Kesavadas, C; Abraham, M; Kapilamoorthy, T R; Thomas, B
2017-04-01
Tumefactive demyelinating lesions with atypical features can mimic high-grade gliomas on conventional imaging sequences. The aim of this study was to assess the role of conventional imaging, DTI metrics ( p:q tensor decomposition), and DSC perfusion in differentiating tumefactive demyelinating lesions and high-grade gliomas. Fourteen patients with tumefactive demyelinating lesions and 21 patients with high-grade gliomas underwent brain MR imaging with conventional, DTI, and DSC perfusion imaging. Imaging sequences were assessed for differentiation of the lesions. DTI metrics in the enhancing areas and perilesional hyperintensity were obtained by ROI analysis, and the relative CBV values in enhancing areas were calculated on DSC perfusion imaging. Conventional imaging sequences had a sensitivity of 80.9% and specificity of 57.1% in differentiating high-grade gliomas ( P = .049) from tumefactive demyelinating lesions. DTI metrics ( p : q tensor decomposition) and DSC perfusion demonstrated a statistically significant difference in the mean values of ADC, the isotropic component of the diffusion tensor, the anisotropic component of the diffusion tensor, the total magnitude of the diffusion tensor, and rCBV among enhancing portions in tumefactive demyelinating lesions and high-grade gliomas ( P ≤ .02), with the highest specificity for ADC, the anisotropic component of the diffusion tensor, and relative CBV (92.9%). Mean fractional anisotropy values showed no significant statistical difference between tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI and DSC parameters improved the diagnostic accuracy (area under the curve = 0.901). Addition of a heterogeneous enhancement pattern to DTI and DSC parameters improved it further (area under the curve = 0.966). The sensitivity increased from 71.4% to 85.7% after the addition of the enhancement pattern. DTI and DSC perfusion add profoundly to conventional imaging in differentiating tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI metrics and DSC perfusion markedly improved diagnostic accuracy. © 2017 by American Journal of Neuroradiology.
Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian
2013-01-01
Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969
Automated quantification of pancreatic β-cell mass
Golson, Maria L.; Bush, William S.
2014-01-01
β-Cell mass is a parameter commonly measured in studies of islet biology and diabetes. However, the rigorous quantification of pancreatic β-cell mass using conventional histological methods is a time-consuming process. Rapidly evolving virtual slide technology with high-resolution slide scanners and newly developed image analysis tools has the potential to transform β-cell mass measurement. To test the effectiveness and accuracy of this new approach, we assessed pancreata from normal C57Bl/6J mice and from mouse models of β-cell ablation (streptozotocin-treated mice) and β-cell hyperplasia (leptin-deficient mice), using a standardized systematic sampling of pancreatic specimens. Our data indicate that automated analysis of virtual pancreatic slides is highly reliable and yields results consistent with those obtained by conventional morphometric analysis. This new methodology will allow investigators to dramatically reduce the time required for β-cell mass measurement by automating high-resolution image capture and analysis of entire pancreatic sections. PMID:24760991
A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.
Noh, Dong K; Lee, Nam G; You, Joshua H
2014-01-01
This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).
Kawakami, Shogo; Ishiyama, Hiromichi; Satoh, Takefumi; Tsumura, Hideyasu; Sekiguchi, Akane; Takenaka, Kouji; Tabata, Ken-Ichi; Iwamura, Masatsugu; Hayakawa, Kazushige
2017-08-01
To compare prostate contours on conventional stepping transverse image acquisitions with those on twister-based sagittal image acquisitions. Twenty prostate cancer patients who were planned to have permanent interstitial prostate brachytherapy were prospectively accrued. A transrectal ultrasonography probe was inserted, with the patient in lithotomy position. Transverse images were obtained with stepping movement of the transverse transducer. In the same patient, sagittal images were also obtained through rotation of the sagittal transducer using the "Twister" mode. The differences of prostate size among the two types of image acquisitions were compared. The relationships among the difference of the two types of image acquisitions, dose-volume histogram (DVH) parameters on the post-implant computed tomography (CT) analysis, as well as other factors were analyzed. The sagittal image acquisitions showed a larger prostate size compared to the transverse image acquisitions especially in the anterior-posterior (AP) direction ( p < 0.05). Interestingly, relative size of prostate apex in AP direction in sagittal image acquisitions compared to that in transverse image acquisitions was correlated to DVH parameters such as D 90 ( R = 0.518, p = 0.019), and V 100 ( R = 0.598, p = 0.005). There were small but significant differences in the prostate contours between the transverse and the sagittal planning image acquisitions. Furthermore, our study suggested that the differences between the two types of image acquisitions might correlated to dosimetric results on CT analysis.
Jafarian, Amir Hossein; Tasbandi, Aida; Mohamadian Roshan, Nema
2018-04-19
The aim of this study is to investigate and compare the results of digital image analysis in pleural effusion cytology samples with conventional modalities. In this cross-sectional study, 53 pleural fluid cytology smears from Qaem hospital pathology department, located in Mashhad, Iran were investigated. Prior to digital analysis, all specimens were evaluated by two pathologists and categorized into three groups as: benign, suspicious, and malignant. Using an Olympus microscope and Olympus DP3 digital camera, digital images from cytology slides were captured. Appropriate images (n = 130) were separately imported to Adobe Photoshop CS5 and parameters including area and perimeter, circularity, Gray Value mean, integrated density, and nucleus to cytoplasm area ratio were analyzed. Gray Value mean, nucleus to cytoplasm area ratio, and circularity showed the best sensitivity and specificity rates as well as significant differences between all groups. Also, nucleus area and perimeter showed a significant relation between suspicious and malignant groups with benign group. Whereas, there was no such difference between suspicious and malignant groups. We concluded that digital image analysis is welcomed in the field of research on pleural fluid smears as it can provide quantitative data to apply various comparisons and reduce interobserver variation which could assist pathologists to achieve a more accurate diagnosis. © 2018 Wiley Periodicals, Inc.
Watershed identification of polygonal patterns in noisy SAR images.
Moreels, Pierre; Smrekar, Suzanne E
2003-01-01
This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.
Harris, C; Alcock, A; Trefan, L; Nuttall, D; Evans, S T; Maguire, S; Kemp, A M
2018-02-01
Bruising is a common abusive injury in children, and it is standard practice to image and measure them, yet there is no current standard for measuring bruise size consistently. We aim to identify the optimal method of measuring photographic images of bruises, including computerised measurement techniques. 24 children aged <11 years (mean age of 6.9, range 2.5-10 years) with a bruise were recruited from the community. Demographics and bruise details were recorded. Each bruise was measured in vivo using a paper measuring tape. Standardised conventional and cross polarized digital images were obtained. The diameter of bruise images were measured by three computer aided measurement techniques: Image J (segmentation with Simple Interactive Object Extraction (maximum Feret diameter), 'Circular Selection Tool' (Circle diameter), & the Photoshop 'ruler' software (Photoshop diameter)). Inter and intra-observer effects were determined by two individuals repeating 11 electronic measurements, and relevant Intraclass Correlation Coefficient's (ICC's) were used to establish reliability. Spearman's rank correlation was used to compare in vivo with computerised measurements; a comparison of measurement techniques across imaging modalities was conducted using Kolmogorov-Smirnov tests. Significance was set at p < 0.05 for all tests. Images were available for 38 bruises in vivo, with 48 bruises visible on cross polarized imaging and 46 on conventional imaging (some bruises interpreted as being single in vivo appeared to be multiple in digital images). Correlation coefficients were >0.5 for all techniques, with maximum Feret diameter and maximum Photoshop diameter on conventional images having the strongest correlation with in vivo measurements. There were significant differences between in vivo and computer-aided measurements, but none between different computer-aided measurement techniques. Overall, computer aided measurements appeared larger than in vivo. Inter- and intra-observer agreement was high for all maximum diameter measurements (ICC's > 0.7). Whilst there are minimal differences between measurements of images obtained, the most consistent results were obtained when conventional images, segmented by Image J Software, were measured with a Feret diameter. This is therefore proposed as a standard for future research, and forensic practice, with the proviso that all computer aided measurements appear larger than in vivo. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Xiao, Z; Tang, Z; Qiang, J; Wang, S; Qian, W; Zhong, Y; Wang, R; Wang, J; Wu, L; Tang, W; Zhang, Z
2018-01-25
Intravoxel incoherent motion is a promising method for the differentiation of sinonasal lesions. This study aimed to evaluate the value of intravoxel incoherent motion in the differentiation of benign and malignant sinonasal lesions and to compare the diagnostic performance of intravoxel incoherent motion with that of conventional DWI. One hundred thirty-one patients with histologically proved solid sinonasal lesions (56 benign and 75 malignant) who underwent conventional DWI and intravoxel incoherent motion were recruited in this study. The diffusion coefficient ( D ), pseudodiffusion coefficient ( D *), and perfusion fraction ( f ) values derived from intravoxel incoherent motion and ADC values derived from conventional DWI were measured and compared between the 2 groups using the Student t test. Receiver operating characteristic curve analysis, logistic regression analysis, and 10-fold cross-validation were performed to evaluate the diagnostic performance of single-parametric and multiparametric models. The mean ADC and D values were significantly lower in malignant sinonasal lesions than in benign sinonasal lesions (both P < .001). The mean f value was higher in malignant lesions than in benign lesions ( P = .003). Multiparametric models can significantly improve the cross-validated areas under the curve for the differentiation of sinonasal lesions compared with single-parametric models (all corrected P < .05 except the D value). The model of D + f provided a better diagnostic performance than the ADC value (corrected P < .001). Intravoxel incoherent motion appears to be a more effective MR imaging technique than conventional DWI in the differentiation of benign and malignant sinonasal lesions. © 2018 by American Journal of Neuroradiology.
Quantitative analysis of cardiovascular MR images.
van der Geest, R J; de Roos, A; van der Wall, E E; Reiber, J H
1997-06-01
The diagnosis of cardiovascular disease requires the precise assessment of both morphology and function. Nearly all aspects of cardiovascular function and flow can be quantified nowadays with fast magnetic resonance (MR) imaging techniques. Conventional and breath-hold cine MR imaging allow the precise and highly reproducible assessment of global and regional left ventricular function. During the same examination, velocity encoded cine (VEC) MR imaging provides measurements of blood flow in the heart and great vessels. Quantitative image analysis often still relies on manual tracing of contours in the images. Reliable automated or semi-automated image analysis software would be very helpful to overcome the limitations associated with the manual and tedious processing of the images. Recent progress in MR imaging of the coronary arteries and myocardial perfusion imaging with contrast media, along with the further development of faster imaging sequences, suggest that MR imaging could evolve into a single technique ('one stop shop') for the evaluation of many aspects of heart disease. As a result, it is very likely that the need for automated image segmentation and analysis software algorithms will further increase. In this paper the developments directed towards the automated image analysis and semi-automated contour detection for cardiovascular MR imaging are presented.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Xin, Binjie
2016-08-01
Yarn density is always considered as the fundamental structural parameter used for the quality evaluation of woven fabrics. The conventional yarn density measurement method is based on one-side analysis. In this paper, a novel density measurement method is developed for yarn-dyed woven fabrics based on a dual-side fusion technique. Firstly, a lab-used dual-side imaging system is established to acquire both face-side and back-side images of woven fabric and the affine transform is used for the alignment and fusion of the dual-side images. Then, the color images of the woven fabrics are transferred from the RGB to the CIE-Lab color space, and the intensity information of the image extracted from the L component is used for texture fusion and analysis. Subsequently, three image fusion methods are developed and utilized to merge the dual-side images: the weighted average method, wavelet transform method and Laplacian pyramid blending method. The fusion efficacy of each method is evaluated by three evaluation indicators and the best of them is selected to do the reconstruction of the complete fabric texture. Finally, the yarn density of the fused image is measured based on the fast Fourier transform, and the yarn alignment image could be reconstructed using the inverse fast Fourier transform. Our experimental results show that the accuracy of density measurement by using the proposed method is close to 99.44% compared with the traditional method and the robustness of this new proposed method is better than that of conventional analysis methods.
Atkinson, Roscoe; Mollerup, Jens; Laenkholm, Anne-Vibeke; Verardo, Mark; Hawes, Debra; Commins, Deborah; Engvad, Birte; Correa, Adrian; Ehlers, Charlotte Cort; Nielsen, Kirsten Vang
2011-08-01
New guidelines for HER2 testing have been introduced. To evaluate the difference in HER2 assessment after introduction of new cutoff levels for both immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) and to compare interobserver agreement and time to score between image analysis and conventional microscopy. Samples from 150 patients with breast cancer were scored by 7 pathologists using conventional microscopy, with a cutoff of both 10% and 30% IHC-stained cells, and using automated microscopy with image analysis. The IHC results were compared individually and to HER2 status as determined by FISH, using both the approved cutoff of 2.0 and the recently introduced cutoff of 2.2. High concordance was found in IHC scoring among the 7 pathologists. The 30% cutoff led to slightly fewer positive IHC observations. Introduction of a FISH equivocal zone affected 4% of the FISH scores. If cutoff for FISH is kept at 2.0, no difference in patient selection is found between the 10% and the 30% IHC cutoff. Among the 150 breast cancer samples, the new 30% IHC and 2.2 FISH cutoff levels resulted in one case without a firm diagnosis because both IHC and FISH were equivocal. Automated microscopy and image analysis-assisted IHC led to significantly better interobserver agreement among the 7 pathologists, with an increase in mean scoring time of only about 30 seconds per slide. The change in cutoff levels led to a higher concordance between IHC and FISH, but fewer samples were classified as HER2 positive.
Pieterman, Elise D; Budde, Ricardo P J; Robbers-Visser, Daniëlle; van Domburg, Ron T; Helbing, Willem A
2017-09-01
Follow-up of right ventricular performance is important for patients with congenital heart disease. Cardiac magnetic resonance imaging is optimal for this purpose. However, observer-dependency of manual analysis of right ventricular volumes limit its use. Knowledge-based reconstruction is a new semiautomatic analysis tool that uses a database including knowledge of right ventricular shape in various congenital heart diseases. We evaluated whether knowledge-based reconstruction is a good alternative for conventional analysis. To assess the inter- and intra-observer variability and agreement of knowledge-based versus conventional analysis of magnetic resonance right ventricular volumes, analysis was done by two observers in a mixed group of 22 patients with congenital heart disease affecting right ventricular loading conditions (dextro-transposition of the great arteries and right ventricle to pulmonary artery conduit) and a group of 17 healthy children. We used Bland-Altman analysis and coefficient of variation. Comparison between the conventional method and the knowledge-based method showed a systematically higher volume for the latter group. We found an overestimation for end-diastolic volume (bias -40 ± 24 mL, r = .956), end-systolic volume (bias -34 ± 24 mL, r = .943), stroke volume (bias -6 ± 17 mL, r = .735) and an underestimation of ejection fraction (bias 7 ± 7%, r = .671) by knowledge-based reconstruction. The intra-observer variability of knowledge-based reconstruction varied with a coefficient of variation of 9% for end-diastolic volume and 22% for stroke volume. The same trend was noted for inter-observer variability. A systematic difference (overestimation) was noted for right ventricular size as assessed with knowledge-based reconstruction compared with conventional methods for analysis. Observer variability for the new method was comparable to what has been reported for the right ventricle in children and congenital heart disease with conventional analysis. © 2017 Wiley Periodicals, Inc.
High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.
Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi
2015-12-01
An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Del Grande, Filippo; Subhawong, Ty; Weber, Kristy; Aro, Michael; Mugera, Charles; Fayad, Laura M
2014-05-01
To determine the added value of functional magnetic resonance (MR) sequences (dynamic contrast material-enhanced [DCE] and quantitative diffusion-weighted [DW] imaging with apparent diffusion coefficient [ADC] mapping) for the detection of recurrent soft-tissue sarcomas following surgical resection. This retrospective study was approved by the institutional review board. The requirement to obtain informed consent was waived. Thirty-seven patients referred for postoperative surveillance after resection of soft-tissue sarcoma (35 with high-grade sarcoma) were studied. Imaging at 3.0 T included conventional (T1-weighted, fluid-sensitive, and contrast-enhanced T1-weighted imaging) and functional (DCE MR imaging, DW imaging with ADC mapping) sequences. Recurrences were confirmed with biopsy or resection. A disease-free state was determined with at least 6 months of follow-up. Two readers independently recorded the signal and morphologic characteristics with conventional sequences, the presence or absence of arterial enhancement at DCE MR imaging, and ADCs of the surgical bed. The accuracy of conventional MR imaging in the detection of recurrence was compared with that with the addition of functional sequences. The Fisher exact and Wilcoxon rank sum tests were used to define the accuracy of imaging features, the Cohen κ and Lin interclass correlation were used to define interobserver variability, and receiver operating characteristic analysis was used to define a threshold to detect recurrence and assess reader confidence after the addition of functional imaging to conventional sequences. There were six histologically proved recurrences in 37 patients. Sensitivity and specificity of MR imaging in the detection of tumor recurrence were 100% (six of six patients) and 52% (16 of 31 patients), respectively, with conventional sequences, 100% (six of six patients) and 97% (30 of 31 patients) with the addition of DCE MR imaging, and 60% (three of five patients) and 97% (30 of 31 patients) with the addition of DW imaging and ADC mapping. The average ADC of recurrence (1.08 mm(2)/sec ± 0.19) was significantly different from those of postoperative scarring (0.9 mm(2)/sec ± 0.00) and hematomas (2.34 mm(2)/sec ± 0.72) (P = .03 for both). The addition of functional MR sequences to a routine MR protocol, in particular DCE MR imaging, offers a specificity of more than 95% for distinguishing recurrent sarcoma from postsurgical scarring.
Removal of intensity bias in magnitude spin-echo MRI images by nonlinear diffusion filtering
NASA Astrophysics Data System (ADS)
Samsonov, Alexei A.; Johnson, Chris R.
2004-05-01
MRI data analysis is routinely done on the magnitude part of complex images. While both real and imaginary image channels contain Gaussian noise, magnitude MRI data are characterized by Rice distribution. However, conventional filtering methods often assume image noise to be zero mean and Gaussian distributed. Estimation of an underlying image using magnitude data produces biased result. The bias may lead to significant image errors, especially in areas of low signal-to-noise ratio (SNR). The incorporation of the Rice PDF into a noise filtering procedure can significantly complicate the method both algorithmically and computationally. In this paper, we demonstrate that inherent image phase smoothness of spin-echo MRI images could be utilized for separate filtering of real and imaginary complex image channels to achieve unbiased image denoising. The concept is demonstrated with a novel nonlinear diffusion filtering scheme developed for complex image filtering. In our proposed method, the separate diffusion processes are coupled through combined diffusion coefficients determined from the image magnitude. The new method has been validated with simulated and real MRI data. The new method has provided efficient denoising and bias removal in conventional and black-blood angiography MRI images obtained using fast spin echo acquisition protocols.
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
Measurement of RBC agglutination with microscopic cell image analysis in a microchannel chip.
Cho, Chi Hyun; Kim, Ju Yeon; Nyeck, Agnes E; Lim, Chae Seung; Hur, Dae Sung; Chung, Chanil; Chang, Jun Keun; An, Seong Soo A; Shin, Sehyun
2014-01-01
Since Landsteiner's discovery of ABO blood groups, RBC agglutination has been one of the most important immunohematologic techniques for ABO and RhD blood groupings. The conventional RBC agglutination grading system for RhD blood typings relies on macroscopic reading, followed by the assignment of a grade ranging from (-) to (4+) to the degree of red blood cells clumping. However, with the new scoring method introduced in this report, microscopically captured cell images of agglutinated RBCs, placed in a microchannel chip, are used for analysis. Indeed, the cell images' pixel number first allows the differentiation of agglutinated and non-agglutinated red blood cells. Finally, the ratio of agglutinated RBCs per total RBC counts (CRAT) from 90 captured images is then calculated. During the trial, it was observed that the agglutinated group's CRAT was significantly higher (3.77-0.003) than that of the normal control (0). Based on these facts, it was established that the microchannel method was more suitable for the discrimination between agglutinated RBCs and non-agglutinated RhD negative, and thus more reliable for the grading of RBCs agglutination than the conventional method.
Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin
2016-01-01
Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165
Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin; Sohn, Dae Kyung
2016-07-01
We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis.
A randomization approach to handling data scaling in nuclear medicine.
Bai, Chuanyong; Conwell, Richard; Kindem, Joel
2010-06-01
In medical imaging, data scaling is sometimes desired to handle the system complexity, such as uniformity calibration. Since the data are usually saved in short integer, conventional data scaling will first scale the data in floating point format and then truncate or round the floating point data to short integer data. For example, when using truncation, scaling of 9 by 1.1 results in 9 and scaling of 10 by 1.1 results in 11. When the count level is low, such scaling may change the local data distribution and affect the intended application of the data. In this work, the authors use an example gated cardiac SPECT study to illustrate the effect of conventional scaling by factors of 1.1 and 1.2. The authors then scaled the data with the same scaling factors using a randomization approach, in which a random number evenly distributed between 0 and 1 is generated to determine how the floating point data will be saved as short integer data. If the random number is between 0 and 0.9, then 9.9 will be saved as 10, otherwise 9. In other words, the floating point value 9.9 will be saved in short integer value as 10 with 90% probability or 9 with 10% probability. For statistical analysis of the performance, the authors applied the conventional approach with rounding and the randomization approach to 50 consecutive gated studies from a clinical site. For the example study, the image reconstructed from the original data showed an apparent perfusion defect at the apex of the myocardium. The defect size was noticeably changed by scaling with 1.1 and 1.2 using the conventional approaches with truncation and rounding. Using the randomization approach, in contrast, the images from the scaled data appeared identical to the original image. Line profile analysis of the scaled data showed that the randomization approach introduced the least change to the data as compared to the conventional approaches. For the 50 gated data sets, significantly more studies showed quantitative differences between the original images and the images from the data scaled by 1.2 using the rounding approach than the randomization approach [46/50 (92%) versus 3/50 (6%), p < 0.05]. Likewise, significantly more studies showed visually noticeable differences between the original images and the images from the data scaled by 1.2 using the rounding approach than randomization [29/50 (58%) versus 1/50 (2%), p < 0.05]. In conclusion, the proposed randomization approach minimizes the scaling-introduced local data change as compared to the conventional approaches. It is preferred for nuclear medicine data scaling.
WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozguner, O; Halliburton, S; Dhanantwari, A
2016-06-15
Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation frommore » water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without any loss in image quality or noise penalties relative to conventional images. This study was performed as part of a research agreement among Philips Healthcare, University Hospitals of Cleveland, and Case Western Reserve University.« less
Image formation analysis and high resolution image reconstruction for plenoptic imaging systems.
Shroff, Sapna A; Berkner, Kathrin
2013-04-01
Plenoptic imaging systems are often used for applications like refocusing, multimodal imaging, and multiview imaging. However, their resolution is limited to the number of lenslets. In this paper we investigate paraxial, incoherent, plenoptic image formation, and develop a method to recover some of the resolution for the case of a two-dimensional (2D) in-focus object. This enables the recovery of a conventional-resolution, 2D image from the data captured in a plenoptic system. We show simulation results for a plenoptic system with a known response and Gaussian sensor noise.
Almeida, Jonas S.; Iriabho, Egiebade E.; Gorrepati, Vijaya L.; Wilkinson, Sean R.; Grüneberg, Alexander; Robbins, David E.; Hackney, James R.
2012-01-01
Background: Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. Materials and Methods: ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Results: Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. Conclusions: The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local “download and installation”. PMID:22934238
Almeida, Jonas S; Iriabho, Egiebade E; Gorrepati, Vijaya L; Wilkinson, Sean R; Grüneberg, Alexander; Robbins, David E; Hackney, James R
2012-01-01
Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local "download and installation".
Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish
Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui
2015-01-01
In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381
Nanoscale live cell optical imaging of the dynamics of intracellular microvesicles in neural cells.
Lee, Sohee; Heo, Chaejeong; Suh, Minah; Lee, Young Hee
2013-11-01
Recent advances in biotechnology and imaging technology have provided great opportunities to investigate cellular dynamics. Conventional imaging methods such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy are powerful techniques for cellular imaging, even at the nanoscale level. However, these techniques have limitations applications in live cell imaging because of the experimental preparation required, namely cell fixation, and the innately small field of view. In this study, we developed a nanoscale optical imaging (NOI) system that combines a conventional optical microscope with a high resolution dark-field condenser (Cytoviva, Inc.) and halogen illuminator. The NOI system's maximum resolution for live cell imaging is around 100 nm. We utilized NOI to investigate the dynamics of intracellular microvesicles of neural cells without immunocytological analysis. In particular, we studied direct, active random, and moderate random dynamic motions of intracellular microvesicles and visualized lysosomal vesicle changes after treatment of cells with a lysosomal inhibitor (NH4Cl). Our results indicate that the NOI system is a feasible, high-resolution optical imaging system for live small organelles that does not require complicated optics or immunocytological staining processes.
Karur, Gauri R; Robison, Sean; Iwanochko, Robert M; Morel, Chantal F; Crean, Andrew M; Thavendiranathan, Paaladinesh; Nguyen, Elsie T; Mathur, Shobhit; Wasim, Syed; Hanneman, Kate
2018-04-24
Purpose To compare left ventricular (LV) and right ventricular (RV) 3.0-T cardiac magnetic resonance (MR) imaging T1 values in Anderson-Fabry disease (AFD) and hypertrophic cardiomyopathy (HCM) and evaluate the diagnostic value of native T1 values beyond age, sex, and conventional imaging features. Materials and Methods For this prospective study, 30 patients with gene-positive AFD (37% male; mean age ± standard deviation, 45.0 years ± 14.1) and 30 patients with HCM (57% male; mean age, 49.3 years ± 13.5) were prospectively recruited between June 2016 and September 2017 to undergo cardiac MR imaging T1 mapping with a modified Look-Locker inversion recovery (MOLLI) acquisition scheme at 3.0 T (repetition time msec/echo time msec, 280/1.12; section thickness, 8 mm). LV and RV T1 values were evaluated. Statistical analysis included independent samples t test, receiver operating characteristic curve analysis, multivariable logistic regression, and likelihood ratio test. Results Septal LV, global LV, and RV native T1 values were significantly lower in AFD compared with those in HCM (1161 msec ± 47 vs 1296 msec ± 55, respectively [P < .001]; 1192 msec ± 52 vs 1268 msec ± 55 [P < .001]; and 1221 msec ± 54 vs 1271 msec ± 37 [P = .001], respectively). A septal LV native T1 cutoff point of 1220 msec or lower distinguished AFD from HCM with sensitivity of 97%, specificity of 93%, and accuracy of 95%. Septal LV native T1 values differentiated AFD from HCM after adjustment for age, sex, and conventional imaging features (odds ratio, 0.94; 95% confidence interval: 0.91, 0.98; P = < .001). In a nested logistic regression model with age, sex, and conventional imaging features, model fit was significantly improved by the addition of septal LV native T1 values (χ 2 [df = 1] = 33.4; P < .001). Conclusion Cardiac MR imaging native T1 values at 3.0 T are significantly lower in patients with AFD compared with those with HCM and provide independent and incremental diagnostic value beyond age, sex, and conventional imaging features. © RSNA, 2018.
A feasible high spatiotemporal resolution breast DCE-MRI protocol for clinical settings.
Tudorica, Luminita A; Oh, Karen Y; Roy, Nicole; Kettler, Mark D; Chen, Yiyi; Hemmingson, Stephanie L; Afzal, Aneela; Grinstead, John W; Laub, Gerhard; Li, Xin; Huang, Wei
2012-11-01
Three dimensional bilateral imaging is the standard for most clinical breast dynamic contrast-enhanced (DCE) MRI protocols. Because of high spatial resolution (sRes) requirement, the typical 1-2 min temporal resolution (tRes) afforded by a conventional full-k-space-sampling gradient echo (GRE) sequence precludes meaningful and accurate pharmacokinetic analysis of DCE time-course data. The commercially available, GRE-based, k-space undersampling and data sharing TWIST (time-resolved angiography with stochastic trajectories) sequence was used in this study to perform DCE-MRI exams on thirty one patients (with 36 suspicious breast lesions) before their biopsies. The TWIST DCE-MRI was immediately followed by a single-frame conventional GRE acquisition. Blinded from each other, three radiologist readers assessed agreements in multiple lesion morphology categories between the last set of TWIST DCE images and the conventional GRE images. Fleiss' κ test was used to evaluate inter-reader agreement. The TWIST DCE time-course data were subjected to quantitative pharmacokinetic analyses. With a four-channel phased-array breast coil, the TWIST sequence produced DCE images with 20 s or less tRes and ~ 1.0×1.0×1.4 mm(3) sRes. There were no significant differences in signal-to-noise (P=.45) and contrast-to-noise (P=.51) ratios between the TWIST and conventional GRE images. The agreements in morphology evaluations between the two image sets were excellent with the intra-reader agreement ranging from 79% for mass margin to 100% for mammographic density and the inter-reader κ value ranging from 0.54 (P<.0001) for lesion size to 1.00 (P<.0001) for background parenchymal enhancement. Quantitative analyses of the DCE time-course data provided higher breast cancer diagnostic accuracy (91% specificity at 100% sensitivity) than the current clinical practice of morphology and qualitative kinetics assessments. The TWIST sequence may be used in clinical settings to acquire high spatiotemporal resolution breast DCE-MRI images for both precise lesion morphology characterization and accurate pharmacokinetic analysis. Copyright © 2012 Elsevier Inc. All rights reserved.
Predicting neuropathic ulceration: analysis of static temperature distributions in thermal images
NASA Astrophysics Data System (ADS)
Kaabouch, Naima; Hu, Wen-Chen; Chen, Yi; Anderson, Julie W.; Ames, Forrest; Paulson, Rolf
2010-11-01
Foot ulcers affect millions of Americans annually. Conventional methods used to assess skin integrity, including inspection and palpation, may be valuable approaches, but they usually do not detect changes in skin integrity until an ulcer has already developed. We analyze the feasibility of thermal imaging as a technique to assess the integrity of the skin and its many layers. Thermal images are analyzed using an asymmetry analysis, combined with a genetic algorithm, to examine the infrared images for early detection of foot ulcers. Preliminary results show that the proposed technique can reliably and efficiently detect inflammation and hence effectively predict potential ulceration.
Tissue classification for laparoscopic image understanding based on multispectral texture analysis
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wirkert, Sebastian J.; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T.; Elson, Daniel S.; Maier-Hein, Lena
2016-03-01
Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.
2013-01-01
Background Molecular imaging using magnetic nanoparticles (MNPs)—magnetic particle imaging (MPI)—has attracted interest for the early diagnosis of cancer and cardiovascular disease. However, because a steep local magnetic field distribution is required to obtain a defined image, sophisticated hardware is required. Therefore, it is desirable to realize excellent image quality even with low-performance hardware. In this study, the spatial resolution of MPI was evaluated using an image reconstruction method based on the correlation information of the magnetization signal in a time domain and by applying MNP samples made from biocompatible ferucarbotran that have adjusted particle diameters. Methods The magnetization characteristics and particle diameters of four types of MNP samples made from ferucarbotran were evaluated. A numerical analysis based on our proposed method that calculates the image intensity from correlation information between the magnetization signal generated from MNPs and the system function was attempted, and the obtained image quality was compared with that using the prototype in terms of image resolution and image artifacts. Results MNP samples obtained by adjusting ferucarbotran showed superior properties to conventional ferucarbotran samples, and numerical analysis showed that the same image quality could be obtained using a gradient magnetic field generator with 0.6 times the performance. However, because image blurring was included theoretically by the proposed method, an algorithm will be required to improve performance. Conclusions MNP samples obtained by adjusting ferucarbotran showed magnetizing properties superior to conventional ferucarbotran samples, and by using such samples, comparable image quality (spatial resolution) could be obtained with a lower gradient magnetic field intensity. PMID:23734917
Ren, Jiliang; Yuan, Ying; Wu, Yingwei; Tao, Xiaofeng
2018-05-02
The overlap of morphological feature and mean ADC value restricted clinical application of MRI in the differential diagnosis of orbital lymphoma and idiopathic orbital inflammatory pseudotumor (IOIP). In this paper, we aimed to retrospectively evaluate the combined diagnostic value of conventional magnetic resonance imaging (MRI) and whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in the differentiation of the two lesions. In total, 18 patients with orbital lymphoma and 22 patients with IOIP were included, who underwent both conventional MRI and diffusion weighted imaging before treatment. Conventional MRI features and histogram parameters derived from ADC maps, including mean ADC (ADC mean ), median ADC (ADC median ), skewness, kurtosis, 10th, 25th, 75th and 90th percentiles of ADC (ADC 10 , ADC 25 , ADC 75 , ADC 90 ) were evaluated and compared between orbital lymphoma and IOIP. Multivariate logistic regression analysis was used to identify the most valuable variables for discriminating. Differential model was built upon the selected variables and receiver operating characteristic (ROC) analysis was also performed to determine the differential ability of the model. Multivariate logistic regression showed ADC 10 (P = 0.023) and involvement of orbit preseptal space (P = 0.029) were the most promising indexes in the discrimination of orbital lymphoma and IOIP. The logistic model defined by ADC 10 and involvement of orbit preseptal space was built, which achieved an AUC of 0.939, with sensitivity of 77.30% and specificity of 94.40%. Conventional MRI feature of involvement of orbit preseptal space and ADC histogram parameter of ADC 10 are valuable in differential diagnosis of orbital lymphoma and IOIP.
Prompt gamma ray imaging for verification of proton boron fusion therapy: A Monte Carlo study.
Shin, Han-Back; Yoon, Do-Kun; Jung, Joo-Young; Kim, Moo-Sub; Suh, Tae Suk
2016-10-01
The purpose of this study was to verify acquisition feasibility of a single photon emission computed tomography image using prompt gamma rays for proton boron fusion therapy (PBFT) and to confirm an enhanced therapeutic effect of PBFT by comparison with conventional proton therapy without use of boron. Monte Carlo simulation was performed to acquire reconstructed image during PBFT. We acquired percentage depth dose (PDD) of the proton beams in a water phantom, energy spectrum of the prompt gamma rays, and tomographic images, including the boron uptake region (BUR; target). The prompt gamma ray image was reconstructed using maximum likelihood expectation maximisation (MLEM) with 64 projection raw data. To verify the reconstructed image, both an image profile and contrast analysis according to the iteration number were conducted. In addition, the physical distance between two BURs in the region of interest of each BUR was measured. The PDD of the proton beam from the water phantom including the BURs shows more efficient than that of conventional proton therapy on tumour region. A 719keV prompt gamma ray peak was clearly observed in the prompt gamma ray energy spectrum. The prompt gamma ray image was reconstructed successfully using 64 projections. Different image profiles including two BURs were acquired from the reconstructed image according to the iteration number. We confirmed successful acquisition of a prompt gamma ray image during PBFT. In addition, the quantitative image analysis results showed relatively good performance for further study. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Li, Zhijian; Wu, Chengqing; Olayiwola, J Nwando; Hilaire, Daniel St; Huang, John J
2012-02-01
To study the cost benefit analysis of using a telemedicine-based digital retinal imaging evaluation compared to conventional ophthalmologic fundus examination of diabetic patients for diabetic retinopathy. In this study, diabetic patients from Community Health Center, Inc. (CHCI), a large multi-site Federally Qualified Health Center) were evaluated by teleophthalmology using the Canon CR-1 nonmydriatic fundus camera. Digital images were acquired in the CHCI offices and saved on the EyePACS server network. The images were later evaluated by retinal specialists at the Yale Eye Center, Yale University Department of Ophthalmology and Visual Science. The costs for the standard of care ophthalmic examinations were calculated based on 2009 Medicaid reimbursement rates. The process of telemedicine-based diagnosis was based on a take-store-forward-visualize system. The cost of telemedicine-based digital retinal imaging examination included cost for devices, training, annual costs and a transportation fee. Current Medicaid reimbursement, transportation, and staff labor costs were used to calculate the conventional retinal examination cost as a comparison. Among the 611 patients digital retinal images screened in the first year of this program and for whom data are available, 166 (27.2%) cases of diabetic retinopathy were identified. Seventy-five (12.3%) patients screened positive with clinically significant disease and were referred for further ophthalmological evaluation and treatment. The primary direct cost of the telemedicine was $3.80, $15.00, $17.60, $1.50, and $2.50 per patient for medical assistant, ophthalmologist, capital cost (Equipment + Training), equipment maintenance, and transportation fee, respectively. The total cost in the telemedicine-based digital retinal imaging and evaluation was $40.40. The cost of conventional retinal examination was $8.70, $65.30, and $3.80 per patients for round-trip transportation, 2009 national Medicaid Physician Fee Schedule allowable for bilateral eye examination, and medical assistant personnel, respectively. The total costs of conventional fundus examination were $77.80. An additional conventional ophthalmologic retinal examination was required for 75 (12.3%) patients with clinically significant disease on telemedicine evaluation, which involves an averaged additional cost of $ 9.55 per patient for all the patients in the study. If the cost of subsequent examination was added, the total cost of telemedicine-based digital fundus imaging was $49.95 per patient in our group of 611 patients evaluated. Our cost analysis indicates that telemedicine-based diabetic retinopathy screening cost less ($49.95 vs $77.80) than conventional retinal examination and the telemedicine-based digital retinal imaging examination has the potential to provide an alternative method with greater convenience and access for the remote and indigent populations. Diabetes mellitus and diabetic retinopathy are growing problems in the United States and worldwide. Large scale adoption of telemedicine should be encouraged as a means toward providing improved access, increasing compliance with annual evaluation, at a low cost for patients with diabetes with direct access to an eye care specialist.
Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C
2014-01-01
Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.
In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science
Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.
2012-01-01
X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies. PMID:28817018
In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.
Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W
2012-05-24
X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.
Quality assessment of digital X-ray chest images using an anthropomorphic chest phantom
NASA Astrophysics Data System (ADS)
Vodovatov, A. V.; Kamishanskaya, I. G.; Drozdov, A. A.; Bernhardsson, C.
2017-02-01
The current study is focused on determining the optimal tube voltage for the conventional X-ray digital chest screening examinations, using a visual grading analysis method. Chest images of an anthropomorphic phantom were acquired in posterior-anterior projection on four digital X-ray units with different detector types. X-ray images obtained with an anthropomorphic phantom were accepted by the radiologists as corresponding to a normal human anatomy, hence allowing using phantoms in image quality trials without limitations.
Tofangchiha, Maryam; Adel, Mamak; Bakhshi, Mahin; Esfehani, Mahsa; Nazeman, Pantea; Ghorbani Elizeyi, Mojgan; Javadi, Amir
2013-01-01
Vertical root fracture (VRF) is a complication which is chiefly diagnosed radiographically. Recently, film-based radiography has been substituted with digital radiography. At the moment, there is a wide range of monitors available in the market for viewing digital images. The present study aims to compare the diagnostic accuracy, sensitivity and specificity of medical and conventional monitors in detection of vertical root fractures. In this in vitro study 228 extracted single-rooted human teeth were endodontically treated. Vertical root fractures were induced in 114 samples. The teeth were imaged by a digital charge-coupled device radiography using parallel technique. The images were evaluated by a radiologist and an endodontist on two medical and conventional liquid-crystal display (LCD) monitors twice. Z-test was used to analyze the sensitivity, accuracy and specificity of each monitor. Significance level was set at 0.05. Inter and intra observer agreements were calculated by Cohen's kappa. Accuracy, specificity and sensitivity for conventional monitor were calculated as 67.5%, 72%, 62.5% respectively; and data for medical grade monitor were 67.5%, 66.5% and 68% respectively. Statistical analysis showed no significant differences in detecting VRF between the two techniques. Inter-observer agreement for conventional and medical monitor was 0.47 and 0.55 respectively (moderate). Intra-observer agreement was 0.78 for medical monitor and 0.87 for conventional one (substantial). The type of monitor does not influence diagnosis of vertical root fractures.
Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo
2017-07-01
Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ( 201 Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day 201 Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p < 0.0001), and the correlation between IQ-SPECT with and without SCAC was also good (r = 0.907 and p < 0.0001). Regarding diagnostic performance, the sensitivity, specificity, and accuracy were 80.8, 78.9, and 79.4%, respectively, for the conventional SPECT; 80.8, 80.3, and 82.0%, respectively, for IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating characteristic analysis were 0.77, 0.80, and 0.86 for conventional SPECT, IQ-SPECT without SCAC, and IQ-SPECT with SCAC, respectively (p = n.s. for each comparison). When appropriate NDBs were used, the diagnostic performance of 201 Tl IQ-SPECT was comparable with that of the conventional system regardless of different characteristics of myocardial accumulation in the conventional system.
Intravital imaging of cutaneous immune responses.
Nakamizo, Satoshi; Egawa, Gyohei; Bing, Jasmine Tan Kah; Kabashima, Kenji
2018-05-25
Various immune cells are present in the skin and modulate the cutaneous immune response. In order to capture such dynamic phenomena, intravital imaging is an important technique and there is a possibility to provide substantial information that is not available using conventional histological analysis. Multiphoton microscope enable direct, three-dimensional, minimally invasive imaging of biological samples with high spatiotemporal resolution, and now become the main method for intravital imaging studies. Here, we will introduce the latest knowledge obtained by intravital imaging of the skin. Copyright © 2018 Elsevier Inc. All rights reserved.
Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong
2017-05-01
One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of Burn Scar Extraction Automatically Based on Level Set Method using Remote Sensing Data
Liu, Yang; Dai, Qin; Liu, JianBo; Liu, ShiBin; Yang, Jin
2014-01-01
Burn scar extraction using remote sensing data is an efficient way to precisely evaluate burn area and measure vegetation recovery. Traditional burn scar extraction methodologies have no well effect on burn scar image with blurred and irregular edges. To address these issues, this paper proposes an automatic method to extract burn scar based on Level Set Method (LSM). This method utilizes the advantages of the different features in remote sensing images, as well as considers the practical needs of extracting the burn scar rapidly and automatically. This approach integrates Change Vector Analysis (CVA), Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) to obtain difference image and modifies conventional Level Set Method Chan-Vese (C-V) model with a new initial curve which results from a binary image applying K-means method on fitting errors of two near-infrared band images. Landsat 5 TM and Landsat 8 OLI data sets are used to validate the proposed method. Comparison with conventional C-V model, OSTU algorithm, Fuzzy C-mean (FCM) algorithm are made to show that the proposed approach can extract the outline curve of fire burn scar effectively and exactly. The method has higher extraction accuracy and less algorithm complexity than that of the conventional C-V model. PMID:24503563
Limbrick-Oldfield, Eve H.; Brooks, Jonathan C.W.; Wise, Richard J.S.; Padormo, Francesco; Hajnal, Jo V.; Beckmann, Christian F.; Ungless, Mark A.
