Sample records for conventional metallic components

  1. Metallic nut for use with ceramic threads

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1996-01-01

    A nozzle guide vane assembly has ceramic components therein having a conventional thread thereon including a preestablished pitch and having a preestablished rate of thermal expansion. The nozzle guide vane assembly has a metallic components therein having a preestablished rate of thermal expansion being greater that the rate of thermal expansion of the ceramic components is positioned in a gas turbine engine. The metallic component, a nut, has a thread therein including a plurality of crests being spaced on a pitch equal to that of the ceramic component and has a pair of contacting surfaces extending from the plurality of crests. A notch spirally extends intermediate adjacent ones of the plurality of crests and has a preestablished depth which is at least twice the size of the conventional pitch. Furthermore, the pair of contacting surfaces are in contact with only a portion of the threaded surface of the ceramic components.

  2. Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1989-01-01

    The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  3. Ion plating seals microcracks or porous metal components

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buckley, D. H.; Brainard, W. A.

    1972-01-01

    Description of ion plating process is given. Advantage of this process is that any plating metal or alloy can be selected, whereas, for conventional welding, material selection is limited by compatability.

  4. Casting of weldable graphite/magnesium metal matrix composites with built-in metallic inserts

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Kashalikar, Uday; Majkowski, Patricia

    1994-01-01

    Technology innovations directed at the advanced development of a potentially low cost and weldable graphite/magnesium metal matrix composites (MMC) through near net shape pressure casting are described. These MMC components uniquely have built-in metallic inserts to provide an innovative approach for joining or connecting other MMC components through conventional joining techniques such as welding, brazing, mechanical fasteners, etc. Moreover, the metallic inserts trapped within the MMC components can be made to transfer the imposed load efficiently to the continuous graphite fiber reinforcement thus producing stronger, stiffer, and more reliable MMC components. The use of low pressure near net shape casting is economical compared to other MMC fabrication processes. These castable and potentially weldable MMC components can provide great payoffs in terms of high strength, high stiffness, low thermal expansion, lightweight, and easily joinable MMC components for several future NASA space structural, industrial, and commercial applications.

  5. High-precision measurements of cementless acetabular components using model-based RSA: an experimental study.

    PubMed

    Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L; Søballe, Kjeld

    2007-08-01

    In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years, new software systems have been developed to solve this problem. We compared the precision of 3 RSA systems in migration analysis of the acetabular component. A hemispherical and a non-hemispherical acetabular component were mounted in a phantom. Both acetabular components underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. We found narrow confidence intervals, indicating high precision of the conventional marker system and model-based RSA with regard to migration and rotation. The confidence intervals of conventional RSA and model-based RSA were narrower than those of the hemispherical cup algorithm-based system regarding cup migration and rotation. The model-based RSA software combines the precision of the conventional RSA software with the convenience of the hemispherical cup algorithm-based system. Based on our findings, we believe that these new tools offer an improvement in the measurement of acetabular component migration.

  6. Self-ligating versus conventional metallic brackets on Streptococcus mutans retention: A systematic review.

    PubMed

    Longoni, Juliano N; Lopes, Beatriz M; Freires, Irlan A; Dutra, Kamile L; Franco, Ademir; Paranhos, Luiz R

    2017-01-01

    The present study aimed to review the literature systematically and assess comparatively whether self-ligating metallic brackets accumulate less Streptococcus mutans biofilm than conventional metallic brackets. The systematic search was performed following PRISMA guidelines and registration in PROSPERO. Seven electronic databases (Google Scholar, LILACS, Open Grey, PubMed, SciELO, ScienceDirect, and Scopus) were consulted until April 2016, with no restriction of language and time of publication. Only randomized clinical studies verifying S. mutans colonization in metallic brackets (self-ligating and conventional) were included. All steps were performed independently by two operators. The search resulted in 546 records obtained from the electronic databases. Additionally, 216 references obtained from the manual search of eligible articles were assessed. Finally, a total of 5 studies were included in the qualitative synthesis. In 1 study, the total bacterial count was not different among self-ligating and conventional brackets, whereas in 2 studies the amount was lower for self-ligating brackets. Regarding the specific count of S. mutans , 2 studies showed less accumulation in self-ligating than in conventional brackets. Based on the limited evidence, self-ligating metallic brackets accumulate less S. mutans than conventional ones. However, these findings must be interpreted in conjunction with particularities individual for each patient - such as hygiene and dietary habits, which are components of the multifactorial environment that enables S. Mutans to proliferate and keep retained in the oral cavity.

  7. Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices

    NASA Astrophysics Data System (ADS)

    Uehara, Masato; Yashiro, Wataru; Momose, Atsushi

    2013-10-01

    It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.

  8. Self-ligating versus conventional metallic brackets on Streptococcus mutans retention: A systematic review

    PubMed Central

    Longoni, Juliano N.; Lopes, Beatriz M.; Freires, Irlan A.; Dutra, Kamile L.; Franco, Ademir; Paranhos, Luiz R.

    2017-01-01

    Objective: The present study aimed to review the literature systematically and assess comparatively whether self-ligating metallic brackets accumulate less Streptococcus mutans biofilm than conventional metallic brackets. Material and methods: The systematic search was performed following PRISMA guidelines and registration in PROSPERO. Seven electronic databases (Google Scholar, LILACS, Open Grey, PubMed, SciELO, ScienceDirect, and Scopus) were consulted until April 2016, with no restriction of language and time of publication. Only randomized clinical studies verifying S. mutans colonization in metallic brackets (self-ligating and conventional) were included. All steps were performed independently by two operators. Results: The search resulted in 546 records obtained from the electronic databases. Additionally, 216 references obtained from the manual search of eligible articles were assessed. Finally, a total of 5 studies were included in the qualitative synthesis. In 1 study, the total bacterial count was not different among self-ligating and conventional brackets, whereas in 2 studies the amount was lower for self-ligating brackets. Regarding the specific count of S. mutans, 2 studies showed less accumulation in self-ligating than in conventional brackets. Conclusion: Based on the limited evidence, self-ligating metallic brackets accumulate less S. mutans than conventional ones. However, these findings must be interpreted in conjunction with particularities individual for each patient – such as hygiene and dietary habits, which are components of the multifactorial environment that enables S. Mutans to proliferate and keep retained in the oral cavity. PMID:29279684

  9. Ceramic Cerami Turbine Nozzle

    DOEpatents

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  10. Magnetic Susceptibility Measurements for in Situ Characterization of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Oder, R. R.

    1992-01-01

    Magnetic separation is a viable method for concentration of components of lunar soils and rocks for use as feedstocks for manufacture of metals, oxygen, and for recovery of volatiles such as He-3. Work with lunar materials indicates that immature soils are the best candidates for magnetic beneficiation. The magnetic susceptibility at which selected soil components such as anorthite, ilmenite, or metallic iron are separated is not affected by soil maturity, but the recovery of the concentrated components is. Increasing soil maturity lowers recovery. Mature soils contain significant amounts of glass-encased metallic iron. Magnetic susceptibility, which is sensitive to metallic iron content, can be used to measure soil maturity. The relationship between the ratio of magnetic susceptibility and iron oxide and the conventional maturity parameter, I(sub s)/FeO, ferromagnetic resonant intensity divided by iron oxide content is given. The magnetic susceptibilities were determined using apparatus designed for magnetic separation of the lunar soils.

  11. Scarce metals in conventional passenger vehicles and end-of-life vehicle shredder output.

    PubMed

    Widmer, Rolf; Du, Xiaoyue; Haag, Olaf; Restrepo, Eliette; Wäger, Patrick A

    2015-04-07

    Concurrent with the demand for cleaner, lighter, and more efficient vehicles, many scarce metals (SMs) are used in passenger vehicles because of their unique physical and chemical properties. To explore the recycling potential of these metals, it is important to understand their distribution in the vehicles as well as their fate at the vehicles' end-of-life. However, this information remains very scattered and sparse. In this paper, we present a study investigating the distribution of 31 SMs in selected electrical and electronic (EE) components of conventional passenger vehicles and in the end-of-life vehicle shredder fractions from a shredder plant in Switzerland. The results of the chemical analyses show that the mass fractions of Co, Sn, Sr, Ta, Y, and Zr were dominant with >20,000 g/t in the selected EE components and Ag, Ga, Mo, Sb, Sn, Sr, and Zr with >50 g/t in the analyzed shredder fractions. The largest masses of 17 SMs were found in the shredder light fraction, which is incinerated in municipal waste treatment plants mainly in Switzerland; thus, these SMs are currently not recovered. The SM mass fractions in both the EE components and the shredder fractions were projected to their total masses in 100 hypothetical midrange passenger vehicles. The resulting mass balance showed a mismatch of >50% for 23 metals, which indicates other important SM sources such as alloys.

  12. Anthropogenic signature of sediment organic matter probed by UV-Visible and fluorescence spectroscopy and the association with heavy metal enrichment.

    PubMed

    He, Wei; Lee, Jong-Hyun; Hur, Jin

    2016-05-01

    Sediment organic matter (SOM) was extracted in an alkaline solution from 43 stream sediments in order to explore the anthropogenic signatures. The SOM spectroscopic characteristics including excitation-emission matrix (EEM)-parallel factor analysis (PARAFAC) were compared for five sampling site groups classified by the anthropogenic variables of land use, population density, the loadings of organics and nutrients, and metal enrichment. The conventional spectroscopic characteristics including specific UV absorbance, absorbance ratio, and humification index did not properly discriminate among the different cluster groups except in the case of metal enrichment. Of the four decomposed PARAFAC components, humic-like and tryptophan-like fluorescence responded negatively and positively, respectively, to increasing degrees of the anthropogenic variables except for land use. The anthropogenic enrichment of heavy metals was positively associated with the abundance of tryptophan-like component. In contrast, humic-like component, known to be mostly responsible for metal binding, exhibited a decreasing trend corresponding with metal enrichment. These conflicting trends can be attributed to the overwhelmed effects of the coupled discharges of heavy metals and organic pollutants into sediments. Our study suggests that the PARAFAC components can be used as functional signatures to probe the anthropogenic influences on sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tiaoming; School of Information Science and Engineering, Lanzhou University, Lanzhou 730000; Upadhyay, Aditi

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the stripsmore » into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.« less

  14. Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition

    PubMed Central

    Baufeld, Bernd; van der Biest, Omer

    2009-01-01

    Shaped metal deposition is a novel technique to build near net-shape components layer by layer by tungsten inert gas welding. Especially for complex shapes and small quantities, this technique can significantly lower the production cost of components by reducing the buy-to-fly ratio and lead time for production, diminishing final machining and preventing scrap. Tensile testing of Ti-6Al-4V components fabricated by shaped metal deposition shows that the mechanical properties are competitive to material fabricated by conventional techniques. The ultimate tensile strength is between 936 and 1014 MPa, depending on the orientation and location. Tensile testing vertical to the deposition layers reveals ductility between 14 and 21%, whereas testing parallel to the layers gives a ductility between 6 and 11%. Ultimate tensile strength and ductility are inversely related. Heat treatment within the α+β phase field does not change the mechanical properties, but heat treatment within the β phase field increases the ultimate tensile strength and decreases the ductility. The differences in ultimate tensile strength and ductility can be related to the α lath size and orientation of the elongated, prior β grains. The micro-hardness and Young’s modulus are similar to conventional Ti-6Al-4V with low oxygen content. PMID:27877271

  15. Unveiling the chemistry behind the green synthesis of metal nanoparticles.

    PubMed

    Santos, Sónia A O; Pinto, Ricardo J B; Rocha, Sílvia M; Marques, Paula A A P; Pascoal Neto, Carlos; Silvestre, Armando J D; Freire, Carmen S R

    2014-09-01

    Nanobiotechnology has emerged as a fundamental domain in modern science, and metallic nanoparticles (NPs) are one of the largest classes of NPs studied because of their wide spectrum of possible applications in several fields. The use of plant extracts as reducing and stabilizing agents in their synthesis is an interesting and reliable alternative to conventional methodologies. However, the role of the different components of such extracts in the reduction/stabilization of metal ions has not yet been understood clearly. Here we studied the behavior of the main components of a Eucalyptus globulus Labill. bark aqueous extract during metal-ion reduction followed by advanced chromatographic techniques, which allowed us to establish their specific role in the process. The obtained results showed that phenolic compounds, particularly galloyl derivatives, are mainly responsible for the metal-ion reduction, whereas sugars are essentially involved in the stabilization of the NPs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coleman, Rashadd L.

    Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.

  17. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  18. Metal injection molding as enabling technology for the production of metal prosthesis components: electrochemical and in vitro characterization.

    PubMed

    Melli, Virginia; Rondelli, Gianni; Sandrini, Enrico; Altomare, Lina; Bolelli, Giovanni; Bonferroni, Benedetta; Lusvarghi, Luca; Cigada, Alberto; De Nardo, Luigi

    2013-10-01

    Industrial manufacturing of prosthesis components could take significant advantage by the introduction of new, cost-effective manufacturing technologies with near net-shape capabilities, which have been developed during the last years to fulfill the needs of different technological sectors. Among them, metal injection molding (MIM) appears particularly promising for the production of orthopedic arthroplasty components with significant cost saving. These new manufacturing technologies, which have been developed, however, strongly affect the chemicophysical structure of processed materials and their resulting properties. In order to investigate this relationship, here we evaluated the effects on electrochemical properties, ion release, and in vitro response of medical grade CoCrMo alloy processed via MIM compared to conventional processes. MIM of the CoCrMo alloy resulted in coarser polygonal grains, with largely varying sizes; however, these microstructural differences between MIM and forged/cast CoCrMo alloys showed a negligible effect on electrochemical properties. Passive current densities values observed were 0.49 µA cm(-2) for MIM specimens and 0.51 µA cm(-2) for forged CoCrMo specimens, with slightly lower transpassive potential in the MIM case; open circuit potential and Rp stationary values showed no significant differences. Moreover, in vitro biocompatibility tests resulted in cell viability levels not significantly different for MIM and conventionally processed alloys. Although preliminary, these results support the potential of MIM technology for the production of CoCrMo components of implantable devices. Copyright © 2013 Wiley Periodicals, Inc.

  19. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  20. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.

    PubMed

    Priya, Anshu; Hait, Subrata

    2017-03-01

    Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

  1. MR Imaging of Knee Arthroplasty Implants

    PubMed Central

    Fritz, Jan; Lurie, Brett

    2015-01-01

    Primary total knee arthroplasty is a highly effective treatment that relieves pain and improves joint function in a large percentage of patients. Despite an initially satisfactory surgical outcome, pain, dysfunction, and implant failure can occur over time. Identifying the etiology of complications is vital for appropriate management and proper timing of revision. Due to the increasing number of knee arthroplasties performed and decreasing patient age at implantation, there is a demand for accurate diagnosis to determine appropriate treatment of symptomatic joints following knee arthroplasty, and for monitoring of patients at risk. Magnetic resonance (MR) imaging allows for comprehensive imaging evaluation of the tissues surrounding knee arthroplasty implants with metallic components, including the polyethylene components. Optimized conventional and advanced pulse sequences can result in substantial metallic artifact reduction and afford improved visualization of bone, implant-tissue interfaces, and periprosthetic soft tissue for the diagnosis of arthroplasty-related complications. In this review article, we discuss strategies for MR imaging around knee arthroplasty implants and illustrate the imaging appearances of common modes of failure, including aseptic loosening, polyethylene wear–induced synovitis and osteolysis, periprosthetic joint infections, fracture, patellar clunk syndrome, recurrent hemarthrosis, arthrofibrosis, component malalignment, extensor mechanism injury, and instability. A systematic approach is provided for evaluation of MR imaging of knee implants. MR imaging with optimized conventional pulse sequences and advanced metal artifact reduction techniques can contribute important information for diagnosis, prognosis, risk stratification, and surgical planning. ©RSNA, 2015 PMID:26295591

  2. Liquid metals as ultra-stretchable, soft, and shape reconfigurable conductors

    NASA Astrophysics Data System (ADS)

    Eaker, Collin B.; Dickey, Michael D.

    2015-05-01

    Conventional, rigid materials remain the key building blocks of most modern electronic devices, but they are limited in their ability to conform to curvilinear surfaces. It is possible to make electronic components that are flexible and in some cases stretchable by utilizing thin films, engineered geometries, or inherently soft and stretchable materials that maintain their function during deformation. Here, we describe the properties and applications of a micromoldable liquid metal that can form conductive components that are ultra-stretchable, soft, and shape-reconfigurable. This liquid metal is a gallium-based alloy with low viscosity and high conductivity. The metal develops spontaneously a thin, passivating oxide layer on the surface that allows the metal to be molded into non-spherical shapes, including films and wires, and patterned by direct-write techniques or microfluidic injection. Furthermore, unlike mercury, the liquid metal has low toxicity and negligible vapor pressure. This paper discusses the mechanical and electrical properties of the metal in the context of electronics, and discusses how the properties of the oxide layer have been exploited for new patterning techniques that enable soft, stretchable and reconfigurable devices.

  3. Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating.

    PubMed

    Mirri, Francesca; Orloff, Nathan D; Forster, Aaron M; Ashkar, Rana; Headrick, Robert J; Bengio, E Amram; Long, Christian J; Choi, April; Luo, Yimin; Walker, Angela R Hight; Butler, Paul; Migler, Kalman B; Pasquali, Matteo

    2016-02-01

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.

  4. Advanced Capacitor with SiC for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Tsao, B. H.; Ramalingam, M. L.; Bhattacharya, R. S.; Carr, Sandra Fries

    1994-07-01

    An advanced capacitor using SiC as the dielectric material has been developed for high temperature, high power, and high density electronic components for aircraft and aerospace application. The conventional capacitor consists of a large number of metallized polysulfone films that are arranged in parallel and enclosed in a sealed metal case. However, problems with electrical failure, thermal failure, and dielectric flow were experienced by Air Force suppliers for the component and subsystem for lack of suitable properties of the dielectric material. The high breakdown electrical field, high thermal conductivity, and high temperature operational resistance of SiC compared to similar properties of the conventional ceramic and polymer capacitor would make it a better choice for a high temperature, and high power capacitor. The quality of the SiC film was evaluated. The electrical parameters, such as the capacitance, dissipation factor, equivalent series resistance, and dielectric withstand voltage, were evaluated. The prototypical capacitors are currently being fabricated using SiC film.

  5. Ceramic turbine nozzle

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  6. Ceramic turbine nozzle

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  7. On the lightweighting of automobile engine components : forming sheet metal connecting rod

    NASA Astrophysics Data System (ADS)

    Date, P. P.; Kasture, R. N.; Kore, A. S.

    2017-09-01

    Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.

  8. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    PubMed Central

    Leven, Matthias; Neudörfl, Jörg M

    2013-01-01

    Summary Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components. PMID:23400419

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. Themore » wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.« less

  10. Optimization and validation of highly selective microfluidic integrated silicon nanowire chemical sensor

    NASA Astrophysics Data System (ADS)

    Ehfaed, Nuri. A. K. H.; Bathmanathan, Shillan A. L.; Dhahi, Th S.; Adam, Tijjani; Hashim, Uda; Noriman, N. Z.

    2017-09-01

    The study proposed characterization and optimization of silicon nanosensor for specific detection of heavy metal. The sensor was fabricated in-house and conventional photolithography coupled with size reduction via dry etching process in an oxidation furnace. Prior to heavy metal heavy metal detection, the capability to aqueous sample was determined utilizing serial DI water at various. The sensor surface was surface modified with Organofunctional alkoxysilanes (3-aminopropyl) triethoxysilane (APTES) to create molecular binding chemistry. This has allowed interaction between heavy metals being measured and the sensor component resulting in increasing the current being measured. Due to its, excellent detection capabilities, this sensor was able to identify different group heavy metal species. The device was further integrated with sub-50 µm for chemical delivery.

  11. Coating system to permit direct brazing of ceramics

    DOEpatents

    Cadden, Charles H.; Hosking, F. Michael

    2003-01-01

    This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.

  12. Polyethylene Wear in Retrieved Reverse Total Shoulder Components

    PubMed Central

    Day, Judd S; MacDonald, Daniel W; Olsen, Madeline; Getz, Charles; Williams, Gerald R; Kurtz, Steven M

    2011-01-01

    Background Reverse total shoulder arthroplasty has been used to treat rotator cuff tear arthropathy, proximal humeral fractures and for failed conventional total shoulder prostheses. It has been suggested that polyethylene wear is potentially higher in reverse shoulder replacements than in conventional shoulder replacements. The modes and degree of polyethylene wear have not been completely elucidated. The purpose of this study was to evaluate polyethylene wear patterns in seven specimens retrieved at revision arthroplasty and identify factors that may be associated with increased wear. Methods Reverse total shoulder components were retrieved from 7 patients during revision arthroplasty for loosening and/or pain. Pre-operative glenoid tilt and placement, and scapular notching were evaluated using pre-operative radiographs. Polyethylene wear was evaluated using microCT and optical microscopy. Results Wear on the rim of the polyethylene humeral cup, was identified on all retrieved components. The extent of rim wear varied from a penetration depth of 0.1 to 4.7 mm. We could not demonstrate a correlation between scapular notching and rim wear. However, rim wear was more extensive when the inferior screw had made contact with the liner. Metal on metal wear between the humeral component and the inferior screw of one component was also observed. Wear of the intended bearing surface was minimal. Discussion Rim damage was the predominant cause of polyethylene wear in our retrieved specimens. Direct contact between the humeral component and inferior metaglene screws is concerning because this could lead to accelerated UHMWPE wear and also induce mechanical loosening of the glenoid component. PMID:21724419

  13. Impact of conversion to mixed-oxide fuels on reactor structural components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yahr, G.T.

    1997-04-01

    The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.

  14. Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirri, Francesca; Orloff, Nathan D.; Forser, Aaron M.

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace themore » metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. In conclusion, this high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.« less

  15. Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating

    DOE PAGES

    Mirri, Francesca; Orloff, Nathan D.; Forser, Aaron M.; ...

    2016-01-21

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace themore » metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. In conclusion, this high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.« less

  16. Turbomachine Interface Sealing

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Chupp, Raymond E.; Lattime, Scott B.; Steinetz, Bruce M.

    2005-01-01

    Sealing interfaces and coatings, like lubricants, are sacrificial, giving up their integrity for the benefit of the component. Clearance control is a major issue in power systems turbomachine design and operational life. Sealing becomes the most cost-effective way to enhance system performance. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining interface clearances in turbomachine sealing and component life. This paper focuses on conventional and innovative materials and design practices for sealing interfaces.

