Science.gov

Sample records for conventional intensity modulated

  1. Volumetric intensity-modulated arc therapy vs conventional intensity-modulated radiation therapy in nasopharyngeal carcinoma: a dosimetric study

    PubMed Central

    White, Peter; Chan, Kit Chi; Cheng, Ka Wai; Chan, Ka Yiu; Chau, Ming Chun

    2013-01-01

    Dosimetric comparisons between RapidArc (RA) and conventional Intensity-Modulated Radiation Therapy (IMRT) techniques for nasopharyngeal carcinoma (NPC) were performed to address differences in dose coverage of the target, sparing of organs-at-risk (OARs), delivery of monitor units (MUs) and time, to assess whether the RA technique was more beneficial for treatment of NPC. Eight NPC patients (Stages I–IV), who had completed RA treatment, were selected for this study. Computed tomography data sets were re-planned using 7-fields fixed beam IMRT. Quantitative measurements of dose-endpoint values on the dose-volume histograms were carried out for evaluation of: (i) dose homogeneity (D5% – D95%); (ii) degree of conformity (CI95%); (iii) tumor control probability (TCP); (iv) doses to OARs; (v) normal tissue complication probability (NTCP); (vi) treatment time; and (vii) MUs. RA plans achieved better dose conformity and TCP in planning target volumes (PTVs). Target dose homogeneity was not as high as for IMRT plans. Doses to tempero-mandibular joints, clavicles, parotid glands and posterior neck, and their NTCPs were significantly lower in RA plans (P < 0.05). Mean doses to the brainstem and spinal cord were slightly lower in IMRT plans. RA plans allowed for a mean reduction in MUs by 78% (P = 0.006), and a four-fold reduction in treatment delivery times, relative to IMRT plans. RA plans showed superior, or comparable, target coverage and dose conformity in PTVs, but at the expense of inferior dose homogeneity. RA plans also achieved significant improvements in dose reduction to OARs and healthy tissue sparing. A significant reduction in treatment delivery time for RA treatment technique was also noted. PMID:23188186

  2. Effect of intensity-modulated radiotherapy versus two-dimensional conventional radiotherapy alone in nasopharyngeal carcinoma

    PubMed Central

    OuYang, Pu-Yun; Shi, Dingbo; Sun, Rui; Zhu, Yu-Jia; Xiao, Yao; Zhang, Lu-Ning; Zhang, Xu-Hui; Chen, Ze-Ying; Lan, Xiao-Wen; Tang, Jie; Gao, Yuan-Hong; Ma, Jun; Deng, Wuguo; Xie, Fang-Yun

    2016-01-01

    Background Albeit intensity-modulated radiotherapy (IMRT) is currently the recommended radiation technique in treating nasopharyngeal carcinoma, the effect of IMRT versus two-dimensional conventional radiotherapy (2DCRT) alone is still contradictory. Results In the original unmatched cohort of 1198 patients, IMRT obtained comparable 5-year overall survival (OS) (91.3% vs 87.1%, P = 0.120), locoregional relapse-free survival (LRFS) (92.3% vs 90.4%, P = 0.221) and distant metastasis-free survival (DMFS) (92.9% vs 92.1%, P = 0.901) to 2DCRT. In the propensity-matched cohort of 604 patients, no significant survival differences were observed between the two arms (5-year OS 90.9% vs 90.5%, P = 0.655; LRFS 92.5% vs 92.4%, P = 0.866; DMFS 92.5% vs 92.9%, P = 0.384). In multivariate analysis, IMRT did not significantly lower the risk of death, locoregional relapse or distant metastasis, irrespective of tumor stage. Methods Overall, 1198 patients who underwent IMRT (316 patients) or 2DCRT (882 patients) without any chemotherapy was retrospectively analyzed. Patients in both arms were matched at equal ratio using propensity-score matching method. OS, LRFS and DMFS were assessed with Kaplan-Meier method, log-rank test and Cox regression. Conclusions In this propensity-matched study, IMRT showed no survival advantage over 2DCRT alone in nasopharyngeal carcinoma. PMID:27058901

  3. Intensity-modulated radiotherapy significantly reduces xerostomia compared with conventional radiotherapy

    SciTech Connect

    Braam, Petra M. . E-mail: P.M.Braam@umcutrecht.nl; Terhaard, Chris H.J. M.D.; Roesink, Judith M.; Raaijmakers, Cornelis P.J.

    2006-11-15

    Purpose: Xerostomia is a severe complication after radiotherapy for oropharyngeal cancer, as the salivary glands are in close proximity with the primary tumor. Intensity-modulated radiotherapy (IMRT) offers theoretical advantages for normal tissue sparing. A Phase II study was conducted to determine the value of IMRT for salivary output preservation compared with conventional radiotherapy (CRT). Methods and Materials: A total of 56 patients with oropharyngeal cancer were prospectively evaluated. Of these, 30 patients were treated with IMRT and 26 with CRT. Stimulated parotid salivary flow was measured before, 6 weeks, and 6 months after treatment. A complication was defined as a stimulated parotid flow rate <25% of the preradiotherapy flow rate. Results: The mean dose to the parotid glands was 48.1 Gy (SD 14 Gy) for CRT and 33.7 Gy (SD 10 Gy) for IMRT (p < 0.005). The mean parotid flow ratio 6 weeks and 6 months after treatment was respectively 41% and 64% for IMRT and respectively 11% and 18% for CRT. As a result, 6 weeks after treatment, the number of parotid flow complications was significantly lower after IMRT (55%) than after CRT (87%) (p = 0.002). The number of complications 6 months after treatment was 56% for IMRT and 81% for CRT (p = 0.04). Conclusions: IMRT significantly reduces the number of parotid flow complications for patients with oropharyngeal cancer.

  4. Volumetric modulated Arc therapy and conventional intensity-modulated radiotherapy for simultaneous maximal intraprostatic boost: a planning comparison study.

    PubMed

    Shaffer, R; Morris, W J; Moiseenko, V; Welsh, M; Crumley, C; Nakano, S; Schmuland, M; Pickles, T; Otto, K

    2009-06-01

    Volumetric modulated arc therapy (VMAT) is a novel extension of intensity-modulated radiotherapy (IMRT) where an optimised three-dimensional dose distribution may be delivered in a single gantry rotation. This optimisation algorithm is the predecessor to Varian's RapidArc. The aim of this study was to compare the ability of conventional static nine-field IMRT (cIMRT) and VMAT to boost as much of the clinical target volume (CTV) as possible to 88.8Gy without exceeding organ at risk (OAR) dose-volume constraints. Optimal cIMRT and VMAT radiotherapy plans were produced for 10 patients with localised prostate cancer using common planning objectives: (1) Treat >or=98% of the planning target volume (PTV) to >or=95% of the prescription dose (74Gy in 37 fractions); (2) keep OAR doses within predefined limits; (3) treat as much of prostate CTV (minus urethra) as possible to >or=120% of prescription dose (=88.8Gy); (4) keep within maximum dose limits in and out of target volumes; (5) conformality index (volume of 95% isodose/volume of PTV)or=120% of the prescription dose (P=0.002). All dose constraints were kept within predefined limits. VMAT and cIMRT required an average of 949 and 1819 monitor units and 3.7 and 9.6min, respectively, to deliver a single radiation fraction. VMAT is able to boost more of the CTV to >or=120% than cIMRT without contravening OAR dose constraints, and uses 48% fewer monitor units. Treatment times were 61% less than with cIMRT.

  5. Nasopharyngeal Carcinoma in Children: Comparison of Conventional and Intensity-Modulated Radiotherapy

    SciTech Connect

    Laskar, Siddhartha Bahl, Gaurav; Muckaden, MaryAnn; Pai, Suresh K.; Gupta, Tejpal; Banavali, Shripad; Arora, Brijesh; Sharma, Dayanand; Kurkure, Purna A.; Ramadwar, Mukta; Viswanathan, Seethalaxhmi; Rangarajan, Venkatesh; Qureshi, Sajid; Deshpande, Deepak D.; Shrivastava, Shyam K.; Dinshaw, Ketayun A.

    2008-11-01

    Purpose: To evaluate the efficacy of intensity-modulated radiotherapy (IMRT) in reducing the acute toxicities associated with conventional RT (CRT) in children with nasopharyngeal carcinoma. Patients and Methods: A total of 36 children with nonmetastatic nasopharyngeal carcinoma, treated at the Tata Memorial Hospital between June 2003 and December 2006, were included in this study. Of the 36 patients, 28 were boys and 8 were girls, with a median age of 14 years; 4 (11%) had Stage II and 10 (28%) Stage III disease at presentation. All patients had undifferentiated carcinoma and were treated with a combination of chemotherapy and RT. Of the 36 patients, 19 underwent IMRT and 17 underwent CRT. Results: After a median follow-up of 27 months, the 2-year locoregional control, disease-free, and overall survival rate was 76.5%, 60.6%, and 71.3%, respectively. A significant reduction in acute Grade 3 toxicities of the skin (p = 0.006), mucous membrane (p = 0.033), and pharynx (p = 0.035) was noted with the use of IMRT. The median time to the development of Grade 2 toxicity was delayed with IMRT (skin, 35 vs. 25 days, p = 0.016; mucous-membrane, 39 vs. 27 days, p = 0.002; and larynx, 50 vs. 28 days, p = 0.009). The duration of RT significantly influenced disease-free survival on multivariate analysis (RT duration >52 days, hazard ratio = 5.49, 95% confidence interval, 1.14-26.45, p = 0.034). The average mean dose to the first and second planning target volume was 71.8 Gy and 62.5 Gy with IMRT compared with 66.3 Gy (p = 0.001) and 64.4 Gy (p = 0.046) with CRT, respectively. Conclusion: The results of our study have shown that IMRT significantly reduces and delays the onset of acute toxicity, resulting in improved tolerance and treatment compliance for children with nasopharyngeal carcinoma. Also, IMRT provided superior target coverage and normal tissue sparing compared with CRT.

  6. Elective Lymph Node Irradiation With Intensity-Modulated Radiotherapy: Is Conventional Dose Fractionation Necessary?

    SciTech Connect

    Bedi, Meena; Firat, Selim; Semenenko, Vladimir A.; Schultz, Christopher; Tripp, Patrick; Byhardt, Roger; Wang, Dian

    2012-05-01

    Purpose: Intensity-modulated radiation therapy (IMRT) is the standard of care for head-and-neck cancer (HNC). We treated patients with HNC by delivering either a moderate hypofractionation (MHF) schedule (66 Gy at 2.2 Gy per fraction to the gross tumor [primary and nodal]) with standard dose fractionation (54-60 Gy at 1.8-2.0 Gy per fraction) to the elective neck lymphatics or a conventional dose and fractionation (CDF) schedule (70 Gy at 2.0 Gy per fraction) to the gross tumor (primary and nodal) with reduced dose to the elective neck lymphatics. We analyzed these two cohorts for treatment outcomes. Methods and Materials: Between November 2001 and February 2009, 89 patients with primary carcinomas of the oral cavity, larynx, oropharynx, hypopharynx, and nasopharynx received definitive IMRT with or without concurrent chemotherapy. Twenty patients were treated using the MHF schedule, while 69 patients were treated with the CDF schedule. Patient characteristics and dosimetry plans were reviewed. Patterns of failure including local recurrence (LR), regional recurrence (RR), distant metastasis (DM), disease-free survival (DFS), overall survival (OS), and toxicities, including rate of feeding tube placement and percentage of weight loss, were reviewed and analyzed. Results: Median follow-up was 31.2 months. Thirty-five percent of patients in the MHF cohort and 77% of patients in the CDF cohort received chemotherapy. No RR was observed in either cohort. OS, DFS, LR, and DM rates for the entire group at 2 years were 89.3%, 81.4%, 7.1%, and 9.4%, respectively. Subgroup analysis showed no significant differences in OS (p = 0.595), DFS (p = 0.863), LR (p = 0.833), or DM (p = 0.917) between these two cohorts. Similarly, no significant differences were observed in rates of feeding tube placement and percentages of weight loss. Conclusions: Similar treatment outcomes were observed for MHF and CDF cohorts. A dose of 50 Gy at 1.43 Gy per fraction may be sufficient to electively

  7. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    SciTech Connect

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-11-15

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  8. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  9. Assessment and Minimization of Contralateral Breast Dose for Conventional and Intensity Modulated Breast Radiotherapy

    SciTech Connect

    Burmeister, Jay Alvarado, Nicole; Way, Sarah; McDermott, Patrick; Bossenberger, Todd; Jaenisch, Harriett; Patel, Rajiv; Washington, Tara

    2008-04-01

    Breast radiotherapy is associated with an increased risk of contralateral breast cancer (CBC) in women under age 45 at the time of treatment. This risk increases with increasing absorbed dose to the contralateral breast. The use of intensity modulated radiotherapy (IMRT) is expected to substantially reduce the dose to the contralateral breast by eliminating scattered radiation from physical beam modifiers. The absorbed dose to the contralateral breast was measured for 5 common radiotherapy techniques, including paired 15 deg. wedges, lateral 30 deg. wedge only, custom-designed physical compensators, aperture based (field-within-field) IMRT with segments chosen by the planner, and inverse planned IMRT with segments chosen by a leaf sequencing algorithm after dose volume histogram (DVH)-based fluence map optimization. Further reduction in contralateral breast dose through the use of lead shielding was also investigated. While shielding was observed to have the most profound impact on surface dose, the radiotherapy technique proved to be most important in determining internal dose. Paired wedges or compensators result in the highest contralateral breast doses (nearly 10% of the prescription dose on the medial surface), while use of IMRT or removal of the medial wedge results in significantly lower doses. Aperture-based IMRT results in the lowest internal doses, primarily due to the decrease in the number of monitor units required and the associated reduction in leakage dose. The use of aperture-based IMRT reduced the average dose to the contralateral breast by greater than 50% in comparison to wedges or compensators. Combined use of IMRT and 1/8-inch-thick lead shielding reduced the dose to the interior and surface of the contralateral breast by roughly 60% and 85%, respectively. This reduction may warrant the use of IMRT for younger patients who have a statistically significant risk of contralateral breast cancer associated with breast radiotherapy.

  10. Helical Tomotherapy Versus Conventional Intensity-Modulated Radiation Therapy for Primary Chemoradiation in Cervical Cancer Patients: An Intraindividual Comparison

    SciTech Connect

    Marnitz, Simone; Lukarski, Dusko; Koehler, Christhardt; Wlodarczyk, Waldemar; Ebert, Andreas; Budach, Volker; Schneider, Achim; Stromberger, Carmen

    2011-10-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) delivered by helical tomotherapy (HT) with conventional IMRT for primary chemoradiation in cervical cancer patients. Methods and Materials: Twenty cervical cancer patients undergoing primary chemoradiation received radiation with HT; 10 patients underwent pelvic irradiation (PEL) and 10 extended-field irradiation (EXT). For treatment planning, the simultaneously integrated boost (SIB) concept was applied. Tumor, pelvic, with or without para-aortic lymph nodes were defined as planning target volume A (PTV-A) with a prescribed dose of 1.8/50.4 Gy (28 fractions). The SIB dose for the parametrium (PTV-B), was 2.12/59.36 Gy. The lower target constraints were 95% of the prescribed dose in 95% of the target volume, and the upper dose constraint was 107%. The irradiated small-bowel volumes were kept as low as possible. For every HT plan, a conventional IMRT plan was calculated and compared with regard to dose-volume histogram, conformity index and conformity number, and homogeneity index. Results: Both techniques allowed excellent target volume coverage and sufficient SB sparing. Conformity index and conformity number results for both PTV-A and PTV-B, homogeneity index for PTV-B, and SB sparing for V45, V50, Dmax, and D1% were significantly better with HT. SB sparing was significantly better for conventional IMRT at low doses (V10). Conclusions: Both HT and conventional IMRT provide optimal treatment of cervical cancer patients. The HT technique was significantly favored with regard to target conformity, homogeneity, and SB sparing. Randomized trials are needed to assess the oncological outcome, toxicity, and clinical relevance of these differences.

  11. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    SciTech Connect

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A. . E-mail: fvicini@beaumont.edu

    2007-08-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts ({>=}1,600 cm{sup 3}, n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT.

  12. Helical tomotherapy versus conventional intensity-modulated radiation therapy for primary chemoradiation in cervical cancer patients: an intraindividual comparison.

    PubMed

    Marnitz, Simone; Lukarski, Dusko; Köhler, Christhardt; Wlodarczyk, Waldemar; Ebert, Andreas; Budach, Volker; Schneider, Achim; Stromberger, Carmen

    2011-10-01

    To compare intensity-modulated radiotherapy (IMRT) delivered by helical tomotherapy (HT) with conventional IMRT for primary chemoradiation in cervical cancer patients. Twenty cervical cancer patients undergoing primary chemoradiation received radiation with HT; 10 patients underwent pelvic irradiation (PEL) and 10 extended-field irradiation (EXT). For treatment planning, the simultaneously integrated boost (SIB) concept was applied. Tumor, pelvic, with or without para-aortic lymph nodes were defined as planning target volume A (PTV-A) with a prescribed dose of 1.8/50.4 Gy (28 fractions). The SIB dose for the parametrium (PTV-B), was 2.12/59.36 Gy. The lower target constraints were 95% of the prescribed dose in 95% of the target volume, and the upper dose constraint was 107%. The irradiated small-bowel volumes were kept as low as possible. For every HT plan, a conventional IMRT plan was calculated and compared with regard to dose-volume histogram, conformity index and conformity number, and homogeneity index. Both techniques allowed excellent target volume coverage and sufficient SB sparing. Conformity index and conformity number results for both PTV-A and PTV-B, homogeneity index for PTV-B, and SB sparing for V45, V50, Dmax, and D1% were significantly better with HT. SB sparing was significantly better for conventional IMRT at low doses (V10). Both HT and conventional IMRT provide optimal treatment of cervical cancer patients. The HT technique was significantly favored with regard to target conformity, homogeneity, and SB sparing. Randomized trials are needed to assess the oncological outcome, toxicity, and clinical relevance of these differences. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    SciTech Connect

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun; Mundt, Arno J.; Roeske, John C.; Aydogan, Bulent

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprised the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.

  14. Dosimetric comparison of bone marrow-sparing intensity-modulated radiotherapy versus conventional techniques for treatment of cervical cancer.

    PubMed

    Mell, Loren K; Tiryaki, Hanifi; Ahn, Kang-Hyun; Mundt, Arno J; Roeske, John C; Aydogan, Bulent

    2008-08-01

    To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprised the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.

  15. Peripheral dose measurements with diode and thermoluminescence dosimeters for intensity modulated radiotherapy delivered with conventional and un-conventional linear accelerator.

    PubMed

    Kinhikar, Rajesh; Gamre, Poonam; Tambe, Chandrashekhar; Kadam, Sudarshan; Biju, George; Suryaprakash; Magai, C S; Dhote, Dipak; Shrivastava, Shyam; Deshpande, Deepak

    2013-01-01

    The objective of this paper was to measure the peripheral dose (PD) with diode and thermoluminescence dosimeter (TLD) for intensity modulated radiotherapy (IMRT) with linear accelerator (conventional LINAC), and tomotherapy (novel LINAC). Ten patients each were selected from Trilogy dual-energy and from Hi-Art II tomotherapy. Two diodes were kept at 20 and 25 cm from treatment field edge. TLDs (LiF:MgTi) were also kept at same distance. TLDs were also kept at 5, 10, and 15 cm from field edge. The TLDs were read with REXON reader. The readings at the respective distance were recorded for both diode and TLD. The PD was estimated by taking the ratio of measured dose at the particular distance to the prescription dose. PD was then compared with diode and TLD for LINAC and tomotherapy. Mean PD for LINAC with TLD and diode was 2.52 cGy (SD 0.69), 2.07 cGy (SD 0.88) at 20 cm, respectively, while at 25 cm, it was 1.94 cGy (SD 0.58) and 1.5 cGy (SD 0.75), respectively. Mean PD for tomotherapy with TLD and diode was 1.681 cGy SD 0.53) and 1.58 (SD 0.44) at 20 cm, respectively. The PD was 1.24 cGy (SD 0.42) and 1.088 cGy (SD 0.35) at 25 cm, respectively, for tomotherapy. Overall, PD from tomotherapy was found lower than LINAC by the factor of 1.2-1.5. PD measurement is essential to find out the potential of secondary cancer. PD for both (conventional LINAC) and novel LINACs (tomotherapy) were measured and compared with each other. The comparison of the values for PD presented in this work and those published in the literature is difficult because of the different experimental conditions. The diode and TLD readings were reproducible and both the detector readings were comparable.

  16. Large Cohort Dose-Volume Response Analysis of Parotid Gland Function After Radiotherapy: Intensity-Modulated Versus Conventional Radiotherapy

    SciTech Connect

    Dijkema, Tim Terhaard, Chris H.J.; Roesink, Judith M.; Braam, Petra M.; Gils, Carla H. van; Moerland, Marinus A.; Raaijmakers, Cornelis P.J.

    2008-11-15

    Purpose: To compare parotid gland dose-volume response relationships in a large cohort of patients treated with intensity-modulated (IMRT) and conventional radiotherapy (CRT). Methods and materials: A total of 221 patients (64 treated with IMRT, 157 with CRT) with various head-and-neck malignancies were prospectively evaluated. The distribution of tumor subsites in both groups was unbalanced. Stimulated parotid flow rates were measured before and 6 weeks, 6 months, and 1 year after radiotherapy. Parotid gland dose-volume histograms were derived from computed tomography-based treatment planning. The normal tissue complication probability (NTCP) model proposed by Lyman was fit to the data. A complication was defined as stimulated parotid flow ratio <25% of the pretreatment flow rate. The relative risk of complications was determined for IMRT vs. CRT and adjusted for the mean parotid gland dose using Poisson regression modeling. Results: One year after radiotherapy, NTCP curves for IMRT and CRT were comparable with a TD{sub 50} (uniform dose leading to a 50% complication probability) of 38 and 40 Gy, respectively. Until 6 months after RT, corrected for mean dose, different complication probabilities existed for IMRT vs. CRT. The relative risk of a complication for IMRT vs. CRT after 6 weeks was 1.42 (95% CI 1.21-1.67), after 6 months 1.41 (95% CI; 1.12-1.77), and at 1 year 1.21 (95% CI 0.87-1.68), after correcting for mean dose. Conclusions: One year after radiotherapy, no difference existed in the mean dose-based NTCP curves for IMRT and CRT. Early after radiotherapy (up to 6 months) mean dose based (Lyman) models failed to fully describe the effects of radiotherapy on the parotid glands.

  17. Long-Term Breast Cancer Patient Outcomes After Adjuvant Radiotherapy Using Intensity-Modulated Radiotherapy or Conventional Tangential Radiotherapy.

    PubMed

    Yang, Jen-Fu; Lee, Meei-Shyuan; Lin, Chun-Shu; Chao, Hsing-Lung; Chen, Chang-Ming; Lo, Cheng-Hsiang; Fan, Chao-Yueh; Tsao, Chih-Cheng; Huang, Wen-Yen

    2016-03-01

    The aim of the article is to analyze breast cancer patient clinical outcomes after long-term follow-up using intensity-modulated radiotherapy (IMRT) or conventional tangential radiotherapy (cRT). We retrospectively reviewed patients with stage 0-III breast cancer who received breast conserving therapy between April 2004 and December 2007. Of the 234 patients, 103 (44%) were treated with IMRT and 131 (56%) were treated with cRT. A total prescription dose of 45 to 50 Gy (1.8-2 Gy per fraction) was delivered to the whole breast. A 14 Gy boost dose was delivered in 7 fractions. The median follow-up was 8.2 years. Five of 131 (3.8%) cRT-treated patients and 2 of 103 (1.9%) IMRT-treated patients had loco-regional failure. The 8-year loco-regional failure-free survival rates were 96.7% and 97.6% (P = 0.393) in the cRT and IMRT groups, respectively, whereas the 8-year disease-free survival (DFS) rates were 91.2% and 93.1%, respectively (P = 0.243). Patients treated with IMRT developed ≥ grade 2 acute dermatitis less frequently than patients treated with cRT (40.8% vs 56.5%; P = 0.017). There were no differences in late toxicity. IMRT reduces ≥ grade 2 acute skin toxicity. Local control, DFS, and overall survival were equivalent with IMRT and cRT. IMRT can be considered a standard technique for breast cancer treatment.

  18. An attenuation integral digital imaging technique for the treatment portal verification of conventional and intensity-modulated radiotherapy

    SciTech Connect

    Guan Huaiqun

    2010-07-15

    Purpose: To propose an attenuation integral digital imaging (AIDI) technique for the treatment portal verification of conventional and intensity-modulated radiotherapy (IMRT). Methods: In AIDI technique, an open in air fluence image I{sub o} and a patient fluence image I were acquired under the same exposure. Then after doing the dark field correction for both the I{sub o} and I, the AIDI image was simply calculated as log(I{sub o}/I), which is the attenuation integral along the ray path from the x-ray source to a detector pixel element. Theoretical analysis for the low contrast detection and the contrast to noise ratio (CNR) of AIDI was presented and compared to those for the fluence imaging. With AIDI, the variation of x-ray fluence and the variation of individual detector pixel's response can be automatically compensated without using the flood field correction. Results: The AIDI image for a contrast detail phantom demonstrated that it can efficiently suppress the background structures such as the couch and generate better visibility for low contrast objects with megavoltage x rays. The AIDI image acquired for a Catphan 500 phantom using a 60 deg. electronic dynamic wedge field also revealed more contrast disks than the fluence imaging did. Finally, AIDI for an IMRT field of a head/neck patient successfully displayed the anatomical structures underneath the treatment portal but not shown in fluence imaging. Conclusions: For IMRT and high degree wedge beams, direct imaging using them is difficult because their photon fluence is highly nonuniform. But AIDI can be used for the treatment portal verification of these beams.

  19. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    PubMed Central

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O’Brien, Ricky T.; Petersen, Peter Meidahl; Rosenschöld, Per Munck af

    2013-01-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 seconds. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7–100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7–99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with > 3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf

  20. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O'Brien, Ricky T.; Meidahl Petersen, Peter; Rosenschöld, Per Munck af

    2013-04-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 s. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7-100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7-99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with >3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf position

  1. SU-E-T-483: In Vivo Dosimetry of Conventional and Rotational Intensity Modulated Radiotherapy Using Integral Quality Monitor (IQM)

    SciTech Connect

    Lin, L; Qian, J; Gonzales, R; Keck, J; Armour, E; Wong, J

    2015-06-15

    Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate the sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.

  2. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: The impact of tumor regression.

    PubMed

    van de Bunt, Linda; van der Heide, Uulke A; Ketelaars, Martijn; de Kort, Gerard A P; Jürgenliemk-Schulz, Ina M

    2006-01-01

    Investigating the impact of tumor regression on the dose within cervical tumors and surrounding organs, comparing conventional, conformal, and intensity-modulated radiotherapy (IMRT) and the need for repeated treatment planning during irradiation. Fourteen patients with cervical cancer underwent magnetic resonance (MR) imaging before treatment and once during treatment, after about 30 Gy. Target volumes and critical organs were delineated. First conventional, conformal, and IMRT plans were generated. To evaluate the impact of tumor regression, we calculated dose-volume histograms for these plans, using the delineations of the intratreatment MR images. Second conformal and IMRT plans were made based on the delineations of the intratreatment MR images. First and second plans were compared. The average volume receiving 95% of the prescribed dose (43 Gy) by the conventional, conformal, and IMRT plans was, respectively, for the bowel 626 cc, 427 cc, and 232 cc; for the rectum 101 cc, 90 cc, and 60 cc; and for the bladder 89 cc, 70 cc, and 58 cc. The volumes of critical organs at this dose level were significantly reduced using IMRT compared with conventional and conformal planning (p < 0.02 in all cases). After having delivered about 30 Gy external beam radiation therapy, the primary gross tumor volumes decreased on average by 46% (range, 6.1-100%). The target volumes on the intratreatment MR images remained sufficiently covered by the 95% isodose. Second IMRT plans significantly diminished the treated bowel volume, if the primary gross tumor volumes decreased >30 cc. Intensity-modulated radiation therapy is superior in sparing of critical organs compared with conventional and conformal treatment, with adequate coverage of the target volumes. Intensity-modulated radiation therapy remains superior after 30 Gy external beam radiation therapy, despite tumor regression and internal organ motion. Repeated IMRT planning can improve the sparing of the bowel and rectum in

  3. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    SciTech Connect

    Sakanaka, Katsuyuki; Mizowaki, Takashi; Sato, Sayaka; Ogura, Kengo; Hiraoka, Masahiro

    2013-07-01

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor units were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.

  4. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    SciTech Connect

    Clavel, Sebastien; Nguyen, David H.A.; Fortin, Bernard; Despres, Philippe; Khaouam, Nader; Donath, David; Soulieres, Denis; Guertin, Louis; Nguyen-Tan, Phuc Felix

    2012-02-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  5. Adjuvant Radiotherapy for Gastric Cancer: A Dosimetric Comparison of 3-Dimensional Conformal Radiotherapy, Tomotherapy (registered) and Conventional Intensity Modulated Radiotherapy Treatment Plans

    SciTech Connect

    Dahele, Max; Skinner, Matthew; Schultz, Brenda; Cardoso, Marlene; Bell, Chris; Ung, Yee C.

    2010-07-01

    Some patients with gastric cancer benefit from post-operative chemo-radiotherapy, but adequately irradiating the planning target volume (PTV) whilst avoiding organs at risk (OAR) can be difficult. We evaluate 3-dimensional conformal radiotherapy (CRT), conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy (TT). TT, 2 and 5-field (F) CRT and IMRT treatment plans with the same PTV coverage were generated for 5 patients and compared. Median values are reported. The volume of left/right kidney receiving at least 20Gy (V20) was 57/51% and 51/60% for 2 and 5F-CRT, and 28/14% for TT and 27/19% for IMRT. The volume of liver receiving at least 30Gy (V30) was 45% and 62% for 2 and 5F-CRT, and 37% for TT and 35% for IMRT. With TT, 98% of the PTV received 95-105% of the prescribed dose, compared with 45%, 34% and 28% for 2F-CRT, 5F-CRT and IMRT respectively. Using conventional metrics, conventional IMRT can achieve comparable PTV coverage and OAR sparing to TT, but at the expense of PTV dose heterogeneity. Both irradiate large volumes of normal tissue to low doses. Additional studies are needed to demonstrate the clinical impact of these technologies.

  6. Clinical Outcome in Posthysterectomy Cervical Cancer Patients Treated With Concurrent Cisplatin and Intensity-Modulated Pelvic Radiotherapy: Comparison With Conventional Radiotherapy

    SciTech Connect

    Chen, M.-F.; Tseng, C.-J.; Tseng, C.-C.; Kuo, Y.-C.; Yu, C.-Y.; Chen, W.-C. . E-mail: rto_chen@yahoo.com.tw

    2007-04-01

    Purpose: To assess local control and acute and chronic toxicity with intensity-modulated radiation therapy (IMRT) as adjuvant treatment of cervical cancer. Methods and Materials: Between April 2002 and February 2006, 68 patients at high risk of cervical cancer after hysterectomy were treated with adjuvant pelvic radiotherapy and concurrent chemotherapy. Adjuvant chemotherapy consisted of cisplatin (50 mg/m{sup 2}) for six cycles every week. Thirty-three patients received adjuvant radiotherapy by IMRT. Before the IMRT series was initiated, 35 other patients underwent conventional four-field radiotherapy (Box-RT). The two groups did not differ significantly in respect of clinicopathologic and treatment factors. Results: IMRT provided compatible local tumor control compared with Box-RT. The actuarial 1-year locoregional control for patients in the IMRT and Box-RT groups was 93% and 94%, respectively. IMRT was well tolerated, with significant reduction in acute gastrointestinal (GI) and genitourinary (GU) toxicities compared with the Box-RT group (GI 36 vs. 80%, p = 0.00012; GU 30 vs. 60%, p = 0.022). Furthermore, the IMRT group had lower rates of chronic GI and GU toxicities than the Box-RT patients (GI 6 vs. 34%, p = 0.002; GU 9 vs. 23%, p = 0.231). Conclusion: Our results suggest that IMRT significantly improved the tolerance to adjuvant chemoradiotherapy with compatible locoregional control compared with conventional Box-RT. However, longer follow-up and more patients are needed to confirm the benefits of IMRT.

  7. Dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator-based intensity modulated radiation therapy, and helical tomotherapy plans for rectal cancer.

    PubMed

    Joseph, Kurian; Liu, Derek; Severin, Diane; Dickey, Mike; Polkosnik, Lee-Anne; Warkentin, Heather; Mihai, Alina; Ghosh, Sunita; Field, Colin

    2015-01-01

    This study evaluated the dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator-based intensity modulated radiation therapy (IMRT), and helical tomotherapy (HT) treatment plans. Thirteen patients with rectal cancer underwent computed tomography (CT) simulation with oral contrast (CCT) in preparation for chemoradiation therapy. The contrast in the small bowel was contoured, and a noncontrast CT scan (NCCT) was simulated by reassigning a CT number of 0 Hounsfield units to the contrast volume. Conventional, IMRT, and HT plans were generated with the CCT. The plan generated on the CCT was then recalculated on the NCCT, maintaining the same number of monitor units for each field, and the plans were not renormalized. Dosimetric parameters representing coverage of the planning target volume with 45 Gy (D98%, D95%, D50%, and D2%) and sparing of the bladder and peritoneal cavity (D50%, D30%, and D10%) were recorded. The ratio of dose calculated in the presence of contrast to dose with contrast edited out was recorded for each parameter. A paired Student t test was used for comparison of plans. For conventional plans, there was <0.1% variance in the dose ratio for all volumes of interest. For IMRT plans, there was a 1% decrease in the mean dose ratio, and the range of dose ratios for all volumes was greater than that for HT or conventional plans. For HT plans, for all volumes of interest, the mean dose ratio was <0.2%, and the range for all patients was <1%. For all IMRT dosimetric parameters, the difference was in the order of 1% of the mean dose (P < .05). The dose difference was not statistically significant for the conventional or HT plans. The use of CCT during CT simulation has no clinically significant effect on dose calculations for conventional, IMRT, and HT treatment plans and may not require replacement of the contrast with a CT number of 0 Hounsfield units. Copyright © 2015 American Society for Radiation Oncology

  8. Impact of Intensity-Modulated Radiotherapy on Health-Related Quality of Life for Head and Neck Cancer Patients: Matched-Pair Comparison with Conventional Radiotherapy

    SciTech Connect

    Graff, Pierre . E-mail: p.graff@nancy.fnclcc.fr; Lapeyre, Michel; Desandes, Emmanuel; Ortholan, Cecile; Bensadoun, Rene-Jean; Alfonsi, Marc; Maingon, Philippe; Giraud, Philippe; Bourhis, Jean; Marchesi, Vincent; Mege, Alice; Peiffert, Didier

    2007-04-01

    Purpose: To assess the benefit of intensity-modulated radiotherapy (IMRT) compared with conventional RT for the quality of life (QOL) of head and neck cancer survivors. Methods and Materials: Cross-sectional QOL measures (European Organization for Research and Treatment of Cancer QOL questionnaire C30 and head and neck cancer module) were used with a French multicenter cohort of patients cured of head and neck cancer (follow-up {>=} 1 year) who had received bilateral neck RT ({>=} 45 Gy) as a part of their initial treatment. We compared the QOL mean scores regarding RT modality (conventional RT vs. IMRT). The patients of the two groups were matched (one to one) according to the delay between the end of RT and the timing of the QOL evaluation and the T stage. Each QOL item was divided into two relevant levels of severity: 'not severe' (responses, 'not at all' and 'a little') vs. 'severe' (responses 'quite a bit' and 'very much'). The association between the type of RT and the prevalence of severe symptoms was approximated, through multivariate analysis using the prevalence odds ratio. Results: Two comparable groups (67 pairs) were available. Better scores were observed on the head and neck cancer module QOL questionnaire for the IMRT group, especially for dry mouth and sticky saliva (p < 0.0001). Severe symptoms were more frequent with conventional RT concerning saliva modifications and oral discomfort. The adjusted prevalence odds ratios were 3.17 (p = 0.04) for dry mouth, 3.16 (p = 0.02) for sticky saliva, 3.58 (p = 0.02) for pain in the mouth, 3.35 (p = 0.04) for pain in the jaw, 2.60 (p = 0.02) for difficulties opening the mouth, 2.76 (p = 0.02) for difficulties with swallowing, and 2.68 (p = 0.03) for trouble with eating. Conclusion: The QOL assessment of head and neck cancer survivors demonstrated the benefit of IMRT, particularly in the areas of salivary dysfunction and oral discomfort.

  9. Intensity modulated proton therapy

    PubMed Central

    Grassberger, C

    2015-01-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed “pencil beams” of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak—the characteristic peak of dose at the end of range—combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose “painting” within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the

  10. Parotid-sparing intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma: Preserved parotid function after IMRT on quantitative salivary scintigraphy, and comparison with historical data after conventional radiotherapy

    SciTech Connect

    Hsiung, C.-Y. . E-mail: hsiungcy@hotmail.com; Ting, H.-M.; Huang, H.-Y.; Lee, C.-H.; Huang, E.-Y.; Hsu, H.-C.

    2006-10-01

    Purpose: To evaluate the parotid function after parotid-sparing intensity-modulated radiotherapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: From March 2003 to May 2004, 16 patients with nonmetastatic NPC underwent parotid-sparing IMRT. Eight of these patients had Stage III or IV NPC based on the 1997 American Joint Committee on Cancer staging system. The post-IMRT parotid function was evaluated by quantitative salivary scintigraphy and represented by the maximal excretion ratio (MER) of the parotid gland after sialogogue stimulation. The parotid function of 16 NPC patients who were previously treated with conventional radiotherapy was reviewed as the historical control. Results: In the parotid-sparing IMRT group, all 16 patients were alive and without cancer at the end of follow-up period (median, 24.2 months). The mean parotid MER was 53.5% before radiotherapy, 10.7% at 1 month post-IMRT, and 23.3% at 9 months post-IMRT. In the conventional radiotherapy group, the mean parotid MER was 0.6% at 6 to 12 months postradiotherapy. The difference was statistically significant (23.3% vs. 0.6%, p < 0.001, Mann-Whitney test). In the IMRT group, the mean parotid doses ranged from 33.2 Gy to 58.8 Gy (average, 43.9 Gy). The correlation between the mean parotid dose and the percentage decrease of parotid MER at 9 months post-IMRT (dMER) was statically significant (p = 0.008, Pearson correlation). Conclusions: Although the mean parotid doses are relatively high, the significant preservation of parotid function is achieved with IMRT for NPC patients. The significant correlation between mean parotid dose and parotid dMER demonstrates the dose-function relationship of the parotid gland.

  11. SU-E-P-58: Dosimetric Study of Conventional Intensity-Modulated Radiotherapy and Knowledge-Based Radiation Therapy for Postoperation of Cervix Cancer

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: To compare the dosimetric difference of the target volume and organs at risk(OARs) between conventional intensity-modulated radiotherapy(C-IMRT) and knowledge-based radiation therapy (KBRT) plans for cervix cancer. Methods: 39 patients with cervical cancer after surgery were randomly selected, 20 patient plans were used to create the model, the other 19 cases used for comparative evaluation. All plans were designed in Eclipse system. The prescription dose was 30.6Gy, 17 fractions, OARs dose satisfied to the clinical requirement. A paired t test was used to evaluate the differences of dose-volume histograms (DVH). Results: Comparaed to C-IMRT plan, the KBRT plan target can achieve the similar target dose coverage, D98,D95,D2,HI and CI had no difference (P≥0.05). The dose of rectum, bladder and femoral heads had no significant differences(P≥0.05). The time was used to design treatment plan was significant reduced. Conclusion: This study shows that postoperative radiotherapy of cervical KBRT plans can achieve the similar target and OARs dose, but the shorter designing time.

  12. Transitioning from conventional radiotherapy to intensity-modulated radiotherapy for localized prostate cancer: changing focus from rectal bleeding to detailed quality of life analysis

    PubMed Central

    Yamazaki, Hideya; Nakamura, Satoaki; Nishimura, Takuya; Yoshida, Ken; Yoshioka, Yasuo; Koizumi, Masahiko; Ogawa, Kazuhiko

    2014-01-01

    With the advent of modern radiation techniques, we have been able to deliver a higher prescribed radiotherapy dose for localized prostate cancer without severe adverse reactions. We reviewed and analyzed the change of toxicity profiles of external beam radiation therapy (EBRT) from the literature. Late rectal bleeding is the main adverse effect, and an incidence of >20% of Grade ≥2 adverse events was reported for 2D conventional radiotherapy of up to 70 Gy. 3D conformal radiation therapy (3D-CRT) was found to reduce the incidence to ∼10%. Furthermore, intensity-modulated radiation therapy (IMRT) reduced it further to a few percentage points. However, simultaneously, urological toxicities were enhanced by dose escalation using highly precise external radiotherapy. We should pay more attention to detailed quality of life (QOL) analysis, not only with respect to rectal bleeding but also other specific symptoms (such as urinary incontinence and impotence), for two reasons: (i) because of the increasing number of patients aged >80 years, and (ii) because of improved survival with elevated doses of radiotherapy and/or hormonal therapy; age is an important prognostic factor not only for prostate-specific antigen (PSA) control but also for adverse reactions. Those factors shift the main focus of treatment purpose from survival and avoidance of PSA failure to maintaining good QOL, particularly in older patients. In conclusion, the focus of toxicity analysis after radiotherapy for prostate cancer patients is changing from rectal bleeding to total elaborate quality of life assessment. PMID:25204643

  13. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial

    SciTech Connect

    Pow, Edmond; Kwong, Dora; McMillan, Anne S. . E-mail: annemcmillan@hku.hk; Wong, May; Sham, Jonathan; Leung, Lucullus; Leung, W. Keung

    2006-11-15

    Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results: Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach.

  14. Comparison of clinical outcomes and toxicity in endometrial cancer patients treated with adjuvant intensity-modulated radiation therapy or conventional radiotherapy.

    PubMed

    Chen, Chien-Chih; Wang, Lily; Lu, Chien-Hsing; Lin, Jin-Ching; Jan, Jian-Sheng

    2014-12-01

    To evaluate the treatment outcomes and toxicity in endometrial cancer patients treated with hysterectomy and adjuvant intensity-modulated radiation therapy (IMRT) or conventional radiotherapy (CRT). There were 101 patients with stage IA-IIIC2 endometrial carcinoma treated with hysterectomy and adjuvant radiotherapy. In total, 36 patients received adjuvant CRT and 65 were treated with adjuvant IMRT. The endpoints were overall survival, local failure-free survival, and disease-free survival. Patients were assessed for acute toxicity weekly according to the Common Terminology Criteria for Adverse Events version 3.0. Late toxicity was evaluated according to the Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The 5-year overall survival, local failure-free survival, and disease-free survival for the CRT group and the IMRT group were 82.9% versus 93.5% (p = 0.26), 93.7% versus 89.3% (p = 0.68), and 88.0% versus 82.8% (p = 0.83), respectively. Four (11.1%) patients had Grade 3 or greater acute gastrointestinal (GI) toxicity and three (8.3%) patients had Grade 3 or greater acute genitourinary (GU) toxicity in the CRT group, whereas four (6.2%) patients had Grade 3 or greater acute GI toxicity in the IMRT group and no patient had severe GU toxicity. There was one (2.8%) patient who had Grade 3 or greater late GI toxicity and one (2.8%) patient had Grade 3 or greater late GU toxicity in the CRT group, whereas no patient had severe GI or GU toxicity in the IMRT group. Adjuvant IMRT for endometrial cancer patients had comparable clinical outcomes with CRT and had less acute and late toxicity. Copyright © 2013. Published by Elsevier B.V.

  15. Neutron Measurements for Intensity Modulated Radiation Therapy

    SciTech Connect

    Ipe, Nisy E.

    2000-04-21

    The beam-on time for intensity modulated radiation therapy (IMRT) is increased significantly compared with conventional radiotherapy treatments. Further, the presence of beam modulation devices may potentially affect neutron production. Therefore, neutron measurements were performed for 15 MV photon beams on a Varian Clinac accelerator to determine the impact of IMRT on neutron dose equivalent to the patient.

  16. Implementation of Constant Dose Rate and Constant Angular Spacing Intensity-modulated Arc Therapy for Cervical Cancer by Using a Conventional Linear Accelerator

    PubMed Central

    Zhang, Ruo-Hui; Fan, Xiao-Mei; Bai, Wen-Wen; Cao, Yan-Kun

    2016-01-01

    Background: Volumetric-modulated arc therapy (VMAT) can only be implemented on the new generation linacs such as the Varian Trilogy® and Elekta Synergy®. This prevents most existing linacs from delivering VMAT. The purpose of this study was to investigate the feasibility of using a conventional linear accelerator delivering constant dose rate and constant angular spacing intensity-modulated arc therapy (CDR-CAS-IMAT) for treating cervical cancer. Methods: Twenty patients with cervical cancer previously treated with intensity-modulated radiation therapy (IMRT) using Varian Clinical 23EX were retreated using CDR-CAS-IMAT. The planning target volume (PTV) was set as 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), target volume conformity index (CI), the dose to organs at risk, radiation delivery time, and monitor units (MUs) were also compared. The paired t-test was used to analyze the two data sets. All statistical analyses were performed using SPSS 19.0 software. Results: Compared to the IMRT group, the CDR-CAS-IMAT group showed better PTV CI (0.85 ± 0.03 vs. 0.81 ± 0.03, P = 0.001), clinical target volume CI (0.46 ± 0.05 vs. 0.43 ± 0.05, P = 0.001), HI (0.09±0.02 vs. 0.11 ± 0.02, P = 0.005) and D95 (5196.33 ± 28.24 cGy vs. 5162.63 ± 31.12 cGy, P = 0.000), and cord D2 (3743.8 ± 118.7 cGy vs. 3806.2 ± 98.7 cGy, P = 0.017) and rectum V40 (41.9 ± 6.1% vs. 44.2 ± 4.8%, P = 0.026). Treatment time (422.7 ± 46.7 s vs. 84.6 ± 7.8 s, P = 0.000) and the total plan Mus (927.4 ± 79.1 vs. 787.5 ± 78.5, P = 0.000) decreased by a factor of 0.8 and 0.15, respectively. The IMRT group plans were superior to the CDR-CAS-IMAT group plans considering decreasing bladder V50 (17.4 ± 4.5% vs. 16.6 ± 4.2%, P = 0.049), bowel V30 (39.6 ± 6.5% vs. 36.6 ± 7.5%, P = 0.008), and low-dose irradiation volume; there were no significant differences in other statistical indexes. Conclusions

  17. Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: a prospective randomized study.

    PubMed

    Gandhi, Ajeet Kumar; Sharma, Daya Nand; Rath, Goura Kisor; Julka, Pramod Kumar; Subramani, Vellaiyan; Sharma, Seema; Manigandan, Durai; Laviraj, M A; Kumar, Sunesh; Thulkar, Sanjay

    2013-11-01

    To evaluate the toxicity and clinical outcome in patients with locally advanced cervical cancer (LACC) treated with whole pelvic conventional radiation therapy (WP-CRT) versus intensity modulated radiation therapy (WP-IMRT). Between January 2010 and January 2012, 44 patients with International Federation of Gynecology and Obstetrics (FIGO 2009) stage IIB-IIIB squamous cell carcinoma of the cervix were randomized to receive 50.4 Gy in 28 fractions delivered via either WP-CRT or WP-IMRT with concurrent weekly cisplatin 40 mg/m(2). Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events, version 3.0, and late toxicity was graded according to the Radiation Therapy Oncology Group system. The primary and secondary endpoints were acute gastrointestinal toxicity and disease-free survival, respectively. Of 44 patients, 22 patients received WP-CRT and 22 received WP-IMRT. In the WP-CRT arm, 13 patients had stage IIB disease and 9 had stage IIIB disease; in the IMRT arm, 12 patients had stage IIB disease and 10 had stage IIIB disease. The median follow-up time in the WP-CRT arm was 21.7 months (range, 10.7-37.4 months), and in the WP-IMRT arm it was 21.6 months (range, 7.7-34.4 months). At 27 months, disease-free survival was 79.4% in the WP-CRT group versus 60% in the WP-IMRT group (P=.651), and overall survival was 76% in the WP-CRT group versus 85.7% in the WP-IMRT group (P=.645). Patients in the WP-IMRT arm experienced significantly fewer grade ≥2 acute gastrointestinal toxicities (31.8% vs 63.6%, P=.034) and grade ≥3 gastrointestinal toxicities (4.5% vs 27.3%, P=.047) than did patients receiving WP-CRT and had less chronic gastrointestinal toxicity (13.6% vs 50%, P=.011). WP-IMRT is associated with significantly less toxicity compared with WP-CRT and has a comparable clinical outcome. Further studies with larger sample sizes and longer follow-up times are warranted to justify its use in routine clinical practice. Copyright © 2013

  18. Dosimetric Comparison of Three Different Involved Nodal Irradiation Techniques for Stage II Hodgkin's Lymphoma Patients: Conventional Radiotherapy, Intensity-Modulated Radiotherapy, and Three-Dimensional Proton Radiotherapy

    SciTech Connect

    Chera, Bhishamjit S.; Rodriguez, Christina; Morris, Christopher G.; Louis, Debbie; Yeung, Daniel; Li Zuofeng; Mendenhall, Nancy P.

    2009-11-15

    Purpose: To compare the dose distribution to targeted and nontargeted tissues in Hodgkin's lymphoma patients using conventional radiotherapy (CRT), intensity-modulated RT (IMRT), and three-dimensional proton RT (3D-PRT). Methods and Materials: CRT, IMRT, and 3D-PRT treatment plans delivering 30 cobalt Gray equivalent (CGE)/Gy to an involved nodal field were created for 9 Stage II Hodgkin's lymphoma patients (n = 27 plans). The dosimetric endpoints were compared. Results: The planning target volume was adequately treated using all three techniques. The IMRT plan produced the most conformal high-dose distribution; however, the 3D-PRT plan delivered the lowest mean dose to nontarget tissues, including the breast, lung, and total body. The relative reduction in the absolute lung volume receiving doses of 4-16 CGE/Gy for 3D-PRT compared with CRT ranged from 26% to 37% (p < .05), and the relative reduction in the absolute lung volume receiving doses of 4-10 CGE/Gy for 3D-PRT compared with IMRT was 48-65% (p < .05). The relative reduction in absolute total body volume receiving 4-30 CGE/Gy for 3D-PRT compared with CRT was 47% (p < .05). The relative reduction in absolute total body volume receiving a dose of 4 CGE/Gy for 3D-PRT compared with IMRT was 63% (p = .03). The mean dose to the breast was significantly less for 3D-PRT than for either IMRT or CRT (p = .03) The mean dose and absolute volume receiving 4-30 CGE/Gy for the heart, thyroid, and salivary glands were similar for the three modalities. Conclusion: In this favorable subset of Hodgkin's lymphoma patients without disease in or below the hila, 3D-PRT significantly reduced the dose to the breast, lung, and total body. These observed dosimetric advantages might improve the clinical outcomes of Hodgkin's lymphoma patients by reducing the risk of late radiation effects related to low-to-moderate doses in nontargeted tissues.

  19. Early Clinical Outcomes and Toxicity of Intensity Modulated Versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma: A Prospective Randomized Study

    SciTech Connect

    Gandhi, Ajeet Kumar; Sharma, Daya Nand; Rath, Goura Kisor; Julka, Pramod Kumar; Subramani, Vellaiyan; Sharma, Seema; Manigandan, Durai; Laviraj, M.A.; Kumar, Sunesh; Thulkar, Sanjay

    2013-11-01

    Purpose: To evaluate the toxicity and clinical outcome in patients with locally advanced cervical cancer (LACC) treated with whole pelvic conventional radiation therapy (WP-CRT) versus intensity modulated radiation therapy (WP-IMRT). Methods and Materials: Between January 2010 and January 2012, 44 patients with International Federation of Gynecology and Obstetrics (FIGO 2009) stage IIB-IIIB squamous cell carcinoma of the cervix were randomized to receive 50.4 Gy in 28 fractions delivered via either WP-CRT or WP-IMRT with concurrent weekly cisplatin 40 mg/m{sup 2}. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events, version 3.0, and late toxicity was graded according to the Radiation Therapy Oncology Group system. The primary and secondary endpoints were acute gastrointestinal toxicity and disease-free survival, respectively. Results: Of 44 patients, 22 patients received WP-CRT and 22 received WP-IMRT. In the WP-CRT arm, 13 patients had stage IIB disease and 9 had stage IIIB disease; in the IMRT arm, 12 patients had stage IIB disease and 10 had stage IIIB disease. The median follow-up time in the WP-CRT arm was 21.7 months (range, 10.7-37.4 months), and in the WP-IMRT arm it was 21.6 months (range, 7.7-34.4 months). At 27 months, disease-free survival was 79.4% in the WP-CRT group versus 60% in the WP-IMRT group (P=.651), and overall survival was 76% in the WP-CRT group versus 85.7% in the WP-IMRT group (P=.645). Patients in the WP-IMRT arm experienced significantly fewer grade ≥2 acute gastrointestinal toxicities (31.8% vs 63.6%, P=.034) and grade ≥3 gastrointestinal toxicities (4.5% vs 27.3%, P=.047) than did patients receiving WP-CRT and had less chronic gastrointestinal toxicity (13.6% vs 50%, P=.011). Conclusion: WP-IMRT is associated with significantly less toxicity compared with WP-CRT and has a comparable clinical outcome. Further studies with larger sample sizes and longer follow-up times are warranted to justify

  20. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... Resources Professions Site Index A-Z Intensity-Modulated Radiation Therapy (IMRT) Intensity-modulated radiotherapy (IMRT) uses linear ... and after this procedure? What is Intensity-Modulated Radiation Therapy and how is it used? Intensity-modulated ...

  1. Dosimetric comparison of conventional and forward-planned intensity-modulated techniques for comprehensive locoregional irradiation of post-mastectomy left breast cancers

    SciTech Connect

    Cavey, Matthew L. . E-mail: mlcavey@utmb.edu; Bayouth, John E.; Endres, Eugene J.; Pena, John M.; Colman, Martin; Hatch, Sandra

    2005-06-30

    Three recently published randomized trials have shown a survival benefit to postoperative radiation therapy when the internal mammary chain (IMC), supraclavicular (SCV), and axillary lymphatics are treated. When treating the IMC, techniques that minimize dose to the heart and lungs may be utilized to prevent excess morbidity and mortality and achieve the survival benefit reported. The purpose of this study was to dosimetrically compare forward-planned intensity-modulated radiation therapy (fIMRT) with conventional techniques for comprehensive irradiation of the chest wall and regional lymphatics. For irradiation of the chest wall and IMC, 3 treatment plans, (1) fIMRT, (2) partially-wide tangent (PWT) fields, and (3) a photon-electron (PE) technique, were compared for 12 patients previously treated at our institution with fIMRT to the left chest wall and regional lymphatics. Additionally, the SCV and infraclavicular lymphatics were irradiated and 4 methods were compared: 2 with anterior fields only (dose prescribed to 3 and 5 cm [SC3cm, SC5cm]) and 2 with anterior and posterior fields (fIMRT, 3DCRT). Each patient was planned to receive 50 Gy in 25 fractions. Regions of interest (ROIs) created for each patient included chest wall (CW) planning target volume (PTV), IMC PTV, and SCV PTV. Additionally, the following organs at risk (OAR) volumes were created: contralateral breast, heart, and lungs. For each plan and ROI, target volume coverage (V{sub 95-107}) and dose homogeneity (D{sub 95-5}) were evaluated. Additionally, the mean OAR dose and normal tissue complication probability (NTCP) were computed. For irradiation of the CW, target volume coverage and dose homogeneity were improved for the fIMRT technique as compared to PE (p < 0.001, p = 0.023, respectively). Similar improvements were seen with respect to IMC PTV (p = 0.012, p = 0.064). These dosimetric parameters were also improved as compared to PWT, but not to the same extent (p = 0.011, p = 0.095 for CW PTV

  2. Intensity-modulated radiation therapy after hysterectomy: Comparison with conventional treatment and sensitivity of the normal-tissue-sparing effect to margin size

    SciTech Connect

    Ahamad, Anesa; D'Souza, Warren; Salehpour, Mohammad; Iyer, Revathy; Tucker, Susan L.; Jhingran, Anuja; Eifel, Patricia J. . E-mail: peifel@mdanderson.org

    2005-07-15

    Purpose: To determine the influence of target-volume expansion on the reduction in small-bowel dose achieved with use of intensity-modulated radiation therapy (IMRT) vs. standard conformal treatment of the pelvis after hysterectomy, and to investigate the influence of patient body habitus on the normal-tissue sparing achieved with use of IMRT. Methods and Materials: A clinical target volume (CTV) was contoured on each of 10 planning computed tomography scans of patients who had been treated for cervical or endometrial cancer after a hysterectomy. Treatment planning was based on vaginal CTVs and regional nodal CTVs. To account for internal motion, margins were added to form an initial planning target volume (PTVA) as follows: 0.0 mm were added to the regional nodal CTV; 10 mm were added anteriorly to the vaginal CTV; and 5 mm were added to the vaginal CTV in all other directions. Two further PTVs (PTVB and PTVC) were produced by a 5-mm expansion of PTVA to give PTVB and a further 5-mm expansion to give PTVC. Treatment plans for all 3 PTVs were produced by use of 2 conformal fields (2FC), 4 conformal fields (4FC), or IMRT to deliver 45 Gy to more than 97% of the PTV. The primary goal of IMRT was to spare small bowel. The change in sparing that accompanied the increase in margin size was assessed by comparison of dose-volume histograms that resulted from PTVA, PTVB, and PTVC. Measured patient dimensions were correlated with bowel sparing. Results: Significantly less small bowel was irradiated by IMRT than by 2FC (p < 0.0001) or 4FC (p < 0.0001) for doses greater than 25 Gy. Significantly less rectum was irradiated by IMRT than by 2FC (p < 0.0001) or 4FC (p < 0.0001). Significantly less bladder was irradiated by IMRT than by 2FC (p < 0.0001). However, the magnitude of the sparing achieved by use of IMRT decreased as margins increased. In particular, the volume of small bowel spared by IMRT vs. 2FC or 4FC decreased as margin size increased (p = 0.0002 and p = 0.008 for

  3. Patterns of Care and Outcomes Associated With Intensity-Modulated Radiation Therapy Versus Conventional Radiation Therapy for Older Patients With Head-and-Neck Cancer

    SciTech Connect

    Yu, James B.; Soulos, Pamela R.; Sharma, Richa; Makarov, Danil V.; Decker, Roy H.; Smith, Benjamin D.; Desai, Rani A.; Cramer, Laura D.; Gross, Cary P.