2012-01-01
Localising activity in the human midbrain with conventional functional MRI (fMRI) is challenging because the midbrain nuclei are small and located in an area that is prone to physiological artefacts. Here we present a replicable and automated method to improve the detection and localisation of midbrain fMRI signals. We designed a visual fMRI task that was predicted would activate the superior colliculi (SC) bilaterally. A limited number of coronal slices were scanned, orientated along the long axis of the brainstem, whilst simultaneously recording cardiac and respiratory traces. A novel anatomical registration pathway was used to optimise the localisation of the small midbrain nuclei in stereotactic space. Two additional structural scans were used to improve registration between functional and structural T1-weighted images: an echo-planar image (EPI) that matched the functional data but had whole-brain coverage, and a whole-brain T2-weighted image. This pathway was compared to conventional registration pathways, and was shown to significantly improve midbrain registration. To reduce the physiological artefacts in the functional data, we estimated and removed structured noise using a modified version of a previously described physiological noise model (PNM). Whereas a conventional analysis revealed only unilateral SC activity, the PNM analysis revealed the predicted bilateral activity. We demonstrate that these methods improve the measurement of a biologically plausible fMRI signal. Moreover they could be used to investigate the function of other midbrain nuclei. PMID:21867762
Delakis, Ioannis; Wise, Robert; Morris, Lauren; Kulama, Eugenia
2015-11-01
The purpose of this work was to evaluate the contrast-detail performance of full field digital mammography (FFDM) systems using ideal (Hotelling) observer Signal-to-Noise Ratio (SNR) methodology and ascertain whether it can be considered an alternative to the conventional, automated analysis of CDMAM phantom images. Five FFDM units currently used in the national breast screening programme were evaluated, which differed with respect to age, detector, Automatic Exposure Control (AEC) and target/filter combination. Contrast-detail performance was analysed using CDMAM and ideal observer SNR methodology. The ideal observer SNR was calculated for input signal originating from gold discs of varying thicknesses and diameters, and then used to estimate the threshold gold thickness for each diameter as per CDMAM analysis. The variability of both methods and the dependence of CDMAM analysis on phantom manufacturing discrepancies also investigated. Results from both CDMAM and ideal observer methodologies were informative differentiators of FFDM systems' contrast-detail performance, displaying comparable patterns with respect to the FFDM systems' type and age. CDMAM results suggested higher threshold gold thickness values compared with the ideal observer methodology, especially for small-diameter details, which can be attributed to the behaviour of the CDMAM phantom used in this study. In addition, ideal observer methodology results showed lower variability than CDMAM results. The Ideal observer SNR methodology can provide a useful metric of the FFDM systems' contrast detail characteristics and could be considered a surrogate for conventional, automated analysis of CDMAM images. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Leonardi Dutra, Kamile; Haas, Letícia; Porporatti, André Luís; Flores-Mir, Carlos; Nascimento Santos, Juliana; Mezzomo, Luis André; Corrêa, Márcio; De Luca Canto, Graziela
2016-03-01
Endodontic diagnosis depends on accurate radiographic examination. Assessment of the location and extent of apical periodontitis (AP) can influence treatment planning and subsequent treatment outcomes. Therefore, this systematic review and meta-analysis assessed the diagnostic accuracy of conventional radiography and cone-beam computed tomographic (CBCT) imaging on the discrimination of AP from no lesion. Eight electronic databases with no language or time limitations were searched. Articles in which the primary objective was to evaluate the accuracy (sensitivity and specificity) of any type of radiographic technique to assess AP in humans were selected. The gold standard was the histologic examination for actual AP (in vivo) or in situ visualization of bone defects for induced artificial AP (in vitro). Accuracy measurements described in the studies were transformed to construct receiver operating characteristic curves and forest plots with the aid of Review Manager v.5.2 (The Nordic Cochrane Centre, Copenhagen, Denmark) and MetaDisc v.1.4. software (Unit of Clinical Biostatistics Team of the Ramón y Cajal Hospital, Madrid, Spain). The methodology of the selected studies was evaluated using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. Only 9 studies met the inclusion criteria and were subjected to a qualitative analysis. A meta-analysis was conducted on 6 of these articles. All of these articles studied artificial AP with induced bone defects. The accuracy values (area under the curve) were 0.96 for CBCT imaging, 0.73 for conventional periapical radiography, and 0.72 for digital periapical radiography. No evidence was found for panoramic radiography. Periapical radiographs (digital and conventional) reported good diagnostic accuracy on the discrimination of artificial AP from no lesions, whereas CBCT imaging showed excellent accuracy values. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor.
Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong
2016-12-29
When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications.
Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor
Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong
2016-01-01
When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications. PMID:28036073
Comparison of morphological and conventional edge detectors in medical imaging applications
NASA Astrophysics Data System (ADS)
Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.
1991-06-01
Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.
Bjorgan, Asgeir; Randeberg, Lise Lyngsnes
2015-01-01
Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717
Böker, Sarah M.; Bender, Yvonne Y.; Diederichs, Gerd; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R.
2017-01-01
Objectives To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. Methods 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. Results SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Conclusions Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard. PMID:28278291
Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging
Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun
2017-01-01
Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging. PMID:27004542
Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging.
Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun
2017-01-01
Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging.
Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction
Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.
2012-01-01
Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310
De Candia, Alessandro; Doratiotto, Stefsano; Paschina, Elio; Segatto, Enrica; Pelizzo, Francesco; Bazzocchi, Massimo
2003-04-01
The aim of this study was to compare real time compound sonography with conventional sonography in the evaluation of rotator cuff tears. A prospective study was performed on 50 supraspinatus tendons in 101 patients treated by surgical acromioplasty. The surgeon described 33 (66%) full-thickness tears and 17 (34%) partial-thickness tears. All tendons were examined by conventional sonography and real time compound sonography on the day before surgery. The techniques were compared by evaluating the images for freedom from artefacts, contrast resolution and overall image definition. Real time compound sonography proved to be superior to conventional sonography as regards freedom from artefacts in 50 cases out of 50 (100%). It was superior to conventional sonography in evaluating the image contrast resolution in 45 cases out of 50 (90%), and superior to conventional sonography in overall image definition in 45 out of 50 cases (90%). Real-time compound sonography reduces the intrinsic artefacts of conventional sonography and allows better overall image definition. In particular, the digital technique allowed us to study the rotator cuff with better contrast resolution and sharper and more detailed images than did conventional sonography.
Lee, Jung-Ju; Lee, Sang Kun; Choi, Jang Wuk; Kim, Dong-Wook; Park, Kyung Il; Kim, Bom Sahn; Kang, Hyejin; Lee, Dong Soo; Lee, Seo-Young; Kim, Sung Hun; Chung, Chun Kee; Nam, Hyeon Woo; Kim, Kwang Ki
2009-12-01
Ictal single-photon emission computed tomography (SPECT) is a valuable method for localizing the ictal onset zone in the presurgical evaluation of patients with intractable epilepsy. Conventional methods used to localize the ictal onset zone have problems with time lag from seizure onset to injection. To evaluate the clinical usefulness of a method that we developed, which involves an attachable automated injector (AAI), in reducing time lag and improving the ability to localize the zone of seizure onset. Patients admitted to the epilepsy monitoring unit (EMU) between January 1, 2003, and June 30, 2008, were included. The definition of ictal onset zone was made by comprehensive review of medical records, magnetic resonance imaging (MRI), data from video electroencephalography (EEG) monitoring, and invasive EEG monitoring if available. We comprehensively evaluated the time lag to injection and the image patterns of ictal SPECT using traditional visual analysis, statistical parametric mapping-assisted, and subtraction ictal SPECT coregistered to an MRI-assisted means of analysis. Image patterns were classified as localizing, lateralizing, and nonlateralizing. The whole number of patients was 99: 48 in the conventional group and 51 in the AAI group. The mean (SD) delay time to injection from seizure onset was 12.4+/-12.0 s in the group injected by our AAI method and 40.4+/-26.3 s in the group injected by the conventional method (P=0.000). The mean delay time to injection from seizure detection was 3.2+/-2.5 s in the group injected by the AAI method and 21.4+/-9.7 s in the group injected by the conventional method (P=0.000). The AAI method was superior to the conventional method in localizing the area of seizure onset (36 out of 51 with AAI method vs. 21 out of 48 with conventional method, P=0.009), especially in non-temporal lobe epilepsy (non-TLE) patients (17 out of 27 with AAI method vs. 3 out of 13 with conventional method, P=0.041), and in lateralizing the seizure onset hemisphere (47 out of 51 with AAI method vs. 33 out of 48 with conventional method, P=0.004). The AAI method was superior to the conventional method in reducing the time lag of tracer injection and in localizing and lateralizing the ictal onset zone, especially in patients with non-TLE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakime, Antoine, E-mail: thakime@yahoo.com; Yevich, Steven; Tselikas, Lambros
PurposeTo assess whether fusion imaging-guided percutaneous microwave ablation (MWA) can improve visibility and targeting of liver metastasis that were deemed inconspicuous on ultrasound (US).Materials and MethodsMWA of liver metastasis not judged conspicuous enough on US was performed under CT/US fusion imaging guidance. The conspicuity before and after the fusion imaging was graded on a five-point scale, and significance was assessed by Wilcoxon test. Technical success, procedure time, and procedure-related complications were evaluated.ResultsA total of 35 patients with 40 liver metastases (mean size 1.3 ± 0.4 cm) were enrolled. Image fusion improved conspicuity sufficiently to allow fusion-targeted MWA in 33 patients. The time requiredmore » for image fusion processing and tumors’ identification averaged 10 ± 2.1 min (range 5–14). Initial conspicuity on US by inclusion criteria was 1.2 ± 0.4 (range 0–2), while conspicuity after localization on fusion imaging was 3.5 ± 1 (range 1–5, p < 0.001). Technical success rate was 83% (33/40) in intention-to-treat analysis and 100% in analysis of treated tumors. There were no major procedure-related complications.ConclusionsFusion imaging broadens the scope of US-guided MWA to metastasis lacking adequate conspicuity on conventional US. Fusion imaging is an effective tool to increase the conspicuity of liver metastases that were initially deemed non visualizable on conventional US imaging.« less
Optical coherence tomography use in the diagnosis of enamel defects
NASA Astrophysics Data System (ADS)
Al-Azri, Khalifa; Melita, Lucia N.; Strange, Adam P.; Festy, Frederic; Al-Jawad, Maisoon; Cook, Richard; Parekh, Susan; Bozec, Laurent
2016-03-01
Molar incisor hypomineralization (MIH) affects the permanent incisors and molars, whose undermineralized matrix is evidenced by lesions ranging from white to yellow/brown opacities to crumbling enamel lesions incapable of withstanding normal occlusal forces and function. Diagnosing the condition involves clinical and radiographic examination of these teeth, with known limitations in determining the depth extent of the enamel defects in particular. Optical coherence tomography (OCT) is an emerging hard and soft tissue imaging technique, which was investigated as a new potential diagnostic method in dentistry. A comparison between the diagnostic potential of the conventional methods and OCT was conducted. Compared to conventional imaging methods, OCT gave more information on the structure of the enamel defects as well as the depth extent of the defects into the enamel structure. Different types of enamel defects were compared, each type presenting a unique identifiable pattern when imaged using OCT. Additionally, advanced methods of OCT image analysis including backscattered light intensity profile analysis and enface reconstruction were performed. Both methods confirmed the potential of OCT in enamel defects diagnosis. In conclusion, OCT imaging enabled the identification of the type of enamel defect and the determination of the extent of the enamel defects in MIH with the advantage of being a radiation free diagnostic technique.
Venson, José Eduardo; Bevilacqua, Fernando; Berni, Jean; Onuki, Fabio; Maciel, Anderson
2018-05-01
Mobile devices and software are now available with sufficient computing power, speed and complexity to allow for real-time interpretation of radiology exams. In this paper, we perform a multivariable user study that investigates concordance of image-based diagnoses provided using mobile devices on the one hand and conventional workstations on the other hand. We performed a between-subjects task-analysis using CT, MRI and radiography datasets. Moreover, we investigated the adequacy of the screen size, image quality, usability and the availability of the tools necessary for the analysis. Radiologists, members of several teams, participated in the experiment under real work conditions. A total of 64 studies with 93 main diagnoses were analyzed. Our results showed that 56 cases were classified with complete concordance (87.69%), 5 cases with almost complete concordance (7.69%) and 1 case (1.56%) with partial concordance. Only 2 studies presented discordance between the reports (3.07%). The main reason to explain the cause of those disagreements was the lack of multiplanar reconstruction tool in the mobile viewer. Screen size and image quality had no direct impact on the mobile diagnosis process. We concluded that for images from emergency modalities, a mobile interface provides accurate interpretation and swift response, which could benefit patients' healthcare. Copyright © 2018 Elsevier B.V. All rights reserved.
Fuzzy image processing in sun sensor
NASA Technical Reports Server (NTRS)
Mobasser, S.; Liebe, C. C.; Howard, A.
2003-01-01
This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.
Momose, Mitsuhiro; Takaki, Akihiro; Matsushita, Tsuyoshi; Yanagisawa, Shin; Yano, Kesato; Miyasaka, Tadashi; Ogura, Yuka; Kadoya, Masumi
2011-01-01
AQCEL enables automatic reconstruction of single-photon emission computed tomogram (SPECT) without image degradation and quantitative analysis of cerebral blood flow (CBF) after the input of simple parameters. We ascertained the usefulness and quality of images obtained by the application software AQCEL in clinical practice. Twelve patients underwent brain perfusion SPECT using technetium-99m ethyl cysteinate dimer at rest and after acetazolamide (ACZ) loading. Images reconstructed using AQCEL were compared with those reconstructed using conventional filtered back projection (FBP) method for qualitative estimation. Two experienced nuclear medicine physicians interpreted the image quality using the following visual scores: 0, same; 1, slightly superior; 2, superior. For quantitative estimation, the mean CBF values of the normal hemisphere of the 12 patients using ACZ calculated by the AQCEL method were compared with those calculated by the conventional method. The CBF values of the 24 regions of the 3-dimensional stereotaxic region of interest template (3DSRT) calculated by the AQCEL method at rest and after ACZ loading were compared to those calculated by the conventional method. No significant qualitative difference was observed between the AQCEL and conventional FBP methods in the rest study. The average score by the AQCEL method was 0.25 ± 0.45 and that by the conventional method was 0.17 ± 0.39 (P = 0.34). There was a significant qualitative difference between the AQCEL and conventional methods in the ACZ loading study. The average score for AQCEL was 0.83 ± 0.58 and that for the conventional method was 0.08 ± 0.29 (P = 0.003). During quantitative estimation using ACZ, the mean CBF values of 12 patients calculated by the AQCEL method were 3-8% higher than those calculated by the conventional method. The square of the correlation coefficient between these methods was 0.995. While comparing the 24 3DSRT regions of 12 patients, the squares of the correlation coefficient between AQCEL and conventional methods were 0.973 and 0.986 for the normal and affected sides at rest, respectively, and 0.977 and 0.984 for the normal and affected sides after ACZ loading, respectively. The quality of images reconstructed using the application software AQCEL were superior to that obtained using conventional method after ACZ loading, and high correlations were shown in quantity at rest and after ACZ loading. This software can be applied to clinical practice and is a useful tool for improvement of reproducibility and throughput.
ERIC Educational Resources Information Center
Habashi, Janette; Wright, Lynne; Hathcoat, John D.
2012-01-01
This study examines children's images in constitutions and/or amendments as articulated in the Convention on the Rights of the Child while they intersect with the three dimensions of the Human Development Index (HDI) of 2008: life expectancy, educational index, and GDP. The connection between the images of the child and the fulfillment of the…
Yan, Xu; Zhou, Minxiong; Ying, Lingfang; Yin, Dazhi; Fan, Mingxia; Yang, Guang; Zhou, Yongdi; Song, Fan; Xu, Dongrong
2013-01-01
Diffusion kurtosis imaging (DKI) is a new method of magnetic resonance imaging (MRI) that provides non-Gaussian information that is not available in conventional diffusion tensor imaging (DTI). DKI requires data acquisition at multiple b-values for parameter estimation; this process is usually time-consuming. Therefore, fewer b-values are preferable to expedite acquisition. In this study, we carefully evaluated various acquisition schemas using different numbers and combinations of b-values. Acquisition schemas that sampled b-values that were distributed to two ends were optimized. Compared to conventional schemas using equally spaced b-values (ESB), optimized schemas require fewer b-values to minimize fitting errors in parameter estimation and may thus significantly reduce scanning time. Following a ranked list of optimized schemas resulted from the evaluation, we recommend the 3b schema based on its estimation accuracy and time efficiency, which needs data from only 3 b-values at 0, around 800 and around 2600 s/mm2, respectively. Analyses using voxel-based analysis (VBA) and region-of-interest (ROI) analysis with human DKI datasets support the use of the optimized 3b (0, 1000, 2500 s/mm2) DKI schema in practical clinical applications. PMID:23735303
Cytopathological image analysis using deep-learning networks in microfluidic microscopy.
Gopakumar, G; Hari Babu, K; Mishra, Deepak; Gorthi, Sai Siva; Sai Subrahmanyam, Gorthi R K
2017-01-01
Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process. Several neural network architectures were designed to provide human expertise to machines. In this paper, we explore and propose the feasibility of using deep-learning networks for cytopathologic analysis by performing the classification of three important unlabeled, unstained leukemia cell lines (K562, MOLT, and HL60). The cell images used in the classification are captured using a low-cost, high-throughput cell imaging technique: microfluidics-based imaging flow cytometry. We demonstrate that without any conventional fine segmentation followed by explicit feature extraction, the proposed deep-learning algorithms effectively classify the coarsely localized cell lines. We show that the designed deep belief network as well as the deeply pretrained convolutional neural network outperform the conventionally used decision systems and are important in the medical domain, where the availability of labeled data is limited for training. We hope that our work enables the development of a clinically significant high-throughput microfluidic microscopy-based tool for disease screening/triaging, especially in resource-limited settings.
Diffraction enhance x-ray imaging for quantitative phase contrast studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.
2016-05-23
Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.
NASA Astrophysics Data System (ADS)
Saini, Surender Singh; Sardana, Harish Kumar; Pattnaik, Shyam Sundar
2017-06-01
Conventional image editing software in combination with other techniques are not only difficult to apply to an image but also permits a user to perform some basic functions one at a time. However, image processing algorithms and photogrammetric systems are developed in the recent past for real-time pattern recognition applications. A graphical user interface (GUI) is developed which can perform multiple functions simultaneously for the analysis and estimation of geometric distortion in an image with reference to the corresponding distorted image. The GUI measure, record, and visualize the performance metric of X/Y coordinates of one image over the other. The various keys and icons provided in the utility extracts the coordinates of distortion free reference image and the image with geometric distortion. The error between these two corresponding points gives the measure of distortion and also used to evaluate the correction parameters for image distortion. As the GUI interface minimizes human interference in the process of geometric correction, its execution just requires use of icons and keys provided in the utility; this technique gives swift and accurate results as compared to other conventional methods for the measurement of the X/Y coordinates of an image.
Endodontic radiography: who is reading the digital radiograph?
Tewary, Shalini; Luzzo, Joseph; Hartwell, Gary
2011-07-01
Digital radiographic imaging systems have undergone tremendous improvements since their introduction. Advantages of digital radiographs over conventional films include lower radiation doses compared with conventional films, instantaneous images, archiving and sharing images easily, and manipulation of several radiographic properties that might help in diagnosis. A total of 6 observers including 2 endodontic residents, 3 endodontists, and 1 oral radiologist evaluated 150 molar digital periapical radiographs to determine which of the following conditions existed: normal periapical tissue, widened periodontal ligament, or presence of periapical radiolucency. The evaluators had full control over the radiograph's parameters of the Planmeca Dimaxis software program. All images were viewed on the same computer monitor with ideal vie-wing conditions. The same 6 observers evaluated the same 150 digital images 3 months later. The data were analyzed to determine how well the evaluators agreed with each other (interobserver agreement) for 2 rounds of observations and with themselves (intraobserver agreement). Fleiss kappa statistical analysis was used to measure the level of agreement among multiple raters. The overall Fleiss kappa value for interobserver agreement for the first round of interpretation was 0.34 (P < .001). The overall Fleiss kappa value for interobserver agreement for the second round of interpretation was 0.35 (P < .001). This resulted in fair (0.2-0.4) agreement among the 6 raters at both observation periods. A weighted kappa analysis was used to determine intraobserver agreement, which showed on average a moderate agreement. The results indicate that the interpretation of a dental radiograph is subjective, irrespective of whether conventional or digital radiographs are used. The factors that appeared to have the most impact were the years of experience of the examiner and familiarity of the operator with a given digital system. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina
2013-07-01
The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Baek, Hye Jin; Kim, Dong Wook; Ryu, Ji Hwa; Lee, Yoo Jin
2013-09-01
There has been no study to compare the diagnostic accuracy of an experienced radiologist with a trainee in nasal bone fracture. To compare the diagnostic accuracy between conventional radiography and computed tomography (CT) for the identification of nasal bone fractures and to evaluate the interobserver reliability between a staff radiologist and a trainee. A total of 108 patients who underwent conventional radiography and CT after acute nasal trauma were included in this retrospective study. Two readers, a staff radiologist and a second-year resident, independently assessed the results of the imaging studies. Of the 108 patients, the presence of a nasal bone fracture was confirmed in 88 (81.5%) patients. The number of non-depressed fractures was higher than the number of depressed fractures. In nine (10.2%) patients, nasal bone fractures were only identified on conventional radiography, including three depressed and six non-depressed fractures. CT was more accurate as compared to conventional radiography for the identification of nasal bone fractures as determined by both readers (P <0.05), all diagnostic indices of an experienced radiologist were similar to or higher than those of a trainee, and κ statistics showed moderate agreement between the two diagnostic tools for both readers. There was no statistical difference in the assessment of interobserver reliability for both imaging modalities in the identification of nasal bone fractures. For the identification of nasal bone fractures, CT was significantly superior to conventional radiography. Although a staff radiologist showed better values in the identification of nasal bone fracture and differentiation between depressed and non-depressed fractures than a trainee, there was no statistically significant difference in the interpretation of conventional radiography and CT between a radiologist and a trainee.
Objective image characterization of a spectral CT scanner with dual-layer detector
NASA Astrophysics Data System (ADS)
Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David
2018-01-01
This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.
Vina, Andres; Peters, Albert J.; Ji, Lei
2003-01-01
There is a global concern about the increase in atmospheric concentrations of greenhouse gases. One method being discussed to encourage greenhouse gas mitigation efforts is based on a trading system whereby carbon emitters can buy effective mitigation efforts from farmers implementing conservation tillage practices. These practices sequester carbon from the atmosphere, and such a trading system would require a low-cost and accurate method of verification. Remote sensing technology can offer such a verification technique. This paper is focused on the use of standard image processing procedures applied to a multispectral Ikonos image, to determine whether it is possible to validate that farmers have complied with agreements to implement conservation tillage practices. A principal component analysis (PCA) was performed in order to isolate image variance in cropped fields. Analyses of variance (ANOVA) statistical procedures were used to evaluate the capability of each Ikonos band and each principal component to discriminate between conventional and conservation tillage practices. A logistic regression model was implemented on the principal component most effective in discriminating between conventional and conservation tillage, in order to produce a map of the probability of conventional tillage. The Ikonos imagery, in combination with ground-reference information, proved to be a useful tool for verification of conservation tillage practices.
Digital image processing and analysis for activated sludge wastewater treatment.
Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed
2015-01-01
Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.
Subtraction coronary CT angiography using second-generation 320-detector row CT.
Yoshioka, Kunihiro; Tanaka, Ryoichi; Muranaka, Kenta; Sasaki, Tadashi; Ueda, Takanori; Chiba, Takuya; Takeda, Kouta; Sugawara, Tsuyoshi
2015-06-01
The purpose of this study was to explore the feasibility of subtraction coronary computed tomography angiography (CCTA) by second-generation 320-detector row CT in patients with severe coronary artery calcification using invasive coronary angiography (ICA) as the gold standard. This study was approved by the institutional board, and all subjects provided written consent. Twenty patients with calcium scores of >400 underwent conventional CCTA and subtraction CCTA followed by ICA. A total of 82 segments were evaluated for image quality using a 4-point scale and the presence of significant (>50 %) luminal stenosis by two independent readers. The average image quality was 2.3 ± 0.8 with conventional CCTA and 3.2 ± 0.6 with subtraction CCTA (P < 0.001). The percentage of segments with non-diagnostic image quality was 43.9 % on conventional CCTA versus 8.5 % on subtraction CCTA (P = 0.004). The segment-based diagnostic accuracy for detecting significant stenosis according to ICA revealed an area under the receiver operating characteristics curve of 0.824 (95 % confidence interval [CI], 0.750-0.899) for conventional CCTA and 0.936 (95 % CI 0.889-0.936) for subtraction CCTA (P = 0.001). The sensitivity, specificity, positive predictive value, and negative predictive value for conventional CCTA were 88.2, 62.5, 62.5, and 88.2 %, respectively, and for subtraction CCTA they were 94.1, 85.4, 82.1, and 95.3 %, respectively. As compared to conventional, subtraction CCTA using a second-generation 320-detector row CT showed improvement in diagnostic accuracy at segment base analysis in patients with severe calcifications.
Liu, Lihua; Long, Miaomiao; Wang, Junping; Liu, Ning; Ge, Xihong; Hu, Zhandong; Shen, Wen
2015-02-01
Puerperal breast abscess after polyacrylamide hydrogel (PAAG) augmentation mammoplasty can induce breast auto-inflation resulting in serious consequences. Mammography, ultrasound, and conventional MRI are poor at detecting related PAAG abnormality histologically. We evaluated the value of diffusion-weighted imaging (DWI) in the quantitative analysis of puerperal PAAG abscess after augmentation mammoplasty. This was a retrospective study, and a waiver for informed consent was granted. Sixteen puerperal women with breast discomfort underwent conventional breast non-enhanced MRI and axial DWI using a 3T MR scanner. Qualitative analysis of the signal intensity on DWI and conventional sequences was performed. The apparent diffusion coefficient (ADC) values of the affected and contralateral normal PAAG cysts were measured quantitatively. Paired t test was used to evaluate whether there was significant difference. Both affected and normal PAAG cysts showed equal signal intensity on conventional T1WI and fat saturation T2WI, which were not helpful in detecting puerperal PAAG abscess. However, the affected PAAG cysts had a significantly decreased ADC value of 1.477 ± 0.332 × 10(-3)mm(2)/s and showed obvious hypo-intensity on the ADC map and increased signal intensity on DWI compared with the ADC value of 2.775 ± 0.233 × 10(-3)mm(2)/s of the contralateral normal PAAG cysts. DWI and quantitative measurement of ADC values are of great value for the diagnosis of puerperal PAAG abscess. Standardized MRI should be suggested to these puerperal women with breast discomfort or just for the purpose of check up. DWI should be selected as the essential MRI sequence.
Energy-Discriminative Performance of a Spectral Micro-CT System
He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge
2013-01-01
Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristic of some known materials to calibrate the detector’s photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864
Comparative effects of Facebook and conventional media on body image dissatisfaction.
Cohen, Rachel; Blaszczynski, Alex
2015-01-01
Appearance comparison has consistently been shown to engender body image dissatisfaction. To date, most studies have demonstrated this relationship between appearance comparison and body image dissatisfaction in the context of conventional media images depicting the thin-ideal. Social comparison theory posits that people are more likely to compare themselves to similar others. Since social media forums such as Facebook involve one's peers, the current study aimed to determine whether the relationship between appearance comparison and body image dissatisfaction would be stronger for those exposed to social media images, compared to conventional media images. A sample of 193 female first year university students were randomly allocated to view a series of either Facebook or conventional media thin-ideal images. Participants completed questionnaires assessing pre- and post- image exposure measures of thin-ideal internalisation, appearance comparison, self-esteem, Facebook use and eating disorder risk. Type of exposure was not found to moderate the relationship between appearance comparison and changes in body image dissatisfaction. When analysed according to exposure type, appearance comparison only significantly predicted body image dissatisfaction change for those exposed to Facebook, but not conventional media. Facebook use was found to predict higher baseline body image dissatisfaction and was associated with higher eating disorder risk. The findings suggest the importance of extending the body image dissatisfaction literature by taking into account emerging social media formats. It is recommended that interventions for body image dissatisfaction and eating disorders consider appearance comparison processes elicited by thin-ideal content on social media forums, such as Facebook, in addition to conventional media.
Using image analysis for quantitative assessment of needle bladder rust disease of Norway spruce.
Ganthaler, A; Losso, A; Mayr, S
2018-06-01
High elevation spruce forests of the European Alps are frequently infected by the needle rust Chrysomyxa rhododendri , a pathogen causing remarkable defoliation, reduced tree growth and limited rejuvenation. Exact quantification of the disease severity on different spatial scales is crucial for monitoring, management and resistance breeding activities. Based on the distinct yellow discolouration of attacked needles, it was investigated whether image analysis of digital photographs can be used to quantify disease severity and to improve phenotyping compared to conventional assessment in terms of time, effort and application range. The developed protocol for preprocessing and analysis of digital RGB images enabled identification of disease symptoms and healthy needle areas on images obtained in ground surveys (total number of analysed images n = 62) and by the use of a semiprofessional quadcopter ( n = 13). Obtained disease severities correlated linearly with results obtained by manual counting of healthy and diseased needles for all approaches, including images of individual branches with natural background ( R 2 = 0.87) and with black background ( R 2 = 0.95), juvenile plants ( R 2 = 0.94), and top views and side views of entire tree crowns of adult trees ( R 2 = 0.98 and 0.88, respectively). Results underline that a well-defined signal related to needle bladder rust symptoms of Norway spruce can be extracted from images recorded by standard digital cameras and using drones. The presented protocol enables precise and time-efficient quantification of disease symptoms caused by C. rhododendri and provides several advantages compared to conventional assessment by manual counting or visual estimations.
Image data-processing system for solar astronomy
NASA Technical Reports Server (NTRS)
Wilson, R. M.; Teuber, D. L.; Watkins, J. R.; Thomas, D. T.; Cooper, C. M.
1977-01-01
The paper describes an image data processing system (IDAPS), its hardware/software configuration, and interactive and batch modes of operation for the analysis of the Skylab/Apollo Telescope Mount S056 X-Ray Telescope experiment data. Interactive IDAPS is primarily designed to provide on-line interactive user control of image processing operations for image familiarization, sequence and parameter optimization, and selective feature extraction and analysis. Batch IDAPS follows the normal conventions of card control and data input and output, and is best suited where the desired parameters and sequence of operations are known and when long image-processing times are required. Particular attention is given to the way in which this system has been used in solar astronomy and other investigations. Some recent results obtained by means of IDAPS are presented.
Photometric detection of high proper motions in dense stellar fields using difference image analysis
NASA Astrophysics Data System (ADS)
Eyer, L.; Woźniak, P. R.
2001-10-01
The difference image analysis (DIA) of the images obtained by the Optical Gravitational Lensing Experiment (OGLE-II) revealed a peculiar artefact in the sample of stars proposed as variable by Woźniak in one of the Galactic bulge fields: the occurrence of pairs of candidate variables showing anti-correlated light curves monotonic over a period of 3yr. This effect can be understood, quantified and related to the stellar proper motions. DIA photometry supplemented with a simple model offers an effective and easy way to detect high proper motion stars in very dense stellar fields, where conventional astrometric searches are extremely inefficient.
Use of non-subjective analysis of lens transparency in experimental radiation cataract research
NASA Technical Reports Server (NTRS)
Worgul, B. V.; Medvedovsky, C.; Wu, B.
1995-01-01
Historically the major impediment to radiation cataract follow-up has been the necessarily subjective nature of assessing the degree of lens transparency. This has spurred the development of instruments which produce video images amenable to digital analysis. One such system, the Zeiss Scheimpflug slit lamp measuring system (SLC), was incorporated into our ongoing studies of radiation cataractogenesis. It was found that the Zeiss SLC measuring system has high resolution and permits the acquisition of reproducible images of the anterior segment of the eye. Our results, based on about 650 images of lenses followed over a period of 91 weeks of radiation cataract development, showed that the changes in the light scatter of the lens correlated well with conventional assessment of radiation cataracts with the added advantages of objectivity, permanent and transportable records and linearity as cataracts become more severe. This continuous data acquisition, commencing with cataract onset, can proceed through more advanced stages. The SLC exhibits much greater sensitivity reflected in a continuously progressive severity thereby avoiding the artifactual plateaus in staging which occur using conventional scoring methods.
NASA Astrophysics Data System (ADS)
Berlich, R.; Harnisch, B.
2017-11-01
An accurate stray light analysis represents a crucial part in the early design phase of hyperspectral imaging systems, since scattering effects can severely limit the radiometric accuracy performance. In addition to conventional contributors including ghost images and surface scattering, i.e. caused by a residual surface micro-roughness and particle contamination, diffraction effects can result in significant radiometric errors in the spatial and spectral domain of pushbroom scanners. In this paper, we present a mathematical approach that efficiently evaluates these diffraction effects based on a Fourier analysis. It is shown that considering the conventional diffraction at the systems entrance pupil only, significantly overestimates the stray light contribution. In fact, a correct assessment necessitates taking into account the joint influence of the entrance pupil, the spectrometer slit as well as the dispersion element. We quantitatively investigate the corresponding impact on the Instrument Spectral Response Function (ISRF) of the Earth Explorer #8 Mission Candidate FLEX and analyse the expected radiometric error distribution for a typical earth observation scenario requirement.
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Simulations of multi-contrast x-ray imaging using near-field speckles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre
2016-01-28
X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.
Automated analysis of high-content microscopy data with deep learning.
Kraus, Oren Z; Grys, Ben T; Ba, Jimmy; Chong, Yolanda; Frey, Brendan J; Boone, Charles; Andrews, Brenda J
2017-04-18
Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Repeatability and Reproducibility of Virtual Subjective Refraction.
Perches, Sara; Collados, M Victoria; Ares, Jorge
2016-10-01
To establish the repeatability and reproducibility of a virtual refraction process using simulated retinal images. With simulation software, aberrated images corresponding with each step of the refraction process were calculated following the typical protocol of conventional subjective refraction. Fifty external examiners judged simulated retinal images until the best sphero-cylindrical refraction and the best visual acuity were achieved starting from the aberrometry data of three patients. Data analyses were performed to assess repeatability and reproducibility of the virtual refraction as a function of pupil size and aberrometric profile of different patients. SD values achieved in three components of refraction (M, J0, and J45) are lower than 0.25D in repeatability analysis. Regarding reproducibility, we found SD values lower than 0.25D in the most cases. When the results of virtual refraction with different pupil diameters (4 and 6 mm) were compared, the mean of differences (MoD) obtained were not clinically significant (less than 0.25D). Only one of the aberrometry profiles with high uncorrected astigmatism shows poor results for the M component in reproducibility and pupil size dependence analysis. In all cases, vision achieved was better than 0 logMAR. A comparison between the compensation obtained with virtual and conventional subjective refraction was made as an example of this application, showing good quality retinal images in both processes. The present study shows that virtual refraction has similar levels of precision as conventional subjective refraction. Moreover, virtual refraction has also shown that when high low order astigmatism is present, the refraction result is less precise and highly dependent on pupil size.
Francis, Andrew W.; Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Folz, Steven; Overby, Darryl R.; Sigal, Ian A.; Wang, Bo; Schuman, Joel S.
2012-01-01
Purpose. To describe morphometric details of the human aqueous humor (AH) outflow microvasculature visualized with 360-degree virtual castings during active AH outflow in cadaver eyes and to compare these structures with corrosion casting studies. Methods. The conventional AH outflow pathways of donor eyes (n = 7) and eyes in vivo (n = 3) were imaged with spectral-domain optical coherence tomography (SD-OCT) and wide-bandwidth superluminescent diode array during active AH outflow. Digital image contrast was adjusted to isolate AH microvasculature, and images were viewed in a 3D viewer. Additional eyes (n = 3) were perfused with mock AH containing fluorescent tracer microspheres to compare microvasculature patterns. Results. Observations revealed components of the conventional outflow pathway from Schlemm's canal (SC) to the superficial intrascleral venous plexus (ISVP). The superficial ISVP in both our study and corrosion casts were composed of interconnected venules (10–50 μm) forming a hexagonal meshwork. Larger radial arcades (50–100 μm) drained the region nearest SC and converged with larger tortuous vessels (>100 μm). A 360-degree virtual casting closely approximated corrosion casting studies. Tracer studies corroborated our findings. Tracer decorated several larger vessels (50–100 μm) extending posteriorly from the limbus in both raw and contrast-enhanced fluorescence images. Smaller tracer-labeled vessels (30–40 μm) were seen branching between larger vessels and exhibited a similar hexagonal network pattern. Conclusions. SD-OCT is capable of detailed morphometric analysis of the conventional outflow pathway in vivo or ex vivo with details comparable to corrosion casting techniques. PMID:22499987
Opto-acoustic breast imaging with co-registered ultrasound
NASA Astrophysics Data System (ADS)
Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela
2014-03-01
We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.
Grandl, Susanne; Scherer, Kai; Sztrókay-Gaul, Anikó; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Pfeiffer, Franz; Bamberg, Fabian; Hellerhoff, Karin
2015-12-01
Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.
Duning, Thomas; Kellinghaus, Christoph; Mohammadi, Siawoosh; Schiffbauer, Hagen; Keller, Simon; Ringelstein, E Bernd; Knecht, Stefan; Deppe, Michael
2010-02-01
Conventional structural MRI fails to identify a cerebral lesion in 25% of patients with cryptogenic partial epilepsy (CPE). Diffusion tensor imaging is an MRI technique sensitive to microstructural abnormalities of cerebral white matter (WM) by quantification of fractional anisotropy (FA). The objectives of the present study were to identify focal FA abnormalities in patients with CPE who were deemed MRI negative during routine presurgical evaluation. Diffusion tensor imaging at 3 T was performed in 12 patients with CPE and normal conventional MRI and in 67 age matched healthy volunteers. WM integrity was compared between groups on the basis of automated voxel-wise statistics of FA maps using an analysis of covariance. Volumetric measurements from high resolution T1-weighted images were also performed. Significant FA reductions in WM regions encompassing diffuse areas of the brain were observed when all patients as a group were compared with controls. On an individual basis, voxel based analyses revealed widespread symmetrical FA reduction in CPE patients. Furthermore, asymmetrical temporal lobe FA reduction was consistently ipsilateral to the electroclinical focus. No significant correlations were found between FA alterations and clinical data. There were no differences in brain volumes of CPE patients compared with controls. Despite normal conventional MRI, WM integrity abnormalities in CPE patients extend far beyond the epileptogenic zone. Given that unilateral temporal lobe FA abnormalities were consistently observed ipsilateral to the seizure focus, analysis of temporal FA may provide an informative in vivo investigation into the localisation of the epileptogenic zone in MRI negative patients.
Olafsson, Valur T; Noll, Douglas C; Fessler, Jeffrey A
2018-02-01
Penalized least-squares iterative image reconstruction algorithms used for spatial resolution-limited imaging, such as functional magnetic resonance imaging (fMRI), commonly use a quadratic roughness penalty to regularize the reconstructed images. When used for complex-valued images, the conventional roughness penalty regularizes the real and imaginary parts equally. However, these imaging methods sometimes benefit from separate penalties for each part. The spatial smoothness from the roughness penalty on the reconstructed image is dictated by the regularization parameter(s). One method to set the parameter to a desired smoothness level is to evaluate the full width at half maximum of the reconstruction method's local impulse response. Previous work has shown that when using the conventional quadratic roughness penalty, one can approximate the local impulse response using an FFT-based calculation. However, that acceleration method cannot be applied directly for separate real and imaginary regularization. This paper proposes a fast and stable calculation for this case that also uses FFT-based calculations to approximate the local impulse responses of the real and imaginary parts. This approach is demonstrated with a quadratic image reconstruction of fMRI data that uses separate roughness penalties for the real and imaginary parts.
Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data
Chen, Ting; Huang, Lianjie
2015-07-30
For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... considered, but were eliminated from detailed analysis include: conventional mining (whether by open pit or... Agencywide Documents and Management System (ADAMS), which provides text and image files of the NRC's public...
Kawashima, Hiroki; Hayashi, Norio; Ohno, Naoki; Matsuura, Yukihiro; Sanada, Shigeru
2015-08-01
To evaluate the patient identification ability of radiographers, previous and current chest radiographs were assessed with observer study utilizing a receiver operating characteristics (ROCs) analysis. This study included portable and conventional chest radiographs from 43 same and 43 different patients. The dataset used in this study was divided into the three following groups: (1) a pair of portable radiographs, (2) a pair of conventional radiographs, and (3) a combination of each type of radiograph. Seven observers participated in this ROC study, which aimed to identify same or different patients, using these datasets. ROC analysis was conducted to calculate the average area under ROC curve obtained by each observer (AUCave), and a statistical test was performed using the multi-reader multi-case method. Comparable results were obtained with pairs of portable (AUCave: 0.949) and conventional radiographs (AUCave: 0.951). In a comparison between the same modality, there were no significant differences. In contrast, the ability to identify patients by comparing a portable and conventional radiograph (AUCave: 0.873) was lower than with the matching datasets (p=0.002 and p=0.004, respectively). In conclusion, the use of different imaging modalities reduces radiographers' ability to identify their patients.
Laser scanning saturated structured illumination microscopy based on phase modulation
NASA Astrophysics Data System (ADS)
Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu
2017-08-01
Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.
Computed Tomography Window Blending: Feasibility in Thoracic Trauma.
Mandell, Jacob C; Wortman, Jeremy R; Rocha, Tatiana C; Folio, Les R; Andriole, Katherine P; Khurana, Bharti
2018-02-07
This study aims to demonstrate the feasibility of processing computed tomography (CT) images with a custom window blending algorithm that combines soft-tissue, bone, and lung window settings into a single image; to compare the time for interpretation of chest CT for thoracic trauma with window blending and conventional window settings; and to assess diagnostic performance of both techniques. Adobe Photoshop was scripted to process axial DICOM images from retrospective contrast-enhanced chest CTs performed for trauma with a window-blending algorithm. Two emergency radiologists independently interpreted the axial images from 103 chest CTs with both blended and conventional windows. Interpretation time and diagnostic performance were compared with Wilcoxon signed-rank test and McNemar test, respectively. Agreement with Nexus CT Chest injury severity was assessed with the weighted kappa statistic. A total of 13,295 images were processed without error. Interpretation was faster with window blending, resulting in a 20.3% time saving (P < .001), with no difference in diagnostic performance, within the power of the study to detect a difference in sensitivity of 5% as determined by post hoc power analysis. The sensitivity of the window-blended cases was 82.7%, compared to 81.6% for conventional windows. The specificity of the window-blended cases was 93.1%, compared to 90.5% for conventional windows. All injuries of major clinical significance (per Nexus CT Chest criteria) were correctly identified in all reading sessions, and all negative cases were correctly classified. All readers demonstrated near-perfect agreement with injury severity classification with both window settings. In this pilot study utilizing retrospective data, window blending allows faster preliminary interpretation of axial chest CT performed for trauma, with no significant difference in diagnostic performance compared to conventional window settings. Future studies would be required to assess the utility of window blending in clinical practice. Copyright © 2018 The Association of University Radiologists. All rights reserved.
d'Assuncao, Jefferson; Irwig, Les; Macaskill, Petra; Chan, Siew F; Richards, Adele; Farnsworth, Annabelle
2007-01-01
Objective To compare the accuracy of liquid based cytology using the computerised ThinPrep Imager with that of manually read conventional cytology. Design Prospective study. Setting Pathology laboratory in Sydney, Australia. Participants 55 164 split sample pairs (liquid based sample collected after conventional sample from one collection) from consecutive samples of women choosing both types of cytology and whose specimens were examined between August 2004 and June 2005. Main outcome measures Primary outcome was accuracy of slides for detecting squamous lesions. Secondary outcomes were rate of unsatisfactory slides, distribution of squamous cytological classifications, and accuracy of detecting glandular lesions. Results Fewer unsatisfactory slides were found for imager read cytology than for conventional cytology (1.8% v 3.1%; P<0.001). More slides were classified as abnormal by imager read cytology (7.4% v 6.0% overall and 2.8% v 2.2% for cervical intraepithelial neoplasia of grade 1 or higher). Among 550 patients in whom imager read cytology was cervical intraepithelial neoplasia grade 1 or higher and conventional cytology was less severe than grade 1, 133 of 380 biopsy samples taken were high grade histology. Among 294 patients in whom imager read cytology was less severe than cervical intraepithelial neoplasia grade 1 and conventional cytology was grade 1 or higher, 62 of 210 biopsy samples taken were high grade histology. Imager read cytology therefore detected 71 more cases of high grade histology than did conventional cytology, resulting from 170 more biopsies. Similar results were found when one pathologist reread the slides, masked to cytology results. Conclusion The ThinPrep Imager detects 1.29 more cases of histological high grade squamous disease per 1000 women screened than conventional cytology, with cervical intraepithelial neoplasia grade 1 as the threshold for referral to colposcopy. More imager read slides than conventional slides were satisfactory for examination and more contained low grade cytological abnormalities. PMID:17604301
Pseudo color ghost coding imaging with pseudo thermal light
NASA Astrophysics Data System (ADS)
Duan, De-yang; Xia, Yun-jie
2018-04-01
We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.
Design Criteria For Networked Image Analysis System
NASA Astrophysics Data System (ADS)
Reader, Cliff; Nitteberg, Alan
1982-01-01
Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.