  17. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives

    PubMed Central

    Cano, Santiago

    2018-01-01

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented. PMID:29783705

  18. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives.

    PubMed

    Gonzalez-Gutierrez, Joamin; Cano, Santiago; Schuschnigg, Stephan; Kukla, Christian; Sapkota, Janak; Holzer, Clemens

    2018-05-18

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

  19. Fabrication of metal matrix composites by powder metallurgy: A review

    NASA Astrophysics Data System (ADS)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  20. Comparison surface characteristics and chemical composition of conventional metallic and nickel-free brackets.

    PubMed

    Shintcovsk, Ricardo Lima; Knop, Luegya Amorim Henriques; Gandini, Luiz Gonzaga; Martins, Lidia Parsekian; Pires, Aline Segatto

    2015-01-01

    This study aims at comparing conventional and nickel-free metal bracket surface characteristics with elemental composition by scanning electron microscopy (SEM), using energy dispersive spectroscopy (EDS). The sample consisted of 40 lower incisor brackets divided into four groups: ABZ = conventional brackets, Kirium Abzil 3M® (n = 10); RL = conventional brackets, Roth Light Morelli® (n = 10); NF = nickel-free brackets, Nickel-Free Morelli® (n = 10); and RM = nickel-free brackets, Roth Max Morelli® (n = 10). Qualitative evaluation of the bracket surface was performed using SEM, whereby surface features were described and compared. The elemental composition was analyzed by EDS. According to surface analysis, groups ABZ and RL showed a homogeneous surface, with better finishing, whereas the surfaces in groups NF and RM were rougher. The chemical components with the highest percentage were Fe, Cr and C. Groups NF and MR showed no nickel in their composition. In conclusion, the bracket surface of the ABZ and RL groups was more homogeneous, with grooves and pores, whereas the surfaces in groups NF and RM showed numerous flaws, cracks, pores and grooves. The chemical composition analysis confirmed that the nickel-free brackets had no Ni in their composition, as confirmed by the manufacturer's specifications, and were therefore safe to use in patients with a medical history of allergy to this metal.

  1. Environmental Health Hazards of e-Cigarettes and their Components: Oxidants and Copper in e-cigarette aerosols

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Watson, Richard M.; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J.; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2014-01-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment. PMID:25577651

  2. Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials

    PubMed Central

    Naik, Gururaj V.; Liu, Jingjing; Kildishev, Alexander V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2012-01-01

    Noble metals such as gold and silver are conventionally used as the primary plasmonic building blocks of optical metamaterials. Making subwavelength-scale structural elements from these metals not only seriously limits the optical performance of a device due to high absorption, it also substantially complicates the manufacturing process of nearly all metamaterial devices in the optical wavelength range. As an alternative to noble metals, we propose to use heavily doped oxide semiconductors that offer both functional and fabrication advantages in the near-infrared wavelength range. In this letter, we replace a metal with aluminum-doped zinc oxide as a new plasmonic material and experimentally demonstrate negative refraction in an Al:ZnO/ZnO metamaterial in the near-infrared range. PMID:22611188

  3. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

    PubMed Central

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-01

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal. PMID:28106848

  4. Assessment of Pb, Cd, Cr and Ag leaching from electronics waste using four extraction methods.

    PubMed

    Keith, Ashley; Keesling, Kara; Fitzwater, Kendra K; Pichtel, John; Houy, Denise

    2008-12-01

    Heavy metals present in electronic components may leach upon disposal and therefore pose significant environmental hazards. The potential leaching of Pb, Cd, Cr and Ag from PC cathode ray tubes, printed circuit boards (PCBs), PC mice, TV remote controls, and mobile phones was assessed. After controlled crushing, each component was extracted using the Toxicity Characteristic Leaching Procedure (TCLP), EPA Method 1312 (SPLP), NEN 7371 (Dutch Environmental Agency), and DIN S4 (Germany). The TCLP consistently leached the greatest amounts of Pb from all components. The SPLP, NEN 7371 and DIN S4 extracted relatively small amounts of metals compared with the TCLP and were not considered effective as leaching tests for e-waste. The smallest size fraction (< 2 mm) of CRT glass and PCBs leached significantly (p < 0.05) highest Pb via the TCLP. A modified TCLP removed 50.9% more extractable Pb compared with the conventional procedure.

  5. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    NASA Astrophysics Data System (ADS)

    You, Jeong-Ha

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  6. A polymer/semiconductor write-once read-many-times memory

    NASA Astrophysics Data System (ADS)

    Möller, Sven; Perlov, Craig; Jackson, Warren; Taussig, Carl; Forrest, Stephen R.

    2003-11-01

    Organic devices promise to revolutionize the extent of, and access to, electronics by providing extremely inexpensive, lightweight and capable ubiquitous components that are printed onto plastic, glass or metal foils. One key component of an electronic circuit that has thus far received surprisingly little attention is an organic electronic memory. Here we report an architecture for a write-once read-many-times (WORM) memory, based on the hybrid integration of an electrochromic polymer with a thin-film silicon diode deposited onto a flexible metal foil substrate. WORM memories are desirable for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories. Our results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage. The WORM memory pixel exploits a mechanism of current-controlled, thermally activated un-doping of a two-component electrochromic conducting polymer.

  7. Low thermal stress ceramic turbine nozzle

    DOEpatents

    Glezer, Boris; Bagheri, Hamid; Fierstein, Aaron R.

    1996-01-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  8. Low thermal stress ceramic turbine nozzle

    DOEpatents

    Glezer, B.; Bagheri, H.; Fierstein, A.R.

    1996-02-27

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components, the metallic components having a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes there between. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component. 4 figs.

  9. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.

    PubMed

    Medenbach, Lukas; Adelhelm, Philipp

    2017-09-29

    There is great interest in using sulfur as active component in rechargeable batteries thanks to its low cost and high specific charge (1672 mAh/g). The electrochemistry of sulfur, however, is complex and cell concepts are required, which differ from conventional designs. This review summarizes different strategies for utilizing sulfur in rechargeable batteries among membrane concepts, polysulfide concepts, all-solid-state concepts as well as high-temperature systems. Among the more popular lithium-sulfur and sodium-sulfur batteries, we also comment on recent results on potassium-sulfur and magnesium-sulfur batteries. Moreover, specific properties related to the type of light metal are discussed.

  10. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    DOE PAGES

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; ...

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni 59Zr 20Ti 16Si 2Sn 3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO 3, ZrTiO 4 and ZrSnO 4 ternary oxide phases observed on the surface of metallic glass at below glassmore » transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less

  11. Automotive technology status and projections. Volume 2: Assessment report

    NASA Technical Reports Server (NTRS)

    Dowdy, M.; Burke, A.; Schneider, H.; Edmiston, W.; Klose, G. J.; Heft, R.

    1978-01-01

    Current and advanced conventional engines, advanced alternative engines, advanced power train components, and other energy conserving automobile modifications which could be implemented by the end of this century are examined. Topics covered include gas turbine engines, Stirling engines, advanced automatic transmissions, alternative fuels, and metal and ceramic technology. Critical problems are examined and areas for future research are indicated.

  12. Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.

    PubMed

    Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo

    2016-12-13

    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.

  13. Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes

    PubMed Central

    Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J.; Wang, Liliang; Lin, Jianguo

    2016-01-01

    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions. PMID:28060298

  14. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  15. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    PubMed Central

    Tougas, Ian M.; Amani, Matin; Gregory, Otto J.

    2013-01-01

    Temperatures of hot section components in today's gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges) for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today's engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire) thermocouples. PMID:24217356

  16. Metallic and ceramic thin film thermocouples for gas turbine engines.

    PubMed

    Tougas, Ian M; Amani, Matin; Gregory, Otto J

    2013-11-08

    Temperatures of hot section components in today's gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges) for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today's engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire) thermocouples.

  17. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols.

    PubMed

    Lerner, Chad A; Sundar, Isaac K; Watson, Richard M; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2015-03-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Turbine nozzle positioning system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  19. Turbine nozzle positioning system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  20. Ultra precision machining

    NASA Astrophysics Data System (ADS)

    Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas

    1990-05-01

    There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.

  1. Tribology of total hip arthroplasty prostheses

    PubMed Central

    Rieker, Claude B.

    2016-01-01

    Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis. A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient. Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations. All combinations of bearing surface have their advantages and disadvantages. An appraisal of the individual patient’s objectives should be part of the assessment of the best bearing surface. Cite this article: Rieker CB. Tribology of total hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev 2016;1:52-57. DOI: 10.1302/2058-5241.1.000004. PMID:28461928

  2. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 1: Advanced development

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kays, A. O.; Young, E. C.; Mcgee, W. M.

    1972-01-01

    Areas where selective reinforcement of conventional metallic structure can improve static strength/fatigue endurance at lower weight than would be possible if metal reinforcement were used are discussed. These advantages are now being demonstrated by design, fabrication, and tests of three boron-epoxy reinforced C-130E center wing boxes. This structural component was previously redesigned using an aluminum build-up to meet increased severity of fatigue loadings. Direct comparisons of relative structural weights, manufacturing costs, and producibility can therefore be obtained, and the long-time flight service performance of the composite reinforced structure can be evaluated against the wide background of metal reinforced structure.

  3. A Fully Automated and Robust Method to Incorporate Stamping Data in Crash, NVH and Durability Analysis

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Hariharasudhan; Kanthadai, Narayan; Roy, Subir; Beauchesne, Erwan

    2011-08-01

    Crash, NVH (Noise, Vibration, Harshness), and durability analysis are commonly deployed in structural CAE analysis for mechanical design of components especially in the automotive industry. Components manufactured by stamping constitute a major portion of the automotive structure. In CAE analysis they are modeled at a nominal state with uniform thickness and no residual stresses and strains. However, in reality the stamped components have non-uniformly distributed thickness and residual stresses and strains resulting from stamping. It is essential to consider the stamping information in CAE analysis to accurately model the behavior of the sheet metal structures under different loading conditions. Especially with the current emphasis on weight reduction by replacing conventional steels with aluminum and advanced high strength steels it is imperative to avoid over design. Considering this growing need in industry, a highly automated and robust method has been integrated within Altair Hyperworks® to initialize sheet metal components in CAE models with stamping data. This paper demonstrates this new feature and the influence of stamping data for a full car frontal crash analysis.

  4. Structural Origins of Scintillation: Metal Organic Frameworks as a Nanolaboratory

    DTIC Science & Technology

    2016-06-01

    scintillation response and thus the ability to perform neutron/gamma particle discrimination via pulse-shape discrimination ( PSD ). Unfortunately, the...defined an alternative approach towards particle discrimination that addresses the limitations of conventional PSD organic scintillators. This approach...discrimination ( PSD ), for which the prompt component of the scintillation response is quenched for high specific energy loss (dE/dX) particles such as protons

  5. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  6. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2018-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  7. Metal speciation of environmental samples using SPE and SFC-AED analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.C.; Burford, M.D.; Robson, M.

    1995-12-31

    Due to growing public concern over heavy metals in the environment, soil, water and air particulate samples azre now routinely screened for their metal content. Conventional metal analysis typically involves acid digestion extraction and results in the generation of large aqueous and organic solvent waste. This harsh extraction process is usually used to obtain the total metal content of the sample, the extract being analysed by atomic emission or absorption spectroscoply techniques. A more selective method of metal extraction has been investigated which uses a supercritical fluid modified with a complexing agent. The relatively mild extraction method enables both organometallicmore » and inorganic metal species to be recovered intact. The various components from the supercritical fluid extract can be chromatographically separated using supercritical fluid chromatography (SFC) and positive identification of the metals achieved using atomic emission detection (AED). The aim of the study is to develop an analytical extraction procedure which enables a rapid, sensitive and quantitative analysis of metals in environmental samples, using just one extraction (eg SFE) and one analysis (eg SFC-AED) procedure.« less

  8. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  9. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE PAGES

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick; ...

    2017-05-31

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  10. Braze Process Optimization Involving Conventional Metal/Ceramic Brazing with 50Au-50Cu Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MALIZIA JR.,LOUIS A.; MEREDITH,KEITH W.; APPEL,DANIEL B.

    1999-12-15

    Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. Experience with brazing of hermetic vacuum components has identified the following parameters as influencing the outcome of hydrogen furnace brazed Kovar{trademark} to metallized alumina braze joints: (a) Mo-Mn metallization thickness, sinter fire temperature and porosity (b) Nil plate purity, thickness, and sinter firing conditions (c) peak process temperature, time above liquidus and (d) braze alloy washer thickness. ASTM F19 tensile buttons are being used to investigate the above parameters. The F19 geometry permits determination of both joint hermeticity and tensile strength. This presentation will focus on important lessonsmore » learned from the tensile button study: (A) the position of the Kovar{trademark} interlayer can influence the joint tensile strength achieved--namely, off-center interlayers can lead to residual stress development in the ceramic and degrade tensile strength values. Finite element analysis has been used to demonstrate the expected magnitude in strength degradation as a function of misalignment. (B) Time above liquidus (TAL) and peak temperature can influence the strength and alloying level of the resulting braze joint. Excessive TAL or peak temperatures can lead to overbraze conditions where all of the Ni plate is dissolved. (C) Metallize sinter fire processes can influence the morphology and strength obtained from the braze joints.« less

  11. JOINING DISSIMILAR MATERIALS USING FRICTION STIR SCRIBE TECHNIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-09-01

    Development of robust and cost effective method of joining dissimilar materials can provide a critical pathway to enable widespread use of multi-material design and components in mainstream industrial applications. The use of multi-material components such as Steel-Aluminum, Aluminum-Polymer allows design engineers to optimize material utilization based on service requirements and often lead weight and cost reductions. However producing an effective joint between materials with vastly different thermal, microstructural and deformation response is highly problematic using conventional joining and /or fastening methods. This is especially challenging in cost sensitive high volume markets that largely rely on low–cost joining solutions. Friction Stirmore » Scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like Magnesium and Aluminum to high temperature materials like Steels and Titanium. Additionally viable joints between polymer composites and metal can also be made using this method. This paper will present state of the art, progress made and challenges associated with this innovative derivative of Friction Stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less

  12. Difference in EUV photoresist design towards reduction of LWR and LCDU

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; De Simone, Danilo; Vandenberghe, Geert

    2017-03-01

    Pattern fidelity of EUV lithography is crucial for high resolution features, since small variation can affect device performance and even cause short or open circuit. For 1D features, dense lines and contact holes are the most common features for active, metal and contact layer, therefore line width roughness (LWR) and local critical dimension uniformity (LCDU) are important indexes to monitor. Both LWR and LCDU are greatly influenced by photon and acid shot noise. In addition, LWR is also affected by resist mechanical properties, like pattern collapse. In this study, we studied the influence of different chemically amplified resist components, such as polymer, PAG and quencher for both types and concentrations in order to understand the relative extent of influences of deprotection, acid diffusion, and base neutralization on pattern fidelity. However, conventional methods to approach higher resolution or low LWR/LCDU by sacrificing the dose are not sustainable. In order to continue to improve resist performance, a new component, metal salt sensitizer, is introduced into the resist system. This metal salt is able to achieve 30% dose reduction by increasing EUV absorption, maintaining LWR. We believe metal sensitizer might give us a new way to challenge the RLS trade-off.

  13. Joining Dissimilar Materials Using Friction Stir Scribe Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-10-03

    Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multi-material designs and components in mainstream industrial applications. The use of multi-material components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low costmore » joining solutions. Friction stir scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less

  14. A Simplified Technique for Implant-Abutment Level Impression after Soft Tissue Adaptation around Provisional Restoration

    PubMed Central

    Kutkut, Ahmad; Abu-Hammad, Osama; Frazer, Robert

    2016-01-01

    Impression techniques for implant restorations can be implant level or abutment level impressions with open tray or closed tray techniques. Conventional implant-abutment level impression techniques are predictable for maximizing esthetic outcomes. Restoration of the implant traditionally requires the use of the metal or plastic impression copings, analogs, and laboratory components. Simplifying the dental implant restoration by reducing armamentarium through incorporating conventional techniques used daily for crowns and bridges will allow more general dentists to restore implants in their practices. The demonstrated technique is useful when modifications to implant abutments are required to correct the angulation of malpositioned implants. This technique utilizes conventional crown and bridge impression techniques. As an added benefit, it reduces costs by utilizing techniques used daily for crowns and bridges. The aim of this report is to describe a simplified conventional impression technique for custom abutments and modified prefabricated solid abutments for definitive restorations. PMID:29563457

  15. Nozzle insert for mixed mode fuel injector

    DOEpatents

    Lawrence, Keith E [Peoria, IL

    2006-11-21

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. The homogeneous charged nozzle outlet set is defined by a nozzle insert that is attached to an injector body, which defines the conventional nozzle outlet set. The nozzle insert is a one piece metallic component with a large diameter segment separated from a small diameter segment by an annular engagement surface. One of the needle valve members is guided on an outer surface of the nozzle insert, and the nozzle insert has an interference fit attachment to the injector body.

  16. Friction Spinning—New Innovative Tool Systems For The Production of Complex Functionally Graded Workpieces

    NASA Astrophysics Data System (ADS)

    Homberg, Werner; Hornjak, Daniel

    2011-05-01

    Friction spinning is a new innovative and promising incremental forming technology implying high potential regarding the manufacturing of complex functionally graded workpieces and enhancing existing forming limits of conventional metal spinning processes. The friction spinning process is based on the integration of thermo-mechanical friction subprocesses in this incremental forming process. By choosing the appropriate process parameters, e.g. axial feed rate or relative motion, the contact conditions between tool and workpiece can be influenced in a defined way and, thus, a required temperature profile can be obtained. Friction spinning allows the extension of forming limits compared to conventional metal spinning in order to produce multifunctional components with locally varying properties and the manufacturing of e.g. complex hollow parts made of tubes, profiles, or sheet metals. In this way, it meets the demands regarding efficiency and the manufacturing of functionally graded lightweight components. There is e.g. the possibility of locally increasing the wall thickness in joining zones and, as a consequence, achieving higher quality of the joint at decreased expense. These products are not or only hardly producible by conventional processes so far. In order to benefit from the advantages and potentials of this new innovative process new tooling systems and concepts are indispensable which fulfill the special requirements of this thermo-mechanical process concerning thermal and tribological loads and which allow simultaneous and defined forming and friction operations. An important goal of the corresponding research work at the Chair of Forming and Machining Technology at the University of Paderborn is the development of tool systems that allow the manufacturing of such complex parts by simple uniaxial or sequential biaxial linear tool paths. In the paper, promising tool systems and geometries as well as results of theoretical and experimental research work (e.g. regarding the influence and interaction of process parameters on the workpiece quality) will be discussed. Furthermore, possibilities regarding the manufacturing of geometries (demonstrator workpieces) which are not or only hardly producible with conventional processes will be presented.

  17. Verifying and Validating Proposed Models for FSW Process Optimization

    NASA Technical Reports Server (NTRS)

    Schneider, Judith

    2008-01-01

    This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms

  18. Thermophysical Properties of 60-NITINOL for Mechanical Component Applications

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2012-01-01

    The linear thermal expansion coefficient, specific heat capacity, electrical resistivity and thermal conductivity of 60- NITINOL were studied over a range of temperatures representing the operating environment of an oil-lubricated bearing. The behavior of this material appears to follow wellestablished theories applicable to either metal alloys, in general, or to intermetallic compounds, more specifically and the measured data were found to be comparable to those for conventional bearing alloys.

  19. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    NASA Astrophysics Data System (ADS)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  20. Using Laser Ultrasound to Detect Subsurface Defects in Metal Laser Powder Bed Fusion Components

    NASA Astrophysics Data System (ADS)

    Everton, Sarah; Dickens, Phill; Tuck, Chris; Dutton, Ben

    2018-03-01

    Laser powder bed fusion offers many advantages over conventional manufacturing methods, such as the integration of multiple parts that can result in significant weight-savings. The increased design freedom that layer-wise manufacture allows has also been seen to enhance component performance at little or no added cost. For such benefits to be realized, however, the material quality must first be assured. Laser ultrasonic testing is a noncontact inspection technique that has been proposed as suitable for in situ monitoring of metal additive manufacturing processes. This article explores the current capability of this technique to detect manufactured, subsurface defects in Ti-6Al-4V samples, ex situ. The results are compared with x-ray computed tomography reconstructions and focus variation microscopy. Although laser ultrasound has been used to identify material discontinuities, further work is required before this technique could be implemented in situ.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  2. Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing

    PubMed Central

    Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  3. Tribology of total hip arthroplasty prostheses: What an orthopaedic surgeon should know.

    PubMed

    Rieker, Claude B

    2016-02-01

    Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis.A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient.Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations.All combinations of bearing surface have their advantages and disadvantages. An appraisal of the individual patient's objectives should be part of the assessment of the best bearing surface. Cite this article: Rieker CB. Tribology of total hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev 2016;1:52-57. DOI: 10.1302/2058-5241.1.000004.

  4. New Concentric Electrode Metal-Semiconductor-Metal Photodetectors

    NASA Technical Reports Server (NTRS)

    Towe, Elias

    1996-01-01

    A new metal-semiconductor-metal (MSM) photodetector geometry is proposed. The new device has concentric metal electrodes which exhibit a high degree of symmetry and a design flexibility absent in the conventional MSM device. The concentric electrodes are biased to alternating potentials as in the conventional interdigitated device. Because of the high symmetry configuration, however, the new device also has a lower effective capacitance. This device and the conventional MSM structure are analyzed within a common theoretical framework which allows for the comparison of the important performance characteristics.

  5. History-independent cyclic response of nanotwinned metals

    NASA Astrophysics Data System (ADS)

    Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei

    2017-11-01

    Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.

  6. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  7. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  8. A direct method for fabricating tongue-shielding stent.