    2012-05-01

    Purpose: Intensity-modulated radiation therapy (IMRT) requires a high degree of expertise compared with standard radiation therapy (RT). We performed a retrospective cohort study of Medicare patients treated with IMRT compared with standard RT to assess outcomes in national practice. Methods and Materials: Using the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database, we identified patients treated with radiation for cancer of the head and neck from 2002 to 2005. We used multivariate Cox models to determine whether the receipt of IMRT was associated with differences in survival. Results: We identified 1613 patients, 33.7% of whom received IMRT. IMRT was not associated with differences in survival: the 3-year overall survival was 50.5% for IMRT vs. 49.6% for standard RT (p = 0.47). The 3-year cancer-specific survival was 60.0% for IMRT vs. 58.8% (p = 0.45). Conclusion: Despite its complexity and resource intensive nature, IMRT use seems to be as safe as standard RT in national community practice, because the use of IMRT did not have an adverse impact on survival.

  4. Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes.

    PubMed

    Popescu, Carmen C; Olivotto, Ivo A; Beckham, Wayne A; Ansbacher, Will; Zavgorodni, Sergei; Shaffer, Richard; Wai, Elaine S; Otto, Karl

    2010-01-01

    Volumetric modulated arc therapy (VMAT) is a novel extension of conventional intensity-modulated radiotherapy (cIMRT), in which an optimized three-dimensional dose distribution may be delivered in a single gantry rotation. VMAT is the predecessor to RapidArc (Varian Medical System). This study compared VMAT with cIMRT and with conventional modified wide-tangent (MWT) techniques for locoregional radiotherapy for left-sided breast cancer, including internal mammary nodes. Therapy for 5 patients previously treated with 50 Gy/25 fractions using nine-field cIMRT was replanned with VMAT and MWT. Comparative endpoints were planning target volume (PTV) dose homogeneity, doses to surrounding structures, number of monitor units, and treatment delivery time. For VMAT, two 190 degrees arcs with 2-cm overlapping jaws were required to optimize over the large treatment volumes. Treatment plans generated using VMAT optimization resulted in PTV homogeneity similar to that of cIMRT and MWT. The average heart volumes receiving >30 Gy for VMAT, cIMRT, and MWT were 2.6% +/- 0.7%, 3.5% +/- 0.8%, and 16.4% +/- 4.3%, respectively, and the average ipsilateral lung volumes receiving >20 Gy were 16.9% +/- 1.1%, 17.3% +/- 0.9%, and 37.3% +/- 7.2%, respectively. The average mean dose to the contralateral medial breast was 3.2 +/- 0.6 Gy for VMAT, 4.3 +/- 0.4 Gy for cIMRT, and 4.4 +/- 4.7 Gy for MWT. The healthy tissue volume percentages receiving 5 Gy were significantly larger with VMAT (33.1% +/- 2.1%) and IMRT (45.3% +/- 3.1%) than with MWT (19.4% +/- 3.7%). VMAT reduced the number of monitor units by 30% and the treatment time by 55% compared with cIMRT. VMAT achieved similar PTV coverage and sparing of organs at risk, with fewer monitor units and shorter delivery time than cIMRT.

  5. Volumetric Modulated Arc Therapy Improves Dosimetry and Reduces Treatment Time Compared to Conventional Intensity-Modulated Radiotherapy for Locoregional Radiotherapy of Left-Sided Breast Cancer and Internal Mammary Nodes

    SciTech Connect

    Popescu, Carmen C.; Olivotto, Ivo A.; Beckham, Wayne A.; Ansbacher, Will; Zavgorodni, Sergei; Shaffer, Richard; Wai, Elaine S.; Otto, Karl

    2010-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a novel extension of conventional intensity-modulated radiotherapy (cIMRT), in which an optimized three-dimensional dose distribution may be delivered in a single gantry rotation. VMAT is the predecessor to RapidArc (Varian Medical System). This study compared VMAT with cIMRT and with conventional modified wide-tangent (MWT) techniques for locoregional radiotherapy for left-sided breast cancer, including internal mammary nodes. Methods and Materials: Therapy for 5 patients previously treated with 50 Gy/25 fractions using nine-field cIMRT was replanned with VMAT and MWT. Comparative endpoints were planning target volume (PTV) dose homogeneity, doses to surrounding structures, number of monitor units, and treatment delivery time. Results: For VMAT, two 190 deg. arcs with 2-cm overlapping jaws were required to optimize over the large treatment volumes. Treatment plans generated using VMAT optimization resulted in PTV homogeneity similar to that of cIMRT and MWT. The average heart volumes receiving >30 Gy for VMAT, cIMRT, and MWT were 2.6% +- 0.7%, 3.5% +- 0.8%, and 16.4% +- 4.3%, respectively, and the average ipsilateral lung volumes receiving >20 Gy were 16.9% +- 1.1%, 17.3% +- 0.9%, and 37.3% +- 7.2%, respectively. The average mean dose to the contralateral medial breast was 3.2 +- 0.6 Gy for VMAT, 4.3 +- 0.4 Gy for cIMRT, and 4.4 +- 4.7 Gy for MWT. The healthy tissue volume percentages receiving 5 Gy were significantly larger with VMAT (33.1% +- 2.1%) and IMRT (45.3% +- 3.1%) than with MWT (19.4% +- 3.7%). VMAT reduced the number of monitor units by 30% and the treatment time by 55% compared with cIMRT. Conclusions: VMAT achieved similar PTV coverage and sparing of organs at risk, with fewer monitor units and shorter delivery time than cIMRT.

  6. Light intensity modulation in phototherapy

    NASA Astrophysics Data System (ADS)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  7. Changes in salivary gland function after radiotherapy of head and neck tumors measured by quantitative pertechnetate scintigraphy: Comparison of intensity-modulated radiotherapy and conventional radiation therapy with and without Amifostine

    SciTech Connect

    Muenter, Marc W. . E-mail: m.muenter@dkfz.de; Hoffner, Simone; Hof, Holger; Herfarth, Klaus K.; Haberkorn, Uwe; Rudat, Volker; Huber, Peter; Debus, Juergen; Karger, Christian P.

    2007-03-01

    Purpose: The aim of this study was to compare changes in salivary gland function after intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (RT), with or without Amifostine, for tumors of the head-and-neck region using quantitative salivary gland scintigraphy (QSGS). Methods and Materials: A total of 75 patients received pre- and post-therapeutic QSGS to quantify the salivary gland function. In all, 251 salivary glands were independently evaluated. Changes in the maximum uptake ({delta}U) and relative excretion rate ({delta}F) both pre- and post-RT were determined to characterize radiation-induced changes in the salivary gland function. In addition, dose-response curves were calculated. Results: In all groups, maximum uptake and relative excretion rate were reduced after RT ({delta}U {<=}0 and {delta}F {<=}0). The reduction was significantly lower for IMRT than for conventional RT. For the parotid glands, the reduction was smaller for the IMRT-low than for the IMRT-high group. For the Amifostine-high and the conventional group the difference was significant only for one parameter ({delta}U, parotid and submandibular glands, p < 0.05). In contrast to this, the difference between the Amifostine-low and the conventional group was always significant or at least showed a clear trend for both changes in U and F. In regard to the endpoint 'reduction of the salivary gland excretion rate of more than 50%,' the dose-response curves yielded D{sub 50}-values of 34.2 {+-} 12.2 Gy for the conventionally treated group and 36.8 {+-} 2.9 Gy for the IMRT group. For the Amifostine group, an increased D{sub 50}-values of 46.3 {+-} 2.3 Gy was obtained. Conclusion: Intensity-modulated RT can significantly reduce the loss of parotid gland function when respecting a certain dose threshold. Conventional RT plus Amifostine prevents reduced salivary gland function only in the patient group treated with <40.6 Gy.

  8. Intensity-Modulated and 3D-Conformal Radiotherapy for Whole-Ventricular Irradiation as Compared With Conventional Whole-Brain Irradiation in the Management of Localized Central Nervous System Germ Cell Tumors

    SciTech Connect

    Chen, Michael Jenwei; Silva Santos, Adriana da; Sakuraba, Roberto Kenji; Lopes, Cleverson Perceu; Goncalves, Vinicius Demanboro; Weltman, Eduardo; Ferrigno, Robson; Cruz, Jose Carlos

    2010-02-01

    Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.

  9. Intensity-modulated radiation therapy.

    PubMed

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  10. Comparative study of convolution, superposition, and fast superposition algorithms in conventional radiotherapy, three-dimensional conformal radiotherapy, and intensity modulated radiotherapy techniques for various sites, done on CMS XIO planning system

    PubMed Central

    Muralidhar, K. R.; Murthy, Narayana P.; Raju, Alluri Krishnam; Sresty, NVNM

    2009-01-01

    The aim of this study is to compare the dosimetry results that are obtained by using Convolution, Superposition and Fast Superposition algorithms in Conventional Radiotherapy, Three-Dimensional Conformal Radiotherapy (3D-CRT), and Intensity Modulated Radiotherapy (IMRT) for different sites, and to study the suitability of algorithms with respect to site and technique. For each of the Conventional, 3D-CRT, and IMRT techniques, four different sites, namely, Lung, Esophagus, Prostate, and Hypopharynx were analyzed. Treatment plans were created using 6MV Photon beam quality using the CMS XiO (Computerized Medical System, St.Louis, MO) treatment planning system. The maximum percentage of variation recorded between algorithms was 3.7% in case of Ca.Lung, for the IMRT Technique. Statistical analysis was performed by comparing the mean relative difference, Conformity Index, and Homogeneity Index for target structures. The fast superposition algorithm showed excellent results for lung and esophagus cases for all techniques. For the prostate, the superposition algorithm showed better results in all techniques. In the conventional case of the hypopharynx, the convolution algorithm was good. In case of Ca. Lung, Ca Prostate, Ca Esophagus, and Ca Hypopharynx, OARs got more doses with the superposition algorithm; this progressively decreased for fast superposition and convolution algorithms, respectively. According to this study the dosimetric results using different algorithms led to significant variation and therefore care had to be taken while evaluating treatment plans. The choice of a dose calculation algorithm may in certain cases even influence clinical results. PMID:20126561

  11. Feasibility and efficacy of helical intensity-modulated radiotherapy for stage III non-small cell lung cancer in comparison with conventionally fractionated 3D-CRT

    PubMed Central

    He, Jian; Huang, Yan; Chen, Yixing; Shi, Shiming; Ye, Luxi; Hu, Yong; Zhang, Jianying

    2016-01-01

    Background The standard treatment for stage III non-small-cell lung cancer (NSCLC) is still 60 Gy in conventional fractions combined with concurrent chemotherapy; however, the resulting local controls are disappointing. The aim of this study was to compare and assess the feasibility and efficacy of hypofractionated chemoradiotherapy using helical tomotherapy (HT) with conventional fractionation as opposed to using three-dimensional conformal radiotherapy (3D-CRT) for stage III NSCLC. Methods Sixty-nine patients with stage III (AJCC 7th edition) NSCLC who underwent definitive radiation treatment at our institution between July 2011 and November 2013 were reviewed and analyzed retrospectively. A dose of 60 Gy in 20 fractions was delivered in the HT group (n=34), whereas 60 Gy in 30 fractions in the 3D-CRT group (n=35). Primary endpoints were toxicity, overall response rate, overall survival (OS) and progression-free survival (PFS). Results The median follow-up period was 26.4 months. V20 (P=0.005), V30 (P=0.001), V40 (P=0.004), mean lung dose (P=0.000) and max dose of spinal cord (P=0.005) were significantly lower in the HT group than in the 3D-CRT group. There was no significant difference in the incidences of acute radiation pneumonitis (RP) ≥ grade 2 between the two groups, whereas the incidences of acute radiation esophagitis ≥ grade 2 were significantly lower in the HT group than in the 3D-CRT group (P=0.027). Two-year overall response rate was significantly higher in the HT group than in the 3D-CRT group (P=0.015). One- and 2-year OS rates were significantly higher in the HT group (95.0% and 68.7%, respectively) than in the 3D-CRT group (85.5% and 47.6%, respectively; P=0.0236). One- and 2-year PFS rates were significantly higher in the HT group (57.8% and 26.3%, respectively) than in the 3D-CRT group (32.7% and 11.4%, respectively; P=0.0351). Univariate analysis indicated that performance status (PS), T stage and radiotherapy technique were significant

  12. SU-E-T-810: Volumetric Modulated Arc Therapy and Conventional Intensity-Modulated Radiotherapy for Non-Small-Cell Lung Cancer with Simultaneously Integrated Boost Radiation Therapy: A Planning Comparison Study

    SciTech Connect

    Liu, T; Chen, J; Zhang, G; Sun, T

    2015-06-15

    Purpose: To compare and analyze the characteristics of intensity-modulated arc therapy(IMAT) versus fixed-gantry intensity-modulated radiotherapy(IMRT) in treatment of non-small-cell lung cancer. Methods: Twelve patients treated in our radiotherapy center were selected for this study. The patient subsequently underwent 4D-CT simulation.Margins of 5mm and 10mm were added to the ITV to generate the CTV and PTV respectively. Three treatment plans (IMRT,one single arc (RA1),double arcs (RA2))were generated with Eclipse ver.8.6 planning systems. Using a dose level of 75Gy in 15fractions to the ITV,60Gy in 15fractions to the CTV and 45Gy in 15fractions to the PTV respectively. The target and normol tissue volumes were compared,as were the dosimetry parameters. Results: There were no significant differences in CI of ITV,PTV,HI of ITV,CTV and PTV, V5,V10,V15,V20,V25,V30,V45,V50 of total-lung and mean lung dose (all p>0.05). However, the differences were significant in terms of CI of CTV,V5 of B-P (all p<0.05). On the MU, IMRT=1540MU,RA1=1006 MU and RA2=1096 MU. (F=12.00,P=0.000).On the treatment time, IMRT= 13.5min,RA1= 1.5min,and RA2=2.5 min (F= 30.11,P=0.000 ). Conclusion: IMAT is equal to IMRT in dosimetril evaluation. Due to much less Mu and delivery time,IMAT is an ideal technique in treating patients by reduceing the uncomfortable influnce which could effect the treatment.

  13. Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin's disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes?

    SciTech Connect

    Girinsky, Theodore . E-mail: girinsky@igr.fr; Pichenot, Charlotte; Beaudre, Anne; Ghalibafian, Mithra; Lefkopoulos, Dimitri

    2006-01-01

    Purpose: To evaluate the role of beam orientation optimization and the role of virtual volumes (VVs) aimed at protecting adjacent organs at risk (OARs), and to compare various intensity-modulated radiotherapy (IMRT) setups with conventional treatment with anterior and posterior fields and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: Patients with mediastinal masses in Hodgkin's disease were treated with combined modality therapy (three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine [ABVD] before radiation treatment). Contouring and treatment planning were performed with Somavision and CadPlan Helios (Varian Systems, Palo Alto, CA). The gross tumor volume was determined according to the prechemotherapy length and the postchemotherapy width of the mediastinal tumor mass. A 10-mm isotropic margin was added for the planning target volume (PTV). Because dose constraints assigned to OARs led to unsatisfactory PTV coverage, VVs were designed for each patient to protect adjacent OARs. The prescribed dose was 40 Gy to the PTV, delivered according to guidelines from International Commission on Radiation Units and Measurements Report No. 50. Five different IMRT treatment plans were compared with conventional treatment and 3D-CRT. Results: Beam orientation was important with respect to the amount of irradiated normal tissues. The best compromise in terms of PTV coverage and protection of normal tissues was obtained with five equally spaced beams (5FEQ IMRT plan) using dose constraints assigned to VVs. When IMRT treatment plans were compared with conventional treatment and 3D-CRT, dose conformation with IMRT was significantly better, with greater protection of the heart, coronary arteries, esophagus, and spinal cord. The lungs and breasts in women received a slightly higher radiation dose with IMRT compared with conventional treatments. The greater volume of normal tissue receiving low radiation doses could be a cause for

  14. Lossless intensity modulation in integrated photonics.

    PubMed

    Sandhu, Sunil; Fan, Shanhui

    2012-02-13

    We present a dynamical analysis of lossless intensity modulation in two different ring resonator geometries. In both geometries, we demonstrate modulation schemes that result in a symmetrical output with an infinite on/off ratio. The systems behave as lossless intensity modulators where the time-averaged output optical power is equal to the time-averaged input optical power.

  15. Pre-trial quality assurance processes for an intensity-modulated radiation therapy (IMRT) trial: PARSPORT, a UK multicentre Phase III trial comparing conventional radiotherapy and parotid-sparing IMRT for locally advanced head and neck cancer.

    PubMed

    Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M

    2009-07-01

    The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.

  16. Intensive Hemodialysis Associates with Improved Survival Compared with Conventional Hemodialysis

    PubMed Central

    Lindsay, Robert M.; Cuerden, Meaghan S.; Garg, Amit X.; Port, Friedrich; Austin, Peter C.; Moist, Louise M.; Pierratos, Andreas; Chan, Christopher T.; Zimmerman, Deborah; Lockridge, Robert S.; Couchoud, Cécile; Chazot, Charles; Ofsthun, Norma; Levin, Adeera; Copland, Michael; Courtney, Mark; Steele, Andrew; McFarlane, Philip A.; Geary, Denis F.; Pauly, Robert P.; Komenda, Paul; Suri, Rita S.

    2012-01-01

    Patients undergoing conventional maintenance hemodialysis typically receive three sessions per week, each lasting 2.5–5.5 hours. Recently, the use of more intensive hemodialysis (>5.5 hours, three to seven times per week) has increased, but the effects of these regimens on survival are uncertain. We conducted a retrospective cohort study to examine whether intensive hemodialysis associates with better survival than conventional hemodialysis. We identified 420 patients in the International Quotidian Dialysis Registry who received intensive home hemodialysis in France, the United States, and Canada between January 2000 and August 2010. We matched 338 of these patients to 1388 patients in the Dialysis Outcomes and Practice Patterns Study who received in-center conventional hemodialysis during the same time period by country, ESRD duration, and propensity score. The intensive hemodialysis group received a mean (SD) 4.8 (1.1) sessions per week with a mean treatment time of 7.4 (0.87) hours per session; the conventional group received three sessions per week with a mean treatment time of 3.9 (0.32) hours per session. During 3008 patient-years of follow-up, 45 (13%) of 338 patients receiving intensive hemodialysis died compared with 293 (21%) of 1388 patients receiving conventional hemodialysis (6.1 versus 10.5 deaths per 100 person-years; hazard ratio, 0.55 [95% confidence interval, 0.34–0.87]). The strength and direction of the observed association between intensive hemodialysis and improved survival were consistent across all prespecified subgroups and sensitivity analyses. In conclusion, there is a strong association between intensive home hemodialysis and improved survival, but whether this relationship is causal remains unknown. PMID:22362910

  17. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  18. Wavefront sensing by means of binary intensity modulation.

    PubMed

    Wang, Shuai; Yang, Ping; Ao, Mingwu; Dong, Lizhi; Xu, Bing

    2014-12-10

    We propose a kind of wavefront sensing technique by means of binary intensity modulation. A digital micromirror device operates as a binary intensity modulator and a pinhole works as a binary-aberration-mode filter. Through modulating intensity distribution of incident light, light emitting from the pinhole is capable of containing information on binary aberration coefficients. With the amount of light acquired by a single detector, the coefficients of binary aberration modes for reconstructing incident wavefront can be calculated. Differing from the conventional wavefront sensing technique, this method turns the complex two-dimensional wavefront sensing into simple total-light-intensity detection. The simulation experiment has validated the feasibility of the theoretical model.

  19. Introduction to passive electron intensity modulation.

    PubMed

    Hogstrom, Kenneth R; Carver, Robert L; Chambers, Erin L; Erhart, Kevin

    2017-09-06

    This work introduces a new technology for electron intensity modulation, which uses small area island blocks within the collimating aperture and small area island apertures in the collimating insert. Due to multiple Coulomb scattering, electrons contribute dose under island blocks and lateral to island apertures. By selecting appropriate lateral positions and diameters of a set of island blocks and island apertures, for example, a hexagonal grid with variable diameter circular island blocks, intensity modulated beams can be produced for appropriate air gaps between the intensity modulator (position of collimating insert) and the patient. Such a passive radiotherapy intensity modulator for electrons (PRIME) is analogous to using physical attenuators (metal compensators) for intensity modulated x-ray therapy (IMXT). For hexagonal spacing, the relationship between block (aperture) separation (r) and diameter (d) and the local intensity reduction factor (IRF) is discussed. The PRIME principle is illustrated using pencil beam calculations for select beam geometries in water with half beams modulated by 70%-95% and for one head and neck field of a patient treated with bolus electron conformal therapy. Proof of principle is further illustrated by showing agreement between measurement and calculation for a prototype PRIME. Potential utilization of PRIME for bolus electron conformal therapy, segmented-field electron conformal therapy, modulated electron radiation therapy, and variable surface geometries is discussed. Further research and development of technology for the various applications is discussed. In summary, this paper introduces a practical, new technology for electron intensity modulation in the clinic, demonstrates proof of principle, discusses potential clinical applications, and suggests areas of further research and development. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American

  20. Arc binary intensity modulated radiation therapy (AB IMRT)

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    The state of the art Intensity Modulate Radiation Therapy (IMRT) has been one of the most significant breakthroughs in the cancer treatment in the past 30 years. There are two types of IMRT systems. The first system is the binary-based tomotherapy, represented by the Peacock (Nomos Corp) and Tomo unit (TomoTherapy Inc.), adopting specific binary collimator leafs to deliver intensity modulated radiation fields in a serial or helical fashion. The other uses the conventional dynamic multileaf collimator (MLC) to deliver intensity modulated fields through a number of gantry positions. The proposed Arc Binary IMRT attempts to deliver Tomo-like IMRT with conventional dynamic MLC and combines the advantages of the two types of IMRT techniques: (1) maximizing the number of pencil beams for better dose optimization, (2) enabling conventional linear accelerator with dynamic MLC to deliver Tomo-like IMRT. In order to deliver IMRT with conventional dynamic MLC in a binary fashion, the slice-by-slice treatment with limited slice thickness has been proposed in the thesis to accommodate the limited MLC traveling speed. Instead of moving the patient to subsequent treatment slices, the proposed method offsets MLC to carry out the whole treatment, slice by slice sequentially, thus avoid patient position error. By denoting one arc pencil beam set as a gene, genetic algorithm (GA) is used as the searching engine for the dose optimization process. The selection of GA parameters is a crucial step and has been studied in depth so that the optimization process will converge with reasonable speed. Several hypothetical and clinical cases have been tested with the proposed IMRT method. The comparison of the dose distribution with other commercially available IMRT systems demonstrates the clear advantage of the new method. The proposed Arc Binary Intensity Modulated Radiation Therapy is not only theoretically sound but practically feasible. The implementation of this method would expand the

  1. Clinical implementation of intensity-modulated arc therapy.

    PubMed

    Shepard, David M; Cao, Daliang

    2011-01-01

    Intensity-modulated arc therapy (IMAT) is a rotational approach to radiation therapy delivered on a conventional linear accelerator using a conventional multileaf collimator. There are 2 key advantages of IMAT. First, the rotational nature of the delivery provides great flexibility in shaping each dose distribution. As a result, IMAT can provide dosimetric advantages relative to fixed-field intensity-modulated radiation therapy (IMRT). The second advantage is the highly efficient nature of the delivery. For centers with an active IMRT program, the clinical implementation of IMAT should be relatively straightforward. For clinical implementation of IMAT, it is important to fully characterize the accuracy of the dose model used, and the performance of the quality assurance equipment.

  2. Robust optimization of intensity modulated proton therapy

    SciTech Connect

    Liu Wei; Zhang Xiaodong; Li Yupeng; Mohan, Radhe

    2012-02-15

    Purpose: Intensity modulated proton therapy (IMPT) is highly sensitive to range uncertainties and uncertainties caused by setup variation. The conventional inverse treatment planning of IMPT optimized based on the planning target volume (PTV) is not often sufficient to ensure robustness of treatment plans. In this paper, a method that takes the uncertainties into account during plan optimization is used to mitigate the influence of uncertainties in IMPT. Methods: The authors use the so-called ''worst-case robust optimization'' to render IMPT plans robust in the face of uncertainties. For each iteration, nine different dose distributions are computed--one each for {+-} setup uncertainties along anteroposterior (A-P), lateral (R-L) and superior-inferior (S-I) directions, for {+-} range uncertainty, and the nominal dose distribution. The worst-case dose distribution is obtained by assigning the lowest dose among the nine doses to each voxel in the clinical target volume (CTV) and the highest dose to each voxel outside the CTV. Conceptually, the use of worst-case dose distribution is similar to the dose distribution achieved based on the use of PTV in traditional planning. The objective function value for a given iteration is computed using this worst-case dose distribution. The objective function used has been extended to further constrain the target dose inhomogeneity. Results: The worst-case robust optimization method is applied to a lung case, a skull base case, and a prostate case. Compared with IMPT plans optimized using conventional methods based on the PTV, our method yields plans that are considerably less sensitive to range and setup uncertainties. An interesting finding of the work presented here is that, in addition to reducing sensitivity to uncertainties, robust optimization also leads to improved optimality of treatment plans compared to the PTV-based optimization. This is reflected in reduction in plan scores and in the lower normal tissue doses for the

  3. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  4. Fan-beam intensity modulated proton therapy

    PubMed Central

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  5. Protocol for a phase III randomised trial of image-guided intensity modulated radiotherapy (IG-IMRT) and conventional radiotherapy for late small bowel toxicity reduction after postoperative adjuvant radiation in Ca cervix

    PubMed Central

    Chopra, Supriya; Engineer, Reena; Mahantshetty, Umesh; Misra, Shagun; Phurailatpam, Reena; Paul, Siji N; Kannan, Sadhna; Kerkar, Rajendra; Maheshwari, Amita; Shylasree, TS; Ghosh, Jaya; Gupta, Sudeep; Thomas, Biji; Singh, Shalini; Sharma, Sanjiv; Chilikuri, Srinivas; Shrivastava, Shyam Kishore

    2012-01-01

    Introduction External beam radiation followed by vaginal brachytherapy (±chemotherapy) leads to reduction in the risk of local recurrence and improves progression-free survival in patients with adverse risk factors following Wertheim's hysterectomy albeit at the risk of late bowel toxicity. Intensity Modulated Radiotherapy (IMRT) results in reduction in bowel doses and has potential to reduce late morbidity, however, needs to be confirmed prospectively in a randomised trial. The present randomised trial tests reduction if any in late small bowel toxicity with the use of IMRT in postoperative setting. Methods and analysis Patients more than 18 years of age who need adjuvant (chemo) radiation will be eligible. Patients with residual pelvic or para-aortic nodal disease, history of multiple abdominal surgeries or any other medical bowel condition will be excluded. The trial will randomise patients into standard radiation or IMRT. The primary aim is to compare differences in late grades II–IV bowel toxicity between the two arms. The secondary aims of the study focus on evaluating correlation of dose–volume parameters and late toxicity and quality of life. The trial is planned as a multicentre randomised study. The trial is designed to detect a 13% difference in late grades II–IV bowel toxicity with an α of 0.05 and β of 0.80. A total of 240 patients will be required to demonstrate the aforesaid difference. Ethics and dissemination The trial is approved by institutional ethics review board and will be routinely monitored as per standard guidelines. The study results will be disseminated via peer reviewed scientific journals, conference presentations and submission to regulatory authorities. Registration The trial is registered with clinicaltrials.gov (NCT 01279135). PMID:23242243

  6. Use of a Conventional Low Neck Field (LNF) and Intensity-Modulated Radiotherapy (IMRT): No Clinical Detriment of IMRT to an Anterior LNF During the Treatment of Head-and Neck-Cancer

    SciTech Connect

    Turaka, Aruna; Li Tianyu; Nicolaou, Nicos; Lango, Miriam N.; Burtness, Barbara; Horwitz, Eric M.; Ridge, John A.; Feigenberg, Steven J.

    2011-01-01

    Purpose: To determine differences in clinical outcomes using intensity-modulated radiotherapy (IMRT) or a standard low neck field (LNF) to treat low neck. Methods and Materials: This is a retrospective, single-institution study. Ninety-one patients with squamous cell carcinoma of the head and neck were treated with curative intent. According to physician preference, some patients were treated with LNF (Planning Target Volume 3) field using a single anterior photon field matched to the IMRT field. Field junctions were not feathered. The endpoints were time to failure and use of a percutaneous endoscopic gastrostomy (PEG) tube (as a surrogate of laryngeal edema causing aspiration), and analysis was done with {chi}{sup 2} and log-rank tests. Results: Median follow-up was 21 months (range, 2-89 months). Median age was 60 years. Thirty-seven patients (41%) were treated with LNF, 84% were Stage III or IV. A PEG tube was required in 30%, as opposed to 33% without the use of LNF. Node 2 or 3 neck disease was treated more commonly without LNF (38% vs. 24%, p = 0.009). Failures occurred in 12 patients (13%). Only 1 patient treated with LNF failed regionally, 4.5 cm above the match line. The 3-year disease-free survival rate was 87% and 79% with LNF and without LNF, respectively (p = 0.2), and the 3-year LR failure rate was 4% and 21%, respectively (p = 0.04). Conclusions: Using LNF to treat the low neck did not increase the risk of regional failure 'in early T and early N diseases' or decrease PEG tube requirements.

  7. Rhodamine intense pulsed light versus conventional intense pulsed light for facial telangiectasias.

    PubMed

    Piccolo, Domenico; Crisman, Giuliana; Kostaki, Dimitra; Cannarozzo, Giovanni; Sannino, Mario; Chimenti, Sergio

    2016-01-01

    Facial telangiectasias represent the major aesthetic alterations of several chronic inflammatory disorders arising on facial skin. We herein report on relevant clinical results of a new subtype of intense pulsed light treatments, the so-called rhodamine intense pulsed light (r-IPL), in comparison with conventional IPL (c-IPL) treatments on forty-five patients affected by facial telangiectasias. The aim of this study is to determinate whether r-IPL represents an effective and safe treatment for the most common superficial vascular alterations and could be advised as a first choice therapy for facial telangiectasias.

  8. Virtual micro-intensity modulated radiation therapy.

    PubMed

    Siochi, R A

    2000-11-01

    Virtual micro-intensity modulated radiation therapy (VMIMRT) combines a 10 x 5 mm2 intensity map with a 5 x 10 mm2 intensity map, delivered at orthogonal collimator settings. The superposition of these component maps (CM) yields a 5 x 5 mm2 virtual micro-intensity map (VMIM) that can be delivered with a 1 cm leaf width MLC. A pair of CMs with optimal delivery efficiency and quality must be chosen, since a given VMIM can be delivered using several different pairs. This is possible since, for each group of four VMIM cells that can be covered by an MLC leaf in either collimator orientation, the minimum intensity can be delivered from either collimator setting. By varying the proportions of the minimum values that go into each CM, one can simultaneously minimize the number of potential junction effects and the number of segments required to deliver the VMIM. The minimization is achieved by reducing high leaf direction gradients in the CMs. Several pseudoclinical and random VMIMs were studied to determine the applicability of this new technique. A nine level boost map was also studied to investigate dosimetric and spatial resolution issues. Finally, clinical issues for this technique are discussed.

  9. Current monitors for intensity modulated beams

    NASA Astrophysics Data System (ADS)

    Ball, Mark; Hamilton, Brett

    1995-05-01

    A beam intensity modulation system (BIMPS), that works in conjunction with the beam splitting system to allow beams of different intensities to be sequentially delivered to two different areas, has already been in use for many years. The operators could not, however, tune the cyclotrons with the BIMPS in operation using the existing beam instrumentation systems in the cyclotron beamlines which consisted mostly of non-electron-suppressed stops. Since the BIMPS duty factor (e.g. as low as 1/100 when operating with a 100 μs high intensity (HI) pulse at 10 Hz) usually exceed the ratio of the HI to LOW beam intensities (varying in the range from 10 to 100), the stops would, to first order, merely read out the LOW beam intensity. Thus there existed no way to monitor the HI beam intensity and transmission efficiency unless operating continuously in the HI beam mode. To allow BIMPS operation at all times, a new system of intercepting and nonintercepting beam current monitors have been added to the cyclotron beamlines. The system consists of electron suppressed stops and nonintercepting beam pickups with high output bandwidth of (10 kHz) signal processors to allow accurate sampling of the short duration HI beam pulses. The electronics for the stops are straightforward; there are, however, important technical trade-off in the design of the nonintercepting system design. The amplifier input voltage noise and relatively low coupling impedance of the nonintercepting pickups cause the minimum detectable HI current to decrease with the square root of the HI beam pulse length; as the pulse length is shortened, the system timing constraints also become more critical. Although the BIMPS is capable of providing beam pulse durations as short at 10 μs, the minimum pulse length for operation was chosen to be 100 μs. The electronics have time constants of 200 μs allowing measurement accuracies of better than a percent. Since the most rapid modulation frequency used for filling the

  10. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  11. Longitudinal Density Modulation and Energy Conversion in Intense Beams

    SciTech Connect

    Harris, J; Neumann, J; Tian, K; O'Shea, P

    2006-02-17

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may under some circumstances be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams, and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  12. Effects of intensity-modulated radiotherapy on human oral microflora.

    PubMed

    Shao, Zi-Yang; Tang, Zi-Sheng; Yan, Chao; Jiang, Yun-Tao; Ma, Rui; Liu, Zheng; Huang, Zheng-Wei

    2011-01-01

    This study aimed to evaluate changes in the biodiversity of the oral microflora of patients with head and neck cancer treated with postoperative intensity-modulated radiotherapy (IMRT) or conventional radiotherapy (CRT). Pooled dental plaque samples were collected during the radiation treatment from patients receiving IMRT (n = 13) and CRT (n = 12). Denaturing gradient gel electrophoresis (DGGE) was used to analyze the temporal variation of these plaque samples. The stimulated and unstimulated salivary flow rates were also compared between IMRT and CRT patients. Reductions in the severity of hyposalivation were observed in IMRT patients compared with CRT patients. We also observed that the temporal stability of the oral ecosystem was significantly higher in the IMRT group (69.96 ± 7.82%) than in the CRT group (51.98 ± 10.45%) (P < 0.05). The findings of the present study suggest that IMRT is more conducive to maintaining the relative stability of the oral ecosystem than CRT.

  13. Intensity-Modulated Radiotherapy for Pancreatic Adenocarcinoma

    SciTech Connect

    Abelson, Jonathan A.; Murphy, James D.; Minn, Ann Yuriko; Chung, Melody; Fisher, George A.; Ford, James M.; Kunz, Pamela; Norton, Jeffrey A.; Visser, Brendan C.; Poultsides, George A.; Koong, Albert C.; Chang, Daniel T.

    2012-03-15

    Purpose: To report the outcomes and toxicities in patients treated with intensity-modulated radiotherapy (IMRT) for pancreatic adenocarcinoma. Methods and Materials: Forty-seven patients with pancreatic adenocarcinoma were treated with IMRT between 2003 and 2008. Of these 47 patients, 29 were treated adjuvantly and 18 definitively. All received concurrent 5-fluorouracil chemotherapy. The treatment plans were optimized such that 95% of the planning target volume received the prescription dose. The median delivered dose for the adjuvant and definitive patients was 50.4 and 54.0 Gy, respectively. Results: The median age at diagnosis was 63.9 years. For adjuvant patients, the 1- and 2-year overall survival rate was 79% and 40%, respectively. The 1- and 2-year recurrence-free survival rate was 58% and 17%, respectively. The local-regional control rate at 1 and 2 years was 92% and 80%, respectively. For definitive patients, the 1-year overall survival, recurrence-free survival, and local-regional control rate was 24%, 16%, and 64%, respectively. Four patients developed Grade 3 or greater acute toxicity (9%) and four developed Grade 3 late toxicity (9%). Conclusions: Survival for patients with pancreatic cancer remains poor. A small percentage of adjuvant patients have durable disease control, and with improved therapies, this proportion will increase. Systemic therapy offers the greatest opportunity. The present results have demonstrated that IMRT is well tolerated. Compared with those who received three-dimensional conformal radiotherapy in previously reported prospective clinical trials, patients with pancreatic adenocarcinoma treated with IMRT in our series had improved acute toxicity.

  14. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  15. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  16. Gridded Electron Guns and Modulation of Intense Beams

    SciTech Connect

    Harris, J R; O'Shea, P G

    2006-05-02

    Gridded guns are useful for producing modulated electron beams. This modulation is generally limited to simple gating of the beam, but may be used to apply structure to the beam pulse shape. In intense beams, this structure spawns space charge waves whose dynamics depend in part on the relative strengths of the velocity and density variations which comprise the initial current modulation. In this paper, we calculate the strengths of beam current and velocity modulation produced in a gridded electron gun, and show that under normal conditions the initial modulation is dominated by density variation rather than velocity variation.

  17. Performance analysis of the ultra-linear optical intensity modulator

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Dingel, Benjamin

    2006-10-01

    The linear optical intensity modulator is a key component in any broadband optical access-based analog fiber-optic link systems such as sub-carrier multiplexing (SCM) systems, ultra-dense CATV, Radio-over-Fiber (RoF) communications, and other platform access systems. Previously, we have proposed a super-linear optical modulator, having SFDR = 130 -140 dB-Hz 2/3, based on a unique combination of phase-modulator (PM) and a weak ring resonator (RR) modulator within a Mach-Zehnder interferometer (MZI). We presented some of its unique features. In this paper, we characterize further this ultra-linear optical intensity modulator, analyze its RF performance and provide method for parameter optimization. Other excellent features of this modulator design such as high manufacturing tolerance, effect of link insertion loss, adaptive characteristic and device simplicity are also discussed.

  18. Monte Carlo dose verification for intensity-modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Li, X. Allen; Ma, Lijun; Naqvi, Shahid; Shih, Rompin; Yu, Cedric

    2001-09-01

    Intensity-modulated arc therapy (IMAT), a technique which combines beam rotation and dynamic multileaf collimation, has been implemented in our clinic. Dosimetric errors can be created by the inability of the planning system to accurately account for the effects of tissue inhomogeneities and physical characteristics of the multileaf collimator (MLC). The objective of this study is to explore the use of Monte Carlo (MC) simulation for IMAT dose verification. The BEAM/DOSXYZ Monte Carlo system was implemented to perform dose verification for the IMAT treatment. The implementation includes the simulation of the linac head/MLC (Elekta SL20), the conversion of patient CT images and beam arrangement for 3D dose calculation, the calculation of gantry rotation and leaf motion by a series of static beams and the development of software to automate the entire MC process. The MC calculations were verified by measurements for conventional beam settings. The agreement was within 2%. The IMAT dose distributions generated by a commercial forward planning system (RenderPlan, Elekta) were compared with those calculated by the MC package. For the cases studied, discrepancies of over 10% were found between the MC and the RenderPlan dose calculations. These discrepancies were due in part to the inaccurate dose calculation of the RenderPlan system. The computation time for the IMAT MC calculation was in the range of 20-80 min on 15 Pentium-III computers. The MC method was also useful in verifying the beam apertures used in the IMAT treatments.

  19. Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators.

    PubMed

    Wei, J L; Hugues-Salas, E; Giddings, R P; Jin, X Q; Zheng, X; Mansoor, S; Tang, J M

    2010-05-10

    Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems.

  20. Light induced modulation instability of surfaces under intense illumination

    SciTech Connect

    Burlakov, V. M. Goriely, A.; Foulds, I.

    2013-12-16

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  1. Vertical-cavity saturable-absorber intensity modulator

    NASA Astrophysics Data System (ADS)

    Guina, M.; Vainionpää, A.; Harkonen, A.; Orsila, L.; Lyytikäinen, J.; Okhotnikov, O. G.

    2003-01-01

    We propose and demonstrate a reflection-type optical modulator, with surface-normal architecture, that exploits the optical saturation of absorption in semiconductor quantum wells. The modulation section of the modulator, which is composed of quantum wells placed within a Fabry-Perot cavity, is optically controlled by an intensity-modulated beam generated by an in-plane laser integrated monolithically on the same wafer and grown in a single epitaxial step. The modulation section and the in-plane laser share the same medium; therefore, efficient coupling between the control beam and the signal beam is achieved. The device was successfully used for active mode locking of an erbium-doped fiber laser.

  2. A chromosomal-effect study of intensive phototherapy versus conventional phototherapy in newborns with jaundice.

    PubMed

    Karadag, Ahmet; Yesilyurt, Ahmet; Unal, Suna; Keskin, Ipek; Demirin, Hilmi; Uras, Nurdan; Dilmen, Ugur; Tatli, M Mansur

    2009-05-31

    In this study, we aimed to make a comparison between chromosomal effects caused by conventional phototherapy and intensive phototherapy in jaundiced newborns. The study group included 83 newborns with gestation age of > or =35 weeks, and on days 3-10 after birth. Newborns were divided into four groups on the basis of total serum bilirubin (TSB) levels upon admission and need for phototherapy. The intensive group (n=19) consisted of newborns who received light-emitting diode (LED) phototherapy, the conventional group (n=23) consisted of newborns who received conventional phototherapy, the jaundiced control group (n=21) consisted of newborns whose TSB levels were higher than 10mg/dL (average = 13.7 + /-1.5 mg/dL) on admission and who did not receive phototherapy, and the non-jaundiced control group (n=20) consisted of newborns whose TSB levels were less than 5 mg/dl (average = 3.6 +/- 0.8 mg/dL). TSB level of the intensive group at admission was 20.2 +/- 1.3 mg/dL, whereas the level of conventional group was 19.6 +/- 1.5 mg/dL. Blood samples were taken from all infants on admission to determine sister chromatid exchange (SCE1) frequency. Blood sampling was repeated on discharge (SCE2) of infants who had received phototherapy. Demographic information, hospitalization details and the rate of decline in TSB were recorded, and frequencies of SCE1 and SCE2 were compared. There was no difference in demographic information among the four groups. SCE1 frequencies in 50 metaphases were evaluated in the intensive, conventional, jaundiced control and non-jaundiced control groups, and the SCE1 frequency was determined as 9.37/cell, 9.54/cell, 9.23/cell and 6.17/cell, respectively. The SCE1 frequency of the jaundiced groups (intensive, conventional and newborns-with-jaundice control group) was significantly higher than that in the non-jaundiced control group (p = 0.001). There was no significant difference between the intensive group and the conventional group in SCE2 frequency

  3. Intensity-modulated radiotherapy for lymphoma involving the mediastinum

    SciTech Connect

    Goodman, Karyn A.; Toner, Sean; Hunt, Margie; Wu, Elisa J.; Yahalom, Joachim . E-mail: yahalomj@mskcc.org

    2005-05-01

    Purpose: To determine the feasibility, potential advantage, and indications for intensity-modulated radiotherapy (IMRT) in the treatment of Hodgkin's lymphoma or non-Hodgkin's lymphoma involving excessively large mediastinal disease volumes or requiring repeat RT. Methods and materials: Sixteen patients with Hodgkin's lymphoma (n = 11) or non-Hodgkin's lymphoma (n = 5) undergoing primary radiotherapy or repeat RT delivered via an IMRT plan were studied. The indications for using an IMRT plan were previous mediastinal RT (n = 5) or extremely large mediastinal treatment volumes (n 11). For each patient, IMRT, conventional parallel-opposed (AP-PA), and three-dimensional conformal (3D-CRT) plans were designed using 6-MV X-rays to deliver doses ranging from 18 to 45 Gy (median, 36 Gy). The plans were compared with regard to dose-volume parameters. The IMRT/AP-PA and IMRT/3D-CRT ratios were calculated for each parameter. Results: For all patients, the mean lung dose was reduced using IMRT, on average, by 12% compared with AP-PA and 14% compared with 3D-CRT. The planning target volume coverage was also improved using IMRT compared with AP-PA but was not different from the planning target volume coverage obtained with 3D-CRT. Conclusion: In selected patients with Hodgkin's lymphoma and non-Hodgkin's lymphoma involving the mediastinum, IMRT provides improved planning target volume coverage and reduces pulmonary toxicity parameters. It is feasible for RT of large treatment volumes and allows repeat RT of relapsed disease without exceeding cord tolerance. Additional follow-up is necessary to determine whether improvements in dose delivery affect long-term morbidity and disease control.

  4. Intensity modulated radiotherapy for elderly bladder cancer patients

    PubMed Central

    2011-01-01

    Background To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) for the treatment of elderly patients with bladder cancer. Methods From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. Conventional 4-field "box" pelvic radiation therapy (2DRT) plans were generated for comparison. Results The median patient age was 80 years old (range, 65-90 years old). The median survival was 21 months (5 to 26 months). The actuarial 2-year overall survival (OS) for the IMRT vs. the HT group was 26.3% vs .37.5%, respectively; the corresponding values for disease-free survival were 58.3% vs. 83.3%, respectively; for locoregional progression-free survival (LRPFS), the values were 87.5% vs. 83.3%, respectively; and for metastases-free survival, the values were 66.7% vs. 60.0%, respectively. The 2-year OS rates for T1, 2 vs. T3, 4 were 66.7% vs. 35.4%, respectively (p = 0.046). The 2-year OS rate was poor for those whose RT completion time greater than 8 weeks when compared with the RT completed within 8 wks (37.9% vs. 0%, p = 0.004). Conclusion IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. The T category and the RT completion time influence OS rate. PMID:21679408

  5. Evaluation of organic, conventional and intensive beef farm systems: health, management and animal production.

    PubMed

    Blanco-Penedo, I; López-Alonso, M; Shore, R F; Miranda, M; Castillo, C; Hernández, J; Benedito, J L

    2012-09-01

    The overall aim of the present study was to analyse and compare organic beef cattle farming in Spain with intensive and conventional systems. An on-farm study comparing farm management practices and animal health was carried out. The study also focussed on a slaughterhouse analysis by comparing impacts on the safety and quality of the cattle products. Twenty-four organic and 26 conventional farms were inspected, and farmers responded to a questionnaire that covered all basic data on their husbandry practices, farm management, veterinary treatments and reproductive performance during 2007. Furthermore, data on the hygiene and quality of 244, 2596 and 3021 carcasses of calves from organic, intensive and conventional farms, respectively, were retrieved from the official yearbook (2007) of a slaughterhouse. Differences found between organic and conventional farms across the farm analysis did not substantially reflect differences between both farm types in the predominant diseases that usually occur on beef cattle farms. However, calves reared organically presented fewer condemnations at slaughter compared with intensive and to a lesser extent with conventionally reared calves. Carcass performance also reflected differences between farm type and breed and was not necessarily better in organic farms.

  6. Mechanical and Metallurgical Evaluation of Carburized, Conventionally and Intensively Quenched Steels

    NASA Astrophysics Data System (ADS)

    Giordani, T.; Clarke, T. R.; Kwietniewski, C. E. F.; Aronov, M. A.; Kobasko, N. I.; Totten, G. E.

    2013-08-01

    Steels subjected to carburizing, quenching, and tempering are widely used for components that require hardness and superficial mechanical resistance together with good core toughness. Intensive quenching is a method that includes advantages including crack prevention, increased mechanical resistance, and improvement in fatigue performance when subjected to very fast (intensive) cooling. However, achieving these advantages requires the formation of sufficiently high surface compressive residual stresses and fine grains at the core of steel components. If the cooling rate is sufficiently high after intensive quenching, then low-hardenability, killed plain carbon steels may be used instead of higher-cost, low alloy steels because compressive residual stresses are formed at the surface of steel parts. The objective of this study was to compare between carburized non-killed AISI 1020 steel samples, which were not modified by Al that were subsequently conventionally and also intensively quenched to determine the effect of quenching on achieving the necessary formation of fine grain size. For comparison, carburized AISI 8620 steel test specimens were conventionally quenched. After quenching, all test specimens were characterized by metallurgical and mechanical analyses. The results of this study showed that when the two quenching methods were compared for carburized non-killed AISI 1020 steel, intensive quenching method was found to be superior with respect to mechanical and metallurgical properties. When comparing the different steels, it was found that intensively quenched, non-killed, AISI 1020 steel yielded grain sizes which were three times greater than those obtained with conventionally quenched, carburized AISI 8620 steel. Therefore, the benefits of intensive quenching were negated. These results show that plain carbon steels must be modified by Al to make fine grains if intensively quenched plain-carbon steel is to replace alloyed AISI 8620 steel.

  7. Leaf sequencing and dosimetric verification in intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Agazaryan, Nzhde

    Although sophisticated means to calculate and deliver intensity modulated radiotherapy (IMRT) have been developed by many groups, methods to verify the delivery, as well as definitions of acceptability of a treatment in terms of these measurements are the most problematic at this stage of advancement of IMRT. Present intensity modulated radiotherapy systems fail to account for many dosimetric characteristics of the delivery system. In this dissertation, a dosimetrically based leaf sequencing algorithm is developed and implemented for multileaf collimated intensity modulated radiotherapy. The dosimetric considerations are investigated and are shown to significantly improve the outcome in terms of an agreement between desired and delivered radiation dose distributions. Subsequently, a system for determining the desirability of a produced intensity modulated radiotherapy plan in terms of deliverability of calculated profiles with the use of a multileaf collimator is developed. Three deliverability scoring indices are defined to evaluate the deliverability of the profiles. Gradient Index (GI) is a measure of the complexity of the profile in terms of gradients. Baseline Index (BI) is the fraction of the profile that is planned to get lower than the minimum level of transmission radiation. Cumulative Monitor Unit Index (CMUI) is the ratio of the cumulative monitor units (CMU) required for obtaining the desired profile to an average dose level in the profile. The dosimetric investigations of the deliverability scoring indices are presented, showing a clear correlation between scoring indices and dosimetric accuracy. Finally, materials and methods are developed for verification of intensity modulated radiotherapy. Dosimetric verification starts from investigations of the developed leaf sequencing algorithm, then extends to dosimetric verification in terms of deliverability, and lastly, dosimetric verification of complete clinical IMRT plans is performed.

  8. Plasma-based polarization modulator for high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Pukhov, Alexander

    2016-12-01

    Manipulation of laser pulses at high intensities is an important yet challenging issue. New types of plasma-based optical devices are promising alternatives to achieve this goal. Here we propose to modulate the polarization state of intense lasers based on oblique reflection from solid-plasma surfaces. A new analytical description is presented considering the plasma as an uniaxial medium that causes birefringence effect. Particle-in-cell simulation results numerically demonstrate that such a scheme can provide a tunable polarization control of the laser pulses even in the relativistic regime. The results are thus relevant for the design of compact, easy to use, and versatile polarization modulators for high-intensity laser pulses.

  9. Bridging the gap between IMRT and VMAT: Dense angularly sampled and sparse intensity modulated radiation therapy

    SciTech Connect

    Li, Ruijiang; Xing, Lei

    2011-09-15

    Purpose: To propose an alternative radiation therapy (RT) planning and delivery scheme with optimal angular beam sampling and intrabeam modulation for improved dose distribution while maintaining high delivery efficiency. Methods: In the proposed approach, coined as dense angularly sampled and sparse intensity modulated RT (DASSIM-RT), a large number of beam angles are used to increase the angular sampling, leading to potentially more conformal dose distributions as compared to conventional IMRT. At the same time, intensity modulation of the incident beams is simplified to eliminate the dispensable segments, compensating the increase in delivery time caused by the increased number of beams and facilitating the plan delivery. In a sense, the proposed approach shifts and transforms, in an optimal fashion, some of the beam segments in conventional IMRT to the added beams. For newly available digital accelerators, the DASSIM-RT delivery can be made very efficient by concatenating the beams so that they can be delivered sequentially without operator's intervention. Different from VMAT, the level of intensity modulation in DASSIS-RT is field specific and optimized to meet the need of each beam direction. Three clinical cases (a head and neck (HN) case, a pancreas case, and a lung case) are used to evaluate the proposed RT scheme. DASSIM-RT, VMAT, and conventional IMRT plans are compared quantitatively in terms of the conformality index (CI) and delivery efficiency. Results: Plan quality improves generally with the number and intensity modulation of the incident beams. For a fixed number of beams or fixed level of intensity modulation, the improvement saturates after the intensity modulation or number of beams reaches to a certain level. An interplay between the two variables is observed and the saturation point depends on the values of both variables. For all the cases studied here, the CI of DASSIM-RT with 15 beams and 5 intensity levels (0.90, 0.79, and 0.84 for the HN

  10. Bridging the gap between IMRT and VMAT: Dense angularly sampled and sparse intensity modulated radiation therapy

    PubMed Central

    Li, Ruijiang; Xing, Lei

    2011-01-01

    Purpose: To propose an alternative radiation therapy (RT) planning and delivery scheme with optimal angular beam sampling and intrabeam modulation for improved dose distribution while maintaining high delivery efficiency. Methods: In the proposed approach, coined as dense angularly sampled and sparse intensity modulated RT (DASSIM-RT), a large number of beam angles are used to increase the angular sampling, leading to potentially more conformal dose distributions as compared to conventional IMRT. At the same time, intensity modulation of the incident beams is simplified to eliminate the dispensable segments, compensating the increase in delivery time caused by the increased number of beams and facilitating the plan delivery. In a sense, the proposed approach shifts and transforms, in an optimal fashion, some of the beam segments in conventional IMRT to the added beams. For newly available digital accelerators, the DASSIM-RT delivery can be made very efficient by concatenating the beams so that they can be delivered sequentially without operator’s intervention. Different from VMAT, the level of intensity modulation in DASSIS-RT is field specific and optimized to meet the need of each beam direction. Three clinical cases (a head and neck (HN) case, a pancreas case, and a lung case) are used to evaluate the proposed RT scheme. DASSIM-RT, VMAT, and conventional IMRT plans are compared quantitatively in terms of the conformality index (CI) and delivery efficiency. Results: Plan quality improves generally with the number and intensity modulation of the incident beams. For a fixed number of beams or fixed level of intensity modulation, the improvement saturates after the intensity modulation or number of beams reaches to a certain level. An interplay between the two variables is observed and the saturation point depends on the values of both variables. For all the cases studied here, the CI of DASSIM-RT with 15 beams and 5 intensity levels (0.90, 0.79, and 0.84 for the

  11. Metadevice for intensity modulation with sub-wavelength spatial resolution

    PubMed Central

    Cencillo-Abad, Pablo; Zheludev, Nikolay I.; Plum, Eric

    2016-01-01

    Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic diffraction and focusing of light as well as holography without unwanted diffraction artefacts. PMID:27857221

  12. New techniques in hadrontherapy: intensity modulated proton beams.

    PubMed

    Cella, L; Lomax, A; Miralbell, R

    2001-01-01

    Inverse planning and intensity modulated (IM) X-ray beam treatment techniques can achieve significant improvements in dose distributions comparable to those obtained with forward planned proton beams. However, intensity modulation can also be applied to proton beams and further optimization in dose distribution can reasonably be expected. A comparative planning exercise between IM X-rays and IM proton beams was carried out on two different tumor cases: a pediatric rhabdomyosarcoma and a prostate cancer. Both IM X-rays and IM protons achieved equally homogenous coverage of the target volume in the two tumor sites. Predicted NTCPs were equally low for both treatment techniques. Nevertheless, a reduced low-to-medium dose to the organs at risk and a lesser integral non-target mean dose for IM protons in the two cases favored the use of IM proton beams.

  13. Ultrasound-modulated optical tomography with intense acoustic bursts.

    PubMed

    Zemp, Roger J; Kim, Chulhong; Wang, Lihong V

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  14. Time domain referencing in intensity modulation fiber optic sensing systems

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory

    1986-01-01

    Intensity modulation sensors are classified by the way in which the reference and signal channels are separated: in space, wavelength, or time domains. To implement the time-domain referencing, different types of fiber-optic loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  15. Time domain referencing in intensity modulation fiber optic sensing systems

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.

    1986-01-01

    Intensity modulation sensors are classified depending on the way in which the reference and signal channels are separated: in space, wavelength (frequency), or time domains. To implement the time domain referencing different types of fiber optic (FO) loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  16. Intensity Modulated Radiotherapy with High Energy Photon and Hadron Beams

    NASA Astrophysics Data System (ADS)

    Oelfke, U.

    2004-07-01

    This short contribution will briefly describe the basic concepts of intensity modulated radiation therapy with high energy photons (IMRT) and charged particle beams (IMPT). Dose delivery and optimization strategies like the `Inverse Planning' approach will be explained for both radiation modalities and their potential advantages are demonstrated for characteristic clinical examples. Finally, future development like image guided radiotherapy (IGRT) and adaptive radiation therapy, based on functional imaging methods, will be introduced.

  17. Intensity-modulated radiotherapy for neoadjuvant treatment of gastric cancer

    SciTech Connect

    Knab, Brian; Rash, Carla; Farrey, Karl; Jani, Ashesh B. . E-mail: jani@rover.uchicago.edu

    2006-01-01

    Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits

  18. Test Results of a Compact Conventional Modulator for Two-Klystron Operation

    SciTech Connect

    Gold, S

    2004-05-04

    Modulator technology has not advanced greatly over the last 30 years. Today, with the advent of the High Voltage, High Power IGBT there are several approaches for a solid state ON/OFF switched modulator. Klystron and accelerator technology is forcing voltages and peak powers higher such as the demand for 500 kV and 500 amperes peak to power two X-Band klystrons. Conventional technology (line-type modulators) were never overly concerned about rise time and efficiency. A few years ago, the klystron department at Stanford Linear Accelerator Center (SLAC) undertook an investigation into what could be done in a conventional modulator at 500 kV. We have reported on test bed measurements and shown both conceptual and hardware pictures during design and construction. We have now completed the modulator tank.