Juliano da Silva, Carlos; Pasquini, Celio
2015-01-21
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
Hotfiel, Thilo; Heiss, Rafael; Swoboda, Bernd; Kellermann, Marion; Gelse, Kolja; Grim, Casper; Strobel, Deike; Wildner, Dane
2018-07-01
To emphasize the diagnostic value of contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries with different degrees of severity by comparing findings to established imaging modalities such as conventional ultrasound and magnetic resonance imaging (MRI). Case series. Institutional study. Conventional ultrasound and CEUS were performed in the Department of Internal Medicine. Magnetic resonance imaging was carried out in the Department of Radiology within the Magnetom Avanto 1.5T and Magnetom Skyra fit 3T (Siemens Healthineers, Erlangen, Germany) and in the Institution of Imaging Diagnostics and Therapy (Magnetom Avanto 1.5T; Siemens, Erlangen, Germany). Fifteen patients who underwent an acute muscle injury were recruited. The appearance and detectable size of muscle injuries were compared between each imaging modality. The injuries were assessed by 3 independent observers and blinded between imaging modalities. All 15 injuries were identified on MRI and CEUS, whereas 10 injuries showed abnormalities in conventional ultrasound. The determination and measurement revealed significant differences between conventional ultrasound and CEUS depending on injury severity. Contrast-enhanced ultrasound revealed an impairment of microcirculation in grade I lesions (corresponding to intramuscular edema observed in MRI), which was not detectable using conventional ultrasound. Our results indicate that performing CEUS seems to be a sensitive additional diagnostic modality in the early assessment of muscle injuries. Our results highlight the advantages of CEUS in the imaging of low-grade lesions when compared with conventional ultrasound, as this was the more accurate modality for identifying intramuscular edema.
Machine learning for medical images analysis.
Criminisi, A
2016-10-01
This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
An imaging colorimeter for noncontact tissue color mapping.
Balas, C
1997-06-01
There has been a considerable effort in several medical fields, for objective color analysis and characterization of biological tissues. Conventional colorimeters have proved inadequate for this purpose, since they do not provide spatial color information and because the measuring procedure randomly affects the color of the tissue. In this paper an imaging colorimeter is presented, where the nonimaging optical photodetector of colorimeters is replaced with the charge-coupled device (CCD) sensor of a color video camera, enabling the independent capturing of the color information for any spatial point within its field-of-view. Combining imaging and colorimetry methods, the acquired image is calibrated and corrected, under several ambient light conditions, providing noncontact reproducible color measurements and mapping, free of the errors and the limitations present in conventional colorimeters. This system was used for monitoring of blood supply changes of psoriatic plaques, that have undergone Psoralens and ultraviolet-A radiation (PUVA) therapy, where reproducible and reliable measurements were demonstrated. These features highlight the potential of the imaging colorimeters as clinical and research tools for the standardization of clinical diagnosis and for the objective evaluation of treatment effectiveness.
NASA Astrophysics Data System (ADS)
Kumar, Vaibhav; Ng, Ivan; Sheard, Gregory J.; Brocher, Eric; Hourigan, Kerry; Fouras, Andreas
2011-08-01
This paper examines the shock cell structure, vorticity and velocity field at the exit of an underexpanded jet nozzle using a hydraulic analogy and the Reference Image Topography technique. Understanding the flow in this region is important for the mitigation of screech, an aeroacoustic problem harmful to aircraft structures. Experiments are conducted on a water table, allowing detailed quantitative investigation of this important flow regime at a greatly reduced expense. Conventional Particle Image Velocimetry is employed to determine the velocity and vorticity fields of the nozzle exit region. Applying Reference Image Topography, the wavy water surface is reconstructed and when combined with the hydraulic analogy, provides a pressure map of the region. With this approach subtraction of surfaces is used to highlight the unsteady regions of the flow, which is not as convenient or quantitative with conventional Schlieren techniques. This allows a detailed analysis of the shock cell structures and their interaction with flow instabilities in the shear layer that are the underlying cause of jet screech.
Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.
2017-01-01
Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887
Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J
2011-02-26
HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.
Zhang, Xiaoyong; Qiu, Bensheng; Wei, Zijun; Yan, Fei; Shi, Caiyun; Su, Shi; Liu, Xin; Ji, Jim X; Xie, Guoxi
2017-01-01
To develop and assess a three-dimensional (3D) self-gated technique for the evaluation of myocardial infarction (MI) in mouse model without the use of external electrocardiogram (ECG) trigger and respiratory motion sensor on a 3T clinical MR system. A 3D T1-weighted GRE sequence with stack-of-stars sampling trajectories was developed and performed on six mice with MIs that were injected with a gadolinium-based contrast agent at a 3T clinical MR system. Respiratory and cardiac self-gating signals were derived from the Cartesian mapping of the k-space center along the partition encoding direction by bandpass filtering in image domain. The data were then realigned according to the predetermined self-gating signals for the following image reconstruction. In order to accelerate the data acquisition, image reconstruction was based on compressed sensing (CS) theory by exploiting temporal sparsity of the reconstructed images. In addition, images were also reconstructed from the same realigned data by conventional regridding method for demonstrating the advantageous of the proposed reconstruction method. Furthermore, the accuracy of detecting MI by the proposed method was assessed using histological analysis as the standard reference. Linear regression and Bland-Altman analysis were used to assess the agreement between the proposed method and the histological analysis. Compared to the conventional regridding method, the proposed CS method reconstructed images with much less streaking artifact, as well as a better contrast-to-noise ratio (CNR) between the blood and myocardium (4.1 ± 2.1 vs. 2.9 ± 1.1, p = 0.031). Linear regression and Bland-Altman analysis demonstrated that excellent correlation was obtained between infarct sizes derived from the proposed method and histology analysis. A 3D T1-weighted self-gating technique for mouse cardiac imaging was developed, which has potential for accurately evaluating MIs in mice at 3T clinical MR system without the use of external ECG trigger and respiratory motion sensor.
[Nitrogen status diagnosis of rice by using a digital camera].
Jia, Liang-Liang; Fan, Ming-Sheng; Zhang, Fu-Suo; Chen, Xin-Ping; Lü, Shi-Hua; Sun, Yan-Ming
2009-08-01
In the present research, a field experiment with different N application rate was conducted to study the possibility of using visible band color analysis methods to monitor the N status of rice canopy. The Correlations of visible spectrum band color intensity between rice canopy image acquired from a digital camera and conventional nitrogen status diagnosis parameters of leaf SPAD chlorophyll meter readings, total N content, upland biomass and N uptake were studied. The results showed that the red color intensity (R), green color intensity (G) and normalized redness intensity (NRI) have significant inverse linear correlations with the conventional N diagnosis parameters of SPAD readings, total N content, upland biomass and total N uptake. The correlation coefficient values (r) were from -0.561 to -0.714 for red band (R), from -0.452 to -0.505 for green band (G), and from -0.541 to 0.817 for normalized redness intensity (NRI). But the normalized greenness intensity (NGI) showed a significant positive correlation with conventional N parameters and the correlation coefficient values (r) were from 0.505 to 0.559. Compared with SPAD readings, the normalized redness intensity (NRI), with a high r value of 0.541-0.780 with conventional N parameters, could better express the N status of rice. The digital image color analysis method showed the potential of being used in rice N status diagnosis in the future.
Recent developments in fast kurtosis imaging
NASA Astrophysics Data System (ADS)
Hansen, Brian; Jespersen, Sune N.
2017-09-01
Diffusion kurtosis imaging (DKI) is an extension of the popular diffusion tensor imaging (DTI) technique. DKI takes into account leading deviations from Gaussian diffusion stemming from a number of effects related to the microarchitecture and compartmentalization in biological tissues. DKI therefore offers increased sensitivity to subtle microstructural alterations over conventional diffusion imaging such as DTI, as has been demonstrated in numerous reports. For this reason, interest in routine clinical application of DKI is growing rapidly. In an effort to facilitate more widespread use of DKI, recent work by our group has focused on developing experimentally fast and robust estimates of DKI metrics. A significant increase in speed is made possible by a reduction in data demand achieved through rigorous analysis of the relation between the DKI signal and the kurtosis tensor based metrics. The fast DKI methods therefore need only 13 or 19 images for DKI parameter estimation compared to more than 60 for the most modest DKI protocols applied today. Closed form solutions also ensure rapid calculation of most DKI metrics. Some parameters can even be reconstructed in real time, which may be valuable in the clinic. The fast techniques are based on conventional diffusion sequences and are therefore easily implemented on almost any clinical system, in contrast to a range of other recently proposed advanced diffusion techniques. In addition to its general applicability, this also ensures that any acceleration achieved in conventional DKI through sequence or hardware optimization will also translate directly to fast DKI acquisitions. In this review, we recapitulate the theoretical basis for the fast kurtosis techniques and their relation to conventional DKI. We then discuss the currently available variants of the fast DKI methods, their strengths and weaknesses, as well as their respective realms of application. These range from whole body applications to methods mostly suited for spinal cord or peripheral nerve, and analysis specific to brain white matter. Having covered these technical aspects, we proceed to review the fast kurtosis literature including validation studies, organ specific optimization studies and results from clinical applications.
Quantitative Imaging Biomarkers of NAFLD
Kinner, Sonja; Reeder, Scott B.
2016-01-01
Conventional imaging modalities, including ultrasonography (US), computed tomography (CT), and magnetic resonance (MR), play an important role in the diagnosis and management of patients with nonalcoholic fatty liver disease (NAFLD) by allowing noninvasive diagnosis of hepatic steatosis. However, conventional imaging modalities are limited as biomarkers of NAFLD for various reasons. Multi-parametric quantitative MRI techniques overcome many of the shortcomings of conventional imaging and allow comprehensive and objective evaluation of NAFLD. MRI can provide unconfounded biomarkers of hepatic fat, iron, and fibrosis in a single examination—a virtual biopsy has become a clinical reality. In this article, we will review the utility and limitation of conventional US, CT, and MR imaging for the diagnosis NAFLD. Recent advances in imaging biomarkers of NAFLD are also discussed with an emphasis in multi-parametric quantitative MRI. PMID:26848588
Nolte-Ernsting, C C; Tacke, J; Adam, G B; Haage, P; Jung, P; Jakse, G; Günther, R W
2001-01-01
The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. In projection MR urography, the entire pelvicaliceal system was imaged by acquisition of a fast single-slice sequence and the conventional 2D GRE technique provided superior morphological accuracy than 2D GRE EPI projection images (p < 0.0003). Fast 3D GRE EPI sequences improve the clinical practicability of excretory MR urography especially in old or critically ill patients unable to suspend breathing for more than 20 s. Conventional GRE sequences are superior to EPI in high-resolution detail MR urograms and in projection imaging.
A mini-microscope for in situ monitoring of cells.
Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali
2012-10-21
A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.
A mini-microscope for in situ monitoring of cells†‡
Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R.; Hamilton, Geraldine A.; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E.
2013-01-01
A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost. PMID:22911426
NASA Astrophysics Data System (ADS)
Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko
2018-05-01
Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.
Using Cell-ID 1.4 with R for Microscope-Based Cytometry
Bush, Alan; Chernomoretz, Ariel; Yu, Richard; Gordon, Andrew
2012-01-01
This unit describes a method for quantifying various cellular features (e.g., volume, total and subcellular fluorescence localization) from sets of microscope images of individual cells. It includes procedures for tracking cells over time. One purposefully defocused transmission image (sometimes referred to as bright-field or BF) is acquired to segment the image and locate each cell. Fluorescent images (one for each of the color channels to be analyzed) are then acquired by conventional wide-field epifluorescence or confocal microscopy. This method uses the image processing capabilities of Cell-ID (Gordon et al., 2007, as updated here) and data analysis by the statistical programming framework R (R-Development-Team, 2008), which we have supplemented with a package of routines for analyzing Cell-ID output. Both Cell-ID and the analysis package are open-source. PMID:23026908
NASA Astrophysics Data System (ADS)
Nallala, Jayakrupakar; Gobinet, Cyril; Diebold, Marie-Danièle; Untereiner, Valérie; Bouché, Olivier; Manfait, Michel; Sockalingum, Ganesh Dhruvananda; Piot, Olivier
2012-11-01
Innovative diagnostic methods are the need of the hour that could complement conventional histopathology for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded tissue arrays.
Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-Ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji
2015-11-19
(18)F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules.
Bennani-Baiti, Barbara; Bennani-Baiti, Nabila; Baltzer, Pascal A
2016-01-01
To evaluate the performance of MRI for diagnosis of breast cancer in non-calcified equivocal breast findings. We performed a systematic review and meta-analysis of peer-reviewed studies in PubMed from 01/01/1986 until 06/15/2015. Eligible were studies applying dynamic contrast-enhanced breast MRI as an adjunct to conventional imaging (mammography, ultrasound) to clarify equivocal findings without microcalcifications. Reference standard for MRI findings had to be established by histopathological sampling or imaging follow-up of at least 12 months. Number of true or false positives and negatives and other characteristics were extracted, and possible bias was determined using the QUADAS-2 applet. Statistical analyses included data pooling and heterogeneity testing. Fourteen out of 514 studies comprising 2,316 lesions met our inclusion criteria. Pooled diagnostic parameters were: sensitivity (99%, 95%-CI: 93-100%), specificity (89%, 95%-CI: 85-92%), PPV (56%, 95%-CI: 42-70%) and NPV (100%, 95%-CI: 99-100%). These estimates displayed significant heterogeneity (P<0.001). Breast MRI demonstrates an excellent diagnostic performance in case of non-calcified equivocal breast findings detected in conventional imaging. However, considering the substantial heterogeneity with regard to prevalence of malignancy, problem solving criteria need to be better defined.
Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei
2017-12-01
Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.
Steinmetz, Michael P; Mroz, Thomas E; Krishnaney, Ajit; Modic, Michael
2009-12-01
In today's health-care environment, operational efficiency is intrinsic to balancing the need for increased productivity driven by rising costs and potentially decreasing reimbursement. Other operational factors kept constant, decreasing the time for a procedure can be viewed as one marker for increased efficiency. To prospectively evaluate the time and operating room efficiency differences between the two methods for intraoperative level localization. STYDY DESIGN: Prospective nonrandomized study. Prospective consecutive patients undergoing a single-level anterior cervical discectomy and fusion (ACDF) with plate and allograft. Time for performance and interpretation of intraoperative localization radiograph. This is a prospective nonrandomized study of patients treated consecutively with a single-level ACDF with allograft and plating. All the patients underwent a conventional approach to the cervical spine. After exposure, a spinal needle was placed in the exposed intervertebral disc and a radiography was performed. Either a conventional or a digital radiography was used in each case. Eighteen patients were enrolled in this study. Ten patients underwent localization with conventional radiography, whereas eight patients underwent localization with digital imaging. The mean time for conventional radiography was 823 seconds (standard deviation [SD], 159), and for digital, it was 100 seconds (SD, 34; p<.001). Current technology provides options for level localization. Digital imaging provides equally accurate information as conventional radiography in a significantly reduced amount of time. Image quality, ease or archival, and manipulation provided by digital radiography are superior to those by provided fluoroscopy. Keeping operational factors constant, decreasing the time for a procedure, and increasing the efficiency of the environment may be viewed as a surrogate for improving the cost basis for a procedure.
Csutak, A; Lengyel, I; Jonasson, F; Leung, I; Geirsdottir, A; Xing, W; Peto, T
2010-10-01
To establish the agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula. In 2008, the 12-year follow-up was conducted on 573 participants of the Reykjavik Eye Study. This study included the use of the Optos P200C AF ultra wide-angle laser scanning ophthalmoscope alongside Zeiss FF 450 conventional digital fundus camera on 121 eyes with or without age-related macular degeneration using the International Classification System. Of these eyes, detailed grading was carried out on five cases each with hard drusen, geographic atrophy and chorioretinal neovascularisation, and six cases of soft drusen. Exact agreement and κ-statistics were calculated. Comparison of the conventional and ultra wide-angle images in the macula showed an overall 96.43% agreement (κ=0.93) with no disagreement at end-stage disease; although in one eye chorioretinal neovascularisation was graded as drusenoid pigment epithelial detachment. Of patients with drusen only, the exact agreement was 96.1%. The detailed grading showed no clinically significant disagreement between the conventional 45° and 200° images. On the basis of our results, there is a good agreement between grading conventional and ultra wide-angle images in the macula.
Cartography of asteroids and comet nuclei from low resolution data
NASA Technical Reports Server (NTRS)
Stooke, Philip J.
1992-01-01
High resolution images of non-spherical objects, such as Viking images of Phobos and the anticipated Galileo images of Gaspra, lend themselves to conventional planetary cartographic procedures: control network analysis, stereophotogrammetry, image mosaicking in 2D or 3D, and airbrush mapping. There remains the problem of a suitable map projection for bodies which are extremely elongated or irregular in shape. Many bodies will soon be seen at lower resolution (5-30 pixels across the disk) in images from speckle interferometry, the Hubble Space Telescope, ground-based radar, distinct spacecraft encounters, and closer images degraded by smear. Different data with similar effective resolutions are available from stellar occultations, radar or lightcurve convex hulls, lightcurve modeling of albedo variations, and cometary jet modeling. With such low resolution, conventional methods of shape determination will be less useful or will fail altogether, leaving limb and terminator topography as the principal sources of topographic information. A method for shape determination based on limb and terminator topography was developed. It has been applied to the nucleus of Comet Halley and the jovian satellite Amalthea. The Amalthea results are described to give an example of the cartographic possibilities and problems of anticipated data sets.
Dobbins, James T; McAdams, H Page; Sabol, John M; Chakraborty, Dev P; Kazerooni, Ella A; Reddy, Gautham P; Vikgren, Jenny; Båth, Magnus
2017-01-01
Purpose To conduct a multi-institutional, multireader study to compare the performance of digital tomosynthesis, dual-energy (DE) imaging, and conventional chest radiography for pulmonary nodule detection and management. Materials and Methods In this binational, institutional review board-approved, HIPAA-compliant prospective study, 158 subjects (43 subjects with normal findings) were enrolled at four institutions. Informed consent was obtained prior to enrollment. Subjects underwent chest computed tomography (CT) and imaging with conventional chest radiography (posteroanterior and lateral), DE imaging, and tomosynthesis with a flat-panel imaging device. Three experienced thoracic radiologists identified true locations of nodules (n = 516, 3-20-mm diameters) with CT and recommended case management by using Fleischner Society guidelines. Five other radiologists marked nodules and indicated case management by using images from conventional chest radiography, conventional chest radiography plus DE imaging, tomosynthesis, and tomosynthesis plus DE imaging. Sensitivity, specificity, and overall accuracy were measured by using the free-response receiver operating characteristic method and the receiver operating characteristic method for nodule detection and case management, respectively. Results were further analyzed according to nodule diameter categories (3-4 mm, >4 mm to 6 mm, >6 mm to 8 mm, and >8 mm to 20 mm). Results Maximum lesion localization fraction was higher for tomosynthesis than for conventional chest radiography in all nodule size categories (3.55-fold for all nodules, P < .001; 95% confidence interval [CI]: 2.96, 4.15). Case-level sensitivity was higher with tomosynthesis than with conventional chest radiography for all nodules (1.49-fold, P < .001; 95% CI: 1.25, 1.73). Case management decisions showed better overall accuracy with tomosynthesis than with conventional chest radiography, as given by the area under the receiver operating characteristic curve (1.23-fold, P < .001; 95% CI: 1.15, 1.32). There were no differences in any specificity measures. DE imaging did not significantly affect nodule detection when paired with either conventional chest radiography or tomosynthesis. Conclusion Tomosynthesis outperformed conventional chest radiography for lung nodule detection and determination of case management; DE imaging did not show significant differences over conventional chest radiography or tomosynthesis alone. These findings indicate performance likely achievable with a range of reader expertise. © RSNA, 2016 Online supplemental material is available for this article.
McAdams, H. Page; Sabol, John M.; Chakraborty, Dev P.; Kazerooni, Ella A.; Reddy, Gautham P.; Vikgren, Jenny; Båth, Magnus
2017-01-01
Purpose To conduct a multi-institutional, multireader study to compare the performance of digital tomosynthesis, dual-energy (DE) imaging, and conventional chest radiography for pulmonary nodule detection and management. Materials and Methods In this binational, institutional review board–approved, HIPAA-compliant prospective study, 158 subjects (43 subjects with normal findings) were enrolled at four institutions. Informed consent was obtained prior to enrollment. Subjects underwent chest computed tomography (CT) and imaging with conventional chest radiography (posteroanterior and lateral), DE imaging, and tomosynthesis with a flat-panel imaging device. Three experienced thoracic radiologists identified true locations of nodules (n = 516, 3–20-mm diameters) with CT and recommended case management by using Fleischner Society guidelines. Five other radiologists marked nodules and indicated case management by using images from conventional chest radiography, conventional chest radiography plus DE imaging, tomosynthesis, and tomosynthesis plus DE imaging. Sensitivity, specificity, and overall accuracy were measured by using the free-response receiver operating characteristic method and the receiver operating characteristic method for nodule detection and case management, respectively. Results were further analyzed according to nodule diameter categories (3–4 mm, >4 mm to 6 mm, >6 mm to 8 mm, and >8 mm to 20 mm). Results Maximum lesion localization fraction was higher for tomosynthesis than for conventional chest radiography in all nodule size categories (3.55-fold for all nodules, P < .001; 95% confidence interval [CI]: 2.96, 4.15). Case-level sensitivity was higher with tomosynthesis than with conventional chest radiography for all nodules (1.49-fold, P < .001; 95% CI: 1.25, 1.73). Case management decisions showed better overall accuracy with tomosynthesis than with conventional chest radiography, as given by the area under the receiver operating characteristic curve (1.23-fold, P < .001; 95% CI: 1.15, 1.32). There were no differences in any specificity measures. DE imaging did not significantly affect nodule detection when paired with either conventional chest radiography or tomosynthesis. Conclusion Tomosynthesis outperformed conventional chest radiography for lung nodule detection and determination of case management; DE imaging did not show significant differences over conventional chest radiography or tomosynthesis alone. These findings indicate performance likely achievable with a range of reader expertise. © RSNA, 2016 Online supplemental material is available for this article. PMID:27439324
Analysis of physiological impact while reading stereoscopic radiographs
NASA Astrophysics Data System (ADS)
Unno, Yasuko Y.; Tajima, Takashi; Kuwabara, Takao; Hasegawa, Akira; Natsui, Nobutaka; Ishikawa, Kazuo; Hatada, Toyohiko
2011-03-01
A stereoscopic viewing technology is expected to improve diagnostic performance in terms of reading efficiency by adding one more dimension to the conventional 2D images. Although a stereoscopic technology has been applied to many different field including TV, movies and medical applications, physiological fatigue through reading stereoscopic radiographs has been concerned although no established physiological fatigue data have been provided. In this study, we measured the α-amylase concentration in saliva, heart rates and normalized tissue hemoglobin index (nTHI) in blood of frontal area to estimate physiological fatigue through reading both stereoscopic radiographs and the conventional 2D radiographs. In addition, subjective assessments were also performed. As a result, the pupil contraction occurred just after the reading of the stereoscopic images, but the subjective assessments regarding visual fatigue were nearly identical for the reading the conventional 2D and stereoscopic radiographs. The α-amylase concentration and the nTHI continued to decline while examinees read both 2D and stereoscopic images, which reflected the result of subjective assessment that almost half of the examinees reported to feel sleepy after reading. The subjective assessments regarding brain fatigue showed that there were little differences between 2D and stereoscopic reading. In summary, this study shows that the physiological fatigue caused by stereoscopic reading is equivalent to the conventional 2D reading including ocular fatigue and burden imposed on brain.
Artefacts in geometric phase analysis of compound materials.
Peters, Jonathan J P; Beanland, Richard; Alexe, Marin; Cockburn, John W; Revin, Dmitry G; Zhang, Shiyong Y; Sanchez, Ana M
2015-10-01
The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.
Panorama imaging for image-to-physical registration of narrow drill holes inside spongy bones
NASA Astrophysics Data System (ADS)
Bergmeier, Jan; Fast, Jacob Friedemann; Ortmaier, Tobias; Kahrs, Lüder Alexander
2017-03-01
Image-to-physical registration based on volumetric data like computed tomography on the one side and intraoperative endoscopic images on the other side is an important method for various surgical applications. In this contribution, we present methods to generate panoramic views from endoscopic recordings for image-to-physical registration of narrow drill holes inside spongy bone. One core application is the registration of drill poses inside the mastoid during minimally invasive cochlear implantations. Besides the development of image processing software for registration, investigations are performed on a miniaturized optical system, achieving 360° radial imaging with one shot by extending a conventional, small, rigid, rod lens endoscope. A reflective cone geometry is used to deflect radially incoming light rays into the endoscope optics. Therefore, a cone mirror is mounted in front of a conventional 0° endoscope. Furthermore, panoramic images of inner drill hole surfaces in artificial bone material are created. Prior to drilling, cone beam computed tomography data is acquired from this artificial bone and simulated endoscopic views are generated from this data. A qualitative and quantitative image comparison of resulting views in terms of image-to-image registration is performed. First results show that downsizing of panoramic optics to a diameter of 3mm is possible. Conventional rigid rod lens endoscopes can be extended to produce suitable panoramic one-shot image data. Using unrolling and stitching methods, images of the inner drill hole surface similar to computed tomography image data of the same surface were created. Registration is performed on ten perturbations of the search space and results in target registration errors of (0:487 +/- 0:438)mm at the entry point and (0:957 +/- 0:948)mm at the exit as well as an angular error of (1:763 +/- 1:536)°. The results show suitability of this image data for image-to-image registration. Analysis of the error components in different directions reveals a strong influence of the pattern structure, meaning higher diversity results into smaller errors.
Liu, Wenlou; Wang, Linwei; Liu, Jiuyang; Yuan, Jingping; Chen, Jiamei; Wu, Han; Xiang, Qingming; Yang, Guifang; Li, Yan
2016-12-01
Despite the extensive application of multispectral imaging (MSI) in biomedical multidisciplinary researches, there is a paucity of data available regarding the implication of MSI in tumor prognosis prediction. We compared the behaviors of multispectral (MS) and conventional red-green-blue (RGB) images on assessment of human epidermal growth factor receptor 2 (HER2) immunohistochemistry to explore their impact on outcome in patients with invasive breast cancer (BC). Tissue microarrays containing 240 BC patients were introduced to compare the performance of MS and RGB imaging methods on the quantitative assessment of HER2 status and the prognostic value of 5-year disease-free survival (5-DFS). Both the total and average signal optical density values of HER2 MS and RGB images were analyzed, and all patients were divided into two groups based on the different 5-DFS. The quantification of HER2 MS images was negatively correlated with 5-DFS in lymph node-negative and -positive patients (P<.05), but RGB images were not in lymph node-positive patients (P=.101). Multivariate analysis indicated that the hazard ratio (HR) of HER2 MS was higher than that of HER2 RGB (HR=2.454; 95% confidence interval [CI], 1.636-3.681 vs HR=2.060; 95% CI, 1.361-3.119). Additionally, area under curve (AUC) by receiver operating characteristic analysis for HER2 MS was greater than that for HER2 RGB (AUC=0.649; 95% CI, 0.577-0.722 vs AUC=0.596; 95% CI, 0.522-0.670) in predicting the risk for recurrence. More importantly, the quantification of HER2 MS images has higher prediction accuracy than that of HER2 RGB images (69.6% vs 65.0%) on 5-DFS. Our study suggested that better information on BC prognosis could be obtained from the quantification of HER2 MS images and MS images might perform better in predicting BC prognosis than conventional RGB images. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kefauver, Shawn C; Vicente, Rubén; Vergara-Díaz, Omar; Fernandez-Gallego, Jose A; Kerfal, Samir; Lopez, Antonio; Melichar, James P E; Serret Molins, María D; Araus, José L
2017-01-01
With the commercialization and increasing availability of Unmanned Aerial Vehicles (UAVs) multiple rotor copters have expanded rapidly in plant phenotyping studies with their ability to provide clear, high resolution images. As such, the traditional bottleneck of plant phenotyping has shifted from data collection to data processing. Fortunately, the necessarily controlled and repetitive design of plant phenotyping allows for the development of semi-automatic computer processing tools that may sufficiently reduce the time spent in data extraction. Here we present a comparison of UAV and field based high throughput plant phenotyping (HTPP) using the free, open-source image analysis software FIJI (Fiji is just ImageJ) using RGB (conventional digital cameras), multispectral and thermal aerial imagery in combination with a matching suite of ground sensors in a study of two hybrids and one conventional barely variety with ten different nitrogen treatments, combining different fertilization levels and application schedules. A detailed correlation network for physiological traits and exploration of the data comparing between treatments and varieties provided insights into crop performance under different management scenarios. Multivariate regression models explained 77.8, 71.6, and 82.7% of the variance in yield from aerial, ground, and combined data sets, respectively.
Correlation analysis between pulmonary function test parameters and CT image parameters of emphysema
NASA Astrophysics Data System (ADS)
Liu, Cheng-Pei; Li, Chia-Chen; Yu, Chong-Jen; Chang, Yeun-Chung; Wang, Cheng-Yi; Yu, Wen-Kuang; Chen, Chung-Ming
2016-03-01
Conventionally, diagnosis and severity classification of Chronic Obstructive Pulmonary Disease (COPD) are usually based on the pulmonary function tests (PFTs). To reduce the need of PFT for the diagnosis of COPD, this paper proposes a correlation model between the lung CT images and the crucial index of the PFT, FEV1/FVC, a severity index of COPD distinguishing a normal subject from a COPD patient. A new lung CT image index, Mirage Index (MI), has been developed to describe the severity of COPD primarily with emphysema disease. Unlike conventional Pixel Index (PI) which takes into account all voxels with HU values less than -950, the proposed approach modeled these voxels by different sizes of bullae balls and defines MI as a weighted sum of the percentages of the bullae balls of different size classes and locations in a lung. For evaluation of the efficacy of the proposed model, 45 emphysema subjects of different severity were involved in this study. In comparison with the conventional index, PI, the correlation between MI and FEV1/FVC is -0.75+/-0.08, which substantially outperforms the correlation between PI and FEV1/FVC, i.e., -0.63+/-0.11. Moreover, we have shown that the emphysematous lesion areas constituted by small bullae balls are basically irrelevant to FEV1/FVC. The statistical analysis and special case study results show that MI can offer better assessment in different analyses.
Added Value of Assessing Adnexal Masses with Advanced MRI Techniques
Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.
2015-01-01
This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542
Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro
2010-07-08
A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.
Granchi, Simona; Vannacci, Enrico; Biagi, Elena
2017-04-22
To evaluate the capability of the HyperSPACE (Hyper SPectral Analysis for Characterization in Echography) method in tissue characterization, in order to provide information for the laser treatment of benign thyroid nodules in respect of conventional B-mode images and elastography. The method, based on the spectral analysis of the raw radiofrequency ultrasonic signal, was applied to characterize the nodule before and after laser treatment. Thirty patients (25 females and 5 males, age between 37 and 81 years) with thyroid benign nodule at cytology (Thyr 2) were evaluated by conventional ultrasonography, elastography, and HyperSPACE, before and after laser ablation. The images processed by HyperSPACE exhibit different color distributions that are referred to different tissue features. By calculating the percentages of the color coverages, the analysed nodules were subdivided into 3 groups. Each nodule belonging to the same group experienced, on average, similar necrosis extension. The nodules exhibit different Configurations (colors) distributions that could be indicative of the response of nodular tissue to the laser treatmentConclusions: HyperSPACEcan characterize benign nodules by providing additional information in respect of conventional ultrasound and elastography which is useful for support in the laser treatment of nodules in order to increase the probability of success.
Reichert, M; Morelli, J N; Nittka, M; Attenberger, U; Runge, V M
2015-01-01
Objective: To compare metal artefact reduction in MRI at both 3.0 T and 1.5 T using different sequence strategies. Methods: Metal implants of stainless steel screw and plate within agarose phantoms and tissue specimens as well as three patients with implants were imaged at both 1.5 T and 3.0 T, using view angle tilting (VAT), slice encoding for metal artefact correction with VAT (SEMAC-VAT) and conventional sequence. Artefact reduction in agarose phantoms was quantitatively assessed by artefact volume measurements. Blinded reads were conducted in tissue specimen and human imaging, with respect to artefact size, distortion, blurring and overall image quality. Wilcoxon and Friedman tests for multiple comparisons and intraclass correlation coefficient (ICC) for interobserver agreement were performed with a significant level of p < 0.05. Results: Compared with conventional sequences, SEMAC-VAT significantly reduced metal artefacts by 83% ± 9% for the screw and 89% ± 3% for the plate at 1.5 T; 72% ± 7% for the screw and 38% ± 13% for the plate at 3.0 T (p < 0.05). In qualitative analysis, SEMAC-VAT allowed for better visualization of tissue structures adjacent to the implants and produced better overall image quality with good interobserver agreement for both tissue specimen and human imaging (ICC = 0.80–0.99; p < 0.001). In addition, VAT also markedly reduced metal artefacts compared with conventional sequence, but was inferior to SEMAC-VAT. Conclusion: SEMAC-VAT and VAT techniques effectively reduce artefacts from metal implants relative to conventional imaging at both 1.5 T and 3.0 T. Advances in knowledge: The feasibility of metal artefact reduction with SEMAC-VAT was demonstrated at 3.0-T MR. SEMAC-VAT significantly reduced metal artefacts at both 1.5 and 3.0 T. SEMAC-VAT allowed for better visualization of the tissue structures adjacent to the metal implants. SEMAC-VAT produced consistently better image quality in both tissue specimen and human imaging. PMID:25613398
Innovations in diagnostic imaging of localized prostate cancer.
Pummer, Karl; Rieken, Malte; Augustin, Herbert; Gutschi, Thomas; Shariat, Shahrokh F
2014-08-01
In recent years, various imaging modalities have been developed to improve diagnosis, staging, and localization of early-stage prostate cancer (PCa). A MEDLINE literature search of the time frame between 01/2007 and 06/2013 was performed on imaging of localized PCa. Conventional transrectal ultrasound (TRUS) is mainly used to guide prostate biopsy. Contrast-enhanced ultrasound is based on the assumption that PCa tissue is hypervascularized and might be better identified after intravenous injection of a microbubble contrast agent. However, results on its additional value for cancer detection are controversial. Computer-based analysis of the transrectal ultrasound signal (C-TRUS) appears to detect cancer in a high rate of patients with previous biopsies. Real-time elastography seems to have higher sensitivity, specificity, and positive predictive value than conventional TRUS. However, the method still awaits prospective validation. The same is true for prostate histoscanning, an ultrasound-based method for tissue characterization. Currently, multiparametric MRI provides improved tissue visualization of the prostate, which may be helpful in the diagnosis and targeting of prostate lesions. However, most published series are small and suffer from variations in indication, methodology, quality, interpretation, and reporting. Among ultrasound-based techniques, real-time elastography and C-TRUS seem the most promising techniques. Multiparametric MRI appears to have advantages over conventional T2-weighted MRI in the detection of PCa. Despite these promising results, currently, no recommendation for the routine use of these novel imaging techniques can be made. Prospective studies defining the value of various imaging modalities are urgently needed.
Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques
NASA Astrophysics Data System (ADS)
Rekha, Suganthini; Bupesh Raja, V. K.
2017-05-01
The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.
Choi, Young Jun; Lee, Jeong Hyun; Kim, Hye Ok; Kim, Dae Yoon; Yoon, Ra Gyoung; Cho, So Hyun; Koh, Myeong Ju; Kim, Namkug; Kim, Sang Yoon; Baek, Jung Hwan
2016-01-01
To explore the added value of histogram analysis of apparent diffusion coefficient (ADC) values over magnetic resonance (MR) imaging and fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) for the detection of occult palatine tonsil squamous cell carcinoma (SCC) in patients with cervical nodal metastasis from a cancer of an unknown primary site. The institutional review board approved this retrospective study, and the requirement for informed consent was waived. Differences in the bimodal histogram parameters of the ADC values were assessed among occult palatine tonsil SCC (n = 19), overt palatine tonsil SCC (n = 20), and normal palatine tonsils (n = 20). One-way analysis of variance was used to analyze differences among the three groups. Receiver operating characteristic curve analysis was used to determine the best differentiating parameters. The increased sensitivity of histogram analysis over MR imaging and (18)F-FDG PET/CT for the detection of occult palatine tonsil SCC was evaluated as added value. Histogram analysis showed statistically significant differences in the mean, standard deviation, and 50th and 90th percentile ADC values among the three groups (P < .0045). Occult palatine tonsil SCC had a significantly higher standard deviation for the overall curves, mean and standard deviation of the higher curves, and 90th percentile ADC value, compared with normal palatine tonsils (P < .0167). Receiver operating characteristic curve analysis showed that the standard deviation of the overall curve best delineated occult palatine tonsil SCC from normal palatine tonsils, with a sensitivity of 78.9% (15 of 19 patients) and a specificity of 60% (12 of 20 patients). The added value of ADC histogram analysis was 52.6% over MR imaging alone and 15.8% over combined conventional MR imaging and (18)F-FDG PET/CT. Adding ADC histogram analysis to conventional MR imaging can improve the detection sensitivity for occult palatine tonsil SCC in patients with a cervical nodal metastasis originating from a cancer of an unknown primary site. © RSNA, 2015.
Daniel, Kaemmerer; Maria, Athelogou; Amelie, Lupp; Isabell, Lenhardt; Stefan, Schulz; Luisa, Peter; Merten, Hommann; Vikas, Prasad; Gerd, Binnig; Paul, Baum Richard
2014-01-01
Background: Manual evaluation of somatostatin receptor (SSTR) immunohistochemistry (IHC) is a time-consuming and cost-intensive procedure. Aim of the study was to compare manual evaluation of SSTR subtype IHC to an automated software-based analysis, and to in-vivo imaging by SSTR-based PET/CT. Methods: We examined 25 gastroenteropancreatic neuroendocrine tumor (GEP-NET) patients and correlated their in-vivo SSTR-PET/CT data (determined by the standardized uptake values SUVmax,-mean) with the corresponding ex-vivo IHC data of SSTR subtype (1, 2A, 4, 5) expression. Exactly the same lesions were imaged by PET/CT, resected and analyzed by IHC in each patient. After manual evaluation, the IHC slides were digitized and automatically evaluated for SSTR expression by Definiens XD software. A virtual IHC score “BB1” was created for comparing the manual and automated analysis of SSTR expression. Results: BB1 showed a significant correlation with the corresponding conventionally determined Her2/neu score of the SSTR-subtypes 2A (rs: 0.57), 4 (rs: 0.44) and 5 (rs: 0.43). BB1 of SSTR2A also significantly correlated with the SUVmax (rs: 0.41) and the SUVmean (rs: 0.50). Likewise, a significant correlation was seen between the conventionally evaluated SSTR2A status and the SUVmax (rs: 0.42) and SUVmean (rs: 0.62).Conclusion: Our data demonstrate that the evaluation of the SSTR status by automated analysis (BB1 score), using digitized histopathology slides (“virtual microscopy”), corresponds well with the SSTR2A, 4 and 5 expression as determined by conventional manual histopathology. The BB1 score also exhibited a significant association to the SSTR-PET/CT data in accordance with the high affinity profile of the SSTR analogues used for imaging. PMID:25197368
Image quality assessment of silent T2 PROPELLER sequence for brain imaging in infants.
Kim, Hyun Gi; Choi, Jin Wook; Yoon, Soo Han; Lee, Sieun
2018-02-01
Infants are vulnerable to high acoustic noise. Acoustic noise generated by MR scanning can be reduced by a silent sequence. The purpose of this study is to compare the image quality of the conventional and silent T2 PROPELLER sequences for brain imaging in infants. A total of 36 scans were acquired from 24 infants using a 3 T MR scanner. Each patient underwent both conventional and silent T2 PROPELLER sequences. Acoustic noise level was measured. Quantitative and qualitative assessments were performed with the images taken with each sequence. The sound pressure level of the conventional T2 PROPELLER imaging sequence was 92.1 dB and that of the silent T2 PROPELLER imaging sequence was 73.3 dB (reduction of 20%). On quantitative assessment, the two sequences (conventional vs silent T2 PROPELLER) did not show significant difference in relative contrast (0.069 vs 0.068, p value = 0.536) and signal-to-noise ratio (75.4 vs 114.8, p value = 0.098). Qualitative assessment of overall image quality (p value = 0.572), grey-white differentiation (p value = 0.986), shunt-related artefact (p value > 0.999), motion artefact (p value = 0.801) and myelination degree in different brain regions (p values ≥ 0.092) did not show significant difference between the two sequences. The silent T2 PROPELLER sequence reduces acoustic noise and generated comparable image quality to that of the conventional sequence. Advances in knowledge: This is the first report to compare silent T2 PROPELLER images with that of conventional T2 PROPELLER images in children.
Hojjati, Mojgan; Van Hedent, Steven; Rassouli, Negin; Tatsuoka, Curtis; Jordan, David; Dhanantwari, Amar; Rajiah, Prabhakar
2017-11-01
To evaluate the image quality of routine diagnostic images generated from a novel detector-based spectral detector CT (SDCT) and compare it with CT images obtained from a conventional scanner with an energy-integrating detector (Brilliance iCT), Routine diagnostic (conventional/polyenergetic) images are non-material-specific images that resemble single-energy images obtained at the same radiation, METHODS: ACR guideline-based phantom evaluations were performed on both SDCT and iCT for CT adult body protocol. Retrospective analysis was performed on 50 abdominal CT scans from each scanner. Identical ROIs were placed at multiple locations in the abdomen and attenuation, noise, SNR, and CNR were measured. Subjective image quality analysis on a 5-point Likert scale was performed by 2 readers for enhancement, noise, and image quality. On phantom studies, SDCT images met the ACR requirements for CT number and deviation, CNR and effective radiation dose. In patients, the qualitative scores were significantly higher for the SDCT than the iCT, including enhancement (4.79 ± 0.38 vs. 4.60 ± 0.51, p = 0.005), noise (4.63 ± 0.42 vs. 4.29 ± 0.50, p = 0.000), and quality (4.85 ± 0.32, vs. 4.57 ± 0.50, p = 0.000). The SNR was higher in SDCT than iCT for liver (7.4 ± 4.2 vs. 7.2 ± 5.3, p = 0.662), spleen (8.6 ± 4.1 vs. 7.4 ± 3.5, p = 0.152), kidney (11.1 ± 6.3 vs. 8.7 ± 5.0, p = 0.033), pancreas (6.90 ± 3.45 vs 6.11 ± 2.64, p = 0.303), aorta (14.2 ± 6.2 vs. 11.0 ± 4.9, p = 0.007), but was slightly lower in lumbar-vertebra (7.7 ± 4.2 vs. 7.8 ± 4.5, p = 0.937). The CNR of the SDCT was also higher than iCT for all abdominal organs. Image quality of routine diagnostic images from the SDCT is comparable to images of a conventional CT scanner with energy-integrating detectors, making it suitable for diagnostic purposes.
Indirect estimation of signal-dependent noise with nonadaptive heterogeneous samples.
Azzari, Lucio; Foi, Alessandro
2014-08-01
We consider the estimation of signal-dependent noise from a single image. Unlike conventional algorithms that build a scatterplot of local mean-variance pairs from either small or adaptively selected homogeneous data samples, our proposed approach relies on arbitrarily large patches of heterogeneous data extracted at random from the image. We demonstrate the feasibility of our approach through an extensive theoretical analysis based on mixture of Gaussian distributions. A prototype algorithm is also developed in order to validate the approach on simulated data as well as on real camera raw images.
Single particle analysis based on Zernike phase contrast transmission electron microscopy.
Danev, Radostin; Nagayama, Kuniaki
2008-02-01
We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.