    PubMed

    Wang, R R; Olmsted, L W

    1995-08-01

    During oral cancer radiotherapy, a tongue-shielding radiation stent guides the patient's upper and lower jaws to a repeatable position, attenuates radiation doses, and protects the tongue and structures adjacent to the irradiated field. Conventionally, a tongue-shielding radiation stent is made of heat-cured polymethyl methacrylate resin in which a low-melting Pb-Bi-Sn alloy is embedded as a shielding layer. Its use involves multiple and lengthy clinical and laboratory procedures. An improved polyvinyl siloxane-metal composite shielding system for radioprotection has recently been developed. This two-component, base and catalyst, putty material offers a shielding effect similar to that of the conventional shielding alloys. Its major advantages are that it is simple to use, requires only one clinical appointment, and affords efficient collaboration between dental and medical teams during cancer treatment. This article describes a simplified direct method of fabricating a tongue-shielding stent with the use of a new polyvinylsiloxane-metal composite in conjunction with impression putty material.

  9. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.

    PubMed

    Rai, Prabhat Kumar

    2008-01-01

    This review addresses the global problem of heavymetal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. Heavymetal contamination in aquatic ecosystems due to discharge of industrial effluents may pose a serious threat to human health. Alkaline precipitation, ion exchange columns, electrochemical removal, filtration, and membrane technologies are the currently available technologies for heavy metal removal. These conventional technologies are not economical and may produce adverse impacts on aquatic ecosystems. Phytoremediation of metals is a cost-effective "green" technology based on the use of specially selected metal-accumulating plants to remove toxic metals from soils and water. Wetland plants are important tools for heavy metal removal. The Ramsar convention, one of the earlier modern global conservation treaties, was adopted at Ramsar, Iran, in 1971 and became effective in 1975. This convention emphasized the wise use of wetlands and their resources. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. The extensive rhizosphere of wetland plants provides an enriched culture zone for the microbes involved in degradation. The wetland sediment zone provides reducing conditions that are conducive to the metal removal pathway. Constructed wetlands proved to be effective for the abatement of heavymetal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  10. Laser-assisted metal spinning for an efficient and flexible processing of challenging materials

    NASA Astrophysics Data System (ADS)

    Brummer, C.; Eck, S.; Marsoner, S.; Arntz, K.; Klocke, F.

    2016-03-01

    The demand for components made from high performance materials like titanium or nickel-based alloys as well as strain-hardening stainless steel is steadily increasing. However, conventional forming operations conducted on these materials are generally very laborious and time-consuming. This is where the limitations of metal spinning also become apparent. Using a laser to apply heat localized to the forming zone during metal spinning facilitates to enhance the formability of a material. In order to analyse the potential of the new manufacturing process, experimental investigations on laser-assisted shear forming and multi-pass metal spinning have been performed with austenitic stainless steel X5CrNi18-10, nickel-based alloy Inconel 718 and titanium grade 2. It could be demonstrated that the formability of these materials can be enhanced by laser-assistance. Besides the resulting enhancement of forming limits for metal spinning of challenging materials, the forming forces were reduced and the product quality was improved significantly.

  11. Development of a Thin Gauge Metallic Seal for Gas Turbine Engine Applications to 1700 F

    NASA Technical Reports Server (NTRS)

    England, Raymond O.

    2006-01-01

    The goal of doubling thrust-to-weight ratio for gas turbine engines has placed significant demands on engine component materials. Operating temperatures for static seals in the transition duct and turbine sections for instance, may well reach 2000 F within the next ten years. At these temperatures conventional age-hardenable superalloys lose their high strength via overaging and eventual dissolution of the gamma precipitate, and are well above their oxidation stability limit. Conventional solid-solution-strengthened alloys offer metallurgical stability, but suffer from rapid oxidation and little useful load bearing strength. Ceramic materials can theoretically be used at these temperatures, but manufacturing processes are in the developmental stages.

  12. Spin-dependent transport in antiferromagnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Merodio, P.; Kalitsov, A.; Béa, H.; Baltz, V.; Chshiev, M.

    2014-09-01

    We investigate the behaviour of spin transfer torque (STT) and tunnelling magnetoresistance (TMR) in epitaxial antiferromagnetic-based tunnel junctions using tight binding calculations in the framework of the Keldysh formalism. We find that the STT out-of-plane component exhibits a staggered spatial distribution similar to its in-plane component. This behaviour is specific to the use of a tunnel barrier and significantly differs from the out-of-plane torques reported in previous works using a metallic spacer. Additionally, we show that unlike conventional ferromagnetic-based tunnel junctions, the TMR can increase with applied bias and reach values comparable to typical magnetoresistances found for usual spin valves.

  13. Capacitance‐Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation

    PubMed Central

    Lamb, Katie J.; Dowsett, Mark R.; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D.

    2017-01-01

    Abstract An electrochemical cell comprising a novel dual‐component graphite and Earth‐crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero‐carbon energy source. PMID:29171724

  14. Post-fatigue fracture resistance of metal core crowns: press-on metal ceramic versus a conventional veneering system

    PubMed Central

    Agustín-Panadero, Rubén; Campos-Estellés, Carlos; Labaig-Rueda, Carlos

    2015-01-01

    Background The aim of this in vitro study was to compare the mechanical failure behavior and to analyze fracture characteristics of metal ceramic crowns with two veneering systems – press-on metal (PoM) ceramic versus a conventional veneering system – subjected to static compressive loading. Material and Methods Forty-six crowns were constructed and divided into two groups according to porcelain veneer manufacture. Group A: 23 metal copings with porcelain IPS-InLine veneering (conventional metal ceramic). Group B: 23 metal copings with IPS-InLine PoM veneering porcelain. After 120,000 fatigue cycles, the crowns were axially loaded to the moment of fracture with a universal testing machine. The fractured specimens were examined under optical stereomicroscopy and scanning electron microscope. Results Fracture resistance values showed statistically significant differences (Student’s t-test) regarding the type of ceramic veneering technique (p=0.001): Group A (conventional metal ceramics) obtained a mean fracture resistance of 1933.17 N, and Group B 1325.74N (Press-on metal ceramics). The most common type of fracture was adhesive failure (with metal exposure) (p=0.000). Veneer porcelain fractured on the occlusal surface following a radial pattern. Conclusions Metal ceramic crowns made of IPS InLine or IPS InLine PoM ceramics with different laboratory techniques all achieved above-average values for clinical survival in the oral environment according to ISO 6872. Crowns made with IPS InLine by conventional technique resisted fracture an average of 45% more than IPS InLine PoM fabricated with the press-on technique. Key words:Mechanical failure, conventional feldspathic, pressable ceramic, chewing simulator, thermocycling, compressive testing, fracture types, scanning electron microscope. PMID:26155346

  15. Early detection of materials degradation

    NASA Astrophysics Data System (ADS)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  16. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  17. Low-loss terahertz ribbon waveguides.

    PubMed

    Yeh, Cavour; Shimabukuro, Fred; Siegel, Peter H

    2005-10-01

    The submillimeter wave or terahertz (THz) band (1 mm-100 microm) is one of the last unexplored frontiers in the electromagnetic spectrum. A major stumbling block hampering instrument deployment in this frequency regime is the lack of a low-loss guiding structure equivalent to the optical fiber that is so prevalent at the visible wavelengths. The presence of strong inherent vibrational absorption bands in solids and the high skin-depth losses of conductors make the traditional microstripline circuits, conventional dielectric lines, or metallic waveguides, which are common at microwave frequencies, much too lossy to be used in the THz bands. Even the modern surface plasmon polariton waveguides are much too lossy for long-distance transmission in the THz bands. We describe a concept for overcoming this drawback and describe a new family of ultra-low-loss ribbon-based guide structures and matching components for propagating single-mode THz signals. For straight runs this ribbon-based waveguide can provide an attenuation constant that is more than 100 times less than that of a conventional dielectric or metallic waveguide. Problems dealing with efficient coupling of power into and out of the ribbon guide, achieving low-loss bends and branches, and forming THz circuit elements are discussed in detail. One notes that active circuit elements can be integrated directly onto the ribbon structure (when it is made with semiconductor material) and that the absence of metallic structures in the ribbon guide provides the possibility of high-power carrying capability. It thus appears that this ribbon-based dielectric waveguide and associated components can be used as fundamental building blocks for a new generation of ultra-high-speed electronic integrated circuits or THz interconnects.

  18. Advanced Metal Foam Structures for Outer Space

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Johnson, William; Peker, Atakan

    2005-01-01

    A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.

  19. In-situ-measurement of the friction coefficient in the deep drawing process

    NASA Astrophysics Data System (ADS)

    Recklin, V.; Dietrich, F.; Groche, P.

    2017-09-01

    The surface texture plays an important role in the tribological behaviour of deep drawn components. It influences both the process of sheet metal forming as well as the properties for post processing, such as paint appearance, bonding, or corrosion tendency. During the forming process, the texture of the sheet metal and therefore its friction coefficient, changes due to process related strains. This contribution focuses on the development and validation of a tool to investigate the friction coefficient of the flange region of deep drawn components. The influence of biaxial strain on the friction coefficient will be quantified through a comparison of the experimental results with a conventional friction test (stand). The presented method will be applied on a cup drawing test, using a segmented and sensor-monitored blankholder. This setup allows the measurement of the friction coefficient in-situ without simplification of the real process. The experiments were carried out using DX 56D+Z as sheet metal and PL61 as lubricant. The results show a characteristic change in the friction coefficient over the displacement of the punch, which is assumed to be caused by strain induced change of the surface texture.

  20. Giant and switchable surface activity of liquid metal via surface oxidation

    PubMed Central

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767

  1. New preparation method of {beta}{double_prime}-alumina and application for AMTEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishi, Toshiro; Tsuru, Yasuhiko; Yamamoto, Hirokazu

    1995-12-31

    The Alkali Metal Thermo-Electric Converter(AMTEC) is an energy conversion system that converts heat to electrical energy with high efficiency. The {beta}{double_prime}-alumina solid electrolyte (BASE) is the most important component in the AMTEC system. In this paper, the relationship among the conduction property, the microstructure and the amount of chemical component for BASE is studied. As an analysis of the chemical reaction for each component, the authors established a new BASE preparation method rather than using the conventional method. They also report the AMTFC cell performance using this electrolyte tube on which Mo or TiC electrode is filmed by the screenmore » printing method. Then, an electrochemical analysis and a heat cycle test of AMTEC cell are studied.« less

  2. Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D

    2013-01-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from themore » melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.« less

  3. Additive manufacturing of hybrid circuits

    DOE PAGES

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; ...

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  4. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.

    PubMed

    Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison

    2018-01-10

    An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector

    NASA Astrophysics Data System (ADS)

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.

  6. Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale

    PubMed Central

    Zhang, Bin; Bian, Yusheng; Ren, Liqiang; Guo, Feng; Tang, Shi-Yang; Mao, Zhangming; Liu, Xiaomin; Sun, Jinju; Gong, Jianying; Guo, Xiasheng; Huang, Tony Jun

    2017-01-01

    The emerging development of the hybrid plasmonic waveguide has recently received significant attention owing to its remarkable capability of enabling subwavelength field confinement and great transmission distance. Here we report a guiding approach that integrates hybrid plasmon polariton with dielectric-loaded plasmonic waveguiding. By introducing a deep-subwavelength dielectric ridge between a dielectric slab and a metallic substrate, a hybrid dielectric-loaded nanoridge plasmonic waveguide is formed. The waveguide features lower propagation loss than its conventional hybrid waveguiding counterpart, while maintaining strong optical confinement at telecommunication wavelengths. Through systematic structural parameter tuning, we realize an efficient balance between confinement and attenuation of the fundamental hybrid mode, and we demonstrate the tolerance of its properties despite fabrication imperfections. Furthermore, we show that the waveguide concept can be extended to other metal/dielectric composites as well, including metal-insulator-metal and insulator-metal-insulator configurations. Our hybrid dielectric-loaded nanoridge plasmonic platform may serve as a fundamental building block for various functional photonic components and be used in applications such as sensing, nanofocusing, and nanolasing. PMID:28091583

  7. Plasmonic nanostructures through DNA-assisted lithography

    PubMed Central

    Shen, Boxuan; Linko, Veikko; Tapio, Kosti; Pikker, Siim; Lemma, Tibebe; Gopinath, Ashwin; Gothelf, Kurt V.; Kostiainen, Mauri A.; Toppari, J. Jussi

    2018-01-01

    Programmable self-assembly of nucleic acids enables the fabrication of custom, precise objects with nanoscale dimensions. These structures can be further harnessed as templates to build novel materials such as metallic nanostructures, which are widely used and explored because of their unique optical properties and their potency to serve as components of novel metamaterials. However, approaches to transfer the spatial information of DNA constructions to metal nanostructures remain a challenge. We report a DNA-assisted lithography (DALI) method that combines the structural versatility of DNA origami with conventional lithography techniques to create discrete, well-defined, and entirely metallic nanostructures with designed plasmonic properties. DALI is a parallel, high-throughput fabrication method compatible with transparent substrates, thus providing an additional advantage for optical measurements, and yields structures with a feature size of ~10 nm. We demonstrate its feasibility by producing metal nanostructures with a chiral plasmonic response and bowtie-shaped nanoantennas for surface-enhanced Raman spectroscopy. We envisage that DALI can be generalized to large substrates, which would subsequently enable scale-up production of diverse metallic nanostructures with tailored plasmonic features. PMID:29423446

  8. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    PubMed

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Shear bond strength and debonding characteristics of metal and ceramic brackets bonded with conventional acid-etch and self-etch primer systems: An in-vivo study.

    PubMed

    Mirzakouchaki, Behnam; Shirazi, Sajjad; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin

    2016-02-01

    Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch.

  10. Shear bond strength and debonding characteristics of metal and ceramic brackets bonded with conventional acid-etch and self-etch primer systems: An in-vivo study

    PubMed Central

    Mirzakouchaki, Behnam; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin

    2016-01-01

    Background Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. Material and Methods 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. Results The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. Conclusions The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Key words:Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch. PMID:26855704

  11. Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined.

  12. Resistance to Sliding in Clear and Metallic Damon 3 and Conventional Edgewise Brackets: an In vitro Study.

    PubMed

    Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel

    2015-03-01

    Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator's saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction.

  13. Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.

    PubMed

    Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee

    2017-10-24

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of <180 °C allows the direct fabrication on commercial flexible substrates without additional assisted-structures. By integrating the soft organic components with ultrathin MoS 2 , the fully printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.

  14. Anomalous modulation of spin torque-induced ferromagnetic resonance caused by direct currents in permalloy/platinum bilayer thin films

    NASA Astrophysics Data System (ADS)

    Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya

    2018-01-01

    We systematically investigated the spin-torque ferromagnetic resonance (ST-FMR) in permalloy/Pt bilayer thin films under bias direct currents. According to the conventional ST-FMR theory, the half widths of the resonant peaks in the spectra can be modulated by bias currents, which give a reliable value of the spin injection efficiency of the spin Hall effect. On the other hand, the symmetric components of the spectra show an unexpected strong bias current dependence, while the asymmetric components are free from the modulation. These findings suggest that some contributions are missing in the ST-FMR analysis of the ferromagnetic/nonmagnetic metal bilayer thin films.

  15. Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao

    2016-04-12

    We report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (similar to 200 degrees C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, which results in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron X-ray adsorption techniques. Then, upon the conversion of metal lithium tomore » LiOH in humid air, the Pd and Pt atoms undergo an alloying process to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted "dissolution-alloying" method bypasses many complications intrinsic to conventional ion reduction-based nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  16. Lithium assisted “dissolution–alloying” synthesis of nanoalloys from individual bulk metals

    DOE PAGES

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao; ...

    2016-03-27

    Here, we report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (~200°C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, resulting in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron Xray adsorption techniques. Then, upon the conversion of metal lithium to LiOH in humid air,more » the Pd and Pt atoms undergo an alloying process, to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted “dissolutionalloying” method bypasses many complications intrinsic to conventional ion reductionbased nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  17. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  18. Role of metallic stents in benign esophageal stricture

    NASA Astrophysics Data System (ADS)

    Shim, Chan Sup

    2012-10-01

    Simple esophageal strictures, which are focal, straight, and large in diameter, usually require 1 - 3 dilation sessions to relieve symptoms. However, complex strictures, which are long, tortuous, or associated with a severely compromised luminal diameter, are usually more difficult to treat with conventional bougie or balloon dilation techniques, and often have high recurrence rates. Although the permanent placement of self-expandable metal stents (SEMS) has been used to manage refractory benign esophageal strictures, this procedure is associated with additional problems, such as stricture from tissue hyperplasia, stent migration, and fistula formation. Thus, several new types of stents have been developed, including temporary SEMS, self-expandable plastic stents (SEPS), and biodegradable stents. The use of these new products has produced varied results. Temporary SEMS that have been used to relieve benign esophageal conditions have caused granulation tissue at both ends of the stent because of contact between the mucosa and the exposed metal components of the stent, thus hindering stent removal. We examined the tissue response to two new types of SEMS, a flange-type and a straighttype, each coated with a silicone membrane on the outside of the metal mesh. These two SEMS were evaluated individually and compared with a conventional control stent in animal experiments. Although the newly designed stents resulted in reduced tissue hyperplasia, and were thus more easily separated from the esophageal tissue, some degree of tissue hyperplasia did occur. We suggest that newly designed DES (drug-eluting stents) may provide an alternative tool to manage refractory benign esophageal stricture.

  19. Particulate Titanium Matrix Composites Tested-Show Promise for Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Lerch, Bradley A.; Arnold, Steven M.

    2003-01-01

    New manufacturing technologies can now produce uniformly distributed particle strengthened titanium matrix composites (TMCs) at lower cost than many types of continuous-fiber composites. The innovative process results in near-final-shape components having a material stiffness up to 26-percent greater than that of components made with conventional titanium materials. This benefit is achieved with no significant increase in the weight of the component. The improved mechanical performance and low-cost manufacturing capability motivated a review of particulate-reinforced metal composite technology as a way to lower the cost and weight of space-access propulsion systems. Focusing on the elevated-temperature properties of titanium alloy Ti-6Al-4V as the matrix material, researchers at the NASA Glenn Research Center conducted experiments to verify the improved performance of the alloy containing 10 wt% of ceramic titanium carbide (TiC) particles. The appropriate blend of metal and ceramic powder underwent a series of cold and hot isostatic pressing procedures to yield bar stock. A set of round dogbone specimens was manufactured from a small sample of the bars. The TMC material proved to have good machinability at this particle concentration as there was no difficulty in producing high-quality specimens.

  20. Comparison of the metal-to-ceramic bond strengths of four noble alloys with press-on-metal and conventional porcelain layering techniques.

    PubMed

    Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2014-11-01

    New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with the press-on-metal technique; the bond strength for Aquarius Hard with conventional porcelain layers was significantly higher than the bond strengths for the other 3 alloys with conventional porcelain layers; and the bond strength for Aquarius Hard with conventional porcelain layers was significantly higher than the bond strength for Callisto 75 Pd with conventional porcelain layers and the other 3 alloys with the press-on-metal technique. For both conventional layering and press-on-metal techniques, all 4 noble alloys had a mean metal-to-ceramic bond strength that substantially exceeded the 25 MPa minimum in the ISO Standard 9693. The results for Aries support the manufacturer's recommendation not to use the press-on-metal technique for alloys that contain more than 10% silver. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Comparison of Frictional Forces Generated by a New Ceramic Bracket with the Conventional Brackets using Unconventional and Conventional Ligation System and the Self-ligating Brackets: An In Vitro Study.

    PubMed

    Pasha, Azam; Vishwakarma, Swati; Narayan, Anjali; Vinay, K; Shetty, Smitha V; Roy, Partha Pratim

    2015-09-01

    Fixed orthodontic mechanotherapy is associated with friction between the bracket - wire - ligature interfaces during the sliding mechanics. A sound knowledge of the various factors affecting the magnitude of friction is of paramount importance. The present study was done to analyze and compare the frictional forces generated by a new ceramic (Clarity Advanced) bracket with the conventional, (metal and ceramic) brackets using unconventional and conventional ligation system, and the self-ligating (metal and ceramic) brackets in the dry condition. The various bracket wire ligation combinations were tested in dry condition. The brackets used were of 0.022″ × 0.028″ nominal slot dimension of MBT prescription: Stainless steel (SS) self-ligating bracket (SLB) of (SmartClip), SS Conventional bracket (CB) (Victory series), Ceramic SLB (Clarity SL), Conventional Ceramic bracket with metal slot (Clarity Bracket), Clarity Advanced Ceramic Brackets (Clarity(™) ADVANCED, 3M Unitek). These brackets were used with two types of elastomeric ligatures: Conventional Elastomeric Ligatures (CEL) (Clear medium mini modules) and Unconventional Elastomeric Ligatures (UEL) (Clear medium slide ligatures, Leone orthodontic products). The aligning and the retraction wires were used, i.e., 0.014″ nickel titanium (NiTi) wires and 0.019″ × 0.025″ SS wires, respectively. A universal strength testing machine was used to measure the friction produced between the different bracket, archwires, and ligation combination. This was done with the use of a custom-made jig being in position. Mean, standard deviation, and range were computed for the frictional values obtained. Results were subjected to statistical analysis through ANOVA. The frictional resistance observed in the new Clarity Advanced bracket with a conventional elastomeric ligature was almost similar with the Clarity metal slot bracket with a conventional elastomeric ligature. When using the UEL, the Clarity Advanced bracket produced lesser friction than the conventional metal bracket; but not less than the ceramic metal slot bracket. Ceramic SLB produced lesser friction when compared with the Clarity Advanced bracket with UEL, but the metal SLB produced the least friction among all the groups and subgroups. The present study concluded that the SS SLB produced least friction among all groups. Using the archwire and ligation method, frictional forces observed in the Clarity Advanced bracket and the conventional ceramic with metal slot bracket were almost similar; but the least resistance was determined in SS CB using both the ligation (CEL and UEL) system.

  2. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited onto the cathodic mandrel by electrochemical reduction. Rotation of the mandrel ensures uniform distribution of refractory material. The EL-Form process allows for manufacturing in an inert atmosphere with deposition rates from 0.0004 to 0.002 in./h (10.2 to 50.8 m/h). Thicknesses typically range from microns to greater than 0.5 in. (13 mm). The refractory component produced is fabricated, dependably, to within one micron of the desired tolerances with no shrinkage or distortion as in other refractory metal manufacture techniques. The electroforming process has been used to produce solid, nonporous deposits of rhenium, iridium, niobium, tungsten, and their alloys.

  3. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate 'bond and peel' method.

    PubMed

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-15

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate 'bond and peel' method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  4. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate ‘bond and peel’ method

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-01

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate ‘bond and peel’ method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  5. Portable Electron-Beam Free-Form Fabrication System

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Petersen, Daniel D.; Taminger, Karen M.; Hafley, Robert A.