  19. Intensity-modulated arc therapy to improve radiation dose delivery in the treatment of abdominal neuroblastoma.

    PubMed

    Gains, Jennifer E; Stacey, Christopher; Rosenberg, Ivan; Mandeville, Henry C; Chang, Yen-Ch'ing; D'Souza, Derek; Moroz, Veronica; Wheatley, Keith; Gaze, Mark N

    2013-03-01

    The standard European radiotherapy technique for children with neuroblastoma is a conventional parallel opposed pair. This frequently results in compromise on planning target volume coverage to stay within normal tissue tolerances. This study investigates the use of an intensity-modulated arc therapy (IMAT) technique to improve dose distribution and allow better protocol compliance. Among 20 previously treated patients, ten had received the full prescribed dose with conventional planning (protocol compliant) and ten had a compromise on planning target volume coverage (protocol noncompliant). All patients were replanned with IMAT. Dosimetric parameters of the conventional radiotherapy and IMAT were compared. The dose received by 98% of the planning target volume, homogeneity and conformity indices were all improved with IMAT (p < 0.001). IMAT would have enabled delivery of the full protocol dose in eight out of ten protocol-noncompliant patients. IMAT may improve outcomes through improved protocol compliance and better dose distributions.

  20. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    SciTech Connect

    Amdur, Robert J. Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-10-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction.

  1. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    SciTech Connect

    Rosenthal, David I.; Fuller, Clifton D.; Barker, Jerry L.; Mason, Bryan M.S.; Garcia, John A. C.; Lewin, Jan S.; Holsinger, F. Christopher; Stasney, C. Richard; Frank, Steven J.; Schwartz, David L.; Morrison, William H.; Garden, Adam S.; Ang, K. Kian

    2010-06-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.

  2. Validation of intensity modulation on a commercial treatment planning system.

    PubMed

    Martin, E; Hachem, A; Marcié, S; Hérault, J; Costa, A; Bensadoun, R J; Lagrange, J L

    2003-05-01

    For two years now, a study on intensity modulated radiotherapy (IMRT) has been in progress at the Antoine Lacassagne Hospital Center for Cancer Therapy (in Nice) in collaboration with the University of Nice-Sophia Antipolis. The kind of intensity modulation that was used is the "step and shoot" technique in which the modulated beam is created both by adding andjoining elementary fields. Before carrying out clinical tests, several problems regarding the production of modulated beams has to be mastered. The current developments of our study enable us to dosimetrically produce (in water phantom and in the PMMA phantom) complexmodulated whose segmentation was calculated by one commercial treatment planning system (TPS). Nevertheless, we showed and studied some critical discrepancies between standard clinical calculations and the calculations using field segmentation. We showed that with nonoptimal conditions of segmentation the discrepancies, which are due to the type of algorithm used, could bring about significant errors inside the field of up to 10% of maximum dose. Another point of our study is the quantification and resolution of differences between measurements and calculations due to the internal segmentation of calculated modulated fields and their realization on Linac. Once again, in none optimal conditions of segmentation and inside the field we obtained discrepancies up to 20% of maximum dose between calculations using field segmentation and measurements. That was mainly due to the tongue and groove effect and penumbra phenomena. This study allows us to show that the discrepancies between segmentation calculations and standard clinical calculations should be solved by the use of penumbra models during segmentation calculations. We will introduce both the study and its near-future perspectives.

  3. Intensity-modulated arc therapy: principles, technologies and clinical implementation

    NASA Astrophysics Data System (ADS)

    Yu, Cedric X.; Tang, Grace

    2011-03-01

    Intensity-modulated arc therapy (IMAT) was proposed by Yu (1995 Phys. Med. Biol. 40 1435-49) as an alternative to tomotherapy. Over more than a decade, much progress has been made. The advantages and limitations of the IMAT technique have also been better understood. In recent years, single-arc forms of IMAT have emerged and become commercially adopted. The leading example is the volumetric-modulated arc therapy (VMAT), a single-arc form of IMAT that delivers apertures of varying weights with a single-arc rotation that uses dose-rate variation of the treatment machine. With commercial implementation of VMAT, wide clinical adoption has quickly taken root. However, there remains a lack of general understanding for the planning of such arc treatments, as well as what delivery limitations and compromises are made. Commercial promotion and competition add further confusion for the end users. It is therefore necessary to provide a summary of this technology and some guidelines on its clinical implementation. The purpose of this review is to provide a summary of the works from the radiotherapy community that led to wide clinical adoption, and point out the issues that still remain, providing some perspective on its further developments. Because there has been vast experience in IMRT using multiple intensity-modulated fields, comparisons between IMAT and IMRT are also made in the review within the areas of planning, delivery and quality assurance.

  4. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    SciTech Connect

    Langeveld, Willem G. J.; Brown, Craig; Condron, Cathie; Ingle, Mike; Christensen, Phil A.; Johnson, William A.; Owen, Roger D.; Ross, Randy

    2011-06-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  5. Commissioning of Peacock System for intensity-modulated radiation therapy.

    PubMed

    Saw, C B; Ayyangar, K M; Thompson, R B; Zhen, W; Enke, C A

    2001-01-01

    The Peacock System was introduced to perform tomographic intensity-modulated radiation therapy (IMRT). Commissioning of the Peacock System included the alignment of the multileaf intensity-modulating collimator (MIMiC) to the beam axis, the alignment of the RTA device for immobilization, and checking the integrity of the CRANE for indexing the treatment couch. In addition, the secondary jaw settings, couch step size, and transmission through the leaves were determined. The dosimetric data required for the CORVUS planning system were divided into linear accelerator-specific and MIMiC-specific. The linear accelerator-specific dosimetric data were relative output in air, relative output in phantom, percent depth dose for a range of field sizes, and diagonal dose profiles for a large field size. The MIMiC-specific dosimetric data were the in-plane and cross-plane dose profiles of a small and a large field size to derive the penumbra fit. For each treatment unit, the Beam Utility software requires the data be entered into the CORVUS planning system in modular forms. These modules were treatment unit information, angle definition, configuration, gantry and couch angles range, dosimetry, results, and verification plans. After the appropriate machine data were entered, CORVUS created a dose model. The dose model was used to create known simple dose distribution for evaluation using the verification tools of the CORVUS. The planned doses for phantoms were confirmed using an ion chamber for point dose measurement and film for relative dose measurement. The planning system calibration factor was initially set at 1.0 and will be changed after data on clinical cases are acquired. The treatment unit was released for clinical use after the approval icon was checked in the verification plans module.

  6. Smartphone-based portable intensity modulated force sensor

    NASA Astrophysics Data System (ADS)

    Negri, Lucas H.; Schiefer, Elberth M.; Paterno, Aleksander S.; Muller, Marcia; Fabris, José L.

    2015-09-01

    This work proposes a low-cost force sensor, based on intensity modulation in an optical fibre. The transducer element is composed of a knot in a single mode fibre embedded to a silicone adhesive cuboid, and can be easily fabricated. A simple sensing scheme is devised by using a visible light source and a CCD camera of a smartphone, allowing implementation costs to be reduced. Experimental results have shown that the sensor presents a linear response and a standard uncertainty of 1:07N within the dynamical range from 0 to 30 N.

  7. Linear algebraic methods applied to intensity modulated radiation therapy.

    PubMed

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  8. Quantitative wavelength modulation spectroscopy for gas measurements: elimination of laser intensity modulation effects

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup Lal; Johnstone, Walter

    2010-12-01

    Quantitative tunable diode laser spectroscopy (TDLS) has established itself as a very powerful technique for the detection of gases in field applications such as industrial process control. Recent calibration-free techniques have made field measurements more robust. However, in many situations, the significant levels of laser intensity modulation gives rise to background signals that either limit detection sensitivity or distort the target signals, thereby making it difficult to extract useful information. This paper outlines the recent trends in calibration-free wavelength modulation spectroscopy (WMS) and focuses on the elimination of the undesirable effects of both linear as well as nonlinear intensity modulation. The approach is generic and should be useful with newer types of lasers that have shown significantly nonlinear power-current characteristics.

  9. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    PubMed

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  10. Segmentation and leaf sequencing for intensity modulated arc therapy

    SciTech Connect

    Gladwish, Adam; Oliver, Mike; Craig, Jeff; Chen, Jeff; Bauman, Glenn; Fisher, Barbara; Wong, Eugene

    2007-05-15

    A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated into a set of MLC apertures via a leaf sequencing algorithm. To date, limited work has been done on this approach as it pertains to intensity modulated arc therapy (IMAT), specifically in regards to the latter two steps. There are two determining factors that separate IMAT segmentation and leaf sequencing from their IMRT equivalents: (1) the intrinsic 3D nature of the intensity maps (standard 2D maps plus the angular component), and (2) that the dynamic multileaf collimator (MLC) constraints be met using a minimum number of arcs. In this work, we illustrate a technique to create an IMAT plan that replicates Tomotherapy deliveries by applying IMAT specific segmentation and leaf-sequencing algorithms to Tomotherapy output sinograms. We propose and compare two alternative segmentation techniques, a clustering method, and a bottom-up segmentation method (BUS). We also introduce a novel IMAT leaf-sequencing algorithm that explicitly takes leaf movement constraints into consideration. These algorithms were tested with 51 angular projections of the output leaf-open sinograms generated on the Hi-ART II treatment planning system (Tomotherapy Inc.). We present two geometric phantoms and 2 clinical scenarios as sample test cases. In each case 12 IMAT plans were created, ranging from 2 to 7 intensity levels. Half were generated using the BUS segmentation and half with the clustering method. We report on the number of arcs produced as well as differences between Tomotherapy output sinograms and segmented IMAT intensity maps. For each case one plan for each segmentation method is chosen for full Monte Carlo dose calculation (NumeriX LLC) and dose volume histograms (DVH) are calculated

  11. Phase modulation to intensity modulation conversion for sensitive FBG sensor interrogation

    NASA Astrophysics Data System (ADS)

    Hervás, Javier; Barrera, David; Madrigal, Javier; Sales, Salvador

    2017-04-01

    An interrogation technique based on phase modulation to intensity modulation conversion due to FBG filtering is presented. A 10 GHz tone is used to phase modulate an optical carrier located at the Bragg wavelength of a given FBG. The modulation index is set to a small value to keep Bessel identities close to 0 in order to avoid higher harmonics. Changes of the Bragg wavelength cause a power change in the photodetected 10 GHz tone. A remarkable linear sensitivity of 1 dB/pm for a shift up to 10 pm of the Bragg wavelength is demonstrated through experimental measurements. The range with linear sensitivity can be enlarged sweeping the source wavelength. This proves that the presented interrogation technique is able to interrogate FBGs with a resolution far below 1 pm and no need of extra postprocessing.

  12. Time Resolved Imaging of Longitudinal Modulations in Intense Beams

    NASA Astrophysics Data System (ADS)

    Tian, Kai

    2007-11-01

    The longitudinal evolution of high intensity beams is not well understood despite its importance to the success of such applications as free electron lasers and light sources, heavy ion inertial fusion, and high energy colliders. For example any amplification of current modulations in an FEL photoinjector can lead to unwanted coherent synchrotron radiation further downstream in compression chicanes or bends. A significant factor usually neglected is the coupling to the transverse dynamics which can strongly affect the longitudinal evolution. Previous experiments at the University of Maryland have revealed much about the longitudinal physics of space-charge dominated beams by monitoring the evolution of longitudinal perturbations. For the first time, experimental results are presented here which reveal the effect of longitudinal perturbations on the transverse beam distribution, with the aid of several new diagnostics that capture detailed time-resolved density images. A longitudinal modulation of the particle density is deliberately generated at the source, and its evolution is tracked downstream using a number of diagnostics such as current monitors, high-resolution energy analyzers, as well as the transverse imaging devices. The latter consist of a high-resolution 16-bit gated camera coupled with very fast emitters such as prompt optical transition radiation (OTR) from an alumina screen, or fast Phosphor screens with 3-ns time resolution. Simulations using the particle-in-cell code WARP are applied to cross-check the experimental results. These experiments and especially the comparisons to simulation represent significant progress towards understanding the longitudinal physics of intense beams.

  13. Comparison of simple and complex liver intensity modulated radiotherapy.

    PubMed

    Lee, Mark T; Purdie, Thomas G; Eccles, Cynthia L; Sharpe, Michael B; Dawson, Laura A

    2010-11-30

    Intensity-modulated radiotherapy (IMRT) may allow improvement in plan quality for treatment of liver cancer, however increasing radiation modulation complexity can lead to increased uncertainties and requirements for quality assurance. This study assesses whether target coverage and normal tissue avoidance can be maintained in liver cancer intensity-modulated radiotherapy (IMRT) plans by systematically reducing the complexity of the delivered fluence. An optimal baseline six fraction individualized IMRT plan for 27 patients with 45 liver cancers was developed which provided a median minimum dose to 0.5 cc of the planning target volume (PTV) of 38.3 Gy (range, 25.9-59.5 Gy), in 6 fractions, while maintaining liver toxicity risk <5% and maximum luminal gastrointestinal structure doses of 30 Gy. The number of segments was systematically reduced until normal tissue constraints were exceeded while maintaining equivalent dose coverage to 95% of PTV (PTVD95). Radiotherapy doses were compared between the plans. Reduction in the number of segments was achieved for all 27 plans from a median of 48 segments (range 34-52) to 19 segments (range 6-30), without exceeding normal tissue dose objectives and maintaining equivalent PTVD95 and similar PTV Equivalent Uniform Dose (EUD(-20)) IMRT plans with fewer segments had significantly less monitor units (mean, 1892 reduced to 1695, p = 0.012), but also reduced dose conformity (mean, RTOG Conformity Index 1.42 increased to 1.53 p = 0.001). Tumour coverage and normal tissue objectives were maintained with simplified liver IMRT, at the expense of reduced conformity.

  14. A compact linac for intensity modulated proton therapy based on a dielectric wall accelerator.

    PubMed

    Caporaso, G J; Mackie, T R; Sampayan, S; Chen, Y-J; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Paul, A; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J; Reckwerdt, P J; Schmidt, R; Pearson, D; Flynn, R W; Matthews, D; Purdy, J

    2008-06-01

    A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.

  15. Regularization of inverse planning for intensity-modulated radiotherapy.

    PubMed

    Chvetsov, Alexei V; Calvetti, Daniela; Sohn, Jason W; Kinsella, Timothy J

    2005-02-01

    The performance of a variational regularization technique to improve robustness of inverse treatment planning for intensity modulated radiotherapy is analyzed and tested. Inverse treatment planning is based on the numerical solutions to the Fredholm integral equation of the first kind which is ill-posed. Therefore, a fundamental problem with inverse treatment planning is that it may exhibit instabilities manifested in nonphysical oscillations in the beam intensity functions. To control the instabilities, we consider a variational regularization technique which can be applied for the methods which minimize a quadratic objective function. In this technique, the quadratic objective function is modified by adding of a stabilizing functional that allows for arbitrary order regularization. An optimal form of stabilizing functional is selected which allows for both regularization and good approximation of beam intensity functions. The regularized optimization algorithm is shown, by comparison for a typical case of a head-and-neck cancer treatment, to be significantly more accurate and robust than the standard approach, particularly for the smaller beamlet sizes.

  16. Comparison of intensity modulated x-ray therapy and intensity modulated proton therapy for selective subvolume boosting: a phantom study

    PubMed Central

    Flynn, R T; Barbee, D L; Mackie, T R; Jeraj, R

    2009-01-01

    Selective subvolume boosting can theoretically improve tumour control probability while maintaining normal tissue complication probabilities similar to those of uniform dose distributions. In this work the abilities of intensity modulated x-ray therapy (IMXT) and intensity modulated proton therapy (IMPT) to deliver boosts to multiple subvolumes of varying size and proximities are compared in a thorough phantom study. IMXT plans were created using the step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) methods. IMPT plans were created with the spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT) methods. IMPT-DGT is a generalization of the distal edge tracking method designed to reduce the number of proton beam spots required to deliver non-uniform dose distributions relative to IMPT-SS. The IMPT methods were delivered over both 180° and 360° arcs. The IMXT-SAS and IMPT-SS methods least and most optimally satisfied the non-uniform dose prescriptions, respectively. The IMPT delivery methods reduced normal tissue integral dose by a factor of about two relative to the IMXT delivery methods, regardless of the delivery arc. The IMPT-DGT method reduced the number of proton beam spots by a factor of about three relative to the IMPT-SS method. PMID:17921573

  17. Clinical outcomes of intensity-modulated pelvic radiation therapy for carcinoma of the cervix.

    PubMed

    Hasselle, Michael D; Rose, Brent S; Kochanski, Joel D; Nath, Sameer K; Bafana, Rounak; Yashar, Catheryn M; Hasan, Yasmin; Roeske, John C; Mundt, Arno J; Mell, Loren K

    2011-08-01

    To evaluate disease outcomes and toxicity in cervical cancer patients treated with pelvic intensity-modulated radiation therapy (IMRT). We included all patients with Stage I-IVA cervical carcinoma treated with IMRT at three different institutions from 2000-2007. Patients treated with extended field or conventional techniques were excluded. Intensity-modulated radiation therapy plans were designed to deliver 45 Gy in 1.8-Gy daily fractions to the planning target volume while minimizing dose to the bowel, bladder, and rectum. Toxicity was graded according to the Radiation Therapy Oncology Group system. Overall survival and disease-free survival were estimated by use of the Kaplan-Meier method. Pelvic failure, distant failure, and late toxicity were estimated by use of cumulative incidence functions. The study included 111 patients. Of these, 22 were treated with postoperative IMRT, 8 with IMRT followed by intracavitary brachytherapy and adjuvant hysterectomy, and 81 with IMRT followed by planned intracavitary brachytherapy. Of the patients, 63 had Stage I-IIA disease and 48 had Stage IIB-IVA disease. The median follow-up time was 27 months. The 3-year overall survival rate and the disease-free survival rate were 78% (95% confidence interval [CI], 68-88%) and 69% (95% CI, 59-81%), respectively. The 3-year pelvic failure rate and the distant failure rate were 14% (95% CI, 6-22%) and 17% (95% CI, 8-25%), respectively. Estimates of acute and late Grade 3 toxicity or higher were 2% (95% CI, 0-7%) and 7% (95% CI, 2-13%), respectively. Intensity-modulated radiation therapy is associated with low toxicity and favorable outcomes, supporting its safety and efficacy for cervical cancer. Prospective clinical trials are needed to evaluate the comparative efficacy of IMRT vs. conventional techniques. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Clinical Outcomes of Intensity-Modulated Pelvic Radiation Therapy for Carcinoma of the Cervix

    SciTech Connect

    Hasselle, Michael D.; Rose, Brent S.; Kochanski, Joel D.; Nath, Sameer K.; Bafana, Rounak; Yashar, Catheryn M.; Hasan, Yasmin; Roeske, John C.; Mundt, Arno J.; Mell, Loren K.

    2011-08-01

    Purpose: To evaluate disease outcomes and toxicity in cervical cancer patients treated with pelvic intensity-modulated radiation therapy (IMRT). Methods and Materials: We included all patients with Stage I-IVA cervical carcinoma treated with IMRT at three different institutions from 2000-2007. Patients treated with extended field or conventional techniques were excluded. Intensity-modulated radiation therapy plans were designed to deliver 45 Gy in 1.8-Gy daily fractions to the planning target volume while minimizing dose to the bowel, bladder, and rectum. Toxicity was graded according to the Radiation Therapy Oncology Group system. Overall survival and disease-free survival were estimated by use of the Kaplan-Meier method. Pelvic failure, distant failure, and late toxicity were estimated by use of cumulative incidence functions. Results: The study included 111 patients. Of these, 22 were treated with postoperative IMRT, 8 with IMRT followed by intracavitary brachytherapy and adjuvant hysterectomy, and 81 with IMRT followed by planned intracavitary brachytherapy. Of the patients, 63 had Stage I-IIA disease and 48 had Stage IIB-IVA disease. The median follow-up time was 27 months. The 3-year overall survival rate and the disease-free survival rate were 78% (95% confidence interval [CI], 68-88%) and 69% (95% CI, 59-81%), respectively. The 3-year pelvic failure rate and the distant failure rate were 14% (95% CI, 6-22%) and 17% (95% CI, 8-25%), respectively. Estimates of acute and late Grade 3 toxicity or higher were 2% (95% CI, 0-7%) and 7% (95% CI, 2-13%), respectively. Conclusions: Intensity-modulated radiation therapy is associated with low toxicity and favorable outcomes, supporting its safety and efficacy for cervical cancer. Prospective clinical trials are needed to evaluate the comparative efficacy of IMRT vs. conventional techniques.

  19. Effectiveness of a telemonitoring intensive strategy in early rheumatoid arthritis: comparison with the conventional management approach.

    PubMed

    Salaffi, Fausto; Carotti, Marina; Ciapetti, Alessandro; Di Carlo, Marco; Gasparini, Stefania; Farah, Sonia; Gutierrez, Marwin

    2016-04-02

    The advent of Internet and World Wide Web has created new perspectives toward interaction between patients and healthcare professionals. Telemonitoring patients with rheumatoid arthritis (RA) is an emerging concept to guide the collaborative management treatment and improve outcomes in patients. The objective of this study was to investigate whether an intensive treatment strategy, according to a telemonitoring protocol, is more effective than conventional management strategy in reaching remission and comprehensive disease control (CDC) after 1 year in early rheumatoid arthritis (ERA) patients. Forty-four ERA patients were randomly allocated into two groups: the telemonitoring intensive strategy (TIS) group (group 1) or the conventional strategy (CS) group (group 2). Three patients refused to participate. In group 1 (n = 21), a remote monitoring system of disease activity, in combination with protocolised treatment adjustments aiming for remission was applied. In group 2 (n = 20), patients were treated according to daily clinical practice, with regular evaluation of disease activity, but without protocolised treatment adjustments. A telemedical care called "REmote TElemonitoring for MAnaging Rheumatologic Condition and HEaltcare programmes" (RETE-MARCHE), was developed to perform the remote monitoring. A higher percentage of patients in the TIS group achieved CDAI remission vs patients in the CS group (38.1 % vs 25 % at year 1, p <0.01). Time to achieve remission was significantly shorter in the group 1 than in the group 2, with a median of 20 weeks vs a median over 36-weeks (p <0.001). Concordantly, the patients in group 1 showed a greater improvement (p <0.001), compared with group 2 in terms of functional impairment (71.4 % vs 35 %) and radiological damage progression (23.8 % vs 10 %), resulting in a greater rate of CDC (19.4 % vs 5 %). According to our results, an intensive treatment strategy by telemonitoring leads to more effective disease

  20. [Dosimetric verification of the intensity modulated radiation therapy].

    PubMed

    Zhang, Yuhai; Gao, Yang

    2010-05-01

    To research the method of dosimetric verification of the intensity modulated radiation therapy (IMRT). The IMRT treatment plans were designed by Eclipse TPS and were implemented in Varian ClinacIX LA with 6MV X-ray. The absolute point doses were measured using a PTW 0.6 cc ion chamber with UNIDOS E dosimeter and the planes dose distributions were measured using PTW 2D-Array ion chamber in the phantom. The error between the measured dose and calculated dose in the interesting points was less than 3%. The points passed ratio was more than 90% in gamma analysis method (3 mm 13%) about the plane dose distribution verification. The method of dosimetric verification of IMRT is reliable and efficient in the implementation.

  1. Palliative intensity modulated radiation therapy for symptomatic adrenal metastasis.

    PubMed

    Mod, H; Patel, V

    2013-05-01

    Metastasis to the adrenal glands is quite common; especially from melanomas, breast, lung, renal and gastro-intestinal tumours. The most common tumour found in the adrenals in post mortem series is a metastatic tumour; incidence ranging from 13 to 27%. The diagnosis of adrenal metastasis is now more common and easier due to staging and subsequent follow up with Computed tomography /Magnetic resonance imaging and or positron emission tomography-computed tomography imaging studies. Most of the times these metastatic lesions are clinically occult and those that do have clinical symptoms complain of pain, nausea, vomiting and early satiety. We irradiated a patient of non small cell lung cancer with adrenal metastasis with palliative Intensity Modulated Radiation Therapy and achieved a good response in terms of pain relief, stable disease and no side effects of the treatment.

  2. Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients.

    PubMed

    Hirasawa, Kazunori; Takahashi, Natsumi; Satou, Tsukasa; Kasahara, Masayuki; Matsumura, Kazuhiro; Shoji, Nobuyuki

    2017-08-01

    This prospective observational study compared the performance of size modulation standard automated perimetry with the Octopus 600 10-2 test program, with stimulus size modulation during testing, based on stimulus intensity and conventional standard automated perimetry, with that of the Humphrey 10-2 test program in glaucoma patients. Eighty-seven eyes of 87 glaucoma patients underwent size modulation standard automated perimetry with Dynamic strategy and conventional standard automated perimetry using the SITA standard strategy. The main outcome measures were global indices, point-wise threshold, visual defect size and depth, reliability indices, and test duration; these were compared between size modulation standard automated perimetry and conventional standard automated perimetry. Global indices and point-wise threshold values between size modulation standard automated perimetry and conventional standard automated perimetry were moderately to strongly correlated (p < 0.01). However, the correlation coefficient of point-wise threshold value for the central zone was significantly lower than that for the peripheral zone (χ2 > 33.40, p < 0.01). Better mean defect and point-wise threshold values were obtained with size modulation standard automated perimetry than with conventional standard automated perimetry, but the visual-field defect size was smaller (p < 0.01) and depth shallower (p < 0.01) on size modulation-standard automated perimetry than on conventional standard automated perimetry. The reliability indices, particularly the false-negative response, of size modulation standard automated perimetry were worse than those of conventional standard automated perimetry (p < 0.01). The test duration was 6.5% shorter with size modulation standard automated perimetry than with conventional standard automated perimetry (p = 0.02). Global indices and the point-wise threshold value of the two testing modalities correlated well. However, the potential of a large stimulus

  3. Conventional, biological and environmental factors in speech communication: a modulation theory.

    PubMed

    Traunmüller, H

    1994-01-01

    Speech signals contain various types of information that can be grouped under the headings phonetic, affective, personal and transmittal. Listeners are capable of distinguishing these. Previous theories of speech perception have not considered this fully. They have mainly been concerned with problems relating exclusively to phonetic quality. The theory presented in this paper considers speech signals as the result of allowing conventional gestures to modulate a carrier signal that has the personal characteristics of the speaker, which implies that in general the conventional information can only be retrieved by demodulation.

  4. Pitfalls in normalization for intensity-modulated radiation therapy planning

    SciTech Connect

    Williams, Greg . E-mail: greg.williams@hci.utah.edu; Tobler, Matt; Leavitt, Dennis

    2005-01-01

    Three-dimensional (3D) treatment planning often involves complex combinations of beam energies, treatment fields, and beam modifying devices. Even when a plan is devised that meets many treatment-planning objectives, limitations in the planner's ability to further adjust beam characteristics may require the radiation dose prescription to be normalized to an isodose level that best covers the target volume. While these normalizations help meet the volume coverage goals, they also result in adjustment of the dose delivered to the normal tissues and must be carefully evaluated. Intensity-modulated radiation therapy (IMRT) treatment planning allows combinations of complex dose patterns, in order to achieve the desired treatment planning goals. These dose patterns are created by defining a set of treatment planning objectives and then allowing the treatment planning computer to create intensity patterns, through the use of moving multileaf collimation that will meet the requested goals. Often, when an IMRT treatment plan is created that meets many of the treatment planning goals but falls short of volume coverage requirements, the planner is tempted to apply normalization principles similar to those utilized with 3D treatment planning. Again, these normalizations help meet the volume coverage goals, but unlike 3D planning situations, may result in avoidable delivery of additional doses to the normal tissues. The focus of this study is to evaluate the effect of application of normalization for IMRT planning using multiple patient situations. Recommendations would favor re-optimization over normalization in most planning situations.

  5. Planning and delivery of intensity-modulated radiation therapy.

    PubMed

    Yu, Cedric X; Amies, Christopher J; Svatos, Michelle

    2008-12-01

    Intensity modulated radiation therapy (IMRT) is an advanced form of external beam radiation therapy. IMRT offers an additional dimension of freedom as compared with field shaping in three-dimensional conformal radiation therapy because the radiation intensities within a radiation field can be varied according to the preferences of locations within a given beam direction from which the radiation is directed to the tumor. This added freedom allows the treatment planning system to better shape the radiation doses to conform to the target volume while sparing surrounding normal structures. The resulting dosimetric advantage has shown to translate into clinical advantages of improving local and regional tumor control. It also offers a valuable mechanism for dose escalation to tumors while simultaneously reducing radiation toxicities to the surrounding normal tissue and sensitive structures. In less than a decade, IMRT has become common practice in radiation oncology. Looking forward, the authors wonder if IMRT has matured to such a point that the room for further improvement has diminished and so it is pertinent to ask what the future will hold for IMRT. This article attempts to look from the perspective of the current state of the technology to predict the immediate trends and the future directions. This article will (1) review the clinical experience of IMRT; (2) review what we learned in IMRT planning; (3) review different treatment delivery techniques; and finally, (4) predict the areas of advancements in the years to come.

  6. Robust PET-guided intensity-modulated radiation therapy

    SciTech Connect

    Li, H.; Bissonnette, J. P.; Purdie, T.; Chan, T. C. Y.

    2015-08-15

    Purpose: Functional image guided intensity-modulated radiation therapy has the potential to improve cancer treatment quality by basing treatment parameters such as heterogeneous dose distributions information derived from imaging. However, such heterogeneous dose distributions are subject to imaging uncertainty. In this paper, the authors develop a robust optimization model to design plans that are desensitized to imaging uncertainty. Methods: Starting from the pretreatment fluorodeoxyglucose-positron emission tomography scans, the authors use the raw voxel standard uptake values (SUVs) as input into a series of intermediate functions to transform the SUV into a desired dose. The calculated desired doses were used as an input into a robust optimization model to generate beamlet intensities. For each voxel, the authors assume that the true SUV cannot be observed but instead resides in an interval centered on the nominal (i.e., observed) SUV. Then the authors evaluated the nominal and robust solutions through a simulation study. The simulation considered the effect of the true SUV being different from the nominal SUV on the quality of the treatment plan. Treatment plans were compared on the metrics of objective function value and tumor control probability (TCP). Results: Computational results demonstrate the potential for improvements in tumor control probability and deviation from the desired dose distribution compared to a nonrobust model while maintaining acceptable tissue dose. Conclusions: Robust optimization can help design treatment plans that are more stable in the presence of image value uncertainties.

  7. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning.

    PubMed

    Andrieu, Patrice; Billot, Pierre-Édouard; Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors.

  8. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  9. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Parsai, Homayon; Cho, Paul S.; Phillips, Mark H.; Giansiracusa, Robert S.; Axen, David

    2003-05-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of +/-0.5 mm were shown to result in significant dosimetric deviations.

  10. Intensity-Modulated Radiotherapy for Cervical Lymph Node Metastases From Unknown Primary Cancer

    SciTech Connect

    Madani, Indira Vakaet, Luc; Bonte, Katrien; Boterberg, Tom; Neve, Wilfried de

    2008-07-15

    Purpose: To compare the effectiveness of intensity-modulated radiotherapy (IMRT) and conventional (two-dimensional) radiotherapy in the treatment of cervical lymph node metastases from unknown primary cancer (UPC). Methods and Materials: Between February 2003 and September 2006, 23 patients with UPC of squamous cell carcinoma were treated with IMRT. Extended putative mucosal and bilateral nodal sites were irradiated to a median dose of 66 Gy. In 19 patients, IMRT was performed after lymph node dissection, and in 4 patients primary radiotherapy was given. The conventional radiotherapy group (historical control group) comprised 18 patients treated to a median dose of 66 Gy between August 1994 and October 2003. Results: Twenty patients completed treatment. As compared with conventional radiotherapy, the incidence of Grade 3 acute dysphagia was significantly lower in the IMRT group (4.5% vs. 50%, p = 0.003). By 6 months, Grade 3 xerostomia was detected in 11.8% patients in the IMRT group vs. 53.4% in the historical control group (p = 0.03). No Grade 3 dysphagia or skin fibrosis was observed after IMRT but these were noted after conventional radiotherapy (26.7%, p = 0.01) and 26.7%, p = 0.03) respectively). With median follow-up of living patients of 17 months, there was no emergence of primary cancer. One patient had persistent nodal disease and another had nodal relapse at 5 months. Distant metastases were detected in 4 patients. The 2-year overall survival and distant disease-free probability after IMRT did not differ significantly from those for conventional radiotherapy (74.8% vs. 61.1% and 76.3% vs. 68.4%, respectively). Conclusions: Use of IMRT for UPC resulted in lower toxicity than conventional radiotherapy, and was similar in efficacy.

  11. Clinical Realization of Sector Beam Intensity Modulation for Gamma Knife Radiosurgery: A Pilot Treatment Planning Study

    SciTech Connect

    Ma, Lijun; Mason, Erica; Sneed, Penny K.; McDermott, Michael; Polishchuk, Alexei; Larson, David A.; Sahgal, Arjun

    2015-03-01

    Purpose: To demonstrate the clinical feasibility and potential benefits of sector beam intensity modulation (SBIM) specific to Gamma Knife stereotactic radiosurgery (GKSRS). Methods and Materials: SBIM is based on modulating the confocal beam intensities from individual sectors surrounding an isocenter in a nearly 2π geometry. This is in contrast to conventional GKSRS delivery, in which the beam intensities from each sector are restricted to be either 0% or 100% and must be identical for any given isocenter. We developed a SBIM solution based on available clinical planning tools, and we tested it on a cohort of 12 clinical cases as a proof of concept study. The SBIM treatment plans were compared with the original clinically delivered treatment plans to determine dosimetric differences. The goal was to investigate whether SBIM would improve the dose conformity for these treatment plans without prohibitively lengthening the treatment time. Results: A SBIM technique was developed. On average, SBIM improved the Paddick conformity index (PCI) versus the clinically delivered plans (clinical plan PCI = 0.68 ± 0.11 vs SBIM plan PCI = 0.74 ± 0.10, P=.002; 2-tailed paired t test). The SBIM plans also resulted in nearly identical target volume coverage (mean, 97 ± 2%), total beam-on times (clinical plan 58.4 ± 38.9 minutes vs SBIM 63.5 ± 44.7 minutes, P=.057), and gradient indices (clinical plan 3.03 ± 0.27 vs SBIM 3.06 ± 0.29, P=.44) versus the original clinical plans. Conclusion: The SBIM method is clinically feasible with potential dosimetric gains when compared with conventional GKSRS.

  12. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus.

    PubMed

    Fullerton, Birgit; Jeitler, Klaus; Seitz, Mirjam; Horvath, Karl; Berghold, Andrea; Siebenhofer, Andrea

    2014-02-14

    Clinical guidelines differ regarding their recommended blood glucose targets for patients with type 1 diabetes and recent studies on patients with type 2 diabetes suggest that aiming at very low targets can increase the risk of mortality. To assess the effects of intensive versus conventional glycaemic targets in patients with type 1 diabetes in terms of long-term complications and determine whether very low, near normoglycaemic values are of additional benefit. A systematic literature search was performed in the databases The Cochrane Library, MEDLINE and EMBASE. The date of the last search was December 2012 for all databases. We included all randomised controlled trials (RCTs) that had defined different glycaemic targets in the treatment arms, studied patients with type 1 diabetes, and had a follow-up duration of at least one year. Two review authors independently extracted data, assessed studies for risk of bias, with differences resolved by consensus. Overall study quality was evaluated by the 'Grading of Recommendations Assessment, Development, and Evaluation' (GRADE) system. Random-effects models were used for the main analyses and the results are presented as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes. We identified 12 trials that fulfilled the inclusion criteria, including a total of 2230 patients. The patient populations varied widely across studies with one study only including children, one study only including patients after a kidney transplant, one study with newly diagnosed adult patients, and several studies where patients had retinopathy or microalbuminuria at baseline. The mean follow-up duration across studies varied between one and 6.5 years. The majority of the studies were carried out in the 1980s and all trials took place in Europe or North America. Due to the nature of the intervention, none of the studies could be carried out in a blinded fashion so that the risk of performance bias, especially for

  13. Prone breast intensity modulated radiation therapy: 5-year results.

    PubMed

    Osa, Etin-Osa O; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D; Formenti, Silvia C

    2014-07-15

    To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm(3), mean 19.65 cm(3). In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm(3), mean 1.59 cm(3). There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and fractionation approach to standard 6-week radiation therapy with a

  14. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  15. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    SciTech Connect

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  16. Benchmarking dosimetric quality assessment of prostate intensity-modulated radiotherapy.

    PubMed

    Senthi, Sashendra; Gill, Suki S; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M; Hamilton, Christopher H; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-02-01

    To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V(95%) and V(100%), respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V(95%), PTV sigma index, and conformity number. The mean PTV V(95%) was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V(95%) only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Our study has benchmarked measures of coverage, homogeneity, and conformity for the treatment of prostate

  17. Recording conventional and amplitude-integrated EEG in neonatal intensive care unit.

    PubMed

    Neubauer, D; Osredkar, D; Paro-Panjan, D; Skofljanec, A; Derganc, M

    2011-09-01

    Neonatal electroencephalography (EEG) presents a challenge due to its difficult interpretation that differs significantly from interpretation in older children and adolescents. Also, from the technological point of view, it is more difficult to perform and is not a standard procedure in all neonatal intensive care units (NICUs). During recent years, long-term cerebral function monitoring by the means of amplitude-integrated EEG (aEEG) has become popular in NICUs because it is easy to apply, allows real-time interpretation by the neonatologist treating the newborn, and has predictive value for outcome. On the other side, to record conventional EEG (cEEG), which is still considered the gold standard of neonatal EEG, the EEG technician should not only be well trained in performing neonatal EEG but also has to adapt to suboptimal working conditions. These issues need to be understood when approaching the neonatal cEEG in NICU and the main structure of the article is dedicated to this technique. The authors discuss the benefits of the digitalization and its positive effects on the improvement of NICU recording. The technical aspects as well as the standards for cEEG recording are described, and a section is dedicated to possible artifacts. Thereafter, alternative and concomitant use of aEEG and its benefits are briefly discussed. At the end there is a section that presents a review of our own cEEG and aEEG recordings that were chosen as the most frequently encountered patterns according to Consensus statement on the use of EEG in the intensive care unit.

  18. Clinical and dosimetric implications of intensity-modulated radiotherapy for early-stage glottic carcinoma

    SciTech Connect

    Ward, Matthew Christopher Pham, Yvonne D.; Kotecha, Rupesh; Zakem, Sara J.; Murray, Eric; Greskovich, John F.

    2016-04-01

    Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literature are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.

  19. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    SciTech Connect

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih; Chiu, J. Kam; Teh, Bin S.; Woo, Shiao Y.; Paulino, Arnold C.

    2008-07-15

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% {+-} 9%. The 3-year local control rate was 68% {+-} 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival.

  20. Signal restoration in intensity-modulated optical OFDM access systems.

    PubMed

    Vanin, Evgeny

    2011-11-15

    It is well known that deliberate signal clipping in an intensity-modulated (IM) laser transmitter helps to overcome the optical orthogonal frequency division multiplexing (OFDM) system performance limitation that is related to the signal high peak-to-average power ratio. The amplitude of a clipped OFDM signal has to be optimized in order to minimize the optical power that is required to achieve a specified system performance. However, the signal clipping introduces nonlinear distortion (so-called clipping noise) and leads to a system performance penalty. In this Letter, the performance of the IM optical OFDM system with digital baseband clipping distortion in the transmitter and clipping noise compensation by means of signal restoration in the digital signal processing unit of the system receiver is analytically evaluated. It is demonstrated that the system bit-error ratio can be reduced by more than an order of magnitude, from 10(-3) to 3.5×10(-5), by applying only the first iteration of the signal restoration algorithm proposed in this Letter. The results of the analytical analysis are verified with brute-force numerical simulations based on direct error counting.

  1. Quantitative shadowgraphy and proton radiography for large intensity modulations

    NASA Astrophysics Data System (ADS)

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Ratan, Naren; Sadler, James; Chen, Nicholas; Sävert, Alexander; Trines, Raoul; Bingham, Robert; Burrows, Philip N.; Kaluza, Malte C.; Norreys, Peter

    2017-02-01

    Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the nonlinear nature of the process. Here, we present a method to retrieve quantitative information from shadowgrams, based on computational geometry. This process can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and postprocessing techniques. This adds a powerful tool for research in various fields in engineering and physics for both techniques.

  2. Quantitative shadowgraphy and proton radiography for large intensity modulations.

    PubMed

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Ratan, Naren; Sadler, James; Chen, Nicholas; Sävert, Alexander; Trines, Raoul; Bingham, Robert; Burrows, Philip N; Kaluza, Malte C; Norreys, Peter

    2017-02-01

    Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the nonlinear nature of the process. Here, we present a method to retrieve quantitative information from shadowgrams, based on computational geometry. This process can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and postprocessing techniques. This adds a powerful tool for research in various fields in engineering and physics for both techniques.

  3. Intensity modulated radiation therapy for breast cancer: current perspectives

    PubMed Central

    Buwenge, Milly; Cammelli, Silvia; Ammendolia, Ilario; Tolento, Giorgio; Zamagni, Alice; Arcelli, Alessandra; Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Morganti, Alessio G

    2017-01-01

    Background Owing to highly conformed dose distribution, intensity modulated radiation therapy (IMRT) has the potential to improve treatment results of radiotherapy (RT). Postoperative RT is a standard adjuvant treatment in conservative treatment of breast cancer (BC). The aim of this review is to analyze available evidence from randomized controlled trials (RCTs) on IMRT in BC, particularly in terms of reduction of side effects. Methods A literature search of the bibliographic database PubMed, from January 1990 through November 2016, was performed. Only RCTs published in English were included. Results Ten articles reporting data from 5 RCTs fulfilled the selection criteria and were included in our review. Three out of 5 studies enrolled only selected patients in terms of increased risk of toxicity. Three studies compared IMRT with standard tangential RT. One study compared the results of IMRT in the supine versus the prone position, and one study compared standard treatment with accelerated partial breast IMRT. Three studies reported reduced acute and/or late toxicity using IMRT compared with standard RT. No study reported improved quality of life. Conclusion IMRT seems able to reduce toxicity in selected patients treated with postoperative RT for BC. Further analyses are needed to better define patients who are candidates for this treatment modality. PMID:28293119

  4. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer.

    PubMed

    Lu, Jia-Yang; Zheng, Jing; Zhang, Wu-Zhe; Huang, Bao-Tian

    2016-01-01

    To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT.

  5. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  6. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer

    PubMed Central

    Huang, Bao-Tian

    2016-01-01

    Purpose To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. Methods For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. Results FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. Conclusions Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT. PMID:26734731

  7. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    SciTech Connect

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  8. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    DOE PAGES

    Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...

    2017-02-12

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less

  9. Intensity-modulated radiotherapy for pituitary adenomas: The preliminary report of Cleveland Clinic experience

    SciTech Connect

    Mackley, Heath B. . E-mail: hmackley@alumni.upenn.edu; Reddy, Chandana A. M.S.; Lee, S.-Y.; Harnisch, Gayle A.; Mayberg, Marc R.; Hamrahian, Amir H.; Suh, John H.

    2007-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is being increasingly used for the treatment of pituitary adenomas. However, there have been few published data on the short- and long-term outcomes of this treatment. This is the initial report of Cleveland Clinic's experience. Methods and Materials: Between February 1998 and December 2003, 34 patients with pituitary adenomas were treated with IMRT. A retrospective chart review was conducted for data analysis. Results: With a median follow-up of 42.5 months, the treatment has proven to be well tolerated, with performance status remaining stable in 90% of patients. Radiographic local control was 89%, and among patients with secretory tumors, 100% had a biochemical response. Only 1 patient required salvage surgery for progressive disease, giving a clinical progression free survival of 97%. The only patient who received more than 46 Gy experienced optic neuropathy 8 months after radiation. Smaller tumor volume significantly correlated with subjective improvements in nonvisual neurologic complaints (p = 0.03), and larger tumor volume significantly correlated with subjective worsening of visual symptoms (p = 0.05). New hormonal supplementation was required for 40% of patients. Younger patients were significantly more likely to require hormonal supplementation (p 0.03). Conclusions: Intensity-modulated radiation therapy is a safe and effective treatment for pituitary adenomas over the short term. Longer follow-up is necessary to determine if IMRT confers any advantage with respect to either tumor control or toxicity over conventional radiation modalities.

  10. Patterns of Failure and Toxicity after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Schoenfeld, Gordon O.; Amdur, Robert J.; Morris, Christopher G.; Li, Jonathan G.; Hinerman, Russell W.; Mendenhall, William M.

    2008-06-01

    Purpose: To determine the outcome of patients treated with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: We reviewed the charts of 100 consecutive patients treated with IMRT for squamous cell carcinoma of the oropharynx (64%), nasopharynx (16%), hypopharynx (14%), and larynx (6%). Most patients were treated with a concomitant boost schedule to 72 Gy. Of the 100 patients, 54 (54%) received adjuvant chemotherapy, mostly concurrent cisplatin. The dosimetry plans for patients with either locoregional failure or Grade 4-5 complications were reviewed and fused over the computed tomography images corresponding with the location of the event. Marginal failures were defined as those that occurred at a region of high-dose falloff, where conventional fields would have provided better coverage. Results: The median follow-up of living patients was 3.1 years (range, 1-5.2 years). The 3-year rate of local control, locoregional control, freedom from relapse, cause-specific survival, and overall survival for all patients was 89%, 87%, 72%, 78%, and 71%, respectively. The 3-year rate of freedom from relapse, cause-specific survival, and overall survival for the 64 oropharynx patients was 86%, 92%, and 84%, respectively. Of the 10 local failures, 2 occurred at the margin of the high-dose planning target volume. Both regional failures occurred within the planning target volume. No locoregional failures occurred outside the planning target volume. Of the 100 patients, 8 and 5 had Grade 4 and 5 complications from treatment, respectively. All patients with Grade 5 complications had received adjuvant chemotherapy. No attempt was made to discriminate between the complications from IMRT and other aspects of the patients' treatment. Conclusion: Intensity-modulated radiotherapy did not compromise the outcome compared with what we have achieved with conventional techniques. The 2 cases of recurrence in the high-dose gradient region highlight the

  11. Prioritized efficiency optimization for intensity modulated proton therapy.

    PubMed

    Müller, Birgit S; Wilkens, Jan J

    2016-12-07

    A high dosimetric quality and short treatment time are major goals in radiotherapy planning. Intensity modulated proton therapy (IMPT) plans obtain dose distributions of great conformity but often result in long delivery times which are typically not incorporated into the optimization process. We present an algorithm to optimize delivery efficiency of IMPT plans while maintaining plan quality, and study the potential trade-offs of these interdependent objectives. The algorithm is based on prioritized optimization, a stepwise approach to implemented objectives. First the quality of the plan is optimized. The second step of the prioritized efficiency optimization (PrEfOpt) routine offers four alternatives for reducing delivery time: minimization of the total spot weight sum (A), maximization of the lowest spot intensity of each energy layer (B), elimination of low-weighted spots (C) or energy layers (D). The trade-off between dosimetric quality (step I) and treatment time (step II) is controlled during the optimization by option-dependent parameters. PrEfOpt was applied to a clinical patient case, and plans for different trade-offs were calculated. Delivery times were simulated for two virtual facilities with constant and variable proton current, i.e. independent and dependent on the optimized spot weight distributions. Delivery times decreased without major degradation of plan quality; absolute time reductions varied with the applied method and facility type. Minimizing the total spot weight sum (A) reduced times by 28% for a similar plan quality at a constant current (changes of minimum dose in the target  <1%). For a variable proton current, eliminating low-weighted spots (C) led to remarkably faster delivery (16%). The implementation of an efficiency-optimization step into the optimization process can yield reduced delivery times with similar plan qualities. A potential clinical application of PrEfOpt is the generation of multiple plans with different trade

  12. Prioritized efficiency optimization for intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Müller, Birgit S.; Wilkens, Jan J.

    2016-12-01

    A high dosimetric quality and short treatment time are major goals in radiotherapy planning. Intensity modulated proton therapy (IMPT) plans obtain dose distributions of great conformity but often result in long delivery times which are typically not incorporated into the optimization process. We present an algorithm to optimize delivery efficiency of IMPT plans while maintaining plan quality, and study the potential trade-offs of these interdependent objectives. The algorithm is based on prioritized optimization, a stepwise approach to implemented objectives. First the quality of the plan is optimized. The second step of the prioritized efficiency optimization (PrEfOpt) routine offers four alternatives for reducing delivery time: minimization of the total spot weight sum (A), maximization of the lowest spot intensity of each energy layer (B), elimination of low-weighted spots (C) or energy layers (D). The trade-off between dosimetric quality (step I) and treatment time (step II) is controlled during the optimization by option-dependent parameters. PrEfOpt was applied to a clinical patient case, and plans for different trade-offs were calculated. Delivery times were simulated for two virtual facilities with constant and variable proton current, i.e. independent and dependent on the optimized spot weight distributions. Delivery times decreased without major degradation of plan quality; absolute time reductions varied with the applied method and facility type. Minimizing the total spot weight sum (A) reduced times by 28% for a similar plan quality at a constant current (changes of minimum dose in the target  <1%). For a variable proton current, eliminating low-weighted spots (C) led to remarkably faster delivery (16%). The implementation of an efficiency-optimization step into the optimization process can yield reduced delivery times with similar plan qualities. A potential clinical application of PrEfOpt is the generation of multiple plans with different trade

  13. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  14. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Löf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  15. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  16. Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verification

    SciTech Connect

    Sanchez-Doblado, Francisco . E-mail: paco@us.es; Hartmann, Guenther H.; Pena, Javier; Capote, Roberto; Paiusco, Marta; Rhein, Bernhard; Leal, Antonio; Lagares, Juan Ignacio

    2007-05-01

    Purpose: Intensity-modulated radiotherapy (IMRT) represents an important method for improving RT. The IMRT relative dosimetry checks are well established; however, open questions remain in reference dosimetry with ionization chambers (ICs). The main problem is the departure of the measurement conditions from the reference ones; thus, additional uncertainty is introduced into the dose determination. The goal of this study was to assess this effect systematically. Methods and Materials: Monte Carlo calculations and dosimetric measurements with five different detectors were performed for a number of representative IMRT cases, covering both step-and-shoot and dynamic delivery. Results: Using ICs with volumes of about 0.125 cm{sup 3} or less, good agreement was observed among the detectors in most of the situations studied. These results also agreed well with the Monte Carlo-calculated nonreference correction factors (c factors). Additionally, we found a general correlation between the IC position relative to a segment and the derived correction factor c, which can be used to estimate the expected overall uncertainty of the treatment. Conclusion: The increase of the reference dose relative standard uncertainty measured with ICs introduced by nonreference conditions when verifying an entire IMRT plan is about 1-1.5%, provided that appropriate small-volume chambers are used. The overall standard uncertainty of the measured IMRT dose amounts to about 2.3%, including the 0.5% of reproducibility and 1.5% of uncertainty associated with the beam calibration factor. Solid state detectors and large-volume chambers are not well suited to IMRT verification dosimetry because of the greater uncertainties. An action level of 5% is appropriate for IMRT verification. Greater discrepancies should lead to a review of the dosimetric procedure, including visual inspection of treatment segments and energy fluence.

  17. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    SciTech Connect

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-06-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing.

  18. Prospective Trial of Accelerated Partial Breast Intensity-Modulated Radiotherapy

    SciTech Connect

    Leonard, Charles . E-mail: charles.leonard@usoncology.com; Carter, Dennis; Kercher, Jane; Howell, Kathryn; Henkenberns, Phyllis; Tallhamer, Michael; Cornish, Patricia C.; Hunter, Kari C.; Kondrat, Janis

    2007-04-01

    Purpose: To examine the feasibility and acute toxicities of an accelerated, partial breast, intensity-modulated radiotherapy (IMRT) protocol. Methods and Materials: Between February 2004 and August 2005, 55 patients with Stage I breast cancer and initial follow-up were enrolled at four facilities on a HealthONE and Western institutional review board-approved accelerated partial breast IMRT protocol. All patients were treated in 10 equal fractions delivered twice daily within 5 consecutive days. The first 7 patients were treated to 34 Gy, and the remaining 48 patients were treated to 38.5 Gy. Results: The median follow-up after IMRT was 10 months (range, <1-19) and after diagnosis was 11.5 months (range, 2-21). No local or distant recurrences developed. The T stage distribution was as follows: T1a in 11 patients, T1b in 24, and T1c in 20. The median tumor size was 9 mm (range, 1-20 mm). Breast cosmesis was judged by the patient as poor by 2, good by 12, and excellent by 40 (1 patient was legally blind) and by the physician as poor for 1, good for 10, and excellent for 44 patients. Breast pain, as judged by patient, was none in 34, mild in 19, moderate in 2, and severe in 0 patients. There was a single report of telangiectasia but no incidents of significant edema. Compared with historic controls for whom three-dimensional treatment planning techniques were used, IMRT provided similar dose delivery to the target while reducing the volume of normal breast included in the 100%, 75%, and 50% isodose lines. Conclusion: This initial report prospectively explored the feasibility of accelerated partial breast IMRT. After short-term follow-up, the dose delivery and clinical outcomes were very acceptable. We believe this regimen deserves additional investigation under institutional review board guidance.

  19. Image-Guided Intensity-Modulated Radiotherapy for Pancreatic Carcinoma

    PubMed Central

    Fuss, Martin; Wong, Adrian; Fuller, Clifton D.; Salter, Bill J.; Fuss, Cristina; Thomas, Charles R.

    2007-01-01

    Purpose To present the techniques and preliminary outcomes of ultrasound-based image-guided intensity-modulated radiotherapy (IG-IMRT) for pancreatic cancer. Materials and Methods Retrospective analysis of 41 patients treated between November 2000 and March 2005 with IG-IMRT to mean total doses of 55 Gy (range, 45–64 Gy). We analyzed the clinical feasibility of IG-IMRT, dosimetric parameters, and outcomes, including acute gastrointestinal toxicity (RTOG grading). Survival was assessed for adenocarcinoma (n = 35) and other histologies. Results Mean daily image-guidance corrective shifts were 4.8 ± 4.3 mm, 7.5 ± 7.2 mm, and 4.6 ± 5.9 mm along the x-, y-, and z-axes, respectively (mean 3D correction vector, 11.7 ± 8.4 mm). Acute upper gastrointestinal toxicity was grade 0–1 in 22 patients (53.7%), grade 2 in 16 patients (39%), and grade 3 in 3 patients (7.3%). Lower gastrointestinal toxicity was grade 0–1 in 32 patients (78%), grade 2 in 7 patients (17.1%), and grade 4 in 2 patients (4.9%). Treatment was stopped early in 4 patients following administration of 30 to 54 Gy. Median survival for adenocarcinoma histology was 10.3 months (18.6 months in patients alive at analysis; n = 8) with actuarial 1- and 2-year survivals of 38% and 25%, respectively. Conclusion Daily image-guidance during delivery of IMRT for pancreatic carcinoma is clinically feasible. The data presented support the conclusion that safety margin reduction and moderate dose escalation afforded by implementation of these new radiotherapy technologies yields preliminary outcomes at least comparable with published survival data. PMID:19262697

  20. 3D treatment planning and intensity-modulated radiation therapy.

    PubMed

    Purdy, J A

    1999-10-01

    Three-dimensional (3D) image-based treatment planning and new delivery technologies have spurred the implementation of external beam radiation therapy techniques, in which the high-dose region is conformed much more closely to the target volume than previously possible, thus reducing the volume of normal tissues receiving a high dose. This form of external beam irradiation is referred to as 3D conformal radiation therapy (3DCRT). 3DCRT is not just an add-on to the current radiation oncology process; it represents a radical change in practice, particularly for the radiation oncologist. Defining target volumes and organs at risk in 3D by drawing contours on CT images on a slice-by-slice basis, as opposed to drawing beam portals on a simulator radiograph, can be challenging, because radiation oncologists are generally not well trained in cross-sectional imaging. Currently, the 3DCRT approach will increase the time and effort required by physicians inexperienced with 3D treatment planning. Intensity-modulated radiation therapy (IMRT) is a more advanced form of 3DCRT, but there is considerable developmental work remaining. The instrumentation and methods used for IMRT quality assurance procedures and testing are not well established. Computer optimization cost functions are too simplistic, and thus time-consuming. Subjective plan evaluation by the radiation oncologist is still the norm. In addition, many fundamental questions regarding IMRT remain unanswered. For example, the radiobiophysical consequences of altered time-dose-fraction are unknown. Also, the fact that there is much greater dose heterogeneity for both the target and normal critical structures with IMRT compared to traditional irradiation techniques challenges current radiation oncology planning principles. However, this new process of planning and treatment delivery shows significant potential for improving the therapeutic ratio. In addition, while inefficient today, these systems, when fully developed

  1. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    SciTech Connect

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-09-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  2. [Modalities of breast cancer irradiation in 2016: Aims and indications of intensity modulated radiation therapy].

    PubMed

    Bourgier, C; Fenoglietto, P; Lemanski, C; Ducteil, A; Charissoux, M; Draghici, R; Azria, D

    2016-10-01

    Irradiation techniques for breast cancer (arctherapy, tomotherapy) are evolving and intensity-modulated radiation therapy is being increasingly considered for the management of these tumours. Here, we propose a review of intensity-modulated radiation therapy planning issues, clinical toxicities and indications for breast cancer.

  3. Altered Sagittal- and Frontal-Plane Kinematics Following High-Intensity Stepping Training Versus Conventional Interventions in Subacute Stroke.