Hickethier, Tilman; Baeßler, Bettina; Kroeger, Jan Robert; Doerner, Jonas; Pahn, Gregor; Maintz, David; Michels, Guido; Bunck, Alexander C
Accurate assessment of coronary stents using non-invasive CT imaging remains challenging despite new stent materials and improvements in CT technology. Virtual monoenergetic (monoE) images reconstructed from dual energy CT acquisitions potentially decrease artifacts caused by coronary stents. A novel spectral detector technology provides monoE and conventional images simultaneously for all conducted scans. The purpose of our study was to systematically investigate the influence of different monoE reconstructions on the visualization of coronary stent lumen in comparison to conventional images. Ten different coronary stents (diameter 3.0 mm) embedded in plastic tubes filled with contrast agent (500 HU) were scanned with a 128-row spectral detector CT (IQon, Philips, 120 kV, 125 mAs). Images were reconstructed (0.67 mm slice thickness, 0.35 mm increment) with a stent-specific conventional reconstruction kernel and 6 different monoE settings (60, 70, 80, 90, 100, 150 keV). Image quality for each stent and reconstruction was quantified using established parameters: image noise (standard deviation (SD) within a standardized ROI), in-stent attenuation difference (mean attenuation difference between stented and non-stented lumen) and visible lumen diameter (mean visible diameter of the stented tube). Image noise was significantly lower in all monoE data dets compared to conventional images (conventional: 13.41, 60 keV: 11.62, 70 keV: 11.67, 80 keV: 11.69, 90 keV: 11.71, 100 keV: 11.75, 150 keV: 11.80 HU SD; p < 0.01). The in-stent attenuation difference was significantly smaller in monoE data with higher keV levels than in conventional images (conventional: 148.18, 60 keV: 154.13 p = 0.036, 70 keV: 143.43 p = 0.109, 80 keV: 137.25 p = 0.052, 90 keV: 133.02 p = 0.043, 100 keV: 130.12 p = 0.039, 150 keV: 123.99 HU p = 0.035). The visible lumen diameter was significantly greater in monoE data with higher keV levels than in conventional images (conventional: 0.65, 60 keV: 0.68 p = 0.542, 70 keV: 0.71 p = 0.053, 80 keV: 0.74 p < 0.01, 90 keV: 0.77 p < 0.01, 100 keV: 0.82 p < 0.01, 150 keV: 0.87 mm p < 0.01). In comparison to conventional CT images, well-established parameters for objective assessment of CT image quality for coronary stents are significantly improved by utilization of monoE reconstructions with adequate keV levels derived from data acquired on a novel spectral detector CT platform. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Image Reconstruction for Hybrid True-Color Micro-CT
Xu, Qiong; Yu, Hengyong; Bennett, James; He, Peng; Zainon, Rafidah; Doesburg, Robert; Opie, Alex; Walsh, Mike; Shen, Haiou; Butler, Anthony; Butler, Phillip; Mou, Xuanqin; Wang, Ge
2013-01-01
X-ray micro-CT is an important imaging tool for biomedical researchers. Our group has recently proposed a hybrid “true-color” micro-CT system to improve contrast resolution with lower system cost and radiation dose. The system incorporates an energy-resolved photon-counting true-color detector into a conventional micro-CT configuration, and can be used for material decomposition. In this paper, we demonstrate an interior color-CT image reconstruction algorithm developed for this hybrid true-color micro-CT system. A compressive sensing-based statistical interior tomography method is employed to reconstruct each channel in the local spectral imaging chain, where the reconstructed global gray-scale image from the conventional imaging chain served as the initial guess. Principal component analysis was used to map the spectral reconstructions into the color space. The proposed algorithm was evaluated by numerical simulations, physical phantom experiments, and animal studies. The results confirm the merits of the proposed algorithm, and demonstrate the feasibility of the hybrid true-color micro-CT system. Additionally, a “color diffusion” phenomenon was observed whereby high-quality true-color images are produced not only inside the region of interest, but also in neighboring regions. It appears harnessing that this phenomenon could potentially reduce the color detector size for a given ROI, further reducing system cost and radiation dose. PMID:22481806
Kim, Byeong Hak; Kim, Min Young; Chae, You Seong
2017-01-01
Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970
Kim, Byeong Hak; Kim, Min Young; Chae, You Seong
2017-12-27
Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.
Ogawa, Takashi; Gang, Geun Won; Thieu, Minh Thu; Kwon, Hyuksang; Ahn, Sang Jung; Ha, Tai Hwan; Cho, Boklae
2017-05-01
Utilization of graphene-supporting films and low-voltage scanning transmission electron microscopy (LV-STEM) in scanning electron microscopy (SEM) is shown to be an effective means of observing unstained nanobio materials. Insulin amyloid fibrils, which are implicated as a cause of type II diabetes, are formed in vitro and observed without staining at room temperature. An in-lens cold field-emission SEM, equipped with an additional homemade STEM detector, provides dark field (DF)-STEM images in the low energy range of 5-30keV, together with secondary electron (SE) images. Analysis based on Lenz's theory is used to interpret the experimental results. Graphene films, where the fibrils are deposited, reduce the background level of the STEM images compared with instances when conventional amorphous carbon films are used. Using 30keV, which is lower than that for conventional TEM (100-300keV), together with low detection angles (15-55mrad) enhances the signals from the fibrils. These factors improve image quality, which enables observation of thin fibrils with widths of 7-8nm. STEM imaging clearly reveals a twisted-ribbon structure of a fibril, and SE imaging shows an emphasized striped pattern of the fibril. The LV-STEM in SEM enables acquisition of two types of images of an identical fibril in a single instrument, which is useful for understanding the structure. This study expands the application of SEM to other systems of interest, which is beneficial to a large number of users. The method in this study can be applied to the observation of various nanobio materials and analysis of their native structures, thus contributing to research in materials and life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stamm, G; Eichbaum, G; Hagemann, G
1997-09-01
The following three screen-film combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film, and c) a conventional green fluorescing screen-film combination. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum pre-filter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an IBAS system and a Zeiss Kontron computer. Display conditions were the following: display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a PbO photocathode, 625 lines (Siemens Heimann), an IBAS image matrix of 512 x 512 pixels with a resolution of 7 lines/mm, the projected matrix area was 5000 microns2. Grey scale ranges were measured on a line perpendicular to the grouped bar patterns. The difference between the maximum and minimum density value served as signal. The spatial resolution of the detector system was measured when the signal value was three times higher than the standard deviation of the means of multiple density measurements. The results showed considerable advantages of the two new screen-film combinations as compared to the conventional screen-film combination. The result was contradictory to the findings with pure visual assessment of thresholds (part I) that had found no differences. The authors concluded that (automatic) interactive image analysis algorithms serve as an objective measure and are specifically advantageous when small differences in image quality are to be evaluated.
Task-based statistical image reconstruction for high-quality cone-beam CT
NASA Astrophysics Data System (ADS)
Dang, Hao; Webster Stayman, J.; Xu, Jennifer; Zbijewski, Wojciech; Sisniega, Alejandro; Mow, Michael; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.
2017-11-01
Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR—viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ({{d}\\prime} ). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in {{d}\\prime} , and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.
NASA Technical Reports Server (NTRS)
Cardamone, P.; Lechi, G. M.; Cavallin, A.; Marino, C. M.; Zanferrari, A.
1977-01-01
The results obtained in the study of linears derived from the analysis of LANDSAT 2 images recorded over Friuli during 1975 are described. Particular attention is devoted to the comparison of several passes in different bands, scales and photographic supports. Moreover reference is made to aerial photographic interpretation in selected sites and to the information obtained by laser techniques.
NASA Technical Reports Server (NTRS)
Demendonca, F. (Principal Investigator); Correa, A. C.; Liu, C. C.
1975-01-01
The author has identified the following significant results. Sao Domingos Range, Pocos de Caldas, and Araguaia and Tocantins Rivers in Brazil were selected as test sites for LANDSAT imagery. The satellite images were analyzed using conventional photointerpretation techniques, and the results indicate the application of small scale image data in regional structural data analysis, geological mapping, and mineral exploration.
Stress analysis in oral obturator prostheses: imaging photoelastic
NASA Astrophysics Data System (ADS)
Pesqueira, Aldiéris Alves; Goiato, Marcelo Coelho; dos Santos, Daniela Micheline; Haddad, Marcela Filié; Andreotti, Agda Marobo; Moreno, Amália
2013-06-01
Maxillary defects resulting from cancer, trauma, and congenital malformation affect the chewing efficiency and retention of dentures in these patients. The use of implant-retained palatal obturator dentures has improved the self-esteem and quality of life of several subjects. We evaluate the stress distribution of implant-retained palatal obturator dentures with different attachment systems by using the photoelastic analysis images. Two photoelastic models of the maxilla with oral-sinus-nasal communication were fabricated. One model received three implants on the left side of the alveolar ridge (incisive, canine, and first molar regions) and the other did not receive implants. Afterwards, a conventional palatal obturator denture (control) and two implant-retained palatal obturator dentures with different attachment systems (O-ring; bar-clip) were constructed. Models were placed in a circular polariscope and a 100-N axial load was applied in three different regions (incisive, canine, and first molar regions) by using a universal testing machine. The results were photographed and analyzed qualitatively using a software (Adobe Photoshop). The bar-clip system exhibited the highest stress concentration followed by the O-ring system and conventional denture (control). Images generated by the photoelastic method help in the oral rehabilitator planning.
Baek, Hye Jin; Kim, Dong Wook; Ryu, Ji Hwa; Lee, Yoo Jin
2013-01-01
Background There has been no study to compare the diagnostic accuracy of an experienced radiologist with a trainee in nasal bone fracture. Objectives To compare the diagnostic accuracy between conventional radiography and computed tomography (CT) for the identification of nasal bone fractures and to evaluate the interobserver reliability between a staff radiologist and a trainee. Patients and Methods A total of 108 patients who underwent conventional radiography and CT after acute nasal trauma were included in this retrospective study. Two readers, a staff radiologist and a second-year resident, independently assessed the results of the imaging studies. Results Of the 108 patients, the presence of a nasal bone fracture was confirmed in 88 (81.5%) patients. The number of non-depressed fractures was higher than the number of depressed fractures. In nine (10.2%) patients, nasal bone fractures were only identified on conventional radiography, including three depressed and six non-depressed fractures. CT was more accurate as compared to conventional radiography for the identification of nasal bone fractures as determined by both readers (P <0.05), all diagnostic indices of an experienced radiologist were similar to or higher than those of a trainee, and κ statistics showed moderate agreement between the two diagnostic tools for both readers. There was no statistical difference in the assessment of interobserver reliability for both imaging modalities in the identification of nasal bone fractures. Conclusion For the identification of nasal bone fractures, CT was significantly superior to conventional radiography. Although a staff radiologist showed better values in the identification of nasal bone fracture and differentiation between depressed and non-depressed fractures than a trainee, there was no statistically significant difference in the interpretation of conventional radiography and CT between a radiologist and a trainee. PMID:24348599
USDA-ARS?s Scientific Manuscript database
Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive....
Image guidance improves localization of sonographically occult colorectal liver metastases
NASA Astrophysics Data System (ADS)
Leung, Universe; Simpson, Amber L.; Adams, Lauryn B.; Jarnagin, William R.; Miga, Michael I.; Kingham, T. Peter
2015-03-01
Assessing the therapeutic benefit of surgical navigation systems is a challenging problem in image-guided surgery. The exact clinical indications for patients that may benefit from these systems is not always clear, particularly for abdominal surgery where image-guidance systems have failed to take hold in the same way as orthopedic and neurosurgical applications. We report interim analysis of a prospective clinical trial for localizing small colorectal liver metastases using the Explorer system (Path Finder Technologies, Nashville, TN). Colorectal liver metastases are small lesions that can be difficult to identify with conventional intraoperative ultrasound due to echogeneity changes in the liver as a result of chemotherapy and other preoperative treatments. Interim analysis with eighteen patients shows that 9 of 15 (60%) of these occult lesions could be detected with image guidance. Image guidance changed intraoperative management in 3 (17%) cases. These results suggest that image guidance is a promising tool for localization of small occult liver metastases and that the indications for image-guided surgery are expanding.
Near-infrared hyperspectral imaging for quality analysis of agricultural and food products
NASA Astrophysics Data System (ADS)
Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.
2010-04-01
Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.
Large-scale retrieval for medical image analytics: A comprehensive review.
Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting
2018-01-01
Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Microscopic image analysis for reticulocyte based on watershed algorithm
NASA Astrophysics Data System (ADS)
Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.
2007-12-01
We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.
Hyperspectral imaging for non-contact analysis of forensic traces.
Edelman, G J; Gaston, E; van Leeuwen, T G; Cullen, P J; Aalders, M C G
2012-11-30
Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers significant potential for the detection, visualization, identification and age estimation of forensic traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical tool for forensic science. This paper provides an overview of the principles, instrumentation and analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI technology motivating forensic science applications, e.g. the development of portable and fast image acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of possible future applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Aukema, T S; Rutgers, E J Th; Vogel, W V; Teertstra, H J; Oldenburg, H S; Vrancken Peeters, M T F D; Wesseling, J; Russell, N S; Valdés Olmos, R A
2010-04-01
The aim of this study was to evaluate the impact of (18)F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) on clinical management in patients with locoregional breast cancer recurrence amenable for locoregional treatment and to compare the PET/CT results with the conventional imaging data. From January 2006 to August 2008, all patients with locoregional breast cancer recurrence underwent whole-body PET/CT. PET/CT findings were compared with results of the conventional imaging techniques and final pathology. The impact of PET/CT results on clinical management was evaluated based on clinical decisions obtained from patient files. 56 patients were included. In 32 patients (57%) PET/CT revealed additional tumour localisations. Distant metastases were detected in 11 patients on conventional imaging and in 23 patients on PET/CT images (p < 0.01). In 25 patients (45%), PET/CT detected additional lesions not visible on conventional imaging. PET/CT had an impact on clinical management in 27 patients (48%) by detecting more extensive locoregional disease or distant metastases. In 20 patients (36%) extensive surgery was prevented and treatment was changed to palliative treatment. The sensitivity, specificity, accuracy, positive and negative predictive values of FDG PET/CT were respectively 97%, 92%, 95%, 94% and 96%. PET/CT, in addition to conventional imaging techniques, plays an important role in staging patients with locoregional breast cancer recurrence since its result changed the clinical management in almost half of the patients. PET/CT could potentially replace conventional staging imaging in patients with a locoregional breast cancer recurrence. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A.; Osman, Nael F.
2009-01-01
Background High-dose dobutamine stress magnetic resonance imaging (DS-MRI) is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, Strain-Encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC to that provided by conventional wall motion analysis for the detection of inducible ischemia during DS-MRI. Methods and Results Stress induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent DS-MRI in a clinical 1.5T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (≥50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86/101 versus 71/101 diseased coronary vessels (p<0.01 versus cine), and showed normal strain response in 189/202 versus 194/202 vessels with <50% stenosis (p=NS versus cine). On a patient level, SENC detected inducible ischemia in 63/64 versus 55/64 patients with CAD (p<0.05 versus cine), and showed normal strain response in 32/37 versus 34/37 patients without CAD (p=NS versus cine).Quantification analysis demonstrated a significant correlation between strain rate reserve (SRreserve) and coronary artery stenosis severity (r²=0.56, p<0.001), and a cut-off value of SRreserve=1.64 deemed as a highly accurate marker for the detection of stenosis≥50% (AUC=0.96, SE=0.01, 95% CI = 0.94–0.98, p<0.001). Conclusions The direct color-coded visualization of strain on MR-images is a useful adjunct for DS-MRI, which provides incremental value for the detection of CAD compared to conventional wall motion readings on cine images. PMID:19808579
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Freedman, Matthew T.; Gelish, Anthony; de Treville, Robert E.; Sheehy, Monet R.; Hansen, Mark; Hill, Mac; Zacharia, Elisabeth; Sullivan, Michael J.; Sebera, C. Wayne
1993-01-01
Image management and communications (IMAC) network, also known as picture archiving and communication system (PACS) consists of (1) digital image acquisition, (2) image review station (3) image storage device(s), image reading workstation, and (4) communication capability. When these subsystems are integrated over a high speed communication technology, possibilities are numerous in improving the timeliness and quality of diagnostic services within a hospital or at remote clinical sites. Teleradiology system uses basically the same hardware configuration together with a long distance communication capability. Functional characteristics of components are highlighted. Many medical imaging systems are already in digital form. These digital images constitute approximately 30% of the total volume of images produced in a radiology department. The remaining 70% of images include conventional x-ray films of the chest, skeleton, abdomen, and GI tract. Unless one develops a method of handling these conventional film images, global improvement in productivity in image management and radiology service throughout a hospital cannot be achieved. Currently, there are two method of producing digital information representing these conventional analog images for IMAC: film digitizers that scan the conventional films, and computed radiography (CR) that captures x-ray images using storage phosphor plate that is subsequently scanned by a laser beam.
Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.
Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko
2007-01-01
To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.
Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V
2017-09-01
Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were significantly (p < 0.001) better visualized on post-contrast liposomal-Gd images. DCE-MRI with the conventional Gd agent demonstrated retrograde opacification of the placenta from fetal edge to the myometrium, consistent with the anatomy of the rat placenta. However, no consistent and reproducible visualization of the retroplacental space was demonstrated on the conventional Gd-enhanced images. The retroplacental space was only visualized on post-contrast T1w images acquired using the liposomal agent (SNR = 15.5 ± 3.4) as a sharply defined, hypo-enhanced interface. The retroplacental space was also visible as a similar hypo-enhancing interface on CE-CT images acquired using a liposomal CT contrast agent. Tissue analysis demonstrated undetectably low transplacental permeation of liposomal-Gd, and was confirmed by lack of permeation through a perfused human placental model. Contrast-enhanced T1w-MRI performed using liposomal-Gd enabled clear visualization of placental margins and delineation of the retroplacental space from the rest of the placenta; the space is undetectable on non-contrast imaging and on post-contrast T1w images acquired using a conventional, clinically approved Gd chelate contrast agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intraoperative panoramic image using alignment grid, is it accurate?
Apivatthakakul, T; Duanghakrung, M; Luevitoonvechkit, S; Patumasutra, S
2013-07-01
Minimally invasive orthopedic trauma surgery relies heavily on intraoperative fluoroscopic images to evaluate the quality of fracture reduction and fixation. However, fluoroscopic images have a narrow field of view and often cannot visualize the entire long bone axis. To compare the coronal femoral alignment between conventional X-rays to that achieved with a new method of acquiring a panoramic intraoperative image. Twenty-four cadaveric femurs with simple diaphyseal fractures were fixed with an angulated broad DCP to create coronal plane malalignment. An intraoperative alignment grid was used to help stitch different fluoroscopic images together to produce a panoramic image. A conventional X-ray of the entire femur was then performed. The coronal plane angulation in the panoramic images was then compared to the conventional X-rays using a Wilcoxon signed rank test. The mean angle measured from the panoramic view was 173.9° (range 169.3°-178.0°) with median of 173.2°. The mean angle measured from the conventional X-ray was 173.4° (range 167.7°-178.7°) with a median angle of 173.5°. There was no significant difference between both methods of measurement (P = 0.48). Panoramic images produced by stitching fluoroscopic images together with help of an alignment grid demonstrated the same accuracy at evaluating the coronal plane alignment of femur fractures as conventional X-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benmakhlouf, H; Kraepelien, T; Forander, P
2014-06-01
Purpose: Most Gamma knife treatments are based solely on MR-images. However, for fractionated treatments and to implement TPS dose calculations that require electron densities, CT image data is essential. The purpose of this work is to assess the dosimetric effects of using MR-images registered with stereotactic CT-images in Gamma knife treatments. Methods: Twelve patients treated for vestibular schwannoma with Gamma Knife Perfexion (Elekta Instruments, Sweden) were selected for this study. The prescribed doses (12 Gy to periphery) were delivered based on the conventional approach of using stereotactic MR-images only. These plans were imported into stereotactic CT-images (by registering MR-images withmore » stereotactic CT-images using the Leksell gamma plan registration software). The dose plans, for each patient, are identical in both cases except for potential rotations and translations resulting from the registration. The impact of the registrations was assessed by an algorithm written in Matlab. The algorithm compares the dose-distributions voxel-by-voxel between the two plans, calculates the full dose coverage of the target (treated in the conventional approach) achieved by the CT-based plan, and calculates the minimum dose delivered to the target (treated in the conventional approach) achieved by the CT-based plan. Results: The mean dose difference between the plans was 0.2 Gy to 0.4 Gy (max 4.5 Gy) whereas between 89% and 97% of the target (treated in the conventional approach) received the prescribed dose, by the CT-plan. The minimum dose to the target (treated in the conventional approach) given by the CT-based plan was between 7.9 Gy and 10.7 Gy (compared to 12 Gy in the conventional treatment). Conclusion: The impact of using MR-images registered with stereotactic CT-images has successfully been compared to conventionally delivered dose plans showing significant differences between the two. Although CTimages have been implemented clinically; the effect of the registration has not been fully investigated.« less
Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Reh, Douglas D; Gallia, Gary L; Siewerdsen, Jeffrey H
2012-09-01
A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to "tissue" in the moving image and "air" in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed "extra-dimensional" Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate "ejection" of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate "ejection" of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance.
Extra-dimensional Demons: A method for incorporating missing tissue in deformable image registration
Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Reh, Douglas D.; Gallia, Gary L.; Siewerdsen, Jeffrey H.
2012-01-01
Purpose: A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. Methods: A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to “tissue” in the moving image and “air” in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed “extra-dimensional” Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Results: Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate “ejection” of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Conclusions: Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate “ejection” of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance. PMID:22957637
Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao
2014-11-17
A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.
Super-contrast photoacoustic resonance imaging
NASA Astrophysics Data System (ADS)
Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Zheng, Yuanjin
2018-02-01
In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.
2012-03-08
to-Use 3-D Camera For Measurements in Turbulent Flow Fields B Thurow, Auburn Near Mid Far Conventional imaging Plenoptic imaging Conventional 2...depth-of-field and blur Reduced aperture (restricted angular information) leads to low signal levels Lightfield Imaging Plenoptic camera records
Analysis of off-axis incoherent digital holographic microscopy
NASA Astrophysics Data System (ADS)
Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro
2017-05-01
Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.
Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.
Lan, Y
1992-12-01
This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.
Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H
2012-07-01
The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.
Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki
2018-05-01
To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.
2001-01-01
We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHVmore » flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects.« less
NASA Technical Reports Server (NTRS)
Ballester, P.
1992-01-01
MIDAS (Munich Image Data Analysis System) is the image processing system developed at ESO for astronomical data reduction. MIDAS is used for off-line data reduction at ESO and many astronomical institutes all over Europe. In addition to a set of general commands, enabling to process and analyze images, catalogs, graphics and tables, MIDAS includes specialized packages dedicated to astronomical applications or to specific ESO instruments. Several graphical interfaces are available in the MIDAS environment: XHelp provides an interactive help facility, and XLong and XEchelle enable data reduction of long-slip and echelle spectra. GUI builders facilitate the development of interfaces. All ESO interfaces comply to the ESO User Interfaces Common Conventions which secures an identical look and feel for telescope operations, data analysis, and archives.
Zweerink, Alwin; Allaart, Cornelis P; Kuijer, Joost P A; Wu, LiNa; Beek, Aernout M; van de Ven, Peter M; Meine, Mathias; Croisille, Pierre; Clarysse, Patrick; van Rossum, Albert C; Nijveldt, Robin
2017-12-01
Although myocardial strain analysis is a potential tool to improve patient selection for cardiac resynchronization therapy (CRT), there is currently no validated clinical approach to derive segmental strains. We evaluated the novel segment length in cine (SLICE) technique to derive segmental strains from standard cardiovascular MR (CMR) cine images in CRT candidates. Twenty-seven patients with left bundle branch block underwent CMR examination including cine imaging and myocardial tagging (CMR-TAG). SLICE was performed by measuring segment length between anatomical landmarks throughout all phases on short-axis cines. This measure of frame-to-frame segment length change was compared to CMR-TAG circumferential strain measurements. Subsequently, conventional markers of CRT response were calculated. Segmental strains showed good to excellent agreement between SLICE and CMR-TAG (septum strain, intraclass correlation coefficient (ICC) 0.76; lateral wall strain, ICC 0.66). Conventional markers of CRT response also showed close agreement between both methods (ICC 0.61-0.78). Reproducibility of SLICE was excellent for intra-observer testing (all ICC ≥0.76) and good for interobserver testing (all ICC ≥0.61). The novel SLICE post-processing technique on standard CMR cine images offers both accurate and robust segmental strain measures compared to the 'gold standard' CMR-TAG technique, and has the advantage of being widely available. • Myocardial strain analysis could potentially improve patient selection for CRT. • Currently a well validated clinical approach to derive segmental strains is lacking. • The novel SLICE technique derives segmental strains from standard CMR cine images. • SLICE-derived strain markers of CRT response showed close agreement with CMR-TAG. • Future studies will focus on the prognostic value of SLICE in CRT candidates.
Quantitative analysis of tympanic membrane perforation: a simple and reliable method.
Ibekwe, T S; Adeosun, A A; Nwaorgu, O G
2009-01-01
Accurate assessment of the features of tympanic membrane perforation, especially size, site, duration and aetiology, is important, as it enables optimum management. To describe a simple, cheap and effective method of quantitatively analysing tympanic membrane perforations. The system described comprises a video-otoscope (capable of generating still and video images of the tympanic membrane), adapted via a universal serial bus box to a computer screen, with images analysed using the Image J geometrical analysis software package. The reproducibility of results and their correlation with conventional otoscopic methods of estimation were tested statistically with the paired t-test and correlational tests, using the Statistical Package for the Social Sciences version 11 software. The following equation was generated: P/T x 100 per cent = percentage perforation, where P is the area (in pixels2) of the tympanic membrane perforation and T is the total area (in pixels2) for the entire tympanic membrane (including the perforation). Illustrations are shown. Comparison of blinded data on tympanic membrane perforation area obtained independently from assessments by two trained otologists, of comparative years of experience, using the video-otoscopy system described, showed similar findings, with strong correlations devoid of inter-observer error (p = 0.000, r = 1). Comparison with conventional otoscopic assessment also indicated significant correlation, comparing results for two trained otologists, but some inter-observer variation was present (p = 0.000, r = 0.896). Correlation between the two methods for each of the otologists was also highly significant (p = 0.000). A computer-adapted video-otoscope, with images analysed by Image J software, represents a cheap, reliable, technology-driven, clinical method of quantitative analysis of tympanic membrane perforations and injuries.
Novel cooperative neural fusion algorithms for image restoration and image fusion.
Xia, Youshen; Kamel, Mohamed S
2007-02-01
To deal with the problem of restoring degraded images with non-Gaussian noise, this paper proposes a novel cooperative neural fusion regularization (CNFR) algorithm for image restoration. Compared with conventional regularization algorithms for image restoration, the proposed CNFR algorithm can relax need of the optimal regularization parameter to be estimated. Furthermore, to enhance the quality of restored images, this paper presents a cooperative neural fusion (CNF) algorithm for image fusion. Compared with existing signal-level image fusion algorithms, the proposed CNF algorithm can greatly reduce the loss of contrast information under blind Gaussian noise environments. The performance analysis shows that the proposed two neural fusion algorithms can converge globally to the robust and optimal image estimate. Simulation results confirm that in different noise environments, the proposed two neural fusion algorithms can obtain a better image estimate than several well known image restoration and image fusion methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar
X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.
Dispersion properties of plasma cladded annular optical fiber
NASA Astrophysics Data System (ADS)
KianiMajd, M.; Hasanbeigi, A.; Mehdian, H.; Hajisharifi, K.
2018-05-01
One of the considerable problems in a conventional image transferring fiber optic system is the two-fold coupling of propagating hybrid modes. In this paper, using a simple and practical analytical approach based on exact modal vectorial analysis together with Maxwell's equations, we show that applying plasma as a cladding medium of an annular optical fiber can remove this defect of conventional fiber optic automatically without any external instrument as the polarization beam splitter. Moreover, the analysis indicates that the presence of plasma in the proposed optical fiber could extend the possibilities for controlling the propagation property. The proposed structure presents itself as a promising route to advanced optical processing and opens new avenues in applied optics and photonics.
Computer assessment of atherosclerosis from angiographic images
NASA Technical Reports Server (NTRS)
Selzer, R. H.; Blankenhorn, D. H.; Brooks, S. H.; Crawford, D. W.; Cashin, W. L.
1982-01-01
A computer method for detection and quantification of atherosclerosis from angiograms has been developed and used to measure lesion change in human clinical trials. The technique involves tracking the vessel edges and measuring individual lesions as well as the overall irregularity of the arterial image. Application of the technique to conventional arterial-injection femoral and coronary angiograms is outlined and an experimental study to extend the technique to analysis of intravenous angiograms of the carotid and cornary arteries is described.
Osteosarcoma subtypes: Magnetic resonance and quantitative diffusion weighted imaging criteria.
Zeitoun, Rania; Shokry, Ahmed M; Ahmed Khaleel, Sahar; Mogahed, Shaimaa M
2018-03-01
Osteosarcoma (OS) is a primary bone malignancy, characterized by spindle cells producing osteoid. The objective of this study is to describe the magnetic resonance imaging (MRI) features of different OS subtypes, record their attenuation diffusion coefficient (ADC) values and to point to the relation of their pathologic base and their corresponding ADC value. We performed a retrospective observational lesion-based analysis for 31 pathologically proven osteosarcoma subtypes: osteoblastic (n = 9), fibroblastic (n = 8), chondroblastic (n = 6), para-osteal (n = 3), periosteal (n = 1), telangiectatic (n = 2), small cell (n = 1) and extra-skeletal (n = 1). On conventional images we recorded: bone of origin, epicenter, intra-articular extension, and invasion of articulating bones, skip lesions, distant metastases, pathological fractures, ossified matrix, hemorrhage and necrosis. We measured the mean ADC value for each lesion. Among the included OS lesions, 51.6% originated at the femur, 29% showed intra-articular extension, 16% invaded neighboring bone, 9% were associated with pathological fracture and 25.8% were associated with distant metastases. On MRI, all lesions showed ossified matrix, 35.5% showed hemorrhage and 58% showed necrosis. The mean ADC values for OS lesions ranged from 0.74 × 10 -3 mm 2 /s (recorded for conventional osteoblastic OS) to 1.50 × 10 -3 mm 2 /s (recorded for telangiectatic OS) with an average value of 1.16 ± 0.18 × 10 -3 mm 2 /s. Conventional chondroblastic OS recorded higher values compared to the other two conventional subtypes. Osteosarcoma has different pathologic subtypes which correspondingly vary in their imaging criteria and their ADC values. Copyright © 2018. Production and hosting by Elsevier B.V.
Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B
2013-09-01
Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; P<0.05). Similar differences of spatial regularities were revealed from second-order image moments (50.0 ± 7.3% for AWM versus 29.3 ± 6.7% for SAN and 27.3 ± 5.5% for AVN; P<0.05). The study demonstrates feasibility of identifying nodal tissue in living heart using extracellular fluorophores and fiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.
MRT letter: Guided filtering of image focus volume for 3D shape recovery of microscopic objects.
Mahmood, Muhammad Tariq
2014-12-01
In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all-in-focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. © 2014 Wiley Periodicals, Inc.
Interventional Molecular Imaging.
Solomon, Stephen B; Cornelis, Francois
2016-04-01
Although molecular imaging has had a dramatic impact on diagnostic imaging, it has only recently begun to be integrated into interventional procedures. Its significant impact is attributed to its ability to provide noninvasive, physiologic information that supplements conventional morphologic imaging. The four major interventional opportunities for molecular imaging are, first, to provide guidance to localize a target; second, to provide tissue analysis to confirm that the target has been reached; third, to provide in-room, posttherapy assessment; and fourth, to deliver targeted therapeutics. With improved understanding and application of(18)F-FDG, as well as the addition of new molecular probes beyond(18)F-FDG, the future holds significant promise for the expansion of molecular imaging into the realm of interventional procedures. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
The triangle of the urinary bladder in American mink (Mustela vision (Brisson, 1756)).
Gościcka, D; Krakowiak, E; Kepczyńska, M
1994-01-01
60 bladders of American minks were dissected according to conventional method. Biometrical analysis with the use of digital image analysis system was applied to the triangles of the bladders. It was found that these triangles differ both in shape (narrow, broad) and symmetry (considerable asymmetry). The ureteral orifices also showed a variety in shape (five types) and number (double orifices).
Economics of cutting wood parts with a laser under optical image analyzer control
Henry E. Huber; Charles W. McMillin; Arthur Rasher
1982-01-01
A financial analysis using discounted cash-flow techniques was used to determine the economic feasibility of a new laser lumber processing system for use in a furniture rough mill. The projected cost of the system was $790,000 which would replace conventional crosscut and ripsaws costing $256,856. A financial analysis was made assuming only a 5 percent yield increase...
Mapping brain activity in gradient-echo functional MRI using principal component analysis
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Singh, Manbir; Don, Manuel
1997-05-01
The detection of sites of brain activation in functional MRI has been a topic of immense research interest and many technique shave been proposed to this end. Recently, principal component analysis (PCA) has been applied to extract the activated regions and their time course of activation. This method is based on the assumption that the activation is orthogonal to other signal variations such as brain motion, physiological oscillations and other uncorrelated noises. A distinct advantage of this method is that it does not require any knowledge of the time course of the true stimulus paradigm. This technique is well suited to EPI image sequences where the sampling rate is high enough to capture the effects of physiological oscillations. In this work, we propose and apply tow methods that are based on PCA to conventional gradient-echo images and investigate their usefulness as tools to extract reliable information on brain activation. The first method is a conventional technique where a single image sequence with alternating on and off stages is subject to a principal component analysis. The second method is a PCA-based approach called the common spatial factor analysis technique (CSF). As the name suggests, this method relies on common spatial factors between the above fMRI image sequence and a background fMRI. We have applied these methods to identify active brain ares during visual stimulation and motor tasks. The results from these methods are compared to those obtained by using the standard cross-correlation technique. We found good agreement in the areas identified as active across all three techniques. The results suggest that PCA and CSF methods have good potential in detecting the true stimulus correlated changes in the presence of other interfering signals.
Stereo sequence transmission via conventional transmission channel
NASA Astrophysics Data System (ADS)
Lee, Ho-Keun; Kim, Chul-Hwan; Han, Kyu-Phil; Ha, Yeong-Ho
2003-05-01
This paper proposes a new stereo sequence transmission technique using digital watermarking for compatibility with conventional 2D digital TV. We, generally, compress and transmit image sequence using temporal-spatial redundancy between stereo images. It is difficult for users with conventional digital TV to watch the transmitted 3D image sequence because many 3D image compression methods are different. To solve such a problem, in this paper, we perceive the concealment of new information of digital watermarking and conceal information of the other stereo image into three channels of the reference image. The main target of the technique presented is to let the people who have conventional DTV watch stereo movies at the same time. This goal is reached by considering the response of human eyes to color information and by using digital watermarking. To hide right images into left images effectively, bit-change in 3 color channels and disparity estimation according to the value of estimated disparity are performed. The proposed method assigns the displacement information of right image to each channel of YCbCr on DCT domain. Each LSB bit on YCbCr channels is changed according to the bits of disparity information. The performance of the presented methods is confirmed by several computer experiments.
Wave analysis of a plenoptic system and its applications
NASA Astrophysics Data System (ADS)
Shroff, Sapna A.; Berkner, Kathrin
2013-03-01
Traditional imaging systems directly image a 2D object plane on to the sensor. Plenoptic imaging systems contain a lenslet array at the conventional image plane and a sensor at the back focal plane of the lenslet array. In this configuration the data captured at the sensor is not a direct image of the object. Each lenslet effectively images the aperture of the main imaging lens at the sensor. Therefore the sensor data retains angular light-field information which can be used for a posteriori digital computation of multi-angle images and axially refocused images. If a filter array, containing spectral filters or neutral density or polarization filters, is placed at the pupil aperture of the main imaging lens, then each lenslet images the filters on to the sensor. This enables the digital separation of multiple filter modalities giving single snapshot, multi-modal images. Due to the diversity of potential applications of plenoptic systems, their investigation is increasing. As the application space moves towards microscopes and other complex systems, and as pixel sizes become smaller, the consideration of diffraction effects in these systems becomes increasingly important. We discuss a plenoptic system and its wave propagation analysis for both coherent and incoherent imaging. We simulate a system response using our analysis and discuss various applications of the system response pertaining to plenoptic system design, implementation and calibration.
Enhanced facial recognition for thermal imagery using polarimetric imaging.
Gurton, Kristan P; Yuffa, Alex J; Videen, Gorden W
2014-07-01
We present a series of long-wave-infrared (LWIR) polarimetric-based thermal images of facial profiles in which polarization-state information of the image-forming radiance is retained and displayed. The resultant polarimetric images show enhanced facial features, additional texture, and details that are not present in corresponding conventional thermal imagery. It has been generally thought that conventional thermal imagery (MidIR or LWIR) could not produce the detailed spatial information required for reliable human identification due to the so-called "ghosting" effect often seen in thermal imagery of human subjects. By using polarimetric information, we are able to extract subtle surface features of the human face, thus improving subject identification. Polarimetric image sets considered include the conventional thermal intensity image, S0, the two Stokes images, S1 and S2, and a Stokes image product called the degree-of-linear-polarization image.
NASA Astrophysics Data System (ADS)
Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.
2016-09-01
Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.
Optical coherence tomography imaging based on non-harmonic analysis
NASA Astrophysics Data System (ADS)
Cao, Xu; Hirobayashi, Shigeki; Chong, Changho; Morosawa, Atsushi; Totsuka, Koki; Suzuki, Takuya
2009-11-01
A new processing technique called Non-Harmonic Analysis (NHA) is proposed for OCT imaging. Conventional Fourier-Domain OCT relies on the FFT calculation which depends on the window function and length. Axial resolution is counter proportional to the frame length of FFT that is limited by the swept range of the swept source in SS-OCT, or the pixel counts of CCD in SD-OCT degraded in FD-OCT. However, NHA process is intrinsically free from this trade-offs; NHA can resolve high frequency without being influenced by window function or frame length of sampled data. In this study, NHA process is explained and applied to OCT imaging and compared with OCT images based on FFT. In order to validate the benefit of NHA in OCT, we carried out OCT imaging based on NHA with the three different sample of onion-skin,human-skin and pig-eye. The results show that NHA process can realize practical image resolution that is equivalent to 100nm swept range only with less than half-reduced wavelength range.
Hyun, Jong Jin; Keum, Bora; Seo, Yeon Seok; Kim, Yong Sik; Jeen, Yoon Tae; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Ryu, Ho Sang; Lim, Jong-Wook; Woo, Dong-Gi; Kim, Young-Joong; Lim, Myo-Taeg
2012-01-01
Background/Aims Three-dimensional (3D) imaging is gaining popularity and has been partly adopted in laparoscopic surgery or robotic surgery but has not been applied to gastrointestinal endoscopy. As a first step, we conducted an experiment to evaluate whether images obtained by conventional gastrointestinal endoscopy could be used to acquire quantitative 3D information. Methods Two endoscopes (GIF-H260) were used in a Borrmann type I tumor model made of clay. The endoscopes were calibrated by correcting the barrel distortion and perspective distortion. Obtained images were converted to gray-level image, and the characteristics of the images were obtained by edge detection. Finally, data on 3D parameters were measured by using epipolar geometry, two view geometry, and pinhole camera model. Results The focal length (f) of endoscope at 30 mm was 258.49 pixels. Two endoscopes were fixed at predetermined distance, 12 mm (d12). After matching and calculating disparity (v2-v1), which was 106 pixels, the calculated length between the camera and object (L) was 29.26 mm. The height of the object projected onto the image (h) was then applied to the pinhole camera model, and the result of H (height and width) was 38.21 mm and 41.72 mm, respectively. Measurements were conducted from 2 different locations. The measurement errors ranged from 2.98% to 7.00% with the current Borrmann type I tumor model. Conclusions It was feasible to obtain parameters necessary for 3D analysis and to apply the data to epipolar geometry with conventional gastrointestinal endoscope to calculate the size of an object. PMID:22977798
Vendemia, Nicholas; Chao, Jerry; Ivanidze, Jana; Sanelli, Pina; Spinelli, Henry M
2011-01-01
Medpor (Porex Surgical, Inc, Newnan, GA) is composed of porous polyethylene and is commonly used in craniofacial reconstruction. When complications such as seroma or abscess formation arise, diagnostic modalities are limited because Medpor is radiolucent on conventional radiologic studies. This poses a problem in situations where imaging is necessary to distinguish the implant from surrounding tissues. To present a clinically useful method for imaging Medpor with conventional computed tomographic (CT) scanning. Eleven patients (12 total implants) who have undergone reconstructive surgery with Medpor were included in the study. A retrospective review of CT scans done between 1 and 16 months postoperatively was performed using 3 distinct CT window settings. Measurements of implant dimensions and Hounsfield units were recorded and qualitatively assessed. Of the 3 distinct window settings studied, namely, "bone" (W1100/L450), "soft tissue"; (W500/L50), and "implant" (W800/L200), the implant window proved the most ideal, allowing the investigators to visualize and evaluate Medpor in all cases. Qualitative analysis revealed that Medpor implants were able to be distinguished from surrounding tissue in both the implant and soft tissue windows, with a density falling between that of fat and fluid. In 1 case, Medpor could not be visualized in the soft tissue window, although it could be visualized in the implant window. Quantitative analysis demonstrated a mean (SD) density of -38.7 (7.4) Hounsfield units. Medpor may be optimally visualized on conventional CT scans using the implant window settings W800/L200, which can aid in imaging Medpor and diagnosing implant-related complications.
Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI
NASA Astrophysics Data System (ADS)
Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian
2005-04-01
Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.
Wigg, Jonathan P.; Zhang, Hong; Yang, Dong
2015-01-01
Introduction In-vivo imaging of choroidal neovascularization (CNV) has been increasingly recognized as a valuable tool in the investigation of age-related macular degeneration (AMD) in both clinical and basic research applications. Arguably the most widely utilised model replicating AMD is laser generated CNV by rupture of Bruch’s membrane in rodents. Heretofore CNV evaluation via in-vivo imaging techniques has been hamstrung by a lack of appropriate rodent fundus camera and a non-standardised analysis method. The aim of this study was to establish a simple, quantifiable method of fluorescein fundus angiogram (FFA) image analysis for CNV lesions. Methods Laser was applied to 32 Brown Norway Rats; FFA images were taken using a rodent specific fundus camera (Micron III, Phoenix Laboratories) over 3 weeks and compared to conventional ex-vivo CNV assessment. FFA images acquired with fluorescein administered by intraperitoneal injection and intravenous injection were compared and shown to greatly influence lesion properties. Utilising commonly used software packages, FFA images were assessed for CNV and chorioretinal burns lesion area by manually outlining the maximum border of each lesion and normalising against the optic nerve head. Net fluorescence above background and derived value of area corrected lesion intensity were calculated. Results CNV lesions of rats treated with anti-VEGF antibody were significantly smaller in normalised lesion area (p<0.001) and fluorescent intensity (p<0.001) than the PBS treated control two weeks post laser. The calculated area corrected lesion intensity was significantly smaller (p<0.001) in anti-VEGF treated animals at 2 and 3 weeks post laser. The results obtained using FFA correlated with, and were confirmed by conventional lesion area measurements from isolectin stained choroidal flatmounts, where lesions of anti-VEGF treated rats were significantly smaller at 2 weeks (p = 0.049) and 3 weeks (p<0.001) post laser. Conclusion The presented method of in-vivo FFA quantification of CNV, including acquisition variable corrections, using the Micron III system and common use software establishes a reliable method for detecting and quantifying CNV enabling longitudinal studies and represents an important alternative to conventional CNV quantification methods. PMID:26024231
Alejo, L; Corredoira, E; Sánchez-Muñoz, F; Huerga, C; Aza, Z; Plaza-Núñez, R; Serrada, A; Bret-Zurita, M; Parrón, M; Prieto-Areyano, C; Garzón-Moll, G; Madero, R; Guibelalde, E
2018-04-09
Objective: The new 2013/59 EURATOM Directive (ED) demands dosimetric optimisation procedures without undue delay. The aim of this study was to optimise paediatric conventional radiology examinations applying the ED without compromising the clinical diagnosis. Automatic dose management software (ADMS) was used to analyse 2678 studies of children from birth to 5 years of age, obtaining local diagnostic reference levels (DRLs) in terms of entrance surface air kerma. Given local DRL for infants and chest examinations exceeded the European Commission (EC) DRL, an optimisation was performed decreasing the kVp and applying the automatic control exposure. To assess the image quality, an analysis of high-contrast resolution (HCSR), signal-to-noise ratio (SNR) and figure of merit (FOM) was performed, as well as a blind test based on the generalised estimating equations method. For newborns and chest examinations, the local DRL exceeded the EC DRL by 113%. After the optimisation, a reduction of 54% was obtained. No significant differences were found in the image quality blind test. A decrease in SNR (-37%) and HCSR (-68%), and an increase in FOM (42%), was observed. ADMS allows the fast calculation of local DRLs and the performance of optimisation procedures in babies without delay. However, physical and clinical analyses of image quality remain to be needed to ensure the diagnostic integrity after the optimisation process. Advances in knowledge: ADMS are useful to detect radiation protection problems and to perform optimisation procedures in paediatric conventional imaging without undue delay, as ED requires.