    2005-01-01

    A portable electron-beam free-form fabrication (EB F3) system, now undergoing development, is intended to afford a capability for manufacturing metal parts in nearly net sizes and shapes. Although the development effort is oriented toward the eventual use of systems like this one to supply spare metal parts aboard spacecraft in flight, the basic system design could also be adapted to terrestrial applications in which there are requirements to supply spare parts on demand at locations remote from warehouses and conventional manufacturing facilities. Prior systems that have been considered for satisfying the same requirements (including prior free-form fabrication systems) are not easily portable because of their bulk and massive size. The mechanical properties of the components that such systems produce are often inferior to the mechanical properties of the corresponding original, conventionally fabricated components. In addition, the prior systems are not efficient in the utilization of energy and of feedstock. In contrast, the present developmental system is designed to be sufficiently compact and lightweight to be easily portable, to utilize both energy and material more efficiently, and to produce components that have mechanical properties approximating those of the corresponding original components. The developmental EB F3 system will include a vacuum chamber and associated vacuum pumps, an electron-beam gun and an associated power supply, a multiaxis positioning subsystem, a precise wire feeder, and an instrumentation system for monitoring and control. The electron-beam gun, positioning subsystem, and wire feeder will be located inside the vacuum chamber (see figure). The electron beam gun and the wire feeder will be mounted in fixed positions inside the domed upper portion of the vacuum chamber. The positioning subsystem and ports for the vacuum pumps will be located on a base that could be dropped down to provide full access to the interior of the chamber when not under vacuum. During operation, wire will be fed to a fixed location, entering the melted pool created by the electron beam. Heated by the electron beam, the wire will melt and fuse to either the substrate or with the previously deposited metal wire fused on top of the positioning table. Based on a computer aided design (CAD) model and controlled by a computer, the positioning subsystem

  6. Resistance to Sliding in Clear and Metallic Damon 3 and Conventional Edgewise Brackets: an In vitro Study

    PubMed Central

    Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel

    2015-01-01

    Statement of the Problem Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. Purpose The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. Materials and Method The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator’s saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. Results The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Conclusion Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction. PMID:26106630

  7. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  8. Light propagation with phase discontinuities: generalized laws of reflection and refraction.

    PubMed

    Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno

    2011-10-21

    Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat's principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

  9. Rechargeable metal hydrides for spacecraft application

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  10. Fast and cheap fabrication of molding tools for polymer replication

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Kirschner, Nadine; Worgull, Matthias; Rapp, Bastian E.

    2017-02-01

    Polymer replication is a prerequisite for low-cost microstructure components for consumer and end user market. The production of cost-effective microstructure in polymers requires metal molding tools which are often fabricated by direct structuring methods like milling or laser machining both of which are time-consuming and cost-intensive. We present an alternative fabrication method based on replication processes which allows the cheap ( 50 €) and fast ( 12 h) replication of complex microstructures into metal. The process comprises three steps: 1. Generation of the microstructure in a photoresist via lithography. 2. Casting of the structure into a high-temperature silicone which serves as original mold for creation of the metal molding tool. 3. Melting of an eutectic alloy of Sn, Ag and Cu under light pressure directly inside of the silicone within an oven. After cooling to room temperature the metal molding tool can be used for polymer replication into conventional thermoplastic polymers. As a first example we structured polymethylmethacrylate (PMMA) foils with a thickness of 1 mm via hot embossing and feature sizes of 100 μm could be replicated with high fidelity.

  11. Ultrasonic measurement of stress in 2219-T87 aluminum plate

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. N.; Risch, E. R.

    1976-01-01

    The basic relationship of ultrasonic signal velocity to directional subsurface stress is reviewed. Inappropriateness of dependency on a single correlative value of constant for a three dimensional stress field in metallic materials is discussed. Implementation of conventional ultrasonic nondestructive testing capabilities integrated to provide a composite technique for the measurement of orthogonal stress components is described, and the procedures for performing the preparatory calibration and subsequent stress field measurements are presented. In conclusion, the prime effect of stress on ultrasonic signal velocity occurs only in the direction of material excitation or particle motion.

  12. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    NASA Astrophysics Data System (ADS)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  13. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, Thomas C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  14. Sub 20 meV Schottky barriers in metal/MoTe2 junctions

    NASA Astrophysics Data System (ADS)

    Townsend, Nicola J.; Amit, Iddo; Craciun, Monica F.; Russo, Saverio

    2018-04-01

    The newly emerging class of atomically-thin materials has shown a high potential for the realisation of novel electronic and optoelectronic components. Amongst this family, semiconducting transition metal dichalcogenides (TMDCs) are of particular interest. While their band gaps are compatible with those of conventional solid state devices, they present a wide range of exciting new properties that is bound to become a crucial ingredient in the future of electronics. To utilise these properties for the prospect of electronics in general, and long-wavelength-based photodetectors in particular, the Schottky barriers formed upon contact with a metal and the contact resistance that arises at these interfaces have to be measured and controlled. We present experimental evidence for the formation of Schottky barriers as low as 10 meV between MoTe2 and metal electrodes. By varying the electrode work functions, we demonstrate that Fermi level pinning due to metal induced gap states at the interfaces occurs at 0.14 eV above the valence band maximum. In this configuration, thermionic emission is observed for the first time at temperatures between 40 K and 75 K. Finally, we discuss the ability to tune the barrier height using a gate electrode.

  15. Polyenergetic known-component reconstruction without prior shape models

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Zbijewski, W.; Zhang, X.; Xu, S.; Stayman, J. W.

    2017-03-01

    Purpose: Previous work has demonstrated that structural models of surgical tools and implants can be integrated into model-based CT reconstruction to greatly reduce metal artifacts and improve image quality. This work extends a polyenergetic formulation of known-component reconstruction (Poly-KCR) by removing the requirement that a physical model (e.g. CAD drawing) be known a priori, permitting much more widespread application. Methods: We adopt a single-threshold segmentation technique with the help of morphological structuring elements to build a shape model of metal components in a patient scan based on initial filtered-backprojection (FBP) reconstruction. This shape model is used as an input to Poly-KCR, a formulation of known-component reconstruction that does not require a prior knowledge of beam quality or component material composition. An investigation of performance as a function of segmentation thresholds is performed in simulation studies, and qualitative comparisons to Poly-KCR with an a priori shape model are made using physical CBCT data of an implanted cadaver and in patient data from a prototype extremities scanner. Results: We find that model-free Poly-KCR (MF-Poly-KCR) provides much better image quality compared to conventional reconstruction techniques (e.g. FBP). Moreover, the performance closely approximates that of Poly- KCR with an a prior shape model. In simulation studies, we find that imaging performance generally follows segmentation accuracy with slight under- or over-estimation based on the shape of the implant. In both simulation and physical data studies we find that the proposed approach can remove most of the blooming and streak artifacts around the component permitting visualization of the surrounding soft-tissues. Conclusion: This work shows that it is possible to perform known-component reconstruction without prior knowledge of the known component. In conjunction with the Poly-KCR technique that does not require knowledge of beam quality or material composition, very little needs to be known about the metal implant and system beforehand. These generalizations will allow more widespread application of KCR techniques in real patient studies where the information of surgical tools and implants is limited or not available.

  16. Carbon-Nanotube-Carpet Heat-Transfer Pads

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cruden, Brett A.; Cassel, Alan M.

    2006-01-01

    Microscopic thermal-contact pads that include carpet-like arrays of carbon nanotubes have been invented for dissipating heat generated in integrated circuits and similarly sized single electronic components. The need for these or other innovative thermal-contact pads arises because the requisite high thermal conductances cannot be realized by scaling conventional macroscopic thermal-contact pads down to microscopic sizes. Overcoming limitations of conventional thermal-contact materials and components, the carbon-nanotube thermal-contact pads offer the high thermal conductivities needed to accommodate the high local thermal power densities of modern electronic circuits, without need for large clamping pressures, extreme smoothness of surfaces in contact, or gap-filling materials (e.g., thermally conductive greases) to ensure adequate thermal contact. Moreover, unlike some conventional thermal-contact components, these pads are reusable. The figure depicts a typical pad according to the invention, in contact with a rough surface on an electronic component that is to be cooled. Through reversible bending and buckling of carbon nanotubes at asperities on the rough surface, the pad yields sufficiently, under relatively low contact pressure, that thermal contact is distributed to many locations on the surface to be cooled, including valleys where contact would not ordinarily occur in conventional clamping of rigid surfaces. Hence, the effective thermal-contact area is greater than that achievable through scaling down of a macroscopic thermal-contact pad. The extremely high longitudinal thermal conductivities of the carbon nanotubes are utilized to conduct heat away from potential hot spots on the surface to be cooled. The fibers protrude from a layer of a filler material (Cu, Ag, Au, or metal-particle- filled gels), which provides both mechanical support to maintain the carbon nanotubes in alignment and thermal conductivity to enhance the diffusion of concentrated heat from the nanotubes into the larger adjacent volume of a heat sink. The array of carbon nanotubes, the filler material, and the heat sink are parts of a unitary composite structure that is fabricated as follows: 1. Using techniques that have been reported previously, the array of substantially perpendicularly oriented carbon nanotubes is grown on a metal, silicon, or other suitable thermally conductive substrate that is intended to become the heat sink. 2. By means of chemical vapor deposition, physical vapor deposition, plasma deposition, ion sputtering, electrochemical deposition, or casting from a liquid phase, some or all of the interstitial volume between carbon nanotubes is filled with the aforementioned layer of mechanically supporting, thermally conductive material. 3. To cause the carbon nanotubes to protrude the desired length from the filler material, an outer layer of filler is removed by mechanical polishing, chemical mechanical polishing, wet chemical etching, electrochemical etching, or dry plasma etching.

  17. Flexible Metal-Fabric Radiators

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Nguyen, Hai D.; Ruemmele, Warren; Andish, Kambiz K.; McCalley, Sean

    2005-01-01

    Flexible metal-fabric radiators have been considered as alternative means of dissipating excess heat from spacecraft and space suits. The radiators also may be useful in such special terrestrial applications as rejecting heat from space-suit-like protective suits worn in hot work environments. In addition to flexibility and consequent ease of deployment and installation on objects of varying sizes and shapes, the main advantages of these radiators over conventional rigid radiators are that they weigh less and occupy less volume for a given amount of cooling capacity. A radiator of this type includes conventional stainless-steel tubes carrying a coolant fluid. The main radiating component consists of a fabric of interwoven aluminum-foil strips bonded to the tubes by use of a proprietary process. The strip/tube bonds are strong and highly thermally conductive. Coolant is fed to and from the tubes via flexible stainless-steel manifolds designed to accommodate flexing of, and minimize bending forces on, the fabric. The manifolds are sized to minimize pressure drops and distribute the flow of coolant evenly to all the tubes. The tubes and manifolds are configured in two independent flow loops for operational flexibility and protective redundancy.

  18. Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy

    NASA Astrophysics Data System (ADS)

    Girelli, L.; Tocci, M.; Montesano, L.; Gelfi, M.; Pola, A.

    2017-11-01

    Additive manufacturing of metals is a production process developed in the last few years to realize net shape components with complex geometry and high performance. AlSi10Mg is one of the most widely used aluminium alloys, both in this field and in conventional foundry processes, for its significant mechanical properties combined with good corrosion resistance. In this paper the effect of heat treatment on AlSi10Mg alloy was investigated. Solution and ageing treatments were carried out with different temperatures and times on samples obtained by direct metal laser sintering and gravity casting in order to compare their performance. Microstructural analyses and hardness tests were performed to investigate the effectiveness of the heat treatment. The results were correlated to the sample microstructure and porosity, analysed by means of optical microscopy and density measurements. It was found that, in the additive manufactured samples, the heat treatment can reduce significantly the performance of the alloy also because of the increase of porosity due to entrapped gas during the deposition technique and that the higher the solution temperature the higher the increase of such defects. A so remarkable effect was not found in the conventional cast alloy.

  19. Additive Manufacturing of Fuel Injectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadek Tadros, Dr. Alber Alphonse; Ritter, Dr. George W.; Drews, Charles Donald

    Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventionalmore » manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project were: • Powder metal input stock: Powder characterization, dimensional accuracy, metallurgical characterization, and mechanical properties evaluation. • Process parameters: Laser parameter effects, post-printing heat-treatment development, mechanical properties evaluation, and post-finishing technique. • Material design curves: Room and elevated temperature tensiles, low cycle fatigue, and creep rupture properties curves generated. • AM specifications: Key metal powder characteristics, laser parameters, and heat-treatment controls identified.« less

  20. Laser shock wave and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  1. Optical properties modification induced by laser radiation in noble-metal-doped glasses

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N.; Stankova, N. E.; Koleva, M. E.; Nikov, R.; Atanasov, P.; Grozeva, M.; Iordanova, E.; Yankov, G.; Aleksandrov, L.; Iordanova, R.; Karashanova, D.

    2018-03-01

    We present results on laser-induced color changes in gold- and silver-doped glass. The doped borosilicate glass was prepared by conventional melt quenching. The study was focused on the change of the optical properties after irradiation of the glass by femtosecond laser pulses. Under certain conditions, the laser radiation induces defects associated with formation of color centers in the material. We studied this process in a broad range of laser radiation wavelengths – from UV to IR, and observed changes in the color of the irradiated areas after annealing of the processed glass samples, the color being red for the gold-doped glass red and yellow for the silver-doped glass. The structural and morphological analyses performed indicated that this effect is related to formation of metal nanoparticles inside the material. The results obtained show that femtosecond laser processing of noble-metal-doped glasses can be used for fabrication of 3D-nanoparticles systems in transparent materials with application as novel optical components.

  2. Modern Aspects of Liquid Metal Engineering

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank

    2017-02-01

    Liquid metal engineering (LME) refers to a variety of physical and/or chemical treatments of molten metals aimed at influencing their solidification characteristics. Although the fundamentals have been known for decades, only recent progress in understanding solidification mechanisms has renewed an interest in opportunities this technique creates for an improvement of castings. This review covers conventional and novel concepts of LME with their application to modern manufacturing techniques based not only on liquid but also on semisolid routes. The role of external forces applied to the melt combined with grain nucleation control is explained along with laboratory- and commercial-scale equipment designed for implementation of various concepts exploring mechanical, electromagnetic, and ultrasound principles. An influence of melt treatments on quality of the final product is considered through distinguishing between internal integrity of net shape components and the alloy microstructure. Recent global developments indicate that exploring the synergy of melt chemistry and physical treatments achieved through LME allows creating the optimum conditions for nucleation and growth during solidification, positively affecting quality of castings.

  3. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  4. Compliant fuel cell system

    DOEpatents

    Bourgeois, Richard Scott [Albany, NY; Gudlavalleti, Sauri [Albany, NY

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with variousmore » microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.« less

  6. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  7. Apparatus and method to reduce wear and friction between CMC-to-metal attachment and interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairo, Ronald Ralph; Parolini, Jason Robert; Delvaux, John McConnell

    An apparatus to reduce wear and friction between CMC-to-metal attachment and interface, including a metal layer configured for insertion between a surface interface between a CMC component and a metal component. The surface interface of the metal layer is compliant relative to asperities of the surface interface of the CMC component. A coefficient of friction between the surface interface of the CMC component and the metal component is about 1.0 or less at an operating temperature between about 300.degree. C. to about 325.degree. C. and a limiting temperature of the metal component.

  8. A study on the development of engineering plastic piston used in the shock absorber

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ho; Bae, Won-Byong; Lim, Dong-Ju; Suh, Yun-Soo

    1998-08-01

    A piston is an important component of the shock absorber which determines comfortable riding and handling. Conventional piston is made of metal powder that is pressed in a mold, and then sintered at high temperatures below the melting point before machining processes such as drilling, sizing and teflon banding. This study aims at cutting down cost and weight, and improving the process by replacing the traditional sintering process used for manufacturing the shock absorber with the injection molding process adopting engineering plastics as raw material. To analyze the injection molding process, we used the commercial program, MOLDFLOW, and obtained an optimal combination of the process parameters. In addition, by comparing the engineering plastic piston with the metal powder piston through the formability and the performance experiments, we confirmed the availability of this alternative process suggested.

  9. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    PubMed

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  10. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: A new alternative against leaf-cutting ants.

    PubMed

    de Souza, Raphael Bastão; de Souza, Cleiton Pereira; Bueno, Odair Correa; Fontanetti, Carmem Silvia

    2017-02-01

    In order to combat leaf-cutting ants, the pesticide sulfluramid used to be the most widely utilized active ingredient. However, its use was banned in 2009 by the Stockholm Convention, although some countries were allowed to continue using it. As an effective alternative to its replacement, researchers developed a metallic-insecticide system, which is a natural product linked to metal complexes. Thus, the aim of this study was to evaluate the ability of these new metallic-insecticides in change the genetic material of non-target organisms. The tests were performed utilizing chromosomal aberrations and micronucleus tests in the Allium cepa test system and the Trad-MCN test in Tradescantia pallida. To better understand the results, one of the components of the formula, 5-methyl-phenanthroline, was also analyzed according to the same parameters. To A. cepa, the results showed that one of the metallic insecticides induced cytotoxicity and genotoxicity at different concentrations, while the other metallic-insecticide showed chromosomal instability only at the highest concentration. The analysis of 5-methyl-phenanthroline revealed that it can be related with the positive results, since genotoxic effects were induced. In the Trad-MCN test, none of the metallic-insecticides showed genotoxic activity, although one of them induced more micronucleus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Metals transport in the Sacramento River, California, 1996-1997; Volume 1, Methods and data

    USGS Publications Warehouse

    Alpers, Charles N.; Taylor, Howard E.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, was evaluated on the basis of samples of water, suspended colloids, streambed sediment, and caddisfly larvae that were collected on one to six occasions at 19 sites in the Sacramento River Basin from July 1996 to June 1997. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions; respectively. Tangential-flow ultrafiltration with 10,000 nominal molecular weight limit, or daltons (0.005 micrometer equivalent), pore-size membranes was used to separate metals in streamwater into ultrafiltrate (operationally defined dissolved fraction) and retentate (colloidal fraction) components, respectively. Conventional filtration with capsule filters (0.45 micrometer pore-size) and membrane filters (0.40 micrometer pore-size) and total-recoverable analysis of unfiltered (whole-body) samples were done for comparison at all sites. Because the total-recoverable analysis involves an incomplete digestion of particulate matter, a more reliable measurement of whole-water concentrations is derived from the sum of the dissolved component that is based on the ultrafiltrate plus the suspended component that is based on a total digestion of colloid concentrates from the ultra-filtration retentate. Metals in caddisfly larvae were determined for whole-body samples and cytosol extracts, which are intercellular solutions that provide a more sensitive indication of the metals that have been bioaccumulated. Trace metals in acidic, metal-rich drainage from abandoned and inactive sulfide mines were observed to enter the Sacramento River system (specifically, into both Shasta Lake and Keswick Reservoir) in predominantly dissolved form, as operationally defined using ultrafiltrates. The predominant source of acid mine drainage to Keswick Reservoir is Spring Creek, which drains the Iron Mountain mine area. Copper concentrations in filtered samples from Spring Creek taken during December 1996, January 1997, and May 1997 ranged from 420 to 560 micrograms per liter. Below Keswick Dam, copper concentrations in conventionally filtered samples ranged from 0.5 micrograms per liter during September 1996 to 9.4 micrograms per liter during January 1997; the latter concentration exceeded the applicable water-quality standard. The proportion of trace metals that was dissolved (versus colloidal) in samples collected at Shasta and Keswick dams decreased in the order cadmium zinc > copper > aluminum iron lead mercury. At four sampling sites on the Sacramento River at various distances downstream of Keswick Dam (Bend Bridge, 71 kilometers; Colusa, 256 kilometers; Verona, 360 kilometers; and Freeport, 412 kilometers) concentrations of these seven metals were predominantly colloidal during both high- and low-flow conditions. Because copper compounds are used extensively as algaecides in rice farming, agricultural drainage at the Colusa Basin Drain was sampled in June 1997 during a period shortly after copper applications to newly planted rice fields. Copper concentrations ranged from 1.3 to 3.0 micrograms per liter in filtered samples and from 12 to 13 micrograms per liter in whole-water samples (total recoverable analysis). These results are consistent with earlier work by the U.S. Geological Survey indicating that copper in rice-field drainage likely represents a detectable, but relatively minor source of copper to the Sacramento River. Lead isotope data from suspended colloids and streambed sediments collected during October and November 1996 indicate that lead from acid mine drainage sources became a relatively minor component of the total lead at the site located 71 kilometers downstream of Keswick Dam and beyond. Cadmium, copper, and zinc concentrations in caddisfly larvae were elevated at several sites downstream of Keswick Dam,

  12. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  13. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan

    2014-02-18

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath andmore » slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.« less

  14. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review.

    PubMed

    Sud, Dhiraj; Mahajan, Garima; Kaur, M P

    2008-09-01

    Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.

  15. Analysis of heavy metals in road-deposited sediments.

    PubMed

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  16. Identifying sources of metal exposure in organic and conventional dairy farming.

    PubMed

    López-Alonso, M; Rey-Crespo, F; Herrero-Latorre, C; Miranda, M

    2017-10-01

    In humans the main route of exposure to toxic metals is through the diet, and there is therefore a clear need for this source of contamination to be minimized, particularly in food of animal origin. For this purpose, the various sources of toxic metals in livestock farming (which vary depending on the production system) must be taken into account. The objectives of the present study were to establish the profile of metal exposure in dairy cattle in Spain and to determine, by chemometric (multivariate statistical) analysis, any differences between organic and conventional systems. Blood samples from 522 cows (341 from organic farms and 181 from conventional farms) were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of 14 elements: As, Cd, Co, Cr, Cu, Fe, Hg, I, Mn, Mo, Ni, Pb, Se and Zn. In conventional systems the generally high and balanced trace element concentrations in the mineral-supplemented concentrate feed strongly determined the metal status of the cattle. However, in organic systems, soil ingestion was an important contributing factor. Our results demonstrate that general information about the effects of mineral supplementation in conventional farming cannot be directly extrapolated to organic farming and special attention should be given to the contribution of ingestion of soil during grazing and/or ingestion of soil contaminated forage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparative Evaluation of Conventional and Accelerated Castings on Marginal Fit and Surface Roughness.