    PubMed

    Mahtani, Gordhan B; Kinnaird, Catherine R; Connolly, Mark; Holleran, Carey L; Hennessy, Patrick W; Woodward, Jane; Brazg, Gabrielle; Roth, Elliot J; Hornby, T George

    2016-09-15

    Common locomotor deficits observed in people poststroke include decreased speeds and abnormal kinematics, characterized by altered symmetry, reduced sagittal-plane joint excursions, and use of compensatory frontal-plane behaviors during the swing phase of gait. Conventional interventions utilized to mitigate these deficits often incorporate low-intensity, impairment-based or functional exercises focused on normalizing kinematics, although the efficacy of these strategies is unclear. Conversely, higher-intensity training protocols that provide only stepping practice and do not focus on kinematics have demonstrated gains in walking function, although minimal attention toward gait quality may be concerning and has not been assessed. The present study evaluated changes in spatiotemporal and joint kinematics following experimental, high-intensity stepping training compared with conventional interventions. Kinematic data were combined from a randomized controlled trial comparing experimental and conventional training and from a pilot experimental training study. Individuals with gait deficits 1 to 6 months poststroke received up to 40 sessions of either high-intensity stepping training in variable contexts or conventional lower-intensity interventions. Analyses focused on kinematic changes during graded treadmill testing before and following training. Significant improvements in speed, symmetry, and selected sagittal-plane kinematics favored experimental training over conventional training, although increases in compensatory strategies also were observed. Changes in many kinematic patterns were correlated with speed changes, and increased compensatory behaviors were associated with both stride length gains and baseline impairments. Limitations include a small sample size and use of multiple statistical comparisons. Improved speeds and selected kinematics were observed following high-intensity training, although such training also resulted in increased use of compensatory

  4. Genetic algorithm based deliverable segments optimization for static intensity-modulated radiotherapy.

    PubMed

    Li, Yongjie; Yao, Jonathan; Yao, Dezhong

    2003-10-21

    The static delivery technique (also called step-and-shoot technique) has been widely used in intensity-modulated radiotherapy (IMRT) because of the simple delivery and easy quality assurance. Conventional static IMRT consists of two steps: first to calculate the intensity-modulated beam profiles using an inverse planning algorithm, and then to translate these profiles into a series of uniform segments using a leaf-sequencing tool. In order to simplify the procedure and shorten the treatment time of the static mode, an efficient technique, called genetic algorithm based deliverable segments optimization (GADSO), is developed in our work, which combines these two steps into one. Taking the pre-defined beams and the total number of segments per treatment as input, the number of segments for each beam, the segment shapes and weights are determined automatically. A group of interim modulated beam profiles quickly calculated using a conjugate gradient (CG) method are used to determine the segment number for each beam and to initialize segment shapes. A modified genetic algorithm based on a two-dimensional binary coding scheme is used to optimize the segment shapes, and a CG method is used to optimize the segment weights. The physical characters of a multileaf collimator, such as the leaves interdigitation limitation and leaves maximum over-travel distance, are incorporated into the optimization. The algorithm is applied to some examples and the results demonstrate that GADSO is able to produce highly conformal dose distributions using 20-30 deliverable segments per treatment within a clinically acceptable computation time.

  5. Volumetric Arc Intensity-Modulated Therapy for Spine Body Radiotherapy: Comparison With Static Intensity-Modulated Treatment

    SciTech Connect

    Wu, Q. Jackie; Yoo, Sua; Kirkpatrick, John P.; Thongphiew, Danthai; Yin Fangfang

    2009-12-01

    Purpose: This clinical study evaluates the feasibility of using volumetric arc-modulated treatment (VMAT) for spine stereotactic body radiotherapy (SBRT) to achieve highly conformal dose distributions that spare adjacent organs at risk (OAR) with reduced treatment time. Methods and Materials: Ten spine SBRT patients were studied retrospectively. The intensity-modulated radiotherapy (IMRT) and VMAT plans were generated using either one or two arcs. Planning target volume (PTV) dose coverage, OAR dose sparing, and normal tissue integral dose were measured and compared. Differences in treatment delivery were also analyzed. Results: The PTV DVHs were comparable between VMAT and IMRT plans in the shoulder (D{sub 99%}-D{sub 90%}), slope (D{sub 90%}-D{sub 10%}), and tail (D{sub 10%}-D{sub 1%}) regions. Only VMAT{sub 2arc} had a better conformity index than IMRT (1.09 vs. 1.15, p = 0.007). For cord sparing, IMRT was the best, and VMAT{sub 1arc} was the worst. Use of IMRT achieved greater than 10% more D{sub 1%} sparing for six of 10 cases and 7% to 15% more D{sub 10%} sparing over the VAMT{sub 1arc}. The differences between IMRT and VAMT{sub 2arc} were smaller and statistically nonsignificant at all dose levels. The differences were also small and statistically nonsignificant for other OAR sparing. The mean monitor units (MUs) were 8711, 7730, and 6317 for IMRT, VMAT{sub 1arc}, and VMAT{sub 2arc} plans, respectively, with a 26% reduction from IMRT to VMAT{sub 2arc}. The mean treatment time was 15.86, 8.56, and 7.88 min for IMRT, VMAT{sub 1arc,} and VMAT{sub 2arc}. The difference in integral dose was statistically nonsignificant. Conclusions: Although VMAT provided comparable PTV coverage for spine SBRT, 1arc showed significantly worse spinal cord sparing compared with IMRT, whereas 2arc was comparable to IMRT. Treatment efficiency is substantially improved with the VMAT.

  6. The clinical potential of high energy, intensity and energy modulated electron beams optimized by simulated annealing for conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Salter, Bill Jean, Jr.

    Purpose. The advent of new, so called IVth Generation, external beam radiation therapy treatment machines (e.g. Scanditronix' MM50 Racetrack Microtron) has raised the question of how the capabilities of these new machines might be exploited to produce extremely conformal dose distributions. Such machines possess the ability to produce electron energies as high as 50 MeV and, due to their scanned beam delivery of electron treatments, to modulate intensity and even energy, within a broad field. Materials and methods. Two patients with 'challenging' tumor geometries were selected from the patient archives of the Cancer Therapy and Research Center (CTRC), in San Antonio Texas. The treatment scheme that was tested allowed for twelve, energy and intensity modulated beams, equi-spaced about the patient-only intensity was modulated for the photon treatment. The elementary beams, incident from any of the twelve allowed directions, were assumed parallel, and the elementary electron beams were modeled by elementary beam data. The optimal arrangement of elementary beam energies and/or intensities was optimized by Szu-Hartley Fast Simulated Annealing Optimization. Optimized treatment plans were determined for each patient using both the high energy, intensity and energy modulated electron (HIEME) modality, and the 6 MV photon modality. The 'quality' of rival plans were scored using three different, popular objective functions which included Root Mean Square (RMS), Maximize Dose Subject to Dose and Volume Limitations (MDVL - Morrill et. al.), and Probability of Uncomplicated Tumor Control (PUTC) methods. The scores of the two optimized treatments (i.e. HIEME and intensity modulated photons) were compared to the score of the conventional plan with which the patient was actually treated. Results. The first patient evaluated presented a deeply located target volume, partially surrounding the spinal cord. A healthy right kidney was immediately adjacent to the tumor volume, separated

  7. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.

    PubMed

    Lee, Eva K; Fox, Tim; Crocker, Ian

    2006-01-01

    In current intensity-modulated radiation therapy (IMRT) plan optimization, the focus is on either finding optimal beam angles (or other beam delivery parameters such as field segments, couch angles, gantry angles) or optimal beam intensities. In this article we offer a mixed integer programming (MIP) approach for simultaneously determining an optimal intensity map and optimal beam angles for IMRT delivery. Using this approach, we pursue an experimental study designed to (a) gauge differences in plan quality metrics with respect to different tumor sites and different MIP treatment planning models, and (b) test the concept of critical-normal-tissue-ring--a tissue ring of 5 mm thickness drawn around the planning target volume (PTV)--and its use for designing conformal plans. Our treatment planning models use two classes of decision variables to capture the beam configuration and intensities simultaneously. Binary (0/1) variables are used to capture "on" or "off" or "yes" or "no" decisions for each field, and nonnegative continuous variables are used to represent intensities of beamlets. Binary and continuous variables are also used for each voxel to capture dose level and dose deviation from target bounds. Treatment planning models were designed to explicitly incorporate the following planning constraints: (a) upper/lower/mean dose-based constraints, (b) dose-volume and equivalent-uniform-dose (EUD) constraints for critical structures, (c) homogeneity constraints (underdose/overdose) for PTV, (d) coverage constraints for PTV, and (e) maximum number of beams allowed. Within this constrained solution space, five optimization strategies involving clinical objectives were analyzed: optimize total intensity to PTV, optimize total intensity and then optimize conformity, optimize total intensity and then optimize homogeneity, minimize total dose to critical structures, minimize total dose to critical structures and optimize conformity simultaneously. We emphasize that the

  8. Clinical Outcome of Adjuvant Treatment of Endometrial Cancer Using Aperture-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Bouchard, Myriam; Nadeau, Sylvain M.Sc.; Gingras, Luc; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Fortin, Andre; Germain, Isabelle

    2008-08-01

    Purpose: To assess disease control and acute and chronic toxicity with aperture-based intensity-modulated radiotherapy (AB-IMRT) for postoperative pelvic irradiation of endometrial cancer. Methods and Materials: Between January and July 2005, after hysterectomy for endometrial cancer, 15 patients received 45 Gy to the pelvis using AB-IMRT. The AB-IMRT plans were generated by an in-house treatment planning system (Ballista). The AB-IMRT plans were used for treatment and were dosimetrically compared with three other approaches: conventional four-field, enlarged four-field, and beamlet-based IMRT (BB-IMRT). Disease control and toxicity were prospectively recorded and compared with retrospective data from 30 patients treated with a conventional four-field technique. Results: At a median follow-up of 27 months (range, 23-30), no relapse was noted among the AB-IMRT group compared with five relapses in the control group (p = 0.1). The characteristics of each group were similar, except for the mean body mass index, timing of brachytherapy, and applicator type used. Patients treated with AB-IMRT experienced more frequent Grade 2 or greater gastrointestinal acute toxicity (87% vs. 53%, p 0.02). No statistically significant difference was noted between the two groups regarding the incidence or severity of chronic toxicities. AB-IMRT plans significantly improved target coverage (93% vs. 76% of planning target volume receiving 45 Gy for AB-IMRT vs. conventional four-field technique, respectively). The sparing of organs at risk was similar to that of BB-IMRT. Conclusion: The results of our study have shown that AB-IMRT provides excellent disease control with equivalent late toxicity compared with the conventional four-field technique. AB-IMRT provided treatment delivery and quality assurance advantages compared with BB-IMRT and could reduce the risk of second malignancy compared with BB-IMRT.

  9. Volumetric Modulation Arc Radiotherapy Compared With Static Gantry Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma Tumor: A Feasibility Study

    SciTech Connect

    Scorsetti, Marta; Bignardi, Mario; Clivio, Alessandro

    2010-07-01

    Purpose: A planning study was performed to evaluate RapidArc (RA), a volumetric modulated arc technique, on malignant pleural mesothelioma. The benchmark was conventional fixed-field intensity-modulated radiotherapy (IMRT). Methods and materials: The computed tomography data sets of 6 patients were included. The plans for IMRT with nine fixed beams were compared against double-modulated arcs with a single isocenter. All plans were optimized for 15-MV photon beams. The dose prescription was 54 Gy to the planning target volume. The planning objectives for the planning target volume were a minimal dose of >95% and maximal dose of <107%. For the organs at risk, the parameters were as follows: contralateral lung, percentage of volume receiving 5 Gy (V{sub 5Gy}) <60%, V{sub 20Gy} < 10%, mean <10.0 Gy; liver, V{sub 30Gy} <33%, mean <31 Gy; heart, V{sub 45Gy} <30%, V{sub 50Gy} <20%, dose received by 1% of the volume (D{sub 1%}) <60 Gy; contralateral kidney, V{sub 15Gy} <20%; spine, D{sub 1%} <45 Gy; esophagus, V{sub 55Gy} <30%; and spleen, V{sub 40Gy} <50%. The monitor units (MUs) and delivery time were scored to measure the treatment efficiency. The pretreatment portal dosimetry scored delivery to the calculation agreement with the Gamma Agreement Index. Results: RA and IMRT provided equivalent coverage and homogeneity. Both techniques fulfilled objectives on organs at risk with a tendency of RA to improve sparing. The conformity index was 1.9 {+-} 0.1 for RA and IMRT. The number of MU/2Gy was 734 {+-} 82 for RA and 2,195 {+-} 317 for IMRT. The planning vs. delivery agreement revealed a Gamma Agreement Index for IMRT of 96.0% {+-} 2.6% and for RA of 95.7% {+-} 1.5%. The treatment time was 3.7 {+-} 0.3min for RA and 13.4 {+-} 0.1min for IMRT. Conclusion: RA demonstrated compared with conventional IMRT, similar target coverage and better dose sparing to the organs at risks. The number of MUs and the time required to deliver a 2-Gy fraction were much lower for RA, allowing

  10. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  11. Pleural Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma

    SciTech Connect

    Rosenzweig, Kenneth E.; Zauderer, Marjorie G.; Laser, Benjamin; Krug, Lee M.; Yorke, Ellen; Sima, Camelia S.; Flores, Raja; Rusch, Valerie

    2012-07-15

    Purpose: In patients with malignant pleural mesothelioma who are unable to undergo pneumonectomy, it is difficult to deliver tumoricidal radiation doses to the pleura without significant toxicity. We have implemented a technique of using intensity-modulated radiotherapy (IMRT) to treat these patients, and we report the feasibility and toxicity of this approach. Methods and Materials: Between 2005 and 2010, 36 patients with malignant pleural mesothelioma and two intact lungs (i.e., no previous pneumonectomy) were treated with pleural IMRT to the hemithorax (median dose, 46.8 Gy; range, 41.4-50.4) at Memorial Sloan-Kettering Cancer Center. Results: Of the 36 patients, 56% had right-sided tumors. The histologic type was epithelial in 78%, sarcomatoid in 6%, and mixed in 17%, and 6% had Stage I, 28% had Stage II, 33% had Stage III, and 33% had Stage IV. Thirty-two patients (89%) received induction chemotherapy (mostly cisplatin and pemetrexed); 56% underwent pleurectomy/decortication before IMRT and 44% did not undergo resection. Of the 36 patients evaluable for acute toxicity, 7 (20%) had Grade 3 or worse pneumonitis (including 1 death) and 2 had Grade 3 fatigue. In 30 patients assessable for late toxicity, 5 had continuing Grade 3 pneumonitis. For patients treated with surgery, the 1- and 2-year survival rate was 75% and 53%, and the median survival was 26 months. For patients who did not undergo surgical resection, the 1- and 2-year survival rate was 69% and 28%, and the median survival was 17 months. Conclusions: Treating the intact lung with pleural IMRT in patients with malignant pleural mesothelioma is a safe and feasible treatment option with an acceptable rate of pneumonitis. Additionally, the survival rates were encouraging in our retrospective series, particularly for the patients who underwent pleurectomy/decortication. We have initiated a Phase II trial of induction chemotherapy with pemetrexed and cisplatin with or without pleurectomy

  12. Photosynthesis assessment in microphytobenthos using conventional and imaging pulse amplitude modulation fluorometry.

    PubMed

    Vieira, Sónia; Ribeiro, Lourenço; Jesus, Bruno; Cartaxana, Paulo; da Silva, Jorge Marques

    2013-01-01

    Imaging pulse amplitude modulated (Imaging-PAM) fluorometry is a breakthrough in the study of spatial heterogeneity of photosynthetic assemblages. However, Imaging and conventional PAM uses a different technology, making comparisons between these techniques doubtful. Thereby, photosynthetic processes were comparatively assessed using conventional (Junior PAM and PAM 101) and Imaging-PAM on intertidal microphytobenthos (MPB; mud and sand) and on cork oak leaves. Lower values of α (initial slope of the rETR, relative photosynthetic electron transport rate) vs E (incident photosynthetic active radiation) curve), ETR(max) (maximum relative ETR), E(k) (light saturation parameter) and F(v)/F(m) (maximum quantum efficiency of photosystem II of dark-adapted samples) were obtained using the Imaging-PAM. The level of discrepancy between conventional and Imaging-PAM systems was dependent on the type of sample, being more pronounced for MPB muddy sediments. This may be explained by differences in the depth integration of the fluorescence signal related to the thickness of the photosynthetic layer and in the light attenuation coefficients of downwelling irradiance. An additional relevant parameter is the taxonomic composition of the MPB, as cyanobacteria present in sandy sediments rendered different results with red and blue excitation light fluorometers. These findings emphasize the caution needed when interpreting chlorophyll fluorescence data of MPB communities. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  13. Incorporating deliverable monitor unit constraints into spot intensity optimization in intensity-modulated proton therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Lim, Gino; Li, Xiaoqiang; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2013-08-01

    The purpose of this study is to investigate the feasibility and impact of incorporating deliverable monitor unit (MU) constraints into spot intensity optimization (SIO) in intensity-modulated proton therapy (IMPT) treatment planning. The current treatment planning system (TPS) for IMPT disregards deliverable MU constraints in the SIO routine. It performs a post-processing procedure on an optimized plan to enforce deliverable MU values that are required by the spot scanning proton delivery system. This procedure can create a significant dose distribution deviation between the optimized and post-processed deliverable plans, especially when small spot spacings are used. In this study, we introduce a two-stage linear programming approach to optimize spot intensities and constrain deliverable MU values simultaneously, i.e., a deliverable SIO (DSIO) model. Thus, the post-processing procedure is eliminated and the associated optimized plan deterioration can be avoided. Four prostate cancer cases at our institution were selected for study and two parallel opposed beam angles were planned for all cases. A quadratic programming based model without MU constraints, i.e., a conventional SIO (CSIO) model, was also implemented to emulate commercial TPS. Plans optimized by both the DSIO and CSIO models were evaluated for five different settings of spot spacing from 3 to 7 mm. For all spot spacings, the DSIO-optimized plans yielded better uniformity for the target dose coverage and critical structure sparing than did the CSIO-optimized plans. With reduced spot spacings, more significant improvements in target dose uniformity and critical structure sparing were observed in the DSIO than in the CSIO-optimized plans. Additionally, better sparing of the rectum and bladder was achieved when reduced spacings were used for the DSIO-optimized plans. The proposed DSIO approach ensures the deliverability of optimized IMPT plans that take into account MU constraints. This eliminates the post

  14. Impact of machines on plan quality: volumetric modulated arc therapy and intensity modulated radiation therapy.

    PubMed

    Clemente, S; Cozzolino, M; Oliviero, C; Fiorentino, A; Chiumento, C; Fusco, V

    2014-02-01

    To evaluate the impact of different machines on plan quality using both intensity modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques. Eight patients with squamous cell carcinoma of the oropharynx were selected at random. Plans were computed for IMRT and VMAT Smart Arc, using Pinnacle TPS for an Elekta (IMRT-E, VMAT-E) and Varian linac (IMRT-V, VMAT-V). A three-dose level prescription was used to deliver 70, 63 and 58.1 Gy to regions of macroscopic, microscopic high- and low-risk disease, respectively. All doses were given in 35 fractions. Comparisons were performed on dose-volume histogram data, monitor units (MU), and delivery time. VMAT-E plans resulted slightly MU efficient (-24 % p < 0.05) compared to VMAT-V while IMRT-V shortened delivery time (-19 % p < 0.05) compared to IMRT-E. All the delivery techniques resulted in equivalent target coverage in terms of D(98) % and D(2) %. For VMAT technique, a significant improvement of 7 % in homogeneity index (HI) for PTV58.1 was observed for Varian machine. A slight improvement in OARs sparing was observed with Elekta machine both for IMRT and VMAT techniques. Similar plan quality was observed for Elekta and Varian linacs, significant differences were observed in delivery efficiency, as MU number and delivery times, in favor of Elekta and Varian, respectively.

  15. Locally advanced carcinoma of the cervix associated with pelvic kidney treated with intensity-modulated radiotherapy: Overcoming a therapeutic challenge.

    PubMed

    Kashyap, Lakhan; Gandhi, Ajeet Kumar; Pandey, Rambha; Sharma, Daya Nand

    2017-01-01

    The simultaneous occurrence of carcinoma of the cervix and pelvic kidney is rare. As the pelvic kidney occupies the conventional radiation portal for carcinoma of the cervix, treatment of these patients with radiation presents a therapeutic challenge. A 48-year-old stage IIIB cervical carcinoma patient with an incidental diagnosis of pelvic kidney was treated with radical chemoradiotherapy using intensity-modulated radiotherapy with concurrent weekly cisplatin, followed by intracavitary radiotherapy. The bilateral kidney dose was restricted within a tolerance limit of 16.6 Gy. At the 18-month follow-up, the patient was disease free and had no deterioration in kidney function. Intensity-modulated radiotherapy provided the necessary means for delivering radical radiation doses in this case scenario with adequate sparing of the kidney. © 2016 Japan Society of Obstetrics and Gynecology.

  16. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  17. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  18. Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes

    NASA Astrophysics Data System (ADS)

    Miyazaki, J.; Kawasumi, K.; Kobayashi, T.

    2014-09-01

    We present a scheme for time-resolved pump-probe microscopy using intensity modulated laser diodes. The modulation frequencies of the pump and probe beams are varied up to 500 MHz with fixed frequency detuning typically set at 15 kHz. The frequency response of the pump-probe signal is detected using a lock-in amplifier referenced at the beat frequency. This frequency domain method is capable of characterizing the nanosecond to picosecond relaxation dynamics of sample species without the use of a high speed detector or a high frequency lock-in amplifier. Furthermore, as the pump-probe signal is based on the nonlinear interaction between the two laser beams and the sample, our scheme provides better spatial resolution than the conventional diffraction-limited optical microscopes. Time-resolved pump-probe imaging of fluorescence beads and aggregates of quantum dots demonstrates that this method is useful for the microscopic analysis of optoelectronic devices. The system is implemented using compact and low-cost laser diodes, and thus has a broad range of applications in the fields of photochemistry, optical physics, and biological imaging.

  19. Exercise-induced endocannabinoid signaling is modulated by intensity.

    PubMed

    Raichlen, David A; Foster, Adam D; Seillier, Alexandre; Giuffrida, Andrea; Gerdeman, Gregory L

    2013-04-01

    Endocannabinoids (eCB) are endogenous ligands for cannabinoid receptors that are densely expressed in brain networks responsible for reward. Recent work shows that exercise activates the eCB system in humans and other mammals, suggesting eCBs are partly responsible for the reported improvements in mood and affect following aerobic exercise in humans. However, exercise-induced psychological changes reported by runners are known to be dependent on exercise intensity, suggesting that any underlying molecular mechanism should also change with varying levels of exercise intensity. Here, we examine circulating levels of eCBs following aerobic exercise (treadmill running) in recreationally fit human runners at four different intensities. We show that eCB signaling is indeed intensity dependent, with significant changes in circulating eCBs observed following moderate intensities only (very high and very low intensity exercises do not significantly alter circulating eCB levels). Our results are consistent with intensity-dependent psychological state changes with exercise and therefore support the hypothesis that eCB activity is related to neurobiological effects of exercise. Thus, future studies examining the role of exercise-induced eCB signaling on neurobiology or physiology must take exercise intensity into account.

  20. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  1. Comparative analysis of 60Co intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Fox, Christopher; Romeijn, H. Edwin; Lynch, Bart; Men, Chunhua; Aleman, Dionne M.; Dempsey, James F.

    2008-06-01

    In this study, we perform a scientific comparative analysis of using 60Co beams in intensity-modulated radiation therapy (IMRT). In particular, we evaluate the treatment plan quality obtained with (i) 6 MV, 18 MV and 60Co IMRT; (ii) different numbers of static multileaf collimator (MLC) delivered 60Co beams and (iii) a helical tomotherapy 60Co beam geometry. We employ a convex fluence map optimization (FMO) model, which allows for the comparison of plan quality between different beam energies and configurations for a given case. A total of 25 clinical patient cases that each contain volumetric CT studies, primary and secondary delineated targets, and contoured structures were studied: 5 head-and-neck (H&N), 5 prostate, 5 central nervous system (CNS), 5 breast and 5 lung cases. The DICOM plan data were anonymized and exported to the University of Florida optimized radiation therapy (UFORT) treatment planning system. The FMO problem was solved for each case for 5-71 equidistant beams as well as a helical geometry for H&N, prostate, CNS and lung cases, and for 3-7 equidistant beams in the upper hemisphere for breast cases, all with 6 MV, 18 MV and 60Co dose models. In all cases, 95% of the target volumes received at least the prescribed dose with clinical sparing criteria for critical organs being met for all structures that were not wholly or partially contained within the target volume. Improvements in critical organ sparing were found with an increasing number of equidistant 60Co beams, yet were marginal above 9 beams for H&N, prostate, CNS and lung. Breast cases produced similar plans for 3-7 beams. A helical 60Co beam geometry achieved similar plan quality as static plans with 11 equidistant 60Co beams. Furthermore, 18 MV plans were initially found not to provide the same target coverage as 6 MV and 60Co plans; however, adjusting the trade-offs in the optimization model allowed equivalent target coverage for 18 MV. For plans with comparable target coverage

  2. Intensity modulated neutron radiotherapy for the treatment of adenocarcinoma of the prostate.

    PubMed

    Santanam, Lakshmi; He, Tony; Yudelev, Mark; Forman, Jeffrey D; Orton, Colin G; Heuvel, Frank Vanden; Maughan, Richard L; Burmeister, Jay

    2007-08-01

    This study investigates the enhanced conformality of neutron dose distributions obtainable through the application of intensity modulated neutron radiotherapy (IMNRT) to the treatment of prostate adenocarcinoma. An in-house algorithm was used to optimize individual segments for IMNRT generated using an organ-at-risk (OAR) avoidance approach. A number of beam orientation schemes were investigated in an attempt to approach an optimum solution. The IMNRT plans were created retrospectively for 5 patients previously treated for prostate adenocarcinoma using fast neutron therapy (FNT), and a comparison of these plans is presented. Dose distributions and dose-volume histograms (DVHs) were analyzed and plans were evaluated based on percentage volumes of rectum and bladder receiving 95%, 80%, and 50% (V(95), V(80), V(50)) of the prescription dose, and on V(60) for both the femoral heads and GM(muscle) group. Plans were normalized such that the IMNRT DVHs for prostate and seminal vesicles were nearly identical to those for conventional FNT plans. Use of IMNRT provided reductions in rectum V(95) and V(80) of 10% (2-27%) and 13% (5-28%), respectively, and reductions in bladder V(95) and V(80) of 12% (3-26%) and 4% (7-10%), respectively. The average decrease in V(60) for the femoral heads was 4.5% (1-18%), with no significant change in V(60) for the GM(muscle) group. This study provides the first analysis of the application of intensity modulation to neutron radiotherapy. The IMNRT technique provides a substantial reduction in normal tissue dose in the treatment of prostate cancer. This reduction should result in a significant clinical advantage for this and other treatment sites.

  3. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  4. Intensity-modulated radiotherapy in high-grade gliomas: Clinical and dosimetric results

    SciTech Connect

    Narayana, Ashwatha . E-mail: narayana@mskcc.org; Yamada, Josh; Berry, Sean; Shah, Priti B.S.; Hunt, Margie; Gutin, Philip H.; Leibel, Steven A.

    2006-03-01

    Purpose: To report preliminary clinical and dosimetric data from intensity-modulated radiotherapy (IMRT) for malignant gliomas. Methods and Materials: Fifty-eight consecutive high-grade gliomas were treated between January 2001 and December 2003 with dynamic multileaf collimator IMRT, planned with the inverse approach. A dose of 59.4-60 Gy at 1.8-2.0 Gy per fraction was delivered. A total of three to five noncoplanar beams were used to cover at least 95% of the target volume with the prescription isodose line. Glioblastoma accounted for 70% of the cases, and anaplastic oligodendroglioma histology (pure or mixed) was seen in 15% of the cases. Surgery consisted of biopsy only in 26% of the patients, and 80% received adjuvant chemotherapy. Results: With a median follow-up of 24 months, 85% of the patients have relapsed. The median progression-free survival time for anaplastic astrocytoma and glioblastoma histology was 5.6 and 2.5 months, respectively. The overall survival time for anaplastic glioma and glioblastoma was 36 and 9 months, respectively. Ninety-six percent of the recurrences were local. No Grade IV/V late neurologic toxicities were noted. A comparative dosimetric analysis revealed that regardless of tumor location, IMRT did not significantly improve target coverage compared with three-dimensional planning. However, IMRT resulted in a decreased maximum dose to the spinal cord, optic nerves, and eye by 16%, 7%, and 15%, respectively, owing to its improved dose conformality. The mean brainstem dose also decreased by 7%. Intensity-modulated radiotherapy delivered with a limited number of beams did not result in an increased dose to the normal brain. Conclusions: It is unlikely that IMRT will improve local control in high-grade gliomas without further dose escalation compared with conventional radiotherapy. However, it might result in decreased late toxicities associated with radiotherapy.

  5. Stimulus intensity affects early sensory processing: sound intensity modulates auditory evoked gamma-band activity in human EEG.

    PubMed

    Schadow, Jeanette; Lenz, Daniel; Thaerig, Stefanie; Busch, Niko A; Fründ, Ingo; Herrmann, Christoph S

    2007-08-01

    We studied the effect of different sound intensities on the auditory evoked gamma-band response (GBR). Previous studies observed oscillatory gamma activity in the auditory cortex of animals and humans. For the visual modality, it has been demonstrated that the GBR can be modulated by top-down (attention, memory) as well as bottom-up factors (stimulus properties). Therefore, we expected to find a sound intensity modulation for the auditory GBR. 21 healthy participants without hearing deficits were investigated in a forced-choice discrimination task. Sinusoidal tones were presented at three systematically varied sound intensities (30, 45, 60 dB hearing level). The results of the auditory evoked potentials were predominantly consistent with previous studies. Furthermore, we observed an augmentation of the evoked GBR with increasing sound intensity. The analysis indicated that this intensity difference in the GBR amplitude most likely arises from increased phase-locking. The results demonstrate a distinct dependency between sound intensity and gamma-band oscillations. Future experiments that investigate the relationship between auditory evoked GBRs and higher cognitive processes should therefore select stimuli with an adequate sound intensity and control this variable to avoid confounding effects. In addition, it seems that gamma-band activity is more sensitive to exogenous stimulus parameters than evoked potentials.

  6. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    SciTech Connect

    Nakamura, Mitsuhiro; Shibuya, Keiko; Nakamura, Akira; Shiinoki, Takehiro; Matsuo, Yukinori; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports, was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  7. Postoperative Irradiation of Gynecologic Malignancies: Improving Treatment Delivery Using Aperture-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Nadeau, Sylvain . E-mail: sylvainn@rrsb.nb.ca; Bouchard, Myriam; Germain, Isabelle; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Roy, Rene; Gingras, Luc

    2007-06-01

    Purpose: To evaluate dosimetric and treatment delivery advantages of aperture-based intensity-modulated radiotherapy (AB-IMRT) for the treatment of patients receiving whole pelvic radiotherapy for gynecologic malignancies. Methods and Materials: Nineteen patients undergoing pelvic radiotherapy after resection of endometrial cancers were selected. A 45-Gy dose was prescribed to the target volume delineated on a planning CT scan. An in-house inverse planning system, Ballista, was used to develop a treatment plan using aperture-based multileaf collimator segments. This approach was compared with conventional four-field, enlarged four-field, and static beamlet-based IMRT (BB-IMRT) techniques in terms of target coverage, dose-volume histogram statistics for surrounding normal tissues, and numbers of segments and monitor units (MU). Results: Three quarters (76.4%) of the planning target volume received the prescription dose with conventional four-field plans. With adequate target coverage, the Ballista plans significantly reduced the volume of bowel and bladder irradiated at the prescribed dose (p < 0.001), whereas the two approaches provided equivalent results for the rectum (p 0.5). On the other hand, AB-IMRT and BB-IMRT plans showed only small differences in dose-volume histogram statistics of unknown clinical impact, whereas Ballista plan delivery required on average 73% and 59% fewer segments and MU, respectively. Conclusion: With respect to conventional techniques, AB-IMRT for the treatment of gynecologic malignancies provides dosimetric advantages similar to those with BB-IMRT but with clear treatment delivery improvements.

  8. Radiation efficacy and biological risk from whole-breast irradiation via intensity modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Desantis, David M.

    Radiotherapy is an established modality for women with breast cancer. During the delivery of external beam radiation to the breast, leakage, scattered x-rays from the patient and the linear accelerator also expose healthy tissues and organs outside of the breast, thereby increasing the patient's whole-body dose, which then increases the chance of developing a secondary, radiation-induced cancer. Generally, there are three IntensityModulated Radiotherapy (IMRT) delivery techniques from a conventional linear accelerator; forward planned (FMLC), inverse planned 'sliding window' (DMLC), and inverse planned 'step-and-shoot' (SMLC). The goal of this study was to determine which of these three techniques delivers an optimal dose to the breast with the least chance of causing a fatal, secondary, radiation-induced cancer. A conventional, non-IMRT, 'Wedge' plan also was compared. Computerized Tomography (CT) data sets for both a large and small sized patient were used in this study. With Varian's Eclipse AAA algorithm, the organ doses specified in the revised ICRP 60 publication were used to calculate the whole-body dose. Also, an anthropomorphic phantom was irradiated with thermoluminescent dosimeters (TLD) at each organ site for measured doses. The risk coefficient from the Biological Effects of Ionizing Radiation (BEIR) VII report of 4.69 x 10-2 deaths per Gy was used to convert whole-body dose to risk of a fatal, secondary, radiation-induced cancer. The FMLC IMRT delivered superior tumor coverage over the 3D conventional plan and the inverse DMLC or SMLC treatment plans delivered clinically equivalent tumor coverage. However, the FMLC plan had the least likelihood of inadvertently causing a fatal, secondary, radiation-induced cancer compared to the inverse DMLC, SMLC, and Wedge plans.

  9. Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids.

    PubMed

    Torregrosa, Francisco; Cortés, Clara; Esteve, María J; Frígola, Ana

    2005-11-30

    Liquid chromatography (LC) was the method of choice for quantification of carotenoids (including geometrical isomers) to evaluate the effects of high-intensity pulsed electric field (HIPEF), a nonthermal preservation method, with different parameters (electric field intensities and treatment times), on an orange-carrot juice mixture (80:20, v/v). In parallel, a conventional heat treatment (98 degrees C, 21 s) was applied to the juice. HIPEF processing generally caused a significant increase in the concentrations of the carotenoids identified as treatment time increased. HIPEF treatment at 25 and 30 kV/cm provided a vitamin A concentration higher than that found in the pasteurized juice.

  10. Effects of pulse-modulated microwave radiation and conventional heating on sperm production

    SciTech Connect

    Lebovitz, R.M.; Johnson, L.; Samson, W.K.

    1987-01-01

    The effects on testicular function of pulse-modulated microwave radiation (PM MWR, 1.3 GHz) and of conventional heating were studied in the rat. Anesthetized adult males (Sprague-Dawley, 400-500 g) were treated then killed at specific intervals with respect to the 13-day cycle of the seminiferous epithelium. PM MWR at 7.7 mW/g (90 min) yielded a modest decline in daily sperm production (DSP) that derived primarily from effects on primary spermatocytes. PM MWR at 4.2 mW/g was ineffective. The mean intratesticular temperature during the former reached 40 degrees C and did not exceed 38 degrees C during the latter. MWR considerably in excess of 7.7 mW/g yielded decrements in virtually all germ cell types, with primary spermatocytes again being most markedly affected. Using conventional heating, intratesticular temperatures in excess of 39 degrees C for 60 min were required for significant decrements in DSP. Levels of circulating follicle-stimulating hormone and of leutinizing hormone were resistant to either treatment. We conclude that the damage threshold and the differential sensitivity of immature germ cells to PM MWR can be adequately explained by the consequent macroscopic heating.

  11. SU-E-T-234: Modulated Photon Radiotherapy (XMRT):The Impact of Incorporating Energy Modulation Into Intensity Modulated Radiotherapy (IMRT) Optimization

    SciTech Connect

    McGeachy, P; Khan, R

    2014-06-01

    Purpose: To develop a new radiotherapy plan optimization technique that, for a given organ geometry, will find the optimal photon beam energies and fluences to produce a desirable dose distribution. This new modulated (both in energy and fluence) photon radiotherapy (XMRT) was compared with intensity modulated radiotherapy (IMRT) for a simple organ geometry. Methods: The XMRT optimization was formulated using a linear programming approach where the objective function is the mean dose to the healthy organs and dose-point constraints were assigned to each organ of interest. The organ geometry consisted of a target, two organs at risk (OARs), and normal tissue. A seven-equispaced-coplanar beam arrangement was used. For conventional IMRT, only 6 MV beams were available, while XMRT was optimized using 6 and 18 MV beams. A prescribed dose (PD) of 72 GY was assigned to the target, with upper and lower bounds of 110% and 95% of the PD, respectively. Both OARs were assigned a maximum dose of 64 Gy, while the normal tissue was assigned a maximum dose of 66 Gy. A numerical solver, Gurobi, generated solutions for the XMRT and IMRT problems. The dose-volume histograms from IMRT and XMRT solutions were compared. Results: The maximum, minimum, mean, and homogeneity of the dose to the target were comparable between IMRT and XMRT. Though IMRT had improved dose conformity relative to XMRT, XMRT reduced the mean dose to both OARs by more than 1 Gy. For normal tissue, an increase of 5 Gy in mean dose and 27 percent in integral dose was seen for IMRT relative to XMRT. Conclusion: This work demonstrates the benefits of simultaneously modulating photon beam energy and fluence using our XMRT approach in a given phantom geometry. While target coverage was comparable, dose to healthy structures was reduced using XMRT.

  12. Ultra-fine metal gate operated graphene optical intensity modulator

    NASA Astrophysics Data System (ADS)

    Kou, Rai; Hori, Yosuke; Tsuchizawa, Tai; Warabi, Kaori; Kobayashi, Yuzuki; Harada, Yuichi; Hibino, Hiroki; Yamamoto, Tsuyoshi; Nakajima, Hirochika; Yamada, Koji

    2016-12-01

    A graphene based top-gate optical modulator on a standard silicon photonic platform is proposed for the future optical telecommunication networks. On the basis of the device simulation, we proposed that an electro-absorption light modulation can be realized by an ultra-narrow metal top-gate electrode (width less than 400 nm) directly located on the top of a silicon wire waveguide. The designed structure also provides excellent features such as carrier doping and waveguide-planarization free fabrication processes. In terms of the fabrication, we established transferring of a CVD-grown mono-layer graphene sheet onto a CMOS compatible silicon photonic sample followed by a 25-nm thick ALD-grown Al2O3 deposition and Source-Gate-Drain electrodes formation. In addition, a pair of low-loss spot-size converter for the input and output area is integrated for the efficient light source coupling. The maximum modulation depth of over 30% (1.2 dB) is observed at a device length of 50 μm, and a metal width of 300 nm. The influence of the initial Fermi energy obtained by experiment on the modulation performance is discussed with simulation results.

  13. [Intensity-modulated radiotherapy of head and neck cancers. Dose constraint for spinal cord and brachial plexus].

    PubMed

    Boisselier, P; Racadot, S; Thariat, J; Graff, P; Pointreau, Y

    2016-10-01

    Given the ballistic opportunities it offers, intensity-modulated radiotherapy has emerged as the gold standard treatment for head and neck cancers. Protection of organs at risk is one of the objectives of optimization during the planning process. The compliance of dose constraints to the nervous system must be prioritized over all others. To avoid complications, it is recommended to respect a maximum dose of 50Gy to the spinal cord, and 60Gy to the brachial plexus using conventional fractionation of 2Gy per fraction. These constraints can be adapted depending on the clinical situation; they will probably be refocused by the follow-up of the IMRT studies.

  14. Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy*

    NASA Astrophysics Data System (ADS)

    Pugachev, A.; Xing, L.

    2001-09-01

    In intensity-modulated radiation therapy (IMRT), the incident beam orientations are often determined by a trial and error search. The conventional beam's-eye view (BEV) tool becomes less helpful in IMRT because it is frequently required that beams go through organs at risk (OARs) in order to achieve a compromise between the dosimetric objectives of the planning target volume (PTV) and the OARs. In this paper, we report a beam's-eye view dosimetrics (BEVD) technique to assist in the selection of beam orientations in IMRT. In our method, each beam portal is divided into a grid of beamlets. A score function is introduced to measure the `goodness' of each beamlet at a given gantry angle. The score is determined by the maximum PTV dose deliverable by the beamlet without exceeding the tolerance doses of the OARs and normal tissue located in the path of the beamlet. The overall score of the gantry angle is given by a sum of the scores of all beamlets. For a given patient, the score function is evaluated for each possible beam orientation. The directions with the highest scores are then selected as the candidates for beam placement. This procedure is similar to the BEV approach used in conventional radiation therapy, except that the evaluation by a human is replaced by a score function to take into account the intensity modulation. This technique allows one to select beam orientations without the excessive computing overhead of computer optimization of beam orientation. It also provides useful insight into the problem of selection of beam orientation and is especially valuable for complicated cases where the PTV is surrounded by several sensitive structures and where it is difficult to select a set of `good' beam orientations. Several two-dimensional (2D) model cases were used to test the proposed technique. The plans obtained using the BEVD-selected beam orientations were compared with the plans obtained using equiangular spaced beams. For all the model cases investigated

  15. Characterization of the phase modulation property of a free-space electro-optic modulator by interframe intensity correlation matrix.

    PubMed

    Yue, Huimin; Song, Lei; Hu, Zexiong; Liu, Hongxiang; Liu, Yong; Liu, Yongzhi; Peng, Zengshou

    2012-07-01

    Characterization of a phase modulator or phase shifter has always been an integral part of phase-modulating or phase-adjusting applications. We propose a simplified approach to characterize a phase modulator by investigating the performance of phase shifts from grabbed interferograms using the phase extraction method. After reviewing some phase analysis techniques, the interframe intensity correlation (IIC) matrix method is introduced to the investigation. The proposed strategy is illustrated by the measurement of a free-space electro-optic modulator (EOM). Placing the modulator in one arm of a Michelson interferometer, the global phase shifts are estimated by the IIC method from the phase-stepped interferograms. Experimental results demonstrate the tested EOM has a phase modulation response of at least 2π  rad with a π/20  rad modulation precision for λ=1064  nm. In addition, our method is applicable to various types of phase modulator or phase shifter calibration, e.g., electro-optic phase modulator, spatial light modulator, or piezoelectric transducer (PZT).

  16. Device to color modulate a stationary light beam gives high intensity

    NASA Technical Reports Server (NTRS)

    Gantz, W. A.

    1966-01-01

    Signal controlled system color modulates a beam of light while also providing high intensity and a stationary beam, either collimated or focused. The color modulation acquired by the presented system can be compatible with any color film by employing color filters formed to provide a color wedge having a color distribution compatible with the films color sensitivity.

  17. Dosimetric comparison of volumetric modulated arc therapy and intensity-modulated radiation therapy for pancreatic malignancies

    SciTech Connect

    Ali, Arif N.; Dhabaan, Anees H.; Jarrio, Christie S.; Siddiqi, Arsalan K.; Landry, Jerome C.

    2012-10-01

    Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V{sub 25} (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V{sub 15} (53.4 Gy vs. 45.9 Gy, p = 0.035), V{sub 20} (32.2 Gy vs. 25.5 Gy, p = 0.016), and V{sub 25} (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.

  18. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-01

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 106 particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 105 particles per beamlet. Correspondingly, the computation time

  19. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy.

    PubMed

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-07

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation

  20. Sequence dependence of phase-induced intensity noise in optical networks that employ direct modulation

    NASA Astrophysics Data System (ADS)

    Tur, M.; Legg, P. J.; Shabeer, M.; Andonovic, I.

    1995-02-01

    Phase-induced intensity noise in optical networks that employ directly modulated laser sources is observed to be bit-sequence dependent. This dependence is explained by optical frequency variations that are due to the heating history of the laser chip and is accurately modeled. This effect may permit suppression of phase-induced intensity noise in many types of fiber system with multipaths.

  1. Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers

    SciTech Connect

    Liu Wei; Li Xiaoqiang; Park, Peter C.; Ronald Zhu, X.; Mohan, Radhe; Frank, Steven J.; Li Yupeng; Dong Lei

    2013-05-15

    Purpose: Intensity-modulated proton therapy (IMPT) is highly sensitive to uncertainties in beam range and patient setup. Conventionally, these uncertainties are dealt using geometrically expanded planning target volume (PTV). In this paper, the authors evaluated a robust optimization method that deals with the uncertainties directly during the spot weight optimization to ensure clinical target volume (CTV) coverage without using PTV. The authors compared the two methods for a population of head and neck (H and N) cancer patients. Methods: Two sets of IMPT plans were generated for 14 H and N cases, one being PTV-based conventionally optimized and the other CTV-based robustly optimized. For the PTV-based conventionally optimized plans, the uncertainties are accounted for by expanding CTV to PTV via margins and delivering the prescribed dose to PTV. For the CTV-based robustly optimized plans, spot weight optimization was guided to reduce the discrepancy in doses under extreme setup and range uncertainties directly, while delivering the prescribed dose to CTV rather than PTV. For each of these plans, the authors calculated dose distributions under various uncertainty settings. The root-mean-square dose (RMSD) for each voxel was computed and the area under the RMSD-volume histogram curves (AUC) was used to relatively compare plan robustness. Data derived from the dose volume histogram in the worst-case and nominal doses were used to evaluate the plan optimality. Then the plan evaluation metrics were averaged over the 14 cases and were compared with two-sided paired t tests. Results: CTV-based robust optimization led to more robust (i.e., smaller AUCs) plans for both targets and organs. Under the worst-case scenario and the nominal scenario, CTV-based robustly optimized plans showed better target coverage (i.e., greater D{sub 95%}), improved dose homogeneity (i.e., smaller D{sub 5%}- D{sub 95%}), and lower or equivalent dose to organs at risk. Conclusions: CTV

  2. Feasibility of dose escalation using intensity-modulated radiotherapy in posthysterectomy cervical carcinoma

    SciTech Connect

    D'Souza, Warren D. . E-mail: wdsou001@umaryland.edu; Ahamad, Anesa A.; Iyer, Revathy B.; Salehpour, Mohammad R.; Jhingran, Anuja; Eifel, Patricia J.

    2005-03-15

    Purpose: To evaluate retrospectively the utility of intensity-modulated radiotherapy (IMRT) in reducing the volume of normal tissues receiving radiation at varying dose levels when the female pelvis after hysterectomy is treated to doses of 50.4 Gy and 54 Gy. Methods and materials: Computed tomography scans from 10 patients who had previously undergone conventional postoperative RT were selected. The clinical tumor volume (vaginal apex and iliac nodes) and organs at risk were contoured. Margins were added to generate the planning tumor volume. The Pinnacle and Corvus planning systems were used to develop conventional and IMRT plans, respectively. Conventional four-field plans were prescribed to deliver 45 Gy (4F{sub 45Gy}) or 50.4 Gy; eight-field IMRT plans were prescribed to deliver 50.4 Gy (IMRT{sub 50.4Gy}) or 54 Gy (IMRT{sub 54Gy}) to the planning tumor volume. All plans were normalized so that {>=}97% of the planning tumor volume received the prescribed dose. Student's t test was used to compare the volumes of organs at risk receiving the same doses with different plans. Results: The mean volume of bowel receiving {>=}45 Gy was lower with the IMRT{sub 50.4Gy} (33% lower) and IMRT{sub 54Gy} (18% lower) plans than with the 4F{sub 45Gy} plan. The mean volume of rectum receiving {>=}45 Gy or {>=}50 Gy was also significantly reduced with the IMRT plans despite an escalation of the prescribed dose from 45 Gy with the conventional plans to 54 Gy with IMRT. The mean volume of bladder treated to 45 Gy was the same or slightly lower with the IMRT{sub 50.4Gy} and IMRT{sub 54Gy} plans compared with the 4F{sub 45Gy} plan. Compared with the 4F{sub 45Gy} plan, the IMRT{sub 50.4Gy} plan resulted in a smaller volume of bowel receiving 35-45 Gy and a larger volume of bowel receiving 50-55 Gy. Compared with the 4F{sub 45Gy} plan, the IMRT{sub 54Gy} plan resulted in smaller volumes of bowel receiving 45-50 Gy; however, small volumes of bowel received 55-60 Gy with the IMRT plan

  3. Accelerated Whole Breast Irradiation With Intensity-Modulated Radiotherapy to the Prone Breast

    SciTech Connect

    Croog, Victoria J.; Wu, Abraham J.; McCormick, Beryl; Beal, Kathryn P.

    2009-01-01

    Purpose: Whole breast irradiation (WBI) is the standard of care for patients with early-stage breast cancer who opt for breast conservation. After a randomized trial demonstrated equivalent cosmesis and disease control with accelerated WBI (AWBI), our institution began to offer AWBI to appropriate patients. The aim of this study was to examine our unique experience with AWBI using prone positioning and simplified intensity-modulated radiotherapy (IMRT) planning with a sequential boost to the tumor bed. Methods and Materials: We identified 356 patients who had been treated with prone WBI using IMRT in our department between January 2004 and December 2006. Of these, 128 (36%) patients had received AWBI (representing 131 treated breasts), consisting of 16 daily fractions of 265 cGy to a total dose of 4,240 cGy followed by a conventionally fractionated boost. Results: Patients who opted for AWBI were similar demographically to the patients undergoing conventional WBI. In the AWBI cohort, 83% of the patients had Stage T1 disease and 22% had nodal involvement (N1). The tumors were estrogen receptor-positive, progesterone receptor-positive and Her-2/Neu-amplified in 82%, 69%, and 11%, respectively. The median duration of AWBI plus a boost was 29 days, and no patient required a toxicity-related treatment break. No Grade 3 or greater acute toxicity developed. At a median follow-up of 18 months, one ipsilateral breast recurrence developed that was salvaged with mastectomy and immediate reconstruction. Conclusion: AWBI to the prone breast using simplified IMRT with a sequential boost offers women requiring breast-only adjuvant radiotherapy an abbreviated treatment with early tumor control and cosmesis comparable to that with standard fractionation.

  4. Intensity-Modulated Radiation Therapy in the Salvage of Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Qiu Sufang; Lin Shaojun; Tham, Ivan W.K.; Pan Jianji; Lu Jun; Lu, Jiade J.

    2012-06-01

    Purpose: Local recurrences of nasopharyngeal carcinoma (NPC) may be salvaged by reirradiation with conventional techniques, but with significant morbidity. Intensity-modulated radiation therapy (IMRT) may improve the therapeutic ratio by reducing doses to normal tissue. The aim of this study was to address the efficacy and toxicity profile of IMRT for a cohort of patients with locally recurrent NPC. Methods and Materials: Between August 2003 and June 2009, 70 patients with radiologic or pathologically proven locally recurrent NPC were treated with IMRT. The median time to recurrence was 30 months after the completion of conventional radiation to definitive dose. Fifty-seven percent of the tumors were classified asrT3-4. The minimum planned doses were 59.4 to 60 Gy in 1.8- to 2-Gy fractions per day to the gross disease with margins, with or without chemotherapy. Results: The median dose to the recurrent tumor was 70 Gy (range, 50-77.4 Gy). Sixty-five patients received the planned radiation therapy; 5 patients received between 50 and 60 Gy because of acute side effects. With a median follow-up time of 25 months, the rates of 2-year locoregional recurrence-free survival, disease-free survival, and overall survival were 65.8%, 65.8%, and 67.4%, respectively. Moderate to severe late toxicities were noted in 25 patients (35.7%). Eleven patients (15.7%) had posterior nasal space ulceration, 17 (24.3%) experienced cranial nerve palsies, 12 (17.1%) had trismus, and 12 (17.1%) experienced deafness. Extended disease-free interval (relative risk 2.049) and advanced T classification (relative risk 3.895) at presentation were adverse prognostic factors. Conclusion: Reirradiation with IMRT provides reasonable long-term control in patients with locally recurrent NPC.

  5. Possibilities for intensity-modulated brachytherapy: technical limitations on the use of non-isotropic sources

    NASA Astrophysics Data System (ADS)

    Ebert, M. A.

    2002-07-01

    An investigation was undertaken into possible dose conformity advantages and technical limitations of utilizing radially asymmetric internally applied radiation sources for intensity-modulated brachytherapy (IMBT). A feasible form of a source for IMBT would be a linear source with a high-intensity angular region, with some fractional transmission through the remainder of the source, which inhibits the resolution achievable in intensity modulation. Indexed rotation of the source about its axis would provide radial intensity modulation, which could compensate for variations in the spatial relationship between the source position and location of the target edge. Two treatment situations were simulated - one two-dimensional and one three-dimensional - both utilizing a single source (single catheter). The optimal intensity distribution of the source was determined by simulated annealing optimization using a conformality-based objective. The parameters in the optimization included the angular size of the source high-intensity region, and the fractional transmission through the low-intensity part of the source. Results indicate that limitations in source design suggest an optimal high-intensity resolution of approximately π/4 to π/8. The advantages of IMBT are rapidly reduced when fractional transmission through the low-intensity side of the source is increased.

  6. Can Intensity-Modulated-Radiotherapy Reduce Toxicity in Head and Neck Squamous Cell Carcinoma?

    PubMed

    van der Veen, Julie; Nuyts, Sandra

    2017-10-06

    Intensity modulated radiotherapy (IMRT) is a modern radiotherapy technique that was implemented in the mid-1990s. It allows closer shaping of dose, to target volumes, thereby sparing organs at risk (OARs). Before the IMRT-era, two-dimensional radiotherapy (2DRT) and later three-dimensional conformal radiotherapy (3DCRT) were the techniques of choice, but this robust way of irradiating caused more normal tissue to receive a higher dose. Radiation of cancers in the head and neck region is complex because of close proximity to critical normal tissue and the large target volumes that need to be treated at high doses. IMRT offers an elegant solution compared with 3DCRT and surgery because it allows organ preservation and improved function preservation. In this manuscript, we review the rationales for IMRT, with an emphasis on toxicity outcomes compared with 3DCRT. We performed a review of the literature and looked at the most important randomised controlled trials comparing IMRT with 3DCRT. We conclude that IMRT is safe in regard to disease outcome, and that it allows better sparing of normal tissue, thereby causing less toxicity, resulting in a smaller impact on quality of life compared with conventional radiotherapy in the treatment of head and neck cancer.

  7. Accounting for range uncertainties in the optimization of intensity modulated proton therapy.

    PubMed

    Unkelbach, Jan; Chan, Timothy C Y; Bortfeld, Thomas

    2007-05-21

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be sensitive to range variations. The dose distribution may deteriorate substantially when the actual range of a pencil beam does not match the assumed range. We present two treatment planning concepts for IMPT which incorporate range uncertainties into the optimization. The first method is a probabilistic approach. The range of a pencil beam is assumed to be a random variable, which makes the delivered dose and the value of the objective function a random variable too. We then propose to optimize the expectation value of the objective function. The second approach is a robust formulation that applies methods developed in the field of robust linear programming. This approach optimizes the worst case dose distribution that may occur, assuming that the ranges of the pencil beams may vary within some interval. Both methods yield treatment plans that are considerably less sensitive to range variations compared to conventional treatment plans optimized without accounting for range uncertainties. In addition, both approaches--although conceptually different--yield very similar results on a qualitative level.

  8. DEMAT: A multi-institutional dosimetry audit of rotational and static intensity-modulated radiotherapy.

    PubMed

    Lafond, Caroline; Chiavassa, Sophie; Bertaut, Cindy; Boussion, Nicolas; Chapel, Nathalie; Chapron, Lucie; Coste, Frédéric; Crespin, Sylvain; Dy, Gilles; Faye, Papa Abdoulaye; Leleu, Cyril; Bouvier, Jeanne; Madec, Ludovic; Mesgouez, Jérôme; Palisson, Jérémy; Vela, Anthony; Delpon, Grégory

    2016-05-01

    Static beam intensity-modulated-radiation-therapy (IMRT) and/or Volumetric-Modulated-Arc-Therapy (VMAT) are now available in many regional radiotherapy departments. The aim of this multi-institutional audit was to design a new methodology based on radiochromic films to perform an independent quality control. A set of data were sent to all participating centres for two clinical localizations: prostate and Head and Neck (H&N) cancers. The agreement between calculations and measurements was verified in the Octavius phantom (PTW) by point measurements using ionization chambers and by 2D measurements using EBT3 radiochromic films. Due to uncertainties in the whole procedure, criteria were set to 5% and 3% in local dose and 3mm in distance excluding doses lower than 10% of the maximum doses. No normalization point or area was used for the quantitative analysis. 13 radiotherapy centres participated in this audit involving 28 plans (12 IMRT, 16 VMAT). For point measurements, mean errors were -0.18±1.54% and 0.00±1.58% for prostate and H&N cases respectively. For 2D measurements with 5%/3mm criteria, gamma map analysis showed a pixel pass rate higher than 95% for prostate and H&N. Mean gamma index was lower than 0.4 for prostate and 0.5 for H&N. Both techniques yielded similar results. This study showed the feasibility of an independent quality control by peers for conventional IMRT and VMAT. Results from all participating centres were found to be in good agreement. This regional study demonstrated the feasibility of our new methodology based on radiochromic films without dose normalization on a specific point. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Intensity-modulating graphene metamaterial for multiband terahertz absorption.