Space-based surface wind vectors to aid understanding of air-sea interactions
NASA Technical Reports Server (NTRS)
Atlas, R.; Bloom, S. C.; Hoffman, R. N.; Ardizzone, J. V.; Brin, G.
1991-01-01
A novel and unique ocean-surface wind data-set has been derived by combining the Defense Meteorological Satellite Program Special Sensor Microwave Imager data with additional conventional data. The variational analysis used generates a gridded surface wind analysis that minimizes an objective function measuring the misfit of the analysis to the background, the data, and certain a priori constraints. In the present case, the European Center for Medium-Range Weather Forecasts surface-wind analysis is used as the background.
Bae, Youngwoo; Son, Taeyoon; Nelson, J. Stuart; Kim, Jae-Hong; Choi, Eung Ho; Jung, Byungjo
2010-01-01
Background/Purpose Digital color image analysis is currently considered as a routine procedure in dermatology. In our previous study, a multimodal facial color imaging modality (MFCIM), which provides a conventional, parallel- and cross-polarization, and fluorescent color image, was introduced for objective evaluation of various facial skin lesions. This study introduces a commercial version of MFCIM, DermaVision-PRO, for routine clinical use in dermatology and demonstrates its dermatological feasibility for cross-evaluation of skin lesions. Methods/Results Sample images of subjects with actinic keratosis or non-melanoma skin cancers were obtained at four different imaging modes. Various image analysis methods were applied to cross-evaluate the skin lesion and, finally, extract valuable diagnostic information. DermaVision-PRO is potentially a useful tool as an objective macroscopic imaging modality for quick prescreening and cross-evaluation of facial skin lesions. Conclusion DermaVision-PRO may be utilized as a useful tool for cross-evaluation of widely distributed facial skin lesions and an efficient database management of patient information. PMID:20923462
A synoptic description of coal basins via image processing
NASA Technical Reports Server (NTRS)
Farrell, K. W., Jr.; Wherry, D. B.
1978-01-01
An existing image processing system is adapted to describe the geologic attributes of a regional coal basin. This scheme handles a map as if it were a matrix, in contrast to more conventional approaches which represent map information in terms of linked polygons. The utility of the image processing approach is demonstrated by a multiattribute analysis of the Herrin No. 6 coal seam in Illinois. Findings include the location of a resource and estimation of tonnage corresponding to constraints on seam thickness, overburden, and Btu value, which are illustrative of the need for new mining technology.
Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.
Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis
2012-10-01
The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All rights reserved.
Konishi, Masae; Shibuya, Tomoyoshi; Mori, Hiroki; Kurashita, Erina; Takeda, Tsutomu; Nomura, Osamu; Fukuo, Yuka; Matsumoto, Kenshi; Sakamoto, Naoto; Osada, Taro; Nagahara, Akihito; Ogihara, Tatsuo; Watanabe, Sumio
2014-04-01
Capsule endoscopy (CE) is an established technique for the detection and diagnosis of obscure gastrointestinal bleeding (OGIB). Flexible spectral imaging color enhancement (FICE) is a software feature of RAPID 6.5. This study assessed the value of FICE for accurate identification of red lesions during CE. We randomly selected 10 patients who underwent CE for OGIB at Juntendo University. The CE images were read by five endoscopists. Small bowel videos, which were recorded by regular CE devices (PillCam SB2, Given Imaging), were evaluated on RAPID 6.5. We standardized the reading condition to a dual view, at a speed of 20 frames/s in manual mode. This interpreted FICE-CE images obtained at settings 1-3. Both conventional and FICE images were read at random. We defined a conventional image as standard and investigated the potential of FICE in detecting small intestinal lesions by the Steel-Dwass test. We considered that conventional images represented baseline (100). On this basis, detection rates for FICE images were as follows: FICE1 = 266.4 ± 33.1 (p < 0.0001); FICE2 = 255.4 ± 25.6 (p < 0.0001); and FICE3 = 117.0 ± 12.3 (p = 0.9447). Detection rates using FICE1 and FICE2 images were significantly higher than conventional CE images. FICE1 and FICE2 were more useful in detecting erosions than conventional CE (p < 0.0001) and FICE3 (p < 0.0001). FICE-CE has a high level of visibility by transparentizing bile or enhancing the color difference associated with reddish mucosa. We found that FICE-CE images were useful in the diagnosing of small intestinal lesions.
Quantitative subsurface analysis using frequency modulated thermal wave imaging
NASA Astrophysics Data System (ADS)
Subhani, S. K.; Suresh, B.; Ghali, V. S.
2018-01-01
Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.
Chen, Yuling; Lou, Yang; Yen, Jesse
2017-07-01
During conventional ultrasound imaging, the need for multiple transmissions for one image and the time of flight for a desired imaging depth limit the frame rate of the system. Using a single plane wave pulse during each transmission followed by parallel receive processing allows for high frame rate imaging. However, image quality is degraded because of the lack of transmit focusing. Beamforming by spatial matched filtering (SMF) is a promising method which focuses ultrasonic energy using spatial filters constructed from the transmit-receive impulse response of the system. Studies by other researchers have shown that SMF beamforming can provide dynamic transmit-receive focusing throughout the field of view. In this paper, we apply SMF beamforming to plane wave transmissions (PWTs) to achieve both dynamic transmit-receive focusing at all imaging depths and high imaging frame rate (>5000 frames per second). We demonstrated the capability of the combined method (PWT + SMF) of achieving two-way focusing mathematically through analysis based on the narrowband Rayleigh-Sommerfeld diffraction theory. Moreover, the broadband performance of PWT + SMF was quantified in terms of lateral resolution and contrast from both computer simulations and experimental data. Results were compared between SMF beamforming and conventional delay-and-sum (DAS) beamforming in both simulations and experiments. At an imaging depth of 40 mm, simulation results showed a 29% lateral resolution improvement and a 160% contrast improvement with PWT + SMF. These improvements were 17% and 48% for experimental data with noise.
Automatic single-image-based rain streaks removal via image decomposition.
Kang, Li-Wei; Lin, Chia-Wen; Fu, Yu-Hsiang
2012-04-01
Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.
Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo
2015-06-01
A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p < 0.05). The left ventricular ejection fraction from IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR. The results indicated that the IQ-SPECT system with AC is capable of correcting inferior artifacts with high image quality.
Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas
2015-07-01
The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P < 0.001; anatomical precision, P ≤ 0.005). Simultaneous multislice EPI with blipped controlled aliasing in parallel imaging results in higher acceleration can remarkably reduce acquisition time in DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.
Evaluation of a new imaging tool for use with major trauma cases in the emergency department.
Crönlein, Moritz; Holzapfel, Konstantin; Beirer, Marc; Postl, Lukas; Kanz, Karl-Georg; Pförringer, Dominik; Huber-Wagner, Stefan; Biberthaler, Peter; Kirchhoff, Chlodwig
2016-11-17
The aim of this study was to evaluate potential benefits of a new diagnostic software prototype (Trauma Viewer, TV) automatically reformatting computed tomography (CT) data on diagnostic speed and quality, compared to CT-image data evaluation using a conventional CT console. Multiple trauma CT data sets were analysed by one expert radiology and one expert traumatology fellow independently twice, once using the TV and once using the secondary conventional CT console placed in the CT control room. Actual analysis time and precision of diagnoses assessment were evaluated. The TV and CT-console results were compared respectively, but also a comparison to the initial multiple trauma CT reports assessed by emergency radiology fellows considered as the gold standard was performed. Finally, design and function of the Trauma Viewer were evaluated in a descriptive manner. CT data sets of 30 multiple trauma patients were enrolled. Mean time needed for analysis of one CT dataset was 2.43 min using the CT console and 3.58 min using the TV respectively. Thus, secondary conventional CT console analysis was on average 1.15 min shorter compared to the TV analysis. Both readers missed a total of 11 diagnoses using the secondary conventional CT console compared to 12 missed diagnoses using the TV. However, none of these overlooked diagnoses resulted in an Abbreviated Injury Scale (AIS) > 2 corresponding to life threatening injuries. Even though it took the two expert fellows a little longer to analyse the CT scans on the prototype TV compared to the CT console, which can be explained by the new user interface of the TV, our preliminary results demonstrate that, after further development, the TV might serve as a new diagnostic feature in the trauma room management. Its high potential to improve time and quality of CT-based diagnoses might help in fast decision making regarding treatment of severely injured patients.
NASA Astrophysics Data System (ADS)
Zhao, Xia; Wang, Guang-xin
2008-12-01
Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.
Images as tools. On visual epistemic practices in the biological sciences.
Samuel, Nina
2013-06-01
Contemporary visual epistemic practices in the biological sciences raise new questions of how to transform an iconic data measurements into images, and how the process of an imaging technique may change the material it is 'depicting'. This case-oriented study investigates microscopic imagery, which is used by system and synthetic biologists alike. The core argument is developed around the analysis of two recent methods, developed between 2003 and 2006: localization microscopy and photo-induced cell death. Far from functioning merely as illustrations of work done by other means, images can be determined as tools for discovery in their own right and as objects of investigation. Both methods deploy different constellations of intended and unintended interactions between visual appearance and underlying biological materiality. To characterize these new ways of interaction, the article introduces the notions of 'operational images' and 'operational agency'. Despite all their novelty, operational images are still subject to conventions of seeing and depicting: Phenomena emerging with the new method of localization microscopy have to be designed according to image traditions of older, conventional fluorescence microscopy to function properly as devices for communication between physicists and biologists. The article emerged from a laboratory study based on interviews conducted with researchers from the Kirchhoff-Institute for Physics and German Cancer Research Center (DKFZ) at Bioquant, Heidelberg, in 2011. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N
2015-09-01
The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chlebda, Damian K.; Majda, Alicja; Łojewski, Tomasz; Łojewska, Joanna
2016-11-01
Differentiation of the written text can be performed with a non-invasive and non-contact tool that connects conventional imaging methods with spectroscopy. Hyperspectral imaging (HSI) is a relatively new and rapid analytical technique that can be applied in forensic science disciplines. It allows an image of the sample to be acquired, with full spectral information within every pixel. For this paper, HSI and three statistical methods (hierarchical cluster analysis, principal component analysis, and spectral angle mapper) were used to distinguish between traces of modern black gel pen inks. Non-invasiveness and high efficiency are among the unquestionable advantages of ink differentiation using HSI. It is also less time-consuming than traditional methods such as chromatography. In this study, a set of 45 modern gel pen ink marks deposited on a paper sheet were registered. The spectral characteristics embodied in every pixel were extracted from an image and analysed using statistical methods, externally and directly on the hypercube. As a result, different black gel inks deposited on paper can be distinguished and classified into several groups, in a non-invasive manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gang, G; Stayman, J; Ouadah, S
2015-06-15
Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and amore » wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within a patient-specific anatomical model to optimize image acquisition and reconstruction techniques, thereby improving imaging performance beyond that achievable with conventional approaches. 2R01-CA-112163; R01-EB-017226; U01-EB-018758; Siemens Healthcare (Forcheim, Germany)« less
Vasconcelos, Karla de Faria; Rovaris, Karla; Nascimento, Eduarda Helena Leandro; Oliveira, Matheus Lima; Távora, Débora de Melo; Bóscolo, Frab Norberto
2017-11-01
To evaluate the performance of conventional radiography and photostimulable phosphor (PSP) plate in the detection of simulated internal root resorption (IRR) lesions in early stages. Twenty single-rooted teeth were X-rayed before and after having a simulated IRR early lesion. Three imaging systems were used: Kodak InSight dental film and two PSPs digital systems, Digora Optime and VistaScan. The digital images were displayed on a 20.1″ LCD monitor using the native software of each system, and the conventional radiographs were evaluated on a masked light box. Two radiologists were asked to indicate the presence or absence of IRR and, after two weeks, all images were re-evaluated. Cohen's kappa coefficient was calculated to assess intra- and interobserver agreement. The three imaging systems were compared using the Kruskal-Wallis test. For interexaminer agreement, overall kappa values were 0.70, 0.65 and 0.70 for conventional film, Digora Optima and VistaScan, respectively. Both the conventional and digital radiography presented low sensitivity, specificity, accuracy, positive and negative predictive values with no significant difference between imaging systems (p = .0725). The performance of conventional and PSP was similar in the detection of simulated IRR lesions in early stages with low accuracy.
Development of Cad System for Diffuse Disease Based on Ultrasound Elasticity Images
NASA Astrophysics Data System (ADS)
Yamazaki, M.; Shiina, T.; Yamakawa, M.; Takizawa, H.; Tonomura, A.; Mitake, T.
It is well known that as hepatic cirrhosis progresses, hepatocyte fibrosis spreads and nodule increases. However, it is not easy to diagnosis its early stage by conventional B-mode image because we have to read subtle change of speckle pattern which is not sensitive to the stage of fibrosis. Ultrasonic tissue elasticity imaging can provide us novel diagnostic information based on tissue hardness. We recently developed commercial-based equipment for tissue elasticity imaging. In this work, we investigated to develop the CAD system based on elasticity image for diagnosing defused type diseases such as hepatic cirrhosis. The results of clinical data analysis indicate that the CAD system is promising as means for diagnosis of diffuse disease with simple criterion.
An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor
NASA Astrophysics Data System (ADS)
Staderini, Enrico Maria; Castellano, Alfredo
1986-02-01
An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.
Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly
USDA-ARS?s Scientific Manuscript database
Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...
NASA Astrophysics Data System (ADS)
Hunt, Gordon W.; Hemler, Paul F.; Vining, David J.
1997-05-01
Virtual colonscopy (VC) is a minimally invasive alternative to conventional fiberoptic endoscopy for colorectal cancer screening. The VC technique involves bowel cleansing, gas distension of the colon, spiral computed tomography (CT) scanning of a patient's abdomen and pelvis, and visual analysis of multiplanar 2D and 3D images created from the spiral CT data. Despite the ability of interactive computer graphics to assist a physician in visualizing 3D models of the colon, a correct diagnosis hinges upon a physician's ability to properly identify small and sometimes subtle polyps or masses within hundreds of multiplanar and 3D images. Human visual analysis is time-consuming, tedious, and often prone to error of interpretation.We have addressed the problem of visual analysis by creating a software system that automatically highlights potential lesions in the 2D and 3D images in order to expedite a physician's interpretation of the colon data.
Multispectral imaging approach for simplified non-invasive in-vivo evaluation of gingival erythema
NASA Astrophysics Data System (ADS)
Eckhard, Timo; Valero, Eva M.; Nieves, Juan L.; Gallegos-Rueda, José M.; Mesa, Francisco
2012-03-01
Erythema is a common visual sign of gingivitis. In this work, a new and simple low-cost image capture and analysis method for erythema assessment is proposed. The method is based on digital still images of gingivae and applied on a pixel-by-pixel basis. Multispectral images are acquired with a conventional digital camera and multiplexed LED illumination panels at 460nm and 630nm peak wavelength. An automatic work-flow segments teeth from gingiva regions in the images and creates a map of local blood oxygenation levels, which relates to the presence of erythema. The map is computed from the ratio of the two spectral images. An advantage of the proposed approach is that the whole process is easy to manage by dental health care professionals in clinical environment.
Comparative analysis of imaging configurations and objectives for Fourier microscopy.
Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid
2015-11-01
Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.
Sparse models for correlative and integrative analysis of imaging and genetic data
Lin, Dongdong; Cao, Hongbao; Calhoun, Vince D.
2014-01-01
The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis. PMID:25218561
Wang, Jun; Hwang, Kiwook; Braas, Daniel; Dooraghi, Alex; Nathanson, David; Campbell, Dean O.; Gu, Yuchao; Sandberg, Troy; Mischel, Paul; Radu, Caius; Chatziioannou, Arion F.; Phelps, Michael E.; Christofk, Heather; Heath, James R.
2014-01-01
We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular responses to drugs. Methods A portable in vitro molecular imaging system, comprised of a microchip and a beta-particle imaging camera, permits routine cell-based radioassays on small number of either suspension or adherent cells. We investigate the response kinetics of model lymphoma and glioblastoma cancer cell lines to [18F]fluorodeoxyglucose ([18F]FDG) uptake following drug exposure. Those responses are correlated with kinetic changes in the cell cycle, or with changes in receptor-tyrosine kinase signaling. Results The platform enables radioassays directly on multiple cell types, and yields results comparable to conventional approaches, but uses smaller sample sizes, permits a higher level of quantitation, and doesn’t require cell lysis. Conclusion The kinetic analysis enabled by the platform provides a rapid (~1 hour) drug screening assay. PMID:23978446
Walton, Barbara L; Verbeck, Guido F
2014-08-19
Matrix-assisted laser desorption ionization (MALDI) imaging is gaining popularity, but matrix effects such as mass spectral interference and damage to the sample limit its applications. Replacing traditional matrices with silver particles capable of equivalent or increased photon energy absorption from the incoming laser has proven to be beneficial for low mass analysis. Not only can silver clusters be advantageous for low mass compound detection, but they can be used for imaging as well. Conventional matrix application methods can obstruct samples, such as fingerprints, rendering them useless after mass analysis. The ability to image latent fingerprints without causing damage to the ridge pattern is important as it allows for further characterization of the print. The application of silver clusters by soft-landing ion mobility allows for enhanced MALDI and preservation of fingerprint integrity.
2015-01-01
for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of
EOS imaging versus current radiography: A health technology assessment study
Mahboub-Ahari, Alireza; Hajebrahimi, Sakineh; Yusefi, Mahmoud; Velayati, Ashraf
2016-01-01
Background: EOS is a 2D/3D muscle skeletal diagnostic imaging system. The device has been developed to produce a high quality 2D, full body radiographs in standing, sitting and squatting positions. Three dimensional images can be reconstructed via sterEOS software. This Health Technology Assessment study aimed to investigate efficacy, effectiveness and cost-effectiveness of new emerged EOS imaging system in comparison with conventional x-ray radiographic techniques. Methods: All cost and outcome data were assessed from Iran's Ministry of Health Perspective. Data for clinical effectiveness was extracted using a rigorous systematic review. As clinical outcomes the rate of x-ray emission and related quality of life were compared with Computed Radiography (CR) and Digital Radiography (DR). Standard costing method was conducted to find related direct medical costs. In order to examine robustness of the calculated Incremental Cost Effectiveness Ratios (ICERs) we used two-way sensitivity analysis. GDP Per capita of Islamic Republic of Iran (2012) adopted as cost-effectiveness threshold. Results: Review of related literature highlighted the lack of rigorous evidence for clinical outcomes. Ultra low dose EOS imaging device is known as a safe intervention because of FDA, CE and CSA certificates. The rate of emitted X-ray was 2 to 18 fold lower for EOS compared to the conventional techniques (p<0.001). The Incremental Cost Effectiveness Ratio for EOS relative to CR calculated $50706 in baseline analysis (the first scenario) and $50714, $9446 respectively for the second and third scenarios. Considering the value of neither $42146 as upper limit, nor the first neither the second scenario could pass the cost-effectiveness threshold for Iran. Conclusion: EOS imaging technique might not be considered as a cost-effective intervention in routine practice of health system, especially within in-patient wards. Scenario analysis shows that, only in an optimum condition such as lower assembling costs and higher utilization rates, the device can be recruited for research and therapeutic purposes in pediatric orthopedic centers. PMID:27390701
Miyasaka, M; Hirakawa, M; Nakamura, K; Tanaka, F; Mimori, K; Mori, M; Honda, H
2011-08-01
Nonerosive reflux disease (NERD) is classified into grade M (minimal change, endoscopically; erythema without sharp demarcation, whitish turbidity, and/or invisibility of vessels due to these findings) and grade N (normal) in the modified Los Angeles classification system in Japan. However, the classification of grades M and N NERD is not included in the original Los Angeles system because interobserver agreement for the conventional endoscopic diagnosis of grades M or N NERD is poor. Flexible spectral imaging color enhancement (FICE) is a virtual chromoendoscopy technique that enhances mucosal and vascular visibility. The aim of this study is to evaluate whether the endoscopic diagnosis of grades M or N NERD using FICE images is feasible. Between April 2006 and May 2008, 26 NERD patients and 31 controls were enrolled in the present study. First, an experienced endoscopist assessed the color pattern of minimal change in FICE images using conventional endoscopic images and FICE images side-by-side and comparing the proportion of minimal change between the two groups. Second, three blinded endoscopists assessed the presence or absence of minimal change in both groups using conventional endoscopic images and FICE images separately. Intraobserver variability was compared using McNemar's test, and interobserver agreement was described using the kappa value. Minimal changes, such as erythema and whitish turbidity, which were detected using conventional endoscopic images, showed up as navy blue and pink-white, respectively, in color using FICE images in the present FICE mode. The NERD group had a higher proportion of minimal change, compared with the control group (77% and 48%, respectively) (P= 0.033). In all three readers, the detection rates of minimal change using FICE images were greater than those using conventional endoscopic images (P= 0.025, <0.0001, and 0.034 for readers A, B, and C, respectively). The kappa values for all pairs of three readers using FICE images were between 0.683 and 0.812, while those using conventional endoscopic images were between 0.364 and 0.624. Thus, the endoscopic diagnosis of grades M or N NERD using FICE images is feasible and may improve interobserver agreement. © 2011 Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Kim, Bum Joon; Kim, Yong-Hwan; Kim, Yeon-Jung; Ahn, Sung Ho; Lee, Deok Hee; Kwon, Sun U; Kim, Sang Joon; Kim, Jong S; Kang, Dong-Wha
2014-09-01
Diffusion-weighted image fluid-attenuated inversion recovery (FLAIR) mismatch has been considered to represent ischemic lesion age. However, the inter-rater agreement of diffusion-weighted image FLAIR mismatch is low. We hypothesized that color-coded images would increase its inter-rater agreement. Patients with ischemic stroke <24 hours of a clear onset were retrospectively studied. FLAIR signal change was rated as negative, subtle, or obvious on conventional and color-coded FLAIR images based on visual inspection. Inter-rater agreement was evaluated using κ and percent agreement. The predictive value of diffusion-weighted image FLAIR mismatch for identification of patients <4.5 hours of symptom onset was evaluated. One hundred and thirteen patients were enrolled. The inter-rater agreement of FLAIR signal change improved from 69.9% (k=0.538) with conventional images to 85.8% (k=0.754) with color-coded images (P=0.004). Discrepantly rated patients on conventional, but not on color-coded images, had a higher prevalence of cardioembolic stroke (P=0.02) and cortical infarction (P=0.04). The positive predictive value for patients <4.5 hours of onset was 85.3% and 71.9% with conventional and 95.7% and 82.1% with color-coded images, by each rater. Color-coded FLAIR images increased the inter-rater agreement of diffusion-weighted image FLAIR recovery mismatch and may ultimately help identify unknown-onset stroke patients appropriate for thrombolysis. © 2014 American Heart Association, Inc.
Kawata, Masaaki; Sato, Chikara
2007-06-01
In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.
Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo
2017-01-01
Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.
Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems
NASA Astrophysics Data System (ADS)
Fry, C.; Dix, J.
2017-12-01
Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are sub-seismic in conventional imaging techniques. These unseen faults could create additional unseen pathways that impact construction in London via water ingress and influence fluid migration within hydrocarbon basins.
Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review.
Isidori, Andrea M; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria; Pivonello, Rosario
2015-09-01
Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18Ffluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga- DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). The analysis comprised 231 patients (females, 50.2%; age, 42.617 y). Overall, 52.4%(121/231) had "overt" ECS,18.6% had "occult" ECS, and 29% had "covert" ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized byCTin66.2%(137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPAPET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTRPET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Nuclear medicine improves the sensitivity of conventional radiology when tumor site identification is problematic. OCT offers a good availability/reliability ratio, and FDG-PET was proven useful. 68Gallium-SSTR-PET/CT use was infrequent, despite offering the highest sensitivity.
Real-time determination of sarcomere length of a single cardiomyocyte during contraction
Kalda, Mari; Vendelin, Marko
2013-01-01
Sarcomere length of a cardiomyocyte is an important control parameter for physiology studies on a single cell level; for instance, its accurate determination in real time is essential for performing single cardiomyocyte contraction experiments. The aim of this work is to develop an efficient and accurate method for estimating a mean sarcomere length of a contracting cardiomyocyte using microscopy images as an input. The novelty in developed method lies in 1) using unbiased measure of similarities to eliminate systematic errors from conventional autocorrelation function (ACF)-based methods when applied to region of interest of an image, 2) using a semianalytical, seminumerical approach for evaluating the similarity measure to take into account spatial dependence of neighboring image pixels, and 3) using a detrend algorithm to extract the sarcomere striation pattern content from the microscopy images. The developed sarcomere length estimation procedure has superior computational efficiency and estimation accuracy compared with the conventional ACF and spectral analysis-based methods using fast Fourier transform. As shown by analyzing synthetic images with the known periodicity, the estimates obtained by the developed method are more accurate at the subpixel level than ones obtained using ACF analysis. When applied in practice on rat cardiomyocytes, our method was found to be robust to the choice of the region of interest that may 1) include projections of carbon fibers and nucleus, 2) have uneven background, and 3) be slightly disoriented with respect to average direction of sarcomere striation pattern. The developed method is implemented in open-source software. PMID:23255581
Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I
2017-08-01
A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p < 0.01), superior scalar localization (p < 0.01), and reduced blooming artifact (p < 0.05), compared with conventional 64-slice MDCT. There was no significant difference between platforms when comparing streak or ring artifact. The new generation 192-slice MDCT scanner offers several notable advantages for cochlear implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.
A new scheme for velocity analysis and imaging of diffractions
NASA Astrophysics Data System (ADS)
Lin, Peng; Peng, Suping; Zhao, Jingtao; Cui, Xiaoqin; Du, Wenfeng
2018-06-01
Seismic diffractions are the responses of small-scale inhomogeneities or discontinuous geological features, which play a vital role in the exploitation and development of oil and gas reservoirs. However, diffractions are generally ignored and considered as interference noise in conventional data processing. In this paper, a new scheme for velocity analysis and imaging of seismic diffractions is proposed. Two steps compose of this scheme in our application. First, the plane-wave destruction method is used to separate diffractions from specular reflections in the prestack domain. Second, in order to accurately estimate migration velocity of the diffractions, the time-domain dip-angle gathers are derived from a Kirchhoff-based angle prestack time migration using separated diffractions. Diffraction events appear flat in the dip-angle gathers when imaged above the diffraction point with selected accurate migration velocity for diffractions. The selected migration velocity helps to produce the desired prestack imaging of diffractions. Synthetic and field examples are applied to test the validity of the new scheme. The diffraction imaging results indicate that the proposed scheme for velocity analysis and imaging of diffractions can provide more detailed information about small-scale geologic features for seismic interpretation.
Micro-polarimetry for pre-clinical diagnostics of pathological changes in human tissues
NASA Astrophysics Data System (ADS)
Golnik, Andrzej; Golnik, Natalia; Pałko, Tadeusz; Sołtysiński, Tomasz
2008-05-01
The paper presents a practical study of several methods of image analysis applied to polarimetric images of regular and malignant human tissues. The images of physiological and pathologically changed tissues from body and cervix of uterus, intestine, kidneys and breast were recorded in transmitted light of different polarization state. The set up of the conventional optical microscope with CCD camera and rotating polarizer's were used for analysis of the polarization state of the light transmitted through the tissue slice for each pixel of the camera image. The set of images corresponding to the different coefficients of the Stockes vectors, a 3×3 subset of the Mueller matrix as well as the maps of the magnitude and in-plane direction of the birefringent components in the sample were calculated. Then, the statistical analysis and the Fourier transform as well as the autocorrelation methods were used to analyze spatial distribution of birefringent elements in the tissue samples. For better recognition of tissue state we proposed a novel method that takes advantage of multiscale image data decomposition The results were used for selection of the optical characteristics with significantly different values for regular and malignant tissues.
NASA Technical Reports Server (NTRS)
Erb, R. B.
1974-01-01
The results of the ERTS-1 investigations conducted by the Earth Observations Division at the NASA Lyndon B. Johnson Space Center are summarized in this report, which is an overview of documents detailing individual investigations. Conventional image interpretation and computer-aided classification procedures were the two basic techniques used in analyzing the data for detecting, identifying, locating, and measuring surface features related to earth resources. Data from the ERTS-1 multispectral scanner system were useful for all applications studied, which included agriculture, coastal and estuarine analysis, forestry, range, land use and urban land use, and signature extension. Percentage classification accuracies are cited for the conventional and computer-aided techniques.
[Spatial domain display for interference image dataset].
Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia
2011-11-01
The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... Uranium Recovery Project, located in the Pumpkin Buttes Uranium Mining District within the Powder River.... Alternatives that were considered, but were eliminated from detailed analysis, include conventional mining and... an Agencywide Documents and Management System (ADAMS), which provides text and image files of the NRC...
Structural MRI and Cognitive Correlates in Pest-Control Personnel from Gulf War I
2010-04-01
Figure (ROCFT; Corwin & Blysma, 1993) Copying a complex geometric design; assess ability to organize and construct Raw Score...workstations at Boston University School of Medicine where they were reconstructed for morphometric analyses by the study imaging expert, Dr. Killiany...conventional structural MRI and morphometric analysis of K. Sullivan, Ph.D
Chromosomal localization of Emv-16 and Emv-17, two closely linked ecotropic proviruses of RF/J mice.
Buchberg, A M; Taylor, B A; Jenkins, N A; Copeland, N G
1986-01-01
Emv-16 and Emv-17, the two closely linked ecotropic proviral loci of RF/J mice, have been mapped to chromosome 1 between leaden, ln, and the mouse engrailed homeo-box locus, En-1, by using recombinant inbred strains and conventional backcross analysis. Images PMID:2878091
Kainerstorfer, Jana M.; Polizzotto, Mark N.; Uldrick, Thomas S.; Rahman, Rafa; Hassan, Moinuddin; Najafizadeh, Laleh; Ardeshirpour, Yasaman; Wyvill, Kathleen M.; Aleman, Karen; Smith, Paul D.; Yarchoan, Robert; Gandjbakhche, Amir H.
2013-01-01
Diffuse multi-spectral imaging has been evaluated as a potential non-invasive marker of tumor response. Multi-spectral images of Kaposi sarcoma skin lesions were taken over the course of treatment, and blood volume and oxygenation concentration maps were obtained through principal component analysis (PCA) of the data. These images were compared with clinical and pathological responses determined by conventional means. We demonstrate that cutaneous lesions have increased blood volume concentration and that changes in this parameter are a reliable indicator of treatment efficacy, differentiating responders and non-responders. Blood volume decreased by at least 20% in all lesions that responded by clinical criteria and increased in the two lesions that did not respond clinically. Responses as assessed by multi-spectral imaging also generally correlated with overall patient clinical response assessment, were often detectable earlier in the course of therapy, and are less subject to observer variability than conventional clinical assessment. Tissue oxygenation was more variable, with lesions often showing decreased oxygenation in the center surrounded by a zone of increased oxygenation. This technique could potentially be a clinically useful supplement to existing response assessment in KS, providing an early, quantitative, and non-invasive marker of treatment effect. PMID:24386302
Ultrafast Brain MRI: Clinical Deployment and Comparison to Conventional Brain MRI at 3T.
Prakkamakul, Supada; Witzel, Thomas; Huang, Susie; Boulter, Daniel; Borja, Maria J; Schaefer, Pamela; Rosen, Bruce; Heberlein, Keith; Ratai, Eva; Gonzalez, Gilberto; Rapalino, Otto
2016-09-01
To compare an ultrafast brain magnetic resonance imaging (MRI) protocol to the conventional protocol in motion-prone inpatient clinical settings. This retrospective study was HIPAA compliant and approved by the Institutional Review Board with waived inform consent. Fifty-nine inpatients (30 males, 29 females; mean age 55.1, range 23-93 years)who underwent 3-Tesla brain MRI using ultrafast and conventional protocols, both including five sequences, were included in the study. The total scan time for five ultrafast sequences was 4 minutes 59 seconds. The ideal conventional acquisition time was 10 minutes 32 seconds but the actual acquisition took 15-20 minutes. The average scan times for ultrafast localizers, T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, T2*-weighted sequences were 14, 41, 62, 96, 80, 6 seconds, respectively. Two blinded neuroradiologists independently assessed three aspects: (1) image quality, (2) gray-white matter (GM-WM) differentiation, and (3) diagnostic concordance for the detection of six clinically relevant imaging findings. Wilcoxon signed-rank test was used to compare image quality and GM-WM scores. Interobserver reproducibility was calculated. The ultrafast T1-weighted sequence demonstrated significantly better image quality (P = .005) and GM-WM differentiation (P < .001) compared to the conventional sequence. There was high agreement (>85%) between both protocols for the detection of mass-like lesion, hemorrhage, diffusion restriction, WM FLAIR hyperintensities, subarachnoid FLAIR hyperintensities, and hydrocephalus. The ultrafast protocol achieved at least comparable image quality and high diagnostic concordance compared to the conventional protocol. This fast protocol can be a viable option to replace the conventional protocol in motion-prone inpatient clinical settings. Copyright © 2016 by the American Society of Neuroimaging.
Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir
2014-01-01
Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318
Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging.
Lee, Junsu; Jang, Jihun; Chang, Jin Ho
2017-03-01
In intravascular ultrasound (IVUS) imaging, a transducer is inserted into a blood vessel and rotated to obtain image data. For this purpose, the transducer aperture is typically less than 0.5 mm in diameter, which causes natural focusing to occur in the imaging depth ranging from 1 to 5 mm. Due to the small aperture, however, it is not viable to conduct geometric focusing in order to enhance the spatial resolution of IVUS images. Furthermore, this hampers narrowing the slice thickness of a cross-sectional scan plane in the imaging depth, which leads to lowering spatial and contrast resolutions of IVUS images. To solve this problem, we propose an oblong-shaped-focused transducer for IVUS imaging. Unlike the conventional IVUS transducers with either a circular or a square flat aperture, the proposed transducer has an oblong aperture of which long side is positioned along a blood vessel. This unique configuration makes it possible to conduct geometric focusing at a desired depth in the elevation direction. In this study, furthermore, it is demonstrated that a spherically shaped aperture in both lateral and elevation directions also improves lateral resolution, compared to the conventional flat aperture. To ascertain this, the conventional and the proposed IVUS transducers were designed and fabricated to evaluate and to compare their imaging performances through wire phantom and tissue-mimicking phantom experiments. For the proposed 50-MHz IVUS transducer, a PZT piece of 0.5 × 1.0 mm 2 was spherically shaped for elevation focus at 3 mm by using the conventional press-focusing technique whereas the conventional one has a flat aperture of 0.5 × 0.5 mm 2 . The experimental results demonstrated that the proposed IVUS transducer is capable of improving spatial and contrast resolutions of IVUS images.
De Melo, Daniela Pita; Cruz, Adriana Dibo; Melo, Saulo Leonardo Sousa; De Farias, Julyanna Filgueiras GonçAlves; Haiter-Neto, Francisco; De Almeida, Solange Maria
2015-04-01
To compare intraoral Phosphor Stimulable Plate digital system and intraoral film using different tube settings on incipient proximal caries detection. Five blocks, with five teeth each, were radiographically examined using phosphor plates and F-speed films. The images were acquired in 07 different tube potentials from 50-80 kV. The films were digitized. Three oral radiologists scored the images for the presence of caries using a 5-point rating scale. The areas under ROC curve were calculated. The influence of tube kilovoltage was verified by ANOVA and pair wise comparisons performed using Tukey test. Mean ROC curve areas varied from 0.446-0.628 for digital images and 0.494-0.559 for conventional images. The tube setting of 70 kV presented the best result both for digital and conventional images. Considering the image type separately, 70 kV scored highest followed by 75 and 65 kV for digital images (p=0.084). For conventional image modality, even though 70 kV presented the best result, it did not differ significantly from 80 kV, not differing from 60 and 55 kV, which did not differ from 75, 65 and 50 kV (p=0.53). Phosphor plate digital images seem to be more susceptible to tube setting potential variations then digitized film images.
Non-contact finger vein acquisition system using NIR laser
NASA Astrophysics Data System (ADS)
Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan
2009-02-01
Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.
Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi
2018-03-01
Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.
Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S
2016-07-01
Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.
Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Hayashi, Norio; Yamashita, Tomio; Matsunaga, Naofumi
2005-09-01
Deep-inspiratory breath-hold (DIBrH) Tc-99m-macroaggregated albumin (MAA) SPECT images were developed to accurately evaluate perfusion impairment in smokers' lungs. DIBrH SPECT was performed in 28 smokers with or without low attenuation areas (LAA) on CT images, using a triple-headed SPECT system and a laser light respiratory tracking device. DIBrH SPECT images were reconstructed from every 4 degrees projection of five adequate 360 degrees projection data sets with almost the same respiratory dimension at 20 sec DIBrH. Perfusion defect clarity was assessed by the lesion (defect)-to-contralateral normal lung count ratios (L/N ratios). Perfusion inhomogeneity was assessed by the coefficient of variation (CV) values of pixel counts and correlated with the diffusing capacity of the lungs for carbon monoxide/alveolar volume (DLCO/VA) ratios. The results were compared with those on conventional images. Five DIBrH projection data sets with minimal dimension differences of 2.9+/-0.6 mm were obtained in all subjects. DIBrH images enhanced perfusion defects compared with conventional images, with significantly higher L/N ratios (P<0.0001), and detected a total of 109 (26.9%) additional detects (513 vs. 404), with excellent inter-observer agreement (kappa value of 0.816). CV values in the smokers' lungs on DIBrH images were also significantly higher compared with those on conventional images (0.31+/-0.10 vs. 0.19+/-0.06, P<0.0001). CV values in smokers on DIBrH images showed a significantly closer correlation with DLCO/VA ratios compared with conventional images (R = 0.872, P<0.0001 vs. R=0.499, P<0.01). By reducing adverse effect of respiratory motion, DIBrH SPECT images enhance perfusion defect clarity and inhomogeneity, and provide more accurate assessment of impaired perfusion in smokers' lungs compared with conventional images.
Light field imaging and application analysis in THz
NASA Astrophysics Data System (ADS)
Zhang, Hongfei; Su, Bo; He, Jingsuo; Zhang, Cong; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin
2018-01-01
The light field includes the direction information and location information. Light field imaging can capture the whole light field by single exposure. The four-dimensional light field function model represented by two-plane parameter, which is proposed by Levoy, is adopted in the light field. Acquisition of light field is based on the microlens array, camera array and the mask. We calculate the dates of light-field to synthetize light field image. The processing techniques of light field data include technology of refocusing rendering, technology of synthetic aperture and technology of microscopic imaging. Introducing the technology of light field imaging into THz, the efficiency of 3D imaging is higher than that of conventional THz 3D imaging technology. The advantages compared with visible light field imaging include large depth of field, wide dynamic range and true three-dimensional. It has broad application prospects.
[Three-dimensional reconstruction of functional brain images].
Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I
1999-08-01
We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.
Special raster scanning for reduction of charging effects in scanning electron microscopy.
Suzuki, Kazuhiko; Oho, Eisaku
2014-01-01
A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.
Seismic reflection imaging with conventional and unconventional sources
NASA Astrophysics Data System (ADS)
Quiros Ugalde, Diego Alonso
This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant seismic activity.
[Experimental research on the effect of nanophase ceramics on osteoblasts functions].
Wen, Bo; Chen, Zhiqing; Jiang, Yinshan; Yang, Zhengwen; Xu, Yongzhong
2005-06-01
In order to study the cytocompatibility of nanophase hydroxyapatite ceramic in vitro, we prepared hydroxyapatite by use of the wet chemistry techniques. The grain size of hydroxyapatite of interest to the present study was determined by scanning electron microscopy and atomic force microscopy with image analysis software. Primary culture of osteoblast from rat calvaria was established. Protein content, synthesis of alkaline phosphatase and deposition of calcium-containing mineral by osteoblasts cultured on nanophase hydroxyapatite ceramics and on conventional hydroxyapatite ceramics for 7, 14, 21 and 28 days were examined. The results showed that the average surface grain size of the nanophase and that of the conventional HA compact formulations was 55 (nanophase) and 780 (conventional) nm, respectively. More importantly, compared to the synthesis of alkaline phosphatase and deposition of calcium-containing mineral by osteoblasts cultured on nanophase was significantly greater than that on conventional ceramics after 21 and 28 days. The cytocompatibility was significantly greater on nanophase HA than on conventional formulations of the same ceramic.
Oosterwijk, J C; Knepflé, C F; Mesker, W E; Vrolijk, H; Sloos, W C; Pattenier, H; Ravkin, I; van Ommen, G J; Kanhai, H H; Tanke, H J
1998-01-01
This article explores the feasibility of the use of automated microscopy and image analysis to detect the presence of rare fetal nucleated red blood cells (NRBCs) circulating in maternal blood. The rationales for enrichment and for automated image analysis for "rare-event" detection are reviewed. We also describe the application of automated image analysis to 42 maternal blood samples, using a protocol consisting of one-step enrichment followed by immunocytochemical staining for fetal hemoglobin (HbF) and FISH for X- and Y-chromosomal sequences. Automated image analysis consisted of multimode microscopy and subsequent visual evaluation of image memories containing the selected objects. The FISH results were compared with the results of conventional karyotyping of the chorionic villi. By use of manual screening, 43% of the slides were found to be positive (>=1 NRBC), with a mean number of 11 NRBCs (range 1-40). By automated microscopy, 52% were positive, with on average 17 NRBCs (range 1-111). There was a good correlation between both manual and automated screening, but the NRBC yield from automated image analysis was found to be superior to that from manual screening (P=.0443), particularly when the NRBC count was >15. Seven (64%) of 11 XY fetuses were correctly diagnosed by FISH analysis of automatically detected cells, and all discrepancies were restricted to the lower cell-count range. We believe that automated microscopy and image analysis reduce the screening workload, are more sensitive than manual evaluation, and can be used to detect rare HbF-containing NRBCs in maternal blood. PMID:9837832
NASA Astrophysics Data System (ADS)
Habas, Piotr A.; Kim, Kio; Chandramohan, Dharshan; Rousseau, Francois; Glenn, Orit A.; Studholme, Colin
2009-02-01
Recent advances in MR and image analysis allow for reconstruction of high-resolution 3D images from clinical in utero scans of the human fetal brain. Automated segmentation of tissue types from MR images (MRI) is a key step in the quantitative analysis of brain development. Conventional atlas-based methods for adult brain segmentation are limited in their ability to accurately delineate complex structures of developing tissues from fetal MRI. In this paper, we formulate a novel geometric representation of the fetal brain aimed at capturing the laminar structure of developing anatomy. The proposed model uses a depth-based encoding of tissue occurrence within the fetal brain and provides an additional anatomical constraint in a form of a laminar prior that can be incorporated into conventional atlas-based EM segmentation. Validation experiments are performed using clinical in utero scans of 5 fetal subjects at gestational ages ranging from 20.5 to 22.5 weeks. Experimental results are evaluated against reference manual segmentations and quantified in terms of Dice similarity coefficient (DSC). The study demonstrates that the use of laminar depth-encoded tissue priors improves both the overall accuracy and precision of fetal brain segmentation. Particular refinement is observed in regions of the parietal and occipital lobes where the DSC index is improved from 0.81 to 0.82 for cortical grey matter, from 0.71 to 0.73 for the germinal matrix, and from 0.81 to 0.87 for white matter.