    PubMed

    Jadhav, Vivek Dattatray; Motwani, Bhagwan K; Shinde, Jitendra; Adhapure, Prasad

    2017-01-01

    The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. The results of the t -test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness.

  18. Fullerene Derivatives and Aluminum-based Nanothermites as Potential New Ammunition Primers

    DTIC Science & Technology

    2013-03-01

    such as RDX. In a thermite type reaction, a metal oxide is the oxidant and the fuel is aluminum. The nanothermites are generally composed of aluminum...and metal oxide nanopowders, unlike conventional thermite used for several years, which are composed of micron sized powders. The rate of release of...energy in conventional thermite is relatively slow in comparison with conventional energetic materials. The typical velocity of propagation of combustion

  19. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  20. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  1. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  2. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  3. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  4. Slow waves in microchannel metal waveguides and application to particle acceleration

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  5. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  6. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    NASA Astrophysics Data System (ADS)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  7. Pattern recognition applied to mineral characterization of Brazilian coffees and sugar-cane spirits

    NASA Astrophysics Data System (ADS)

    Fernandes, Andréa P.; Santos, Mirian C.; Lemos, Sherlan G.; Ferreira, Márcia M. C.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    Aluminium, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Se, Si, Sn, Sr, and Zn were determined in coffee and sugar-cane spirit (cachaça) samples by axial viewing inductively coupled plasma optical emission spectrometry (ICP OES). Pattern recognition techniques such as principal component analysis and cluster analysis were applied to data sets in order to characterize samples with relation to their geographical origin and production mode (industrial or homemade and organically or conventionally produced). Attempts to correlate metal ion content with the geographical origin of coffee and the production mode (organic or conventional) of cachaça were not successful. Some differentiation was suggested for the geographical origin of cachaça of three regions (Northeast, Central, and South), and for coffee samples, related to the production mode. Clear separations were only obtained for differentiation between industrial and homemade cachaças, and between instant soluble and roasted coffees.

  8. Biological synthesis of nanosized sulfide semiconductors: current status and future prospects.

    PubMed

    da Costa, João Pinto; Girão, Ana Violeta; Trindade, Tito; Costa, Maria Clara; Duarte, Armando; Rocha-Santos, Teresa

    2016-10-01

    There have been extensive and comprehensive reviews in the field of metal sulfide precipitation in the context of environmental remediation. However, these works have focused mainly on the removal of metals from aqueous solutions-usually, metal-contaminated effluents-with less emphasis on the precipitation process and on the end-products, frequently centering on metal removal efficiencies. Recently, there has been an increasing interest not only in the possible beneficial effects of these bioremediation strategies for metal-rich effluents but also on the formed precipitates. These metal sulfide materials are of special relevance in industry, due to their optical, electronic, and mechanical properties. Hence, identifying new routes for synthesizing these materials, as well as developing methodologies allowing for the control of the shape and size of particulates, is of environmental, economic, and practical importance. Multiple studies have shown proof-of-concept for the biological synthesis of inorganic metallic sulfide nanoparticles (NPs), resorting to varied organisms or cell components, though this information has scarcely been structured and compiled in a systematic manner. In this review, we overview the biological synthesis methodologies of nanosized metal sulfides and the advantages of these strategies when compared to more conventional chemical routes. Furthermore, we highlight the possibility of the use of numerous organisms for the synthesis of different metal sulfide NPs, with emphasis on sulfate-reducing bacteria (SRB). Finally, we put in perspective the potential of these methodologies in the emerging research areas of biohydrometallurgy and nanobiotechnology for the uptake of metals in the form of metal sulfide nanoparticles. A more complete understanding of the principles underlying the (bio)chemistry of formation of solids in these conditions may lead to the large-scale production of such metal sulfides, while simultaneously allowing an enhanced control over the size and shape of these biogenic nanomaterials.

  9. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  10. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques.

    PubMed

    Rai, Rathika; Kumar, S Arun; Prabhu, R; Govindan, Ranjani Thillai; Tanveer, Faiz Mohamed

    2017-01-01

    Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM) technique using direct and indirect optical scanning. This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS) crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4); post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  11. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering.

    PubMed

    Barucca, G; Santecchia, E; Majni, G; Girardin, E; Bassoli, E; Denti, L; Gatto, A; Iuliano, L; Moskalewicz, T; Mengucci, P

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [Dosimetric evaluation of eye lense shieldings in computed tomography examination--measurements and Monte Carlo simulations].

    PubMed

    Wulff, Jorg; Keil, Boris; Auvanis, Diyala; Heverhagen, Johannes T; Klose, Klaus Jochen; Zink, Klemens

    2008-01-01

    The present study aims at the investigation of eye lens shielding of different composition for the use in computed tomography examinations. Measurements with thermo-luminescent dosimeters and a simple cylindrical waterfilled phantom were performed as well as Monte Carlo simulations with an equivalent geometry. Besides conventional shielding made of Bismuth coated latex, a new shielding with a mixture of metallic components was analyzed. This new material leads to an increased dose reduction compared to the Bismuth shielding. Measured and Monte Carlo simulated dose reductions are in good agreement and amount to 34% for the Bismuth shielding and 46% for the new material. For simulations the EGSnrc code system was used and a new application CTDOSPP was developed for the simulation of the computed tomography examination. The investigations show that a satisfying agreement between simulation and measurement with the chosen geometries of this study could only be achieved, when transport of secondary electrons was accounted for in the simulation. The amount of scattered radiation due to the protector by fluorescent photons was analyzed and is larger for the new material due to the smaller atomic number of the metallic components.

  13. Bi-Metallic Composite Structures With Designed Internal Residual Stress Field

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.

    2014-01-01

    Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.

  14. Opto-valleytronic imaging of atomically thin semiconductors

    DOE PAGES

    Neumann, Andre; Lindlau, Jessica; Colombier, Léo; ...

    2017-01-16

    Transition metal dichalcogenide semiconductors represent elementary components of layered heterostructures for emergent technologies beyond conventional opto-electronics. In their monolayer form they host electrons with quantized circular motion and associated valley polarization and valley coherence as key elements of opto-valleytronic functionality. Here, we introduce two-dimensional polarimetry as means of direct imaging of the valley pseudospin degree of freedom in monolayer transition metal dichalcogenides. Using MoS 2 as a representative material with valley-selective optical transitions, we establish quantitative image analysis for polarimetric maps of extended crystals, and identify valley polarization and valley coherence as sensitive probes of crystalline disorder. Moreover, we findmore » site-dependent thermal and non-thermal regimes of valley-polarized excitons in perpendicular magnetic fields. Finally, we demonstrate the potential of widefield polarimetry for rapid inspection of opto-valleytronic devices based on atomically thin semiconductors and heterostructures.« less

  15. Opto-valleytronic imaging of atomically thin semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, Andre; Lindlau, Jessica; Colombier, Léo

    Transition metal dichalcogenide semiconductors represent elementary components of layered heterostructures for emergent technologies beyond conventional opto-electronics. In their monolayer form they host electrons with quantized circular motion and associated valley polarization and valley coherence as key elements of opto-valleytronic functionality. Here, we introduce two-dimensional polarimetry as means of direct imaging of the valley pseudospin degree of freedom in monolayer transition metal dichalcogenides. Using MoS 2 as a representative material with valley-selective optical transitions, we establish quantitative image analysis for polarimetric maps of extended crystals, and identify valley polarization and valley coherence as sensitive probes of crystalline disorder. Moreover, we findmore » site-dependent thermal and non-thermal regimes of valley-polarized excitons in perpendicular magnetic fields. Finally, we demonstrate the potential of widefield polarimetry for rapid inspection of opto-valleytronic devices based on atomically thin semiconductors and heterostructures.« less

  16. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOEpatents

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  17. Electrical/Mechanical Monitoring of Shape Memory Alloy Reinforcing Fibers Obtained by Pullout Tests in SMA/Cement Composite Materials.

    PubMed

    Kim, Eui-Hyun; Lee, Hyunbae; Kim, Jae-Hwan; Bae, Seung-Muk; Hwang, Heesu; Yang, Heesun; Choi, Eunsoo; Hwang, Jin-Ha

    2018-02-22

    Self-healing is an essential property of smart concrete structures. In contrast to other structural metals, shape memory alloys (SMAs) offer two unique effects: shape memory effects, and superelastic effects. Composites composed of SMA wires and conventional cements can overcome the mechanical weaknesses associated with tensile fractures in conventional concretes. Under specialized environments, the material interface between the cementitious component and the SMA materials plays an important role in achieving the enhanced mechanical performance and robustness of the SMA/cement interface. This material interface is traditionally evaluated in terms of mechanical aspects, i.e., strain-stress characteristics. However, the current work attempts to simultaneously characterize the mechanical load-displacement relationships synchronized with impedance spectroscopy as a function of displacement. Frequency-dependent impedance spectroscopy is tested as an in situ monitoring tool for structural variations in smart composites composed of non-conducting cementitious materials and conducting metals. The artificial geometry change in the SMA wires is associated with an improved anchoring action that is compatible with the smallest variation in resistance compared with prismatic SMA wires embedded into a cement matrix. The significant increase in resistance is interpreted to be associated with the slip of the SMA fibers following the elastic deformation and the debonding of the SMA fiber/matrix.

  18. Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.

    2013-01-01

    Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.

  19. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  20. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  1. Unprecedented Al supersaturation in single-phase rock salt structure VAlN films by Al+ subplantation

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Hans, M.; Primetzhofer, D.; Lu, J.; Hultman, L.; Schneider, J. M.

    2017-05-01

    Modern applications of refractory ceramic thin films, predominantly as wear-protective coatings on cutting tools and on components utilized in automotive engines, require a combination of excellent mechanical properties, thermal stability, and oxidation resistance. Conventional design approaches for transition metal nitride coatings with improved thermal and chemical stability are based on alloying with Al. It is well known that the solubility of Al in NaCl-structure transition metal nitrides is limited. Hence, the great challenge is to increase the Al concentration substantially while avoiding precipitation of the thermodynamically favored wurtzite-AlN phase, which is detrimental to mechanical properties. Here, we use VAlN as a model system to illustrate a new concept for the synthesis of metastable single-phase NaCl-structure thin films with the Al content far beyond solubility limits obtained with conventional plasma processes. This supersaturation is achieved by separating the film-forming species in time and energy domains through synchronization of the 70-μs-long pulsed substrate bias with intense periodic fluxes of energetic Al+ metal ions during reactive hybrid high power impulse magnetron sputtering of the Al target and direct current magnetron sputtering of the V target in the Ar/N2 gas mixture. Hereby, Al is subplanted into the cubic VN grains formed by the continuous flux of low-energy V neutrals. We show that Al subplantation enables an unprecedented 42% increase in metastable Al solubility limit in V1-xAlxN, from x = 0.52 obtained with the conventional method to 0.75. The elastic modulus is 325 ± 5 GPa, in excellent agreement with density functional theory calculations, and approximately 50% higher than for corresponding films grown by dc magnetron sputtering. The extension of the presented strategy to other Al-ion-assisted vapor deposition methods or materials systems is straightforward, which opens up the way for producing supersaturated single-phase functional ceramic alloy thin films combining excellent mechanical properties with high oxidation resistance.

  2. Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase.

    PubMed

    Wang, Liang; Wang, Hong; Rice, Andrew E; Zhang, Wei; Li, Xiaokun; Chen, Mingshu; Meng, Xiangju; Lewis, James P; Xiao, Feng-Shou

    2015-06-18

    A synergistic effect between individual components is crucial for increasing the activity of metal/metal oxide catalysts. The greatest challenge is how to control the synergistic effect to obtain enhanced catalytic performance. Through density functional theory calculations of model Au/TiO2 catalysts, it is suggested that there is strong interaction between Au nanoparticles and Ti species at the edge/corner sites of anatase, which is favorable for the formation of stable oxygen vacancies. Motivated by this theoretical analysis, we have rationally prepared Au nanoparticles attached to edge/corner sites of anatase support (Au/TiO2-EC), confirmed by their HR-TEM images. As expected, this strong interaction is well characterized by Raman, UV-visible, and XPS techniques. Very interestingly, compared with conventional Au catalysts, Au/TiO2-EC exhibits superior catalytic activity in the oxidations using O2. Our approach to controlling Au nanoparticle positioning on anatase to obtain enhanced catalytic activity offers an efficient strategy for developing more novel supported metal catalysts.

  3. Comparative Evaluation of Conventional and Accelerated Castings on Marginal Fit and Surface Roughness

    PubMed Central

    Jadhav, Vivek Dattatray; Motwani, Bhagwan K.; Shinde, Jitendra; Adhapure, Prasad

    2017-01-01

    Aims: The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. Settings and Design: This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. Materials and Methods: A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. Statistical Analysis Used: The results of the t-test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. Results: For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Conclusions: Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness. PMID:29042726

  4. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    PubMed

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM brackets, more precise manufacturing technique should be improved to get a more smoother surface finish.

  5. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: A comparative in vitro study.

    PubMed

    Ullattuthodi, Sujana; Cherian, Kandathil Phillip; Anandkumar, R; Nambiar, M Sreedevi

    2017-01-01

    This in vitro study seeks to evaluate and compare the marginal and internal fit of cobalt-chromium copings fabricated using the conventional and direct metal laser sintering (DMLS) techniques. A master model of a prepared molar tooth was made using cobalt-chromium alloy. Silicone impression of the master model was made and thirty standardized working models were then produced; twenty working models for conventional lost-wax technique and ten working models for DMLS technique. A total of twenty metal copings were fabricated using two different production techniques: conventional lost-wax method and DMLS; ten samples in each group. The conventional and DMLS copings were cemented to the working models using glass ionomer cement. Marginal gap of the copings were measured at predetermined four points. The die with the cemented copings are standardized-sectioned with a heavy duty lathe. Then, each sectioned samples were analyzed for the internal gap between the die and the metal coping using a metallurgical microscope. Digital photographs were taken at ×50 magnification and analyzed using measurement software. Statistical analysis was done by unpaired t -test and analysis of variance (ANOVA). The results of this study reveal that no significant difference was present in the marginal gap of conventional and DMLS copings ( P > 0.05) by means of ANOVA. The mean values of internal gap of DMLS copings were significantly greater than that of conventional copings ( P < 0.05). Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.

  6. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2017-12-12

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.

  7. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  8. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  9. High rate capability of a BaTiO3-decorated LiCoO2 cathode prepared via metal organic decomposition

    NASA Astrophysics Data System (ADS)

    Teranishi, Takashi; Katsuji, Naoto; Yoshikawa, Yumi; Yoneda, Mika; Hayashi, Hidetaka; Kishimoto, Akira; Yoda, Koji; Motobayashi, Hidefumi; Tasaki, Yuzo

    2016-10-01

    Metal organic decomposition (MOD) using octylic acid salts was applied to synthesize a BaTiO3-LiCoO2 (BT-LC) composite powder. The Ba and Ti octylates were utilized as metal precursors, in an attempt to synthesize homogeneous BT nanoparticles on the LC matrix. The BT-LC composite, having a phase-separated composite structure without any impurity phase, was successfully obtained by optimizing the MOD procedure. The composite prepared using octylate precursors exhibited a sharper distribution and better dispersibility of decorated BT particles. Additionally, the average particle size of the decorated BTs using metal octylate was reduced to 23.3 nm, compared to 44.4 nm from conventional processes using Ba acetate as well as Ti alkoxide as precursors. The composite cathode displayed better cell performance than its conventional counterpart; the discharge capacity of the metal octylate-derived specimen was 55.6 mAh/g at a 50C rate, corresponding to 173% of the capacity of the conventional specimen (32.2 mAh/g). The notable improvement in high rate capability obtained in this study, compared with the conventional route, was attributed to the higher density of the triple junction formed by the BT-LC-electrolyte interface.

  10. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00465b

  11. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional andmore » phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.« less

  12. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  13. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    PubMed

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; P<.001). Follow-up multiple comparisons showed a significant difference among all the groups. Microwave soldering resulted in a higher tensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods

    PubMed Central

    Masjedi, Milad; Andrews, Barry; Cobb, Justin

    2013-01-01

    Robotic systems have been shown to improve unicompartmental knee arthroplasty (UKA) component placement accuracy compared to conventional methods when used by experienced surgeons. We aimed to determine whether inexperienced UKA surgeons can position components accurately using robotic assistance when compared to conventional methods and to demonstrate the effect repetition has on accuracy. Sixteen surgeons were randomised to an active constraint robot or conventional group performing three UKAs over three weeks. Implanted component positions and orientations were compared to planned component positions in six degrees of freedom for both femoral and tibial components. Mean procedure time decreased for both robot (37.5 mins to 25.7 mins) (P = 0.002) and conventional (33.8 mins to 21.0 mins) (P = 0.002) groups by attempt three indicating the presence of a learning curve; however, neither group demonstrated changes in accuracy. Mean compound rotational and translational errors were lower in the robot group compared to the conventional group for both components at all attempts for which rotational error differences were significant at every attempt. The conventional group's positioning remained inaccurate even with repeated attempts although procedure time improved. In comparison, by limiting inaccuracies inherent in conventional equipment, robotic assistance enabled surgeons to achieve precision and accuracy when positioning UKA components irrespective of their experience. PMID:23862069

  15. Iterative metal artifact reduction for x-ray computed tomography using unmatched projector/backprojector pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanming; Wang, Linyuan; Li, Lei

    2016-06-15

    Purpose: Metal artifact reduction (MAR) is a major problem and a challenging issue in x-ray computed tomography (CT) examinations. Iterative reconstruction from sinograms unaffected by metals shows promising potential in detail recovery. This reconstruction has been the subject of much research in recent years. However, conventional iterative reconstruction methods easily introduce new artifacts around metal implants because of incomplete data reconstruction and inconsistencies in practical data acquisition. Hence, this work aims at developing a method to suppress newly introduced artifacts and improve the image quality around metal implants for the iterative MAR scheme. Methods: The proposed method consists of twomore » steps based on the general iterative MAR framework. An uncorrected image is initially reconstructed, and the corresponding metal trace is obtained. The iterative reconstruction method is then used to reconstruct images from the unaffected sinogram. In the reconstruction step of this work, an iterative strategy utilizing unmatched projector/backprojector pairs is used. A ramp filter is introduced into the back-projection procedure to restrain the inconsistency components in low frequencies and generate more reliable images of the regions around metals. Furthermore, a constrained total variation (TV) minimization model is also incorporated to enhance efficiency. The proposed strategy is implemented based on an iterative FBP and an alternating direction minimization (ADM) scheme, respectively. The developed algorithms are referred to as “iFBP-TV” and “TV-FADM,” respectively. Two projection-completion-based MAR methods and three iterative MAR methods are performed simultaneously for comparison. Results: The proposed method performs reasonably on both simulation and real CT-scanned datasets. This approach could reduce streak metal artifacts effectively and avoid the mentioned effects in the vicinity of the metals. The improvements are evaluated by inspecting regions of interest and by comparing the root-mean-square errors, normalized mean absolute distance, and universal quality index metrics of the images. Both iFBP-TV and TV-FADM methods outperform other counterparts in all cases. Unlike the conventional iterative methods, the proposed strategy utilizing unmatched projector/backprojector pairs shows excellent performance in detail preservation and prevention of the introduction of new artifacts. Conclusions: Qualitative and quantitative evaluations of experimental results indicate that the developed method outperforms classical MAR algorithms in suppressing streak artifacts and preserving the edge structural information of the object. In particular, structures lying close to metals can be gradually recovered because of the reduction of artifacts caused by inconsistency effects.« less

  16. Welding abilities of UFG metals

    NASA Astrophysics Data System (ADS)

    Morawiński, Łukasz; Chmielewski, Tomasz; Olejnik, Lech; Buffa, Gianluca; Campanella, Davide; Fratini, Livan

    2018-05-01

    Ultrafine Grained (UFG) metals are characterized by an average grain size of <1 µm and mostly high angle grain boundaries. These materials exhibit exceptional improvements in strength, superplastic behaviour and in some cases enhanced biocompatibility. UFG metals barstock can be fabricated effectively by means of Severe Plastic Deformation (SPD) methods. However, the obtained welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovative welding processes based on mixing of the friction-heated material in the solid state. LFW is a welding process used to joint bulk components. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. Character and range of recrystallization can be controlled by changing LFW parameters. Experimental study on the welded UFG 1070 aluminum alloy by means of FLW method, indicates the possibility of reducing the UFG structure degradation in the obtained joint. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency.

  17. “Rocking-Chair”-Type Metal Hybrid Supercapacitors

    DOE PAGES

    Yoo, Hyun Deog; Han, Sang-Don; Bayliss, Ryan D.; ...

    2016-10-24

    Hybrid supercapacitors that follow a “rocking-chair”-type mechanism were developed by coupling divalent metal and activated carbon electrodes in nonaqueous electrolytes. Conventional supercapacitors require a large amount of electrolyte to provide a sufficient quantity of ions to the electrodes, due to their Daniell-type mechanism that depletes the ions from the electrolyte while charging. The alternative “rocking-chair”-type mechanism effectively enhances the energy density of supercapacitors by minimizing the necessary amount of electrolyte, because the ion is replenished from the metal anode while it is adsorbed to the cathode. Newly developed nonaqueous electrolytes for Mg and Zn electrochemistry, based on bis(trifluoromethylsulfonyl)imide (TFSI) salts,more » made the metal hybrid supercapacitors possible by enabling reversible deposition on the metal anodes and reversible adsorption on an activated carbon cathode. Factoring in gains through the cell design, the energy density of the metal hybrid supercapacitors is projected to be a factor of 7 higher than conventional devices thanks to both the “rocking-chair”-type mechanism that minimizes total electrolyte volume and the use of metal anodes, which have substantial merits in capacity and voltage. Self-discharge was also substantially alleviated compared to conventional supercapacitors. This concept offers a route to build supercapacitors that meet dual criteria of power and energy densities with a simple cell design.« less

  18. "Rocking-Chair"-Type Metal Hybrid Supercapacitors.