    PubMed

    Gao, Run-Mei; Xu, Zong-Cheng; Ding, Chun-Feng; Yao, Jian-Quan

    2016-03-10

    In this paper, we design a tunable strength multiband absorber consisting of a graphene metamaterial structure and a thick dielectric interlayer deposited on a metal ground plane. We investigate the tunable conductivity properties of the graphene metamaterial and demonstrate multiband absorbers with three absorption bands using a polyimide interlayer in the 0-2.25 THz range by numerical simulation. The results show that the mix absorptivity reached 99.8% at 1.99 THz, and the absorptive strength can be tuned with the modulation depth up to 84.2%. We present a theoretical interpretation based on a standing wave field, which shows that the field energy is localized inside the thicker spacer and then dissipated, effectively trapping the light in the metamaterial absorbers with negligible near-field interactions. The standing wave field theory developed here explains all the features of the multiband metamaterial absorbers and provides a profound understanding of the underlying physics.

  10. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    PubMed

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  11. In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia

    PubMed Central

    Yang, Kai-Lin; Huang, Cheng-Chung; Chi, Mau-Shin; Chiang, Hsin-Chien; Wang, Yu-Shan; Hsia, Chien-Chung; Andocs, Gabor; Wang, Hsin-Ell; Chi, Kwan-Hwa

    2016-01-01

    Radiofrequency-induced hyperthermia (HT) treatments for cancer include conventional capacitive coupling hyperthermia (cCHT) and modulated electro-hyperthermia (mEHT). In this study, we directly compared these methods with regard to in vitro cytotoxicity and mechanisms of action under isothermal conditions. Hepatoma (HepG2) cells were exposed to HT treatment (42°C for 30 min) using mEHT, cCHT or a water bath. mEHT produced a much higher apoptosis rate (43.1% ± 5.8%) than cCHT (10.0% ± 0.6%), the water bath (8.4% ± 1.7%) or a 37°C control (6.6% ± 1.1%). The apoptosis-inducing effect of mEHT at 42°C was similar to that achieved with a water bath at 46°C. mEHT also increased expression of caspase-3, 8 and 9. All three hyperthermia methods increased intracellular heat shock protein 70 (Hsp70) levels, but only mEHT greatly increased the release of Hsp70 from cells. Calreticulin and E-cadherin levels in the cell membrane also increased after mEHT treatment, but not after cCHT or water bath. These results suggest that mEHT selectively deposits energy on the cell membrane and may be a useful treatment modality that targets cancer cell membranes. PMID:27556507

  12. Switching circuit to improve the frequency modulation difference-intensity THz quantum cascade laser imaging

    SciTech Connect

    Saat, N. K.; Dean, P.; Khanna, S. P.; Salih, M.; Linfield, E. H.; Davies, A. G.

    2015-04-24

    We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz.

  13. Cholesterol detection using optical fiber sensor based on intensity modulation

    NASA Astrophysics Data System (ADS)

    Budiyanto, Moh; Suhariningsih; Yasin, Moh

    2017-05-01

    The aim of the research is to detect the concentration of cholesterol by using the principle that a laser beam propagation is guided by optical fiber bundle in term of intensity profile through solution with vary concentrations of cholesterol from 0 to 300 ppm. The mechanism of cholesterol concentration detection is the propagation of He-Ne laser beam with wavelength of 632.5 nm through a fiber optic bundle and a solution of cholesterol, then is reflected by a flat mirror and enters receiving fiber. This signal is captured by a silicon detector (SL-818, Newport) in the form of output voltage. The result showed that the output voltage decrease linearly with the increase of concentration of cholesterol with a sensitivity of 0.0004 mV/ppm and the linearity more than 97%.

  14. A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Ding, M.; Li, J. S.; Lee, M. C.; Pawlicki, T.; Deng, J.

    2003-04-01

    Recently, energy- and intensity-modulated electron radiotherapy (MERT) has garnered a growing interest for the treatment of superficial targets. In this work, we carried out a comparative dosimetry study to evaluate MERT, photon beam intensity-modulated radiation therapy (IMRT) and conventional tangential photon beams for the treatment of breast cancer. A Monte Carlo based treatment planning system has been investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We have compared breast treatment plans generated using this home-grown treatment optimization and dose calculation software for these treatment techniques. The MERT plans were planned with up to two gantry angles and four nominal energies (6, 9, 12 and 16 MeV). The tangential photon treatment plans were planned with 6 MV wedged photon beams. The IMRT plans were planned using both multiple-gantry 6 MV photon beams or two 6 MV tangential beams. Our results show that tangential IMRT can reduce the dose to the lung, heart and contralateral breast compared to conventional tangential wedged beams (up to 50% reduction in high dose volume or 5 Gy in the maximum dose). MERT can reduce the maximum dose to the lung by up to 20 Gy and to the heart by up to 35 Gy compared to conventional tangential wedged beams. Multiple beam angle IMRT can significantly reduce the maximum dose to the lung and heart (up to 20 Gy) but it induces low and medium doses to a large volume of normal tissues including lung, heart and contralateral breast. It is concluded that MERT has superior capabilities to achieve dose conformity both laterally and in the depth direction, which will be well suited for treating superficial targets such as breast cancer.

  15. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination.

    PubMed

    Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V

    2017-05-01

    Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. Conventional intensive logging promotes loss of organic carbon from the mineral soil.

    PubMed

    Dean, Christopher; Kirkpatrick, James B; Friedland, Andrew J

    2017-01-01

    There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short-term empirical studies, longer-term empirical studies and long-term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long-term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer-term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short-term SOC flux varies around zero. The long-term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long-term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil-like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in

  17. Improvement of flatness of optical frequency comb based on nonlinear effect of intensity modulator.

    PubMed

    Dou, Yujie; Zhang, Hongming; Yao, Minyu

    2011-07-15

    Optical frequency comb (OFC) generated using cascaded intensity and phase modulators was experimentally demonstrated. Very flat OFC can be achieved by cascading intensity and phase modulators driven directly by sinusoidal waveform, where chirped fiber Bragg grating or specially tailored radio frequency waveforms are not required. It is found that the spectral flatness of OFC is related to direct current (DC) bias of intensity modulator and the optimum ratio of DC bias to half-wave voltage is 0.35. In the experiment, 15 comb lines within 1 dB spectral power variation are obtained at 10 GHz microwave frequency. The experimental results agree well with the simulation. © 2011 Optical Society of America

  18. [Intensity-modulated radiotherapy in head and neck cancer: ethics and methodology].

    PubMed

    Lapeyre, M; Biau, J; Miroir, J; Servagi-Vernat, S; Giraud, P

    2014-10-01

    Numerous studies have shown that intensity-modulated radiation therapy is the standard technique for the radiation treatment of head and neck cancers. Intensity-modulated radiation therapy reduces side effects (xerostomia, dysphagia, fibrosis, etc.) and improves the results for cancer localizations with highly complex shapes such as the cavum or nasal cavity. Intensity-modulated radiation therapy is also a costly technique that necessitates a numerous staff, highly trained, with regular practice. If this technique cannot be available (understaffing, overwork, etc.) the choice between entrusting the patient to a colleague and treating the patient with a less sophisticated technique such as 3-dimensional conformal radiation therapy depends on different objective and ethical criteria.

  19. Local region statistics combining multi-parameter intensity fitting module for medical image segmentation with intensity inhomogeneity and complex composition

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Zhao, Jian; Zhao, Wenda; Qu, Feng; Sui, Long

    2016-08-01

    It is difficult to segment medical image with intensity inhomogeneity and complex composition, because most region-based modules relay on the intensity distributions. In this paper, we propose a novel method which uses local region statistics and multi-parameter intensity fitting as well. By replacing the original local region statistics with the novel local region statistics after bias field correction, the effect of intensity inhomogeneity can be eliminated. Then we devise a maximum likelihood energy function based on the distribution of each local region. Segmentation and bias field estimation can be jointly obtained by minimizing the proposed energy function. Furthermore, in order to characterize the features of each local region effectively, two parameters are used to fit the average intensity inside and outside of the counter, respectively. This can well handle the medical images with complex composition, such as larger gray difference even in the same region. Comparisons with several representative methods on synthetic and medical images demonstrate the superiority of the proposed method over other representative algorithms.

  20. [Clinical implementation of dose reconstruction and dose-guided intensity modulated radiotherapy for helical tomotherapy].

    PubMed

    Yao, Weirong; Xu, Shouping; Du Lei; Xie, Chuanbin; Ma, Lin

    2012-09-01

    To implement dose reconstruction and dose-guided intensity modulated radiotherapy for helical tomotherapy. Dose reconstruction was implemented on adaptive helical tomotherapy with the online megavoltage CT (MVCT) imaging from a patient with nasopharyngeal cancer. The differences of isodose line between actual and planned deposition were analysis in 3D distribution, on which the hot spot and cold spot were lined. The dose delivered to these areas was modulated in later fractions to keep the planned requirement. The differences between actual and planned isodose line were shown on the image visually. The modulation to the hot spot and cold spot in later fraction corrected the incorrectly delivered dose to achieve the requirement of primary plan. The dose reconstruction and dose-guided intensity modulated radiotherapy can be implemented in adaptive helical tomotherapy.

  1. Phase retrieval based on cosine grating modulation and transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Chen, Ya-ping; Zhang, Quan-bing; Cheng, Hong; Qian, Yi; Lv, Qian-qian

    2016-10-01

    In order to calculate the lost phase from the intensity information effectively, a new method of phase retrieval which based on cosine grating modulation and transport of intensity equation is proposed. Firstly, the cosine grating is loaded on the spatial light modulator in the horizontal and vertical direction respectively, and the corresponding amplitude of the light field is modulated. Then the phase is calculated by its gradient which is extracted from different direction modulation light illumination. The capability of phase recovery of the proposed method in the presence of noise is tested by simulation experiments. And the results show that the proposed algorithm has a better resilience than the traditional Fourier transform algorithm at low frequency noise. Furthermore, the phase object of different scales can be retrieved using the proposed algorithm effectively by changing the frequency of cosine grating, which can control the imaging motion expediently.

  2. Filter Bank Multicarrier (FBMC) for long-reach intensity modulated optical access networks

    NASA Astrophysics Data System (ADS)

    Saljoghei, Arsalan; Gutiérrez, Fernando A.; Perry, Philip; Barry, Liam P.

    2017-04-01

    Filter Bank Multi Carrier (FBMC) is a modulation scheme which has recently attracted significant interest in both wireless and optical communications. The interest in optical communications arises due to FBMC's capability to operate without a Cyclic Prefix (CP) and its high resilience to synchronisation errors. However, the operation of FBMC in optical access networks has not been extensively studied either in downstream or upstream. In this work we use experimental work to investigate the operation of FBMC in intensity modulated Passive Optical Networks (PONs) employing direct detection in conjunction with both direct and external modulation schemes. The data rates and propagation lengths employed here vary from 8.4 to 14.8 Gb/s and 0-75 km. The results suggest that by using FBMC it is possible to accomplish CP-Less transmission up to 75 km of SSMF in passive links using cost effective intensity modulation and detection schemes.

  3. Scintillation effect on intensity modulated laser communication systems—a laboratory demonstration

    NASA Astrophysics Data System (ADS)

    Popoola, W. O.; Ghassemlooy, Z.; Lee, C. G.; Boucouvalas, A. C.

    2010-06-01

    This paper shows the impact of atmospheric turbulence-induced fading on the symbol decision position in the on-off keying (OOK) and the binary phase shift keying (BPSK) subcarrier intensity modulated (SIM) laser communication link. Weak turbulence is simulated in the laboratory using a chamber equipped with heating elements and fans. We have shown that in atmospheric turbulence, it is advantageous to employ modulation schemes such as pulse time and subcarrier intensity modulations that do not directly impress data on the optical irradiance as is the case with the OOK. For the OOK-modulated laser communication system, atmospheric turbulence imposes complexity on the symbol decision subsystem and by extension places a limit on the achievable bit error rate (BER) performance.

  4. Observation of relativistic cross-phase modulation in high-intensity laser-plasma interactions.

    PubMed

    Chen, S; Rever, M; Zhang, P; Theobald, W; Umstadter, D

    2006-10-01

    A nonlinear optical phenomenon, relativistic cross-phase modulation, is reported. A relativistically intense light beam (I = 1.3 x 10(18) W cm(-2), lambda = 1.05 microm) is experimentally observed to cause phase modulation of a lower intensity, copropagating light beam in a plasma. The latter beam is generated when the former undergoes the stimulated Raman forward scattering instability. The bandwidth of the Raman satellite is found to be broadened from 3.8-100 nm when the pump laser power is increased from 0.45-2.4 TW. A signature of relativistic cross-phase modulation, namely, asymmetric spectral broadening of the Raman signal, is observed at a pump power of 2.4 TW. The experimental cross-phase modulated spectra compared well with theoretical calculations. Applications to generation of high-power single-cycle pulses are also discussed.

  5. Coherent BOTDA sensor with intensity modulated local light and IQ demodulation.

    PubMed

    Li, Zonglei; Yan, Lianshan; Shao, Liyang; Pan, Wei; Luo, Bin

    2015-06-15

    Coherent Brillouin optical time domain analysis (BOTDA) sensing system with intensity modulated local (IML) light and fast IQ demodulation is proposed and demonstrated. IML light instead of phase modulated local (PML) light is utilized to reduce the coherent and multiple sidebands induced noises. A spatial resolution of 3-m and ± 1.8°C temperature accuracy at the far end of the fiber are obtained over 40-km sensing distance.

  6. [Study and simulation of the intensity modulation-Fourier transform spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Jing, Juan-juan

    2011-07-01

    Intensity modulation-Fourier transform spectropolarimetry (IMFTSP) is a novel technology that combines the intensity modulation spectropolarimetry and Fourier transform spectroscopy. The IMFTSP can obtain full Stokes spectropolarimetric parameters simultaneously, and maintains the throughput (Jacquinot) and multiplex (Fellgett) advantages. Yet aside from this, the IMFTSP has the advantage of reducing the complexity of data processing. The data collecting and spectropolarimetric parameters reconstruction processes were analyzed theoretically in this paper, the theoretical formulas are presented, and a whole process mathematical simulation for the IMFTSP system is introduced. The theory analysis and simulation results proved the feasibility of the IMFTSP.

  7. The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy

    SciTech Connect

    Hong, Theodore S.; Tome, Wolfgang A.; Chappell, Richard J.; Chinnaiyan, Prakash; Mehta, Minesh P.; Harari, Paul M. . E-mail: harari@humonc.wisc.edu

    2005-03-01

    Purpose: Intensity-modulated radiation therapy (IMRT) in the treatment of head-and-neck (H and N) cancer provides the opportunity to diminish normal tissue toxicity profiles and thereby enhance patient quality of life. However, highly conformal treatment techniques commonly establish steep dose gradients between tumor and avoidance structures. Daily setup variations can therefore significantly compromise the ultimate precision of idealized H and N IMRT delivery. This study provides a detailed analysis regarding the potential impact of daily setup variations on the overall integrity of H and N IMRT. Methods and materials: A series of 10 patients with advanced H and N cancer were prospectively enrolled in a clinical trial to examine daily H and N radiation setup accuracy. These patients were treated with conventional shrinking field design using three-dimensional treatment planning techniques (not IMRT). Immobilization and alignment were performed using modern H and N practice techniques including conventional thermoplastic masking, baseplate fixation to the treatment couch, three-point laser alignment, and weekly portal film evaluation. After traditional laser alignment, setup accuracy was assessed daily for each patient by measuring 3 Cartesian and 3 angular deviations from the specified isocenter using a high-precision, optically guided patient localization system, which affords submillimeter setup accuracy. These positional errors were then applied to a distinct series of 10 H and N IMRT plans for detailed analysis regarding the impact of daily setup variation (without optical guidance) on the ultimate integrity of IMRT plans over a 30-day treatment course. Dose-volume histogram (DVH), equivalent uniform dose (EUD), mean total dose (mTd), and maximal total dose (MTD) for normal structures were analyzed for IMRT plans with and without incorporation of daily setup variation. Results: Using conventional H and N masking and laser alignment for daily positioning, the

  8. Mechanisms underlying intensity-dependent changes in cortical selectivity for frequency-modulated sweeps.

    PubMed

    Razak, K A

    2012-04-01

    Frequency-modulated (FM) sweeps are common components of species-specific vocalizations. The intensity of FM sweeps can cover a wide range in the natural environment, but whether intensity affects neural selectivity for FM sweeps is unclear. Bats, such as the pallid bat, which use FM sweeps for echolocation, are suited to address this issue, because the intensity of echoes will vary with target distance. In this study, FM sweep rate selectivity of pallid bat auditory cortex neurons was measured using downward sweeps at different intensities. Neurons became more selective for FM sweep rates present in the bat's echolocation calls as intensity increased. Increased selectivity resulted from stronger inhibition of responses to slower sweep rates. The timing and bandwidth of inhibition generated by frequencies on the high side of the excitatory tuning curve [sideband high-frequency inhibition (HFI)] shape rate selectivity in cortical neurons in the pallid bat. To determine whether intensity-dependent changes in FM rate selectivity were due to altered inhibition, the timing and bandwidth of HFI were quantified at multiple intensities using the two-tone inhibition paradigm. HFI arrived faster relative to excitation as sound intensity increased. The bandwidth of HFI also increased with intensity. The changes in HFI predicted intensity-dependent changes in FM rate selectivity. These data suggest that neural selectivity for a sweep parameter is not static but shifts with intensity due to changes in properties of sideband inhibition.

  9. Multicentre safety of adding Focal Impulse and Rotor Modulation (FIRM) to conventional ablation for atrial fibrillation.

    PubMed

    Krummen, David E; Baykaner, Tina; Schricker, Amir A; Kowalewski, Christopher A B; Swarup, Vijay; Miller, John M; Tomassoni, Gery F; Park, Shirley; Viswanathan, Mohan N; Wang, Paul J; Narayan, Sanjiv M

    2017-05-01

    Focal Impulse and Rotor Modulation (FIRM) uses 64-electrode basket catheters to identify atrial fibrillation (AF)-sustaining sites for ablation, with promising results in many studies. Accordingly, new basket designs are being tested by several groups. We set out to determine the procedural safety of adding basket mapping and map-guided ablation to conventional pulmonary vein isolation (PVI). We collected 30 day procedural safety data in five US centres for consecutive patients undergoing FIRM plus PVI (FIRM-PVI) compared with contemporaneous controls undergoing PVI without FIRM. A total of 625 cases were included in this analysis: 325 FIRM-PVI and 300 PVI-controls. FIRM-PVI patients were more likely than PVI-controls to be male (83% vs. 66%, P < 0.001) and have long-standing persistent AF (26% vs. 13%, P < 0.001) reflecting patients referred for FIRM. Total ablation time was greater for FIRM-PVI (62 ± 22 min) vs. PVI-controls (52 ± 18 min, P = 0.03). The complication rate for FIRM-PVI procedures (4.3%) was similar to controls (4.0%, P = 1) for both major and minor complications; no deaths were reported. The rate of complications potentially attributable to the basket catheter was small and did not differ between basket types (Constellation 2.8% vs. FIRMap 1.8%, P = 0.7) or between cases in which basket catheters were and were not used (P = 0.5). Complication rates did not differ between centres (P = 0.6). Procedural complications from the use of the basket catheters for AF mapping are low, and thus procedural safety appears similar between FIRM-PVI and PVI-controls in a large multicentre cohort. Future studies are required to determine the optimal approach to maximize the efficacy of FIRM-guided ablation.

  10. Kilovoltage Intrafraction Monitoring for Prostate Intensity Modulated Arc Therapy: First Clinical Results

    SciTech Connect

    Ng, Jin Aun; Booth, Jeremy T.; Poulsen, Per R.; Fledelius, Walther; Worm, Esben Schjodt; Eade, Thomas; Hegi, Fiona; Kneebone, Andrew; Kuncic, Zdenka; Keall, Paul J.

    2012-12-01

    Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). Methods and Materials: Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiring kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced {>=}3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. Results: KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of {>=}3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. Conclusions: KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.

  11. Intensity-Modulated Radiation Therapy Significantly Improves Acute Gastrointestinal Toxicity in Pancreatic and Ampullary Cancers

    SciTech Connect

    Yovino, Susannah; Poppe, Matthew; Jabbour, Salma; David, Vera; Garofalo, Michael; Pandya, Naimesh; Alexander, Richard; Hanna, Nader; Regine, William F.

    2011-01-01

    Purpose: Among patients with upper abdominal malignancies, intensity-modulated radiation therapy (IMRT) can improve dose distributions to critical dose-limiting structures near the target. Whether these improved dose distributions are associated with decreased toxicity when compared with conventional three-dimensional treatment remains a subject of investigation. Methods and Materials: 46 patients with pancreatic/ampullary cancer were treated with concurrent chemoradiation (CRT) using inverse-planned IMRT. All patients received CRT based on 5-fluorouracil in a schema similar to Radiation Therapy Oncology Group (RTOG) 97-04. Rates of acute gastrointestinal (GI) toxicity for this series of IMRT-treated patients were compared with those from RTOG 97-04, where all patients were treated with three-dimensional conformal techniques. Chi-square analysis was used to determine if there was a statistically different incidence in acute GI toxicity between these two groups of patients. Results: The overall incidence of Grade 3-4 acute GI toxicity was low in patients receiving IMRT-based CRT. When compared with patients who had three-dimensional treatment planning (RTOG 97-04), IMRT significantly reduced the incidence of Grade 3-4 nausea and vomiting (0% vs. 11%, p = 0.024) and diarrhea (3% vs. 18%, p = 0.017). There was no significant difference in the incidence of Grade 3-4 weight loss between the two groups of patients. Conclusions: IMRT is associated with a statistically significant decrease in acute upper and lower GI toxicity among patients treated with CRT for pancreatic/ampullary cancers. Future clinical trials plan to incorporate the use of IMRT, given that it remains a subject of active investigation.

  12. Intensity-Modulated Radiotherapy for Head and Neck Cancer of Unknown Primary: Toxicity and Preliminary Efficacy

    SciTech Connect

    Klem, Michelle L. Mechalakos, James G.; Wolden, Suzanne L.; Zelefsky, Michael J.; Singh, Bhuvanesh; Kraus, Dennis; Shaha, Ashok; Shah, Jatin; Pfister, David G.; Lee, Nancy Y.

    2008-03-15

    Purpose: Unknown primary head and neck cancers often require comprehensive mucosal and bilateral neck irradiation. With conventional techniques, significant toxicity can develop. Intensity-modulated radiotherapy (IMRT) has the potential to minimize the toxicity. Methods and Materials: Between 2000 and 2005, 21 patients underwent IMRT for unknown primary head and neck cancer at our center. Of the 21 patients, 5 received IMRT with definitive intent and 16 as postoperative therapy; 14 received concurrent chemotherapy and 7 IMRT alone. The target volumes included the bilateral neck and mucosal surface. The median dose was 66 Gy. Acute and chronic toxicities, esophageal strictures, and percutaneous endoscopic gastrostomy tube dependence were evaluated. Progression-free survival, regional progression-free survival, distant metastasis-free survival, and overall survival were estimated with Kaplan-Meier curves. Results: With a median follow-up of 24 months, the 2-year regional progression-free survival, distant metastasis-free survival, and overall survival rate was 90%, 90%, and 85%, respectively. Acute grade 1 and 2 xerostomia was seen in 57% and 43% of patients, respectively. Salivary function improved with time. Percutaneous endoscopic gastrostomy tube placement was required in 72% with combined modality treatment and 43% with IMRT alone. Only 1 patient required percutaneous endoscopic gastrostomy support at the last follow-up visit. Two patients treated with combined modality and one treated with IMRT alone developed esophageal strictures, but all had improvement or resolution with dilation. Conclusion: The preliminary analysis of IMRT for unknown primary head and neck cancer has shown acceptable toxicity and encouraging efficacy. The analysis of the dosimetric variables showed excellent tumor coverage and acceptable doses to critical normal structures. Esophageal strictures developed but were effectively treated with dilation. Techniques to limit the esophageal dose

  13. Frameless single-isocenter intensity modulated stereotactic radiosurgery for simultaneous treatment of multiple intracranial metastases.

    PubMed

    Lau, Steven K M; Zhao, Xiao; Carmona, Ruben; Knipprath, Erik; Simpson, Daniel R; Nath, Sameer K; Kim, Gwe-Ya; Hattangadi, Jona A; Chen, Clark C; Murphy, Kevin T

    2014-08-01

    Stereotactic radiosurgery (SRS) is well accepted treatment for patients with intracranial metastases, but the role of frameless radiosurgery is not well defined. Here, we describe our clinical experience applying a novel single-isocenter technique to frameless intensity modulated stereotactic radiosurgery (IMRS) for simultaneous treatment of multiple intracranial metastases. Between 2006 and 2012, 100 consecutive patients received frameless IMRS for multiple intracranial metastases using a single, centrally-located isocenter. Among these, 29 patients were treated for progressive or recurrent intracranial disease. A total of 465 metastases (median, 4 per patient, range, 2-18) were treated to a median dose of 20 Gy (range, 15-50 Gy). Follow-up including clinical examination and magnetic resonance imaging (MRI) occurred every 3 months. Median follow-up for all patients was 4.3 months (range, 0.2-58.3 months), with 83 patients (83.0%) followed until their death. For the remaining 17 patients alive at the time of analysis, median follow-up was 9.2 months (range, 2.2-58.3 months). Overall survival at 6 months was 49.5% [95% confidence interval (CI), 35.3-63.6%]. Local control at 6 and 12 months was 88.9% (95% CI, 79.1-98.6%) and 81.5% (95% CI, 65.2-97.7%), respectively. Regional failure was observed in 39 patients (39%), and 25 patients (25%) received salvage therapy. Grade 3 or greater treatment-related toxicity was observed in 4 patients (4%) and included intracranial hemorrhage, seizure, and radionecrosis. Median total treatment time was 17.2 minutes (range, 2.8-55.3 minutes). Single-isocenter IMRS for multiple intracranial metastases can produce clinical outcomes comparable to those of conventional radiosurgery techniques.

  14. Frameless single-isocenter intensity modulated stereotactic radiosurgery for simultaneous treatment of multiple intracranial metastases

    PubMed Central

    Lau, Steven K. M.; Zhao, Xiao; Carmona, Ruben; Knipprath, Erik; Simpson, Daniel R.; Nath, Sameer K.; Kim, Gwe-Ya; Hattangadi, Jona A.; Chen, Clark C.; Murphy, Kevin T.

    2015-01-01

    Purpose Stereotactic radiosurgery (SRS) is well accepted treatment for patients with intracranial metastases, but the role of frameless radiosurgery is not well defined. Here, we describe our clinical experience applying a novel single-isocenter technique to frameless intensity modulated stereotactic radiosurgery (IMRS) for simultaneous treatment of multiple intracranial metastases. Methods and materials Between 2006 and 2012, 100 consecutive patients received frameless IMRS for multiple intracranial metastases using a single, centrally-located isocenter. Among these, 29 patients were treated for progressive or recurrent intracranial disease. A total of 465 metastases (median, 4 per patient, range, 2–18) were treated to a median dose of 20 Gy (range, 15–50 Gy). Follow-up including clinical examination and magnetic resonance imaging (MRI) occurred every 3 months. Results Median follow-up for all patients was 4.3 months (range, 0.2–58.3 months), with 83 patients (83.0%) followed until their death. For the remaining 17 patients alive at the time of analysis, median follow-up was 9.2 months (range, 2.2–58.3 months). Overall survival at 6 months was 49.5% [95% confidence interval (CI), 35.3–63.6%]. Local control at 6 and 12 months was 88.9% (95% CI, 79.1–98.6%) and 81.5% (95% CI, 65.2–97.7%), respectively. Regional failure was observed in 39 patients (39%), and 25 patients (25%) received salvage therapy. Grade 3 or greater treatment-related toxicity was observed in 4 patients (4%) and included intracranial hemorrhage, seizure, and radionecrosis. Median total treatment time was 17.2 minutes (range, 2.8–55.3 minutes). Conclusions Single-isocenter IMRS for multiple intracranial metastases can produce clinical outcomes comparable to those of conventional radiosurgery techniques. PMID:25821723

  15. The value of image-guided intensity-modulated radiotherapy in challenging clinical settings

    PubMed Central

    Treece, S J; Mukesh, M; Rimmer, Y L; Tudor, S J; Dean, J C; Benson, R J; Gregory, D L; Horan, G; Jefferies, S J; Russell, S G; Williams, M V; Wilson, C B; Burnet, N G

    2013-01-01

    Objective To illustrate the wider potential scope of image-guided intensity-modulated radiotherapy (IG-IMRT), outside of the “standard” indications for IMRT. Methods Nine challenging clinical cases were selected. All were treated with radical intent, although it was accepted that in several of the cases the probability of cure was low. IMRT alone was not adequate owing to the close proximity of the target to organs at risk, the risk of geographical miss, or the need to tighten planning margins, making image-guided radiotherapy an essential integral part of the treatment. Discrepancies between the initial planning scan and the daily on-treatment megavoltage CT were recorded for each case. The three-dimensional displacement was compared with the margin used to create the planning target volume (PTV). Results All but one patient achieved local control. Three patients developed metastatic disease but benefited from good local palliation; two have since died. A further patient died of an unrelated condition. Four patients are alive and well. Toxicity was low in all cases. Without daily image guidance, the PTV margin would have been insufficient to ensure complete coverage in 49% of fractions. It was inadequate by >3 mm in 19% of fractions, and by >5 mm in 9%. Conclusion IG-IMRT ensures accurate dose delivery to treat the target and avoid critical structures, acting as daily quality assurance for the delivery of complex IMRT plans. These patients could not have been adequately treated without image guidance. Advances in knowledge IG-IMRT can offer improved outcomes in less common clinical situations, where conventional techniques would provide suboptimal treatment. PMID:23255544

  16. Planning Hybrid Intensity Modulated Radiation Therapy for Whole-breast Irradiation

    SciTech Connect

    Farace, Paolo; Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco; Deidda, Maria Assunta; Possanzini, Marco; Orru, Sivia; Lay, Giancarlo

    2012-09-01

    Purpose: To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Methods and Materials: Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Results: Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose ({approx}5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses ({approx}20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Conclusions: Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation.

  17. Proton energy optimization and reduction for intensity-modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Lim, Gino; Liao, Li; Li, Yupeng; Jiang, Shengpeng; Li, Xiaoqiang; Li, Heng; Suzuki, Kazumichi; Zhu, X. Ronald; Gomez, Daniel; Zhang, Xiaodong

    2014-10-01

    Intensity-modulated proton therapy (IMPT) is commonly delivered via the spot-scanning technique. To ‘scan’ the target volume, the proton beam is controlled by varying its energy to penetrate the patient’s body at different depths. Although scanning the proton beamlets or spots with the same energy can be as fast as 10-20 m s-1, changing from one proton energy to another requires approximately two additional seconds. The total IMPT delivery time thus depends mainly on the number of proton energies used in a treatment. Current treatment planning systems typically use all proton energies that are required for the proton beam to penetrate in a range from the distal edge to the proximal edge of the target. The optimal selection of proton energies has not been well studied. In this study, we sought to determine the feasibility of optimizing and reducing the number of proton energies in IMPT planning. We proposed an iterative mixed-integer programming optimization method to select a subset of all available proton energies while satisfying dosimetric criteria. We applied our proposed method to six patient datasets: four cases of prostate cancer, one case of lung cancer, and one case of mesothelioma. The numbers of energies were reduced by 14.3%-18.9% for the prostate cancer cases, 11.0% for the lung cancer cases and 26.5% for the mesothelioma case. The results indicate that the number of proton energies used in conventionally designed IMPT plans can be reduced without degrading dosimetric performance. The IMPT delivery efficiency could be improved by energy layer optimization leading to increased throughput for a busy proton center in which a delivery system with slow energy switch is employed.

  18. Candidate Dosimetric Predictors of Long-Term Swallowing Dysfunction After Oropharyngeal Intensity-Modulated Radiotherapy

    SciTech Connect

    Schwartz, David L.; Hutcheson, Katherine; Barringer, Denise; Tucker, Susan L.; Kies, Merrill; Ang, K. Kian; Morrison, William H.; Rosenthal, David I.; Garden, Adam S.; Dong Lei; Lewin, Jan S.

    2010-12-01

    Purpose: To investigate long-term swallowing function in oropharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT), and to identify novel dose-limiting criteria predictive for dysphagia. Methods and Materials: Thirty-one patients with Stage IV oropharyngeal squamous carcinoma enrolled on a Phase II trial were prospectively evaluated by modified barium swallow studies at baseline, and 6, 12, and 24 months post-IMRT treatment. Candidate dysphagia-associated organs at risk were retrospectively contoured into original treatment plans. Twenty-one (68%) cases were base of tongue and 10 (32%) were tonsil. Stage distribution was T1 (12 patients), T2 (10), T3 (4), T4 (2), and TX (3), and N2 (24), N3 (5), and NX (2). Median age was 52.8 years (range, 42-78 years). Thirteen patients (42%) received concurrent chemotherapy during IMRT. Thirteen (42%) were former smokers. Mean dose to glottic larynx for the cohort was limited to 18 Gy (range, 6-39 Gy) by matching IMRT to conventional low-neck fields. Results: Dose-volume constraints (V30 < 65% and V35 < 35% for anterior oral cavity and V55 < 80% and V65 < 30% for high superior pharyngeal constrictors) predictive for objective swallowing dysfunction were identified by univariate and multivariate analyses. Aspiration and feeding tube dependence were observed in only 1 patient at 24 months. Conclusions: In the context of glottic laryngeal shielding, we describe candidate oral cavity and superior pharyngeal constrictor organs at risk and dose-volume constraints associated with preserved long-term swallowing function; these constraints are currently undergoing prospective validation. Strict protection of the glottic larynx via beam-split IMRT techniques promises to make chronic aspiration an uncommon outcome.

  19. Proton energy optimization and reduction for intensity-modulated proton therapy.

    PubMed

    Cao, Wenhua; Lim, Gino; Liao, Li; Li, Yupeng; Jiang, Shengpeng; Li, Xiaoqiang; Li, Heng; Suzuki, Kazumichi; Zhu, X Ronald; Gomez, Daniel; Zhang, Xiaodong

    2014-11-07

    Intensity-modulated proton therapy (IMPT) is commonly delivered via the spot-scanning technique. To 'scan' the target volume, the proton beam is controlled by varying its energy to penetrate the patient's body at different depths. Although scanning the proton beamlets or spots with the same energy can be as fast as 10-20 m s(-1), changing from one proton energy to another requires approximately two additional seconds. The total IMPT delivery time thus depends mainly on the number of proton energies used in a treatment. Current treatment planning systems typically use all proton energies that are required for the proton beam to penetrate in a range from the distal edge to the proximal edge of the target. The optimal selection of proton energies has not been well studied. In this study, we sought to determine the feasibility of optimizing and reducing the number of proton energies in IMPT planning. We proposed an iterative mixed-integer programming optimization method to select a subset of all available proton energies while satisfying dosimetric criteria. We applied our proposed method to six patient datasets: four cases of prostate cancer, one case of lung cancer, and one case of mesothelioma. The numbers of energies were reduced by 14.3%-18.9% for the prostate cancer cases, 11.0% for the lung cancer cases and 26.5% for the mesothelioma case. The results indicate that the number of proton energies used in conventionally designed IMPT plans can be reduced without degrading dosimetric performance. The IMPT delivery efficiency could be improved by energy layer optimization leading to increased throughput for a busy proton center in which a delivery system with slow energy switch is employed.

  20. Reduced Acute Bowel Toxicity in Patients Treated With Intensity-Modulated Radiotherapy for Rectal Cancer

    SciTech Connect

    Samuelian, Jason M.; Callister, Matthew D.; Ashman, Jonathan B.; Young-Fadok, Tonia M.; Borad, Mitesh J.; Gunderson, Leonard L.

    2012-04-01

    Purpose: We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. Methods and Materials: A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. Results: From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced {>=}Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, {>=}Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. Conclusions: In the management of rectal cancer, IMRT is associated with a

  1. The clinical implementation of respiratory-gated intensity-modulated radiotherapy

    SciTech Connect

    Keall, Paul . E-mail: pjkeall@vcu.edu; Vedam, Sastry; George, Rohini; Bartee, Chris; Siebers, Jeffrey; Lerma, Fritz; Weiss, Elisabeth; Chung, Theodore

    2006-07-01

    The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures including the lungs, spinal cord, esophagus, and heart. The aim of this work is to describe the clinical implementation of respiratory-gated IMRT for the treatment of non-small cell lung cancer. Documented clinical procedures were developed to include a tumor motion study, gated CT imaging, IMRT treatment planning, and gated IMRT delivery. Treatment planning procedures for respiratory-gated IMRT including beam arrangements and dose-volume constraints were developed. Quality assurance procedures were designed to quantify both the dosimetric and positional accuracy of respiratory-gated IMRT, including film dosimetry dose measurements and Monte Carlo dose calculations for verification and validation of individual patient treatments. Respiratory-gated IMRT is accepted by both treatment staff and patients. The dosimetric and positional quality assurance test results indicate that respiratory-gated IMRT can be delivered accurately. If carefully implemented, respiratory-gated IMRT is a practical alternative to conventional thoracic radiotherapy. For mobile tumors, respiratory-gated radiotherapy is used as the standard of care at our institution. Due to the increased workload, the choice of IMRT is taken on a case-by-case basis, with approximately half of the non-small cell lung cancer patients receiving respiratory-gated IMRT. We are currently evaluating whether superior tumor coverage and limited normal tissue dosing will lead to improvements in local control and survival in non-small cell lung cancer.

  2. Phase II Trial of Hypofractionated Image-Guided Intensity-Modulated Radiotherapy for Localized Prostate Adenocarcinoma

    SciTech Connect

    Martin, Jarad M.; Rosewall, Tara; Bayley, Andrew; Bristow, Robert; Chung, Peter; Crook, Juanita; Gospodarowicz, Mary; McLean, Michael; Menard, Cynthia; Milosevic, Michael; Warde, Padraig; Catton, Charles

    2007-11-15

    Purpose: To assess in a prospective trial the feasibility and late toxicity of hypofractionated radiotherapy (RT) for prostate cancer. Methods and Materials: Eligible patients had clinical stage T1c-2cNXM0 disease. They received 60 Gy in 20 fractions over 4 weeks with intensity-modulated radiotherapy including daily on-line image guidance with intraprostatic fiducial markers. Results: Between June 2001 and March 2004, 92 patients were treated with hypofractionated RT. The cohort had a median prostate-specific antigen value of 7.06 ng/mL. The majority had Gleason grade 5-6 (38%) or 7 (59%) disease, and 82 patients had T1c-T2a clinical staging. Overall, 29 patients had low-risk, 56 intermediate-risk, and 7 high-risk disease. Severe acute toxicity (Grade 3-4) was rare, occurring in only 1 patient. Median follow-up was 38 months. According to the Phoenix definition for biochemical failure, the rate of biochemical control at 14 months was 97%. According to the previous American Society for Therapeutic Radiology and Oncology definition, biochemical control at 3 years was 76%. The incidence of late toxicity was low, with no severe (Grade {>=}3) toxicity at the most recent assessment. Conclusions: Hypofractionated RT using 60 Gy in 20 fractions over 4 weeks with image guidance is feasible and is associated with low rates of late bladder and rectal toxicity. At early follow-up, biochemical outcome is comparable to that reported for conventionally fractionated controls. The findings are being tested in an ongoing, multicenter, Phase III trial.

  3. Is upper limb virtual reality training more intensive than conventional training for patients in the subacute phase after stroke? An analysis of treatment intensity and content.

    PubMed

    Brunner, Iris; Skouen, Jan Sture; Hofstad, Håkon; Aßmuss, Jörg; Becker, Frank; Pallesen, Hanne; Thijs, Liselot; Verheyden, Geert

    2016-11-11

    Virtual reality (VR) training is thought to improve upper limb (UL) motor function after stroke when utilizing intensive training with many repetitions. The purpose of this study was to compare intensity and content of a VR training intervention to a conventional task-oriented intervention (CT). A random sample of 50 video recordings was analyzed of patients with a broad range of UL motor impairments (mean age 61y, 22 women). Patients took part in the VIRTUES trial and were randomized to either VR or CT and stratified according to severity of paresis. A standardized scoring form was used to analyze intensity, i.e. active use of the affected UL expressed in % of total time, total active time and total duration of a training session in minutes, content of training and feedback. Two raters collected data independently. Linear regression models as well as descriptive and graphical methods were used. Patients in the VR group spent significantly more time actively practicing with an activity rate of 77.6 (8.9) % than patients in the CT 67.3 (13.9) %, (p = .003). This difference was attributed to the subgroup of patients with initially severe paresis (n = 22). While in VR severely impaired patients spent 80.7 % (4.4 %) of the session time actively; they reached 60.6 (12.1) % in CT. VR and CT also differed in terms of tasks and feedback provided. Our results indicate that patients with severely impaired UL motor function spent more time actively in VR training, which may influence recovery. The upcoming results of the VIRTUES trial will show whether this is correlated with an increased effect of VR compared to CT. ClinicalTrials.gov NCT02079103 , February 27, 2014.

  4. [Effect of low intensity pulse-modulated electromagnetic radiation on activity of alkaline phosphatase in blood serum].

    PubMed

    Pashovkina, M S; Akoev, I G

    2001-01-01

    The change in alkaline phosphotase activity in vitro with frequencies modulation at low intensity of pulse-modulated electromagnetic radiation was experimentally shown (EMR, 2375 MHz, intensity: 0.8, 8.0; 40.0 microW/cm2; range modulation: 30-310 Hz; time of interaction: 1-3 min). Revealed effects could be regarded as an evidence of informative character of interaction of modulated EMR.

  5. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    SciTech Connect

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  6. Whole Abdominopelvic Intensity-Modulated Radiation Therapy for Desmoplastic Small Round Cell Tumor After Surgery

    SciTech Connect

    Pinnix, Chelsea C.; Fontanilla, Hiral P.; Hayes-Jordan, Andrea; Subbiah, Vivek; Bilton, Stephen D.; Chang, Eric L.; Grosshans, David R.; McAleer, Mary F.; Sulman, Eric P.; Woo, Shiao Y.; Anderson, Peter; Green, Holly L.; Mahajan, Anita

    2012-05-01

    Purpose: Desmoplastic small round cell tumor (DSCRT) is an uncommon pediatric tumor with a poor prognosis. Aggressive multimodality therapy is the current treatment approach; however. treatment toxicity is of concern. We report our results with whole abdominopelvic intensity-modulated radiation therapy (WAP-IMRT) as a component of multimodality therapy for DSCRT at a single institution. Materials/Methods: Medical records of all patients with DSCRT who received WAP-IMRT as part of definitive treatment at MD Anderson (2006-2010) were identified and reviewed. Results: Eight patients with DSRCT received WAP-IMRT with a median follow-up of 15.2 months. All patients received multiple courses of chemotherapy followed by surgical debulking of intra-abdominal disease; seven also had intraoperative hyperthermic cisplatin. WAP-IMRT was delivered to a total dose of 30 Gy postoperatively; four patients received a simultaneous boost (6-10 Gy) to sites of gross residual disease. Seven patients received concurrent chemotherapy during WAP-IMRT. No Radiation Therapy Oncology Group Grade 4 nausea, vomiting, or diarrhea occurred during RT. Red-cell transfusions were given to two patients to maintain hemoglobin levels >10 g/dL. Grade 4 cytopenia requiring growth factor support occurred in only one patient; no other significant cytopenias were noted. WAP-IMRT resulted in 25% lower radiation doses to the lumbosacral vertebral bodies and pelvic bones than conventional RT plans. The median time to local or distant failure after WAP-IMRT was 8.73 months in seven patients. One patient who had completed RT 20 months before the last follow-up remains alive without evidence of disease. Five patients (63%) experienced treatment failure in the abdomen. Distant failure occurred in three patients (37.5%). Conclusions: WAP-IMRT with concurrent radiosensitizing chemotherapy was well tolerated after aggressive surgery for DSCRT. Enhanced bone sparing with IMRT probably accounts for the low hematologic

  7. Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors.

    PubMed

    Oehler, Julia; Brachwitz, Tim; Wendt, Thomas G; Banz, Nico; Walther, Mario; Wiezorek, Tilo

    2013-07-24

    Neurocognitive decline observed after radiotherapy (RT) for brain tumors in long time survivors is attributed to radiation exposure of the hippocampus and the subventricular zone (SVZ). The potential of sparing capabilities for both structures by optimized intensity modulated stereotactic radiotherapy (IMSRT) is investigated. Brain tumors were irradiated by stereotactic 3D conformal RT or IMSRT using m3 collimator optimized for PTV and for sparing of the conventional OARs (lens, retina, optic nerve, chiasm, cochlea, brain stem and the medulla oblongata). Retrospectively both hippocampi and SVZ were added to the list of OAR and their dose volume histograms were compared to those from two newly generated IMSRT plans using 7 or 14 beamlets (IMSRT-7, IMSRT-14) dedicated for optimized additional sparing of these structures. Conventional OAR constraints were kept constant. Impact of plan complexity and planning target volume (PTV) topography on sparing of both hippocampi and SVZ, conformity index (CI), the homogeneity index (HI) and quality of coverage (QoC) were analyzed. Limits of agreement were used to compare sparing of stem cell niches with either IMSRT-7 or IMSRT-14. The influence of treatment technique related to the topography ratio between PTV and OARs, realized in group A-D, was assessed by a mixed model. In 47 patients CI (p ≤  0.003) and HI (p  <  0.001) improved by IMSRT-7, IMSRT-14, QoC remained stable (p  ≥  0.50) indicating no compromise in radiotherapy. 90% of normal brain was exposed to a significantly higher dose using IMSRT. IMSRT-7 plans resulted in significantly lower biologically effective doses at all four neural stem cell structures, while contralateral neural stem cells are better spared compared to ipsilateral. A further increase of the number of beamlets (IMSRT-14) did not improve sparing significantly, so IMSRT-7 and IMSRT-14 can be used interchangeable. Patients with tumors contacting neither the subventricular zone nor the

  8. Improving intensity-modulated radiation therapy using the anatomic beam orientation optimization algorithm

    SciTech Connect

    Potrebko, Peter S.; McCurdy, Boyd M. C.; Butler, James B.; El-Gubtan, Adel S.

    2008-05-15

    A novel, anatomic beam orientation optimization (A-BOO) algorithm is proposed to significantly improve conventional intensity-modulated radiation therapy (IMRT). The A-BOO algorithm vectorially analyses polygonal surface mesh data of contoured patient anatomy. Five optimal (5-opt) deliverable beam orientations are selected based on (1) tangential orientation bisecting the target and adjacent organ's-at-risk (OARs) to produce precipitous dose gradients between them and (2) parallel incidence with polygon features of the target volume to facilitate conformal coverage. The 5-opt plans were compared to standard five, seven, and nine equiangular-spaced beam plans (5-equi, 7-equi, 9-equi) for: (1) gastric, (2) Radiation Therapy Oncology Group (RTOG) P-0126 prostate, and (3) RTOG H-0022 oropharyngeal (stage-III, IV) cancer patients. In the gastric case, the noncoplanar 5-opt plan reduced the right kidney V 20 Gy by 32.2%, 23.2%, and 20.6% compared to plans with five, seven, and nine equiangular-spaced beams. In the prostate case, the coplanar 5-opt plan produced similar rectal sparing as the 7-equi and 9-equi plans with a reduction of the V 75, V 70, V 65, and V 60 Gy of 2.4%, 5.3%, 7.0%, and 9.5% compared to the 5-equi plan. In the stage-III and IV oropharyngeal cases, the noncoplanar 5-opt plan substantially reduced the V 30 Gy and mean dose to the contralateral parotid compared to plans with five, seven, and nine equiangular-spaced beams: (stage-III) 7.1%, 5.2%, 6.8%, and 5.1, 3.5, 3.7 Gy and (stage-IV) 10.2%, 10.2%, 9.8% and 7.0, 7.1, 7.2 Gy. The geometry-based A-BOO algorithm has been demonstrated to be robust for application to a variety of IMRT treatment sites. Beam orientations producing significant improvements in OAR sparing over conventional IMRT can be automatically produced in minutes compared to hours with existing dose-based beam orientation optimization methods.

  9. Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors

    PubMed Central

    2013-01-01

    Background Neurocognitive decline observed after radiotherapy (RT) for brain tumors in long time survivors is attributed to radiation exposure of the hippocampus and the subventricular zone (SVZ). The potential of sparing capabilities for both structures by optimized intensity modulated stereotactic radiotherapy (IMSRT) is investigated. Methods Brain tumors were irradiated by stereotactic 3D conformal RT or IMSRT using m3 collimator optimized for PTV and for sparing of the conventional OARs (lens, retina, optic nerve, chiasm, cochlea, brain stem and the medulla oblongata). Retrospectively both hippocampi and SVZ were added to the list of OAR and their dose volume histograms were compared to those from two newly generated IMSRT plans using 7 or 14 beamlets (IMSRT-7, IMSRT-14) dedicated for optimized additional sparing of these structures. Conventional OAR constraints were kept constant. Impact of plan complexity and planning target volume (PTV) topography on sparing of both hippocampi and SVZ, conformity index (CI), the homogeneity index (HI) and quality of coverage (QoC) were analyzed. Limits of agreement were used to compare sparing of stem cell niches with either IMSRT-7 or IMSRT-14. The influence of treatment technique related to the topography ratio between PTV and OARs, realized in group A-D, was assessed by a mixed model. Results In 47 patients CI (p ≤ 0.003) and HI (p < 0.001) improved by IMSRT-7, IMSRT-14, QoC remained stable (p ≥ 0.50) indicating no compromise in radiotherapy. 90% of normal brain was exposed to a significantly higher dose using IMSRT. IMSRT-7 plans resulted in significantly lower biologically effective doses at all four neural stem cell structures, while contralateral neural stem cells are better spared compared to ipsilateral. A further increase of the number of beamlets (IMSRT-14) did not improve sparing significantly, so IMSRT-7 and IMSRT-14 can be used interchangeable. Patients with tumors contacting neither the

  10. A preliminary investigation of cell growth after irradiation using a modulated x-ray intensity pattern

    NASA Astrophysics Data System (ADS)

    Bromley, Regina; Davey, Ross; Oliver, Lyn; Harvie, Rozelle; Baldock, Clive

    2006-08-01

    In this study we have investigated a spatial distribution of cell growth after their irradiation using a modulated x-ray intensity pattern. An A549 human non-small cell lung cancer cell line was grown in a 6-well culture. Two of the wells were the unirradiated control wells, whilst another two wells were irradiated with a modulated x-ray intensity pattern and the third two wells were uniformly irradiated. A number of plates were incubated for various times after irradiation and stained with crystal violet. The spatial distribution of the stained cells within each well was determined by measurement of the crystal violet optical density at multiple positions in the plate using a microplate photospectrometer. The crystal violet optical density for a range of cell densities was measured for the unirradiated well and this correlated with cell viability as determined by the MTT cell viability assay. An exponential dose response curve was measured for A549 cells from the average crystal violet optical density in the uniformly irradiated well up to a dose of 30 Gy. By measuring the crystal violet optical density distribution within a well the spatial distribution of cell growth after irradiation with a modulated x-ray intensity pattern can be plotted. This method can be used for in vitro investigation into the changes in radiation response associated with treatment using intensity modulated radiation therapy (IMRT).

  11. Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

    PubMed Central

    Kidgell, Dawson J.; Daly, Robin M.; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J.

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities. PMID:23577272

  12. Different current intensities of anodal transcranial direct current stimulation do not differentially modulate motor cortex plasticity.

    PubMed

    Kidgell, Dawson J; Daly, Robin M; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22-45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

  13. A preliminary investigation of cell growth after irradiation using a modulated x-ray intensity pattern.

    PubMed

    Bromley, Regina; Davey, Ross; Oliver, Lyn; Harvie, Rozelle; Baldock, Clive

    2006-08-07

    In this study we have investigated a spatial distribution of cell growth after their irradiation using a modulated x-ray intensity pattern. An A549 human non-small cell lung cancer cell line was grown in a 6-well culture. Two of the wells were the unirradiated control wells, whilst another two wells were irradiated with a modulated x-ray intensity pattern and the third two wells were uniformly irradiated. A number of plates were incubated for various times after irradiation and stained with crystal violet. The spatial distribution of the stained cells within each well was determined by measurement of the crystal violet optical density at multiple positions in the plate using a microplate photospectrometer. The crystal violet optical density for a range of cell densities was measured for the unirradiated well and this correlated with cell viability as determined by the MTT cell viability assay. An exponential dose response curve was measured for A549 cells from the average crystal violet optical density in the uniformly irradiated well up to a dose of 30 Gy. By measuring the crystal violet optical density distribution within a well the spatial distribution of cell growth after irradiation with a modulated x-ray intensity pattern can be plotted. This method can be used for in vitro investigation into the changes in radiation response associated with treatment using intensity modulated radiation therapy (IMRT).

  14. Optimization of Breast Cancer Treatment by Dynamic Intensity Modulated Electron Radiotherapy

    DTIC Science & Technology

    2006-04-01

    AD_________________ Award Number: DAMD17-01-1-0435 TITLE: Optimization of Breast Cancer Treatment by...Optimization of Breast Cancer Treatment by Dynamic Intensity Modulated Electron Radiotherapy 5b. GRANT NUMBER DAMD17-01-1-0435 5c. PROGRAM ELEMENT

  15. Hybrid intensity-modulation-to-phase-remodulation optical wavelength reuse transport system

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Hung; Tseng, Meng-Chun; Tseng, Cheng-Han

    2015-12-01

    A hybrid intensity-modulation (IM)-to-phase-remodulation optical wavelength reuse transport system is proposed and demonstrated experimentally. Based on the transport system, an optical carrier can be intensity-modulated with an orthogonal frequency-division multiplexing (OFDM) signal and then phase-remodulated with a radio frequency (RF) signal prior to communicating its destination through a span of single mode fiber. The OFDM signal at the receiver end can be directly detected using a photodetector (PD), and the phase-modulated RF signal can be detected by another PD after being converted back to intensity-modulation format by a semiconductor laser. In this study, the working window of the semiconductor laser-composed phase-modulation-format-to-IM-format converter is not fixed. The converter can be flexibly adjusted to align with the wavelength of the employed optical carrier. Experimental results prove that both OFDM and RF signals can be clearly detected with an error-free transmission. Evident interference is not found between both signals at the receiver end.

  16. Tunable nonuniform sampling method for fast calculation and intensity modulation in 3D dynamic holographic display.

    PubMed

    Zhang, Zhao; Liu, Juan; Jia, Jia; Li, Xin; Han, Jian; Hu, Bin; Wang, Yongtian

    2013-08-01

    Heavy computational load of computer-generated hologram (CGH) and imprecise intensity modulation of 3D images are crucial problems in dynamic holographic display. The nonuniform sampling method is proposed to speed up CGH generation and precisely modulate the reconstructed intensities of phase-only CGH. The proposed method can eliminate the redundant information properly, where 70% reduction in the storage amount can be reached when it is combined with the novel lookup table method. Multigrayscale modulation of reconstructed 3D images can be achieved successfully. Numerical simulations and optical experiments are performed, and both are in good agreement. It is believed that the proposed method can be used in 3D dynamic holographic display.

  17. A novel software and conceptual design of the hardware platform for intensity modulated radiation therapy

    PubMed Central

    Nguyen, Dan; Ruan, Dan; O’Connor, Daniel; Woods, Kaley; Low, Daniel A.; Boucher, Salime; Sheng, Ke

    2016-01-01

    Purpose: To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. Methods: A total of seven patients—two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung—were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-based IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle–Pock algorithm, a first-order primal–dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Results: Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and

  18. A novel software and conceptual design of the hardware platform for intensity modulated radiation therapy

    SciTech Connect

    Nguyen, Dan; Ruan, Dan; O’Connor, Daniel; Woods, Kaley; Low, Daniel A.; Sheng, Ke; Boucher, Salime

    2016-02-15

    Purpose: To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. Methods: A total of seven patients—two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung—were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-based IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle–Pock algorithm, a first-order primal–dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Results: Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and

  19. Intensity-modulated radiation therapy: overlapping co-axial modulated fields.

    PubMed

    Metcalfe, P; Tangboonduangjit, P; White, P

    2004-08-21

    The Varian multi-leaf collimator has a 14.5 cm leaf extension limit from each carriage. This means the target volumes in the head and neck region are sometimes too wide for standard width-modulated fields to provide adequate dose coverage. A solution is to set up asymmetric co-axial overlapping fields. This protects the MLC carriage while in return the MLC provides modulated dose blending in the field overlap region. Planar dose maps for coincident fields from the Pinnacle radiotherapy treatment planning system are compared with planar dose maps reconstructed from radiographic film and electronic portal images. The film and portal images show small leaf-jaw matchlines at each field overlap border. Linear profiles taken across each image show that the observed leaf-jaw matchlines from the accelerator images are not accounted for by the treatment planning system. Dose difference between film reconstructed electronic portal images and planning system are about 2.5 cGy in a modulated field at d(max). While the magnitude of the dose differences are small improved round end leaf modelling combined with a finer dose calculation grid may minimize the discrepancy between calculated and delivered dose.

  20. Broad optical bandwidth based on nonlinear effect of intensity and phase modulators through intense four-wave mixing in photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Eltaif, Tawfig

    2017-05-01

    This work investigates the advantages of nonlinear optics of a cascaded intensity modulator (IM) and phase modulator (PM) to generate an initial optical frequency comb. The results show that when the direct current bias to amplitude ratio, α=0.1, and the IM and PM have the same modulation index and are equal 10, seed comb is achieved; it is generated by the modulation of two continuous wave lasers. Hence, based on these parameters, an intense four-wave mixing is created through 9 m of photonic crystal fiber. Moreover, a broadband spectrum was achieved, spaced by a 30-GHz microwave frequency.