Lanotte, M; Cavallo, M; Franzini, A; Grifi, M; Marchese, E; Pantaleoni, M; Piacentino, M; Servello, D
2010-09-01
Deep brain stimulation (DBS) alleviates symptoms of many neurological disorders by applying electrical impulses to the brain by means of implanted electrodes, generally put in place using a conventional stereotactic frame. A new image guided disposable mini-stereotactic system has been designed to help shorten and simplify DBS procedures when compared to standard stereotaxy. A small number of studies have been conducted which demonstrate localization accuracies of the system similar to those achievable by the conventional frame. However no data are available to date on the economic impact of this new frame. The aim of this paper was to develop a computational model to evaluate the investment required to introduce the image guided mini-stereotactic technology for stereotactic DBS neurosurgery. A standard DBS patient care pathway was developed and related costs were analyzed. A differential analysis was conducted to capture the impact of introducing the image guided system on the procedure workflow. The analysis was carried out in five Italian neurosurgical centers. A computational model was developed to estimate upfront investments and surgery costs leading to a definition of the best financial option to introduce the new frame. Investments may vary from Euro 1.900 (purchasing of Image Guided [IG] mini-stereotactic frame only) to Euro 158.000.000. Moreover the model demonstrates how the introduction of the IG mini-stereotactic frame doesn't substantially affect the DBS procedure costs.
[3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].
Kneist, W; Huber, T; Paschold, M; Lang, H
2016-06-01
The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.
[Cytocompatibility of nanophase hydroxyapatite ceramics].
Wen, Bo; Chen, Zhi-qing; Jiang, Yin-shan; Yang, Zheng-wen; Xu, Yong-zhong
2004-12-01
To evaluate the cytocompatibility of nanophase hydroxyapatite ceramics in vitro. Hydroxyapatite (HA) was prepared via wet method. The grain size of the hydroxyapatite in the study was determined by scanning electron microscope and atomic force microscope with image analysis software. Primary osteoblast culture was established from rat calvaria. Cell adherence and proliferation on nanophase hydroxyapatite ceramics and conventional hydroxyapatite ceramics were examined at 1, 3, 5, 7 days. Morphology of the cells was observed by microscope. The average grain size of the nanophase and conventional HA was 55 nm and 780 nm, respectively. Throughout 7 days period, osteoblast proliferation on the HA was similar to that on tissue culture borosilicate glass controls, osteoblasts could attach, spread and proliferate on HA. However, compared to conventional ceramics, osteoblast proliferation on nanophase HA was significantly better after 1, 3, 5 and 7 days. Cytocompatibility of nanophase HA was significantly better than conventional ceramics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R; Aguilera, T; Shultz, D
2014-06-15
Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid in identifying patients who might benefit from adjuvant therapy.« less
TOPICAL REVIEW: Digital x-ray tomosynthesis: current state of the art and clinical potential
NASA Astrophysics Data System (ADS)
Dobbins, James T., III; Godfrey, Devon J.
2003-10-01
Digital x-ray tomosynthesis is a technique for producing slice images using conventional x-ray systems. It is a refinement of conventional geometric tomography, which has been known since the 1930s. In conventional geometric tomography, the x-ray tube and image receptor move in synchrony on opposite sides of the patient to produce a plane of structures in sharp focus at the plane containing the fulcrum of the motion; all other structures above and below the fulcrum plane are blurred and thus less visible in the resulting image. Tomosynthesis improves upon conventional geometric tomography in that it allows an arbitrary number of in-focus planes to be generated retrospectively from a sequence of projection radiographs that are acquired during a single motion of the x-ray tube. By shifting and adding these projection radiographs, specific planes may be reconstructed. This topical review describes the various reconstruction algorithms used to produce tomosynthesis images, as well as approaches used to minimize the residual blur from out-of-plane structures. Historical background and mathematical details are given for the various approaches described. Approaches for optimizing the tomosynthesis image are given. Applications of tomosynthesis to various clinical tasks, including angiography, chest imaging, mammography, dental imaging and orthopaedic imaging, are also described.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
KUMAR, ABHISHEK; CHRISTENSEN, RYAN; GUO, MIN; CHANDRIS, PANOS; DUNCAN, WILLIAM; WU, YICONG; SANTELLA, ANTHONY; MOYLE, MARK; WINTER, PETER W.; COLÓN-RAMOS, DANIEL; BAO, ZHIRONG; SHROFF, HARI
2017-01-01
Dual-view inverted selective plane illumination microscopy (diSPIM) enables high-speed, long-term, fourdimensional (4D) imaging with isotropic spatial resolution. It is also compatible with conventional sample mounting on glass coverslips. However, broadening of the light sheet at distances far from the beam waist and sample-induced scattering degrades diSPIM contrast and optical sectioning. We describe two simple improvements that address both issues and entail no additional hardware modifications to the base diSPIM. First, we demonstrate improved diSPIM sectioning by keeping the light sheet and detection optics stationary, and scanning the sample through the stationary light sheet (rather than scanning the broadening light sheet and detection plane through the stationary sample, as in conventional diSPIM). This stage-scanning approach allows a thinner sheet to be used when imaging laterally extended samples, such as fixed microtubules or motile mitochondria in cell monolayers, and produces finer contrast than does conventional diSPIM. We also used stage-scanning diSPIM to obtain high-quality, 4D nuclear datasets derived from an uncompressed nematode embryo, and performed lineaging analysis to track 97% of cells until twitching. Second, we describe the improvement of contrast in thick, scattering specimens by synchronizing light-sheet synthesis with the rolling, electronic shutter of our scientific complementary metal-oxide-semiconductor (sCMOS) detector. This maneuver forms a virtual confocal slit in the detection path, partially removing out-of-focus light. We demonstrate the applicability of our combined stage- and slit-scanning-methods by imaging pollen grains and nuclear and neuronal structures in live nematode embryos. All acquisition and analysis code is freely available online. PMID:27638693
Liu, Wen-Lou; Wang, Lin-Wei; Chen, Jia-Mei; Yuan, Jing-Ping; Xiang, Qing-Ming; Yang, Gui-Fang; Qu, Ai-Ping; Liu, Juan; Li, Yan
2016-04-01
Multispectral imaging (MSI) based on imaging and spectroscopy, as relatively novel to the field of histopathology, has been used in biomedical multidisciplinary researches. We analyzed and compared the utility of multispectral (MS) versus conventional red-green-blue (RGB) images for immunohistochemistry (IHC) staining to explore the advantages of MSI in clinical-pathological diagnosis. The MS images acquired of IHC-stained membranous marker human epidermal growth factor receptor 2 (HER2), cytoplasmic marker cytokeratin5/6 (CK5/6), and nuclear marker estrogen receptor (ER) have higher resolution, stronger contrast, and more accurate segmentation than the RGB images. The total signal optical density (OD) values for each biomarker were higher in MS images than in RGB images (all P < 0.05). Moreover, receiver operator characteristic (ROC) analysis revealed that a greater area under the curve (AUC), higher sensitivity, and specificity in evaluation of HER2 gene were achieved by MS images (AUC = 0.91, 89.1 %, 83.2 %) than RGB images (AUC = 0.87, 84.5, and 81.8 %). There was no significant difference between quantitative results of RGB images and clinico-pathological characteristics (P > 0.05). However, by quantifying MS images, the total signal OD values of HER2 positive expression were correlated with lymph node status and histological grades (P = 0.02 and 0.04). Additionally, the consistency test results indicated the inter-observer agreement was more robust in MS images for HER2 (inter-class correlation coefficient (ICC) = 0.95, r s = 0.94), CK5/6 (ICC = 0.90, r s = 0.88), and ER (ICC = 0.94, r s = 0.94) (all P < 0.001) than that in RGB images for HER2 (ICC = 0.91, r s = 0.89), CK5/6 (ICC = 0.85, r s = 0.84), and ER (ICC = 0.90, r s = 0.89) (all P < 0.001). Our results suggest that the application of MS images in quantitative IHC analysis could obtain higher accuracy, reliability, and more information of protein expression in relation to clinico-pathological characteristics versus conventional RGB images. It may become an optimal IHC digital imaging system used in quantitative pathology.
Atomic resolution Z-contrast imaging and energy loss spectroscopy of carbon nanotubes and bundles
NASA Astrophysics Data System (ADS)
Lupini, A. R.; Chisholm, M. F.; Puretzky, A. A.; Eres, G.; Melechko, A. V.; Schaaff, G.; Lowndes, D. H.; Geohegan, D. B.; Schittenhelm, H.; Pennycook, S. J.; Wang, Y.; Smalley, R. E.
2002-03-01
Single-wall carbon nanotubes and bundles were studied by a combination of techniques, including conventional imaging and diffraction, atomic resolution Z-contrast imaging in an aberration corrected STEM and electron energy loss spectroscopy (EELS). EELS is ideally suited for the analysis of carbon based structures because of the ability to distinguish between the different forms, specifically nanotubes, graphite, amorphous carbon and diamond. Numerous attempts were made to synthesize crystals of single walled carbon nanotubes, using both solution and vapor deposition of precursor structures directly onto TEM grids for in-situ annealing. The range of structures produced will be discussed.
Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz
2015-09-21
Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.
Cascaded image analysis for dynamic crack detection in material testing
NASA Astrophysics Data System (ADS)
Hampel, U.; Maas, H.-G.
Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.
Aggarwal, Kanika; Agarwal, Aniruddha; Deokar, Ankit; Singh, Ramandeep; Bansal, Reema; Sharma, Aman; Sharma, Kusum; Dogra, Mangat R; Gupta, Vishali
2017-10-11
To evaluate role of ultra-wide field (UWF) versus conventional imaging in the follow-up and paradoxical worsening (PW) of tubercular (TB) multifocal serpiginoid choroiditis (MSC). Prospective observational study of patients with TB MSC undergoing UWF imaging, autofluorescence and fluorescein angiography was performed. A circle simulating central 75° field representing conventional imaging was drawn on UWF images. The information yielded by the two modalities, progression of choroiditis lesions and PW was compared. 44 eyes (29 patients, mean age: 30.7 ± 9 years; 23 males) were included. UWF imaging showed additional lesions in 39/44 eyes (88.6%). Overall, 16/44 eyes (36.4%) showed PW; 3/16 eyes (18.7%) showed only peripheral PW, while 10/16 eyes showed both central and peripheral PW. Management was altered in 11 patients (37.93%) based on UWF imaging. UWF is more useful than conventional imaging in identifying additional choroiditis lesions, PW and altering the course of therapy in TB MSC.
NASA Astrophysics Data System (ADS)
Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo
2008-03-01
In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.
NASA Astrophysics Data System (ADS)
Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.
2013-06-01
Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.
Erdemci, Zeynep Yalçınkaya; Cehreli, S Burçak; Tirali, R Ebru
2014-01-01
This study's purpose was to investigate microleakage and marginal discrepancies in stainless steel crowns (SSCs) placed using conventional and Hall techniques and cemented with three different luting agents. Seventy-eight human primary maxillary second molars were randomly assigned to two groups (N=39), and SSCs were applied either with the Hall or conventional technique. These two groups were further subgrouped according to the material used for crown cementation (N=13 per group). Two specimens in each group were processed for scanning electron microscopy investigation. The extent of microleakage and marginal fit was quantified in millimeters on digitally photographed sections using image analysis software. The data were compared with a two-way independent and a two-way mixed analysis of variance (P=.05). The scores in the Hall group were significantly worse than those in the conventional technique group (P<.05). In both groups, resin cement displayed the lowest extent of microleakage, followed by glass ionomer and polycarboxylate cements (P<.05). Stainless steel crowns applied using the Hall technique displayed higher microleakage scores than those applied using the conventional technique, regardless of the cementation material. When the interaction of the material and technique was assessed, resin cement presented as the best choice for minimizing microleakage in both techniques.
Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique
NASA Astrophysics Data System (ADS)
Kalinovsky, A.; Liauchuk, V.; Tarasau, A.
2017-05-01
In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.
Analysis of the Sagnac interference imaging spectrometer with a variable optical path difference
NASA Astrophysics Data System (ADS)
Ai, Jingjing; Gao, Peng; Hu, Xiaochen; Zhang, Chunmin; Wang, Xia
2018-03-01
The Sagnac interference imaging spectrometer with a variable optical path difference (OPD) is proposed in this paper, which employs two wedge prisms coupled with a modified Sagnac interferometer, and produces a variable OPD through the moving wedge prism. Compared with the conventional imaging spectrometer, the Sagnac interference imaging spectrometer shows its advantages of miniaturization and insensitive to the non-uniform variation of the moving speed and the environment vibration. The exact expression of the OPD as a function of different parameters is derived, and the influences of the moving displacement, wedge angle and acute angles on the OPD are analyzed and discussed within the scope of engineering design. This study provides an important theoretical and practical guidance for the engineering of the Sagnac interference imaging spectrometer.
Luma-chroma space filter design for subpixel-based monochrome image downsampling.
Fang, Lu; Au, Oscar C; Cheung, Ngai-Man; Katsaggelos, Aggelos K; Li, Houqiang; Zou, Feng
2013-10-01
In general, subpixel-based downsampling can achieve higher apparent resolution of the down-sampled images on LCD or OLED displays than pixel-based downsampling. With the frequency domain analysis of subpixel-based downsampling, we discover special characteristics of the luma-chroma color transform choice for monochrome images. With these, we model the anti-aliasing filter design for subpixel-based monochrome image downsampling as a human visual system-based optimization problem with a two-term cost function and obtain a closed-form solution. One cost term measures the luminance distortion and the other term measures the chrominance aliasing in our chosen luma-chroma space. Simulation results suggest that the proposed method can achieve sharper down-sampled gray/font images compared with conventional pixel and subpixel-based methods, without noticeable color fringing artifacts.
Associative memory model for searching an image database by image snippet
NASA Astrophysics Data System (ADS)
Khan, Javed I.; Yun, David Y.
1994-09-01
This paper presents an associative memory called an multidimensional holographic associative computing (MHAC), which can be potentially used to perform feature based image database query using image snippet. MHAC has the unique capability to selectively focus on specific segments of a query frame during associative retrieval. As a result, this model can perform search on the basis of featural significance described by a subset of the snippet pixels. This capability is critical for visual query in image database because quite often the cognitive index features in the snippet are statistically weak. Unlike, the conventional artificial associative memories, MHAC uses a two level representation and incorporates additional meta-knowledge about the reliability status of segments of information it receives and forwards. In this paper we present the analysis of focus characteristics of MHAC.
Yang, S; Liu, D G
2014-01-01
Objectives: The purposes of the study are to investigate the consistency of linear measurements between CBCT orthogonally synthesized cephalograms and conventional cephalograms and to evaluate the influence of different magnifications on these comparisons based on a simulation algorithm. Methods: Conventional cephalograms and CBCT scans were taken on 12 dry skulls with spherical metal markers. Orthogonally synthesized cephalograms were created from CBCT data. Linear parameters on both cephalograms were measured via Photoshop CS v. 5.0 (Adobe® Systems, San Jose, CA), named measurement group (MG). Bland–Altman analysis was utilized to assess the agreement of two imaging modalities. Reproducibility was investigated using paired t-test. By a specific mathematical programme “cepha”, corresponding linear parameters [mandibular corpus length (Go-Me), mandibular ramus length (Co-Go), posterior facial height (Go-S)] on these two types of cephalograms were calculated, named simulation group (SG). Bland–Altman analysis was used to assess the agreement between MG and SG. Simulated linear measurements with varying magnifications were generated based on “cepha” as well. Bland–Altman analysis was used to assess the agreement of simulated measurements between two modalities. Results: Bland–Altman analysis suggested the agreement between measurements on conventional cephalograms and orthogonally synthesized cephalograms, with a mean bias of 0.47 mm. Comparison between MG and SG showed that the difference did not reach clinical significance. The consistency between simulated measurements of both modalities with four different magnifications was demonstrated. Conclusions: Normative data of conventional cephalograms could be used for CBCT orthogonally synthesized cephalograms during this transitional period. PMID:25029593
Phase Imaging using Focusing Polycapillary Optics
NASA Astrophysics Data System (ADS)
Bashir, Sajid
The interaction of X rays in diagnostic energy range with soft tissues can be described by Compton scattering and by the complex refractive index, which together characterize the attenuation properties of the tissue and the phase imparted to X rays passing through it. Many soft tissues exhibit extremely similar attenuation, so that their discrimination using conventional radiography, which generates contrast in an image through differential attenuation, is challenging. However, these tissues will impart phase differences significantly greater than attenuation differences to the X rays passing through them, so that phase-contrast imaging techniques can enable their discrimination. A major limitation to the widespread adoption of phase-contrast techniques is that phase contrast requires significant spatial coherence of the X-ray beam, which in turn requires specialized sources. For tabletop sources, this often requires a small (usually in the range of 10-50 micron) X-ray source. In this work, polycapillary optics were employed to create a small secondary source from a large spot rotating anode. Polycapillary optics consist of arrays of small hollow glass tubes through which X rays can be guided by total internal reflection from the tube walls. By tapering the tubes to guide the X rays to a point, they can be focused to a small spot which can be used as a secondary source. The polycapillary optic was first aligned with the X-ray source. The spot size was measured using a computed radiography image plate. Images were taken at a variety of optic-to-object and object-to-detector distances and phase-contrast edge enhancement was observed. Conventional absorption images were also acquired at a small object-to detector distances for comparison. Background division was performed to remove strong non-uniformity due to the optics. Differential phase contrast reconstruction demonstrates promising preliminary results. This manuscript is divided into six chapters. The second chapter describes the limitations of conventional imaging methods and benefits of the phase imaging. Chapter three covers different types of X-ray photon interactions with matter. Chapter four describes the experimental set-up and different types of images acquired along with their analysis. Chapter five summarizes the findings in this project and describes future work as well.
NASA Astrophysics Data System (ADS)
Gu, Wen; Zhu, Zhiwei; Zhu, Wu-Le; Lu, Leyao; To, Suet; Xiao, Gaobo
2018-05-01
An automatic identification method for obtaining the critical depth-of-cut (DoC) of brittle materials with nanometric accuracy and sub-nanometric uncertainty is proposed in this paper. With this method, a two-dimensional (2D) microscopic image of the taper cutting region is captured and further processed by image analysis to extract the margin of generated micro-cracks in the imaging plane. Meanwhile, an analytical model is formulated to describe the theoretical curve of the projected cutting points on the imaging plane with respect to a specified DoC during the whole cutting process. By adopting differential evolution algorithm-based minimization, the critical DoC can be identified by minimizing the deviation between the extracted margin and the theoretical curve. The proposed method is demonstrated through both numerical simulation and experimental analysis. Compared with conventional 2D- and 3D-microscopic-image-based methods, determination of the critical DoC in this study uses the envelope profile rather than the onset point of the generated cracks, providing a more objective approach with smaller uncertainty.
Fully automated three-dimensional microscopy system
NASA Astrophysics Data System (ADS)
Kerschmann, Russell L.
2000-04-01
Tissue-scale structures such as vessel networks are imaged at micron resolution with the Virtual Tissue System (VT System). VT System imaging of cubic millimeters of tissue and other material extends the capabilities of conventional volumetric techniques such as confocal microscopy, and allows for the first time the integrated 2D and 3D analysis of important tissue structural relationships. The VT System eliminates the need for glass slide-mounted tissue sections and instead captures images directly from the surface of a block containing a sample. Tissues are en bloc stained with fluorochrome compounds, embedded in an optically conditioned polymer that suppresses image signals form dep within the block , and serially sectioned for imaging. Thousands of fully registered 2D images are automatically captured digitally to completely convert tissue samples into blocks of high-resolution information. The resulting multi gigabyte data sets constitute the raw material for precision visualization and analysis. Cellular function may be seen in a larger anatomical context. VT System technology makes tissue metrics, accurate cell enumeration and cell cycle analyses possible while preserving full histologic setting.
NASA Astrophysics Data System (ADS)
Guo, Yuran; Wu, Di; Omoumi, Farid H.; Li, Yuhua; Wong, Molly Donovan; Ghani, Muhammad U.; Zheng, Bin; Liu, Hong
2018-02-01
The objective of this study was to demonstrate the capability of the high-energy in-line phase contrast imaging in detecting the breast tumors which are undetectable by conventional x-ray imaging but detectable by ultrasound. Experimentally, a CIRS multipurpose breast phantom with heterogeneous 50% glandular and 50% adipose breast tissue was imaged by high-energy in-line phase contrast system, conventional x-ray system and ultrasonography machine. The high-energy in-line phase contrast projection was acquired at 120 kVp, 0.3 mAs with the focal spot size of 18.3 μm. The conventional x-ray projection was acquired at 40 kVp, 3.3 mAs with the focal spot size of 22.26 μm. Both of the x-ray imaging acquisitions were conducted with a unique mean glandular dose of 0.08 mGy. As the result, the high-energy in-line phase contrast system was able to detect one lesion-like object which was also detected by the ultrasonography. This object was spherical shape with the length of about 12.28 mm. Also, the conventional x-ray system was not able to detect any objects. This result indicated the advantages provided by high-energy in-line phase contrast over conventional x-ray system in detecting lesion-like object under the same radiation dose. To meet the needs of current clinical strategies for high-density breasts screening, breast phantoms with higher glandular densities will be employed in future studies.
NASA Astrophysics Data System (ADS)
Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin
2017-01-01
We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.
Boundary identification and error analysis of shocked material images
NASA Astrophysics Data System (ADS)
Hock, Margaret; Howard, Marylesa; Cooper, Leora; Meehan, Bernard; Nelson, Keith
2017-06-01
To compute quantities such as pressure and velocity from laser-induced shock waves propagating through materials, high-speed images are captured and analyzed. Shock images typically display high noise and spatially-varying intensities, causing conventional analysis techniques to have difficulty identifying boundaries in the images without making significant assumptions about the data. We present a novel machine learning algorithm that efficiently segments, or partitions, images with high noise and spatially-varying intensities, and provides error maps that describe a level of uncertainty in the partitioning. The user trains the algorithm by providing locations of known materials within the image but no assumptions are made on the geometries in the image. The error maps are used to provide lower and upper bounds on quantities of interest, such as velocity and pressure, once boundaries have been identified and propagated through equations of state. This algorithm will be demonstrated on images of shock waves with noise and aberrations to quantify properties of the wave as it progresses. DOE/NV/25946-3126 This work was done by National Security Technologies, LLC, under Contract No. DE- AC52-06NA25946 with the U.S. Department of Energy and supported by the SDRD Program.
[Imaging Mass Spectrometry in Histopathologic Analysis].
Yamazaki, Fumiyoshi; Seto, Mitsutoshi
2015-04-01
Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.
Recent advances in the development and application of nanoelectrodes.
Fan, Yunshan; Han, Chu; Zhang, Bo
2016-10-07
Nanoelectrodes have key advantages compared to electrodes of conventional size and are the tool of choice for numerous applications in both fundamental electrochemistry research and bioelectrochemical analysis. This Minireview summarizes recent advances in the development, characterization, and use of nanoelectrodes in nanoscale electroanalytical chemistry. Methods of nanoelectrode preparation include laser-pulled glass-sealed metal nanoelectrodes, mass-produced nanoelectrodes, carbon nanotube based and carbon-filled nanopipettes, and tunneling nanoelectrodes. Several new topics of their recent application are covered, which include the use of nanoelectrodes for electrochemical imaging at ultrahigh spatial resolution, imaging with nanoelectrodes and nanopipettes, electrochemical analysis of single cells, single enzymes, and single nanoparticles, and the use of nanoelectrodes to understand single nanobubbles.
Towards advanced OCT clinical applications
NASA Astrophysics Data System (ADS)
Kirillin, Mikhail; Panteleeva, Olga; Agrba, Pavel; Pasukhin, Mikhail; Sergeeva, Ekaterina; Plankina, Elena; Dudenkova, Varvara; Gubarkova, Ekaterina; Kiseleva, Elena; Gladkova, Natalia; Shakhova, Natalia; Vitkin, Alex
2015-07-01
In this paper we report on our recent achievement in application of conventional and cross-polarization OCT (CP OCT) modalities for in vivo clinical diagnostics in different medical areas including gynecology, dermatology, and stomatology. In gynecology, CP OCT was employed for diagnosing fallopian tubes and cervix; in dermatology OCT for monitoring of treatment of psoriasis, scleroderma and atopic dermatitis; and in stomatology for diagnosis of oral diseases. For all considered application, we propose and develop different image processing methods which enhance the diagnostic value of the technique. In particular, we use histogram analysis, Fourier analysis and neural networks, thus calculating different tissue characteristics as revealed by OCT's polarization evolution. These approaches enable improved OCT image quantification and increase its resultant diagnostic accuracy.
Song, Qi; Chen, Mingqing; Bai, Junjie; Sonka, Milan; Wu, Xiaodong
2011-01-01
Multi-object segmentation with mutual interaction is a challenging task in medical image analysis. We report a novel solution to a segmentation problem, in which target objects of arbitrary shape mutually interact with terrain-like surfaces, which widely exists in the medical imaging field. The approach incorporates context information used during simultaneous segmentation of multiple objects. The object-surface interaction information is encoded by adding weighted inter-graph arcs to our graph model. A globally optimal solution is achieved by solving a single maximum flow problem in a low-order polynomial time. The performance of the method was evaluated in robust delineation of lung tumors in megavoltage cone-beam CT images in comparison with an expert-defined independent standard. The evaluation showed that our method generated highly accurate tumor segmentations. Compared with the conventional graph-cut method, our new approach provided significantly better results (p < 0.001). The Dice coefficient obtained by the conventional graph-cut approach (0.76 +/- 0.10) was improved to 0.84 +/- 0.05 when employing our new method for pulmonary tumor segmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, E; Coroller, T; Narayan, V
Purpose: Stereotactic body radiation therapy (SBRT) is the standard of care for medically inoperable non-small cell lung cancer (NSCLC) patients and has demonstrated excellent local control and survival. However, some patients still develop distant metastases and local recurrence, and therefore, there is a clinical need to identify patients at high-risk of disease recurrence. The aim of the current study is to use a radiomics approach to identify imaging biomarkers, based on tumor phenotype, for clinical outcomes in SBRT patients. Methods: Radiomic features were extracted from free breathing computed tomography (CT) images of 113 Stage I-II NSCLC patients treated with SBRT.more » Their association to and prognostic performance for distant metastasis (DM), locoregional recurrence (LRR) and survival was assessed and compared with conventional features (tumor volume and diameter) and clinical parameters (e.g. performance status, overall stage). The prognostic performance was evaluated using the concordance index (CI). Multivariate model performance was evaluated using cross validation. All p-values were corrected for multiple testing using the false discovery rate. Results: Radiomic features were associated with DM (one feature), LRR (one feature) and survival (four features). Conventional features were only associated with survival and one clinical parameter was associated with LRR and survival. One radiomic feature was significantly prognostic for DM (CI=0.670, p<0.1 from random), while none of the conventional and clinical parameters were significant for DM. The multivariate radiomic model had a higher median CI (0.671) for DM than the conventional (0.618) and clinical models (0.617). Conclusion: Radiomic features have potential to be imaging biomarkers for clinical outcomes that conventional imaging metrics and clinical parameters cannot predict in SBRT patients, such as distant metastasis. Development of a radiomics biomarker that can identify patients at high-risk of recurrence could facilitate personalization of their treatment regimen for an optimized clinical outcome. R.M. had consulting interest with Amgen (ended in 2015).« less
Ziegler, Christoph M; Klimowicz, Thomas R
2013-01-01
An increasing number of different types of commercial cone-beam computed tomography (CBCT) devices are available for three-dimensional (3D) imaging in the field of dental and maxillofacial radiology. When removing impacted or supernumerary teeth, surgical teams often operate adjacent significant anatomical structures such as nerves, vessels, adjacent teeth roots, and paranasal sinuses. It is therefore important to choose the appropriate surgical approach to avoid iatrogenic damage to the essential anatomical neighbouring structures. CBCT, also called digital volume tomography (DVT), can visualize impacted and supernumerary teeth in all standard planes, as well as multisectional 3D views. These devices have shown to be highly beneficial in the assessment of small bony lesions and maxillofacial injuries. However, it is still necessary to determine the effectiveness of such devices in the assessment of impacted and supernumerary teeth, in comparison to the conventional radiological methods of intraoral X-rays and panoramic X-rays. During a period of 2 years, a total of 61 patients of whom majority had impacted teeth or supernumerary elements in the frontal maxillary region were studied with CBCT and treated at the St. Olavs University Hospital. Patients were referred to our Department of Oral and Maxillofacial Surgery with both conventional and digital intraoral X-rays and/or panoramic X-rays. None had any acute infections or odontogenic abscesses, and most presented with asymptomatic impacted tooth. A comparison between the preoperative conventional and the CBCT images, the resulting diagnoses, and the intraoperative findings as "gold standard" were made and recorded in a compiled scoring sheet. The objects of interest were researched with the magnification method. Each patient was identified only with a patient number. In contrast to the conventional X-rays, the pre-surgical evaluation with the CBCT revealed detailed imaging of significant anatomical structures and objects of interest, with highly accurate anatomical and morphologic imaging, when compared to the intraoperative findings. Furthermore, no diagnostic problems, in relation to the anatomical localization, occurred preoperatively. The CBCT provides true and precise anatomical information with high surgical predictability without distortion or artefacts, and is superior to conventional radiography. It enables more time-efficient surgeries and reduces costs and surgical complications.
Ahmadi, Emad; Katnani, Husam A.; Daftari Besheli, Laleh; Gu, Qiang; Atefi, Reza; Villeneuve, Martin Y.; Eskandar, Emad; Lev, Michael H.; Golby, Alexandra J.; Gupta, Rajiv
2016-01-01
Purpose To develop an electrocorticography (ECoG) grid by using deposition of conductive nanoparticles in a polymer thick film on an organic substrate (PTFOS) that induces minimal, if any, artifacts on computed tomographic (CT) and magnetic resonance (MR) images and is safe in terms of tissue reactivity and MR heating. Materials and Methods All procedures were approved by the Animal Care and Use Committee and complied with the Public Health Services Guide for the Care and Use of Animals. Electrical functioning of PTFOS for cortical recording and stimulation was tested in two mice. PTFOS disks were implanted in two mice; after 30 days, the tissues surrounding the implants were harvested, and tissue injury was studied by using immunostaining. Five neurosurgeons rated mechanical properties of PTFOS compared with conventional grids by using a three-level Likert scale. Temperature increases during 30 minutes of 3-T MR imaging were measured in a head phantom with no grid, a conventional grid, and a PTFOS grid. Two neuroradiologists rated artifacts on CT and MR images of a cadaveric head specimen with no grid, a conventional grid, and a PTFOS grid by using a four-level Likert scale, and the mean ratings were compared between grids. Results Oscillatory local field potentials were captured with cortical recordings. Cortical stimulations in motor cortex elicited muscle contractions. PTFOS implants caused no adverse tissue reaction. Mechanical properties were rated superior to conventional grids (χ2 test, P < .05). The temperature increase during MR imaging for the three cases of no grid, PTFOS grid, and conventional grid was 3.84°C, 4.05°C, and 10.13°C, respectively. PTFOS induced no appreciable artifacts on CT and MR images, and PTFOS image quality was rated significantly higher than that with conventional grids (two-tailed t test, P < .05). Conclusion PTFOS grids may be an attractive alternative to conventional ECoG grids with regard to mechanical properties, 3-T MR heating profile, and CT and MR imaging artifacts. © RSNA, 2016 Online supplemental material is available for this article. PMID:26844363
Adapting radiotherapy to hypoxic tumours
NASA Astrophysics Data System (ADS)
Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag
2006-10-01
In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields and step-and-shoot intensity levels). Simulated random and systematic errors in the pO2-related images reduced the TCP for the non-uniform dose prescription. In conclusion, improved tumour control of hypoxic tumours by dose redistribution may be expected following hypoxia imaging, tumour control predictions, inverse treatment planning and IMRT.
Itakura, Masaru; Kuwano, Noriyuki; Sato, Kaoru; Tachibana, Shigeaki
2010-08-01
Image contrasts of Si-based semiconducting materials have been investigated by using the latest scanning electron microscope with various detectors under a range of experimental conditions. Under a very low accelerating voltage (500 V), we obtained a good image contrast between crystalline SiGe whiskers and the amorphous matrix using an in-lens secondary electron (SE) detector, while the conventional topographic SE image and the compositional backscattered electron (BSE) image gave no distinct contrast. By using an angular-selective BSE (AsB) detector for wide-angle scattered BSE, on the other hand, the crystal grains in amorphous matrix can be clearly visualized as 'channelling contrast'. The image contrast is very similar to that of their transmission electron microscope image. The in-lens SE (true SE falling dots SE1) and the AsB (channelling) contrasts are quite useful to distinguish crystalline parts from amorphous ones.
Mesoscale and severe storms (Mass) data management and analysis system
NASA Technical Reports Server (NTRS)
Hickey, J. S.; Karitani, S.; Dickerson, M.
1984-01-01
Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.
Analyser-based mammography using single-image reconstruction.
Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A
2005-08-07
We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.
Topics in the two-dimensional sampling and reconstruction of images. [in remote sensing
NASA Technical Reports Server (NTRS)
Schowengerdt, R.; Gray, S.; Park, S. K.
1984-01-01
Mathematical analysis of image sampling and interpolative reconstruction is summarized and extended to two dimensions for application to data acquired from satellite sensors such as the Thematic mapper and SPOT. It is shown that sample-scene phase influences the reconstruction of sampled images, adds a considerable blur to the average system point spread function, and decreases the average system modulation transfer function. It is also determined that the parametric bicubic interpolator with alpha = -0.5 is more radiometrically accurate than the conventional bicubic interpolator with alpha = -1, and this at no additional cost. Finally, the parametric bicubic interpolator is found to be suitable for adaptive implementation by relating the alpha parameter to the local frequency content of an image.
Singh, Smita; Arora, Saurabh; Sandhu, Amneet Kaur; Dhingra, Ravneet
2015-01-01
Aim: To evaluate efficacy of Colour Doppler ultrasonography (CDUSG), direct digital radiography (DDR) and conventional radiography (CR) in diagnosis of periapical lesions and to clinically correlate treatment plan of periapical diseases. Materials and Methods: Thirty patients which were diagnosed with periapical lesions in anterior region by using both conventional and digital radiography were examined using colour doppler ultrasound imaging at the site of lesion. The images of each lesion were analysed by two endodontists and by an expert oral radiologist. A tentative differential diagnosis was agreed upon, based on certain principles discussed in article, then a diagnosis between cyst, granuloma and mixed lesions was made. Periapical lesions diagnosed as mixed lesions by colour doppler ultrasonography (CDUSG) were treated non-surgically whereas other periapical lesions were treated surgically. Tissues obtained during endodontic surgery were processed and examined for histopathological findings, and compared with the diagnosis made by ultrasound images. Statistical analysis was done with Chi-Square test and using one-way-Anova. Results: The periapical lesions which were diagnosed as granuloma by ultrasonographic findings, was confirmed by the results of histopathological examination in all 16 surgically treated cases. The lesions in rest of the 14 cases which showed vascularity and were diagnosed as mixed lesions by ultrasonography, were treated non-surgically and had a favourable prognosis. Conclusion: CR and DDR facilitate diagnosis of the presence of periapical disease, but do not provide and information of its nature. CDUSG imaging facilitates accurate information on the pathological nature of the lesion and hence can lead to predictable treatment planning. PMID:25738075
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M
2018-05-10
Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Shiga, Tohru; Morimoto, Yuichi; Kubo, Naoki; Katoh, Norio; Katoh, Chietsugu; Takeuchi, Wataru; Usui, Reiko; Hirata, Kenji; Kojima, Shinichi; Umegaki, Kikuo; Shirato, Hiroki; Tamaki, Nagara
2009-01-01
An autoradiography method revealed intratumoral inhomogeneity in various solid tumors. It is becoming increasingly important to estimate intratumoral inhomogeneity. However, with low spatial resolution and high scatter noise, it is difficult to detect intratumoral inhomogeneity in clinical settings. We developed a new PET system with CdTe semiconductor detectors to provide images with high spatial resolution and low scatter noise. Both phantom images and patients' images were analyzed to evaluate intratumoral inhomogeneity. This study was performed with a cold spot phantom that had 6-mm-diameter cold sphenoid defects, a dual-cylinder phantom with an adjusted concentration of 1:2, and an "H"-shaped hot phantom. These were surrounded with water. Phantom images and (18)F-FDG PET images of patients with nasopharyngeal cancer were compared with conventional bismuth germanate PET images. Profile curves for the phantoms were measured as peak-to-valley ratios to define contrast. Intratumoral inhomogeneity and tumor edge sharpness were evaluated on the images of the patients. The contrast obtained with the semiconductor PET scanner (1.53) was 28% higher than that obtained with the conventional scanner (1.20) for the 6-mm-diameter cold sphenoid phantom. The contrast obtained with the semiconductor PET scanner (1.43) was 27% higher than that obtained with the conventional scanner (1.13) for the dual-cylinder phantom. Similarly, the 2-mm cold region between 1-mm hot rods was identified only by the new PET scanner and not by the conventional scanner. The new PET scanner identified intratumoral inhomogeneity in more detail than the conventional scanner in 6 of 10 patients. The tumor edge was sharper on the images obtained with the new PET scanner than on those obtained with the conventional scanner. These phantom and clinical studies suggested that this new PET scanner has the potential for better identification of intratumoral inhomogeneity, probably because of its high spatial resolution and low scatter noise.
ROC Analysis of Chest Radiographs Using Computed Radiography and Conventional Analog Films
NASA Astrophysics Data System (ADS)
Morioka, Craig A.; Brown, Kathy; Hayrapetian, Alek S.; Kangarloo, Hooshang; Balter, Stephen; Huang, H. K.
1989-05-01
Receiver operating characteristic is used to compare the image quality of films obtained digitally using computed radiography (CR) and conventionally using analog film following fluoroscopic examination. Similar radiological views were obtained by both modalities. Twenty-four cases, some with a solitary noncalcified nodule and/or pneumothorax, were collected. Ten radiologists have been tested viewing analog and CR digital films separately. Final results indicate that there is no statistically significant difference in the ability to detect either a pneumothorax or a solitary noncalcified nodule when comparing CR digital film with conventional analog film. However, there is a trend that indicated the area under the ROC curves for detection of either a pneumothorax or solitary noncalcified nodule were greater for the analog film than for the digital film.
Imaging of conductivity distributions using audio-frequency electromagnetic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Morrison, H.F.
1990-10-01
The objective of this study has been to develop mathematical methods for mapping conductivity distributions between boreholes using low frequency electromagnetic (em) data. In relation to this objective this paper presents two recent developments in high-resolution crosshole em imaging techniques. These are (1) audio-frequency diffusion tomography, and (2) a transform method in which low frequency data is first transformed into a wave-like field. The idea in the second approach is that we can then treat the transformed field using conventional techniques designed for wave field analysis.
Efficient Data Mining for Local Binary Pattern in Texture Image Analysis
Kwak, Jin Tae; Xu, Sheng; Wood, Bradford J.
2015-01-01
Local binary pattern (LBP) is a simple gray scale descriptor to characterize the local distribution of the grey levels in an image. Multi-resolution LBP and/or combinations of the LBPs have shown to be effective in texture image analysis. However, it is unclear what resolutions or combinations to choose for texture analysis. Examining all the possible cases is impractical and intractable due to the exponential growth in a feature space. This limits the accuracy and time- and space-efficiency of LBP. Here, we propose a data mining approach for LBP, which efficiently explores a high-dimensional feature space and finds a relatively smaller number of discriminative features. The features can be any combinations of LBPs. These may not be achievable with conventional approaches. Hence, our approach not only fully utilizes the capability of LBP but also maintains the low computational complexity. We incorporated three different descriptors (LBP, local contrast measure, and local directional derivative measure) with three spatial resolutions and evaluated our approach using two comprehensive texture databases. The results demonstrated the effectiveness and robustness of our approach to different experimental designs and texture images. PMID:25767332
Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer
2009-10-01
Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.
Chen, Minghao; Wei, Shiyou; Hu, Junyan; Yuan, Jing; Liu, Fenghua
2017-01-01
The present study aimed to undertake a review of available evidence assessing whether time-lapse imaging (TLI) has favorable outcomes for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization (IVF). Using PubMed, EMBASE, Cochrane library and ClinicalTrial.gov up to February 2017 to search for randomized controlled trials (RCTs) comparing TLI versus conventional methods. Both studies randomized women and oocytes were included. For studies randomized women, the primary outcomes were live birth and ongoing pregnancy, the secondary outcomes were clinical pregnancy and miscarriage; for studies randomized oocytes, the primary outcome was blastocyst rate, the secondary outcome was good quality embryo on Day 2/3. Subgroup analysis was conducted based on different incubation and embryo selection between groups. Ten RCTs were included, four randomized oocytes and six randomized women. For oocyte-based review, the pool-analysis observed no significant difference between TLI group and control group for blastocyst rate [relative risk (RR) 1.08, 95% CI 0.94-1.25, I2 = 0%, two studies, including 1154 embryos]. The quality of evidence was moderate for all outcomes in oocyte-based review. For woman-based review, only one study provided live birth rate (RR 1,23, 95% CI 1.06-1.44,I2 N/A, one study, including 842 women), the pooled result showed no significant difference in ongoing pregnancy rate (RR 1.04, 95% CI 0.80-1.36, I2 = 59%, four studies, including 1403 women) between two groups. The quality of the evidence was low or very low for all outcomes in woman-based review. Currently there is insufficient evidence to support that TLI is superior to conventional methods for human embryo incubation and selection. In consideration of the limitations and flaws of included studies, more well designed RCTs are still in need to comprehensively evaluate the effectiveness of clinical TLI use.
Ghost imaging via optical parametric amplification
NASA Astrophysics Data System (ADS)
Li, Hong-Guo; Zhang, De-Jian; Xu, De-Qin; Zhao, Qiu-Li; Wang, Sen; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2015-10-01
We investigate theoretically and experimentally thermal light ghost imaging where the light transmitted through the object as the seed light is amplified by an optical parametric amplifier (OPA). In conventional lens imaging systems with OPA, the spectral bandwidth of OPA dominates the image resolution. Theoretically, we prove that in ghost imaging via optical parametric amplification (GIOPA) the bandwidth of OPA will not affect the image resolution. The experimental results show that for weak seed light the image quality in GIOPA is better than that of conventional ghost imaging. Our work may be valuable in remote sensing with ghost imaging technique, where the light passed through the object is weak after a long-distance propagation.
Maeda, Yoshiaki; Dobashi, Hironori; Sugiyama, Yui; Saeki, Tatsuya; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Yoshino, Tomoko
2017-01-01
Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10–500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas. PMID:28369067
User Oriented Platform for Data Analytics in Medical Imaging Repositories.
Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos
2016-01-01
The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface.
Linear discriminant analysis based on L1-norm maximization.
Zhong, Fujin; Zhang, Jiashu
2013-08-01
Linear discriminant analysis (LDA) is a well-known dimensionality reduction technique, which is widely used for many purposes. However, conventional LDA is sensitive to outliers because its objective function is based on the distance criterion using L2-norm. This paper proposes a simple but effective robust LDA version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based between-class dispersion and the L1-norm-based within-class dispersion. The proposed method is theoretically proved to be feasible and robust to outliers while overcoming the singular problem of the within-class scatter matrix for conventional LDA. Experiments on artificial datasets, standard classification datasets and three popular image databases demonstrate the efficacy of the proposed method.
Single-Cell RNA Sequencing of Glioblastoma Cells.
Sen, Rajeev; Dolgalev, Igor; Bayin, N Sumru; Heguy, Adriana; Tsirigos, Aris; Placantonakis, Dimitris G
2018-01-01
Single-cell RNA sequencing (sc-RNASeq) is a recently developed technique used to evaluate the transcriptome of individual cells. As opposed to conventional RNASeq in which entire populations are sequenced in bulk, sc-RNASeq can be beneficial when trying to better understand gene expression patterns in markedly heterogeneous populations of cells or when trying to identify transcriptional signatures of rare cells that may be underrepresented when using conventional bulk RNASeq. In this method, we describe the generation and analysis of cDNA libraries from single patient-derived glioblastoma cells using the C1 Fluidigm system. The protocol details the use of the C1 integrated fluidics circuit (IFC) for capturing, imaging and lysing cells; performing reverse transcription; and generating cDNA libraries that are ready for sequencing and analysis.