    PubMed

    Yoo, Hyun Deog; Han, Sang-Don; Bayliss, Ryan D; Gewirth, Andrew A; Genorio, Bostjan; Rajput, Nav Nidhi; Persson, Kristin A; Burrell, Anthony K; Cabana, Jordi

    2016-11-16

    Hybrid supercapacitors that follow a "rocking-chair"-type mechanism were developed by coupling divalent metal and activated carbon electrodes in nonaqueous electrolytes. Conventional supercapacitors require a large amount of electrolyte to provide a sufficient quantity of ions to the electrodes, due to their Daniell-type mechanism that depletes the ions from the electrolyte while charging. The alternative "rocking-chair"-type mechanism effectively enhances the energy density of supercapacitors by minimizing the necessary amount of electrolyte, because the ion is replenished from the metal anode while it is adsorbed to the cathode. Newly developed nonaqueous electrolytes for Mg and Zn electrochemistry, based on bis(trifluoromethylsulfonyl)imide (TFSI) salts, made the metal hybrid supercapacitors possible by enabling reversible deposition on the metal anodes and reversible adsorption on an activated carbon cathode. Factoring in gains through the cell design, the energy density of the metal hybrid supercapacitors is projected to be a factor of 7 higher than conventional devices thanks to both the "rocking-chair"-type mechanism that minimizes total electrolyte volume and the use of metal anodes, which have substantial merits in capacity and voltage. Self-discharge was also substantially alleviated compared to conventional supercapacitors. This concept offers a route to build supercapacitors that meet dual criteria of power and energy densities with a simple cell design.

  19. The shear band controlled deformation in metallic glass: a perspective from fracture

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Shao, Y.; Yao, K. F.

    2016-02-01

    Different from the homogenous deformation in conventional crystalline alloys, metallic glasses and other work-softening materials deform discontinuously by localized plastic strain in shear bands. Here by three-point bending test on a typical ductile Pd-Cu-Si metallic glass, we found that the plastic deformed region during fracture didn’t follow the yielding stress distribution as the conventional material mechanics expected. We speculated that such special behavior was because the shear bands in metallic glasses could propagate easily along local shear stress direction once nucleated. Based on a 3D notch tip stress field simulation, we considered a new fracture process in a framework of multiple shear band deformation mechanism instead of conventional materials mechanics, and successfully reproduced the as-observed complicate shear band morphologies. This work clarifies many common misunderstandings on metallic glasses fracture, and might also provide a new insight to the shear band controlled deformation. It suggests that the deformation of metallic glasses is sensitive to local stress condition, and therefore their mechanical properties would depend on not only the material, but also other external factors on stress condition. We hope that start from this work, new methods, criteria, or definitions could be proposed to further study these work-softening materials, especially for metallic glasses.

  20. Explosion-assisted preparation of dispersed gold-bearing different-grade ore for selective mining

    NASA Astrophysics Data System (ADS)

    Trubachev, AI; Zykov, NV

    2017-02-01

    It is found that there are transient zones (between quality and off-quality ore areas) with the respective content of useful component in an ore body, and a variant of explosive treatment of such zones before the selective mining is put forward. Practicability of two processing technologies is evaluated: processing of high-grade and low-grade ore from the transient zones and heap leaching of metals from the low-grade and impoverished ore. Open mining technology is conventional truck-and-shovel scheme, with distributed ore flows to processing plant and (or) to heap leaching, which generally enhances the mine efficiency.

  1. Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Jacob L.; Yu, Yang; Ohodnicki, Paul R.

    In-situ monitoring of the multi-component gas streams in high temperature energy conversion devices offer the promises to higher efficiency via improved understanding of the chemical environments during device operation. While conventional resistive based metal oxide semiconductor gas sensors suffer from strong cross-sensitivity, optical sensing approaches offer intrinsic advantages to achieve gas selectivity based on wavelength specific interactions. This manuscript describes a novel method to achieve multicomponent gas sensing during gas exposure of H2, CO2, CH4and CO in humid high temperature environments. A single sensor element comprised of a perovskite La0.3Sr0.7TiO3(LSTO) oxide thin film layer coated on silica optical fiber wasmore » used. The sensing responses consisted of two wavelength-specific near infrared (NIR) mechanisms, namely broadband absorption associated with the metal oxide layer, and wavelength localized thermal emission responses associated with the hydroxyl defects within the silica fiber. Principal component analysis (PCA) was applied to couple the two mechanisms to achieve selective gas identification. Successful discrimination of H2and CO2on a single fiber sensor was achieved, where the results are both stable and reversible. This design demonstrates that by coupling multiple optical mechanisms on a single oxide coated fiber sensor, simple platforms can also achieve multi-component sensing functionality without the added complexity of a sensor array. Thus, it suggests a new approach to construct simple, robust and functional sensor designs capable of gas discrimination and quantification in multi-component gas streams.« less

  2. Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.

    2009-01-01

    In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.

  3. Are sectioning and soldering of short-span implant-supported prostheses necessary procedures?

    PubMed

    Bianchini, Marco A; Souza, João G O; Souza, Dircilene C; Magini, Ricardo S; Benfatti, Cesar A M; Cardoso, Antonio C

    2011-01-01

    The aim of this study was to evaluate the fit between dental abutments and the metal framework of a 3-unit fixed prosthesis screwed to two implants to determine whether sectioning and soldering of the framework are in fact necessary procedures. The study was based on a model of a metal framework of a 3-unit prosthesis screwed to two implants. A total of 18 metal frameworks were constructed and divided into 3 groups: (1) NS group - each framework was cast in one piece and not sectioned; (2) CS group - the components of each sectioned framework were joined by conventional soldering; and (3) LW group - the components of each sectioned framework were joined by laser welding. The control group consisted of six silver-palladium alloy copings that were not cast together. Two analyses were mperformed: in the first analysis, the framework was screwed only to the first abutment, and in the second analysis, the framework was screwed to both abutments. The prosthetic fit was assessed at a single point using a measuring microscope (Measurescope, Nikon, Japan) and the marginal gap was measured in micrometers. Statistical analysis was performed using analysis of variance (ANOVA), Scheffe's test, Student's t-test, and Mann-Whitney U test. The NS group had larger marginal gaps than the other groups (p<0.01), while the CS and LW groups had a similar degree of misfit with no significant difference between them. The results revealed that, in the case of short-span 3-unit fixed prostheses, the framework should be sectioned and soldered or welded to prevent or reduce marginal gaps between the metal framework and dental abutments.

  4. Rapid method for sampling metals for materials identification

    NASA Technical Reports Server (NTRS)

    Higgins, L. E.

    1971-01-01

    Nondamaging process similar to electrochemical machining is useful in obtaining metal samples from places inaccessible to conventional sampling methods or where methods would be hazardous or contaminating to specimens. Process applies to industries where metals or metal alloys play a vital role.

  5. Investigation of graphene-on-metal substrates for SPR-based sensor using finite-difference time domain.

    PubMed

    Said, Fairus Atida; Menon, Pulliyaseri Susthitha; Rajendran, Venkatachalam; Shaari, Sahbudin; Majlis, Burhanuddin Y

    2017-12-01

    In this study, the authors investigated the effects of a single layer graphene as a coating layer on top of metal thin films such as silver, gold, aluminum and copper using finite-difference time domain method. To enhance the resolution of surface plasmon resonance (SPR) sensor, it is necessary to increase the SPR reflectivity and decrease the full-width-half maximum (FWHM) of the SPR curve so that there is minimum uncertainty in the determination of the resonance dip. Numerical data was verified with analytical and experimental data where all the data were in good agreement with resonance angle differing in <10% due to noise present in components such as humidity and temperature. In further analysis, reflectivity and FWHM were compared among four types of metal with various thin film thicknesses where graphene was applied on top of the metal layers, and data was compared against pure conventional metal thin films. A 60 nm-thick Au thin film results in higher performance with reflectivity of 92.4% and FWHM of 0.88° whereas single layer graphene-on-60 nm-thick Au gave reflectivity of 91.7% and FWHM of 1.32°. However, a graphene-on-40 nm-thick Ag also gave good performance with narrower FWHM of 0.88° and reflection spectra of 89.2%.

  6. 21 CFR 888.3320 - Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/metal semi-constrained, with a... Devices § 888.3320 Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with a cemented acetabular...

  7. 21 CFR 888.3320 - Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/metal semi-constrained, with a... Devices § 888.3320 Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with a cemented acetabular...

  8. Influence of ligation method on friction resistance of lingual brackets with different second-order angulations: an in vitro study

    PubMed Central

    Pereira, Graziane Olímpio; Gimenez, Carla Maria Melleiro; Prieto, Lucas; Prieto, Marcos Gabriel do Lago; Basting, Roberta Tarkany

    2016-01-01

    ABSTRACT Objective: To evaluate stainless steel archwire static friction in active and passive self-ligating lingual and conventional brackets with second-order angulations. Methods: Two conventional lingual brackets for canines (STb light/Ormco; PSWb/Tecnident), and two self-ligating brackets, one active (In-Ovation L/GAC) and the other passive (3D/ Forestadent), were evaluated. A stainless steel archwire was used at 0°, 3° and 5° angulations. Metal ligatures, conventional elastic ligatures, and low friction elastic ligatures were also tested. A universal testing machine applied friction between brackets and wires, simulating sliding mechanics, to produce 2-mm sliding at 3 mm/minute speed. Results: Two-way analysis of variance demonstrated a significant effect of the interaction between brackets and angulations (p < 0.001). Tukey test indicated that the highest frictional resistance values were observed at 5° angulation for In-Ovation L, PSWb bracket with non conventional ligature, and STb bracket with metal ligature. As for 3D, PSWb with conventional or metal ligatures, and STb brackets with non conventional ligature, showed significantly lower static frictional resistance with 0° angulation. At 0° angulation, STb brackets with metal ties, In-Ovation L brackets and 3D brackets had the lowest frictional resistance. Conclusions: As the angulation increased from 0° to 3°, static friction resistance increased. When angulation increased from 3° to 5°, static friction resistance increased or remained the same. Self-ligating 3D and In-Ovation L brackets, as well as conventional STb brackets, seem to be the best option when sliding mechanics is used to perform lingual orthodontic treatment. PMID:27653262

  9. Influence of ligation method on friction resistance of lingual brackets with different second-order angulations: an in vitro study.

    PubMed

    Pereira, Graziane Olímpio; Gimenez, Carla Maria Melleiro; Prieto, Lucas; Prieto, Marcos Gabriel do Lago; Basting, Roberta Tarkany

    2016-01-01

    To evaluate stainless steel archwire static friction in active and passive self-ligating lingual and conventional brackets with second-order angulations. Two conventional lingual brackets for canines (STb light/Ormco; PSWb/Tecnident), and two self-ligating brackets, one active (In-Ovation L/GAC) and the other passive (3D/ Forestadent), were evaluated. A stainless steel archwire was used at 0°, 3° and 5° angulations. Metal ligatures, conventional elastic ligatures, and low friction elastic ligatures were also tested. A universal testing machine applied friction between brackets and wires, simulating sliding mechanics, to produce 2-mm sliding at 3 mm/minute speed. Two-way analysis of variance demonstrated a significant effect of the interaction between brackets and angulations (p < 0.001). Tukey test indicated that the highest frictional resistance values were observed at 5° angulation for In-Ovation L, PSWb bracket with non conventional ligature, and STb bracket with metal ligature. As for 3D, PSWb with conventional or metal ligatures, and STb brackets with non conventional ligature, showed significantly lower static frictional resistance with 0° angulation. At 0° angulation, STb brackets with metal ties, In-Ovation L brackets and 3D brackets had the lowest frictional resistance. As the angulation increased from 0° to 3°, static friction resistance increased. When angulation increased from 3° to 5°, static friction resistance increased or remained the same. Self-ligating 3D and In-Ovation L brackets, as well as conventional STb brackets, seem to be the best option when sliding mechanics is used to perform lingual orthodontic treatment.

  10. Final Report for Project titled High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibaud-Erkey, Catherine; Alahyari, Abbas

    Heat exchangers (HXs) are critical components in a wide range of heat transfer applications, from HVAC (Heating Ventilation and Cooling) to automobiles to manufacturing plants. They require materials capable of transferring heat at high rates while also minimizing thermal expansion over the usage temperature range. Conventionally, metals are used for applications where effective and efficient heat exchange is required, since many metals exhibit thermal conductivity over 100 W/m K. While metal HXs are constantly being improved, they still have some inherent drawbacks due to their metal construction, in particular corrosion. Polymeric material can offer solution to such durability issues andmore » allow designs that cannot be afforded by metal construction either due to complexity or cost. A major drawback of polymeric material is their low thermal conductivity (0.1-0.5? W/mK) that would lead to large system size. Recent improvements in the area of filled polymers have highlighted the possibility to greatly improve the thermal conductivity of polymeric materials while retaining their inherent manufacturing advantage, and have been applied to heat sink applications. Therefore, the objective of this project was to develop a robust review of materials for the manufacturing of industrial and commercial non-metallic heat exchangers. This review consisted of material identification, literature evaluation, as well as empirical and model characterization, resulting in a database of relevant material properties and characteristics to provide guidance for future heat exchanger development.« less

  11. Metal artefact reduction in MRI at both 1.5 and 3.0 T using slice encoding for metal artefact correction and view angle tilting

    PubMed Central

    Reichert, M; Morelli, J N; Nittka, M; Attenberger, U; Runge, V M

    2015-01-01

    Objective: To compare metal artefact reduction in MRI at both 3.0 T and 1.5 T using different sequence strategies. Methods: Metal implants of stainless steel screw and plate within agarose phantoms and tissue specimens as well as three patients with implants were imaged at both 1.5 T and 3.0 T, using view angle tilting (VAT), slice encoding for metal artefact correction with VAT (SEMAC-VAT) and conventional sequence. Artefact reduction in agarose phantoms was quantitatively assessed by artefact volume measurements. Blinded reads were conducted in tissue specimen and human imaging, with respect to artefact size, distortion, blurring and overall image quality. Wilcoxon and Friedman tests for multiple comparisons and intraclass correlation coefficient (ICC) for interobserver agreement were performed with a significant level of p < 0.05. Results: Compared with conventional sequences, SEMAC-VAT significantly reduced metal artefacts by 83% ± 9% for the screw and 89% ± 3% for the plate at 1.5 T; 72% ± 7% for the screw and 38% ± 13% for the plate at 3.0 T (p < 0.05). In qualitative analysis, SEMAC-VAT allowed for better visualization of tissue structures adjacent to the implants and produced better overall image quality with good interobserver agreement for both tissue specimen and human imaging (ICC = 0.80–0.99; p < 0.001). In addition, VAT also markedly reduced metal artefacts compared with conventional sequence, but was inferior to SEMAC-VAT. Conclusion: SEMAC-VAT and VAT techniques effectively reduce artefacts from metal implants relative to conventional imaging at both 1.5 T and 3.0 T. Advances in knowledge: The feasibility of metal artefact reduction with SEMAC-VAT was demonstrated at 3.0-T MR. SEMAC-VAT significantly reduced metal artefacts at both 1.5 and 3.0 T. SEMAC-VAT allowed for better visualization of the tissue structures adjacent to the metal implants. SEMAC-VAT produced consistently better image quality in both tissue specimen and human imaging. PMID:25613398

  12. Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.

    PubMed

    Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet

    2011-04-26

    Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.

  13. Orbital engineering of nickelates in three-component heterostructures

    NASA Astrophysics Data System (ADS)

    Disa, Ankit; Kumah, Divine; Malashevich, Andrei; Chen, Hanghui; Ismail-Beigi, Sohrab; Walker, Fred; Ahn, Charles; Specht, Eliot; Arena, Dario

    2015-03-01

    The orbital configuration of complex oxides dictates the emergence of a wide range of properties, including metal-insulator transitions, interfacial magnetism, and high-temperature superconductivity. In this work, we experimentally demonstrate a novel method for achieving large and tunable orbital polarizations in nickelates. The technique is based on leveraging three-component, atomically layered superlattices to yield a combination of inversion symmetry breaking, charge transfer, and polar distortions. In the system we studied, composed of LaTiO3/LaNiO3/LaAlO3, we use synchrotron x-ray diffraction and spectroscopy to characterize these properties and show that they lead to fully broken orbital degeneracy in the nickelate layer consistent with a single-band Fermi surface. Furthermore, we show that this system is widely tunable and enables quasi-continuous orbital control unachievable by conventional strain and confinement-based approaches. This technique provides an experimentally realizable route for accessing and studying novel orbitally dependent quantum phenomena.

  14. Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium.

    PubMed

    Xu, Su; Zhang, Ming; Wen, Huailin; Wang, Jun

    2017-09-22

    Decreasing the mutual coupling between Multi-input Multi-output (MIMO) antenna elements in a mobile handset and achieving a high data rate is a challenging topic as the 5 th -generation (5G) communication age is coming. Conventional decoupling components for MIMO antennas have to be re-designed when the geometries or frequencies of antennas have any adjustment. In this paper, we report a novel metamaterial-based decoupling strategy for MIMO antennas in mobile handsets with wide applicability. The decoupling component is made of subwavelength metal/air layers, which can be treated as singular medium over a broad frequency band. The flexible applicable property of the decoupling strategy is verified with different antennas over different frequency bands with the same metamaterial decoupling element. Finally, 1/100-wavelength 10-dB isolation is demonstrated for a 24-element MIMO antenna in mobile handsets over the frequency band from 4.55 to 4.75 GHz.

  15. Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics

    PubMed Central

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011

  16. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    PubMed

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  17. A plug flow reactor model of a vanadium redox flow battery considering the conductive current collectors

    NASA Astrophysics Data System (ADS)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2017-08-01

    A lumped-parameter model for vanadium redox flow batteries, which use metallic current collectors, is extended into a one-dimensional model using the plug flow reactor principle. Thus, the commonly used simplification of a perfectly mixed cell is no longer required. The resistances of the cell components are derived in the in-plane and through-plane directions. The copper current collector is the only component with a significant in-plane conductance, which allows for a simplified electrical network. The division of a full-scale flow cell into 10 layers in the direction of fluid flow represents a reasonable compromise between computational effort and accuracy. Due to the variations in the state of charge and thus the open circuit voltage of the electrolyte, the currents in the individual layers vary considerably. Hence, there are situations, in which the first layer, directly at the electrolyte input, carries a multiple of the last layer's current. The conventional model overestimates the cell performance. In the worst-case scenario, the more accurate 20-layer model yields a discharge capacity 9.4% smaller than that computed with the conventional model. The conductive current collector effectively eliminates the high over-potentials in the last layers of the plug flow reactor models that have been reported previously.

  18. Mechanical and physical properties of AlSi10Mg processed through selective laser melting

    NASA Astrophysics Data System (ADS)

    Raus, A. A.; Wahab, M. S.; Ibrahim, M.; Kamarudin, K.; Ahmed, Aqeel; Shamsudin, S.

    2017-04-01

    In the past few decade, Additive Manufacturing (AM) has become popular and substantial to manufacture direct functional parts in varieties industrial applications even in very challenging like aerospace, medical and manufacturing sectors. Selective Laser Melting (SLM) is one of the most efficient technique in the additive Manufacturing (AM) which able to manufacture metal component directly from Computer Aided Design (CAD) file data. Accuracy, mechanical and physical properties are essentials requirement in order to meet the demand of those engineering components. In this paper, the mechanical properties of SLM manufactured AlSi10Mg samples such as hardness, tensile strength, and impact toughness are investigated and compared to conventionally high pressure die cast A360 alloy. The results exposed that the hardness and the yield strength of AlSi10Mg samples by SLM were increased by 42% and 31% respectively to those of conventionally high pressure die cast A360 alloy even though without comprehensive post processing methods. It is also discovered that AlSi10Mg parts fabricated by SLM achieved the highest density of 99.13% at the best setting parameters from a previous study of 350 watts laser power, 1650 mm/s scanning speed and hatching distance 0.13 mm.

  19. Composite fastener for use in high temperature environments

    NASA Technical Reports Server (NTRS)

    Miller, Robert J. (Inventor); Palusis, Mark E. (Inventor); Jarmon, David C. (Inventor)

    2000-01-01

    A fastener includes a composite body and a metal coupling attached to the body. The metal coupling includes an attachment structure to connect the fastener to an external structure. An assembly of components includes a first metallic component having a first coefficient of thermal expansion, a second non-metallic component having a second coefficient of thermal expansion different from the first thermal expansion and having a groove that receives a fastener that extends between the groove and the second component, the fastener slidably engaging the groove to accommodate relative expansion between the components.

  20. An In-Depth Review on Direct Additive Manufacturing of Metals

    NASA Astrophysics Data System (ADS)

    Azam, Farooq I.; Rani, Ahmad Majdi Abdul; Altaf, Khurram; Rao, T. V. V. L. N.; Aimi Zaharin, Haizum

    2018-03-01

    Additive manufacturing (AM), also known as 3D Printing, is a revolutionary manufacturing technique which has been developing rapidly in the last 30 years. The evolution of this precision manufacturing process from rapid prototyping to ready-to-use parts has significantly alleviated manufacturing constraints and design freedom has been outstandingly widened. AM is a non-conventional manufacturing technique which utilizes a 3D CAD model data to build parts by adding one material layer at a time, rather than removing it and fulfills the demand for manufacturing parts with complex geometric shapes, great dimensional accuracy, and easy to assemble parts. Additive manufacturing of metals has become the area of extensive research, progressing towards the production of final products and replacing conventional manufacturing methods. This paper provides an insight to the available metal additive manufacturing technologies that can be used to produce end user products without using conventional manufacturing methods. The paper also includes the comparison of mechanical and physical properties of parts produced by AM with the parts manufactured using conventional processes.

  1. Metal clad aramid fibers for aerospace wire and cable

    NASA Technical Reports Server (NTRS)

    Tokarsky, Edward W.; Dunham, Michael G.; Hunt, James E.; Santoleri, E. David; Allen, David B.

    1995-01-01

    High strength light weight metal clad aramid fibers can provide significant weight savings when used to replace conventional metal wire in aerospace cable. An overview of metal clad aramid fiber materials and information on performance and use in braided electrical shielding and signal conductors is provided.

  2. Beyond flexible batteries: aesthetically versatile, printed rechargeable power sources for smart electronics

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Young

    2017-05-01

    Forthcoming wearable/flexible electronics with compelling shape diversity and mobile usability have garnered significant attention as a kind of disruptive technology to drastically change our daily lives. From a power source point of view, conventional rechargeable batteries (represented by lithium-ion batteries) with fixed shapes and dimensions are generally fabricated by winding (or stacking) cell components (such as anodes, cathodes and separator membranes) and then packaging them with (cylindrical-/rectangular-shaped) metallic canisters or pouch films, finally followed by injection of liquid electrolytes. In particular, the use of liquid electrolytes gives rise to serious concerns in cell assembly, because they require strict packaging materials to avoid leakage problems and also separator membranes to prevent electrical contact between electrodes. For these reasons, the conventional cell assembly and materials have pushed the batteries to lack of variety in form factors, thus imposing formidable challenges on their integration into versatile-shaped electronic devices. Here, as a facile and efficient strategy to address the aforementioned longstanding challenge, we demonstrate a new class of printed solid-state Li-ion batteries and also all-inkjet-printed solid-state supercapacitors with exceptional shape conformability and aesthetic versatility which lie far beyond those achievable with conventional battery technologies.