  1. SU-E-T-07: 4DCT Robust Optimization for Esophageal Cancer Using Intensity Modulated Proton Therapy

    SciTech Connect

    Liao, L; Yu, J; Zhu, X; Li, H; Zhang, X; Li, Y; Lim, G

    2015-06-15

    Purpose: To develop a 4DCT robust optimization method to reduce the dosimetric impact from respiratory motion in intensity modulated proton therapy (IMPT) for esophageal cancer. Methods: Four esophageal cancer patients were selected for this study. The different phases of CT from a set of 4DCT were incorporated into the worst-case dose distribution robust optimization algorithm. 4DCT robust treatment plans were designed and compared with the conventional non-robust plans. Result doses were calculated on the average and maximum inhale/exhale phases of 4DCT. Dose volume histogram (DVH) band graphic and ΔD95%, ΔD98%, ΔD5%, ΔD2% of CTV between different phases were used to evaluate the robustness of the plans. Results: Compare to the IMPT plans optimized using conventional methods, the 4DCT robust IMPT plans can achieve the same quality in nominal cases, while yield a better robustness to breathing motion. The mean ΔD95%, ΔD98%, ΔD5% and ΔD2% of CTV are 6%, 3.2%, 0.9% and 1% for the robustly optimized plans vs. 16.2%, 11.8%, 1.6% and 3.3% from the conventional non-robust plans. Conclusion: A 4DCT robust optimization method was proposed for esophageal cancer using IMPT. We demonstrate that the 4DCT robust optimization can mitigate the dose deviation caused by the diaphragm motion.

  2. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    SciTech Connect

    Freedman, Gary M. Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-07-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  3. Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme

    SciTech Connect

    Hirota, Osamu; Sohma, Masaki; Fuse, Masaru; Kato, Kentaro

    2005-08-15

    We investigate the Yuen 2000 (so-called Y-00)-protocol, which can realize a randomized stream cipher with high bit rate (Gbit/s) for long distances (several hundreds km). The randomized stream cipher with randomization by quantum noise based on the Y-00 protocol is called a quantum stream cipher in this paper, and it may have security against known plaintext attacks which has no analog with any conventional symmetric key ciphers. We present a simple cryptanalysis based on an attacker's heterodyne measurement and a quantum unambiguous measurement to make clear the strength of the Y-00 protocol in real communication. In addition, we give a design for the implementation of an intensity-modulation scheme and report an experimental demonstration of 1 Gbit/s quantum stream cipher through a 20-km-long transmission line.

  4. Optical coherence photoacoustic microscopy (OC-PAM) with an intensity-modulated continuous-wave broadband light source

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Wen, Rong; Li, Yiwen; Jiao, Shuliang

    2016-06-01

    We developed an optical coherence photoacoustic microscopy system using an intensity-modulated continuous-wave superluminescent diode with a center wavelength of 840 nm. The system can accomplish optical coherence tomography (OCT) and photoacoustic microscopy (PAM) simultaneously. Compared to the system with a pulsed light source, this system is able to achieve OCT imaging with quality as high as conventional spectral-domain OCT. Since both of the OCT and PAM images are generated from the same group of photons, they are intrinsically registered in the lateral directions. The system was tested for multimodal imaging the vasculature of mouse ear in vivo by using gold nanorods as contrast agent for PAM, as well as excised porcine eyes ex vivo. The OCT and PAM images showed complimentary information of the sample.

  5. Controlled generation of high-intensity optical rogue waves by induced modulation instability

    NASA Astrophysics Data System (ADS)

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-01

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.

  6. Controlled generation of high-intensity optical rogue waves by induced modulation instability.

    PubMed

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-04

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.

  7. Controlled generation of high-intensity optical rogue waves by induced modulation instability

    PubMed Central

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-01

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum. PMID:28051149

  8. Fusion of microwave and optical images through intensity modulation by SAR textural features

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea; Nencini, Filippo

    2005-10-01

    This paper presents a novel multisensor image fusion algorithm, which extends pan-sharpening of multispectral (MS) data through intensity modulation to the integration of MS and SAR imagery. The method relies on SAR texture, extracted by ratioing a map of a SAR feature to its lowpass approximation. SAR texture is used to modulate the generalized intensity (GI) of the MS image, which is given by a linear transform extending Intensity-Hue-Saturation (IHS) transform to an arbitrary number of bands. Before modulation, the GI is enhanced by injection of highpass details extracted from the available Pan image by means of the "à-trous" wavelet decomposition. The texture-modulated pan-sharpened GI replaces the GI calculated from the resampled original MS data; then the inverse transform is applied to obtain the fusion product. Experimental results are presented on Landsat-7/ETM+ and ERS-2 images of an urban area. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, which can be usefully applied for both visual analysis and classification purposes.

  9. PDM-16QAM vector signal generation and detection based on intensity modulation and direct detection

    NASA Astrophysics Data System (ADS)

    Chen, Long; Yu, Jianjun; Li, Xinying

    2016-07-01

    We experimentally demonstrate a novel and simple method to generate and detect high speed polarization-division-multiplexing 16-ary quadrature-amplitude-modulation (PDM-16QAM) vector signal enabled by Mach-Zehnder modulator-based (MZM-based) optical-carrier-suppression (OCS) intensity modulation and direct detection. Due to the adoption of OCS intensity modulation, carrier beating can be avoided at the receiver, and thus polarization de-multiplexing can be implemented by digital-signal-processing-based (DSP-based) cascaded multi-modulus algorithm (CMMA) equalization instead of a polarization tracking system. The change of both amplitude and phase information due to the adoption of OCS modulation can be equalized by DSP-based amplitude and phase precoding at the transmitter. Up to 64-Gb/s PDM-16QAM vector signal is generated and detected after 2-km single-mode fiber-28 (SMF-28) or 20-km large-effective-area fiber (LEAF) transmission with a bit-error-ratio (BER) less than the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3.

  10. Testbed measurements of subcarrier OQPSK versus digital OOK laser intensity modulation at 266 to 1244 Mbps

    NASA Astrophysics Data System (ADS)

    Carlson, Robert T.

    1995-04-01

    We report here on measurements made on a lasercom crosslink hardware testbed built on internal MITRE funds. Laser diodes rated at 150 mwatts were characterized to be flat to 100 MHz, rolling off 5 dB at 500 MHz. A microstrip laser driver with equalizer was implemented to provide flat, highly linear frequency response for analog modulation out to 550 MHz. Microstrip and hybrid versions of APD receivers were also fabricated with flat, linear response to 700 MHz (typically -3 dB at 850 - 1000 MHz), suitable for datarates up to 1.25 Gbps. The optical crosslink testbed with equalized driver, laser, and APD receiver exhibits +/- 0.25 dB flatness, +/- 2.5 degrees phase linearity deviation, and +/- 0.25 (eta) sec group delay variation over the full bandwidth for 650 Mbps. This testbed was evaluated with two modulation approaches: analog laser intensity modulation using an OQPSK subcarrier scheme, and baseband digital NRZ OOK laser intensity modulation, at datarates from 266 to 1244 Mbps. The QPSK subcarrier hardware characterization includes the high speed modem/demodulator and a pair of frequency converters. The digital NRZ hardware characterization includes the clock recovery and amplitude/timing decision circuit. Both the subcarrier QPSK and the digital OOK tests used the same laser and equalized laser driver, the same modulated laser power with 95% intensity modulatino depth, and the same APD receiver for these tests. As such, the comparison between these modulation schemes is an even-handed comparison of the end-to-end performance. Results and conclusions are presented.

  11. Optimized treatment planning using intensity and energy modulated proton and very-high energy electron beams

    NASA Astrophysics Data System (ADS)

    Yeboah, Collins

    2002-09-01

    Intensity and energy modulated radiotherapy dose planning with protons and very-high energy (50--250 MeV) electron beams has been investigated. A general-purpose inverse treatment planning (ITP) system that can be applied to any combination of proton, electron and photon radiation modalities in therapy has been developed. The new ITP program uses a very fast proton dose calculation engine and employs one of the most efficient optimization algorithms currently available. First, the ITP program was employed to investigate intensity-modulated proton therapy (IMPT) dose optimization for prostate cancer. The second application was to evaluate the potential of intensity-modulated very-high energy electron therapy (VHEET) for dose conformation. For an active proton beam delivery system the required energy resolution to reasonably implement energy modulation was found to be a function of the incident beams' energy spread and became coarser with increasing energy spread. For passive proton beam delivery systems the selection of the required depth resolution for inverse planning may not be critical as long as the depth resolution chosen is at least equal to FWHM/2 of the primary beam Bragg peak. In the study of the number of beam ports selected for IMPT treatment of the prostate, it was found that a maximum of three to four beams is required. Using proton beams for inverse planning of the prostate instead of photon beams gave the same or better target coverage while reducing the sensitive structure dose and normal tissue integral dose by up to 30% and 28% of the prescribed target dose, respectively. In evaluating the potential of VHEET beams for dose conformation, it was found that electron energies greater than 100 MeV are preferable for VHEET treatment of the prostate and that implementation of energy modulation in addition to intensity modulation has only a modest effect on the final dose distribution. VHEET treatment employing approximately nine beams was sufficient to

  12. Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique.

    PubMed

    Batet, Oscar; Dios, Federico; Comeron, Adolfo; Agishev, Ravil

    2010-06-10

    We analyze the intensity-modulation frequency-modulated continuous-wave (FMCW) technique for lidar remote sensing in the context of its application to distributed media. The goal of the technique is the reproduction of the sounded-medium profile along the emission path. A conceptual analysis is carried out to show the problems the basic version of the method presents for this application. The principal point is the appearance of a bandpass filtering effect, which seems to hinder its use in this context. A modified version of the technique is proposed to overcome this problem. A number of computer simulations confirm the ability of the modified FMCW technique to sound distributed media.

  13. Chromatic dispersion and polarization mode dispersion monitoring for multi-level intensity and phase modulation systems.

    PubMed

    Wang, Yan; Hu, Song; Yan, Lianshan; Yang, Jeng-Yuan; Willner, Alan E

    2007-10-17

    We demonstrate chromatic dispersion (CD) and polarization mode dispersion (PMD) monitoring techniques via simulation and experiment for 2- and 4-level intensity-modulated as well as phase-modulated optical systems. Degree of polarization (DOP) measurement for monitoring PMD up to 100-ps and clock tone measurement for monitoring CD up to 720-ps/nm are demonstrated in 10-Gsymbol/s non-return-to-zero (NRZ) and return-to-zero (RZ) systems. Analysis on dynamic range and monitoring window shows that careful consideration and characterization are necessary when applying these monitoring techniques to multi-level systems.

  14. Characterization and compensation of the residual chirp in a Mach-Zehnder-type electro-optical intensity modulator.

    PubMed

    Rogers, C E; Carini, J L; Pechkis, J A; Gould, P L

    2010-01-18

    We utilize various techniques to characterize the residual phase modulation of a waveguide-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.

  15. A comparison of intensity modulated x-ray therapy to intensity modulated proton therapy for the delivery of non-uniform dose distributions

    NASA Astrophysics Data System (ADS)

    Flynn, Ryan

    2007-12-01

    The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of

  16. Importance of Radiation Oncologist Experience Among Patients With Head-and-Neck Cancer Treated With Intensity-Modulated Radiation Therapy

    PubMed Central

    Boero, Isabel J.; Paravati, Anthony J.; Xu, Beibei; Cohen, Ezra E.W.; Mell, Loren K.; Le, Quynh-Thu

    2016-01-01

    Purpose Over the past decade, intensity-modulated radiation therapy (IMRT) has replaced conventional radiation techniques in the management of head-and-neck cancers (HNCs). We conducted this population-based study to evaluate the influence of radiation oncologist experience on outcomes in patients with HNC treated with IMRT compared with patients with HNC treated with conventional radiation therapy. Methods We identified radiation providers from Medicare claims of 6,212 Medicare beneficiaries with HNC treated between 2000 and 2009. We analyzed the impact of provider volume on all-cause mortality, HNC mortality, and toxicity end points after treatment with either conventional radiation therapy or IMRT. All analyses were performed by using either multivariable Cox proportional hazards or Fine-Gray regression models controlling for potential confounding variables. Results Among patients treated with conventional radiation, we found no significant relationship between provider volume and patient survival or any toxicity end point. Among patients receiving IMRT, those treated by higher-volume radiation oncologists had improved survival compared with those treated by low-volume providers. The risk of all-cause mortality decreased by 21% for every additional five patients treated per provider per year (hazard ratio [HR], 0.79; 95% CI, 0.67 to 0.94). Patients treated with IMRT by higher-volume providers had decreased HNC-specific mortality (subdistribution HR, 0.68; 95% CI, 0.50 to 0.91) and decreased risk of aspiration pneumonia (subdistribution HR, 0.72; 95% CI, 0.52 to 0.99). Conclusion Patients receiving IMRT for HNC had improved outcomes when treated by higher-volume providers. These findings will better inform patients and providers when making decisions about treatment, and emphasize the critical importance of high-quality radiation therapy for optimal treatment of HNC. PMID:26729432

  17. MIMO Free-Space Optical Communication Employing Subcarrier Intensity Modulation in Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Ghassemlooy, Zabih; Popoola, Wasiu O.; Ahmadi, Vahid; Leitgeb, Erich

    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects.

  18. Comparison of Effectiveness of Computerized and Conventional Fixed and Learning Module in Undergraduate Pathology Teaching

    ERIC Educational Resources Information Center

    Madhavan, Manoharan; Kaur, Gurjeet

    2006-01-01

    Introduction: Fixed Learning Module (FLM) adopted in pathology teaching to medical undergraduates, encompasses exhibition of potted specimens and charts. Though it is an important teaching method it also has its limitations. Aim: To create an alternative method for teaching pathology using web based, interactive computer technology [i.e.,…

  19. Comparative dosimetry of volumetric modulated arc therapy and limited-angle static intensity-modulated radiation therapy for early-stage larynx cancer

    SciTech Connect

    Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L.

    2013-04-01

    To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed as low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.

  20. Impact of High-intensity Intermittent and Moderate-intensity Continuous Exercise on Autonomic Modulation in Young Men.

    PubMed

    Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S

    2016-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise.

  1. Robust plan optimization using edge-enhanced intensity for intrafraction organ deformation in prostate intensity-modulated radiation therapy

    PubMed Central

    Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Tamari, Keisuke; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2017-01-01

    This study evaluated a method for prostate intensity-modulated radiation therapy (IMRT) based on edge-enhanced (EE) intensity in the presence of intrafraction organ deformation using the data of 37 patients treated with step-and-shoot IMRT. On the assumption that the patient setup error was already accounted for by image guidance, only organ deformation over the treatment course was considered. Once the clinical target volume (CTV), rectum, and bladder were delineated and assigned dose constraints for dose optimization, each voxel in the CTV derived from the DICOM RT-dose grid could have a stochastic dose from the different voxel location according to the probability density function as an organ deformation. The stochastic dose for the CTV was calculated as the mean dose at the location through changing the voxel location randomly 1000 times. In the EE approach, the underdose region in the CTV was delineated and optimized with higher dose constraints that resulted in an edge-enhanced intensity beam to the CTV. This was compared to a planning target volume (PTV) margin (PM) approach in which a CTV to PTV margin equivalent to the magnitude of organ deformation was added to obtain an optimized dose distribution. The total monitor units, number of segments, and conformity index were compared between the two approaches, and the dose based on the organ deformation of the CTV, rectum, and bladder was evaluated. The total monitor units, number of segments, and conformity index were significantly lower with the EE approach than with the PM approach, while maintaining the dose coverage to the CTV with organ deformation. The dose to the rectum and bladder were significantly reduced in the EE approach compared with the PM approach. We conclude that the EE approach is superior to the PM with regard to intrafraction organ deformation. PMID:28282417

  2. Non-essential and essential trace element concentrations in meat from cattle reared under organic, intensive or conventional production systems.

    PubMed

    Blanco-Penedo, I; López-Alonso, M; Miranda, M; Hernández, J; Prieto, F; Shore, R F

    2010-01-01

    We evaluated if differences in non-essential and essential trace element accumulation in beef-cattle reared under different systems (including organic, conventional and intensive management) were reflected in the meat derived from these animals. Diaphragm muscle from 166 calves from nine farms were analysed. Muscle cadmium concentrations were low (<10 microg/kg wet weight) and muscle arsenic, mercury and lead levels were below the limits of detection (<12, 2 and 3 microg/kg, respectively) in most (77-97%) samples; there were no significant differences between farms. Essential trace element concentrations in muscle were generally within adequate physiological ranges and, although they varied significantly between farms, this was not apparently related to management practices. There were no significant correlations in element concentrations between muscle and liver or kidney (organ concentrations that better reflect exposure), except for cobalt (positive association) and zinc (negative association). Non-essential and essential trace element concentrations in muscle in the studied animals did not generally reflect differences in exposure. This is particularly relevant for animals reared in systems (such as organic farms) where cattle are exposed to higher levels of non-essential elements (probably due to soil ingestion when grazing) but also can suffer from mineral deficiencies.

  3. Optimization of Isocenter Location for Intensity Modulated Stereotactic Treatment of Small Intracranial Targets

    SciTech Connect

    Salter, Bill J. Fuss, Martin; Sarkar, Vikren; Wang, Brian; Rassiah-Szegedi, Prema; Papanikolaou, Niko; Hollingshaus, Scott; Shrieve, Dennis C.

    2009-02-01

    Purpose: To quantify the impact of isocenter location on treatment plan quality for intensity-modulated stereotactic treatment of small intracranial lesions. Methods and Materials: For 18 patients previously treated by stereotactic-intensity modulated radiosurgery (IMRS) or intensity-modulated radiation therapy (IMRT), a retrospective virtual planning study was conducted wherein the impact of isocenter location on plan quality was measured. Treatment indications studied included six arteriovenous malformations, six acoustic neuromas, and six intracranial metastases, ranging in volume from 0.71 to 3.21 cm{sup 3} (mean = 2.26 cm{sup 3}), 1.08 to 2.84 cm{sup 3} (mean = 1.73 cm{sup 3}), and 0.19 to 2.30 cm{sup 3} (mean = 0.79 cm{sup 3}), respectively. Variation of isocenter location causes the geometric grid of pencil beams into which the target is segmented for intensity-modulated treatment to be altered. The impact of this pencil-beam-grid redefinition on achievable conformity index was quantified for three collimators (Varian Millennium 120; BrainLab MM3; Nomos binary Mimic) and three treatment planning systems (TPS; Varian Eclipse v6.5; BrainLab BrainScan v5.31; Best-Nomos Corvus v6.2), resulting in the evaluation of 3,446 treatment plans. Results: For all patients, collimator, and TPS combinations studied, a significant variation in plan quality was observed as a function of isocenter and pencil-beam-grid relocation. Optimization of isocenter location resulted in treatment plan conformity variations as large as 109% (min = 15%, mean = 51%, max = 109%). Conclusion: Optimization of isocenter location for IMRT/IMRS treatment of small intracranial lesions in which pencil-beam dimensions are comparable to target dimensions, can result in significant improvements in treatment plan quality.

  4. Simplified polarization demultiplexing based on Stokes vector analysis for intensity-modulation direct-detection systems

    NASA Astrophysics Data System (ADS)

    Zhou, Xinyu; Yan, Lianshan; Chen, Zhiyu; Yi, Anlin; Pan, Yan; Jiang, Lin; Pan, Wei; Luo, Bin

    2016-10-01

    A simple and effective polarization demultiplexing method is proposed based on the improved Stokes vector analysis and digital signal processor algorithm for the intensity-modulation direct-detection optical communication systems. Such a scheme could significantly simplify optical receivers with low system cost. The experimental results demonstrate the feasibility of our proposed method and show that only 1- and 1.7-dB power penalties are measured for 10- and 25-km transmissions compared to back-to-back case.

  5. Optimization of isocenter location for intensity modulated stereotactic treatment of small intracranial targets.

    PubMed

    Salter, Bill J; Fuss, Martin; Sarkar, Vikren; Wang, Brian; Rassiah-Szegedi, Prema; Papanikolaou, Niko; Hollingshaus, Scott; Shrieve, Dennis C

    2009-02-01

    To quantify the impact of isocenter location on treatment plan quality for intensity-modulated stereotactic treatment of small intracranial lesions. For 18 patients previously treated by stereotactic-intensity modulated radiosurgery (IMRS) or intensity-modulated radiation therapy (IMRT), a retrospective virtual planning study was conducted wherein the impact of isocenter location on plan quality was measured. Treatment indications studied included six arteriovenous malformations, six acoustic neuromas, and six intracranial metastases, ranging in volume from 0.71 to 3.21 cm(3) (mean = 2.26 cm(3)), 1.08 to 2.84 cm(3) (mean = 1.73 cm(3)), and 0.19 to 2.30 cm(3) (mean = 0.79 cm(3)), respectively. Variation of isocenter location causes the geometric grid of pencil beams into which the target is segmented for intensity-modulated treatment to be altered. The impact of this pencil-beam-grid redefinition on achievable conformity index was quantified for three collimators (Varian Millennium 120; BrainLab MM3; Nomos binary Mimic) and three treatment planning systems (TPS; Varian Eclipse v6.5; BrainLab BrainScan v5.31; Best-Nomos Corvus v6.2), resulting in the evaluation of 3,446 treatment plans. For all patients, collimator, and TPS combinations studied, a significant variation in plan quality was observed as a function of isocenter and pencil-beam-grid relocation. Optimization of isocenter location resulted in treatment plan conformity variations as large as 109% (min = 15%, mean = 51%, max = 109%). Optimization of isocenter location for IMRT/IMRS treatment of small intracranial lesions in which pencil-beam dimensions are comparable to target dimensions, can result in significant improvements in treatment plan quality.

  6. Optimization of intensity-modulated very high energy (50-250 MeV) electron therapy

    NASA Astrophysics Data System (ADS)

    Yeboah, C.; Sandison, G. A.; Moskvin, V.

    2002-04-01

    This work evaluates the potential of very high energy (50-250 MeV) electron beams for dose conformation and identifies those variables that influence optimized dose distributions for this modality. Intensity-modulated plans for a prostate cancer model were optimized as a function of the importance factors, beam energy and number of energy bins, number of beams, and the beam orientations. A trial-and-error-derived constellation of importance factors for target and sensitive structures to achieve good conformal dose distributions was 500, 50, 10 and 1 for the target, rectum, bladder and normal tissues respectively. Electron energies greater than 100 MeV were found to be desirable for intensity-modulated very high energy electron therapy (VHEET) of prostate cancer. Plans generated for lower energy beams had relatively poor conformal dose distributions about the target region and delivered high doses to sensitive structures. Fixed angle beam treatments utilizing a large number of fields in the range 9-21 provided acceptable plans. Using more than 21 beams at fixed gantry angles had an insignificant effect on target coverage, but resulted in an increased dose to sensitive structures and an increased normal tissue integral dose. Minor improvements in VHEET plans utilizing a `small' number (=<9) of beams may be achieved if, in addition to intensity modulation, energy modulation is implemented using a small number (=<3) of beam energies separated by 50 to 100 MeV. Rotation therapy provided better target dose homogeneity but unfortunately resulted in increased rectal dose, bladder dose and normal tissue integral dose relative to the 21-field fixed angle treatment plan. Modulation of the beam energy for rotation therapy had no beneficial consequences on the optimized dose distributions. Lastly, selection of beam orientations influenced the optimized treatment plan even when a large number of beams (approximately 15) were employed.

  7. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.

    PubMed

    Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G

    2014-12-01

    Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and

  8. Influence of robust optimization in intensity-modulated proton therapy with different dose delivery techniques

    SciTech Connect

    Liu Wei; Li Yupeng; Li Xiaoqiang; Cao Wenhua; Zhang Xiaodong

    2012-06-15

    Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique's sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans' sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT's sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the

  9. Evaluation of a fast method of EPID-based dosimetry for intensity modulated radiation therapy

    PubMed Central

    Nelms, Benjamin E.; Rasmussen, Karl H.; Tomé, Wolfgang A.

    2010-01-01

    Electronic portal imaging devices (EPIDs) could potentially be useful for Intensity Modulated Radiation Therapy (IMRT) QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed to be effective imaging devices, but not dosimeters, and as a result they do not measure dose in tissue-equivalent materials. EPIDose (Sun Nuclear, Melbourne, FL) is a tool designed for the use of EPIDs in IMRT QA that uses raw MV EPID images (no additional build-up and independent of gantry angle, but with dark and flood field corrections applied) to estimate absolute dose planes normal to the beam axis in a homogeneous media, i.e. similar to conventional IMRT QA methods. However, because of the inherent challenges of the EPID-based dosimetry, validating and commissioning such a system must be done very carefully, exploring the range of use cases and using well-proven “standards” for comparison. In this work, a multi-institutional study was performed to verify accurate EPID image to dose plane conversion over a variety of conditions. Converted EPID images were compared to 2D diode array absolute dose measurements for one hundred and eighty eight (188) fields from twenty eight (28) clinical IMRT treatment plans generated using a number of commercially available treatment planning systems (TPS) covering various treatment sites including prostate, head and neck, brain, and lung. The data included three beam energies (6, 10, and 15 MV) and both step-and-shoot and dynamic MLC fields. Out of 26,207 points of comparison over 188 fields analyzed the average overall field pass rate was 99.7% when 3mm/3% DTA criteria were used (range 94.0-100 per field). The pass rates for more stringent criteria were 97.8% for 2mm/2% DTA (range 82.0-100 per field), and 84.6% for 1mm/1% DTA (range 54.7-100 per field). Individual patient specific sites as well as different beam energies followed similar trends to the overall

  10. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer.

    PubMed

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials. Copyright © 2012. Published by Elsevier Inc.

  11. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system

    SciTech Connect

    Ma, Jiasen Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G.

    2014-12-15

    Purpose: Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. Methods: An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. Results: For relatively large and complex three-field head and neck cases, i.e., >100 000 spots with a target volume of ∼1000 cm{sup 3} and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. Conclusions: A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45

  12. Correcting radiation survey data to account for increased leakage during intensity modulated radiotherapy treatments

    SciTech Connect

    Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2013-11-15

    Purpose: Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially costly overestimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls, and other walls) by evaluating three different bunker designs.Methods: Radiation survey measurements of primary, scattered, and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0° to 330°, to assess the effects of radiation beam direction on the results.Results: For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage.Conclusions: Results of this study suggest that IMRT workload corrections are unnecessary, for survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in

  13. Influence of robust optimization in intensity-modulated proton therapy with different dose delivery techniques

    PubMed Central

    Liu, Wei; Li, Yupeng; Li, Xiaoqiang; Cao, Wenhua; Zhang, Xiaodong

    2012-01-01

    Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique’s sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans’ sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT’s sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the

  14. Intensity-Modulated vs. Conformal Radiotherapy of Parotid Gland Tumors: Potential Impact on Hearing Loss

    SciTech Connect

    Lamers-Kuijper, E. Schwarz, M.; Rasch, C.; Mijnheer, B.

    2007-01-01

    In 3-dimensional (3D) conformal radiotherapy of parotid gland tumors, little effort is made to avoid the auditory system or the oral cavity. Damage may occur when the ear is located inside the treatment field. The purpose of this study was to design and evaluate an intensity-modulation radiotherapy (IMRT) class solution, and to compare this technique to a 3D conformal approach with respect to hearing loss. Twenty patients with parotid gland cancer were retrospectively planned with 2 different techniques using the original planning target volume (PTV). First, a conventional technique using a wedged beam pair was applied, yielding a dose distribution conformal to the shape of the PTV. Next, an IMRT technique using a fluence map optimization with predefined constraints was designed. A dose of 66 Gy in the PTV was given at the International Commission on Radiation Units and Measures (ICRU) dose prescription point. Dose-volume histograms of the PTV and organs at risk (OARs), such as auditory system, oral cavity, and spinal cord, were compared. The dose in the OARs was lower in the IMRT plans. The mean volume of the middle ear receiving a dose higher than 50 Gy decreased from 66.5% to 33.4%. The mean dose in the oral cavity decreased from 19.4 Gy to 16.6 Gy. The auditory system can be spared if the distance between the inner ear and the PTV is 0.6 cm or larger, and if the overlap between the middle ear and the PTV is smaller than 10%. The maximum dose in the spinal cord was below 40 Gy in all treatment plans. The mean volume of the PTV receiving less than 95% of the prescribed dose increased in the IMRT plan slightly from 3.3% to 4.3 % (p = 0.01). The mean volume receiving more than 107% increased from 0.9% to 2.5% (p = 0.02). It can be concluded that the auditory system, as well as the oral cavity, can be spared with IMRT, but at the cost of a slightly larger dose inhomogeneity in the PTV. The IMRT technique can therefore, in most cases, be recommended as the treatment

  15. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer

    SciTech Connect

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R.; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  16. Correcting radiation survey data to account for increased leakage during intensity modulated radiotherapy treatments.

    PubMed

    Kairn, T; Crowe, S B; Trapp, J V

    2013-11-01

    Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially costly overestimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls, and other walls) by evaluating three different bunker designs. Radiation survey measurements of primary, scattered, and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0° to 330°, to assess the effects of radiation beam direction on the results. For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage. Results of this study suggest that IMRT workload corrections are unnecessary, for survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in this study are repeated for the

  17. Review of studies on modulating enzyme activity by low intensity electromagnetic radiation.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2010-01-01

    This paper is a compilation of our findings on non-thermal effects of electromagnetic radiation (EMR) at the molecular level. The outcomes of our studies revealed that that enzymes' activity can be modulated by external electromagnetic fields (EMFs) of selected frequencies. Here, we discuss the possibility of modulating protein activity using visible and infrared light based on the concepts of protein activation outlined in the resonant recognition model (RRM), and by low intensity microwaves. The theoretical basis behind the RRM model expounds a potential interaction mechanism between electromagnetic radiation and proteins as well as protein-protein interactions. Possibility of modulating protein activity by external EMR is experimentally validated by irradiation of the L-lactate Dehydrogenase enzyme.

  18. [Pain relief by low-intensity frequency-modulated millimeter waves acting on the acupuncture points].

    PubMed

    Samosiuk, I Z; Kulikovich, Iu N; Tamarova, Z A; Samosiuk, N I; Kazhanova, A K

    2000-01-01

    Analgetic effect of low-intensive frequency-modulated millimetric waves (MW) was studied in mice with formalin induced nociceptive behavior reaction (licking of defeat hindpaw). MW were applied to the acupoint E 36 of the defeat hindpaw. The following MW were used: 60 GHz (1) and 118 GHz (2) which were modulated by 4 Hz; noise MW within the range of 42-95 GHz (3) and 90-140 GHz (4) which were modulated in accidental order by frequencies 1-60 Hz; combinations of fixed frequencies with noise - 60 GHz + noise 42-95 GHz (5) and 118 GHz + noise 90-140 GHz (6). All used MW combinations suppressed licking of the defeat hindpaw and increased duration of sleep and eating. The strongest analgesia was achieved in series 1-3 (42.4-69.7%), the weakest in series 6 and 4 of the experiment (12.2-19.7%).

  19. Value of Intensity-Modulated Radiotherapy in Stage IV Head-and-Neck Squamous Cell Carcinoma

    SciTech Connect

    Dirix, Piet; Nuyts, Sandra

    2010-12-01

    Purpose: To review outcome and toxicity of Stage IVa and IVb head-and-neck squamous cell carcinoma patients treated with concomitant chemotherapy and intensity-modulated radiotherapy (IMRT) according to a hybrid fractionation schedule. Methods and Materials: Between 2006 and 2008, 42 patients with Stage IV head-and-neck squamous cell carcinoma were irradiated according to a hybrid fractionation schedule consisting of 20 fractions of 2 Gy (once daily), followed by 20 fractions of 1.6 Gy (twice daily), to a total dose of 72 Gy. Chemotherapy (cisplatinum, 100mg/m{sup 2}) was administered at the start of Weeks 1 and 4. Treatment outcome and toxicity were retrospectively compared with a previous patient group (n = 55), treated according to the same schedule, but without intensity modulation. Results: Locoregional control (LRC) and overall survival were 81% and 56% after 2 years, respectively. In comparison with the previous cohort, no significant differences were observed regarding either LRC (66%, p = 0.38) or overall survival (73%, p = 0.29). No Grade 4 or 5 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of late Grade 2 or 3 xerostomia (52.9% vs. 90.2%, p < 0.001). No difference was observed regarding late Grade 2 or 3 dysphagia (p = 0.66). Conclusions: Intensity-modulated chemoradiotherapy does not compromise LRC and significantly reduces late toxicity, especially regarding xerostomia.

  20. Modulation of the dayside diffuse auroral intensity by the solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Shi, Run; Hu, Ze-Jun; Ni, Binbin; Han, Desheng; Chen, Xiang-Cai; Zhou, Chen; Gu, Xudong

    2014-12-01

    Compared to the recently improved understanding of the nightside diffuse aurora, the mechanism(s) responsible for the dayside diffuse auroral precipitation remains limitedly understood. We investigate the dayside diffuse aurora observed by the all-sky imagers of Chinese Arctic Yellow River Station in the time interval of 02:00-10:00 UT (05:00-13:00 magnetic local time) on 2 January 2006. In this interval, the intensity of dayside diffuse aurora is highly correlated with the solar wind dynamic pressure with a maximum coefficient of 0.89. Moreover, there are similar spectra characteristics in the Pc5 range between the intensity of dayside diffuse aurora and solar wind dynamic pressure (proton density) during a portion of the time interval, in which the interplanetary magnetic field Bz is northward. The observation indicates that changes in solar wind dynamic pressure can efficiently modulate the magnitude of the dayside diffuse aurora, except when the interplanetary magnetic field is southward. The enhancement of the solar wind dynamic pressure can provide favorable circumstances for dayside chorus wave generation, so we consider that the dayside chorus could be a candidate for the production of the dayside diffuse aurora. Furthermore, since the compressional Pc4-Pc5 pulsations can also modulate the intensity of whistler mode chorus waves, the solar wind dynamic pressure modulates the dayside diffuse aurora through affecting dayside chorus wave activity and the associated scattering process.

  1. Cardiac autonomic modulation in healthy elderly after different intensities of dynamic exercise

    PubMed Central

    Droguett, Viviane Santos López; Santos, Amilton da Cruz; de Medeiros, Carlos Eduardo; Marques, Douglas Porto; do Nascimento, Leone Severino; Brasileiro-Santos, Maria do Socorro

    2015-01-01

    Purpose To investigate the heart rate (HR) and its autonomic modulation at baseline and during dynamic postexercise (PEX) with intensities of 40% and 60% of the maximum HR in healthy elderly. Methods This cross-sectional study included ten apparently healthy people who had been submitted to a protocol on a cycle ergometer for 35 minutes. Autonomic modulation was evaluated by spectral analysis of HR variability (HRV). Results A relevant increase in HR response was observed at 15 minutes postexercise with intensities of 60% and 40% of the maximum HR (10±2 bpm versus 5±1 bpm, respectively; P=0.005), and a significant reduction in HRV was also noted with 40% and 60% intensities during the rest period, and significant reduction in HRV (RR variance) was also observed in 40% and 60% intensities when compared to the baseline, as well as between the post-exercise intensities (1032±32 ms versus 905±5 ms) (P<0.001). In the HRV spectral analysis, a significant increase in the low frequency component HRV and autonomic balance at 40% of the maximum HR (68±2 normalized units [nu] versus 55±1 nu and 2.0±0.1 versus 1.2±0.1; P<0.001) and at 60% of the maximum HR (77±1 nu versus 55±1 nu and 3.2±0.1 versus 1.2±0.1 [P<0.001]) in relation to baseline was observed. A significant reduction of high frequency component at 40% and 60% intensities, however, was observed when compared to baseline (31±2 nu and 23±1 nu versus 45±1 nu, respectively; P<0.001). Moreover, significant differences were observed for the low frequency and high frequency components, as well as for the sympathovagal balance between participants who reached 40% and 60% of the maximum HR. Conclusion There was an increase in the HR, sympathetic modulation, and sympathovagal balance, as well as a reduction in vagal modulation in the elderly at both intensities of the PEX. PMID:25653509

  2. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    SciTech Connect

    Hoover, Douglas A. Chen, Jeff Z.; MacFarlane, Michael; Wong, Eugene; Battista, Jerry J.

    2015-02-15

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT.

  3. Delivery of modulated electron beams with conventional photon multi-leaf collimators

    NASA Astrophysics Data System (ADS)

    Klein, Eric E.; Mamalui-Hunter, Maria; Low, Daniel A.

    2009-01-01

    Electron beam radiotherapy is an accepted method to treat shallow tumors. However, modulation of electrons to customize dose distributions has not readily been achieved. Studies of bolus and tertiary collimation systems have been met with limitations. We pursue the use of photon multi-leaf collimators (MLC) for modulated electron radiotherapy (MERT) to achieve customized distributions for potential clinical use. As commercial planning systems do not support the use of MLC with electrons, planning was conducted using Monte Carlo calculations. Segmented and dynamic modulated delivery of multiple electron segments was configured, calculated and delivered for validation. Delivery of electrons with segmented or dynamic leaf motion was conducted. A phantom possessing an idealized stepped target was planned and optimized with subsequent validation by measurements. Finally, clinical treatment plans were conducted for post-mastectomy and cutaneous lymphoma of the scalp using forward optimization techniques. Comparison of calculations and measurements was successful with agreement of ±2%/2 mm for the energies, segment sizes, depths tested for delivered segments for the dynamic and segmented delivery. Clinical treatment plans performed provided optimal dose coverage of the target while sparing distal organs at risk. Execution of plans using an anthropomorphic phantom to ensure safe and efficient delivery was conducted. Our study validates that MERT is not only possible using the photon MLC, but the efficient and safe delivery inherent with the dynamic delivery provides an ideal technique for shallow tumor treatment.

  4. Comparison of intensity modulated radiotherapy (IMRT) with intensity modulated particle therapy (IMPT) using fixed beams or an ion gantry for the treatment of patients with skull base meningiomas

    PubMed Central

    2012-01-01

    Background To examine the potential improvement in treatment planning for patients with skull base meningioma using IMRT compared to carbon ion or proton beams with and without a gantry. Methods Five patients originally treated with photon IMRT were selected for the study. Ion beams were chosen using a horizontal beam or an ion gantry. Intensity controlled raster scanning and the intensity modulated particle therapy mode were used for plan optimization. The evaluation included analysis of dose-volume histograms of the target volumes and organs at risk. Results In comparison with carbon and proton beams only with horizontal beams, carbon ion treatment plans could spare the OARs more and concentrated on the target volumes more than proton and photon IMRT treatment plans. Using only a horizontal fixed beam, satisfactory plans could be achieved for skull base tumors. Conclusion The results of the case studies showed that using IMPT has the potential to overcome the lack of a gantry for skull base tumors. Carbon ion plans offered slightly better dose distributions than proton plans, but the differences were not clinically significant with established dose prescription concepts. PMID:22439607

  5. Optimal matching of 3D film-measured and planned doses for intensity-modulated radiation therapy quality assurance.

    PubMed

    Shin, Dongho; Yoon, Myonggeun; Park, Sung Yong; Park, Dong Hyun; Lee, Se Byeong; Kim, Dae Yong; Cho, Kwan Ho

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) is one of the most complex applications of radiotherapy that requires patient-specific quality assurance (QA). Here, we describe a novel method of 3-dimensional (3D) dose-verification using 12 acrylic slabs in a 3D phantom (30 x 30 x 12 cm(3)) with extended dose rate (EDR2) films, which is both faster than conventionally used methods, and clinically useful. With custom-written software modules written in Microsoft Excel Visual Basic Application, the measured and planned dose distributions for the axial, coronal, and sagittal planes were superimposed by matching their origins, and the point doses were compared at all matched positions. Then, an optimization algorithm was used to correct the detected setup errors. The results show that this optimization method significantly reduces the average maximum dose difference by 7.73% and the number of points showing dose differences of more than 5% by 8.82% relative to the dose differences without an optimization. Our results indicate that the dose difference was significantly decreased with optimization and this optimization method is statistically reliable and effective. The results of 3D optimization are discussed in terms of various patient-specific QA data obtained from statistical analyses.

  6. Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cells

    PubMed Central

    Andocs, G; Rehman, M U; Zhao, Q-L; Tabuchi, Y; Kanamori, M; Kondo, T

    2016-01-01

    Loco-regional hyperthermia treatment has long history in oncology. Modulated electro-hyperthermia (mEHT, trade name: oncothermia) is an emerging curative treatment method in this field due to its highly selective actions. The impedance-matched, capacitive-coupled modulated radiofrequency (RF) current is selectively focused in the malignant cell membrane of the cancer cells. Our objective is studying the cell-death process and comparing the cellular effects of conventional water-bath hyperthermia treatment to mEHT. The U937 human histiocytic lymphoma cell line was used for the experiments. In the case of conventional hyperthermia treatment, cells were immersed in a thermoregulated water bath, whereas in the case of mEHT, the cells were treated using a special RF generator (LabEHY, Oncotherm) and an applicator. The heating dynamics, the maximum temperature reached (42 °C) and the treatment duration (30 min) were exactly the same in both cases. Cell samples were analysed using different flow cytometric methods as well as microarray gene expression assay and western blot analysis was also used to reveal the molecular basis of the induced effects. Definite difference was observed in the biological response to different heat treatments. At 42 °C, only mEHT induced significant apoptotic cell death. The GeneChip analysis revealed a whole cluster of genes, which are highly up-regulated in case of only RF heating, but not in conventional heating. The Fas, c-Jun N-terminal kinases (JNK) and ERK signalling pathway was the dominant factor to induce apoptotic cell death in mEHT, whereas the cell-protective mechanisms dominated in case of conventional heating. This study has clearly shown that conventional hyperthermia and RF mEHT can result in different biological responses at the same temperature. The reason for the difference is the distinct, non-homogenous energy distribution on the cell membrane, which activates cell death-related signalling pathways in m

  7. Modulation of growth and immunity by dietary supplementation with resveratrol in young chickens receiving conventional vaccinations.

    PubMed

    Zhang, CaiYun; Tian, YaDong; Yan, FengBin; Kang, XiangTao; Han, RuiLi; Sun, GuiRong; Zhang, HuiRu

    2014-08-01

    To determine the effects of resveratrol (RES) on growth and immune status in chickens receiving conventional vaccinations. Two hundred forty 1-day-old layer chickens. Chickens received conventional vaccinations throughout the study and were randomly assigned to 1 of 4 treatments in 6 replicate pens/treatment. Treatments included 1 control group (basal diet) and 3 experimental groups fed the basal diet plus 200, 400, and 800 mg of RES/kg of diet. At 40 days of age, 1 bird/pen was randomly selected to have blood and tissues collected to determine serum immunity indices; mRNA relative expression of proinflammatory cytokines in splenocytes; mRNA relative expression of nuclear transcription factor-κB, growth hormone receptor, and insulin-like growth factor-1 in hepatocytes; cell proliferation; and apoptosis. Average daily gain, antibody titers against Newcastle disease virus and avian influenza viruses H5 and H9, and insulin-like growth factor-1 expression were quadratically increased with increasing RES concentration. In hepatocytes, growth hormone receptor gene mRNA relative expression was quadratically increased and nuclear transcription factor-κB gene mRNA relative expression was linearly decreased with increasing RES concentration. In splenocytes, nterleukin-1β and tumor necrosis factor-α mRNA relative expression was linearly decreased with increasing RES concentration. Resveratrol supplementation delayed cell proliferation and reduced apoptosis in immunocytes. With increasing RES concentration, proliferation index and relative weight of the thymus, ratio of CD4+ to CD8+ cells, and CD4+ cell count were quadratically increased, and IgM concentration was linearly increased. Dietary resveratrol supplementation improved growth, protected immunocytes against antigen-induced apoptosis, and upregulated immune response in chickens that received conventional vaccinations.

  8. Unique features of cylindrical type solar-module contrasted with plane or conventional type ones

    NASA Astrophysics Data System (ADS)

    Hiraki, Hirohisa; Hiraki, Akio; Maeda, Masakatsu; Takahashi, Yasuo

    2012-08-01

    Due to their shape and construction, Cu(In,Ga)Se2 [CIGS] cylindrical photovoltaic [PV] panels have unique features that planar or conventional PV panels do not have. For example, a) they capture sunlight over an angular range of 360°, b) they are self-ballasting (no roof penetrations, no attachments required) and c) they are high-reliability hermetically sealed cylindrical packages. In field tests in Japan, cylindrical PV panels have proven their durability against typhoons, and also their excellent electrical properties. Finally, as a new application of cylindrical PV panels, we suggest the new concept of fusion or combination of PV generation and agriculture.

  9. Intensity-modulated radiotherapy: first results with this new technology on neoplasms of the head and neck.

    PubMed

    Kuppersmith, R B; Greco, S C; Teh, B S; Donovan, D T; Grant, W; Chiu, J K; Cain, R B; Butler, E B

    1999-04-01

    Intensity-modulated beam radiotherapy (IMRT) delivers a highly conformal, three-dimensional (3-D) distribution of radiation doses that is not possible with conventional methods. When administered to patients with head and neck tumors, IMRT allows for the treatment of multiple targets with different doses, while simultaneously minimizing radiation to uninvolved critical structures such as the parotid glands, optic chiasm, and mandible. With 3-D computerized dose optimization, IMRT is a vast improvement over the customary trial-and-error method of treatment planning. We retrospectively reviewed the charts of the first 28 head and neck patients at our institution who were treated with IMRT. All had head and neck neoplasms, including squamous cell carcinoma, adenoid cystic carcinoma, paraganglioma, and angiofibroma. Total radiation doses ranged from 1,400 to 7,100 cGy, and daily doses ranged from 150 to 400 cGy/day. A quality assurance system ensured that computer-generated dosimetry matched film dosimetry in all cases. For midline tumors, this system allowed us to decrease the dose to the parotid glands to less than 3,000 cGy. The incidence of acute toxicity was drastically lower than that seen with conventional radiotherapy delivery to similar sites. This is the first report of the application of IMRT strictly to head and neck neoplasms. We discuss the indications, technique, and initial results of this promising new technology. We also introduce the concept of the Simultaneous Modulated Accelerated Radiation Therapy boost technique, which has several advantages over other altered fractionation schemes.

  10. Intensive vs. conventional insulin management initiated at diagnosis in children with diabetes: should payer source influence the choice of therapy?

    PubMed

    Beck, Joni K; Lewis, Teresa V; Logan, Kathy J; Harrison, Donald L; Gardner, Andrew W; Copeland, Kenneth C

    2009-09-01

    Intensive insulin management (IIM) in type 1 diabetes facilitates improved glycemic control and a reduction in long-term diabetes complications. We hypothesized that IIM can be started at diagnosis without deleterious effects on hemoglobin A1c (A1c), body mass index (BMI), and severe hypoglycemia regardless of payer source. Type 1 diabetes patients aged 0-18 yrs, in an academic endocrinology practice were identified for a retrospective chart review. Fifty-four patients on conventional insulin management (CIM) were compared to 51 on IIM. Insulin regimens, payer, and A1c values were compared at baseline, 12, 15, and 18 months. Secondary analyses included BMI changes and hypoglycemia frequency. Overall mean A1c values for the IIM group (8.15 +/- 1.41) were lower across all time periods compared to the CIM group (8.57 +/- 1.52). Repeated measures anova revealed a significant treatment group effect (p = 0.01) with no time effect (p = 0.87) or interaction (group by time) effect (p = 0.65). Private insurance patients had lower mean A1C values than Medicaid patients (chi(2) = 4.5186, p < 0.05), regardless of regimen. A1c values between IIM and CIM were not statistically different within the Medicaid group. BMI changes between groups were not different. Chi-square analysis for severe hypoglycemia revealed no group differences. In conclusion, IIM had improved glycemic control. Private insurance vs. Medicaid patients had lower mean A1c values regardless of treatment group. Considering Medicaid patients only, IIM was not inferior, and for those with private insurance, IIM was superior. IIM, initiated at diagnosis, is a reasonable approach for newly diagnosed children with diabetes regardless of payer source.

  11. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    SciTech Connect

    Li, Y; Tian, Z; Jiang, S; Jia, X; Song, T; Wu, Z; Liu, Y

    2015-06-15

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  12. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors

    NASA Astrophysics Data System (ADS)

    Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio

    2010-03-01

    The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.

  13. Adaptive illumination through spatial modulation of light intensity and image inversion

    NASA Astrophysics Data System (ADS)

    Castellini, P.; Cecchini, S.; Stroppa, L.; Paone, N.

    2013-05-01

    The paper introduces the concept of spatial modulation of light intensity in the context of vision-based quality control, with the aim to improve image quality, measurable by indices such as image contrast and Tenengrad, so as to enhance the level of confidence of the diagnosis performed by image processing. The proposed technique is based on the projection of spatially modulated light intensity distribution by a digital light projector that allows an arbitrary light distribution to be projected on the target. The projected spatial distribution of light is determined by implementing an algorithm based on image inversion: the image acquired by the camera under uniform illumination is inverted and it is then used to modulate the light spatial distribution for projection. The process is repeated iteratively with the purpose to enhance image quality until convergence. The technique proves particularly valuable to avoid saturation from reflecting surfaces, which are often found in industrial practice. The procedure is tested and validated both by a numerical model and by an experimental validation, referring to a significant problem for the washing machine manufacturing industry. The use of image quality estimators confirms the effectiveness of the method.

  14. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy

    SciTech Connect

    Kry, Stephen F.; Salehpour, Mohammad . E-mail: msalehpour@mdanderson.org; Followill, David S.; Stovall, Marilyn; Kuban, Deborah A.; White, R. Allen; Rosen, Isaac I.

    2005-07-15

    Purpose: To measure the photon and neutron out-of-treatment-field dose equivalents to various organs from different treatment strategies (conventional vs. intensity-modulated radiation therapy [IMRT]) at different treatment energies and delivered by different accelerators. Methods and Materials: Independent measurements were made of the photon and neutron out-of-field dose equivalents resulting from one conventional and six IMRT treatments for prostate cancer. The conventional treatment used an 18-MV beam from a Clinac 2100; the IMRT treatments used 6-MV, 10-MV, 15-MV, and 18-MV beams from a Varian Clinac 2100 accelerator and 6-MV and 15-MV beams from a Siemens Primus accelerator. Photon doses were measured with thermoluminescent dosimeters in a Rando phantom, and neutron fluence was measured with gold foils. Dose equivalents to the colon, liver, stomach, lung, esophagus, thyroid, and active bone marrow were determined for each treatment approach. Results: For each treatment approach, the relationship between dose equivalent per MU, distance from the treatment field, and depth in the patient was examined. Photon dose equivalents decreased approximately exponentially with distance from the treatment field. Neutron dose equivalents were independent of distance from the treatment field and decreased with increasing tissue depth. Neutrons were a significant contributor to the out-of field dose equivalent for beam energies {>=}15 MV. Conclusions: Out-of-field photon and neutron dose equivalents can be estimated to any point in a patient undergoing a similar treatment approach from the distance of that point to the central axis and from the tissue depth. This information is useful in determining the dose to critical structures and in evaluating the risk of associated carcinogenesis.

  15. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    PubMed

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  16. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    PubMed Central

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  17. Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling

    PubMed Central

    Mukherjee, B.; Kaushik, N.; Tripathi, Ravi P. N.; Joseph, A. M.; Mohapatra, P. K.; Dhar, S.; Singh, B. P.; Kumar, G. V. Pavan; Simsek, E.; Lodha, S.

    2017-01-01

    Modulation of photoluminescence of atomically thin transition metal dichalcogenide two-dimensional materials is critical for their integration in optoelectronic and photonic device applications. By coupling with different plasmonic array geometries, we have shown that the photoluminescence intensity can be enhanced and quenched in comparison with pristine monolayer MoS2. The enhanced exciton emission intensity can be further tuned by varying the angle of polarized incident excitation. Through controlled variation of the structural parameters of the plasmonic array in our experiment, we demonstrate modulation of the photoluminescence intensity from nearly fourfold quenching to approximately threefold enhancement. Our data indicates that the plasmonic resonance couples to optical fields at both, excitation and emission bands, and increases the spontaneous emission rate in a double spacing plasmonic array structure as compared with an equal spacing array structure. Furthermore our experimental results are supported by numerical as well as full electromagnetic wave simulations. This study can facilitate the incorporation of plasmon-enhanced transition metal dichalcogenide structures in photodetector, sensor and light emitter applications. PMID:28134260

  18. Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling

    NASA Astrophysics Data System (ADS)

    Mukherjee, B.; Kaushik, N.; Tripathi, Ravi P. N.; Joseph, A. M.; Mohapatra, P. K.; Dhar, S.; Singh, B. P.; Kumar, G. V. Pavan; Simsek, E.; Lodha, S.

    2017-01-01

    Modulation of photoluminescence of atomically thin transition metal dichalcogenide two-dimensional materials is critical for their integration in optoelectronic and photonic device applications. By coupling with different plasmonic array geometries, we have shown that the photoluminescence intensity can be enhanced and quenched in comparison with pristine monolayer MoS2. The enhanced exciton emission intensity can be further tuned by varying the angle of polarized incident excitation. Through controlled variation of the structural parameters of the plasmonic array in our experiment, we demonstrate modulation of the photoluminescence intensity from nearly fourfold quenching to approximately threefold enhancement. Our data indicates that the plasmonic resonance couples to optical fields at both, excitation and emission bands, and increases the spontaneous emission rate in a double spacing plasmonic array structure as compared with an equal spacing array structure. Furthermore our experimental results are supported by numerical as well as full electromagnetic wave simulations. This study can facilitate the incorporation of plasmon-enhanced transition metal dichalcogenide structures in photodetector, sensor and light emitter applications.

  19. System design of programmable 4f phase modulation techniques for rapid intensity shaping: a conceptual comparison

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2016-03-01

    The present study analyses three beam shaping approaches with respect to a light-efficient generation of i) patterns and ii) multiple spots by means of a generic optical 4f-setup. 4f approaches share the property that due to the one-to-one relationship between output intensity and input phase, the need for time-consuming, iterative calculation can be avoided. The resulting low computational complexity offers a particular advantage compared to the widely used holographic principles and makes them potential candidates for real-time applications. The increasing availability of high-speed phase modulators, e.g. on the basis of MEMS, calls for an evaluation of the performances of these concepts. Our second interest is the applicability of 4f methods to high-power applications. We discuss the variants of 4f intensity shaping by phase modulation from a system-level point of view which requires the consideration of application relevant boundary conditions. The discussion includes i) the micro mirror based phase manipulation combined with amplitude masking in the Fourier plane, ii) the Generalized Phase Contrast, and iii) matched phase-only correlation filtering combined with GPC. The conceptual comparison relies on comparative figures of merit for energy efficiency, pattern homogeneity, pattern image quality, maximum output intensity and flexibility with respect to the displayable pattern. Numerical simulations illustrate our findings.

  20. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    NASA Astrophysics Data System (ADS)

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-02-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  1. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    USGS Publications Warehouse

    van Hengstrum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  2. Hippocampal-Brainstem Connectivity Associated with Vagal Modulation after an Intense Exercise Intervention in Healthy Men

    PubMed Central

    Bär, Karl-Jürgen; Herbsleb, Marco; Schumann, Andy; de la Cruz, Feliberto; Gabriel, Holger W.; Wagner, Gerd

    2016-01-01

    Regular physical exercise leads to increased vagal modulation of the cardiovascular system. A combination of peripheral and central processes has been proposed to underlie this adaptation. However, specific changes in the central autonomic network have not been described in human in more detail. We hypothesized that the anterior hippocampus known to be influenced by regular physical activity might be involved in the development of increased vagal modulation after a 6 weeks high intensity intervention in young healthy men (exercise group: n = 17, control group: n = 17). In addition to the determination of physical capacity before and after the intervention, we used resting state functional magnetic resonance imaging and simultaneous heart rate variability assessment. We detected a significant increase of the power output at the anaerobic threshold of 11.4% (p < 0.001), the maximum power output Pmax of 11.2% (p < 0.001), and VO2max adjusted for body weight of 4.7% (p < 0.001) in the exercise group (EG). Comparing baseline (T0) and post-exercise (T1) values of parasympathetic modulation of the exercise group, we observed a trend for a decrease in heart rate (p < 0.06) and a significant increase of vagal modulation as indicated by RMSSD (p < 0.026) during resting state. In the whole brain analysis, we found that the connectivity pattern of the right anterior hippocampus (aHC) was specifically altered to the ventromedial anterior cortex, the dorsal striatum and to the dorsal vagal complex (DVC) in the brainstem. Moreover, we observed a highly significant negative correlation between increased RMSSD after exercise and decreased functional connectivity from the right aHC to DVC (r = −0.69, p = 0.003). This indicates that increased vagal modulation was associated with functional connectivity between aHC and the DVC. In conclusion, our findings suggest that exercise associated changes in anterior hippocampal function might be involved in increased vagal modulation. PMID

  3. SU-E-T-503: Intensity Modulated Proton Therapy (IMPT) Versus Intensity Modulated X-Ray Therapy (IMRT) for Patient with Hepatocellular Carcinoma: A Dosimetric Comparison

    SciTech Connect

    Singh, H; Zhao, L; Prabhu, K; Rana, S; Zheng, Y

    2015-06-15

    Purpose This study compares the dosimetric parameters in treatment of unresectable hepatocellular carcinoma between intensity modulated proton therapy (IMPT) and intensity modulated x-ray radiation therapy (IMRT). Methods and Materials: We studied four patients treated at our institution. All patients were simulated supine with 4D-CT using a GE light speed simulator with a maximum slice thickness of 3mm. The average CT and an internal target volume to account for respiration motion were used for planning. Both IMRT and IMPT plans were created using Elekta’s CMSXiO treatment planning system (TPS). The prescription dose was 58.05 CGE in 15 fractions. The IMRT plans had five beams with combination of co-planar and non-co-planar. The IMPT plans had 2 to 3 beams. Dose comparison was performed based on the averaged results of the four patients. Results The mean dose and V95% to PTV were 58.24CGE, 98.57% for IMPT, versus 57.34CGE and 96.68% for IMRT, respectively. The V10, V20, V30 and mean dose of the normal liver for IMPT were 23.10%, 18.61%, 13.75% and 9.78 CGE; and 47.19%, 37.55%, 22.73% and 17.12CGE for IMRT. The spinal cord didn’t receive any dose in IMPT technique, but received a maximum of 18.77CGE for IMRT. The IMPT gave lower maximum dose to the stomach as compared to IMRT (19.26 vs 26.35CGE). V14 for left and right kidney was 0% and 2.32% for IMPT and 3.89% and 29.54% for IMRT. The mean dose, V35, V40 and V45 for small bowl were similar in both techniques, 0.74CGE, 6.27cc, 4.85cc and 3.53 cc for IMPT, 3.47CGE, 9.73cc, 7.61cc 5.35cc for IMRT. Conclusion Based on this study, IMPT plans gave less dose to the critical structures such as normal liver, kidney, stomach and spinal cord as compared to IMRT plans, potentially leading to less toxicity and providing better quality of life for patients.