Investigation of skin structures based on infrared wave parameter indirect microscopic imaging
NASA Astrophysics Data System (ADS)
Zhao, Jun; Liu, Xuefeng; Xiong, Jichuan; Zhou, Lijuan
2017-02-01
Detailed imaging and analysis of skin structures are becoming increasingly important in modern healthcare and clinic diagnosis. Nanometer resolution imaging techniques such as SEM and AFM can cause harmful damage to the sample and cannot measure the whole skin structure from the very surface through epidermis, dermis to subcutaneous. Conventional optical microscopy has the highest imaging efficiency, flexibility in onsite applications and lowest cost in manufacturing and usage, but its image resolution is too low to be accepted for biomedical analysis. Infrared parameter indirect microscopic imaging (PIMI) uses an infrared laser as the light source due to its high transmission in skins. The polarization of optical wave through the skin sample was modulated while the variation of the optical field was observed at the imaging plane. The intensity variation curve of each pixel was fitted to extract the near field polarization parameters to form indirect images. During the through-skin light modulation and image retrieving process, the curve fitting removes the blurring scattering from neighboring pixels and keeps only the field variations related to local skin structures. By using the infrared PIMI, we can break the diffraction limit, bring the wide field optical image resolution to sub-200nm, in the meantime of taking advantage of high transmission of infrared waves in skin structures.
Efficient bias correction for magnetic resonance image denoising.
Mukherjee, Partha Sarathi; Qiu, Peihua
2013-05-30
Magnetic resonance imaging (MRI) is a popular radiology technique that is used for visualizing detailed internal structure of the body. Observed MRI images are generated by the inverse Fourier transformation from received frequency signals of a magnetic resonance scanner system. Previous research has demonstrated that random noise involved in the observed MRI images can be described adequately by the so-called Rician noise model. Under that model, the observed image intensity at a given pixel is a nonlinear function of the true image intensity and of two independent zero-mean random variables with the same normal distribution. Because of such a complicated noise structure in the observed MRI images, denoised images by conventional denoising methods are usually biased, and the bias could reduce image contrast and negatively affect subsequent image analysis. Therefore, it is important to address the bias issue properly. To this end, several bias-correction procedures have been proposed in the literature. In this paper, we study the Rician noise model and the corresponding bias-correction problem systematically and propose a new and more effective bias-correction formula based on the regression analysis and Monte Carlo simulation. Numerical studies show that our proposed method works well in various applications. Copyright © 2012 John Wiley & Sons, Ltd.
A novel imaging method for photonic crystal fiber fusion splicer
NASA Astrophysics Data System (ADS)
Bi, Weihong; Fu, Guangwei; Guo, Xuan
2007-01-01
Because the structure of Photonic Crystal Fiber (PCF) is very complex, and it is very difficult that traditional fiber fusion splice obtains optical axial information of PCF. Therefore, we must search for a bran-new optical imaging method to get section information of Photonic Crystal Fiber. Based on complex trait of PCF, a novel high-precision optics imaging system is presented in this article. The system uses a thinned electron-bombarded CCD (EBCCD) which is a kind of image sensor as imaging element, the thinned electron-bombarded CCD can offer low light level performance superior to conventional image intensifier coupled CCD approaches, this high-performance device can provide high contrast high resolution in low light level surveillance imaging; in order to realize precision focusing of image, we use a ultra-highprecision pace motor to adjust position of imaging lens. In this way, we can obtain legible section information of PCF. We may realize further concrete analysis for section information of PCF by digital image processing technology. Using this section information may distinguish different sorts of PCF, compute some parameters such as the size of PCF ventage, cladding structure of PCF and so on, and provide necessary analysis data for PCF fixation, adjustment, regulation, fusion and cutting system.
Trochesset, Denise A; Serchuk, Richard B; Colosi, Dan C
2014-03-01
Identification of unknown individuals using dental comparison is well established in the forensic setting. The identification technique can be time and resource consuming if many individuals need to be identified at once. Medical CT (MDCT) for dental profiling has had limited success, mostly due to artifact from metal-containing dental restorations and implants. The authors describe a CBCT reformatting technique that creates images, which closely approximate conventional dental images. Using a i-CAT Platinum CBCT unit and standard issue i-CAT Vision software, a protocol is developed to reproducibly and reliably reformat CBCT volumes. The reformatted images are presented with conventional digital images from the same anatomic area for comparison. The authors conclude that images derived from CBCT volumes following this protocol are similar enough to conventional dental radiographs to allow for dental forensic comparison/identification and that CBCT offers a superior option over MDCT for this purpose. © 2013 American Academy of Forensic Sciences.
Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua
2015-12-01
We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic structures with less operating time and high accuracy of modeling.
Lamadé, Wolfram; Friedrich, Colin; Ulmer, Christoph; Basar, Tarkan; Weiss, Heinz; Thon, Klaus-Peter
2011-03-01
A series of investigations proposed that patients' preference on minimal invasive and scarless surgery may be influenced by age, sex, and surgical as well as endoscopic history of the individual patient. However, it is unknown which psychological criteria lead to the acceptance of increased personal surgical risk or increased personal expenses in patients demanding scarless operations. We investigated whether individual body image contributes to the patient's readiness to assume higher risk in favor of potentially increased cosmesis. We conducted a nonrandomized survey among 63 consecutive surgical patients after receiving surgery. Individual body image perception was assessed postoperatively applying the FKB-20 questionnaire extended by four additional items. The FKB-20 questionnaire is a validated tool for measuring body image disturbances resulting in a two-dimensional score with negative body image (NBI) and vital body dynamics (VBD) being the two resulting scores. A subgroup analysis was performed according to the conducted operations: conventional open surgery = group 1, traditional laparoscopic surgery = group 2, and no scar surgery = group 3. There was a significant correlation between a negative body image and the preference for scar sparing and scarless surgery indicated by a significantly increased acceptance of surgical risks and the willingness to spend additional money for receiving scarless surgery (r = 0.333; p = 0.0227). Allocated to operation subgroups, 17 of 63 patients belonged to group 1 (OS), 29 to group 2 (minimally invasive surgery), and 17 patients to group 3 (no scar). Although age and sex were unequally distributed, the groups were homogenous regarding body mass index and body image (NBI). Subgroup analysis revealed that postoperative desire for scar sparing approaches was most frequently expressed by patients who received no scar operations. Patients with an NBI tend towards scarless surgery and are willing to accept increased operative risk and to spend additional money for improved postoperative cosmesis.
Nandigam, R N K; Viswanathan, A; Delgado, P; Skehan, M E; Smith, E E; Rosand, J; Greenberg, S M; Dickerson, B C
2009-02-01
The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2-1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71-1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB.
Nandigam, R.N.K.; Viswanathan, A.; Delgado, P.; Skehan, M.E.; Smith, E.E.; Rosand, J.; Greenberg, S.M.; Dickerson, B.C.
2009-01-01
BACKGROUND AND PURPOSE: The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. MATERIALS AND METHODS: Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2–1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. RESULTS: With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71–1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. CONCLUSIONS: The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB. PMID:19001544
Zhao, Qing; Li, Zhi; Huang, Jia; Yan, Chao; Dazzan, Paola; Pantelis, Christos; Cheung, Eric F C; Lui, Simon S Y; Chan, Raymond C K
2014-05-01
Neurological soft signs (NSS) are associated with schizophrenia and related psychotic disorders. NSS have been conventionally considered as clinical neurological signs without localized brain regions. However, recent brain imaging studies suggest that NSS are partly localizable and may be associated with deficits in specific brain areas. We conducted an activation likelihood estimation meta-analysis to quantitatively review structural and functional imaging studies that evaluated the brain correlates of NSS in patients with schizophrenia and other psychotic disorders. Six structural magnetic resonance imaging (sMRI) and 15 functional magnetic resonance imaging (fMRI) studies were included. The results from meta-analysis of the sMRI studies indicated that NSS were associated with atrophy of the precentral gyrus, the cerebellum, the inferior frontal gyrus, and the thalamus. The results from meta-analysis of the fMRI studies demonstrated that the NSS-related task was significantly associated with altered brain activation in the inferior frontal gyrus, bilateral putamen, the cerebellum, and the superior temporal gyrus. Our findings from both sMRI and fMRI meta-analyses further support the conceptualization of NSS as a manifestation of the "cerebello-thalamo-prefrontal" brain network model of schizophrenia and related psychotic disorders.
Revealing retroperitoneal liposarcoma morphology using optical coherence tomography
NASA Astrophysics Data System (ADS)
Carbajal, Esteban F.; Baranov, Stepan A.; Manne, Venu G. R.; Young, Eric D.; Lazar, Alexander J.; Lev, Dina C.; Pollock, Raphael E.; Larin, Kirill V.
2011-02-01
A new approach to distinguish normal fat, well-differentiated (WD), and dedifferentiated liposarcoma (LS) tumors is demonstrated, based on the use of optical coherence tomography (OCT). OCT images show the same structures seen with conventional histological methods. Our visual grading analysis is supported by numerical analysis of observed structures for normal fat and WDLS samples. Further development could apply the real-time and high resolution advantages of OCT for use in liposarcoma diagnosis and clinical procedures.
NASA Astrophysics Data System (ADS)
Liu, Yu; Shi, Zhanjie; Wang, Bangbing; Yu, Tianxiang
2018-01-01
As a method with high resolution, GPR has been extensively used in archaeological surveys. However, conventional GPR profile can only provide limited geometry information, such as the shape or location of the interface, but can't give the distribution of physical properties which could help identify the historical remains more directly. A common way for GPR to map parameter distribution is the common-midpoint velocity analysis, but it provides limited resolution. Another research hotspot, the full-waveform inversion, is unstable and relatively dependent on the initial model. Coring method could give direct information in drilling site, while the accurate result is only limited in several boreholes. In this paper, we propose a new scheme to enhance imaging and characterization of archaeological targets by fusion of GPR and coring data. The scheme mainly involves the impedance inversion of conventional common-offset GPR data, which uses well log to compensate GPR data and finally obtains a high-resolution estimation of permittivity. The core analysis result also contributes to interpretation of the inversion result. To test this method, we did a case study at Mudu city site in Suzhou, China. The results provide clear images of the ancient city's moat and wall subsurface and improve the characterization of archaeological targets. It is shown that this method is effective and feasible for archaeological exploration.
MRI Evaluation of Non-Necrotic T2-Hyperintense Foci in Pediatric Diffuse Intrinsic Pontine Glioma.
Clerk-Lamalice, O; Reddick, W E; Li, X; Li, Y; Edwards, A; Glass, J O; Patay, Z
2016-05-19
The conventional MR imaging appearance of diffuse intrinsic pontine glioma suggests intralesional histopathologic heterogeneity, and various distinct lesion components, including T2-hypointense foci, have been described. Here we report the prevalence, conventional MR imaging semiology, and advanced MR imaging features of non-necrotic T2-hyperintense foci in diffuse intrinsic pontine glioma. Twenty-five patients with diffuse intrinsic pontine gliomas were included in this study. MR imaging was performed at 3T by using conventional and advanced MR imaging sequences. Perfusion (CBV), vascular permeability (v e , K trans ), and diffusion (ADC) metrics were calculated and used to characterize non-necrotic T2-hyperintense foci in comparison with other lesion components, namely necrotic T2-hyperintense foci, T2-hypointense foci, peritumoral edema, and normal brain stem. Statistical analysis was performed by using Kruskal-Wallis and Wilcoxon rank sum tests. Sixteen non-necrotic T2-hyperintense foci were found in 12 tumors. In these foci, ADC values were significantly higher than those in either T2-hypointense foci (P = .002) or normal parenchyma (P = .0002), and relative CBV values were significantly lower than those in either T2-hypointense (P = .0002) or necrotic T2-hyperintense (P = .006) foci. Volume transfer coefficient values in T2-hyperintense foci were lower than those in T2-hypointense (P = .0005) or necrotic T2-hyperintense (P = .0348) foci. Non-necrotic T2-hyperintense foci are common, distinct lesion components within diffuse intrinsic pontine gliomas. Advanced MR imaging data suggest low cellularity and an early stage of angioneogenesis with leaky vessels resulting in expansion of the extracellular space. Because of the lack of biopsy validation, the underlying histoarchitectural and pathophysiologic changes remain unclear; therefore, these foci may correspond to a poorly understood biologic event in tumor evolution. © 2016 American Society of Neuroradiology.
Signal-to-noise ratio of Singer product apertures
NASA Astrophysics Data System (ADS)
Shutler, Paul M. E.; Byard, Kevin
2017-09-01
Formulae for the signal-to-noise ratio (SNR) of Singer product apertures are derived, allowing optimal Singer product apertures to be identified, and the CPU time required to decode them is quantified. This allows a systematic comparison to be made of the performance of Singer product apertures against both conventionally wrapped Singer apertures, and also conventional product apertures such as square uniformly redundant arrays. For very large images, equivalently for images at very high resolution, the SNR of Singer product apertures is asymptotically as good as the best conventional apertures, but Singer product apertures decode faster than any conventional aperture by at least a factor of ten for image sizes up to several megapixels. These theoretical predictions are verified using numerical simulations, demonstrating that coded aperture video is for the first time a realistic possibility.
Minker, Katharine R; Biedrzycki, Meredith L; Kolagunda, Abhishek; Rhein, Stephen; Perina, Fabiano J; Jacobs, Samuel S; Moore, Michael; Jamann, Tiffany M; Yang, Qin; Nelson, Rebecca; Balint-Kurti, Peter; Kambhamettu, Chandra; Wisser, Randall J; Caplan, Jeffrey L
2018-02-01
The study of phenotypic variation in plant pathogenesis provides fundamental information about the nature of disease resistance. Cellular mechanisms that alter pathogenesis can be elucidated with confocal microscopy; however, systematic phenotyping platforms-from sample processing to image analysis-to investigate this do not exist. We have developed a platform for 3D phenotyping of cellular features underlying variation in disease development by fluorescence-specific resolution of host and pathogen interactions across time (4D). A confocal microscopy phenotyping platform compatible with different maize-fungal pathosystems (fungi: Setosphaeria turcica, Cochliobolus heterostrophus, and Cercospora zeae-maydis) was developed. Protocols and techniques were standardized for sample fixation, optical clearing, species-specific combinatorial fluorescence staining, multisample imaging, and image processing for investigation at the macroscale. The sample preparation methods presented here overcome challenges to fluorescence imaging such as specimen thickness and topography as well as physiological characteristics of the samples such as tissue autofluorescence and presence of cuticle. The resulting imaging techniques provide interesting qualitative and quantitative information not possible with conventional light or electron 2D imaging. Microsc. Res. Tech., 81:141-152, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Merging Dietary Assessment with the Adolescent Lifestyle
Schap, TusaRebecca E; Zhu, Fengqing M; Delp, Edward J; Boushey, Carol J
2013-01-01
The use of image-based dietary assessment methods shows promise for improving dietary self-report among children. The Technology Assisted Dietary Assessment (TADA) food record application is a self-administered food record specifically designed to address the burden and human error associated with conventional methods of dietary assessment. Users would take images of foods and beverages at all eating occasions using a mobile telephone or mobile device with an integrated camera, (e.g., Apple iPhone, Google Nexus One, Apple iPod Touch). Once the images are taken, the images are transferred to a back-end server for automated analysis. The first step in this process is image analysis, i.e., segmentation, feature extraction, and classification, allows for automated food identification. Portion size estimation is also automated via segmentation and geometric shape template modeling. The results of the automated food identification and volume estimation can be indexed with the Food and Nutrient Database for Dietary Studies (FNDDS) to provide a detailed diet analysis for use in epidemiologic or intervention studies. Data collected during controlled feeding studies in a camp-like setting have allowed for formative evaluation and validation of the TADA food record application. This review summarizes the system design and the evidence-based development of image-based methods for dietary assessment among children. PMID:23489518
High pitch third generation dual-source CT: Coronary and Cardiac Visualization on Routine Chest CT
Sandfort, Veit; Ahlman, Mark; Jones, Elizabeth; Selwaness, Mariana; Chen, Marcus; Folio, Les; Bluemke, David A.
2016-01-01
Background Chest CT scans are frequently performed in radiology departments but have not previously contained detailed depiction of cardiac structures. Objectives To evaluate myocardial and coronary visualization on high-pitch non-gated CT of the chest using 3rd generation dual-source computed tomography (CT). Methods Cardiac anatomy of patients who had 3rd generation, non-gated high pitch contrast enhanced chest CT and who also had prior conventional (low pitch) chest CT as part of a chest abdomen pelvis exam was evaluated. Cardiac image features were scored by reviewers blinded to diagnosis and pitch. Paired analysis was performed. Results 3862 coronary segments and 2220 cardiac structures were evaluated by two readers in 222 CT scans. Most patients (97.2%) had chest CT for oncologic evaluation. The median pitch was 2.34 (IQR 2.05, 2.65) in high pitch and 0.8 (IQR 0.8, 0.8) in low pitch scans (p<0.001). High pitch CT showed higher image visualization scores for all cardiovascular structures compared with conventional pitch scans (p<0.0001). Coronary arteries were visualized in 9 coronary segments per exam in high pitch scans versus 2 segments for conventional pitch (p<0.0001). Radiation exposure was lower in the high pitch group compared with the conventional pitch group (median CTDIvol 10.83 vs. 12.36 mGy and DLP 790 vs. 827 mGycm respectively, p <0.01 for both) with comparable image noise (p=0.43). Conclusion Myocardial structure and coronary arteries are frequently visualized on non-gated 3rd generation chest CT. These results raise the question of whether the heart and coronary arteries should be routinely interpreted on routine chest CT that is otherwise obtained for non-cardiac indications. PMID:27133589
Rabal, Obdulia; Link, Wolfgang; Serelde, Beatriz G; Bischoff, James R; Oyarzabal, Julen
2010-04-01
Here we report the development and validation of a complete solution to manage and analyze the data produced by image-based phenotypic screening campaigns of small-molecule libraries. In one step initial crude images are analyzed for multiple cytological features, statistical analysis is performed and molecules that produce the desired phenotypic profile are identified. A naïve Bayes classifier, integrating chemical and phenotypic spaces, is built and utilized during the process to assess those images initially classified as "fuzzy"-an automated iterative feedback tuning. Simultaneously, all this information is directly annotated in a relational database containing the chemical data. This novel fully automated method was validated by conducting a re-analysis of results from a high-content screening campaign involving 33 992 molecules used to identify inhibitors of the PI3K/Akt signaling pathway. Ninety-two percent of confirmed hits identified by the conventional multistep analysis method were identified using this integrated one-step system as well as 40 new hits, 14.9% of the total, originally false negatives. Ninety-six percent of true negatives were properly recognized too. A web-based access to the database, with customizable data retrieval and visualization tools, facilitates the posterior analysis of annotated cytological features which allows identification of additional phenotypic profiles; thus, further analysis of original crude images is not required.
Analysis of x-ray hand images for bone age assessment
NASA Astrophysics Data System (ADS)
Serrat, Joan; Vitria, Jordi M.; Villanueva, Juan J.
1990-09-01
In this paper we describe a model-based system for the assessment of skeletal maturity on hand radiographs by the TW2 method. The problem consists in classiflying a set of bones appearing in an image in one of several stages described in an atlas. A first approach consisting in pre-processing segmentation and classification independent phases is also presented. However it is only well suited for well contrasted low noise images without superimposed bones were the edge detection by zero crossing of second directional derivatives is able to extract all bone contours maybe with little gaps and few false edges on the background. Hence the use of all available knowledge about the problem domain is needed to build a rather general system. We have designed a rule-based system for narrow down the rank of possible stages for each bone and guide the analysis process. It calls procedures written in conventional languages for matching stage models against the image and getting features needed in the classification process.
Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.; ...
2016-08-05
The dilation x-ray imager (DIXI) is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10× improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method to improve the robustness of the DIXI data analysis. Furthermore, we present results on ignition-relevant experiments atmore » the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P 0, P 2 and P 4 Legendre modes, and their temporal evolution/swings).« less
NASA Technical Reports Server (NTRS)
Blackwell, R. J.
1982-01-01
Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.
The dilation x-ray imager (DIXI) is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10× improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method to improve the robustness of the DIXI data analysis. Furthermore, we present results on ignition-relevant experiments atmore » the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P 0, P 2 and P 4 Legendre modes, and their temporal evolution/swings).« less
Automated Ontology Generation Using Spatial Reasoning
NASA Astrophysics Data System (ADS)
Coalter, Alton; Leopold, Jennifer L.
Recently there has been much interest in using ontologies to facilitate knowledge representation, integration, and reasoning. Correspondingly, the extent of the information embodied by an ontology is increasing beyond the conventional is_a and part_of relationships. To address these requirements, a vast amount of digitally available information may need to be considered when building ontologies, prompting a desire for software tools to automate at least part of the process. The main efforts in this direction have involved textual information retrieval and extraction methods. For some domains extension of the basic relationships could be enhanced further by the analysis of 2D and/or 3D images. For this type of media, image processing algorithms are more appropriate than textual analysis methods. Herein we present an algorithm that, given a collection of 3D image files, utilizes Qualitative Spatial Reasoning (QSR) to automate the creation of an ontology for the objects represented by the images, relating the objects in terms of is_a and part_of relationships and also through unambiguous Relational Connection Calculus (RCC) relations.
Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H
2017-08-03
SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image analysis also produced a similar accuracy, sensitivity, and specificity. CFR was normal in 6, each with CAD on SCA with an overall accuracy of 91%, sensitivity of 80%, and specificity of 100%. The mean CFR was significantly lower for SCA detected abnormal than for normal patients (3.86±1.06 vs 1.94±0. 0.67, P < 0.001). The visually assessed image findings in static and dynamic SPECT are subjective, and may not reflect direct physiologic measures of coronary lesion based on SCA. The CFR measured with dynamic SPECT is fully objective, with better sensitivity and specificity, available only with the data generated from the dynamic SPECT method.
An integrated content and metadata based retrieval system for art.
Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James
2004-03-01
A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.
Improved automatic adjustment of density and contrast in FCR system using neural network
NASA Astrophysics Data System (ADS)
Takeo, Hideya; Nakajima, Nobuyoshi; Ishida, Masamitsu; Kato, Hisatoyo
1994-05-01
FCR system has an automatic adjustment of image density and contrast by analyzing the histogram of image data in the radiation field. Advanced image recognition methods proposed in this paper can improve the automatic adjustment performance, in which neural network technology is used. There are two methods. Both methods are basically used 3-layer neural network with back propagation. The image data are directly input to the input-layer in one method and the histogram data is input in the other method. The former is effective to the imaging menu such as shoulder joint in which the position of interest region occupied on the histogram changes by difference of positioning and the latter is effective to the imaging menu such as chest-pediatrics in which the histogram shape changes by difference of positioning. We experimentally confirm the validity of these methods (about the automatic adjustment performance) as compared with the conventional histogram analysis methods.
Technologies for imaging neural activity in large volumes
Ji, Na; Freeman, Jeremy; Smith, Spencer L.
2017-01-01
Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior. PMID:27571194
Flow-gated radial phase-contrast imaging in the presence of weak flow.
Peng, Hsu-Hsia; Huang, Teng-Yi; Wang, Fu-Nien; Chung, Hsiao-Wen
2013-01-01
To implement a flow-gating method to acquire phase-contrast (PC) images of carotid arteries without use of an electrocardiography (ECG) signal to synchronize the acquisition of imaging data with pulsatile arterial flow. The flow-gating method was realized through radial scanning and sophisticated post-processing methods including downsampling, complex difference, and correlation analysis to improve the evaluation of flow-gating times in radial phase-contrast scans. Quantitatively comparable results (R = 0.92-0.96, n = 9) of flow-related parameters, including mean velocity, mean flow rate, and flow volume, with conventional ECG-gated imaging demonstrated that the proposed method is highly feasible. The radial flow-gating PC imaging method is applicable in carotid arteries. The proposed flow-gating method can potentially avoid the setting up of ECG-related equipment for brain imaging. This technique has potential use in patients with arrhythmia or weak ECG signals.
Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana
2015-11-01
Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.
Mild traumatic brain injury: is diffusion imaging ready for primetime in forensic medicine?
Grossman, Elan J; Inglese, Matilde; Bammer, Roland
2010-12-01
Mild traumatic brain injury (MTBI) is difficult to accurately assess with conventional imaging because such approaches usually fail to detect any evidence of brain damage. Recent studies of MTBI patients using diffusion-weighted imaging and diffusion tensor imaging suggest that these techniques have the potential to help grade tissue damage severity, track its development, and provide prognostic markers for clinical outcome. Although these results are promising and indicate that the forensic diagnosis of MTBI might eventually benefit from the use of diffusion-weighted imaging and diffusion tensor imaging, healthy skepticism and caution should be exercised with regard to interpreting their meaning because there is no consensus about which methods of data analysis to use and very few investigations have been conducted, of which most have been small in sample size and examined patients at only one time point after injury.
NASA Astrophysics Data System (ADS)
Bao, Yuan; Wang, Yan; Gao, Kun; Wang, Zhi-Li; Zhu, Pei-Ping; Wu, Zi-Yu
2015-10-01
The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42 and Y4545320Y2), the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, 11305173, 11205189, 11375225, 11321503, 11179004, and U1332109).
An Automatic Phase-Change Detection Technique for Colloidal Hard Sphere Suspensions
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth; Rogers, Richard B.
2005-01-01
Colloidal suspensions of monodisperse spheres are used as physical models of thermodynamic phase transitions and as precursors to photonic band gap materials. However, current image analysis techniques are not able to distinguish between densely packed phases within conventional microscope images, which are mainly characterized by degrees of randomness or order with similar grayscale value properties. Current techniques for identifying the phase boundaries involve manually identifying the phase transitions, which is very tedious and time consuming. We have developed an intelligent machine vision technique that automatically identifies colloidal phase boundaries. The algorithm utilizes intelligent image processing techniques that accurately identify and track phase changes vertically or horizontally for a sequence of colloidal hard sphere suspension images. This technique is readily adaptable to any imaging application where regions of interest are distinguished from the background by differing patterns of motion over time.
dada - a web-based 2D detector analysis tool
NASA Astrophysics Data System (ADS)
Osterhoff, Markus
2017-06-01
The data daemon, dada, is a server backend for unified access to 2D pixel detector image data stored with different detectors, file formats and saved with varying naming conventions and folder structures across instruments. Furthermore, dada implements basic pre-processing and analysis routines from pixel binning over azimuthal integration to raster scan processing. Common user interactions with dada are by a web frontend, but all parameters for an analysis are encoded into a Uniform Resource Identifier (URI) which can also be written by hand or scripts for batch processing.
Local dynamic range compensation for scanning electron microscope imaging system.
Sim, K S; Huang, Y H
2015-01-01
This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang
2014-12-01
In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
NASA Astrophysics Data System (ADS)
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.
Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan
2012-01-01
Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578
NASA Astrophysics Data System (ADS)
Jaiswal, Priyank; Dasgupta, Rahul
2010-05-01
We demonstrate that imaging of 2-D multichannel land seismic data can be effectively accomplished by a combination of reflection traveltime tomography and pre-stack depth migration (PSDM); we refer to the combined process as "the unified imaging". The unified imaging comprises cyclic runs of joint reflection and direct arrival inversion and pre-stack depth migration. From one cycle to another, both the inversion and the migration provide mutual feedbacks that are guided by the geological interpretation. The unified imaging is implemented in two broad stages. The first stage is similar to the conventional imaging except that it involves a significant use of velocity model from the inversion of the direct arrivals for both datuming and stacking velocity analysis. The first stage ends with an initial interval velocity model (from the stacking velocity analysis) and a corresponding depth migrated image. The second stage updates the velocity model and the depth image from the first stage in a cyclic manner; a single cycle comprises a single run of reflection traveltime inversion followed by PSDM. Interfaces used in the inversion are interpretations of the PSDM image in the previous cycle and the velocity model used in PSDM is from the joint inversion in the current cycle. Additionally in every cycle interpreted horizons in the stacked data are inverted as zero-offset reflections for constraining the interfaces; the velocity model is maintained stationary for the zero-offset inversion. A congruency factor, j, which measures the discrepancy between interfaces from the interpretation of the PSDM image and their corresponding counterparts from the inversion of the zero-offset reflections within assigned uncertainties, is computed in every cycle. A value of unity for jindicates that images from both the inversion and the migration are equivalent; at this point the unified imaging is said to have converged and is halted. We apply the unified imaging to 2-D multichannel seismic data from the Naga Thrust and Fold Belt (NTFB), India, were several exploratory wells in the last decade targeting sub-thrust leads in the footwall have failed. This failure is speculatively due to incorrect depth images which are in turn attributed to incorrect velocity models that are developed using conventional methods. The 2-D seismic data in this study is acquired perpendicular to the trend of the NTFB where the outcropping hanging wall has a topographic culmination. The acquisition style is split-spread with 30 m shot and receiver spacing and a nominal fold of 90. The data are recorded with a sample interval of 2 ms. Overall the data have a moderate signal-to-noise ratio and a broad frequency bandwidth of 8-80 Hz. The seismic line contains the failed exploratory well in the central part. The final results from unified imaging (both the depth image and the corresponding velocity model) suggest presence of a triangle zone, which was previously undiscovered. Conventional imaging had falsely portrayed the triangle zone as structural high which was interpreted as an anticline. As a result, the exploratory well, meant to target the anticline, met with pressure changes which were neither expected nor explained. The unified imaging results not only explain the observations in the well but also reveal new leads in the region. The velocity model from unified imaging was also found to be adequate for frequency-domain full-waveform imaging of the hanging wall. Results from waveform inversion are further corroborated by the geological interpretation of the exploratory well.
Digital diagnosis of medical images
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu
2001-08-01
The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.
More flexibility in representing geometric distortion in astronomical images
NASA Astrophysics Data System (ADS)
Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir
2012-09-01
A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.
Imaging through strong turbulence with a light field approach.
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C
2016-05-30
Under strong turbulence conditions, object's images can be severely distorted and become unrecognizable throughout the observing time. Conventional image restoring algorithms do not perform effectively in these circumstances due to the loss of good references on the object. We propose the use a plenoptic sensor as a light field camera to map a conventional camera image onto a cell image array in the image's sub-angular spaces. Accordingly, each cell image on the plenoptic sensor is equivalent to the image acquired by a sub-aperture of the imaging lens. The wavefront distortion over the lens aperture can be analyzed by comparing cell images in the plenoptic sensor. By using a modified "Laplacian" metric, we can identify a good cell image in a plenoptic image sequence. The good cell image corresponds with the time and sub-aperture area on the imaging lens where wavefront distortion becomes relatively and momentarily "flat". As a result, it will reveal the fundamental truths of the object that would be severely distorted on normal cameras. In this paper, we will introduce the underlying physics principles and mechanisms of our approach and experimentally demonstrate its effectiveness under strong turbulence conditions. In application, our approach can be used to provide a good reference for conventional image restoring approaches under strong turbulence conditions. This approach can also be used as an independent device to perform object recognition tasks through severe turbulence distortions.
NASA Astrophysics Data System (ADS)
Liu, Carol Y. B.; Luk, David C. K.; Zhou, Kany S. Y.; So, Bryan M. K.; Louie, Derek C. H.
2015-03-01
Due to the increasing incidences of malignant melanoma, there is a rising demand for assistive technologies for its early diagnosis and improving the survival rate. The commonly used visual screening method is with limited accuracy as the early phase of melanoma shares many clinical features with an atypical nevus, while conventional dermoscopes are not user-friendly in terms of setup time and operations. Therefore, the development of an intelligent and handy system to assist the accurate screening and long-term monitoring of melanocytic skin lesions is crucial for early diagnosis and prevention of melanoma. In this paper, an advanced design of non-invasive and non-radioactive dermoscopy system was reported. Computer-aided simulations were conducted for optimizing the optical design and uniform illumination distribution. Functional prototype and the software system were further developed, which could enable image capturing at 10x amplified and general modes, convenient data transmission, analysis of dermoscopic features (e.g., asymmetry, border irregularity, color, diameter and dermoscopic structure) for assisting the early detection of melanoma, extract patient information (e.g. code, lesion location) and integrate with dermoscopic images, thus further support long term monitoring of diagnostic analysis results. A clinical trial study was further conducted on 185 Chinese children (0-18 years old). The results showed that for all subjects, skin conditions diagnosed based on the developed system accurately confirmed the diagnoses by conventional clinical procedures. Besides, clinical analysis on dermoscopic features and a potential standard approach by the developed system to support identifying specific melanocytic patterns for dermoscopic examination in Chinese children were also reported.
Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast
NASA Astrophysics Data System (ADS)
Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.
2014-11-01
Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.
Thali, M J; Dirnhofer, R; Becker, R; Oliver, W; Potter, K
2004-10-01
The study aimed to validate magnetic resonance microscopy (MRM) studies of forensic tissue specimens (skin samples with electric injury patterns) against the results from routine histology. Computed tomography and magnetic resonance imaging are fast becoming important tools in clinical and forensic pathology. This study is the first forensic application of MRM to the analysis of electric injury patterns in human skin. Three-dimensional high-resolution MRM images of fixed skin specimens provided a complete 3D view of the damaged tissues at the site of an electric injury as well as in neighboring tissues, consistent with histologic findings. The image intensity of the dermal layer in T2-weighted MRM images was reduced in the central zone due to carbonization or coagulation necrosis and increased in the intermediate zone because of dermal edema. A subjacent blood vessel with an intravascular occlusion supports the hypothesis that current traveled through the vascular system before arcing to ground. High-resolution imaging offers a noninvasive alternative to conventional histology in forensic wound analysis and can be used to perform 3D virtual histology.
Machine Learning and Radiology
Wang, Shijun; Summers, Ronald M.
2012-01-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077
NASA Astrophysics Data System (ADS)
Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang
2016-10-01
We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.
Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H; Wouters, Fred S; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg
2013-12-24
We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions.
Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy
Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H.; Wouters, Fred S.; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg
2013-01-01
We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions. PMID:24324140
Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review
Isidori, Andrea M.; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria
2015-01-01
Context: Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Evidence Acquisition: Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). Evidence Summary: The analysis comprised 231 patients (females, 50.2%; age, 42.6 ± 17 y). Overall, 52.4% (121/231) had “overt” ECS, 18.6% had “occult” ECS, and 29% had “covert” ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized by CT in 66.2% (137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPA-PET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTR-PET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Conclusions: Nuclear medicine improves the sensitivity of conventional radiology when tumor site identification is problematic. OCT offers a good availability/reliability ratio, and FDG-PET was proven useful. 68Gallium-SSTR-PET/CT use was infrequent, despite offering the highest sensitivity. PMID:26158607
NASA Technical Reports Server (NTRS)
Hickey, J. S.
1983-01-01
The Mesoscale Analysis and Space Sensor (MASS) Data Management and Analysis System developed by Atsuko Computing International (ACI) on the MASS HP-1000 Computer System within the Systems Dynamics Laboratory of the Marshall Space Flight Center is described. The MASS Data Management and Analysis System was successfully implemented and utilized daily by atmospheric scientists to graphically display and analyze large volumes of conventional and satellite derived meteorological data. The scientists can process interactively various atmospheric data (Sounding, Single Level, Gird, and Image) by utilizing the MASS (AVE80) share common data and user inputs, thereby reducing overhead, optimizing execution time, and thus enhancing user flexibility, useability, and understandability of the total system/software capabilities. In addition ACI installed eight APPLE III graphics/imaging computer terminals in individual scientist offices and integrated them into the MASS HP-1000 Computer System thus providing significant enhancement to the overall research environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y; Sharp, G
2014-06-15
Purpose: Gain calibration for X-ray imaging systems with movable flat panel detectors (FPD) and intrinsic crosshairs is a challenge due to the geometry dependence of the heel effect and crosshair artifact. This study aims to develop a gain correction method for such systems by implementing the multi-acquisition gain image correction (MAGIC) technique. Methods: Raw flat-field images containing crosshair shadows and heel effect were acquired in 4 different FPD positions with fixed exposure parameters. The crosshair region was automatically detected and substituted with interpolated values from nearby exposed regions, generating a conventional single-image gain-map for each FPD position. Large kernel-based correctionmore » was applied to these images to correct the heel effect. A mask filter was used to invalidate the original cross-hair regions previously filled with the interpolated values. A final, seamless gain-map was created from the processed images by either the sequential filling (SF) or selective averaging (SA) techniques developed in this study. Quantitative evaluation was performed based on detective quantum efficiency improvement factor (DQEIF) for gain-corrected images using the conventional and proposed techniques. Results: Qualitatively, the MAGIC technique was found to be more effective in eliminating crosshair artifacts compared to the conventional single-image method. The mean DQEIF over the range of frequencies from 0.5 to 3.5 mm-1 were 1.09±0.06, 2.46±0.32, and 3.34±0.36 in the crosshair-artifact region and 2.35±0.31, 2.33±0.31, and 3.09±0.34 in the normal region, for the conventional, MAGIC-SF, and MAGIC-SA techniques, respectively. Conclusion: The introduced MAGIC technique is appropriate for gain calibration of an imaging system associated with a moving FPD and an intrinsic crosshair. The technique showed advantages over a conventional single image-based technique by successfully reducing residual crosshair artifacts, and higher image quality with respect to DQE.« less
Lohöfer, Fabian K; Kaissis, Georgios A; Köster, Frances L; Ziegelmayer, Sebastian; Einspieler, Ingo; Gerngross, Carlos; Rasper, Michael; Noel, Peter B; Koerdt, Steffen; Fichter, Andreas; Rummeny, Ernst J; Braren, Rickmer F
2018-05-28
The aim of this study was to evaluate the advantages of dual-layer spectral CT (DLSCT) in detection and staging of head and neck cancer (HNC) as well as the imaging of tumour margins and infiltration depth compared to conventional contrast enhanced CT (CECT). Thirty-nine patients with a proven diagnosis of HNC were examined with a DLSCT scanner and retrospectively analysed. An age-matched healthy control group of the same size was used. Images were acquired in the venous phase. Virtual monoenergetic 40keV-equivalent (MonoE40) images were compared to CECT-images. Diagnostic confidence for tumour identification and margin detection was rated independently by four experienced observers. The steepness of the Hounsfield unit (HU)-increase at the tumour margin was analysed. External carotid artery branch image reconstructions were performed and their contrast compared to conventional arterial phase imaging. Means were compared using a Student's t-test. ANOVA was used for multiple comparisons. MonoE40 images were superior to CECT-images in tumour detection and margin delineation. MonoE40 showed significantly higher attenuation differences between tumour and healthy tissue compared to CECT-images (p < 0.001). The HU-increase at the boundary of the tumour was significantly steeper in MonoE40 images compared to CECT-images (p < 0.001). Iodine uptake in the tumour was significantly higher compared to healthy tissue (p < 0.001). MonoE40 compared to conventional images allowed visualisation of external carotid artery branches from the venous phase in a higher number of cases (87% vs. 67%). DLSCT enables improved detection of primary and recurrent head and neck cancer and quantification of tumour iodine uptake. Improved contrast of MonoE40 compared to conventional reconstructions enables higher diagnostic confidence concerning tumour margin detection and vessel identification. • Sensitivity concerning tumour detection are higher using dual-layer spectral-CT than conventional CT. • Lesion to background contrast in DLSCT is significantly higher than in CECT. • DLSCT provides sufficient contrast for evaluation of external carotid artery branches.
NASA Astrophysics Data System (ADS)
Ojima, Nobutoshi; Okiyama, Natsuko; Okaguchi, Saya; Tsumura, Norimichi; Nakaguchi, Toshiya; Hori, Kimihiko; Miyake, Yoichi
2005-04-01
In the cosmetics industry, skin color is very important because skin color gives a direct impression of the face. In particular, many people suffer from melanin pigmentation such as liver spots and freckles. However, it is very difficult to evaluate melanin pigmentation using conventional colorimetric values because these values contain information on various skin chromophores simultaneously. Therefore, it is necessary to extract information of the chromophore of individual skins independently as density information. The isolation of the melanin component image based on independent component analysis (ICA) from a single skin image was reported in 2003. However, this technique has not developed a quantification method for melanin pigmentation. This paper introduces a quantification method based on the ICA of a skin color image to isolate melanin pigmentation. The image acquisition system we used consists of commercially available equipment such as digital cameras and lighting sources with polarized light. The images taken were analyzed using ICA to extract the melanin component images, and Laplacian of Gaussian (LOG) filter was applied to extract the pigmented area. As a result, for skin images including those showing melanin pigmentation and acne, the method worked well. Finally, the total amount of extracted area had a strong correspondence to the subjective rating values for the appearance of pigmentation. Further analysis is needed to recognize the appearance of pigmentation concerning the size of the pigmented area and its spatial gradation.
Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung
2016-01-01
Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites showed correlations with SER and SUV in the ER positive, HER2 negative, and Ki-67 negative groups. High levels of PC, choline, and glycine acquired from HR-MAS MRS using CNB specimens were noted in the high SER group via DCE MRI and the high SUV group via PET-CT, with significant correlations between choline and SER and between PC and SUV. Further studies should investigate whether HR-MAS MRS using CNB specimens can provide similar or more prognostic information than conventional quantitative imaging parameters.
A phase space model of Fourier ptychographic microscopy
Horstmeyer, Roarke; Yang, Changhuei
2014-01-01
A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray diffractive imaging. Our mathematical framework demonstrates that under ideal illumination conditions, conventional ptychography and FPM both produce datasets that are mathematically linked by a linear transformation. We hope this finding encourages the future cross-pollination of ideas between two otherwise unconnected experimental imaging procedures. In addition, the coherence state of the illumination source used by each imaging platform is critical to successful operation, yet currently not well understood. We apply our mathematical framework to demonstrate that partial coherence uniquely alters both conventional ptychography’s and FPM’s captured data, but up to a certain threshold can still lead to accurate resolution-enhanced imaging through appropriate computational post-processing. We verify this theoretical finding through simulation and experiment. PMID:24514995
FIMic: design for ultimate 3D-integral microscopy of in-vivo biological samples
Scrofani, G.; Sola-Pikabea, J.; Llavador, A.; Sanchez-Ortiga, E.; Barreiro, J. C.; Saavedra, G.; Garcia-Sucerquia, J.; Martínez-Corral, M.
2017-01-01
In this work, Fourier integral microscope (FIMic), an ultimate design of 3D-integral microscopy, is presented. By placing a multiplexing microlens array at the aperture stop of the microscope objective of the host microscope, FIMic shows extended depth of field and enhanced lateral resolution in comparison with regular integral microscopy. As FIMic directly produces a set of orthographic views of the 3D-micrometer-sized sample, it is suitable for real-time imaging. Following regular integral-imaging reconstruction algorithms, a 2.75-fold enhanced depth of field and 2-time better spatial resolution in comparison with conventional integral microscopy is reported. Our claims are supported by theoretical analysis and experimental images of a resolution test target, cotton fibers, and in-vivo 3D-imaging of biological specimens. PMID:29359107
Are smartphones comparable to laptops for image diagnosis in teleophthalmology?
John, Sheila; Arun, Vikram; Katti, Nahush; Appukuttan, Bindu; Pearlson, Inbiomedvision Consortium; Badrinath, Sengamedu S
2013-01-01
To assess the reliability and accuracy of smartphones in diagnosing transmitted fundus images in comparison with a laptop. Fundus images captured with a Topcon NW 200 camera were transferred onto a conventional laptop and a smartphone and given to ophthalmologists for diagnosis. The smartphone and the laptop diagnosis were compared with the actual face to face diagnosis statistically to assess their diagnostic accuracy. Fundus images of 228 eyes of 114 patients (mean age 47 years,73.6% males) were included in the study. 92.5% eyes were correctly diagnosed by both smartphones and laptop. Smartphone analysis revealed 98% sensitivity,57% specificity and kappa value of 0.62 in comparison to laptop, suggessting substantial interrater agreement. Smartphones are as effective as the laptop in diagnosing fundus pathologies and hold promise for teleophthalmology in future.
NASA Technical Reports Server (NTRS)
Massie, N. A.; Oster, Yale; Poe, Greg; Seppala, Lynn; Shao, Mike
1992-01-01
Telescopes that are designed for the unconventional imaging of near-earth satellites must follow unique design rules. The costs must be reduced substantially over those of the conventional telescope designs, and the design must accommodate a technique to circumvent atmospheric distortion of the image. Apertures of 12 m and more along with altitude-altitude mounts that provide high tracking rates are required. A novel design for such a telescope, optimized for speckle imaging, has been generated. Its mount closely resembles a radar mount, and it does not use the conventional dome. Costs for this design are projected to be considerably lower than those for the conventional designs. Results of a design study are presented with details of the electro-optical and optical designs.
Agley, Chibeza C.; Velloso, Cristiana P.; Lazarus, Norman R.