  3. A view of metals through the terahertz window

    NASA Astrophysics Data System (ADS)

    Dodge, Steve

    2006-05-01

    As electrons move through a metal, interaction with their environment tends to slow them down, causing the Drude peak in the optical conductivity to become narrower. The resulting peak width is typically in the terahertz frequency range that sits between microwaves the far infrared, too fast for conventional electronics and too slow for conventional infrared spectroscopy. With femtosecond laser techniques, however, coherent, broadband terahertz radiation can now be generated and detected with exquisite sensitivity, providing a new window onto electronic interactions in metals. I will discuss the application of this technique to a variety of metallic systems, including elemental lead, the nearly magnetic oxide metal CaRuO3, and CrV alloys that span the quantum phase transition from spin-density wave to paramagnetic metal. M. A. Gilmore, S. Kamal, D. M. Broun, and J. S. Dodge, Appl. Phys. Lett. 88, 141910 (2006).

  4. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading

    NASA Astrophysics Data System (ADS)

    Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.

    2017-10-01

    Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.

  5. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V

    2015-10-01

    Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  7. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metalmore » roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.« less

  8. Optimal acetabular component orientation estimated using edge-loading and impingement risk in patients with metal-on-metal hip resurfacing arthroplasty.

    PubMed

    Mellon, Stephen J; Grammatopoulos, George; Andersen, Michael S; Pandit, Hemant G; Gill, Harinderjit S; Murray, David W

    2015-01-21

    Edge-loading in patients with metal-on-metal resurfaced hips can cause high serum metal ion levels, the development of soft-tissue reactions local to the joint called pseudotumours and ultimately, failure of the implant. Primary edge-loading is where contact between the femoral and acetabular components occurs at the edge/rim of the acetabular component whereas impingement of the femoral neck on the acetabular component's edge causes secondary or contrecoup edge-loading. Although the relationship between the orientation of the acetabular component and primary edge-loading has been identified, the contribution of acetabular component orientation to impingement and secondary edge-loading is less clear. Our aim was to estimate the optimal acetabular component orientation for 16 metal-on-metal hip resurfacing arthroplasty (MoMHRA) subjects with known serum metal ion levels. Data from motion analysis, subject-specific musculoskeletal modelling and Computed Tomography (CT) measurements were used to calculate the dynamic contact patch to rim (CPR) distance and impingement risk for 3416 different acetabular component orientations during gait, sit-to-stand, stair descent and static standing. For each subject, safe zones free from impingement and edge-loading (CPR <10%) were defined and, consequently, an optimal acetabular component orientation was determined (mean inclination 39.7° (SD 6.6°) mean anteversion 14.9° (SD 9.0°)). The results of this study suggest that the optimal acetabular component orientation can be determined from a patient's motion and anatomy. However, 'safe' zones of acetabular component orientation associated with reduced risk of dislocation and pseudotumour are also associated with a reduced risk of edge-loading and impingement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    Gum Metal is a set of multi-component beta-Ti alloys designed and developed by Toyota Central R&D Labs in 2003 to have a nearly zero shear modulus in the direction. After significant amounts of cold-work (>90%), these alloys were found to have yield strengths at a significant fraction of the predicted ideal strengths and exhibited very little work hardening. It has been speculated that this mechanical behavior may be realized through an ideal shear mechanism as opposed to conventional plastic deformation mechanisms, such as slip, and that such a mechanism may be realized through a defect structure termed "nanodisturbance". It is furthermore theorized that for near ideal strength to be attained, dislocations need to be pinned at sufficiently high stresses. It is the search for these defects and pinning points that motivates the present study. However, the mechanism of plastic deformation and the true origin of specific defect structures unique to gum metals is still controversial, mainly due to the complexity of the beta-Ti alloy system and the heavily distorted lattice exhibited in cold worked gum metals, rendering interpretation of images difficult. Accordingly, the first aim of this study is to clarify the starting as-received microstructures of gum metal alloys through conventional transmission electron microscopy (TEM) and aberration-corrected high resolution scanning transmission electron microscopy with high-angle annular dark field detector (HAADF-HRSTEM) imaging. To elucidate the effects of beta-stability and starting microstructure on the deformation behavior of gum metals and thus to provide adequate context for potentially novel deformation structures, we investigate three alloy conditions: gum metal that has undergone solution heat treatment (STGM), gum metal that has been heavily cold worked (CWGM), and a solution treated alloy of nominal gum metal composition, but leaner in beta-stabilizing content (ST Ref-1). In order to directly relate observed defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the presence of dislocations in regions that have sustained large lattice rotations. Finally, we report on the nature of indirectly observed "pinning points" in STGM under nanoindentation that was reported in a previous study. We find through ADF/HAADF STEM that the "pinning points" which cause dislocation bowing in STGM under nanoindentation are actually other dislocations with the line direction normal to the TEM foil, and, in support of this finding, we also observe other in-plane dislocation-dislocation interactions that is responsible for resultant bowing. We observe no direct evidence of any secondary phases, twinning, or nanodisturbances in the STGM case, and the majority of deformation features can be explained by conventional slip mechanism. However, it remains a possibility that an ideal shear mechanism may be accompanying conventional slip in STGMs that may account for the truly continuous nature of the lattice rotations.

  10. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  11. Research study on multi-KW-DC distribution system

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1975-01-01

    A detailed definition of the HVDC test facility and the equipment required to implement the test program are provided. The basic elements of the test facility are illustrated, and consist of: the power source, conventional and digital supervision and control equipment, power distribution harness and simulated loads. The regulated dc power supplies provide steady-state power up to 36 KW at 120 VDC. Power for simulated line faults will be obtained from two banks of 90 ampere-hour lead-acid batteries. The relative merits of conventional and multiplexed power control will be demonstrated by the Supervision and Monitor Unit (SMU) and the Automatically Controlled Electrical Systems (ACES) hardware. The distribution harness is supported by a metal duct which is bonded to all component structures and functions as the system ground plane. The load banks contain passive resistance and reactance loads, solid state power controllers and active pulse width modulated loads. The HVDC test facility is designed to simulate a power distribution system for large aerospace vehicles.

  12. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  13. A novel high-speed CMOS circuit based on a gang of capacitors

    NASA Astrophysics Data System (ADS)

    Sharroush, Sherif M.

    2017-08-01

    There is no doubt that complementary metal-oxide semiconductor (CMOS) circuits with wide fan-in suffers from the relatively sluggish operation. In this paper, a circuit that contains a gang of capacitors sharing their charge with each other is proposed as an alternative to long N-channel MOS and P-channel MOS stacks. The proposed scheme is investigated quantitatively and verified by simulation using the 45-nm CMOS technology with VDD = 1 V. The time delay, area and power consumption of the proposed scheme are investigated and compared with the conventional static CMOS logic circuit. It is verified that the proposed scheme achieves 52% saving in the average propagation delay for eight inputs and that it has a smaller area compared to the conventional CMOS logic when the number of inputs exceeds three and a smaller power consumption for a number of inputs exceeding two. The impacts of process variations, component mismatches and technology scaling on the proposed scheme are also investigated.

  14. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell,; Jonathan S. , Ripley; Edward, B [Knoxville, TN

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  15. Direct metal brazing to cermet feedthroughs

    DOEpatents

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  16. Direct metal brazing to cermet feedthroughs

    DOEpatents

    Hopper, Jr., Albert C.

    1984-12-18

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  17. Metalizing Solar Cells by Selective Electroplating

    NASA Technical Reports Server (NTRS)

    Dutta, S.; Palaschak, P. A.

    1986-01-01

    Contact patterns traced by laser scanning. Conductor paths deposited on silicon solar-cell wafers by laser irradiation followed by electroplating. Laser-assisted metalization technique offers better resolution and lower contact resistance than does conventional metalization by screen printing. At the same time, less expensive than metalization with masks and photolithography.

  18. Alignment and component position after patient-matched instrumentation versus conventional total knee arthroplasty.

    PubMed

    Pourgiezis, N; Reddy, S P; Nankivell, M; Morrison, G; VanEssen, J

    2016-08-01

    To compare patient-matched instrumentation (PMI) with conventional total knee arthroplasty (TKA) in terms of limb alignment and component position. Nine men and 36 women (mean age, 69.5 years) who underwent PMI TKA were compared with 20 men and 25 women (mean age, 69.3 years) who underwent conventional TKA by the same team of surgeons with the same prosthesis and protocols in terms of limb alignment and component position using the Perth protocol computed tomography, as well as bone resection measurements, operating time, and the number of trays used. The PMI and conventional TKA groups were comparable in terms of age, body mass index, tourniquet time, operating time, and the number of trays used. For limb alignment and component position, the 2 groups differed significantly in sagittal femoral component position (2.4º vs. 0.9º, p=0.0008) and the percentage of knees with femoral component internally rotated ≥1° with respect to the transepicondylar axis (20% vs. 55%, p=0.001). The difference was not significant in terms of limb alignment, coronal and rotational femoral component position, or coronal and sagittal tibial component position. Intra-operatively, all patient-matched cutting blocks demonstrated acceptable fit and stability. No instrument-related adverse events or complications were encountered. One (2.2%) femur and 6 (13.3%) tibiae were recut 2 mm for optimal ligament balancing. Two femoral components were upsized to the next size, and 2 tibial components were upsized and 2 downsized to the next size. PMI was as accurate as conventional instrumentation in TKA. There was no significant difference in limb alignment or femoral and tibial component position in the coronal and sagittal planes between PMI and conventional TKA. PMI had a higher tendency to achieve correct femoral component rotation.

  19. Electrical properties of graphene tunnel junctions with high-κ metal-oxide barriers

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2017-04-01

    An insulating barrier is one of the key components in electronic devices that makes use of quantum tunneling principles. Many metal-oxides have been used as a good barrier material in a tunnel junction for their large band gap, stable chemical properties and superb properties for forming a thin and pin-hole-free insulating layer. The reduced dimensions of transistors have led to the need for alternative, high dielectric constant (high-κ) oxides to replace conventional silicon-based dielectrics to reduce the leaking current induced by electron tunneling. On the other hand, a tunnel junction with one or both electrodes made of graphene may lead to novel applications due to the massless Dirac fermions from the graphene. Here we have fabricated sandwich-type graphene tunnel junctions with high-κ metal-oxides as barriers, including Al2O3, HfO2, ZrO2, and TiO2. Tunneling properties are investigated by observing the temperature and time dependences of the tunneling spectra. Our results show the potential for applications of high-κ oxides in graphene tunnel junctions and bringing new opportunities for memory and logic electronic devices.

  20. NO—CO—O2 Reaction on a Metal Catalytic Surface using Eley—Rideal Mechanism

    NASA Astrophysics Data System (ADS)

    Waqar, Ahmad

    2008-10-01

    Interactions among the reacting species NO, CO and O2 on metal catalytic surfaces are studied by means of Monte Carlo simulation using the Eley-Rideal (ER) mechanism. The study of this three-component system is important for understanding of the reaction kinetics by varying the relative ratios of the reactants. It is found that contrary to the conventional Langmuir-Hinshelwood (LH) thermal mechanism in which two irreversible phase transitions are obtained between active states and poisoned states, a single phase transition is observed when the ER mechanism is combined with the LH mechanism. The phase diagrams of the surface coverage and the steady state production of CO2, N2 and N2 O are evaluated as a function of the partial pressures of the reactants in the gas phase. The continuous production of CO2 starts as soon as the CO pressure is switched on and the second order phase transition at the first critical point is eliminated, which is in agreement with the experimental findings.

  1. Excess current in ferromagnet-superconductor structures with fully polarized triplet component

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.

    2016-05-01

    We study the I -V characteristics of ST/n/N contacts, where ST is a BCS superconductor S with a built-in exchange field h , n represents a normal metal wire, and N a normal metal reservoir. The superconductor ST is separated from the n wire by a spin filter which allows the passage of electrons with a certain spin direction so that only fully polarized triplet Cooper pairs penetrate into the n wire. We show that both the subgap conductance σsg and the excess current Iexc, which occur in conventional S/n/N contacts due to Andreev reflection (AR), exist also in the considered system. In our case, they are caused by unconventional AR that is not accompanied by spin flip. The excess current Iexc exists only if h exceeds a certain magnitude hc. At h

  2. Risk assessment of metal vapor arcing

    NASA Technical Reports Server (NTRS)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  3. Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.

    1991-12-31

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double_prime} alumina solid electrolyte (BASE), themore » seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less

  4. Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.

    1991-01-01

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double prime} alumina solid electrolyte (BASE),more » the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less

  5. Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples.

    PubMed

    Gil, F; Hernández, A F

    2015-06-01

    Human biomonitoring has become an important tool for the assessment of internal doses of metallic and metalloid elements. These elements are of great significance because of their toxic properties and wide distribution in environmental compartments. Although blood and urine are the most used and accepted matrices for human biomonitoring, other non-conventional samples (saliva, placenta, meconium, hair, nails, teeth, breast milk) may have practical advantages and would provide additional information on health risk. Nevertheless, the analysis of these compounds in biological matrices other than blood and urine has not yet been accepted as a useful tool for biomonitoring. The validation of analytical procedures is absolutely necessary for a proper implementation of non-conventional samples in biomonitoring programs. However, the lack of reliable and useful analytical methodologies to assess exposure to metallic elements, and the potential interference of external contamination and variation in biological features of non-conventional samples are important limitations for setting health-based reference values. The influence of potential confounding factors on metallic concentration should always be considered. More research is needed to ascertain whether or not non-conventional matrices offer definitive advantages over the traditional samples and to broaden the available database for establishing worldwide accepted reference values in non-exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia.

    PubMed

    Kumar, Dhananjay; Singh, Alpana; Gaur, J P

    2008-11-01

    The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.

  7. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  8. Communication: Time- and space-sliced velocity map electron imaging

    NASA Astrophysics Data System (ADS)

    Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Fan, Lin; Winney, Alexander H.; Li, Wen

    2014-12-01

    We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.

  9. Thin-film diffusion brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Mikus, E. B.

    1972-01-01

    A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.

  10. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  11. Cryogenic Fracture Toughness Evaluation of an Investment Cast Al-Be Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; McGill, P. B.

    2006-01-01

    Aluminum-Beryllium metal matrix composite materials are useful due to their desirable performance characteristics for aerospace applications. Desirable characteristics of this material includes light-weight, dimensional stability, stiffness, good vibration damping characteristics, low coefficient of thermal expansion, and workability, This material is 3.5 times stiffer and 22% lighter than conventional aluminum alloys. electro-optical systems, advanced sensor and guidance components for flight and satellite systems, components for light-weight high-performance aircraft engines, and structural components for helicopters. Aluminum-beryllium materials are now available in the form of near net shape investment castings. In this materials properties characterization study, the cryogenic tensile and fracture properties of an investment casting alloy, Beralcast 363, were determined. Tensile testing was performed at 21 C (70 F), -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F), and fracture (K(sub lc) and da/dN) testing was performed at -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F). Their use is attractive for weight critical structural applications such as advanced

  12. 40 CFR 63.4890 - What emission limits must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... organic HAP-free coating technology can be used on the metal furniture components. The request must be... Standards for Hazardous Air Pollutants: Surface Coating of Metal Furniture Emission Limitations § 63.4890... emission limit for specific metal furniture components or type of components for which you believe the...

  13. Component Position and Metal Ion Levels in Computer-Navigated Hip Resurfacing Arthroplasty.

    PubMed

    Mann, Stephen M; Kunz, Manuela; Ellis, Randy E; Rudan, John F

    2017-01-01

    Metal ion levels are used as a surrogate marker for wear in hip resurfacing arthroplasties. Improper component position, particularly on the acetabular side, plays an important role in problems with the bearing surfaces, such as edge loading, impingement on the acetabular component rim, lack of fluid-film lubrication, and acetabular component deformation. There are little data regarding femoral component position and its possible implications on wear and failure rates. The purpose of this investigation was to determine both femoral and acetabular component positions in our cohort of mechanically stable hip resurfacing arthroplasties and to determine if these were related to metal ion levels. One hundred fourteen patients who had undergone a computer-assisted metal-on-metal hip resurfacing were prospectively followed. Cobalt and chromium levels, Harris Hip, and UCLA activity scores in addition to measures of the acetabular and femoral component position and angles of the femur and acetabulum were recorded. Significant changes included increases in the position of the acetabular component compared to the native acetabulum; increase in femoral vertical offset; and decreases in global offset, gluteus medius activation angle, and abductor arm angle (P < .05). Multiple regression analysis found no significant predictors of cobalt and chromium metal ion levels. Femoral and acetabular components placed in acceptable position failed to predict increased metal ion levels, and increased levels did not adversely impact patient function or satisfaction. Further research is necessary to clarify factors contributing to prosthesis wear. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Shear bond strength comparison between conventional porcelain fused to metal and new functionally graded dental restorations after thermal-mechanical cycling.

    PubMed

    Henriques, B; Gonçalves, S; Soares, D; Silva, F S

    2012-09-01

    The aim of this study was to evaluate the effect of thermo-mechanical cycling on the metal-ceramic bond strength of conventional porcelain fused to metal restorations (PFM) and new functionally graded metal-ceramic dental restorations (FGMR). Two types of specimens were produced: PFM and FGMR specimens. PFM specimens were produced by conventional PFM technique. FGMR specimens were hot pressed and prepared with a metal/ceramic composite interlayer (50 M, vol%) at the metal-ceramic interface. They were manufactured and standardized in cylindrical format and then submitted to thermal (3000, 6000 and 12,000 cycles; between 5 °C and 60 °C; dwell time: 30s) and mechanical (25,000, 50,000 and 100,000 cycles under a load of 50 N; 1.6 Hz) cycling. The shear bond strength tests were performed in a universal testing machine (crosshead speed: 0.5mm/min), using a special device to concentrate the tension at the metal-ceramic interface and the load was applied until fracture. The metal-ceramic interfaces were examined with SEM/EDS prior to and after shear tests. The Young's modulus and hardness were measured across the interfaces of both types of specimens using nanoindentation tests. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The 2-way ANOVA was used to compare shear bond strength results (p<0.05). FGMR specimens showed significantly (p<0.001) higher shear bond strength results than PFM specimens, irrespective of fatigue conditions. Fatigue conditions significantly (p<0.05) affected the shear bond strength results. The analysis of surface fracture revealed adhesive fracture type for PFM specimens and mixed fracture type for FGMR specimens. Nanoindentation tests showed differences in mechanical properties measured across the metal-ceramic interface for the two types of specimens, namely Young's Modulus and hardness. This study showed significantly better performance of the new functionally graded restorations relative to conventional PFM restorations, under fatigue testing conditions and for the materials tested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Assigning Oxidation States to Some Metal Dioxygen Complexes of Biological Interest.

    ERIC Educational Resources Information Center

    Summerville, David A.; And Others

    1979-01-01

    The bonding of dioxygen in metal-dioxygen complexes is discussed, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen. Complexes of iron, cobalt, chromium, and manganese are considered. (BB)

  16. Marginal Accuracy of Castings Fabricated with Ringless Casting Investment System and Metal Ring Casting Investment System: A Comparative Study.

    PubMed

    Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna

    2016-02-01

    The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.

  17. Zipper Connectors for Flexible Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Barnes, Kevin N.

    2003-01-01

    Devices that look and function much like conventional zippers on clothing have been proposed as connectors for flexible electronic circuits. Heretofore, flexible electronic circuits have commonly included rigid connectors like those of conventional rigid electronic circuits. The proposed zipper connectors would make it possible to connect and disconnect flexible circuits quickly and easily. Moreover, the flexibility of zipper connectors would make them more (relative to rigid connectors) compatible with flexible circuits, so that the advantages of flexible circuitry could be realized more fully. Like a conventional zipper, a zipper according to the proposal would include teeth anchored on flexible tapes, a slider with a loosely attached clasp, a box at one end of the rows of mating teeth, and stops at the opposite ends. The tapes would be made of a plastic or other dielectric material. On each of the two mating sides of the zipper, metal teeth would alternate with dielectric (plastic) teeth, there being two metal teeth for each plastic one. When the zipper was closed, each metal tooth from one side would be in mechanical and electrical contact with a designated metal tooth from the other side, and these mating metal teeth would be electrically insulated from the next pair of mating metal teeth by an intervening plastic tooth. The metal teeth would be soldered or crimped to copper tabs. Wires or other conductors connected to electronic circuits would be soldered or crimped to the ends of the tabs opposite the teeth.

  18. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  19. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  20. Electrical-assisted double side incremental forming and processes thereof

    DOEpatents

    Roth, John; Cao, Jian

    2014-06-03

    A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.

  1. Advanced indium phosphide based monolithic integration using quantum well intermixing and MOCVD regrowth

    NASA Astrophysics Data System (ADS)

    Raring, James W.

    The proliferation of the internet has fueled the explosive growth of telecommunications over the past three decades. As a result, the demand for communication systems providing increased bandwidth and flexibility at lower cost continues to rise. Lightwave communication systems meet these demands. The integration of multiple optoelectronic components onto a single chip could revolutionize the photonics industry. Photonic integrated circuits (PIC) provide the potential for cost reduction, decreased loss, decreased power consumption, and drastic space savings over conventional fiber optic communication systems comprised of discrete components. For optimal performance, each component within the PIC may require a unique epitaxial layer structure, band-gap energy, and/or waveguide architecture. Conventional integration methods facilitating such flexibility are increasingly complex and often result in decreased device yield, driving fabrication costs upward. It is this trade-off between performance and device yield that has hindered the scaling of photonic circuits. This dissertation presents high-functionality PICs operating at 10 and 40 Gb/s fabricated using novel integration technologies based on a robust quantum-well-intermixing (QWI) method and metal organic chemical vapor deposition (MOCVD) regrowth. We optimize the QWI process for the integration of high-performance quantum well electroabsorption modulators (QW-EAM) with sampled-grating (SG) DBR lasers to demonstrate the first widely-tunable negative chirp 10 and 40 Gb/s EAM based transmitters. Alone, QWI does not afford the integration of high-performance semiconductor optical amplifiers (SOA) and photodetectors with the transmitters. To overcome this limitation, we have developed a novel high-flexibility integration scheme combining MOCVD regrowth with QWI to merge low optical confinement factor SOAs and 40 Gb/s uni-traveling carrier (UTC) photodiodes on the same chip as the QW-EAM based transmitters. These high-saturation power receiver structures represent the state-of-the-art technologies for even discrete components. Using the novel integration technology, we present the first widely-tunable single-chip device capable of transmit and receive functionality at 40 Gb/s. This device monolithically integrates tunable lasers, EAMs, SOAs, and photodetectors with performance that rivals optimized discrete components. The high-flexibility integration scheme requires only simple blanket regrowth steps and thus breaks the performance versus yield trade-off plaguing conventional fabrication techniques employed for high-functionality PICs.