  4. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    SciTech Connect

    Boehling, Nicholas S.; Grosshans, David R.; Bluett, Jaques B.; Palmer, Matthew T.; Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan; Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y.

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  5. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    SciTech Connect

    Lee, Katrina Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  6. The radiobiological effect of intra-fraction dose-rate modulation in intensity modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Bewes, J. M.; Suchowerska, N.; Jackson, M.; Zhang, M.; McKenzie, D. R.

    2008-07-01

    Intensity-modulated radiation therapy (IMRT) achieves optimal dose conformity to the tumor through the use of spatially and temporally modulated radiation fields. In particular, average dose rate and instantaneous dose rate (pulse amplitude) are highly variable within a single IMRT fraction. In this study we isolate these variables and determine their impact on cell survival. Survival was assessed using a clonogenic assay. Two cell lines of differing radiosensitivity were examined: melanoma (MM576) and non-small cell lung cancer (NCI-H460). The survival fraction was observed to be independent of instantaneous dose rate. A statistically significant trend to increased survival was observed as the average dose rate was decreased, for a constant total dose. The results are relevant to IMRT practice, where average treatment times can be significantly extended to allow for movement of the multi-leaf collimator (MLC). Our in vitro study adds to the pool of theoretical evidence for the consequences of protracted treatments. We find that extended delivery times can substantially increase the cell survival. This also suggests that regional variation in the dose-rate history across a tumor, which is inherent to IMRT, will affect radiation dose efficacy.

  7. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Harrison, F. W.; Obland, M. D.; Ismail, S.; Meadows, B.; Browell, E. V.

    2014-12-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper.

  8. An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Zhu, Zihang; Zhao, Shanghong; Li, Yongjun; Han, Lei; Zhao, Jing

    2014-03-01

    A simple approach for high loss intersatellite microwave photonic link with intensity modulation and coherent balanced detection is proposed. In the transmitter, the double sideband-suppressed carrier (DSB-SC) modulated optical signal and optical carrier (OC) are combined by employing a polarization combiner to chose and control the signals polarization directions, while in the receiver, they are selected respectively by using a polarization splitter for they have orthogonal polarization directions. The separated DSB-SC signal and OC put into balanced detectors and the coherent detection is realized without a local oscillator (LO). At the output, the fundamental signal is augmented and the third-order distortion is suppressed for the DSB-SC modulation, the second-order distortion is removed for the balanced detection and the noise is reduced for the polarization direction control. The signal to noise and distortion ratio (SNDR) can be optimized by adjusting the power of OC and modulation index. The simulation results show that, a SNDR higher than 30 dB can be obtained for the proposed method, which is in agreement with the theoretical analysis.

  9. Intensity-dependent modulation of optically active signals in a chiral metamaterial.

    PubMed

    Rodrigues, Sean P; Lan, Shoufeng; Kang, Lei; Cui, Yonghao; Panuski, Patrick W; Wang, Shengxiang; Urbas, Augustine M; Cai, Wenshan

    2017-02-27

    Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation.

  10. Intensity-dependent modulation of optically active signals in a chiral metamaterial

    PubMed Central

    Rodrigues, Sean P.; Lan, Shoufeng; Kang, Lei; Cui, Yonghao; Panuski, Patrick W.; Wang, Shengxiang; Urbas, Augustine M.; Cai, Wenshan

    2017-01-01

    Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation. PMID:28240288

  11. Safety and efficacy of intensity-modulated radiotherapy in the management of spermatic cord sarcoma.

    PubMed

    Cerda, T; Martin, É; Truc, G; Créhange, G; Maingon, P

    2017-02-01

    Spermatic cord sarcoma is a rare disease, which management remains controversial due to the lack of guidelines. The standard therapeutic approach is surgical: wide soft-tissue resection with radical inguinal orchidectomy, The diagnosis is made during the analysis of the specimen. The high rate of local recurrence indicates adjuvant radiotherapy of the tumor bed. The aim of this series is to determine the efficacy and safety of postoperative intensity-modulated radiotherapy for spermatic cord sarcomas. Our series included five consecutive cases of spermatic cord sarcoma treated between 2011 and 2014. The indications for radiotherapy were: R1 status after initial surgery, R1 status after wide en bloc resection and orchiectomy, high French federation of cancer centers (FNCLCC) grade, tumor size over 5cm, tumor resection during surgery. Median age at diagnosis was 66years (range 46-84years). Median follow-up was 18months (range 6-28months). Four patients had repeat surgery after incomplete removal. All surgeries were orchidectomy with primary ligation of testicular vessels. One patient did not have an in sano margin after the second surgical procedure. The median tumor size was 60mm (range 30-150mm). No recurrence was observed during the follow-up. No grade 4 toxicities were reported and the most frequent acute toxicity was dermatitis. No recurrence was reported after adjuvant intensity-modulated radiotherapy. The treatment is feasible and well tolerated and seems to provide encouraging results regarding locoregional control of the disease. Dynamic or rotational intensity-modulated radiotherapy is now recommended to decrease acute toxicities while improving the efficacy of this approach. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  12. A technique of intensity-modulated radiosurgery (IMRS) for spinal tumors.

    PubMed

    Yin, Fang-Fang; Ryu, Samuel; Ajlouni, Munther; Zhu, Jingeng; Yan, Hui; Guan, Harrison; Faber, Kathleen; Rock, Jack; Abdalhak, Muwaffak; Rogers, Lisa; Rosenblum, Mark; Kim, Jae Ho

    2002-12-01

    This study is to demonstrate the feasibility of spinal radiosurgery using an image-guided intensity-modulated radiosurgical (IMRS) procedure. A dedicated Novalis shaped beam surgery unit equipped with a built-in micro-multileaf collimator (mMLC) with a single 6 MV photon beam was used. Each patient was simulated in the supine position using an AcQsim CT simulator with infrared sensitive markers for localization. A variety of different treatment plans were developed, but the most common plan was the use of seven coplanar intensity-modulated beams to minimize radiation to critical organs such as the spinal cord and kidneys. An automatic localization device based on infrared and video cameras was used to guide the initial patient setup. Two keV x-ray imaging systems were used to identify potential deviations from the planned isocenter. A total of 25 patients with spinal tumors have been treated using this procedure with a single prescription dose ranging from 6 to 12 Gy. The final verification images indicated that the average isocenter deviation from the planned isocenter was within 2 mm. The phantom verification of isocenter doses indicated that the average deviation of measured isocenter doses from the planned isocenter doses for all patients treated with intensity-modulated beams was less than 2%. Film dose measurement in a phantom study demonstrated good agreement of above 50% isodose lines between the planned and measured results. Preliminary experience shows that precision delivery of high dose radiation could be administered to the planned target volume while the dose to the critical organs is kept within tolerable limits.

  13. Intense propagation in a magnetized cold plasma: modulational instabilities of fully relativistic electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Kates, Ronald E.; Kaup, D. J.

    1992-08-01

    This paper studies modulational instabilities of intensely propagating, circularly polarized, plane electromagnetic plasma waves in the presence of an external magnetic field pointing exactly in the direction of propagation. By ‘intense propagation’, we mean that eEo/mw (where Eo is the amplitude of the wave's transverse electric field) is comparable to unity, so that the problem is fully nonlinear and cannot be solved by regular perturbation methods. The positive component may consists of either positrons or singly charged ions. The plasma is assumed to be fully ionized and cold. Modulated intensely propagating electromagnetic waves couple (in general) to longitudinal motions via the ponderomotive force. For given wavenumber, the frequency of the wave depends on the amplitude not only via the obvious mechanism of relativistic mass increase but also via the density inhomogeneities induced by the ponderomotive force. This coupling effectively involves derivatives of the envelope, and the effect of longitudinal motions is comparable to that of relativistic nonlinearities. For this reason, a proper expansion procedure requires verification that one has obtained a self-consistent solution of all the field equations up to the appropriate order, including the longitudinal equations. This is best accomplished using the well-known two-timing approach. Modulational instability arises in the case of an ion-electron plasma with relativistic electrons but non-relativistic ions. However, for parameter values appropriate to pulsar magnetospheres, where the electron-cyclotron frequency is much larger than the frequency of the wave, there is no instability on the time scale of a micropulse.

  14. Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise.

    PubMed

    Li, Yang; Lu, Ping; Bao, Xiaoyi; Ou, Zhonghua

    2014-04-15

    A tunable random feedback fiber laser with low intensity noise is proposed and experimentally demonstrated. The random feedback is effectively achieved by multiple reflections from 100 randomly spaced refractive index modulation regions over 10 cm SMF in both longitudinal and transverse directions. A tunable erbium-doped fiber ring laser with narrow linewidth of 2.4 kHz and a high side-mode suppression ratio of 59 dB is achieved over a 0.5 nm tuning range. The proposed fiber laser exhibits low relative intensity noise (<-120  dB/Hz) and low frequency fluctuation of ∼3.41×10(-11) over 5 s.

  15. Cell-stimulation therapy of lateral epicondylitis with frequency-modulated low-intensity electric current.

    PubMed

    Aliyev, R M; Geiger, G

    2012-03-01

    In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.

  16. Comparison Between Hybrid Direct Aperture Optimized Intensity-Modulated Radiotherapy and Forward Planning Intensity-Modulated Radiotherapy for Whole Breast Irradiation

    SciTech Connect

    Descovich, Martina; Fowble, Barbara; Bevan, Alison; Schechter, Naomi; Park, Catherine; Xia Ping

    2010-01-15

    Purpose: To investigate the planning efficiency and dosimetric characteristics of hybrid direct aperture optimized (hDAO) intensity-modulated radiotherapy (IMRT) compared with forward planning (FP)-IMRT for whole breast irradiation with two tangential beams. Methods and Materials: A total of 15 patients with left-sided breast cancer, categorized with three different breast volumes, were selected for this study. All patients were treated with FP plans to 50 Gy in 25 fractions. The hDAO plans were created by combining two open fields with eight segments in two tangential beam directions and were inversely optimized. Results: The FP and hDAO plans achieved similar breast coverage and sparing of critical organs. The volume of breast receiving 105% of the prescription dose was significantly smaller in the hDAO than in the FP plans: 25% vs. 63% (p = .008) for small, 22% vs. 57% (p = .005) for medium, and 28% vs. 53% (p = .005) for large breasts. Furthermore, the tumor cavity coverage was slightly better in the hDAO plans (92.4% vs. 90.9%). Conclusion: Compared with FP-IMRT, hDAO-IMRT provided dosimetric advantages, significantly reducing the size of the hot spot and slightly improving the coverage of the tumor cavity. In addition, hDAO-IMRT required less planning time and was less dependent on the planner's ability.

  17. The Velocity of Light Intensity Increase Modulates the Photoprotective Response in Coastal Diatoms

    PubMed Central

    Giovagnetti, Vasco; Flori, Serena; Tramontano, Ferdinando; Lavaud, Johann; Brunet, Christophe

    2014-01-01

    In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC) and non-photochemical fluorescence quenching (NPQ), to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events) with that of a slower increase (corresponding to the light diel cycle) on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD) progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m−2 s−1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek) is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective ‘safety valves’ in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle. PMID:25083713

  18. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.

    PubMed

    Giovagnetti, Vasco; Flori, Serena; Tramontano, Ferdinando; Lavaud, Johann; Brunet, Christophe

    2014-01-01

    In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC) and non-photochemical fluorescence quenching (NPQ), to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events) with that of a slower increase (corresponding to the light diel cycle) on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD) progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek) is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.

  19. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells

    PubMed Central

    Horst, Andrea Kristina; Neumann, Katrin; Diehl, Linda; Tiegs, Gisa

    2016-01-01

    The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the “liver tolerance effect”. Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process. PMID:27041638

  20. Which T Category of Nasopharyngeal Carcinoma May Benefit Most from Volumetric Modulated Arc Therapy Compared with Step and Shoot Intensity Modulated Radiation Therapy

    PubMed Central

    Yin, Wen-Jing; Tang, Ling-Long; Yu, Xiao-Li; Chen, Mo; Qi, Zhen-Yu; Liu, Meng-Zhong; Ma, Jun

    2013-01-01

    Background To compare volumetric modulated arc therapy (VMAT) with conventional step and shoot intensity modulated radiation therapy (s-IMRT) in nasopharyngeal carcinoma (NPC) patients, and identify which T category patient gains the maximum benefit from VMAT. Methods Fifty-two patients that randomly selected from 205 patients received VMAT at a single center were retrospectively replanned with s-IMRT. For a fair comparison, the planning target volume (PTV) coverage of the 2 plans was normalized to the same level. A standard planning constraint set was used; the constraints for the organs at risk (OARs) were individually adapted. The calculated doses to the PTV and OARs were compared for s-IMRT and VMAT plans generated using the Monaco treatment planning system. Results VMAT and s-IMRT plans had similar PTV coverage and OAR sparing within all T categories. However, in stratified analysis, VMAT plans lead to better or similar sparing of the OARs in early T category patients; and lead to poorer sparing of the OARs in advanced T category patients (P<0.05). VMAT shows significant advantages for low dose burden (P<0.05) compared with s-IMRT. The delivery time per fraction for VMAT (424±64 s) was shorter than s-IMRT (778 ± 126 s, p<0.01). Conclusions VMAT provides similar dose coverage of the PTVs and similar/better normal tissue sparing in early T category NPC, and poorer OARs sparing in advanced T category NPC. And VMAT shows significant advantages for low dose burden and delivery time. PMID:24086503

  1. Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes.

    PubMed

    Graeff, Christian; Durante, Marco; Bert, Christoph

    2012-10-01

    Particle therapy offers benefits over conventional photon therapy but also introduces sensitivity to changes in the water-equivalent path length (WEPL) in case of target motion, e.g., breathing. Target motion can be addressed by the internal target volume (ITV) approach, defined as the CTV plus target movement. In photon therapy, the ITV can be constructed as the geometric union of CTVs in all motion states (GEO-ITV) of a 4D-CT, but this does not account for WEPL-changes. An ITV including WEPL-changes can be defined as the union of all CTVs transformed to a WEPL-equivalent axis along beam's eye view. The resulting WEPL-ITV is field-specific and thus unsuitable for intensity modulated particle therapy (IMPT). The purpose of this study was an IMPT-compatible ITV by splitting geometrical motion and field-specific WEPL changes, following ICRU 78 recommendations. For all fields, the GEO-ITV was used as a common target. This identical geometry for all fields was mapped to an enlarged WEPL extent with a field-specific transformation. As the dose distribution is determined by the WEPL, this is sufficient to achieve equivalent dose coverage as for a geometrically enlarged target volume. The WEPL enlargement is only visible to the specific field and therefore does not increase the target volume of other fields. This avoids unnecessary lateral field extensions, reducing the dose to normal tissue. Homogeneous dose coverage in IMPT is achieved only if the inhomogeneous doses from the individual fields match up during delivery. As the course of the WEPL within each motion phase differs, this cannot be guaranteed by optimizing the fields only in the reference phase. The WEPL-ITV for the reference phase can be amended by CTVs from a subset of motion phases (4D-WEPL-ITV). Here, end-exhale as the reference phase was combined with end-inhale to cover the whole motion range. The GEO-ITV, WEPL-ITV, and 4D-WEPL-ITV were applied in an IMPT simulation of a lung cancer patient case using a

  2. In vitro study of cell survival following dynamic MLC intensity-modulated radiation therapy dose delivery

    SciTech Connect

    Moiseenko, Vitali; Duzenli, Cheryl; Durand, Ralph E.

    2007-04-15

    The possibility of reduced cell kill following intensity-modulated radiation therapy (IMRT) compared to conventional radiation therapy has been debated in the literature. This potential reduction in cell kill relates to prolonged treatment times typical of IMRT dose delivery and consequently increased repair of sublethal lesions. While there is some theoretical support to this reduction in cell kill published in the literature, direct experimental evidence specific to IMRT dose delivery patterns is lacking. In this study we present cell survival data for three cell lines: Chinese hamster V79 fibroblasts, human cervical carcinoma, SiHa and colon adenocarcinoma, WiDr. Cell survival was obtained for 2.1 Gy delivered as acute dose with parallel-opposed pair (POP), irradiation time 75 s, which served as a reference; regular seven-field IMRT, irradiation time 5 min; and IMRT with a break for multiple leaf collimator (MLC) re-initialization after three fields were delivered, irradiation time 10 min. An actual seven-field dynamic MLC IMRT plan for a head and neck patient was used. The IMRT plan was generated for a Varian EX or iX linear accelerator with 120 leaf Millenium MLC. Survival data were also collected for doses 1x, 2x, 3x, 4x, and 5x 2.1 Gy to establish parameters of the linear-quadratic equation describing survival following acute dose delivery. Cells were irradiated inside an acrylic cylindrical phantom specifically designed for this study. Doses from both IMRT and POP were validated using ion chamber measurements. A reproducible increase in cell survival was observed following IMRT dose delivery. This increase varied from small for V79, with a surviving fraction of 0.8326 following POP vs 0.8420 following uninterrupted IMRT, to very pronounced for SiHa, with a surviving fraction of 0.3903 following POP vs 0.5330 for uninterrupted IMRT. When compared to IMRT or IMRT with a break for MLC initialization, cell survival following acute dose delivery was

  3. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  4. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  5. NOTE: Verification of intensity modulated profiles using a pixel segmented liquid-filled linear array

    NASA Astrophysics Data System (ADS)

    Pardo, J.; Roselló, J. V.; Sánchez-Doblado, F.; Gómez, F.

    2006-06-01

    A liquid isooctane (C8H18) filled ionization chamber linear array developed for radiotherapy quality assurance, consisting of 128 pixels (each of them with a 1.7 mm pitch), has been used to acquire profiles of several intensity modulated fields. The results were compared with film measurements using the γ test. The comparisons show a very good matching, even in high gradient dose regions. The volume-averaging effect of the pixels is negligible and the spatial resolution is enough to verify these regions. However, some mismatches between the detectors have been found in regions where low-energy scattered photons significantly contribute to the total dose. These differences are not very important (in fact, the measurements of both detectors are in agreement using the γ test with tolerances of 3% and 3 mm in most of those regions), and may be associated with the film energy dependence. In addition, the linear array repeatability (0.27% one standard deviation) is much better than the film one (~3%). The good repeatability, small pixel size and high spatial resolution make the detector ideal for the real time profile verification of high gradient beam profiles like those present in intensity modulated radiation therapy and radiosurgery.

  6. Electrical PMD equalization methods for intensity modulated optical polarization multiplex transmission systems

    NASA Astrophysics Data System (ADS)

    Goelz, Daniel; Pohl, Felix; Meissner, Peter

    2011-01-01

    Polarization mode dispersion is the limiting factor in todays large capacity photonic network systems since it causes intersymbol interference especially at high data rates. When polarization multiplex is employed to increase spectral efficiency, the distortions caused by polarization mode dispersion get even stronger due to the additional polarization crosstalk. Employing coherent detection these mitigations can be fully compensated with linear filters, since coherent detection delivers amplitude, phase and polarization information of the electrical field. As a drawback we have to take into account a high complexity of the receiver, causing high overall cost. At the other hand we have direct detection systems where the receiver complexity can be kept low. Furthermore maximum likelihood sequence estimation detection has been successfully demonstrated for standard direct detection systems. In a first step an advanced maximum likelihood sequence estimation detector, which is able to work in an intensity modulated polarization multiplex direct detection system, is developed. The performance of the detector is assessed by simulations and it is shown that it is capable to significantly reduce system outages. The method then is compared with a least mean squares based equalizer which is employed to compensate for signal distortions in an intensity modulated polarization multiplex coherent detection transmission system.

  7. Evaluation of Dose Distribution in Intensity Modulated Radiosurgery for Lung Cancer under Condition of Respiratory Motion

    PubMed Central

    Yoon, Mee Sun; Jeong, Jae-Uk; Nam, Taek-Keun; Ahn, Sung-Ja; Chung, Woong-Ki; Song, Ju-Young

    2016-01-01

    The dose of a real tumor target volume and surrounding organs at risk (OARs) under the effect of respiratory motion was calculated for a lung tumor plan, based on the target volume covering the whole tumor motion range for intensity modulated radiosurgery (IMRS). Two types of IMRS plans based on simulated respiratory motion were designed using humanoid and dynamic phantoms. Delivery quality assurance (DQA) was performed using ArcCHECK and MapCHECK2 for several moving conditions of the tumor and the real dose inside the humanoid phantom was evaluated using the 3DVH program. This evaluated dose in the tumor target and OAR using the 3DVH program was higher than the calculated dose in the plan, and a greater difference was seen for the RapidArc treatment than for the standard intensity modulated radiation therapy (IMRT) with fixed gantry angle beams. The results of this study show that for IMRS plans based on target volume, including the whole tumor motion range, tighter constraints of the OAR should be considered in the optimization process. The method devised in this study can be applied effectively to analyze the dose distribution in the real volume of tumor target and OARs in IMRT plans targeting the whole tumor motion range. PMID:27648949

  8. Subliminal action priming modulates the perceived intensity of sensory action consequences☆

    PubMed Central

    Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.

    2014-01-01

    The sense of control over the consequences of one’s actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. PMID:24333539

  9. Subliminal action priming modulates the perceived intensity of sensory action consequences.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J

    2014-02-01

    The sense of control over the consequences of one's actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime-target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Supercontinuum generation enhanced by conventional Raman amplification at pumping by nanosecond pulses from a directly modulated DFB laser

    NASA Astrophysics Data System (ADS)

    Rojas-Laguna, Roberto; Gutiérrez-Gutiérrez, Jaime; Kuzin, Evgeny A.; Ibarra-Escamilla, Baldemar; Mendoza-Vázquez, Sergio; Estudillo-Ayala, Julián Moisés; Haus, Joseph W.

    2007-02-01

    We investigated spectral broadening in a standard fiber using a nanosecond directly modulated DFB laser (λ=1549 nm), amplified by a two stage Erbium-doped fiber amplifier. The amplifier provided amplification of 2-mW peak power input pulses to 100-W peak power output pulses. In other hand, the directly modulation of DFB lasers caused transient oscillations at the beginning of pulses. In our case pulses consisted of a 2-ns transient part followed by a steady-state plateau. We used a monochromator to measure the spectrum at the fiber output. A fast photodetector was placed at the monochromator output and pulse shapes were measured for different wavelengths. This technique allowed the separate measurement of different parts in output pulses spectrum. We used the SMF-28 fiber with the standard dispersion of 20 ps/nm-km for our wavelength. We made measurements of the output spectra for three fiber lengths: 0.6-km, 4.46-km and 9.15-km; finding that the initial transient part of a pulse shows supercontinuum generation whereas the plateau results in conventional Raman amplification of this supercontinuum.

  11. A comparison of three optimization algorithms for intensity modulated radiation therapy.

    PubMed

    Pflugfelder, Daniel; Wilkens, Jan J; Nill, Simeon; Oelfke, Uwe

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%.

  12. Intensity-modulated radiation therapy, protons, and the risk of second cancers

    SciTech Connect

    Hall, Eric J. . E-mail: ejh1@columbia.edu

    2006-05-01

    Intensity-modulated radiation therapy (IMRT) allows dose to be concentrated in the tumor volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers. The reasons for this potential are more monitor units and, therefore, a larger total-body dose because of leakage radiation and, because IMRT involves more fields, a bigger volume of normal tissue is exposed to lower radiation doses. Intensity-modulated radiation therapy may double the incidence of solid cancers in long-term survivors. This outcome may be acceptable in older patients if balanced by an improvement in local tumor control and reduced acute toxicity. On the other hand, the incidence of second cancers is much higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children for three reasons. First, children are more sensitive to radiation-induced cancer than are adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, the question of genetic susceptibility arises because many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs are not inevitable. Leakage can be reduced but at substantial cost. An alternative strategy is to replace X-rays with protons. However, this change is only an advantage if the proton machine employs a pencil scanning beam. Many proton facilities use passive modulation to produce a field of sufficient size, but the use of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT. The benefit of protons is only achieved if a scanning beam is used in which the doses are 10 times lower than with IMRT.

  13. Sensitivity to a break in interaural correlation is co-modulated by intensity level and interaural delay.

    PubMed

    Kong, Lingzhi; Xie, Zilong; Lu, Lingxi; Wu, Xihong; Li, Liang

    2012-08-01

    This study investigated whether sound intensity affects listeners' sensitivity to a break in interaural correlation (BIC) embedded in wideband noise at different interaural delays. The results show that the detection duration threshold remained stable at the intensity between 60 and 70 dB SPL, but increased in accelerating fashion as the intensity decreased toward 40 dB SPL. Moreover, the threshold elevated linearly as the interaural delay increased from 0 to 4 ms, and the elevation slope became larger as the intensity decreased from 50 to 40 dB SPL. Thus, detecting the BIC is co-modulated by both intensity and interaural delay.

  14. SU-E-J-70: Evaluation of Multiple Isocentric Intensity Modulated and Volumetric Modulated Arc Therapy Techniques Using Portal Dosimetry

    SciTech Connect

    Muralidhar, K Raja; Pangam, S; Kolla, J; Ponaganti, S; Ali, M; Vuba, S; Mariyappan, P; Babaiah, M; Komanduri, K

    2015-06-15

    Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence of beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.

  15. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    SciTech Connect

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S.; Damen, Eugene M.F.

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  16. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    PubMed Central

    Nithya, L.; Raj, N. Arunai Nambi; Kumar, Arulraj; Rathinamuthu, Sasikumar; Pandey, Manish Bhushan

    2014-01-01

    The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC) intensity modulated radiation therapy (IMRT) plans with volumetric modulated arc therapy (VMAT) plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV) for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI) and the conformity index (CI) of the PTV70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV) cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU) required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases. PMID:24872611

  17. SU-E-T-449: Hippocampal Sparing Radiotherapy Using Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    SciTech Connect

    Moon, S; Kim, D; Chung, W; Yoon, M

    2015-06-15

    Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion around the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.

  18. Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M(x) magnetometer.

    PubMed

    Schultze, Volkmar; Ijsselsteijn, Rob; Scholtes, Theo; Woetzel, Stefan; Meyer, Hans-Georg

    2012-06-18

    We compare the performance of two methods for the synchronization of the atomic spins in optically pumped magnetometers: intensity modulation of the pump light and the classical M(x) method using B(1) field modulation. Both techniques use the same set-up and measure the resulting features of the light after passing a micro-fabricated Cs cell. The intensity-modulated pumping shows several advantages: better noise-limited magnetic field sensitivity, misalignment between pumping and spin synchronization is excluded, and magnetometer arrays without any cross-talk can be easily set up.

  19. Multiple-wavelength operation of electroabsorption intensity modulator array fabricated using the one-step quantum well intermixing process

    NASA Astrophysics Data System (ADS)

    Ng, S. L.; Lim, H. S.; Lam, Y. L.; Chan, Y. C.; Ooi, B. S.; Aimez, V.; Beauvais, J.; Beerens, J.

    2002-09-01

    Multiple-wavelength selective channel electroabsorption intensity modulators have been fabricated on a single InGaAs/InGaAsP chip using a one-step quantum well intermixing process. This technique was demonstrated for tailoring the intensity modulator operating wavelength by incorporating low-energy (360 keV) phosphorus ions implantation induced disordering process with gray-mask lithography technology. A modulation depth of -15 dB has been measured from these devices with a voltage swing of -4.5 V.

  20. The BDNF Val66Met Polymorphism Modulates Sleep Intensity: EEG Frequency- and State-Specificity

    PubMed Central

    Bachmann, Valérie; Klein, Carina; Bodenmann, Sereina; Schäfer, Nikolaus; Berger, Wolfgang; Brugger, Peter; Landolt, Hans-Peter

    2012-01-01

    Study Objectives: EEG slow waves are the hallmark of deep NREM sleep and may reflect the restorative functions of sleep. Evidence suggests that increased sleep slow waves after sleep deprivation reflect plastic synaptic processes, and that brain-derived neurotrophic factor (BDNF) is causally involved in their homeostatic regulation. The functional Val66Met polymorphism of the gene encoding pro-BDNF causes impaired activity-dependent secretion of mature BDNF protein. We investigated whether this polymorphism contributes to the pronounced inter-individual variation in sleep slow wave activity (SWA) in humans. Setting: Sleep laboratory in temporal isolation unit. Participants: Eleven heterozygous Met allele carriers and 11 individually sex- and age-matched Val/Val homozygotes. Interventions: Forty hours prolonged wakefulness. Measurements and Results: Cognitive performance, subjective state, and waking and sleep EEG in baseline and after sleep deprivation were studied. Val/Val homozygotes showed better response accuracy than Met allele carriers on a verbal 2-back working memory task. This difference did not reflect genotype-dependent differences in sleepiness, well-being, or sustained attention. In baseline and recovery nights, deep stage 4 sleep and NREM sleep intensity as quantified by EEG SWA (0.75-4.5 Hz) were higher in Val/Val compared to Val/Met genotype. Similar to sleep deprivation, the difference was most pronounced in the first NREM sleep episode. By contrast, increased activity in higher EEG frequencies (> 6 Hz) in wakefulness and REM sleep was distinct from the effects of prolonged wakefulness. Conclusion: BDNF contributes to the regulation of sleep slow wave oscillations, suggesting that genetically determined variation in neuronal plasticity modulates NREM sleep intensity in humans. Citation: Bachmann V; Klein C; Bodenmann S; Schäfer N; Berger W; Brugger P; Landolt HP. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state

  1. Algorithm development for intensity modulated continuous wave laser absorption spectrometry in atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Bryant, R. B.

    2011-12-01

    Currently, NASA Langley Research Center (LaRC) and ITT are jointly developing algorithms for demonstration of range discrimination using ITT's laser absorption spectrometer (LAS), which is being evaluated for the future NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. The objective of this Decadal Survey mission is to measure atmospheric column CO2 mixing ratios (XCO2) for improved determination of atmospheric carbon sources and sinks. Intensity Modulated Continuous Wave (IM-CW) techniques are used in this LAS approach. The LAS is designed to simultaneously measure CO2 and O2 columns, and these measurements are used to determine the required XCO2 column. The LAS measurements are enabled by the multi-channel operation of the instrument at 1.57 and 1.26-um for CO2 and O2, respectively. The algorithm development for the IM-CW techniques of the multi-channel LAS is focused on addressing key retrieval issues such as surface signal detection, thin cloud and/or aerosol layer rejection, vertical atmospheric range resolution, and optimizing the size of the measurement footprint. With these considerations, the modulation algorithm needs to maintain high enough signal-to-noise ratio (SNR) so that the mission scientific goals can be reached. A basic selection of the modulation algorithms that make XCO2 measurement and thin cloud rejection possible is the stepped frequency modulation scheme and a similar scheme of swept sine modulation. The differences between these two schemes for thin cloud rejection are small, assuming the proper selection of parameters is made. The stepped frequency approach is only a quantified version of swept sine method for the frequencies used. Swept sine scheme is a very common modulation technique for range discrimination, while the consideration of the stepped frequency scheme is based on the history of the rolling-tone modulation used in the instrument in previous successful column CO2 measurements. The

  2. The evaluation of the feasibility of carotid sparing intensity modulated radiation therapy technique for comprehensive breast irradiation.

    PubMed

    Erpolat, Ozge Petek; Akmansu, Muge; Catli Dinc, Serap; Akkan, Koray; Bora, Huseyin

    2017-04-01

    To investigate the feasibility of carotid sparing intensity modulated radiation therapy (CS-IMRT) to minimize the radiation dose to carotid arteries for comprehensive irradiation of breast cancer patients who have risk factors for atherosclerosis. The dose distribution of CS-IMRT technique and the conventional irradiation technique were also compared. Ten patients who were previously treated with comprehensive three-dimensional conformal radiation therapy (3DCRT) were selected. DICOM data were used to contour the carotid artery and to create the virtual CS-IMRT plans for each patient. 3DCRT and CS-IMRT plans were compared in terms of conformity index, homogeneity index, and the doses to organ at risk and carotid arteries. The homogeneity and conformity indices were better with CS-IMRT plans compared to 3DCRT plan. The homogeneity index was 1.13 vs 1.11 (p=0.007) for 3DCRT and CS-IMRT and the conformity index was 0.96 vs 0.97 (p=0.006) for 3DCRT and CS-IMRT. The radiation dose to the carotid arteries were reduced by applying CS-IMRT without compromising the target volume coverage. When the carotid artery was considered as organ at risk for CS-IMRT planning, the median of V50 was decreased to 0% from 12.5% compared to 3DCRT plans (p=0.017). The median of the maximum dose to the carotid artery was decreased under 50Gy with CS-IMRT. CS-IMRT can significantly reduce the unnecessary radiation dose to the carotid arteries compared with conventional 3DCRT technique while maintaining target volume coverage. CS-IMRT technique can be considered for breast cancer patient with high risk of atherosclerosis. Copyright © 2017. Published by Elsevier Ltd.

  3. Genital invasion or perigenital spread may pose a risk of marginal misses for Intensity Modulated Radiotherapy (IMRT) in anal cancer.

    PubMed

    Koeck, Julia; Lohr, Frank; Buergy, Daniel; Büsing, Karen; Trunk, Marcus J; Wenz, Frederik; Mai, Sabine

    2016-04-04

    While intensity modulated radiotherapy (IMRT) in anal cancer is feasible and improves high-dose conformality, the current RTOG/AGITG contouring atlas and planning guidelines lack specific instructions on how to proceed with external genitalia. Meanwhile, the RTOG-Protocol 0529 explicitly recommends genital sparing on the basis of specific genital dose constraints. Recent pattern-of-relapse studies based on conventional techniques suggest that marginal miss might be a potential consequence of genital sparing. Our goal is to outline the potential scope and increase the awareness for this clinical issue. We present and discuss four patients with perigenital spread in anal cancer in both early and advanced stages (three at time of first diagnosis and one in form of relapse). Genital/perigenital spread was observed once as direct genital infiltration and thrice in form of perigenital lymphatic spread. We review the available data regarding the potential consequences of genital sparing in anal cancer. Pattern-of-relapse studies in anal cancer after conventional radiotherapy and the current use of IMRT in anal cancer are equivocal but suggest that genital sparing may occasionally result in marginal miss. An obvious hypothesis suggested by our report is that perigenital lymphovascular invasion might be associated with manifest inguinal N+ disease. Local failure has low salvage rates in recent anal cancer treatment series. Perigenital spread may pose a risk of marginal misses in IMRT in anal cancer. To prevent marginal misses, meticulous pattern-of-relapse analyses of controlled IMRT-series are warranted. Until their publication, genital sparing should be applied with caution, PET/CT should be used when possible and meeting genital dose constraints should not be prioritized over CTV coverage, especially (but not only) in stage T3/4 and N+ disease.

  4. Intensity-Modulated and Image-Guided Radiotherapy in Patients with Locally Advanced Inoperable Pancreatic Cancer after Preradiation Chemotherapy

    PubMed Central

    Sinn, M.; Ganeshan, R.; Graf, R.; Pelzer, U.; Stieler, J. M.; Striefler, J. K.; Bahra, M.; Wust, P.; Riess, H.

    2014-01-01

    Background. Radiotherapy (RT) in patients with pancreatic cancer is still a controversial subject and its benefit in inoperable stages of locally advanced pancreatic cancer (LAPC), even after induction chemotherapy, remains unclear. Modern radiation techniques such as image-guided radiotherapy (IGRT) and intensity-modulated radiotherapy (IMRT) may improve effectiveness and reduce radiotherapy-related toxicities. Methods. Patients with LAPC who underwent radiotherapy after chemotherapy between 09/2004 and 05/2013 were retrospectively analyzed with regard to preradiation chemotherapy (PRCT), modalities of radiotherapy, and toxicities. Progression-free (PFS) and overall survival (OS) were estimated by Kaplan-Meier curves. Results. 15 (68%) women and 7 men (median age 64 years; range 40–77) were identified. Median duration of PRCT was 11.1 months (range 4.3–33.0). Six patients (27%) underwent conventional RT and 16 patients (73%) advanced IMRT and IGRT; median dosage was 50.4 (range 9–54) Gray. No grade III or IV toxicities occurred. Median PFS (estimated from the beginning of RT) was 5.8 months, 2.6 months in the conventional RT group (conv-RT), and 7.1 months in the IMRT/IGRT group (P = 0.029); median OS was 11.0 months, 4.2 months (conv-RT), and 14.0 months (IMRT/IGRT); P = 0.141. Median RT-specific PFS for patients with prolonged PRCT > 9 months was 8.5 months compared to 5.6 months for PRCT < 9 months (P = 0.293). This effect was translated into a significantly better median RT-specific overall survival of patients in the PRCT > 9 months group, with 19.0 months compared to 8.5 months in the PRCT  <  9 months group (P = 0.049). Conclusions. IGRT and IMRT after PRCT are feasible and effective options for patients with LAPC after prolonged preradiation chemotherapy. PMID:25401140

  5. Parotid Gland Dose in Intensity-Modulated Radiotherapy for Head and Neck Cancer: Is What You Plan What You Get?

    SciTech Connect

    O'Daniel, Jennifer C.; Garden, Adam S.; Schwartz, David L.; Wang He; Ang, Kian K.; Ahamad, Anesa; Rosenthal, David I.; Morrison, William H.; Asper, Joshua A.; Zhang Lifei; Tung Shihming; Mohan, Radhe; Dong Lei

    2007-11-15

    Purpose: To quantify the differences between planned and delivered parotid gland and target doses, and to assess the benefits of daily bone alignment for head and neck cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Eleven head and neck cancer patients received two CT scans per week with an in-room CT scanner over the course of their radiotherapy. The clinical IMRT plans, designed with 3-mm to 4-mm planning margins, were recalculated on the repeat CT images. The plans were aligned using the actual treatment isocenter marked with radiopaque markers (BB) and bone alignment to the cervical vertebrae to simulate image-guided setup. In-house deformable image registration software was used to map daily dose distributions to the original treatment plan and to calculate a cumulative delivered dose distribution for each patient. Results: Using conventional BB alignment led to increases in the parotid gland mean dose above the planned dose by 5 to 7 Gy in 45% of the patients (median, 3.0 Gy ipsilateral, p = 0.026; median, 1.0 Gy contralateral, p = 0.016). Use of bone alignment led to reductions relative to BB alignment in 91% of patients (median, 2 Gy; range, 0.3-8.3 Gy; 15 of 22 parotids improved). However, the parotid dose from bone alignment was still greater than planned (median, 1.0 Gy, p = 0.007). Neither approach affected tumor dose coverage. Conclusions: With conventional BB alignment, the parotid gland mean dose was significantly increased above the planned mean dose. Using daily bone alignment reduced the parotid dose compared with BB alignment in almost all patients. A 3- to 4-mm planning margin was adequate for tumor dose coverage.

  6. An open-loop RFOG based on harmonic division technique to suppress LD's intensity modulation noise

    NASA Astrophysics Data System (ADS)

    Ying, Diqing; Wang, Zeyu; Mao, Jianmin; Jin, Zhonghe

    2016-11-01

    A harmonic division technique is proposed for an open-loop resonator fiber optic gyro (RFOG) to suppress semiconductor laser diode's (LD's) intensity modulation noise. The theoretical study indicates the RFOG with this technique is immune to the intensity noise. The simulation and experimental results show this technique would lead to a diminished linear region, which still could be acceptable for an RFOG applied to low rotation rate detection. The tests for the gyro output signal are carried out with/without noise suppressing methods, including the harmonic division technique and previously proposed signal compensation technique. With the harmonic division technique at the rotation rate of 10 deg/s, the stability of gyro output signal is improved from 1.07 deg/s to 0.0361 deg/s, whose noise suppressing ratio is more than 3 times as that of the signal compensation technique. And especially, a 3.12 deg/s signal jump is significantly removed with the harmonic division technique; in contrast, a residual 0.36 deg/s signal jump still exists with the signal compensation technique. It is concluded the harmonic division technique does work in intensity noise suppressing under dynamic condition, and it is superior to the signal compensation technique.

  7. Secondary radiation doses of intensity-modulated radiotherapy and proton beam therapy in patients with lung and liver cancer.

    PubMed

    Kim, Seonkyu; Min, Byung Jun; Yoon, Myonggeun; Kim, Jinsung; Shin, Dong Ho; Lee, Se Byeong; Park, Sung Yong; Cho, Sungkoo; Kim, Dae Hyun

    2011-03-01

    To compare the secondary radiation doses following intensity-modulated radiotherapy (IMRT) and proton beam therapy (PBT) in patients with lung and liver cancer. IMRT and PBT were planned for three lung cancer and three liver cancer patients. The treatment beams were delivered to phantoms and the corresponding secondary doses during irradiation were measured at various points 20-50 cm from the beam isocenter using ion chamber and CR-39 detectors for IMRT and PBT, respectively. The secondary dose per Gy (i.e., a treatment dose of 1Gy) from PBT for lung and liver cancer, measured 20-50 cm from the isocenter, ranged from 0.17 to 0.086 mGy. The secondary dose per Gy from IMRT, however, ranged between 5.8 and 1.0 mGy, indicating that PBT is associated with a smaller dose of secondary radiation than IMRT. The internal neutron dose per Gy from PBT for lung and liver cancer, 20-50 cm from the isocenter, ranged from 0.03 to 0.008 mGy. The secondary dose from PBT is less than or compatible to the secondary dose from conventional IMRT. The internal neutron dose generated by the interaction between protons and body material is generally much less than the external neutron dose from the treatment head. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Dosimetric evaluation of a simple planning method for improving intensity-modulated radiotherapy for stage III lung cancer

    PubMed Central

    Lu, Jia-Yang; Lin, Zhu; Zheng, Jing; Lin, Pei-Xian; Cheung, Michael Lok-Man; Huang, Bao-Tian

    2016-01-01

    This study aimed to evaluate the dosimetric outcomes of a base-dose-plan-compensation (BDPC) planning method for improving intensity-modulated radiotherapy (IMRT) for stage III lung cancer. For each of the thirteen included patients, three types of planning methods were applied to obtain clinically acceptable plans: (1) the conventional optimization method (CO); (2) a split-target optimization method (STO), in which the optimization objectives were set higher dose for the target with lung density; (3) the BDPC method, which compensated for the optimization-convergence error by further optimization based on the CO plan. The CO, STO and BDPC methods were then compared regarding conformity index (CI), homogeneity index (HI) of the target, organs at risk (OARs) sparing and monitor units (MUs). The BDPC method provided better HI/CI by 54%/7% on average compared to the CO method and by 38%/3% compared to the STO method. The BDPC method also spared most of the OARs by up to 9%. The average MUs of the CO, STO and BDPC plans were 890, 937 and 1023, respectively. Our results indicated that the BDPC method can effectively improve the dose distribution in IMRT for stage III lung cancer, at the expense of more MUs. PMID:27009235

  9. [Intensity modulated radiotherapy for head and neck cancer, dose constraint for normal tissue: Cochlea vestibular apparatus and brainstem].

    PubMed

    Guimas, V; Thariat, J; Graff-Cailleau, P; Boisselier, P; Pointreau, Y; Pommier, P; Montbarbon, X; Laude, C; Racadot, S

    2016-10-01

    Modern techniques such as intensity modulated radiation therapy (IMRT) have been proven to significantly decrease the dose delivered to the cochleovestibular apparatus, limiting consecutive toxicity especially for sensorineural hearing loss. However, recent data still report a 42% rate of radio-induced hypoacusia underscoring the need to protect the cochleovestibular apparatus. Due to the small size of the cochlea, a precise dose-volume analysis could not be performed, and recommendations only refer to the mean dose. Confusing factors such as age, concomitant chemotherapy, primary site and tumor stage should be taken into account at the time of treatment planning. (Non-coplanar) VMAT and tomotherapy have been proven better at sparing the cochlea in comparison with 3D CRT. Brainstem radio-induced injuries were poorly studied because of their infrequency and the difficulty of distinguishing between necrosis and tumor progression in the case of a primary tumor located at the base of skull. The following toxicities have been described: brainstem focal radionecrosis, cognitive disorders without dementia, cranial nerve injuries and sensori motor disability. Maximal dose to the brainstem should be kept to < 54Gy for conventional fractionation. This dose could be exceeded (no more than 10mL should receive more than 59Gy), provided this hot spot is located in the peripheral area of the organ. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. Intensity-modulated radiation therapy for early-stage breast cancer: is it ready for prime time?

    PubMed Central

    Chan, Tabitha Y; Tan, Poh Wee; Tang, Johann I

    2017-01-01

    Whole breast external beam radiotherapy (WBEBRT) is commonly used as an essential arm in the treatment management of women with early-stage breast cancer. Dosimetry planning for conventional WBEBRT typically involves a pair of tangential fields. Advancement in radiation technology and techniques has the potential to improve treatment outcomes with clinically meaningful long-term benefits. However, this advancement must be balanced with safety and improved efficacy. Intensity-modulated radiation therapy (IMRT) is an advanced technique that shows promise in improving the planning process and radiation delivery. Early data on utilizing IMRT for WBEBRT demonstrate more homogenous dose distribution with reduction in organs at risk doses. This translates to toxicities reduction. The two common descriptors for IMRT are forward-planning “fields in field” and inverse planning. Unlike IMRT for other organs, the aim of IMRT for breast planning is to achieve dose homogeneity and not organ conformality. The aim of this paper was to evaluate whether IMRT is ready for prime time based on these three points: 1) workload impact, 2) the clinical impact on the patient’s quality of life, and 3) the appropriateness and applicability to clinical practice. PMID:28360536

  11. Proposal of DCS-OFDM-PON upstream transmission with intensity modulator and collective self-coherent detection

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yang, Heming; Zhao, Difu; Qiu, Kun

    2016-07-01

    We introduce digital coherent superposition (DCS) into optical access network and propose a DCS-OFDM-PON upstream transmission scheme using intensity modulator and collective self-coherent detection. The generated OFDM signal is real based on Hermitian symmetry, which can be used to estimate the common phase error (CPE) by complex conjugate subcarrier pairs without any pilots. In simulation, we transmit an aggregated 40 Gb/s optical OFDM signal from two ONUs. The transmission performance with DCS is slightly better after 25 km transmission without relative transmission time delay. The fiber distance for different ONUs to RN are not same in general and there is relative transmission time delay between ONUs, which causes inter-carrier-interference (ICI) power increasing and degrades the transmission performance. The DCS can mitigate the ICI power and the DCS-OFDM-PON upstream transmission outperforms the conventional OFDM-PON. The CPE estimation is by using two pairs of complex conjugate subcarriers without redundancy. The power variation can be 9 dB in DCS-OFDM-PON, which is enough to tolerate several kilometers fiber length difference between the ONUs.

  12. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  13. Leaf-sequencing for intensity-modulated arc therapy using graph algorithms

    SciTech Connect

    Luan Shuang; Wang Chao; Cao Daliang; Chen, Danny Z.; Shepard, David M.; Yu, Cedric X.

    2008-01-15

    Intensity-modulated arc therapy (IMAT) is a rotational IMRT technique. It uses a set of overlapping or nonoverlapping arcs to create a prescribed dose distribution. Despite its numerous advantages, IMAT has not gained widespread clinical applications. This is mainly due to the lack of an effective IMAT leaf-sequencing algorithm that can convert the optimized intensity patterns for all beam directions into IMAT treatment arcs. To address this problem, we have developed an IMAT leaf-sequencing algorithm and software using graph algorithms in computer science. The input to our leaf-sequencing software includes (1) a set of (continuous) intensity patterns optimized by a treatment planning system at a sequence of equally spaced beam angles (typically 10 deg. apart), (2) a maximum leaf motion constraint, and (3) the number of desired arcs, k. The output is a set of treatment arcs that best approximates the set of optimized intensity patterns at all beam angles with guaranteed smooth delivery without violating the maximum leaf motion constraint. The new algorithm consists of the following key steps. First, the optimized intensity patterns are segmented into intensity profiles that are aligned with individual MLC leaf pairs. Then each intensity profile is segmented into k MLC leaf openings using a k-link shortest path algorithm. The leaf openings for all beam angles are subsequently connected together to form 1D IMAT arcs under the maximum leaf motion constraint using a shortest path algorithm. Finally, the 1D IMAT arcs are combined to form IMAT treatment arcs of MLC apertures. The performance of the implemented leaf-sequencing software has been tested for four treatment sites (prostate, breast, head and neck, and lung). In all cases, our leaf-sequencing algorithm produces efficient and highly conformal IMAT plans that rival their counterpart, the tomotherapy plans, and significantly improve the IMRT plans. Algorithm execution times ranging from a few seconds to 2 min are

  14. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    SciTech Connect

    Hansen, Anders T.; Lukacova, Slavka; Lassen-Ramshad, Yasmin; Petersen, Jørgen B.

    2015-01-01

    When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanar volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore, compared with the standard technique, the IMRT techniques reduced the total calculated radiation dose that was delivered to the normal tissue, whereas the VMAT technique increased this dose. Additionally, the coverage of the target was significantly improved by the noncoplanar IMRT technique. Compared with the standard technique, the coplanar IMRT and the VMAT technique did not improve the coverage of the target significantly. All the new planning techniques increased the number of monitor units (MU) used—the noncoplanar IMRT technique by 99%, the coplanar IMRT technique by 122%, and the VMAT technique by 26%—causing concern for leak radiation. The noncoplanar IMRT technique covered the target better and decreased doses to organs at risk compared with the other techniques

  15. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans

    SciTech Connect

    Du, Weiliang Cho, Sang Hyun; Zhang, Xiaodong; Kudchadker, Rajat J.; Hoffman, Karen E.

    2014-02-15

    Purpose: Excessive complexity in intensity-modulated radiation therapy (IMRT) plans increases the dose uncertainty, prolongs the treatment time, and increases the susceptibility to changes in patient or target geometry. To date, the tools for quantitative assessment of IMRT beam complexity are still lacking. In this study, The authors have sought to develop metrics to characterize different aspects of beam complexity and investigate the beam complexity for IMRT plans of different disease sites. Methods: The authors evaluated the beam complexity scores for 65 step-and-shoot IMRT plans from three sites (prostate, head and neck, and spine) and 26 volumetric-modulated arc therapy (VMAT) plans for the prostate. On the basis of the beam apertures and monitor unit weights of all segments, the authors calculated the mean aperture area, extent of aperture shape irregularity, and degree of beam modulation for each beam. Then the beam complexity values were averaged to obtain the complexity metrics of the IMRT plans. The authors studied the correlation between the beam complexity metrics and the quality assurance (QA) results. Finally, the effects of treatment planning parameters on beam complexity were studied. Results: The beam complexity scores were not uniform among the prostate IMRT beams from different gantry angles. The lateral beams had larger monitor units and smaller shape irregularity, while the anterior-posterior beams had larger modulation values. On average, the prostate IMRT plans had the smallest aperture irregularity, beam modulation, and normalized monitor units; the head and neck IMRT plans had large beam irregularity and beam modulation; and the spine stereotactic radiation therapy plans often had small beam apertures, which may have been associated with the relatively large discrepancies between planned and QA measured doses. There were weak correlations between the beam complexity scores and the measured dose errors. The prostate VMAT beams showed

  16. Intensity modulated or fractionated stereotactic reirradiation in patients with recurrent nasopharyngeal cancer

    PubMed Central

    2011-01-01

    Purpose To report our experience with intensity-modulated or stereotactic reirradiation in patients suffering from recurrent nasopharyngeal carcinoma Patients and Methods The records of 17 patients with recurrent nasopharygeal carcinoma treated by intensity-modulated (n = 14) or stereotactic (n = 3) reirradiation in our institution were reviewed. Median age was 53 years and most patients (n = 14) were male. The majority of tumors showed undifferentiated histology (n = 14) and infiltration of intracranial structures (n = 12). Simultaneous systemic therapy was applied in 8 patients. Initial treatment covered the gross tumor volume with a median dose of 66 Gy (50-72 Gy) and the cervical nodal regions with a median dose of 56 Gy (50-60 Gy). Reirradiation was confined to the local relapse region with a median dose of 50.4 Gy (36-64Gy), resulting in a median cumulative dose of 112 Gy (91-134 Gy). The median time interval between initial and subsequent treatment was 52 months (6-132). Results The median follow up for the entire cohort was 20 months and 31 months for survivors (10-84). Five patients (29%) developed isolated local recurrences and three patients (18%) suffered from isolated nodal recurrences. The actuarial 1- and 2-year rates of local/locoregional control were 76%/59% and 69%/52%, respectively. Six patients developed distant metastasis during the follow up period. The median actuarial overall survival for the entire cohort was 23 months, transferring into 1-, 2-, and 3-year overall survival rates of 82%, 44% and 37%. Univariate subset analyses showed significantly increased overall survival and local control for patients with less advanced rT stage, retreatment doses > 50 Gy, concurrent systemic treatment and complete response. Severe late toxicity (Grad III) attributable to reirradiation occurred in five patients (29%), particularly as hearing loss, alterations of taste/smell, cranial neuropathy, trismus and xerostomia. Conclusion Reirradiation with

  17. Hypofractionated Intensity-Modulated Arc Therapy for Lymph Node Metastasized Prostate Cancer

    SciTech Connect

    Fonteyne, Valerie; De Gersem, Werner; De Neve, Wilfried; Jacobs, Filip; Lumen, Nicolaas; Vandecasteele, Katrien; Villeirs, Geert; De Meerleer, Gert

    2009-11-15

    Purpose: To determine the planning results and acute toxicity after hypofractionated intensity-modulated arc radiotherapy and androgen deprivation for lymph node metastasized (Stage N1) prostate cancer. Methods and Materials: A total of 31 patients with Stage T1-T4N1M0 prostate cancer were treated with intensity-modulated arc radiotherapy and 3 years of androgen deprivation as primary treatment. The clinical target volume (CTV{sub p}) was the prostate and seminal vesicles. Elective lymph node areas ({sub e}) were delineated and expanded by 2 mm to create the CTV{sub e}. The planning target volumes (PTV{sub p} and PTV{sub e}) were created using a three-dimensional expansion of the CTV{sub p} and CTV{sub e}, respectively, of 7 mm. A median dose of 69.3 Gy and 50 Gy was prescribed to the PTV{sub p} and PTV{sub e} respectively, to be delivered in 25 fractions. Upper and lower gastrointestinal toxicity was scored using the Radiation Therapy Oncology Group toxicity and radiotherapy-induced lower intestinal toxicity scoring system. Genitourinary toxicity was scored using a combined Radiation Therapy Oncology Group, LENT-SOMA (late effects normal tissue-subjective, objective, management, analytic), and Common Toxicity Criteria toxicity scoring system. Results: The median follow-up time was 3 months. The mean prescription dose to the CTV{sub p} and PTV{sub p} was 70.4 Gy and 68.6 Gy, respectively. The minimal dose to the CTV{sub e} and PTV{sub e} was 49.0 Gy and 47.0 Gy, respectively. No acute Grade 2 or greater gastrointestinal toxicity occurred. Fourteen patients developed acute Grade 2 lower gastrointestinal toxicity. Acute Grade 3 and 2 genitourinary toxicity developed in 2 and 14 patients, respectively. Conclusion: The results of our study have shown that hypofractionated intensity-modulated arc radiotherapy as primary therapy for N1 prostate cancer is feasible with low toxicity.

  18. Hypofractionated Concomitant Intensity-Modulated Radiotherapy Boost for High-Risk Prostate Cancer: Late Toxicity

    SciTech Connect

    Quon, Harvey; Cheung, Patrick C.F.; Loblaw, D. Andrew; Morton, Gerard; Pang, Geordi; Szumacher, Ewa; Danjoux, Cyril; Choo, Richard; Thomas, Gillian; Kiss, Alex; Mamedov, Alexandre; Deabreu, Andrea

    2012-02-01

    Purpose: To report the acute and late toxicities of patients with high-risk localized prostate cancer treated using a concomitant hypofractionated, intensity-modulated radiotherapy boost combined with long-term androgen deprivation therapy. Methods and Materials: A prospective Phase I-II study of patients with any of the following: clinical Stage T3 disease, prostate-specific antigen level {>=}20 ng/mL, or Gleason score 8-10. A dose of 45 Gy (1.8 Gy/fraction) was delivered to the pelvic lymph nodes with a concomitant 22.5 Gy prostate intensity-modulated radiotherapy boost, to a total of 67.5 Gy (2.7 Gy/fraction) in 25 fractions within 5 weeks. Image guidance was performed using three gold seed fiducials. The National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, and Radiation Therapy Oncology Group late morbidity scores were used to assess the acute and late toxicities, respectively. Biochemical failure was determined using the Phoenix definition. Results: A total of 97 patients were treated and followed up for a median of 39 months, with 88% having a minimum of 24 months of follow-up. The maximal toxicity scores were recorded. The grade of acute gastrointestinal toxicity was Grade 0 in 4%, 1 in 59%, and 2 in 37%. The grade of acute urinary toxicity was Grade 0 in 8%, 1 in 50%, 2 in 39%, and 3 in 4%. The grade of late gastrointestinal toxicity was Grade 0 in 54%, 1 in 40%, and 2 in 7%. No Grade 3 or greater late gastrointestinal toxicities developed. The grade of late urinary toxicity was Grade 0 in 82%, 1 in 9%, 2 in 5%, 3 in 3%, and 4 in 1% (1 patient). All severe toxicities (Grade 3 or greater) had resolved at the last follow-up visit. The 4-year biochemical disease-free survival rate was 90.5%. Conclusions: A hypofractionated intensity-modulated radiotherapy boost delivering 67.5 Gy in 25 fractions within 5 weeks combined with pelvic nodal radiotherapy and long-term androgen deprivation therapy was well tolerated, with low rates

  19. Strategies for improved accuracy and efficiency with advanced intensity modulated radiation therapy techniques

    NASA Astrophysics Data System (ADS)

    Westerly, David C.