2012-01-01
The accurate measurement of the morphological characteristics of cells with nonuniform conformations presents difficulties. We report here a straightforward method using immunofluorescent staining and the commercially available imaging program Adobe Photoshop, which allows objective and precise information to be gathered on irregularly shaped cells. We have applied this measurement technique to the analysis of human muscle cells and their immunologically marked intracellular constituents, as these cells are prone to adopting a highly branched phenotype in culture. Use of this method can be used to overcome many of the long-standing limitations of conventional approaches for quantifying muscle cell size in vitro. In addition, wider applications of Photoshop as a quantitative and semiquantitative tool in immunocytochemistry are explored. PMID:22511600
NASA Astrophysics Data System (ADS)
de Oliveira, José Martins, Jr.; Mangini, F. Salvador; Carvalho Vila, Marta Maria Duarte; ViníciusChaud, Marco
2013-05-01
This work presents an alternative and non-conventional technique for evaluatingof physic-chemical properties of pharmaceutical dosage forms, i.e. we used computed tomography (CT) technique as a nondestructive technique to visualize internal structures of pharmaceuticals dosage forms and to conduct static and dynamical studies. The studies were conducted involving static and dynamic situations through the use of tomographic images, generated by the scanner at University of Sorocaba - Uniso. We have shown that through the use of tomographic images it is possible to conduct studies of porosity, densities, analysis of morphological parameters and performing studies of dissolution. Our results are in agreement with the literature, showing that CT is a powerful tool for use in the pharmaceutical sciences.
NASA Technical Reports Server (NTRS)
Erb, R. B.
1974-01-01
The Coastal Analysis Team of the Johnson Space Center conducted a 1-year investigation of ERTS-1 MSS data to determine its usefulness in coastal zone management. Galveston Bay, Texas, was the study area for evaluating both conventional image interpretation and computer-aided techniques. There was limited success in detecting, identifying and measuring areal extent of water bodies, turbidity zones, phytoplankton blooms, salt marshes, grasslands, swamps, and low wetlands using image interpretation techniques. Computer-aided techniques were generally successful in identifying these features. Aerial measurement of salt marshes accuracies ranged from 89 to 99 percent. Overall classification accuracy of all study sites was 89 percent for Level 1 and 75 percent for Level 2.
3D ultrasound imaging in image-guided intervention.
Fenster, Aaron; Bax, Jeff; Neshat, Hamid; Cool, Derek; Kakani, Nirmal; Romagnoli, Cesare
2014-01-01
Ultrasound imaging is used extensively in diagnosis and image-guidance for interventions of human diseases. However, conventional 2D ultrasound suffers from limitations since it can only provide 2D images of 3-dimensional structures in the body. Thus, measurement of organ size is variable, and guidance of interventions is limited, as the physician is required to mentally reconstruct the 3-dimensional anatomy using 2D views. Over the past 20 years, a number of 3-dimensional ultrasound imaging approaches have been developed. We have developed an approach that is based on a mechanical mechanism to move any conventional ultrasound transducer while 2D images are collected rapidly and reconstructed into a 3D image. In this presentation, 3D ultrasound imaging approaches will be described for use in image-guided interventions.
CT angiography of the renal arteries and veins: normal anatomy and variants.
Hazırolan, Tuncay; Öz, Meryem; Türkbey, Barış; Karaosmanoğlu, Ali Devrim; Oğuz, Berna Sayan; Canyiğit, Murat
2011-03-01
Conventional angiography has long been regarded as gold standard imaging modality for evaluation of the renal vasculature. Introduction of multidetector computed tomography (MDCT) angiography had a groundbreaking impact on evaluation of the renal vessels and is gradually replacing conventional angiography as standard imaging. Herein, we review and illustrate the normal and variant anatomy of renal vessels with special emphasis on imaging protocols and reconstruction techniques in MDCT.
Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald
2002-06-01
Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.
Two- versus three-dimensional imaging in subjects with unerupted maxillary canines.
Botticelli, Susanna; Verna, Carlalberta; Cattaneo, Paolo M; Heidmann, Jens; Melsen, Birte
2011-08-01
The aim of this study was to evaluate whether there is any difference in the diagnostic information provided by conventional two-dimensional (2D) images or by three-dimensional (3D) cone beam computed tomography (CBCT) in subjects with unerupted maxillary canines. Twenty-seven patients (17 females and 10 males, mean age 11.8 years) undergoing orthodontic treatment with 39 impacted or retained maxillary canines were included. For each canine, two different digital image sets were obtained: (1) A 2D image set including a panoramic radiograph, a lateral cephalogram, and the available periapical radiographs with different projections and (2) A 3D image set obtained with CBCT. Both sets of images were submitted, in a single-blind randomized order, to eight dentists. A questionnaire was used to assess the position of the canine, the presence of root resorption, the difficulty of the case, treatment choice options, and the quality of the images. Data analysis was performed using the McNemar-Bowker test for paired data, Kappa statistics, and paired t-tests. The findings demonstrated a difference in the localization of the impacted canines between the two techniques, which can be explained by factors affecting the conventional 2D radiographs such as distortion, magnification, and superimposition of anatomical structures situated in different planes of space. The increased precision in the localization of the canines and the improved estimation of the space conditions in the arch obtained with CBCT resulted in a difference in diagnosis and treatment planning towards a more clinically orientated approach.
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.
Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods.
How the Hilbert integral theorem inspired flow lines
NASA Astrophysics Data System (ADS)
Winston, Roland; Jiang, Lun
2017-09-01
Nonimaging Optics has been shown to achieve the theoretical limits constrained only by thermodynamic principles. The designing principles of nonimaging optics allow a non-conventional way of thinking about and generating new optical devices. Compared to conventional imaging optics which rarely utilizes the framework of thermodynamic arguments, nonimaging optics chooses to map etendue instead of rays. This fundamental shift of design paradigm frees the optics design from ray based designs which heavily relies on error tolerance analysis. Instead, the underlying thermodynamic principles guide the nonimaging design to be naturally constructed for extended light source for illumination, non-tracking concentrators and sensors that require sharp cut-off angles. We argue in this article that such optical devices which has enabled a multitude of applications depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background.
Payne, Gemma; Reedy, Brian; Lennard, Chris; Comber, Bruce; Exline, David; Roux, Claude
2005-05-28
This study investigated the application of chemical imaging to the detection of latent fingerprints using the Condor macroscopic chemical imaging system (ChemImage Corp., Pittsburgh, USA). Methods were developed and optimised for the visualisation of untreated latent fingerprints and fingerprints processed with DFO, ninhydrin, cyanoacrylate, and cyanoacrylate plus rhodamine 6G stain. The results obtained with chemical imaging were compared to the detection achieved using conventional imaging techniques. The Condor significantly improved the detection of many prints, especially those that might be considered poor quality or borderline prints. Prints on newspaper treated with ninhydrin and DFO, and prints on white and yellow paper treated with ninhydrin, benefited the most from chemical imaging detection. In many cases, fingerprints undetectable using conventional imaging techniques could be visualised with chemical imaging. Ridge detail from untreated prints on yellow paper was also detected using the Condor. When prints of high quality were examined, both detection techniques produced quality results. The results of this project demonstrate that chemical imaging offers advantages over conventional visualisation techniques when examining latent fingerprints, especially those that would be considered difficult, such as weak prints or prints on surfaces that produce highly luminescent backgrounds. Standard testing procedures for the detection and enhancement of fingerprints by chemical imaging are presented and discussed.
El-Merhi, Fadi; Garg, Deepak; Cura, Marco; Ghaith, Ola
2013-02-01
Vascular anomalies are classified into vascular tumors (infantile hemangioma) and vascular malformations. Vascular malformations are divided into slow flow and high flow subtypes. Magnetic resonance imaging helps in classification and assessing extent and distribution. Conventional angiography also known as digital subtraction angiography is pivotal in assessment of fine vascular details and treatment planning. Imaging correlates well with histopathology. We review recent development in imaging techniques of various vascular anomalies most of which are affecting the peripheral system which potentially may broaden understanding of their diagnosis, classification and treatment.
Turboprop: improved PROPELLER imaging.
Pipe, James G; Zwart, Nicholas
2006-02-01
A variant of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI, called turboprop, is introduced. This method employs an oscillating readout gradient during each spin echo of the echo train to collect more lines of data per echo train, which reduces the minimum scan time, motion-related artifact, and specific absorption rate (SAR) while increasing sampling efficiency. It can be applied to conventional fast spin-echo (FSE) imaging; however, this article emphasizes its application in diffusion-weighted imaging (DWI). The method is described and compared with conventional PROPELLER imaging, and clinical images collected with this PROPELLER variant are shown. Copyright 2006 Wiley-Liss, Inc.
Sarcopenia in the prognosis of cirrhosis: Going beyond the MELD score
Kim, Hee Yeon; Jang, Jeong Won
2015-01-01
Estimating the prognosis of patients with cirrhosis remains challenging, because the natural history of cirrhosis varies according to the cause, presence of portal hypertension, liver synthetic function, and the reversibility of underlying disease. Conventional prognostic scoring systems, including the Child-Turcotte-Pugh score or model for end-stage liver diseases are widely used; however, revised models have been introduced to improve prognostic performance. Although sarcopenia is one of the most common complications related to survival of patients with cirrhosis, the newly proposed prognostic models lack a nutritional status evaluation of patients. This is reflected by the lack of an optimal index for sarcopenia in terms of objectivity, reproducibility, practicality, and prognostic performance, and of a consensus definition for sarcopenia in patients with cirrhosis in whom ascites and edema may interfere with body composition analysis. Quantifying skeletal muscle mass using cross-sectional abdominal imaging is a promising tool for assessing sarcopenia. As radiological imaging provides direct visualization of body composition, it is useful to evaluate sarcopenia in patients with cirrhosis whose body mass index, anthropometric measurements, or biochemical markers are inaccurate on a nutritional assessment. Sarcopenia defined by cross-sectional imaging-based muscular assessment is prevalent and predicts mortality in patients with cirrhosis. Sarcopenia alone or in combination with conventional prognostic systems shows promise for a cirrhosis prognosis. Including an objective assessment of sarcopenia with conventional scores to optimize the outcome prediction for patients with cirrhosis needs further research. PMID:26167066
Liu, Ding-Yun; Gan, Tao; Rao, Ni-Ni; Xing, Yao-Wen; Zheng, Jie; Li, Sang; Luo, Cheng-Si; Zhou, Zhong-Jun; Wan, Yong-Li
2016-08-01
The gastrointestinal endoscopy in this study refers to conventional gastroscopy and wireless capsule endoscopy (WCE). Both of these techniques produce a large number of images in each diagnosis. The lesion detection done by hand from the images above is time consuming and inaccurate. This study designed a new computer-aided method to detect lesion images. We initially designed an algorithm named joint diagonalisation principal component analysis (JDPCA), in which there are no approximation, iteration or inverting procedures. Thus, JDPCA has a low computational complexity and is suitable for dimension reduction of the gastrointestinal endoscopic images. Then, a novel image feature extraction method was established through combining the algorithm of machine learning based on JDPCA and conventional feature extraction algorithm without learning. Finally, a new computer-aided method is proposed to identify the gastrointestinal endoscopic images containing lesions. The clinical data of gastroscopic images and WCE images containing the lesions of early upper digestive tract cancer and small intestinal bleeding, which consist of 1330 images from 291 patients totally, were used to confirm the validation of the proposed method. The experimental results shows that, for the detection of early oesophageal cancer images, early gastric cancer images and small intestinal bleeding images, the mean values of accuracy of the proposed method were 90.75%, 90.75% and 94.34%, with the standard deviations (SDs) of 0.0426, 0.0334 and 0.0235, respectively. The areas under the curves (AUCs) were 0.9471, 0.9532 and 0.9776, with the SDs of 0.0296, 0.0285 and 0.0172, respectively. Compared with the traditional related methods, our method showed a better performance. It may therefore provide worthwhile guidance for improving the efficiency and accuracy of gastrointestinal disease diagnosis and is a good prospect for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for detecting an image of an object
Chapman, Leroy Dean; Thomlinson, William C.; Zhong, Zhong
1999-11-16
A method for detecting an absorption, refraction and scatter image of an object by independently analyzing, detecting, digitizing, and combining images acquired on a high and a low angle side of a rocking curve of a crystal analyzer. An x-ray beam which is generated by any suitable conventional apparatus can be irradiated upon either a Bragg type crystal analyzer or a Laue type crystal analyzer. Images of the absorption, refraction and scattering effects are detected, such as on an image plate, and then digitized. The digitized images are simultaneously solved, preferably on a pixel-by-pixel basis, to derive a combined visual image which has dramatically improved contrast and spatial resolution over an image acquired through conventional radiology methods.
Conventional vs invert-grayscale X-ray for diagnosis of pneumothorax in the emergency setting.
Musalar, Ekrem; Ekinci, Salih; Ünek, Orkun; Arş, Eda; Eren, Hakan Şevki; Gürses, Bengi; Aktaş, Can
2017-09-01
Pneumothorax is a pathologic condition in which air is accumulated between the visceral and parietal pleura. After clinical suspicion, in order to diagnose the severity of the condition, imaging is necessary. By using the help of Picture Archiving and Communication Systems (PACS) direct conventional X-rays are converted to gray-scale and this has become a preferred method among many physicians. Our study design was a case-control study with cross-over design study. Posterior-anterior chest X-rays of patients were evaluated for pneumothorax by 10 expert physicians with at least 3years of experience and who have used inverted gray-scale posterior anterior chest X-ray for diagnosing pneumothorax. The study included posterior anterior chest X-ray images of 268 patients of which 106 were diagnosed with spontaneous pneumothorax and 162 patients used as a control group. The sensitivity of Digital-conventional X-rays was found to be higher than that of inverted gray-scale images (95% CI (2,08-5,04), p<0,01). There was no statistically significant difference between the gold standard and digital-conventional images (95% CI (0,45-2,17), p=0,20), while the evaluations of the gray-scale images were found to be less sensitive for diagnosis (95% CI (3,16-5,67) p<0,01). Inverted gray-scale imaging is not a superior imaging modality over digital-conventional X-ray for the diagnosis of pneumothorax. Prospective studies should be performed where diagnostic potency of inverted gray-scale radiograms is tested against gold standard chest CT. Further research should compare inverted grayscale to lung ultrasound to assess them as alternatives prior to CT. Copyright © 2017 Elsevier Inc. All rights reserved.
Zbijewski, W; De Jean, P; Prakash, P; Ding, Y; Stayman, J W; Packard, N; Senn, R; Yang, D; Yorkston, J; Machado, A; Carrino, J A; Siewerdsen, J H
2011-08-01
This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a -55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm3 field of view); total acquisition arc of -240 degrees. The system MTF declines to 50% at -1.3 mm(-1) and to 10% at -2.7 mm(-1), consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from -500 projections at less than -0.5 kW power, implying -6.4 mGy (0.064 mSv) for low-dose protocols and -15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.
Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.
2011-01-01
Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a ∼55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 × 20 × 20 cm3 field of view); total acquisition arc of ∼240°. The system MTF declines to 50% at ∼1.3 mm−1 and to 10% at ∼2.7 mm−1, consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from ∼500 projections at less than ∼0.5 kW power, implying ∼6.4 mGy (0.064 mSv) for low-dose protocols and ∼15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10–20 HU contrast resolution). Conclusions: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography. PMID:21928644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zbijewski, W.; De Jean, P.; Prakash, P.
2011-08-15
Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified themore » following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm{sup 3} field of view); total acquisition arc of {approx}240 deg. The system MTF declines to 50% at {approx}1.3 mm{sup -1} and to 10% at {approx}2.7 mm{sup -1}, consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from {approx}500 projections at less than {approx}0.5 kW power, implying {approx}6.4 mGy (0.064 mSv) for low-dose protocols and {approx}15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). Conclusions: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.« less
MR pyelography and conventional MR imaging in urinary tract obstruction.
Catalano, C; Pavone, P; Laghi, A; Scipioni, A; Panebianco, V; Brillo, R; Fraioli, F; Passariello, R
1999-03-01
To evaluate the possible role of MR imaging in the assessment of patients with urinary tract obstruction by combining conventional MR imaging and MR pyelography (MRP). Forty-three patients with dilated upper urinary tract were studied with a high gradient strength 0.5 T magnet. Respiratory compensated T1-weighted, SE and T2-weighted TSE sequences were acquired in all patients. MRP images were obtained by using a respiratory compensated 3D T2-weighted TSE sequence. MRP images were reconstructed with a MIP algorithm. In all cases, urography and/or ascending pyelography were also performed. Images were independently evaluated by two radiologists. The dilated tract ureter and the level of the obstruction could be correctly demonstrated in all cases. The cause of the obstruction was correctly demonstrated by examiner 1 in 90% and by examiner 2 in 88%. The interobserver agreement was high with a kappa-value of 0.96. In cases of obstructive hydroureteronephrosis MR imaging, combining MRP and conventional sequences, can be proposed as an accurate technique in the assessment of level and cause of obstruction.
Bidar, Fatemeh; Faeghi, Fariborz; Ghorbani, Askar
2016-01-01
Background: The purpose of this study is to demonstrate the advantages of gradient echo (GRE) sequences in the detection and characterization of cerebral venous sinus thrombosis compared to conventional magnetic resonance sequences. Methods: A total of 17 patients with cerebral venous thrombosis (CVT) were evaluated using different magnetic resonance imaging (MRI) sequences. The MRI sequences included T1-weighted spin echo (SE) imaging, T*2-weighted turbo SE (TSE), fluid attenuated inversion recovery (FLAIR), T*2-weighted conventional GRE, and diffusion weighted imaging (DWI). MR venography (MRV) images were obtained as the golden standard. Results: Venous sinus thrombosis was best detectable in T*2-weighted conventional GRE sequences in all patients except in one case. Venous thrombosis was undetectable in DWI. T*2-weighted GRE sequences were superior to T*2-weighted TSE, T1-weighted SE, and FLAIR. Enhanced MRV was successful in displaying the location of thrombosis. Conclusion: T*2-weighted conventional GRE sequences are probably the best method for the assessment of cerebral venous sinus thrombosis. The mentioned method is non-invasive; therefore, it can be employed in the clinical evaluation of cerebral venous sinus thrombosis. PMID:27326365
Multi-Frequency Intravascular Ultrasound (IVUS) Imaging
Ma, Teng; Yu, Mingyue; Chen, Zeyu; Fei, Chunlong; Shung, K. Kirk; Zhou, Qifa
2015-01-01
Acute coronary syndrome (ACS) is frequently associated with the sudden rupture of a vulnerable atherosclerotic plaque within the coronary artery. Several unique physiological features, including a thin fibrous cap accompanied by a necrotic lipid core, are the targeted indicators for identifying the vulnerable plaques. Intravascular ultrasound (IVUS), a catheter-based imaging technology, has been routinely performed in clinics for more than 20 years to describe the morphology of the coronary artery and guide percutaneous coronary interventions. However, conventional IVUS cannot facilitate the risk assessment of ACS because of its intrinsic limitations, such as insufficient resolution. Renovation of the IVUS technology is essentially needed to overcome the limitations and enhance the coronary artery characterization. In this paper, a multi-frequency intravascular ultrasound (IVUS) imaging system was developed by incorporating a higher frequency IVUS transducer (80 to 150 MHz) with the conventional IVUS (30–50 MHz) system. The newly developed system maintains the advantage of deeply penetrating imaging with the conventional IVUS, while offering an improved higher resolution image with IVUS at a higher frequency. The prototyped multi-frequency catheter has a clinically compatible size of 0.95 mm and a favorable capability of automated image co-registration. In vitro human coronary artery imaging has demonstrated the feasibility and superiority of the multi-frequency IVUS imaging system to deliver a more comprehensive visualization of the coronary artery. This ultrasonic-only intravascular imaging technique, based on a moderate refinement of the conventional IVUS system, is not only cost-effective from the perspective of manufacturing and clinical practice, but also holds the promise of future translation into clinical benefits. PMID:25585394
Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen
2002-02-01
The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.
NASA Astrophysics Data System (ADS)
Daffara, Claudia; Parisotto, Simone; Ambrosini, Dario
2018-05-01
We present a multi-purpose, dual-mode imaging method in the Mid-Wavelength Infrared (MWIR) range (from 3 μm to 5 μm) for a more efficient nondestructive analysis of artworks. Using a setup based on a MWIR thermal camera and multiple radiation sources, two radiometric image datasets are acquired in different acquisition modalities, the image in quasi-reflectance mode (TQR) and the thermal sequence in emission mode. Here, the advantages are: the complementarity of the information; the use of the quasi-reflectance map for calculating the emissivity map; the use of TQR map for a referentiation to the visible of the thermographic images. The concept of the method is presented, the practical feasibility is demonstrated through a custom imaging setup, the potentiality for the nondestructive analysis is shown on a notable application to cultural heritage. The method has been used as experimental tool in support of the restoration of the mural painting "Monocromo" by Leonardo da Vinci. Feedback from the operators and a comparison with some conventional diagnostic techniques is also given to underline the novelty and potentiality of the method.
Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary
2011-08-01
Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.
Diffusion-weighted MR of the brain: methodology and clinical application.
Mascalchi, Mario; Filippi, Massimo; Floris, Roberto; Fonda, Claudio; Gasparotti, Roberto; Villari, Natale
2005-03-01
Clinical diffusion magnetic resonance (MR) imaging in humans started in the last decade with the demonstration of the capabilities of this technique of depicting the anatomy of the white matter fibre tracts in the brain. Two main approaches in terms of reconstruction and evaluation of the images obtained with application of diffusion sensitising gradients to an echo planar imaging sequence are possible. The first approach consists of reconstruction of images in which the effect of white matter anisotropy is averaged -- known as the isotropic or diffusion weighted images, which are usually evaluated subjectively for possible areas of increased or decreased signal, reflecting restricted and facilitated diffusion, respectively. The second approach implies reconstruction of image maps of the apparent diffusion coefficient (ADC), in which the T2 weighting of the echo planar diffusion sequence is cancelled out, and their objective, i.e. numerical, evaluation with regions of interest or histogram analysis. This second approach enables a quantitative and reproducible assessment of the diffusion changes not only in areas exhibiting signal abnormality in conventional MR images but also in areas of normal signal. A further level of image post-processing requires the acquisition of images after application of sensitising gradients along at least 6 different spatial orientations and consists of computation of the diffusion tensor and reconstruction of maps of the mean diffusivity (D) and of the white matter anisotropic properties, usually in terms of fractional anisotropy (FA). Diffusion-weighted imaging is complementary to conventional MR imaging in the evaluation of the acute ischaemic stroke. The combination of diffusion and perfusion MR imaging has the potential of providing all the information necessary for the diagnosis and management of the individual patient with acute ischaemic stroke. Diffusion-weighted MR, in particular quantitative evaluation based on the diffusion tensor, has a fundamental role in the assessment of brain maturation and of white matter diseases in the fetus, in the neonate and in the child. Diffusion MR imaging enables a better characterisation of the lesions demonstrated by conventional MR imaging, for instance in the hypoxic-ischaemic encephalopathy, in infections and in the inherited metabolic diseases, and is particularly important for the longitudinal evaluation of these conditions. Diffusion-weighted MR imaging has an established role in the differential diagnosis between brain abscess and cystic tumour and between epidermoid tumour and arachnoid cyst. On the other hand, the results obtained with diffusion MR in the characterisation of type and extension of glioma do not yet allow decision making in the individual patient. Diffusion is one of the most relevant MR techniques to have contributed to a better understanding of the pathophysiological mechanisms of multiple sclerosis (MS). In fact, it improves the specificity of MR in characterising the different pathological substrata underlying the rather uniform lesion appearance on the conventional images and enables detection of damage in the normal-appearing white and grey matter. In MS patients the ADC or D values in the normal-appearing white matter are increased as compared to control values, albeit to a lesser degree than in the lesions demonstrated by T2-weighted images. In addition, the D of the normal appearing grey matter is increased in MS patients and this change correlates with the cognitive deficit of these patients. Histogram analysis in MS patients shows that the peak of the brain D is decreased and right-shifted, reflecting an increase of its value, and the two features correlate with the patient's clinical disability. Ageing is associated to a mild but significant increase of the brain ADC or D which is predominantly due to changes in the white matter. Region of interest and histogram studies have demonstrated that D or ADC are increased in either the areas of leukoaraiosis or the normal-appearing white matter in patients with inherited cerebral autosomal dominant arteriopathy with subcortical infarcts and stroke or sporadic ischaemic leukoencephalopathy. Diffusion changes might be a more sensitive marker for progression of the disease than conventional imaging findings. In neurodegenerative diseases of the central nervous system such as Alzheimer's disease, Huntington's disease, hereditary ataxias and motor neuron disease, quantitative diffusion MR demonstrates the cortical and subcortical grey matter damage, which is reflected in a regional increase of D or ADC, but also reveals the concomitant white matter changes that are associated with an increase in D or ADC and decrease in FA. In all these diseases the diffusion changes are correlated to the clinical deficit and are potentially useful for early diagnosis and longitudinal evaluation, especially in the context of pharmacological trials.
4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.
Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A
2016-03-01
The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan time = 3:44 min. The conventional sequence achieved TE = 2.9 ms and scan time = 5:23 min. In subjects with aortic stenosis, we also compared both MRI methods with Doppler ultrasound (US) in the measurement of peak velocity, time to peak systolic velocity, and eject time. Bland-Altman analysis revealed that, when comparing peak velocities, the discrepancy between Doppler US and 4D spiral flow was significantly less than the discrepancy between Doppler and 4D Cartesian flow (2.75 cm/s vs. 10.25 cm/s), whereas the two MR methods were comparable (-5.75 s vs. -6 s) for time to peak. However, for the estimation of eject time, relative to Doppler US, the discrepancy for 4D conventional flow was smaller than that of 4D spiral flow (-16.25 s vs. -20 s). Relative to conventional 4D flow, 4D spiral flow achieves substantial reductions in both the TE and scan times; therefore, utility for it should be sought in a variety of in vivo and complex flow imaging applications. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gang, Grace J.; Siewerdsen, Jeffrey H.; Webster Stayman, J.
2017-06-01
Tube current modulation (TCM) is routinely adopted on diagnostic CT scanners for dose reduction. Conventional TCM strategies are generally designed for filtered-backprojection (FBP) reconstruction to satisfy simple image quality requirements based on noise. This work investigates TCM designs for model-based iterative reconstruction (MBIR) to achieve optimal imaging performance as determined by a task-based image quality metric. Additionally, regularization is an important aspect of MBIR that is jointly optimized with TCM, and includes both the regularization strength that controls overall smoothness as well as directional weights that permits control of the isotropy/anisotropy of the local noise and resolution properties. Initial investigations focus on a known imaging task at a single location in the image volume. The framework adopts Fourier and analytical approximations for fast estimation of the local noise power spectrum (NPS) and modulation transfer function (MTF)—each carrying dependencies on TCM and regularization. For the single location optimization, the local detectability index (d‧) of the specific task was directly adopted as the objective function. A covariance matrix adaptation evolution strategy (CMA-ES) algorithm was employed to identify the optimal combination of imaging parameters. Evaluations of both conventional and task-driven approaches were performed in an abdomen phantom for a mid-frequency discrimination task in the kidney. Among the conventional strategies, the TCM pattern optimal for FBP using a minimum variance criterion yielded a worse task-based performance compared to an unmodulated strategy when applied to MBIR. Moreover, task-driven TCM designs for MBIR were found to have the opposite behavior from conventional designs for FBP, with greater fluence assigned to the less attenuating views of the abdomen and less fluence to the more attenuating lateral views. Such TCM patterns exaggerate the intrinsic anisotropy of the MTF and NPS as a result of the data weighting in MBIR. Directional penalty design was found to reinforce the same trend. The task-driven approaches outperform conventional approaches, with the maximum improvement in d‧ of 13% given by the joint optimization of TCM and regularization. This work demonstrates that the TCM optimal for MBIR is distinct from conventional strategies proposed for FBP reconstruction and strategies optimal for FBP are suboptimal and may even reduce performance when applied to MBIR. The task-driven imaging framework offers a promising approach for optimizing acquisition and reconstruction for MBIR that can improve imaging performance and/or dose utilization beyond conventional imaging strategies.
Paper-Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine.
Jalal, Uddin M; Jin, Gyeong Jun; Shim, Joon S
2017-12-19
In this work, a disposable paper-plastic hybrid microfluidic lab-on-a-chip (LOC) has been developed and successfully applied for the colorimetric measurement of urine by the smartphone-based optical platform using a "UrineAnalysis" Android app. The developed device was cost-effectively implemented as a stand-alone hybrid LOC by incorporating the paper-based conventional reagent test strip inside the plastic-based LOC microchannel. The LOC device quantitatively investigated the small volume (40 μL) of urine analytes for the colorimetric reaction of glucose, protein, pH, and red blood cell (RBC) in integration with the finger-actuating micropump. On the basis of our experiments, the conventional urine strip showed large deviation as the reaction time goes by, because dipping the strip sensor in a bottle of urine could not control the reaction volume. By integrating the strip sensor in the LOC device for urine analysis, our device significantly improves the time-dependent inconstancy of the conventional dipstick-based urine strip, and the smartphone app used for image analysis enhances the visual assessment of the test strip, which is a major user concern for the colorimetric analysis in point-of-care (POC) applications. As a result, the user-friendly LOC, which is successfully implemented in a disposable format with the smartphone-based optical platform, may be applicable as an effective tool for rapid and qualitative POC urinalysis.
Healy, Sinead; McMahon, Jill; Owens, Peter; Dockery, Peter; FitzGerald, Una
2018-02-01
Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal. For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms. Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining. We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology. As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow
Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.
2016-01-01
Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169
The design of wavefront coded imaging system
NASA Astrophysics Data System (ADS)
Lan, Shun; Cen, Zhaofeng; Li, Xiaotong
2016-10-01
Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.
Parallel magnetic resonance imaging using coils with localized sensitivities.
Goldfarb, James W; Holland, Agnes E
2004-09-01
The purpose of this study was to present clinical examples and illustrate the inefficiencies of a conventional reconstruction using a commercially available phased array coil with localized sensitivities. Five patients were imaged at 1.5 T using a cardiac-synchronized gadolinium-enhanced acquisition and a commercially available four-element phased array coil. Four unique sets of images were reconstructed from the acquired k-space data: (a) sum-of-squares image using four elements of the coil; localized sum-of-squares images from the (b) anterior coils and (c) posterior coils and a (c) local reconstruction. Images were analyzed for artifacts and usable field-of-view. Conventional image reconstruction produced images with fold-over artifacts in all cases spanning a portion of the image (mean 90 mm; range 36-126 mm). The local reconstruction removed fold-over artifacts and resulted in an effective increase in the field-of-view (mean 50%; range 20-70%). Commercially available phased array coils do not always have overlapping sensitivities. Fold-over artifacts can be removed using an alternate reconstruction method. When assessing the advantages of parallel imaging techniques, gains achieved using techniques such as SENSE and SMASH should be gauged against the acquisition time of the localized method rather than the conventional sum-of-squares method.
Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.
Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng
2012-05-01
The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.
Mapping of forested wetland: use of Seasat radar images to complement conventional sources ( USA).
Place, J.L.
1985-01-01
Distinguishing forested wetland from dry forest using aerial photographs is handicapped because photographs often do not reveal the presence of water below tree canopies. Radar images obtained by the Seasat satellite reveal forested wetland as highly reflective patterns on the coastal plain between Maryland and Florida. Seasat radar images may complement aerial photographs for compiling maps of wetland. A test with experienced photointerpreters revealed that interpretation accuracy was significantly higher when using Seasat radar images than when using only conventional sources.-Author
X-Ray Backscatter Imaging for Aerospace Applications
NASA Astrophysics Data System (ADS)
Shedlock, Daniel; Edwards, Talion; Toh, Chin
2011-06-01
Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.
Open-top selective plane illumination microscope for conventionally mounted specimens.
McGorty, Ryan; Liu, Harrison; Kamiyama, Daichi; Dong, Zhiqiang; Guo, Su; Huang, Bo
2015-06-15
We have developed a new open-top selective plane illumination microscope (SPIM) compatible with microfluidic devices, multi-well plates, and other sample formats used in conventional inverted microscopy. Its key element is a water prism that compensates for the aberrations introduced when imaging at 45 degrees through a coverglass. We have demonstrated its unique high-content imaging capability by recording Drosophila embryo development in environmentally-controlled microfluidic channels and imaging zebrafish embryos in 96-well plates. We have also shown the imaging of C. elegans and moving Drosophila larvae on coverslips.
Artefacts found in computed radiography.
Cesar, L J; Schueler, B A; Zink, F E; Daly, T R; Taubel, J P; Jorgenson, L L
2001-02-01
Artefacts on radiographic images are distracting and may compromise accurate diagnosis. Although most artefacts that occur in conventional radiography have become familiar, computed radiography (CR) systems produce artefacts that differ from those found in conventional radiography. We have encountered a variety of artefacts in CR images that were produced from four different models plate reader. These artefacts have been identified and traced to the imaging plate, plate reader, image processing software or laser printer or to operator error. Understanding the potential sources of CR artefacts will aid in identifying and resolving problems quickly and help prevent future occurrences.
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Mohamed, Zeehaida
2012-01-01
Malaria is one of the serious global health problem, causing widespread sufferings and deaths in various parts of the world. With the large number of cases diagnosed over the year, early detection and accurate diagnosis which facilitates prompt treatment is an essential requirement to control malaria. For centuries now, manual microscopic examination of blood slide remains the gold standard for malaria diagnosis. However, low contrast of the malaria and variable smears quality are some factors that may influence the accuracy of interpretation by microbiologists. In order to reduce this problem, this paper aims to investigate the performance of the proposed contrast enhancement techniques namely, modified global and modified linear contrast stretching as well as the conventional global and linear contrast stretching that have been applied on malaria images of P. vivax species. The results show that the proposed modified global and modified linear contrast stretching techniques have successfully increased the contrast of the parasites and the infected red blood cells compared to the conventional global and linear contrast stretching. Hence, the resultant images would become useful to microbiologists for identification of various stages and species of malaria.
NASA Astrophysics Data System (ADS)
Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad
2016-03-01
Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.
Leaf epidermis images for robust identification of plants
da Silva, Núbia Rosa; Oliveira, Marcos William da Silva; Filho, Humberto Antunes de Almeida; Pinheiro, Luiz Felipe Souza; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez
2016-01-01
This paper proposes a methodology for plant analysis and identification based on extracting texture features from microscopic images of leaf epidermis. All the experiments were carried out using 32 plant species with 309 epidermal samples captured by an optical microscope coupled to a digital camera. The results of the computational methods using texture features were compared to the conventional approach, where quantitative measurements of stomatal traits (density, length and width) were manually obtained. Epidermis image classification using texture has achieved a success rate of over 96%, while success rate was around 60% for quantitative measurements taken manually. Furthermore, we verified the robustness of our method accounting for natural phenotypic plasticity of stomata, analysing samples from the same species grown in different environments. Texture methods were robust even when considering phenotypic plasticity of stomatal traits with a decrease of 20% in the success rate, as quantitative measurements proved to be fully sensitive with a decrease of 77%. Results from the comparison between the computational approach and the conventional quantitative measurements lead us to discover how computational systems are advantageous and promising in terms of solving problems related to Botany, such as species identification. PMID:27217018
Breast cancer detection in rotational thermography images using texture features
NASA Astrophysics Data System (ADS)
Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.
2014-11-01
Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.
NASA Astrophysics Data System (ADS)
La Riviere, P. J.; Pan, X.; Penney, B. C.
1998-06-01
Scintimammography, a nuclear-medicine imaging technique that relies on the preferential uptake of Tc-99m-sestamibi and other radionuclides in breast malignancies, has the potential to provide differentiation of mammographically suspicious lesions, as well as outright detection of malignancies in women with radiographically dense breasts. In this work we use the ideal-observer framework to quantify the detectability of a 1-cm lesion using three different imaging geometries: the planar technique that is the current clinical standard, conventional single-photon emission computed tomography (SPECT), in which the scintillation cameras rotate around the entire torso, and dedicated breast SPECT, in which the cameras rotate around the breast alone. We also introduce an adaptive smoothing technique for the processing of planar images and of sinograms that exploits Fourier transforms to achieve effective multidimensional smoothing at a reasonable computational cost. For the detection of a 1-cm lesion with a clinically typical 6:1 tumor-background ratio, we find ideal-observer signal-to-noise ratios (SNR) that suggest that the dedicated breast SPECT geometry is the most effective of the three, and that the adaptive, two-dimensional smoothing technique should enhance lesion detectability in the tomographic reconstructions.
Performance evaluation of a two detector camera for real-time video.
Lochocki, Benjamin; Gambín-Regadera, Adrián; Artal, Pablo
2016-12-20
Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.
A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...
2015-01-05
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less
DeepInfer: open-source deep learning deployment toolkit for image-guided therapy
NASA Astrophysics Data System (ADS)
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-03-01
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.
DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy.
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A; Kapur, Tina; Wells, William M; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-02-11
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.
DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-01-01
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose “DeepInfer” – an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections. PMID:28615794
Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Brewster, Aaron S; Murray, Thomas D; Sauter, Nicholas K; Berger, James M; Weis, William I; Brunger, Axel T
2016-06-01
Serial femtosecond crystallography (SFX) uses an X-ray free-electron laser to extract diffraction data from crystals not amenable to conventional X-ray light sources owing to their small size or radiation sensitivity. However, a limitation of SFX is the high variability of the diffraction images that are obtained. As a result, it is often difficult to determine optimal indexing and integration parameters for the individual diffraction images. Presented here is a software package, called IOTA , which uses a grid-search technique to determine optimal spot-finding parameters that can in turn affect the success of indexing and the quality of integration on an image-by-image basis. Integration results can be filtered using a priori information about the Bravais lattice and unit-cell dimensions and analyzed for unit-cell isomorphism, facilitating an improvement in subsequent data-processing steps.
Super-resolution Imaging of Chemical Synapses in the Brain
Dani, Adish; Huang, Bo; Bergan, Joseph; Dulac, Catherine; Zhuang, Xiaowei
2010-01-01
Determination of the molecular architecture of synapses requires nanoscopic image resolution and specific molecular recognition, a task that has so far defied many conventional imaging approaches. Here we present a super-resolution fluorescence imaging method to visualize the molecular architecture of synapses in the brain. Using multicolor, three-dimensional stochastic optical reconstruction microscopy, the distributions of synaptic proteins can be measured with nanometer precision. Furthermore, the wide-field, volumetric imaging method enables high-throughput, quantitative analysis of a large number of synapses from different brain regions. To demonstrate the capabilities of this approach, we have determined the organization of ten protein components of the presynaptic active zone and the postsynaptic density. Variations in synapse morphology, neurotransmitter receptor composition, and receptor distribution were observed both among synapses and across different brain regions. Combination with optogenetics further allowed molecular events associated with synaptic plasticity to be resolved at the single-synapse level. PMID:21144999
3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging
NASA Astrophysics Data System (ADS)
Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak
2017-10-01
Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.
Schlieren technique in soap film flows
NASA Astrophysics Data System (ADS)
Auliel, M. I.; Hebrero, F. Castro; Sosa, R.; Artana, G.
2017-05-01
We propose the use of the Schlieren technique as a tool to analyse the flows in soap film tunnels. The technique enables to visualize perturbations of the film produced by the interposition of an object in the flow. The variations of intensity of the image are produced as a consequence of the deviations of the light beam traversing the deformed surfaces of the film. The quality of the Schlieren image is compared to images produced by the conventional interferometric technique. The analysis of Schlieren images of a cylinder wake flow indicates that this technique enables an easy visualization of vortex centers. Post-processing of series of two successive images of a grid turbulent flow with a dense motion estimator is used to derive the velocity fields. The results obtained with this self-seeded flow show good agreement with the statistical properties of the 2D turbulent flows reported on the literature.
Object localization in handheld thermal images for fireground understanding
NASA Astrophysics Data System (ADS)
Vandecasteele, Florian; Merci, Bart; Jalalvand, Azarakhsh; Verstockt, Steven
2017-05-01
Despite the broad application of the handheld thermal imaging cameras in firefighting, its usage is mostly limited to subjective interpretation by the person carrying the device. As remedies to overcome this limitation, object localization and classification mechanisms could assist the fireground understanding and help with the automated localization, characterization and spatio-temporal (spreading) analysis of the fire. An automated understanding of thermal images can enrich the conventional knowledge-based firefighting techniques by providing the information from the data and sensing-driven approaches. In this work, transfer learning is applied on multi-labeling convolutional neural network architectures for object localization and recognition in monocular visual, infrared and multispectral dynamic images. Furthermore, the possibility of analyzing fire scene images is studied and their current limitations are discussed. Finally, the understanding of the room configuration (i.e., objects location) for indoor localization in reduced visibility environments and the linking with Building Information Models (BIM) are investigated.
Spray visualization of alternative fuels at hot ambient conditions
NASA Astrophysics Data System (ADS)
Kannaiyan, Kumaran; Sadr, Reza
2017-11-01
Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Matthew Christopher, E-mail: wardm3@ccf.org; Pham, Yvonne D.; Kotecha, Rupesh
2016-04-01
Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literaturemore » are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.« less
Omniview motionless camera orientation system
NASA Technical Reports Server (NTRS)
Zimmermann, Steven D. (Inventor); Martin, H. Lee (Inventor)
1999-01-01
A device for omnidirectional image viewing providing pan-and-tilt orientation, rotation, and magnification within a hemispherical field-of-view that utilizes no moving parts. The imaging device is based on the effect that the image from a fisheye lens, which produces a circular image of at entire hemispherical field-of-view, which can be mathematically corrected using high speed electronic circuitry. More specifically, an incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical field-of-view without the need for any mechanical mechanisms. The preferred embodiment of the image transformation device can provide corrected images at real-time rates, compatible with standard video equipment. The device can be used for any application where a conventional pan-and-tilt or orientation mechanism might be considered including inspection, monitoring, surveillance, and target acquisition.
Niumsawatt, Vachara; Debrotwir, Andrew N; Rozen, Warren Matthew
2014-01-01
Computed tomographic angiography (CTA) has become a mainstay in preoperative perforator flap planning in the modern era of reconstructive surgery. However, the increased use of CTA does raise the concern of radiation exposure to patients. Several techniques have been developed to decrease radiation dosage without compromising image quality, with varying results. The most recent advance is in the improvement of image reconstruction using an adaptive statistical iterative reconstruction (ASIR) algorithm. We sought to evaluate the image quality of ASIR in preoperative deep inferior epigastric perforator (DIEP) flap surgery, through a direct comparison with conventional filtered back projection (FBP) images. A prospective review of 60 consecutive ASIR and 60 consecutive FBP CTA images using similar protocol (except for radiation dosage) was undertaken, analyzed by 2 independent reviewers. In both groups, we were able to accurately identify axial arteries and their perforators. Subjective analysis of image quality demonstrated no statistically significant difference between techniques. ASIR can thus be used for preoperative imaging with similar image quality to FBP, but with a 60% reduction in radiation delivery to patients.
Extending RTM Imaging With a Focus on Head Waves
NASA Astrophysics Data System (ADS)
Holicki, Max; Drijkoningen, Guy
2016-04-01
Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface with the head wave from the nth-layer. To illustrate the method we apply it to a layered Earth model with five layers and compare it to conventional RTM. We will show that conventional RTM highlights interfaces, while our head-wave based images highlight layers, producing fundamentally different images. We also demonstrate that our proposed imaging scheme is more sensitive to the velocity model than conventional RTM, which is important for improved velocity model building in the future.
Imaging through water turbulence with a plenoptic sensor
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.
2016-09-01
A plenoptic sensor can be used to improve the image formation process in a conventional camera. Through this process, the conventional image is mapped to an image array that represents the image's photon paths along different angular directions. Therefore, it can be used to resolve imaging problems where severe distortion happens. Especially for objects observed at moderate range (10m to 200m) through turbulent water, the image can be twisted to be entirely unrecognizable and correction algorithms need to be applied. In this paper, we show how to use a plenoptic sensor to recover an unknown object in line of sight through significant water turbulence distortion. In general, our approach can be applied to both atmospheric turbulence and water turbulence conditions.
Noise removal in extended depth of field microscope images through nonlinear signal processing.
Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J
2013-04-01
Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.