    2009-11-01

    The development of advanced intensity modulated radiation therapy (IMRT) techniques has led to significant improvements in our ability to treat complicated target volumes with minimal collateral damage to the surrounding healthy tissue. These techniques however, come at the cost of increased complexity; which translates into increased sensitivity of the optimized treatment plans to inaccuracies in the planning and delivery processes, and can also result in longer treatment times. The aim of this work is investigate various strategies designed to improve the accuracy and efficiency of two advanced forms of IMRT: helical tomotherapy and intensity modulated proton therapy (IMPT). Helical tomotherapy is form of X-ray IMRT that uses a compact linear accelerator mounted on a CT ring gantry to rotationally deliver intensity modulated fan-beams of radiation to a patient for treatment. Failure to select judicious values for certain planning parameters can result in plans with long treatment times that are difficult for the machine to accurately deliver. This situation was observed for a series of patients scheduled for treatment at the University of Wisconsin. Treatment planning methods designed to avoid these difficulties have been investigated and are discussed. While the vast majority of IMRT treatments are performed using mega-voltage X-rays, there has recently been a great deal of interest in the use of IMPT for a variety of clinical indications. Current methods of IMPT are limited in their applicability however, due to restrictions imposed by the current delivery paradigm. An alternative method for IMPT delivery using a fan-beam geometry has been examined. Another challenge with IMPT pertains to the accuracy of proton dose calculations in the presence of complex tissue heterogeneities. Monte Carlo methods provide the most accurate means of dose calculation; however, the computational requirements of current radiation transport codes makes Monte Carlo methods

  20. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    SciTech Connect

    Caglar, Hale B.; Tishler, Roy B.; Burke, Elaine; Li Yi; Goguen, Laura; Norris, Carl M.; Allen, Aaron M.

    2008-11-15

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessed with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving {>=}50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving {>=}50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects after

  1. Modulated single-bubble sonoluminescence: Dependence of phase of flashes, their intensity and rise/decay times on viscosity, the modulation strength, and frequency

    NASA Astrophysics Data System (ADS)

    Mastikhin, Igor; Djurkovic, Borko

    2004-05-01

    The single-bubble sonoluminescence (SBSL) signal was studied for the case of driving frequency modulated by lower frequency with an offset. In our work, the driving frequency of 28 kHz and the modulation frequencies of 25-1000 Hz were used. The modulation strength of 0.2, 0.5, and 0.8 was defined as the difference of highest and lowest pressures over modulation period. The measurements were performed for water-glycerol mixtures of various viscosities. The measured SBSL signal appeared as a train of flashes for modulation frequencies below 250 Hz, and as a continuous modulated signal for higher frequencies. At the same frequency, the flashes covered similar phase intervals for different modulation strengths and, accordingly, pressure ranges. At higher glycerol concentrations (up to 24%) both the intensity and the stability of flashes increased, due to damped shape instabilities and reduced dancing; however, the phase interval of flashes remained about the same. Such phase-locked behavior can be explained by translational movements of the bubble due to modulated Bjerknes force and changes in the symmetry of the bubble collapse. The changes in intensities and rise/decay times can serve as a measure of the gas exchange between the bubble and its surroundings during silent and luminescent intervals.

  2. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  3. Motivational intensity modulates the effects of positive emotions on set shifting after controlling physiological arousal.

    PubMed

    Zhou, Ya; Siu, Angela F Y

    2015-12-01

    Recent research on the construct of emotion suggests the integration of a motivational dimension into the traditional two-dimension (subjective valence and physiological arousal) model. The motivational intensity of an emotional state should be taken into account while investigating the emotion-cognition relationship. This study examined how positive emotional states varying in motivational intensity influenced set shifting, after controlling the potential confounding impacts of physiological arousal. In Experiment 1, 155 volunteers performed a set-shifting task after being randomly assigned to five states: high- vs. low-motivating positive affect (interest vs. serenity), high- vs. low-motivating negative affect (disgust vs. anxiety), and neutral state. Eighty-five volunteers participated in Experiment 2, which further examined the effects of higher vs. lower degree of interest. Both experiments measured and compared participants' physiological arousal (blood pressure and pulse rate) under the normal and experimental conditions as the covariate. Results showed no difference in switching performance between the neutral and serenity groups. As compared with the neutral state, the high-motivating positive affect significantly increased set-switching reaction time costs, but reduced error rate costs; the higher the motivational intensity, the greater the time-costs impairment. This indicates a role of the high-motivating positive affect in regulating the balance between the flexible and stable cognitive control. Motivational intensity also modulated the effects of negative emotional states, i.e., disgust caused a larger increase in time costs than anxiety. Further exploration into neurobiological mechanisms that may mediate the emotional effects on set shifting is warranted. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  4. Vertical intensity modulation for improved radiographic penetration and reduced exclusion zone

    NASA Astrophysics Data System (ADS)

    Bendahan, J.; Langeveld, W. G. J.; Bharadwaj, V.; Amann, J.; Limborg, C.; Nosochkov, Y.

    2016-09-01

    In the present work, a method to direct the X-ray beam in real time to the desired locations in the cargo to increase penetration and reduce exclusion zone is presented. Cargo scanners employ high energy X-rays to produce radiographic images of the cargo. Most new scanners employ dual-energy to produce, in addition to attenuation maps, atomic number information in order to facilitate the detection of contraband. The electron beam producing the bremsstrahlung X-ray beam is usually directed approximately to the center of the container, concentrating the highest X-ray intensity to that area. Other parts of the container are exposed to lower radiation levels due to the large drop-off of the bremsstrahlung radiation intensity as a function of angle, especially for high energies (>6 MV). This results in lower penetration in these areas, requiring higher power sources that increase the dose and exclusion zone. The capability to modulate the X-ray source intensity on a pulse-by-pulse basis to deliver only as much radiation as required to the cargo has been reported previously. This method is, however, controlled by the most attenuating part of the inspected slice, resulting in excessive radiation to other areas of the cargo. A method to direct a dual-energy beam has been developed to provide a more precisely controlled level of required radiation to highly attenuating areas. The present method is based on steering the dual-energy electron beam using magnetic components on a pulse-to-pulse basis to a fixed location on the X-ray production target, but incident at different angles so as to direct the maximum intensity of the produced bremsstrahlung to the desired locations. The details of the technique and subsystem and simulation results are presented.

  5. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    SciTech Connect

    Moro, Erik A.

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated

  6. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    SciTech Connect

    Holmes, Timothy W. Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-07-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management.

  7. Improved phase generated carrier demodulation algorithm for eliminating light intensity disturbance and phase modulation amplitude variation.

    PubMed

    Tong, Youwan; Zeng, Hualin; Li, Liyan; Zhou, Yan

    2012-10-10

    In this paper we propose a novel, improved, phase generated carrier (PGC) demodulation algorithm based on the PGC-differential-cross-multiplying approach (PGC-DCM). The influence of phase modulation amplitude variation and light intensity disturbance (LID) on traditional PGC demodulation algorithms is analyzed theoretically and experimentally. An experimental system for remote no-contact microvibration measurement is set up to confirm the stability of the improved PGC algorithm with LID. In the experiment, when the LID with a frequency of 50 Hz and the depth of 0.3 is applied, the signal-to-noise and distortion ratio (SINAD) of the improved PGC algorithm is 19 dB, higher than the SINAD of the PGC-DCM algorithm, which is 8.7 dB.

  8. Intensity Modulated Radiotherapy (IMRT) in head and neck cancers - an overview.

    PubMed

    Nutting, C M

    2012-07-01

    Radiotherapy (RT) is effective in head and neck cancers. Following RT, dryness and dysphagia are the 2 major sequelae which alter the quality of life (QOL) significantly in these patients. There is randomized evidence that Intensity Modulated Radiotherapy (IMRT) effectively spares the parotid glands. IMRT has been attempted in all head and neck subsites with encouraging results (discussed below). Role of IMRT in swallowing structure (constrictor muscles) sparing is less clear.Further improvement in results may be possible by using functional imaging at the time of RT planning and by image guidance/verification at the time of treatment delivery. The following text discusses these issues in detail. Head and neck cancer, IMRT.

  9. Simple tool for prediction of parotid gland sparing in intensity-modulated radiation therapy

    SciTech Connect

    Gensheimer, Michael F.; Hummel-Kramer, Sharon M.; Cain, David; Quang, Tony S.

    2015-10-01

    Sparing one or both parotid glands is a key goal when planning head and neck cancer radiation treatment. If the planning target volume (PTV) overlaps one or both parotid glands substantially, it may not be possible to achieve adequate gland sparing. This finding results in physicians revising their PTV contours after an intensity-modulated radiation therapy (IMRT) plan has been run and reduces workflow efficiency. We devised a simple formula for predicting mean parotid gland dose from the overlap of the parotid gland and isotropically expanded PTV contours. We tested the tool using 44 patients from 2 institutions and found agreement between predicted and actual parotid gland doses (mean absolute error = 5.3 Gy). This simple method could increase treatment planning efficiency by improving the chance that the first plan presented to the physician will have optimal parotid gland sparing.

  10. Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

    PubMed Central

    2014-01-01

    Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients. PMID:25834586

  11. Balancing control and simplicity: A variable aggregation method in intensity modulated radiation therapy planning*

    PubMed Central

    Süss, Philipp; Küfer, Karl-Heinz

    2008-01-01

    It is commonly believed that not all degrees of freedom are needed to produce good solutions for the treatment planning problem in intensity modulated radiation therapy (IMRT). However, typical methods to exploit this fact either increase the complexity of the optimization problem or are heuristic in nature. In this work we introduce a technique based on adaptively refining variable clusters to successively attain better treatment plans. The approach creates approximate solutions based on smaller models that may come arbitrarily close to the optimal solution. Although the method is illustrated using a specific treatment planning model, the components constituting the variable clustering and the adaptive refinement are independent of the particular optimization problem. PMID:19255600

  12. [Intensity-modulated radiotherapy for head and neck cancer. Dose constraint for salivary gland and mandible].

    PubMed

    Pointreau, Y; Lizée, T; Bensadoun, R-J; Boisselier, P; Racadot, S; Thariat, J; Graff, P

    2016-10-01

    Intensity-modulated radiation therapy (IMRT) is the gold standard for head and neck irradiation. It allows better protection to the organs at risk such as salivary glands and mandible, and can reduce the frequency of xerostomia, trismus and osteoradionecrosis. At the time of treatment planning, the mean dose to a single parotid gland should be kept below 26Gy, the mean dose to a single submandibular gland below 39Gy, the mean dose to the mandible below 60 to 65Gy and the D2% to a single temporomandibular joint below 65Gy. These dose constraints could be further improved with data extracted from cohorts of patients receiving IMRT exclusively. The dose administered to the target volumes should not be lessened to spare the salivary glands or mandible.

  13. Whole Pelvic Intensity-modulated Radiotherapy for Gynecological Malignancies: A Review of the Literature

    PubMed Central

    Hymel, Rockne; Jones, Guy C.; Simone, Charles B.

    2015-01-01

    Radiation therapy has long played a major role in the treatment of gynecological malignancies. There is increasing interest in the utility of intensity-modulated radiotherapy (IMRT) and its application to treat gynecological malignancies. Herein, we review the state-of-the-art use of IMRT for gynecological malignancies and report how it is being used alone as well as in combination with chemotherapy in both the adjuvant and definitive settings. Based on dosimetric and clinical evidence, IMRT can reduce gastrointestinal, genitourinary, and hematological toxicities compared with 3D conformal radiotherapy for gynecologic malignancies. We discuss how these attributes of IMRT may lead to improvements in disease outcomes by allowing for dose escalation of radiation therapy, intensification of chemotherapy, and limiting toxicity-related treatment breaks. Currently accruing trials investigating pelvic IMRT for cervical and endometrial cancers are discussed. PMID:25600840

  14. Thyroid storm after intensity-modulated radiation therapy: a case report and discussion.

    PubMed

    Diaz, Roberto; Blakey, Marc D; Murphy, Patrick B; Cryar, A Keith; Cmelak, Anthony J

    2009-03-01

    A 43-year-old man with locally advanced squamous cell carcinoma of the base of tongue was treated with induction chemotherapy followed by intensity-modulated radiation therapy (IMRT). Within 20 days post-treatment, the patient developed clinical symptoms highly suggestive of hyperthyroidism. Two and one half months after completion of therapy, the patient developed severe thyrotoxicosis, which, in retrospect, appears to have met the criteria for thyroid storm. This case history illustrates a previously unreported, life-threatening complication of external-beam radiation that should be considered in patients receiving IMRT therapy involving the thyroid. Diagnosis of the patient's hyperthyroidism and probable thyroid storm was difficult to recognize because of the significant overlap between the signs and symptoms of severe thyrotoxicosis and the expected toxicities of his cancer therapy.

  15. Implementation of intensity modulated radiotherapy for prostate cancer in a private radiotherapy service in Mexico

    PubMed Central

    Poitevin-Chacón, María Adela; Reséndiz González, Gabriel; Alvarado Zermeño, Adriana; Flores Castro, Jesús Manuel; Flores Balcázar, Christian Haydée; Rosales Pérez, Samuel; Pérez Pastenes, Miguel Angel; Rodríguez Laguna, Alejandro; Vázquez Fernández, Patricio; Calvo Fernández, Alejandro; Bastida Ventura, Jorge

    2014-01-01

    Intensity modulated radiation therapy (IMRT) allows physicians to deliver higher conformal doses to the tumour, while avoiding adjacent structures. As a result the probability of tumour control is higher and toxicity may be reduced. However, implementation of IMRT is highly complex and requires a rigorous quality assurance (QA) program both before and during treatment. The present article describes the process of implementing IMRT for localized prostate cancer in a radiation therapy department. In our experience, IMRT implementation requires careful planning due to the need to simultaneously implement specialized software, multifaceted QA programs, and training of the multidisciplinary team. Establishing standardized protocols and ensuring close collaboration between a multidisciplinary team is challenging but essential. PMID:25535587

  16. Experimental demonstration of light sensor-based visible light communications using time shift light intensity modulation

    NASA Astrophysics Data System (ADS)

    Kim, Yong-hyeon; Chung, Yeon-ho

    2016-09-01

    An experimental light sensor-based indoor visible light communication (VLC) is presented. Light-emitting diodes (LEDs) primarily used for illumination are employed to transmit wireless optical data over a short distance, while a smartphone's light sensor is used to receive the data. The light sensor in a smartphone is originally installed to function as a power saving method by adjusting the brightness of the smartphone screen. We propose an efficient and easy-to-use short range VLC based on this light sensor. To compensate for the inherent low sampling rate of the light sensor and also to avoid LED (transmitter) flickering, we propose time shift light intensity modulation. To verify the proposed light sensor VLC, experiments were conducted. The results demonstrate that the data can reliably be transmitted over the VLC link between the LEDs and the smartphone light sensor.

  17. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy.

    PubMed

    Zhang, M; Westerly, D C; Mackie, T R

    2011-08-07

    With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom

  18. Autonomic cardiovascular modulation in masters and young cyclists following high-intensity interval training.

    PubMed

    Borges, Nattai R; Reaburn, Peter R; Doering, Thomas M; Argus, Christos K; Driller, Matthew W

    2017-04-01

    This study aimed at examining the autonomic cardiovascular modulation in well-trained masters and young cyclists following high-intensity interval training (HIT). Nine masters (age 55.6 ± 5.0 years) and eight young cyclists (age 25.9 ± 3.0 years) completed a HIT protocol of 6 x 30 sec at 175% of peak power output, with 4.5-min' rest between efforts. Immediately following HIT, heart rate and R-R intervals were monitored for 30-min during passive supine recovery. Autonomic modulation was examined by i) heart rate recovery in the first 60-sec of recovery (HRR60); ii) the time constant of the 30-min heart rate recovery curve (HRRτ); iii) the time course of the root mean square for successive 30-sec R-R interval (RMSSD30); and iv) time and frequency domain analyses of subsequent 5-min R-R interval segments. No significant between-group differences were observed for HRR60 (P = 0.096) or HRRτ (P = 0.617). However, a significant interaction effect was found for RMSSD30 (P = 0.021), with the master cyclists showing higher RMSSD30 values following HIT. Similar results were observed in the time and frequency domain analyses with significant interaction effects found for the natural logarithm of the RMSSD (P = 0.008), normalised low-frequency power (P = 0.016) and natural logarithm of high-frequency power (P = 0.012). Following high-intensity interval training, master cyclists demonstrated greater post-exercise parasympathetic reactivation compared to young cyclists, indicating that physical training at older ages has significant effects on autonomic function.

  19. MIMO FSO communication using subcarrier intensity modulation over double generalized gamma fading

    NASA Astrophysics Data System (ADS)

    Yi, Xiang; Yao, Mingwu; Wang, Xiaoyang

    2017-01-01

    Atmospheric turbulence-induced fading is known to have a serious detrimental effect on the performance of free-space optical (FSO) communication. The involvement of multiple lasers and photodetectors in FSO systems offers an effective way to overcome fading. Very recently, a new generic fading model, called double-generalized gamma (double GG), is developed for accurately describing irradiance fading over a wide range of turbulence conditions. Therefore, for a general and exact study of the multiple-input multiple-output (MIMO) FSO system, the double GG fading model is adopted in this paper. We investigate the MIMO FSO systems using subcarrier intensity modulation. Two typical transmit diversity schemes, repetition code (RC) and orthogonal space-time block code (OSTBC), are considered. We first propose a new power series expression for the probability density function of the double GG fading. Then we derive the average error rate expressions for both schemes in terms of double power series. The truncated forms of the derived power series enable the rapid and accurate numerical computation of the error rates. Furthermore, we present the asymptotic error rate analyses at high electrical signal-to-noise ratio (SNR) for both schemes. Closed-form diversity order and coding gain for both schemes are also obtained. Our numerical results, verified by simulation, confirm that RC outperforms OSTBC for MIMO FSO systems with subcarrier intensity modulation in double GG fading. The asymptotic coding gain of the RC scheme over the OSTBC scheme is analytically quantified for varying degrees of the fading strength.

  20. Intensity Modulated Radiation Therapy for Primary Soft Tissue Sarcoma of the Extremity: Preliminary Results

    SciTech Connect

    Alektiar, Kaled M. . E-mail: alektiak@mskcc.org; Hong, Linda; Brennan, Murray F.; Della-Biancia, Cesar; Singer, Samuel

    2007-06-01

    Purpose: To report preliminary results on using intensity modulated radiation therapy (IMRT) as an adjuvant treatment in primary soft tissue sarcoma (STS) of the extremity. Methods and Materials: Between February 2002 and March 2005, 31 adult patients with primary STS of the extremity were treated with surgery and adjuvant IMRT. Tumor size was >10 cm in 74% of patients and grade was high in 77%. Preoperative IMRT was given to 7 patients (50 Gy) and postoperative IMRT (median dose, 63 Gy) was given to 24 patients. Complete gross resection including periosteal stripping or bone resection was required in 10, and neurolysis or nerve resection in 20. The margins were positive or within 1 mm in 17. Complications from surgery and radiation therapy (RT) were assessed using the Common Terminology Criteria for Adverse Events grading system. Results: Median follow-up time was 23 months. Grade 1 RT dermatitis developed in 71% of patients, Grade 2 in 16%, and Grade 3 in 10%. Infectious wound complications developed in 13% and noninfectious complications in 10%. Two patients (6.4%) developed fractures. Grade 1 neuropathy developed in 28% of patients and Grade 2 in 5%. The rates of Grade 1 and 2 joint stiffness were each 19%. Grade 1 edema was observed in 19% of patients and Grade 2 in 13%. The 2-year local control, distant control, and overall survival were 95%, 65%, and 81%, respectively. Conclusion: Intensity modulated RT appears to provide excellent local control in a difficult group of high-risk patients. The morbidity profile is also favorable, but longer follow-up is needed to confirm the results from this study.

  1. Intensity-modulated stereotactic radiotherapy (IMSRT) for skull-base meningiomas

    SciTech Connect

    Yenice, Kamil M. . E-mail: kyenice@radonc.uchicago.edu; Narayana, Ashwatha; Chang, Jenghwa; Gutin, Philip H.; Amols, Howard I.

    2006-11-15

    Purpose: To investigate the potential benefits of a micromultileaf collimator ({mu}MLC) -based intensity-modulated stereotactic radiotherapy (IMSRT) in skull-base meningiomas. Methods and Materials: Seven patients with inoperable or recurrent small-volume (1.7-15.5 cc) skull-base meningiomas were treated with IMSRT to 54 Gy in 30 fractions using a {mu}MLC in the dynamic mode. IMSRT plan quality was evaluated in comparison with the conformal stereotactic radiotherapy technique, using the same beam arrangement and static delivery with the {mu}MLC. Plans were compared using multiple dose distributions and dose-volume histograms for the planning target volume and organs at risk. The conformity and uniformity metrics, as well as normal-tissue complication probabilities, were calculated for the two techniques. Follow-up with MRI and clinical examination was performed at regular intervals. Results: With a mean follow-up of 17 months, local control has been achieved in all cases, and no treatment-related toxicities have been noted. For cavernous sinus tumors overlapping with optic apparatus, IMSRT has improved the dose uniformity within the target on average by 8%, which resulted in a reduction of the estimated chiasm normal-tissue complication probability by up to 65%. Conclusions: Intensity-modulated stereotactic radiotherapy can be safely delivered to improve the dose distributions in select skull-base meningiomas with an appreciable concomitant dose reduction to involved critical structures. Longer follow-up with a larger patient group is necessary to demonstrate sustained tumor control and low morbidity with IMSRT for small inoperable, recurrent, or subtotally resected meningiomas.

  2. Accelerated Partial Breast Irradiation with Intensity-Modulated Radiotherapy Is Feasible for Chinese Breast Cancer Patients

    PubMed Central

    He, Zhenyu; Wu, Sangang; Zhou, Juan; Sun, Jiayan; Lin, Qin; Lin, Huanxin; Guan, Xunxing

    2014-01-01

    Purpose Several accelerated partial breast irradiation (APBI) techniques are being investigated in patients with early-stage breast cancer. The present study evaluated the feasibility, early toxicity, initial efficacy, and cosmetic outcomes of accelerated partial breast intensity-modulated radiotherapy (IMRT) for Chinese female patients with early-stage breast cancer after breast-conserving surgery. Methods A total of 38 patients met the inclusion criteria and an accelerated partial breast intensity-modulated radiotherapy (APBI-IMRT) plan was designed for each patient. The prescription dose was 34 Gy in 10 fractions, 3.4 Gy per fraction, twice a day, in intervals of more than 6 hours. Results Of the 38 patients, six patients did not meet the planning criteria. The remaining 32 patients received APBI-IMRT with a mean target volume conformity index of 0.67 and a dose homogeneity index of 1.06. The median follow-up time was 53 months and no local recurrence or distant metastasis was detected. The most common acute toxicities observed within 3 months after radiotherapy were erythema, breast edema, pigmentation, and pain in the irradiated location, among which 43.8%, 12.5%, 31.3%, and 28.1% were grade 1 toxicities, respectively. The most common late toxicities occurring after 3 months until the end of the follow-up period were breast edema, pigmentation, pain in the irradiated location, and subcutaneous fibrosis, among which 6.2%, 28.1%, 21.9%, and 37.5% were grade 1 toxicities, respectively. Thirty-one patients (96.8%) had fine or excellent cosmetic outcomes, and only one patient had a poor cosmetic outcome. Conclusion It is feasible for Chinese females to receive APBI-IMRT after breast conserving surgery. The radiotherapeutic toxicity is acceptable, and both the initial efficacy and cosmetic outcomes are good. PMID:25320624

  3. Intensity-Modulated Radiotherapy for Head-and-Neck Cancer in the Community Setting

    SciTech Connect

    Seung, Steven Bae, Joseph; Solhjem, Matthew; Bader, Stephen; Gannett, David; Hansen, Eric K.; Louie, Jeannie; Underhill, Kelly Cha Christine

    2008-11-15

    Purpose: To review outcomes with intensity-modulated radiation therapy (IMRT) in the community setting for the treatment of nasopharyngeal and oropharyngeal cancer. Methods and Materials: Between April 2003 and April 2007, 69 patients with histologically confirmed cancer of the nasopharynx and oropharynx underwent IMRT in our practice. The primary sites included nasopharynx (11), base of tongue (18), and tonsil (40). The disease stage distribution was as follows: 2 Stage I, 11 Stage II, 16 Stage III, and 40 Stage IV. All were treated with a simultaneous integrated boost IMRT technique. The median prescribed doses were 70 Gy to the planning target volume, 59.4 Gy to the high-risk subclinical volume, and 54 Gy to the low-risk subclinical volume. Forty-five patients (65%) received concurrent chemotherapy. Toxicity was graded according to the Radiation Therapy Oncology Group toxicity criteria. Progression-free and overall survival rates were estimated with the Kaplan-Meier product-limit method. Results: Median duration of follow-up was 18 months. The estimated 2-year local control, regional control, distant control, and overall survival rates were 98%, 100%, 98%, and 90%, respectively. The most common acute toxicities were dermatitis (32 Grade 1, 32 Grade 2, 5 Grade 3), mucositis (8 Grade 1, 33 Grade 2, 28 Grade 3), and xerostomia (0 Grade 1, 29 Grade 2, 40 Grade 3). Conclusions: Intensity-modulated radiotherapy in the community setting can be accomplished safely and effectively. Systematic internal review systems are recommended for quality control until sufficient experience develops.

  4. Predictors for Clinical Outcomes After Accelerated Partial Breast Intensity-Modulated Radiotherapy

    SciTech Connect

    Reeder, Reed; Carter, Dennis L. Howell, Kathryn; Henkenberns, Phyllis; Tallhamer, Michael; Johnson, Tim; Kercher, Jane; Widner, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Leonard, Charles E.

    2009-05-01

    Purpose: To correlate the treatment planning parameters with the clinical outcomes in patients treated with accelerated partial breast intensity-modulated radiotherapy. Methods and Materials: A total of 105 patients with Stage I breast cancer were treated between February 2004 and March 2007 in a Phase II prospective trial and had detailed information available on the planning target volume (PTV), ipsilateral breast volume (IBV), PTV/IBV ratio, lung volume, chest wall volume, surgery to radiotherapy interval, follow-up interval, breast pain, and cosmesis. The first 7 of these patients were treated to 34 Gy, and the remaining 98 were treated to 38.5 Gy. All patients were treated twice daily for 5 consecutive days. Univariate and multivariate analyses were performed. Results: The median follow-up was 13 months. No recurrences or deaths were observed. Of the 105 patients, 30 reported mild or moderate breast pain in their most recently recorded follow-up visit. The irradiated lung volume (p < 0.05) and chest wall volume receiving >35 Gy (p < 0.01) were associated with pain. The PTV, but not the PTV/IBV ratio, also correlated with pain (p < 0.01 and p = 0.42, respectively). A total of 72 patients reported excellent, 32 reported good, and 1 reported poor cosmesis. Physician-rated cosmesis reported 90 excellent and 15 good. None of the tested variables correlated with the cosmetic outcomes. Conclusion: Radiotherapy to the chest wall (chest wall volume receiving >35 Gy) and to lung correlated with reports of mild pain after accelerated partial breast intensity-modulated radiotherapy. Also, the PTV, but not the PTV/IBV ratio, was predictive of post-treatment reports of pain.

  5. Intensity-modulated radiation therapy for oropharyngeal cancer: radiation dosage constraint at the anterior mandible.

    PubMed

    Verdonck, Henk W D; de Jong, Jos M A; Granzier, Marlies E P G; Nieman, Fred H; de Baat, Cees; Stoelinga, Paul J W

    2009-06-01

    Because the survival of endosseous implants in irradiated bone is lower than in non-irradiated bone, particularly if the irradiation dose exceeds 50Gy, a study was carried out to assess the irradiation dose in the anterior mandible, when intensity modulated radiation therapy (IMRT) is used. The hypothesis was that adequate IMRT planning in oropharyngeal cancer patients is allowing sufficiently low anterior mandibular bone radiation dosages to safely insert endosseous implants. Ten randomly selected patients with oropharyngeal cancer, primarily treated by intensity-modulated radiotherapy (IMRT), were included in this study. First, at five determined positions distributed over the anterior mandible, the appropriate radiation dosages were calculated according to the originally arranged fractionated radiation schedule. Second, for each patient an adjusted fractionated radiation schedule was established with an extra dose constraint which allowed a lower dose in the mandible taking into account that the anterior mandible needs protection against radiation-induced osteoradionecrosis. The goal for the adjusted fractionated radiation schedule was similar as that of the original fractionated radiation schedule, including a desired tumour target dosage of 70Gy and maximum mean local dosages for organs at risk. The data revealed a considerable and statistically significant, irradiation dose reduction in the anterior mandible without compromising the other constraints. As a result of this study it is strongly advised to maximize dose constraint to the anterior mandible when planning irradiation for oropharyngeal cancer patients, using IMRT. This would greatly facilitate successful implant treatment for this group of patients. The fractionated radiation schedules used, should also be used for the planning of the best implant positions by integrating them in the implant planning software.

  6. Feasibility of an online adaptive replanning method for cranial frameless intensity-modulated radiosurgery

    SciTech Connect

    Calvo, Juan Francisco; San José, Sol; Garrido, LLuís; Puertas, Enrique; Moragues, Sandra; Pozo, Miquel; Casals, Joan

    2013-10-01

    To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally was intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.

  7. Leaf position error during conformal dynamic arc and intensity modulated arc treatments.

    PubMed

    Ramsey, C R; Spencer, K M; Alhakeem, R; Oliver, A L

    2001-01-01

    Conformal dynamic arc (CD-ARC) and intensity modulated arc treatments (IMAT) are both treatment modalities where the multileaf collimator (MLC) can change leaf position dynamically during gantry rotation. These treatment techniques can be used to generate complex isodose distributions, similar to those used in fix-gantry intensity modulation. However, a beam-hold delay cannot be used during CD-ARC or IMAT treatments to reduce spatial error. Consequently, a certain amount of leaf position error will have to be accepted in order to make the treatment deliverable. Measurements of leaf position accuracy were taken with leaf velocities ranging from 0.3 to 3.0 cm/s. The average and maximum leaf position errors were measured, and a least-squares linear regression analysis was performed on the measured data to determine the MLC velocity error coefficient. The average position errors range from 0.03 to 0.21 cm, with the largest deviations occurring at the maximum achievable leaf velocity (3.0 cm/s). The measured MLC velocity error coefficient was 0.0674 s for a collimator rotation of 0 degrees and 0.0681 s for a collimator rotation of 90 degrees. The distribution in leaf position error between the 0 degrees and 90 degrees collimator rotations was within statistical uncertainty. A simple formula was developed based on these results for estimating the velocity-dependent dosimetric error. Using this technique, a dosimetric error index for plan evaluation can be calculated from the treatment time and the dynamic MLC leaf controller file.

  8. MAGIC-type polymer gel for three-dimensional dosimetry: intensity-modulated radiation therapy verification.

    PubMed

    Gustavsson, Helen; Karlsson, Anna; Bäck, Sven A J; Olsson, Lars E; Haraldsson, Pia; Engström, Per; Nyström, Håkan

    2003-06-01

    A new type of polymer gel dosimeter, which responds well to absorbed dose even when manufactured in the presence of normal levels of oxygen, was recently described by Fong et al. [Phys. Med. Biol. 46, 3105-3113 (2001)] and referred to by the acronym MAGIC. The aim of this study was to investigate the feasibility of using this new type of gel for intensity-modulated radiation therapy (IMRT) verification. Gel manufacturing was carried out in room atmosphere under normal levels of oxygen. IMRT inverse treatment planning was performed using the Helios software. The gel was irradiated using a linear accelerator equipped with a dynamic multileaf collimator, and intensity modulation was achieved using sliding window technique. The response to absorbed dose was evaluated using magnetic resonance imaging. Measured and calculated dose distributions were compared with regard to in-plane isodoses and dose volume histograms. In addition, the spatial and dosimetric accuracy was evaluated using the gamma formalism. Good agreement between calculated and measured data was obtained. In the isocenter plane, the 70% and 90% isodoses acquired using the different methods are mostly within 2 mm, with up to 3 mm disagreement at isolated points. For the planning target volume (PTV), the calculated mean relative dose was 96.8 +/- 2.5% (1 SD) and the measured relative mean dose was 98.6 +/- 2.2%. Corresponding data for an organ at risk was 34.4 +/- 0.9% and 32.7 +/- 0.7%, respectively. The gamma criterion (3 mm spatial/3% dose deviation) was fulfilled for 94% of the pixels in the target region. Discrepancies were found in hot spots the upper and lower parts of the PTV, where the measured dose was up to 11% higher than calculated. This was attributed to sub optimal scatter kernels used in the treatment planning system dose calculations. Our results indicate great potential for IMRT verification using MAGIC-type polymer gel.

  9. Robust Intensity Modulated Proton Therapy (IMPT) Increases Estimated Clinical Benefit in Head and Neck Cancer Patients

    PubMed Central

    van Dijk, Lisanne V.; Steenbakkers, Roel J. H. M.; ten Haken, Bennie; van der Laan, Hans Paul; van ‘t Veld, Aart A.; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose To compare the clinical benefit of robust optimized Intensity Modulated Proton Therapy (minimax IMPT) with current photon Intensity Modulated Radiation Therapy (IMRT) and PTV-based IMPT for head and neck cancer (HNC) patients. The clinical benefit is quantified in terms of both Normal Tissue Complication Probability (NTCP) and target coverage in the case of setup and range errors. Methods and Materials For 10 HNC patients, PTV-based IMRT (7 fields), minimax and PTV-based IMPT (2, 3, 4, 5 and 7 fields) plans were tested on robustness. Robust optimized plans differed from PTV-based plans in that they target the CTV and penalize possible error scenarios, instead of using the static isotropic CTV-PTV margin. Perturbed dose distributions of all plans were acquired by simulating in total 8060 setup (±3.5 mm) and range error (±3%) combinations. NTCP models for xerostomia and dysphagia were used to predict the clinical benefit of IMPT versus IMRT. Results The robustness criterion was met in the IMRT and minimax IMPT plans in all error scenarios, but this was only the case in 1 of 40 PTV-based IMPT plans. Seven (out of 10) patients had relatively large NTCP reductions in minimax IMPT plans compared to IMRT. For these patients, xerostomia and dysphagia NTCP values were reduced by 17.0% (95% CI; 13.0–21.1) and 8.1% (95% CI; 4.9–11.2) on average with minimax IMPT. Increasing the number of fields did not contribute to plan robustness, but improved organ sparing. Conclusions The estimated clinical benefit in terms of NTCP of robust optimized (minimax) IMPT is greater than that of IMRT and PTV-based IMPT in HNC patients. Furthermore, the target coverage of minimax IMPT plans in the presence of errors was comparable to IMRT plans. PMID:27030987

  10. Fast intensity-modulated arc therapy based on 2-step beam segmentation

    SciTech Connect

    Bratengeier, Klaus; Gainey, Mark; Sauer, Otto A.; Richter, Anne; Flentje, Michael

    2011-01-15

    Purpose: Single or few arc intensity-modulated arc therapy (IMAT) is intended to be a time saving irradiation method, potentially replacing classical intensity-modulated radiotherapy (IMRT). The aim of this work was to evaluate the quality of different IMAT methods with the potential of fast delivery, which also has the possibility of adapting to the daily shape of the target volume. Methods: A planning study was performed. Novel double and triple IMAT techniques based on the geometrical analysis of the target organ at risk geometry (2-step IMAT) were evaluated. They were compared to step and shoot IMRT reference plans generated using direct machine parameter optimization (DMPO). Volumetric arc (VMAT) plans from commercial preclinical software (SMARTARC) were used as an additional benchmark to classify the quality of the novel techniques. Four cases with concave planning target volumes (PTV) with one dominating organ at risk (OAR), viz., the PTV/OAR combination of the ESTRO Quasimodo phantom, breast/lung, spine metastasis/spinal cord, and prostate/rectum, were used for the study. The composite objective value (COV) and other parameters representing the plan quality were studied. Results: The novel 2-step IMAT techniques with geometry based segment definition were as good as or better than DMPO and were superior to the SMARTARC VMAT techniques. For the spine metastasis, the quality measured by the COV differed only by 3%, whereas the COV of the 2-step IMAT for the other three cases decreased by a factor of 1.4-2.4 with respect to the reference plans. Conclusions: Rotational techniques based on geometrical analysis of the optimization problem (2-step IMAT) provide similar or better plan quality than DMPO or the research version of SMARTARC VMAT variants. The results justify pursuing the goal of fast IMAT adaptation based on 2-step IMAT techniques.

  11. Empowering Intensity Modulated Proton Therapy Through Physics and Technology: An Overview.

    PubMed

    Mohan, Radhe; Das, Indra J; Ling, Clifton C

    2017-10-01

    Considering the clinical potential of protons attributable to their physical characteristics, interest in proton therapy has increased greatly in this century, as has the number of proton therapy installations. Until recently, passively scattered proton therapy was used almost entirely. Notably, the overall clinical results to date have not shown a convincing benefit of protons over photons. A rapid transition is now occurring with the implementation of the most advanced form of proton therapy, intensity modulated proton therapy (IMPT). IMPT is superior to passively scattered proton therapy and intensity modulated radiation therapy (IMRT) dosimetrically. However, numerous limitations exist in the present IMPT methods. In particular, compared with IMRT, IMPT is highly vulnerable to various uncertainties. In this overview we identify three major areas of current limitations of IMPT: treatment planning, treatment delivery, and motion management, and discuss current and future efforts for improvement. For treatment planning, we need to reduce uncertainties in proton range and in computed dose distributions, improve robust planning and optimization, enhance adaptive treatment planning and delivery, and consider how to exploit the variability in the relative biological effectiveness of protons for clinical benefit. The quality of proton therapy also depends on the characteristics of the IMPT delivery systems and image guidance. Efforts are needed to optimize the beamlet spot size for both improved dose conformality and faster delivery. For the latter, faster energy switching time and increased dose rate are also needed. Real-time in-room volumetric imaging for guiding IMPT is in its early stages with cone beam computed tomography (CT) and CT-on-rails, and continued improvements are anticipated. In addition, imaging of the proton beams themselves, using, for instance, prompt γ emissions, is being developed to determine the proton range and to reduce range uncertainty

  12. TH-A-BRE-01: The Status of Intensity Modulated Proton and Ion Therapy

    SciTech Connect

    Dong, L; Zhu, X; Unkelbach, J; Schulte, R

    2014-06-15

    IMRT with photons has become a radiation therapy standard of care for many cancer treatment sites. The situation is quite different with intensity modulated particle (protons and ion) radiation therapy (IMPT). With the rapid development of beam scanning techniques and many of the newer proton facilities exclusively offering active beam scanning as their radiation delivery technique, it is timely to give an update on the status and challenges of IMPT. The leading principle in IMPT is to aim at the target from several, not necessarily coplanar, directions with multiple pencil beams that are modulated in their intensity and adjusted in their energy such that a desired dose distribution or, more generally, a desired bio-effective dose distribution is achieved. Different from low-LET photons, the varying relative biological effectiveness (RBE) along the beam path adds an additional dimension to the treatment planning process and will require biophysical modeling at least for carbon ion therapy. IMPT involves computationally challenging tasks, yet it needs to be very fast in order to be clinically relevant. To make IMPT computationally tractable, robust and efficient optimization methods are required. Lastly, IMPT planning is very sensitive to accurate knowledge of relative stopping and scattering powers of the intervening tissues as well as intra- and inter-fraction motion. Robust planning methods are being developed in order to obtain IMPT plans that are less sensitive against such uncertainties. This therapy symposium will present an update on the current status and emerging developments of IMPT from the medical physics perspective. Learning Objectives: Become familiar with current delivery techniques for IMPT and their limitations. Understand the basics of dose calculational algorithms and commissioning of IMPT. Learn how to assess the accuracy of planning and delivery of IMPT treatments. Get an overview of currently used and emerging optimization techniques. Learn

  13. Cetuximab or nimotuzumab plus intensity-modulated radiotherapy versus cisplatin plus intensity-modulated radiotherapy for stage II-IVb nasopharyngeal carcinoma.

    PubMed

    You, Rui; Sun, Rui; Hua, Yi-Jun; Li, Chao-Feng; Li, Ji-Bin; Zou, Xiong; Yang, Qi; Liu, You-Ping; Zhang, Yi-Nuan; Yu, Tao; Cao, Jing-Yu; Zhang, Meng-Xia; Jiang, Rou; Mo, Hao-Yuan; Guo, Ling; Cao, Ka-Jia; Lin, Ai-Hua; Qian, Chao-Nan; Sun, Ying; Ma, Jun; Chen, Ming-Yuan

    2017-09-15

    To compare intensity-modulated radiotherapy (IMRT) with cisplatin (CDDP) versus cetuximab (CTX) and nimotuzumab (NTZ) for Stage II-IVb Nasopharyngeal Carcinoma (NPC). A total of 1,837 patients with stage II-IVb NPC who received IMRT plus CTX or NTZ, or CDDP between January 2009 and December 2013 were included in the current analysis. Using propensity scores to adjust for potential prognostic factors, a well-balanced cohort of 715 patients was created by matching each patient who underwent IMRT plus concomitant NTZ/CTX with four patients who underwent IMRT plus concomitant CDDP (1:4). Efficacy and safety were compared between the CTX/NTZ and CDDP groups of this well-balanced cohort. Furthermore, we conducted multivariate analysis and subgroup analysis based on all the 1,837 eligible cases. There was no significant difference between CTX/NTZ group and CDDP group in terms of DFS (3-year, 86.7% vs. 86.2%, p > 0.05), LRRFS (96.2% vs. 96.3%, p > 0.05), DMFS (91.1% vs. 92.3%, p > 0.05) and OS (91.7% vs. 91.9%, p > 0.05). Subgroup analysis demonstrated a significant interaction effect between patients with IMRT plus CTX/NTZ and N3 node stage on LRRFS with the highest risk of loco-regional relapse (HR 8.85, p = 0.001). Significantly increased hematologic toxicities, gastrointestinal reactions were observed in the CDDP group (p < 0.05). Patients of 3.4-4.7% experienced severe hematologic toxicities during the treatment with concomitant CTX and NTZ. Increased rate of CTX related-skin reaction and mucositis was observed in the CTX group. CTX/NTZ used concurrently with IMRT may be comparable to those of the standard CDDP-IMRT combination for maximizing survival for patients with stage II-IVb NPC. © 2017 UICC.

  14. Efficiency gains for spinal radiosurgery using multicriteria optimization intensity modulated radiation therapy guided volumetric modulated arc therapy planning.

    PubMed

    Chen, Huixiao; Winey, Brian A; Daartz, Juliane; Oh, Kevin S; Shin, John H; Gierga, David P

    2015-01-01

    To evaluate plan quality and delivery efficiency gains of volumetric modulated arc therapy (VMAT) versus a multicriteria optimization-based intensity modulated radiation therapy (MCO-IMRT) for stereotactic radiosurgery of spinal metastases. MCO-IMRT plans (RayStation V2.5; RaySearch Laboratories, Stockholm, Sweden) of 10 spinal radiosurgery cases using 7-9 beams were developed for clinical delivery, and patients were replanned using VMAT with partial arcs. The prescribed dose was 18 Gy, and target coverage was maximized such that the maximum dose to the planning organ-at-risk volume (PRV) of the spinal cord was 10 or 12 Gy. Dose-volume histogram (DVH) constraints from the clinically acceptable MCO-IMRT plans were utilized for VMAT optimization. Plan quality and delivery efficiency with and without collimator rotation for MCO-IMRT and VMAT were compared and analyzed based upon DVH, planning target volume coverage, homogeneity index, conformity number, cord PRV sparing, total monitor units (MU), and delivery time. The VMAT plans were capable of matching most DVH constraints from the MCO-IMRT plans. The ranges of MU were 4808-7193 for MCO-IMRT without collimator rotation, 3509-5907 for MCO-IMRT with collimator rotation, 4444-7309 for VMAT without collimator rotation, and 3277-5643 for VMAT with collimator of 90 degrees. The MU for the VMAT plans were similar to their corresponding MCO-IMRT plans, depending upon the complexity of the target and PRV geometries, but had a larger range. The delivery times of the MCO-IMRT and VMAT plans, both with collimator rotation, were 18.3 ± 2.5 minutes and 14.2 ± 2.0 minutes, respectively (P < .05). The MCO-IMRT and VMAT can create clinically acceptable plans for spinal radiosurgery. The MU for MCO-IMRT and VMAT can be reduced significantly by utilizing a collimator rotation following the orientation of the spinal cord. Plan quality for VMAT is similar to MCO-IMRT, with similar MU for both modalities. Delivery times can be reduced

  15. Detection of light and vibration modulates bioluminescence intensity in the glowworm, Arachnocampa flava.

    PubMed

    Mills, Rebecca; Popple, Julie-Anne; Veidt, Martin; Merritt, David John

    2016-04-01

    Glowworms are larval fungus gnats that emit light from a specialised abdominal light organ. The light attracts small arthropod prey to their web-like silk snares. Larvae glow throughout the night and can modulate their bioluminescence in response to sensory input. To better understand light output regulation and its ecological significance, we examined the larvae's reaction to light exposure, vibration and sound. Exposure to a 5-min light pulse in the laboratory causes larvae to exponentially decrease their light output over 5-10 min until they completely switch off. They gradually return to pre-exposure levels but do not show a rebound. Larvae are most sensitive to ultraviolet light, then blue, green and red. Vibration of the larval snares results in a several-fold increase in bioluminescence over 20-30 s, followed by an exponential return to pre-exposure levels over 15-30 min. Under some conditions, larvae can respond to vibration by initiating bioluminescence when they are not glowing; however, the response is reduced compared to when they are glowing. We propose that inhibitory and excitatory mechanisms combine to modulate bioluminescence intensity by regulating biochemical reactions or gating the access of air to the light organ.

  16. Angular and Intensity Dependent Spectral Modulations in High Harmonics from N2

    NASA Astrophysics Data System (ADS)

    McFarland, Brian; Farrell, Joseph; Bucksbaum, Philip; Guehr, Markus

    2009-05-01

    The spectral amplitude and phase modulation of high harmonics (HHG) in molecules provides important clues to molecular structure and dynamics in strong laser fields. We have studied these effects in aligned N2. Earlier results of HHG experiments claimed that the spectral amplitude modulation was predominantly due to geometrical interference between the recombining electron and the highest occupied molecular orbital (HOMO) [1]. We report evidence that contradicts this simple view. We observe a phase jump accompanied by a spectral minimum for HHG in aligned N2. The minimum shifts to lower harmonics as the angle between the molecular axis and harmonic generation polarization increases, and shifts to higher harmonics with increasing harmonic generation intensity. The features observed cannot be fully explained by a geometrical model. We discuss alternative explanations involving multi orbital effects [2]. [0pt] [1] Lein et al., Phys. Rev. A, 66, 023805 (2002) [2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)

  17. A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery.

    PubMed

    Jursinic, Paul A; Nelms, Ben E

    2003-05-01

    An analysis is made of a two-dimensional array of diodes that can be used for measuring dose generated in a plane by a radiation beam. This measuring device is the MapCHECK Model 1175 (Sun Nuclear, Melbourne, FL). This device has 445 N-type diodes in a 22 x 22 cm2 2-D array with variable spacing. The entire array of diodes is easily calibrated to allow for measurements in absolute dose. For IMRT quality assurance, each beam is measured individually with the beam central axis oriented perpendicular to the plane of diodes. Software is available to do the analytical comparison of measurements versus dose distributions calculated by a treatment planning system. Comparison criteria of percent difference and distance-to-agreement are defined by the operator. Data are presented that show the diode array has linear response when beam fluence changes by over 300-fold, which is typical of the level of modulation in intensity modulated radiation therapy, IMRT, beams. A linear dependence is also shown for a 100-fold change in monitors units delivered. Methods for how this device can be used in the clinic for quality assurance of IMRT fields are described. Measurements of typical IMRT beams that are modulated by compensators and MLCs are presented with comparisons to treatment planning system dose calculations. A time analysis is done for typical IMRT quality assurance measurements. The setup, calibration, and analysis time for the 2-D diode array are on the order of 20 min, depending on numbers of fields. This is significantly less time than required to do similar analysis with radiographic film. The 2-D diode array is ideal for per-plan quality assurance after an IMRT system is fully commissioned.

  18. Linear energy transfer-guided optimization in intensity modulated proton therapy: feasibility study and clinical potential.

    PubMed

    Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald

    2013-09-01

    To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose-volume and LET-volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in identifying the clinically optimal solution. Copyright © 2013

  19. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    SciTech Connect

    Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald

    2013-09-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  20. Impact of Respiratory Motion on Worst-Case-Scenario Optimized Intensity-Modulated Proton Therapy for Lung Cancers

    PubMed Central

    Liu, Wei; Liao, Zhongxing; Schild, Steven E.; Liu, Zhong; Li, Heng; Li, Yupeng; Park, Peter C.; Li, Xiaoqiang; Stoker, Joshua; Shen, Jiajian; Keole, Sameer; Anand, Aman; Fatyga, Mirek; Dong, Lei; Sahoo, Narayan; Vora, Sujay; Wong, William; Zhu, X. Ronald; Bues, Martin; Mohan, Radhe

    2014-01-01

    Background We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case scenario optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans’ ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from the internal target volume (ITV). The second employed the worst-case scenario optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results Without respiratory motion considered, we affirmed that worst-case scenario optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, worst-case-scenario optimization still achieved more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% − D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusions Worst-case scenario optimization led to superior solutions for lung IMPT. Despite of the fact that worst

  1. Dosimetric benefits of robust treatment planning for intensity modulated proton therapy for base-of-skull cancers.

    PubMed

    Liu, Wei; Mohan, Radhe; Park, Peter; Liu, Zhong; Li, Heng; Li, Xiaoqiang; Li, Yupeng; Wu, Richard; Sahoo, Narayan; Dong, Lei; Zhu, X Ronald; Grosshans, David R

    2014-01-01

    The clinical advantage of intensity modulated proton therapy (IMPT) may be diminished by range and patient setup uncertainties. We evaluated the effectiveness of robust optimization that incorporates uncertainties into the treatment planning optimization algorithm for treatment of base of skull cancers. We compared 2 IMPT planning methods for 10 patients with base of skull chordomas and chondrosarcomas: (1) conventional optimization, in which uncertainties are dealt with by creating a planning target volume (PTV); and (2) robust optimization, in which uncertainties are dealt with by optimizing individual spot weights without a PTV. We calculated root-mean-square deviation doses (RMSDs) for every voxel to generate RMSD volume histograms (RVHs). The area under the RVH curve was used for relative comparison of the 2 methods' plan robustness. Potential benefits of robust planning, in terms of target dose coverage and homogeneity and sparing of organs at risk (OARs) were evaluated using established clinical metrics. Then the plan evaluation metrics were averaged and compared with 2-sided paired t tests. The impact of tumor volume on the effectiveness of robust optimization was also analyzed. Relative to conventionally optimized plans, robustly optimized plans were less sensitive for both targets and OARs. In the nominal scenario, robust and conventional optimization resulted in similar D95% doses (D95% clinical target volume [CTV]: 63.3 and 64.8 Gy relative biologic effectiveness [RBE]), P <.01]) and D5%-D95% (D5%-D95% CTV: 8.0 and 7.1 Gy[RBE], [P <.01); irradiation of OARs was less with robust optimization (brainstem V60: 0.076 vs 0.26 cm(3) [P <.01], left temporal lobe V70: 0.22 vs 0.41 cm(3), [P = .068], right temporal lobe V70: 0.016 vs 0.11 cm(3), [P = .096], left cochlea Dmean: 28.1 vs 30.1 Gy[RBE], [P = .023], right cochlea Dmean: 23.7 vs 25.2 Gy[RBE], [P = .059]). Results in the worst-case scenario were analogous. Robust optimization is effective for creating

  2. Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers.

    PubMed

    Liu, Wei; Liao, Zhongxing; Schild, Steven E; Liu, Zhong; Li, Heng; Li, Yupeng; Park, Peter C; Li, Xiaoqiang; Stoker, Joshua; Shen, Jiajian; Keole, Sameer; Anand, Aman; Fatyga, Mirek; Dong, Lei; Sahoo, Narayan; Vora, Sujay; Wong, William; Zhu, X Ronald; Bues, Martin; Mohan, Radhe

    2015-01-01

    We compared conventionally optimized intensity modulated proton therapy (IMPT) treatment plans against worst-case scenario optimized treatment plans for lung cancer. The comparison of the 2 IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient setup, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. For each of the 9 lung cancer cases, 2 treatment plans were created that accounted for treatment uncertainties in 2 different ways. The first used the conventional method: delivery of prescribed dose to the planning target volume that is geometrically expanded from the internal target volume (ITV). The second used a worst-case scenario optimization scheme that addressed setup and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of changes in patient anatomy attributable to respiratory motion were investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the 2 groups were compared with 2-sided paired Student t tests. Without respiratory motion considered, we affirmed that worst-case scenario optimization is superior to planning target volume-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, worst-case scenario optimization still achieved more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality (D95% ITV, 96.6% vs 96.1% [P = .26]; D5%- D95% ITV, 10.0% vs 12.3% [P = .082]; D1% spinal cord, 31.8% vs 36.5% [P = .035]). Worst-case scenario optimization led to superior solutions for lung IMPT. Despite the fact that worst-case scenario optimization did not explicitly account for

  3. Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.

    PubMed

    Wu, Gaofeng; Cai, Yangjian

    2011-04-25

    Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.

  4. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Bedford, J. L.; Webb, S.

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans.

  5. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy.

    PubMed

    Bedford, J L; Webb, S

    2007-01-21

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans.

  6. A role for ASIC3 in the modulation of high-intensity pain stimuli

    PubMed Central

    Chen, Chih-Cheng; Zimmer, Anne; Sun, Wei-Hsin; Hall, Jennifer; Brownstein, Michael J.; Zimmer, Andreas

    2002-01-01

    Acid-sensing ion channel 3 (ASIC3), a proton-gated ion channel of the degenerins/epithelial sodium channel (DEG/ENaC) receptor family is expressed predominantly in sensory neurons including nociceptive neurons responding to protons. To study the role of ASIC3 in pain signaling, we generated ASIC3 knockout mice. Mutant animals were healthy and responded normally to most sensory stimuli. However, in behavioral assays for pain responses, ASIC3 null mutant mice displayed a reduced latency to the onset of pain responses, or more pain-related behaviors, when stimuli of moderate to high intensity were used. This unexpected effect seemed independent of the modality of the stimulus and was observed in the acetic acid-induced writhing test (0.6 vs. 0.1–0.5%), in the hot-plate test (52.5 and 55 vs. 50°C), and in tests for mechanically induced pain (tail-pinch vs. von Frey filaments). We postulate that ASIC3 is involved in modulating moderate- to high-intensity pain sensation. PMID:12060708

  7. Intensity modulated radiation therapy with field rotation--a time-varying fractionation study.

    PubMed

    Dink, Delal; Langer, Mark P; Rardin, Ronald L; Pekny, Joseph F; Reklaitis, Gintaras V; Saka, Behlul

    2012-06-01

    This paper proposes a novel mathematical approach to the beam selection problem in intensity modulated radiation therapy (IMRT) planning. The approach allows more beams to be used over the course of therapy while limiting the number of beams required in any one session. In the proposed field rotation method, several sets of beams are interchanged throughout the treatment to allow a wider selection of beam angles than would be possible with fixed beam orientations. The choice of beamlet intensities and the number of identical fractions for each set are determined by a mixed integer linear program that controls jointly for the distribution per fraction and the cumulative dose distribution delivered to targets and critical structures. Trials showed the method allowed substantial increases in the dose objective and/or sparing of normal tissues while maintaining cumulative and fraction size limits. Trials for a head and neck site showed gains of 25%-35% in the objective (average tumor dose) and for a thoracic site gains were 7%-13%, depending on how strict the fraction size limits were set. The objective did not rise for a prostate site significantly, but the tolerance limits on normal tissues could be strengthened with the use of multiple beam sets.

  8. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-01-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal. PMID:25742866

  9. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy.

    PubMed

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-05-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal.

  10. The Effects of Odor Quality and Temporal Asynchrony on Modulation of Taste Intensity by Retronasal Odor.

    PubMed

    Isogai, Tomoyuki; Wise, Paul M

    2016-09-01

    The experiments had 2 main goals: 1) to add to the sparse literature on how retronasal aromas interact with bitter tastes, and 2) to determine whether modulation of taste intensity by aroma depends on temporal contiguity, as one might expect if flavor interactions depend on cross-modal binding (similar to object perception in other modalities). An olfactometer-gustometer allowed independent oral presentation of odorized air and liquid samples. First, using simultaneous presentation of odors and tastes (Experiments 1a-d) we found that a "sweet-smelling" aroma enhanced the rated sweetness of sucrose and decreased the rated bitterness of sucrose octaacetate (SOA), and that a "bitter-smelling" aroma enhanced the bitterness of SOA and decreased the sweetness of sucrose. Thus, with respect to effects on taste intensity, sweet and bitter aromas mimicked mixture-interactions between sweet and bitter tastes under current conditions. Next (Experiment 2), both odors were again paired with both tastes, with a parametric manipulation of odor onset. Odor presentation ranged from before taste delivery to after taste delivery. Enhancement of taste intensity was greatest with simultaneous onset, and greatly attenuated with offsets of 1s. These results are consistent with the idea that enhancement of taste by retronasal aroma depends on a temporal binding window like many other cross-modal interactions. The effects of temporal offsets on suppression of taste were inconclusive. These findings are discussed within the context of past work on odor-taste interactions. © The Author 2016. Published by Oxford University Press. All rights reserved. Fo