  2. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    PubMed

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more areas, even daily pervasive electronics.

  3. Directly Writing Resistor, Inductor and Capacitor to Composite Functional Circuits: A Super-Simple Way for Alternative Electronics

    PubMed Central

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    Background The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Methods Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Results Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. Conclusions The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more areas, even daily pervasive electronics. PMID:23936349

  4. Metals in edible seaweed.

    PubMed

    Rubio, C; Napoleone, G; Luis-González, G; Gutiérrez, A J; González-Weller, D; Hardisson, A; Revert, C

    2017-04-01

    The concentration levels of 20 metals were analyzed by ICP-OES in edible seaweed (Chondrus, Eisenia, Gelidium, Himanthalia, Laminaria, Palmaria, Porphyra, Undaria), from two origins (Asia vs EU) according to their cultivation practices (conventional vs organic). Red seaweed showed higher concentrations of trace and toxic elements. Porphyra may be used as a potential bioindicator for metals. Significant differences were found between the Asian vs European mean contents. The mean Cd level from the conventional cultivation (0.28 mg/kg) was two points higher than the organic cultivation (0.13 mg/kg). A daily consumption of seaweed (4 g/day) contributes to the dietary intake of metals, mainly Mg and Cr. The average intakes of Al, Cd and Pb were 0.064, 0.001 and 0.0003 mg/day, respectively. Based on obtained results, this study suggests that exposure to the toxic metals analyzed (Al, Cd and Pb) through seaweed consumption does not raise serious health concerns, but other toxic metals should be monitored. Copyright © 2017. Published by Elsevier Ltd.

  5. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2 percent) were achieved, the latter being far lower than that achieved with SiC matrix composites fabricated via CVI or PIP. The pyrolytic carbon/zirconium nitride interface coating optimized in this work for use on carbon fibers was incorporated in the SiC/SiC composites and yielded a >41 ksi (approx. 283 MPa) flexural strength.

  6. Solution Processed Metal Oxide High-κ Dielectrics for Emerging Transistors and Circuits.

    PubMed

    Liu, Ao; Zhu, Huihui; Sun, Huabin; Xu, Yong; Noh, Yong-Young

    2018-06-14

    The electronic functionalities of metal oxides comprise conductors, semiconductors, and insulators. Metal oxides have attracted great interest for construction of large-area electronics, particularly thin-film transistors (TFTs), for their high optical transparency, excellent chemical and thermal stability, and mechanical tolerance. High-permittivity (κ) oxide dielectrics are a key component for achieving low-voltage and high-performance TFTs. With the expanding integration of complementary metal oxide semiconductor transistors, the replacement of SiO 2 with high-κ oxide dielectrics has become urgently required, because their provided thicker layers suppress quantum mechanical tunneling. Toward low-cost devices, tremendous efforts have been devoted to vacuum-free, solution processable fabrication, such as spin coating, spray pyrolysis, and printing techniques. This review focuses on recent progress in solution processed high-κ oxide dielectrics and their applications to emerging TFTs. First, the history, basics, theories, and leakage current mechanisms of high-κ oxide dielectrics are presented, and the underlying mechanism for mobility enhancement over conventional SiO 2 is outlined. Recent achievements of solution-processed high-κ oxide materials and their applications in TFTs are summarized and traditional coating methods and emerging printing techniques are introduced. Finally, low temperature approaches, e.g., ecofriendly water-induced, self-combustion reaction, and energy-assisted post treatments, for the realization of flexible electronics and circuits are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Apparatus for electrical-assisted incremental forming and process thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, John; Cao, Jian

    A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less

  8. Air-powder polishing on self-ligating brackets after clinical use: effects on debris levels.

    PubMed

    Aragón, Mônica L S Castro; Lima, Leandro Santiago; Normando, David

    2016-01-01

    Debris buildup on brackets and arch surfaces is one of the main factors that can influence the intensity of friction between bracket and orthodontic wire. This study sought to evaluate the effect of air-powder polishing cleaning on debris levels of self-ligating ceramic brackets at the end of orthodontic treatment, compared to the behavior of conventional brackets. Debris levels were evaluated in metal conventional orthodontic brackets (n = 42) and ceramic self-ligating brackets (n = 42) on canines and premolars, arranged in pairs. There were brackets with and without air-powder polishing. At the end of orthodontic treatment, a hemiarch served as control and the contralateral hemiarch underwent prophylaxis with air-powder polishing. Debris buildup in bracket slots was assessed through images, and Wilcoxon test was used to analyze the results. The median debris levels were statistically lower in the conventional metal brackets compared to self-ligating ones (p = 0.02), regarding brackets not submitted to air-powder polishing. Polishing significantly reduced debris buildup to zero in both systems, without differences between groups. Ceramic self-ligating brackets have a higher debris buildup in comparison to conventional metal brackets in vivo, but prophylaxis with sodium bicarbonate jet was effective in reducing debris levels in self-ligating and also in conventional brackets.

  9. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31440a

  10. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis.

    PubMed

    Wu, Jun; Zhang, Hua; He, Pin-Jing; Shao, Li-Ming

    2011-02-01

    Dissolved organic matter (DOM) plays an important role in heavy metal migration from municipal solid waste (MSW) to aquatic environments via the leachate pathway. In this study, fluorescence excitation-emission matrix (EEM) quenching combined with parallel factor (PARAFAC) analysis was adopted to characterize the binding properties of four heavy metals (Cu, Pb, Zn and Cd) and DOM in MSW leachate. Nine leachate samples were collected from various stages of MSW management, including collection, transportation, incineration, landfill and subsequent leachate treatment. Three humic-like components and one protein-like component were identified in the MSW-derived DOM by PARAFAC. Significant differences in quenching effects were observed between components and metal ions, and a relatively consistent trend in metal quenching curves was observed among various leachate samples. Among the four heavy metals, Cu(II) titration led to fluorescence quenching of all four PARAFAC-derived components. Additionally, strong quenching effects were only observed in protein-like and fulvic acid (FA)-like components with the addition of Pb(II), which suggested that these fractions are mainly responsible for Pb(II) binding in MSW-derived DOM. Moreover, the significant quenching effects of the FA-like component by the four heavy metals revealed that the FA-like fraction in MSW-derived DOM plays an important role in heavy metal speciation; therefore, it may be useful as an indicator to assess the potential ability of heavy metal binding and migration. © 2010 Elsevier Ltd. All rights reserved.

  11. Nanoporous films: From conventional to the conformal

    DOE PAGES

    Allendorf, Mark D.; Stavila, Vitalie

    2015-12-14

    Here, thin and continuous films of porous metal-organic frameworks can now be conformally deposited on various substrates using a vapor-phase synthesis approach that departs from conventional solution-based routes.

  12. Electric vehicle battery research and development

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1973-01-01

    High energy battery technology for electric vehicles is reviewed. The state-of-the-art in conventional batteries, metal-gas batteries, alkali-metal high temperature batteries, and organic electrolyte batteries is reported.

  13. Thermographic Inspections Save Skins and Prevent Blackouts

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Scanning thermography involves heating a component s surface and subsequently measuring the surface temperature, using an infrared camera to identify structural defects such as corrosion and disbonding. It is a completely noninvasive and noncontacting process. Scans can detect defects in conventional metals and plastics, as well as in bonded aluminum composites, plastic- and resinbased composites, and laminated structures. The apparatus used for scanning is highly portable and can cover the surface of a test material up to six times faster than conventional thermography. NASA scientists affirm that the technology is an invaluable asset to the airlines, detecting potential defects that can cause structural failure.In 1996, ThermTech Services, Inc., of Stuart, Florida, approached NASA in an effort to evaluate the technology for application in the power and process industries, where corrosion is of serious concern. ThermTech Services proceeded to develop the application for inspecting boiler waterwall tubing at fossil-fueled electric-generating stations. In 1999, ThermTech purchased the rights to NASA s patented technology and developed the specialized equipment required to apply the inspecting method to power plant components. The ThermTech robotic system using NASA technology has proved to be extremely successful and cost effective in performing detailed inspections of large structures such as boiler waterwalls and aboveground chemical storage tanks. It is capable of inspecting a waterwall, tank-wall, or other large surfaces at a rate of approximately 10 square feet per minute or faster.

  14. Microwave remediation of electronic circuitry waste and the resulting gaseous emissions

    NASA Astrophysics Data System (ADS)

    Schulz, Rebecca L.

    The global community has become increasingly dependent on computer and electronic technology. As a result, society is faced with an increasing amount of obsolete equipment and electronic circuitry waste. Electronic waste is generally disposed of in landfills. While convenient, this action causes a substantial loss of finite resources and poses an environmental threat as the circuit board components breakdown and are exposed to the elements. Hazardous compounds such as lead, mercury and cadmium may leach from the circuitry and find their way into the groundwater supply. For this dissertation, a microwave waste remediation system was developed. The system was designed to remove the organic components from a wide variety of electronic circuitry. Upon additional heating of the resulting ash material in an industrial microwave, a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. Gaseous organic compounds that were generated as a result of organic removal were treated in a microwave off gas system that effectively reduced the concentration of the products emitted by several orders of magnitude, and in some cases completely destroying the waste gas. Upon further heating in an industrial microwave, a glass and metal product were recovered. In order to better understand the effects of processing parameters on the efficiency of the off-gas system, a parametric study was developed. The study tested the microwave system at 3 flow rates (10, 30, and 50 ft 3/min) and three temperatures (400, 700 and 1000°C. In order to test the effects of microwave energy, the experiments were repeated using a conventional furnace. While microwave energy is widely used, the mechanisms of interaction with materials is not well understood. In an effort to better understand how microwaves couple with materials, a newly developed molecular orbital model was investigated. The model proposed an interaction mechanism associated with the development of coupled oscillators upon application of microwave energy. The model was used to model several of the waste gases that appear in the waste stream. Results from experimentation support the data generated thus far.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A system for removing components of a gaseous mixture is provided comprising: a reactor fluid containing vessel having conduits extending therefrom, aqueous fluid within the reactor, the fluid containing a ligand and a metal, and at least one reactive surface within the vessel coupled to a power source. A method for removing a component from a gaseous mixture is provided comprising exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand. A method of capturing a component of a gaseous mixture is providedmore » comprising: exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand, altering the oxidation state of the metal, the altering unbinding the component from the ligand, and capturing the component.« less

  16. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1992-01-01

    A hybrid ceramic/metallic fastener (bolt) includes a headed ceramic shank carrying a metallic end termination fitting. A conventional cap screw threadably engages the termination fitting to apply tensile force to the fastener.

  17. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A hybrid ceramic/metallic fastener (bolt) includes a headed ceramic shank carrying a metallic end termination fitting. A conventional cap screw threadably engages the termination fitting to apply tensile force to the fastener.

  18. Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper

    NASA Astrophysics Data System (ADS)

    Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin

    2017-12-01

    LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.

  19. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    NASA Astrophysics Data System (ADS)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  20. Plasmonic integrated circuits comprising metal waveguides, multiplexer/demultiplexer, detectors, and logic circuits on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Fukuda, M.; Ota, M.; Sumimura, A.; Okahisa, S.; Ito, M.; Ishii, Y.; Ishiyama, T.

    2017-05-01

    A plasmonic integrated circuit configuration comprising plasmonic and electronic components is presented and the feasibility for high-speed signal processing applications is discussed. In integrated circuits, plasmonic signals transmit data at high transfer rates with light velocity. Plasmonic and electronic components such as wavelength-divisionmultiplexing (WDM) networks comprising metal wires, plasmonic multiplexers/demultiplexers, and crossing metal wires are connected via plasmonic waveguides on the nanometer or micrometer scales. To merge plasmonic and electronic components, several types of plasmonic components were developed. To ensure that the plasmonic components could be easily fabricated and monolithically integrated onto a silicon substrate using silicon complementary metal-oxide-semiconductor (CMOS)-compatible processes, the components were fabricated on a Si substrate and made from silicon, silicon oxides, and metal; no other materials were used in the fabrication. The plasmonic components operated in the 1300- and 1550-nm-wavelength bands, which are typically employed in optical fiber communication systems. The plasmonic logic circuits were formed by patterning a silicon oxide film on a metal film, and the operation as a half adder was confirmed. The computed plasmonic signals can propagate through the plasmonic WDM networks and be connected to electronic integrated circuits at high data-transfer rates.

  1. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    PubMed

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.

  2. Adhesive strength of total knee endoprostheses to bone cement - analysis of metallic and ceramic femoral components under worst-case conditions.

    PubMed

    Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2016-06-01

    Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.

  3. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris.

    PubMed

    Gwenzi, Willis; Mupatsi, Nyarai M

    2016-03-01

    Application of coal ash in construction materials is constrained by the potential risk of heavy metal leaching. Limited information is available on the comparative heavy metal leaching from coal ash-versus conventional concrete. The current study compared total and leached heavy metal concentrations in unbound coal ash, cement and sand; and investigated the effect of initial leachant pH on heavy metal leaching from coal-ash versus conventional concrete monoliths and their debris. Total Pb, Mn and Zn in coal ash were lower than or similar to that of other materials, while Cu and Fe showed the opposite trend. Leached concentrations of Zn, Pb, Mn, Cu and Fe in unbound coal ash, its concrete and debris were comparable and in some cases even lower than that for conventional concrete. In all cases, leached concentrations accounted for just <1% of the total concentrations. Log-log plots of concentration and cumulative release of Fe versus time based on tank leaching data showed that leaching was dominated by diffusion. Overall, the risk of Zn, Pb, Mn, Cu and Fe leaching from coal ash and its concrete was minimal and comparable to that of conventional concrete, a finding in contrast to widely held public perceptions and earlier results reported in other regions such as India. In the current study the coal ash, and its concrete and debris had highly alkaline pH indicative of high acid neutralizing and pH buffering capacity, which account for the stabilization of Zn, Pb, Mn, Cu and Fe. Based on the low risk of Zn, Pb, Mn, Cu and Fe leaching from the coal ash imply that such coal ash can be incorporated in construction materials such as concrete without adverse impacts on public and environmental health from these constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    DOEpatents

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2014-06-24

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  5. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  6. Ultra-fast boriding of metal surfaces for improved properties

    DOEpatents

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  7. Mounting improves heat-sink contact with beryllia washer

    NASA Technical Reports Server (NTRS)

    1966-01-01

    To conduct heat away from electrical components that must be electrically insulated from a metal heat sink, a metal washer and a coil spring are placed between one end of the electrical component and the beryllia washer mounted on the heat sink. The thermal paths are formed by the component lead and base, the metal and beryllia washers, and the compressed spring.

  8. Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U

    DOE PAGES

    Jaworski, M. A.; Brooks, A.; Kaita, R.; ...

    2016-08-08

    Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less

  9. Aerosol-jet-printed, 1 volt H-bridge drive circuit on plastic with integrated electrochromic pixel.

    PubMed

    Ha, Mingjing; Zhang, Wei; Braga, Daniele; Renn, Michael J; Kim, Chris H; Frisbie, C Daniel

    2013-12-26

    In this report, we demonstrate a printed, flexible, and low-voltage circuit that successfully drives a polymer electrochromic (EC) pixel as large as 4 mm(2) that is printed on the same substrate. All of the key components of the drive circuitry, namely, resistors, capacitors, and transistors, were aerosol-jet-printed onto a plastic foil; metallic electrodes and interconnects were the only components prepatterned on the plastic by conventional photolithography. The large milliampere drive currents necessary to switch a 4 mm(2) EC pixel were controlled by printed electrolyte-gated transistors (EGTs) that incorporate printable ion gels for the gate insulator layers and poly(3-hexylthiophene) for the semiconductor channels. Upon application of a 1 V input pulse, the circuit switches the printed EC pixel ON (red) and OFF (blue) two times in approximately 4 s. The performance of the circuit and the behavior of the individual resistors, capacitors, EGTs, and the EC pixel are analyzed as functions of the printing parameters and operating conditions.

  10. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.

    PubMed

    Burakov, Alexander E; Galunin, Evgeny V; Burakova, Irina V; Kucherova, Anastassia E; Agarwal, Shilpi; Tkachev, Alexey G; Gupta, Vinod K

    2018-02-01

    The problem of water pollution is of a great concern. Adsorption is one of the most efficient techniques for removing noxious heavy metals from the solvent phase. This paper presents a detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes). In addition to this, the efficiency of developed materials for adsorption of the heavy metals is discussed in detail along with the comparison of their maximum adsorption capacity in tabular form. A special focus is made on the perspectives of further wider applications of nanostructured adsorbents (especially, carbon nanotubes and graphenes) in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: a complementary 'green chemistry' tool to organic synthesis.

    PubMed

    Banitaba, Sayed Hossein; Safari, Javad; Khalili, Shiva Dehghan

    2013-01-01

    A green and simple approach to assembling of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds via three-component reaction of kojic acid, malononitrile, and aromatic aldehydes in aqueous media under ultrasound irradiation is described. The combinatorial synthesis was achieved for this methodology with applying ultrasound irradiation while making use of water as green solvent. In comparison to conventional methods, experimental simplicity, good functional group tolerance, excellent yields, short routine, and selectivity without the need for a transition metal or base catalyst are prominent features of this green procedure. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Mineralization of Carbon Dioxide: Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Soong, Y; Carney, C

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrialmore » process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2« less

  13. Turbine nozzle attachment system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  14. Turbine nozzle attachment system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  15. Systems and methods for imaging using radiation from laser produced plasmas

    DOEpatents

    Renard-Le Galloudec, Nathalie; Cowan, Thomas E.; Sentoku, Yasuhiko; Rassuchine, Jennifer

    2009-06-30

    In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

  16. Internal fit of single crowns produced by CAD-CAM and lost-wax metal casting technique assessed by the triple-scan protocol.

    PubMed

    Dahl, Bjørn Einar; Rønold, Hans Jacob; Dahl, Jon E

    2017-03-01

    Whether single crowns produced by computer-aided design and computer-aided manufacturing (CAD-CAM) have an internal fit comparable to crowns made by lost-wax metal casting technique is unknown. The purpose of this in vitro study was to compare the internal fit of single crowns produced with the lost-wax and metal casting technique with that of single crowns produced with the CAD-CAM technique. The internal fit of 5 groups of single crowns produced with the CAD-CAM technique was compared with that of single crowns produced in cobalt-chromium with the conventional lost-wax and metal casting technique. Comparison was performed using the triple-scan protocol; scans of the master model, the crown on the master model, and the intaglio of the crown were superimposed and analyzed with computer software. The 5 groups were milled presintered zirconia, milled hot isostatic pressed zirconia, milled lithium disilicate, milled cobalt-chromium, and laser-sintered cobalt-chromium. The cement space in both the mesiodistal and buccopalatal directions was statistically smaller (P<.05) for crowns made by the conventional lost-wax and metal casting technique compared with that of crowns produced by the CAD-CAM technique. Single crowns made using the conventional lost-wax and metal casting technique have better internal fit than crowns produced using the CAD-CAM technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Innovative manufacturing and materials for low cost lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator andmore » any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability with no shrinkage at up to 220oC. This allows vacuum drying of the dry cell just before filling with the electrolyte and thereby can reduce the size of the cell assembly dry room by 50%. Once the electrode-coated separator is produced, there are many different approaches for adding the metal current collector layers and making and connecting the tabs of the cells. These approaches include: (1) laminating the electrode side of the electrode-coated separator to both sides of a metal current collector; and (2) making a full coated electrode stack by coating or depositing a current collector layer on the electrode side and then coating a second electrode layer onto the current collector. Further cost savings are available from using lower cost and/or thinner and lighter current collectors and from using a separator coating manufacturing process at widths of 1.5 meters (m) or more and at high production line speeds of up to 125 meters per minute (mpm), both of which are well above the conventional coating widths and line speeds presently used in manufacturing electrodes for lithium ion batteries.« less

  18. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    PubMed

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    PubMed

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  20. Durability of polymer/metal interfaces under cyclic loading

    NASA Astrophysics Data System (ADS)

    Du, Tianbao

    Fatigue crack growth along metal/epoxy interface was examined in an aqueous environment and under mixed-mode conditions. A stress corrosion cracking mechanism was identified in this process. The fatigue crack growth rate in an aqueous environment was increased by several orders of magnitude and the fatigue threshold decreased by a factor of 10. The loss of adhesion in the aqueous environment was induced by the hydration of the surface oxide which resulted in a hydroxide with poor adhesion to the substrate metal. Self-assembled monolayer of long chain alkyl phosphonic acid and amino phosphonic acid were synthesized to enhance the adhesion and improve the durability of Al/epoxy interfacial bonding system. The same approach was taken to promote adhesion between copper and epoxy, where a two-component coupling system of 11-mercapto-1-undercanol and 3-aminopropyltriethoxysilane provided the most significant improvement in the copper/epoxy adhesion. The mixed-mode was applied by a piezoelectric actuator. Subcritical crack growth was observed along the epoxy/aluminum interface and the growth rate was found to depend on the magnitude of the applied electric field. Kinetics of the crack growth was correlated with the piezoelectric driving force. The resulting crack growth behavior was compared with the results from the conventional mechanical testing technique. Large differences were found between these two methods. Using this newly developed technique, effects of loading mode and frequency were studied. The fatigue resistance was found to increase with the mode II component and was expressed as a function of the KII/K I ratio. A strong frequency effect was observed for the subcritical crack growth along the Al/Epoxy interface, their fatigue resistance increased with the testing frequency.

  1. Alumina or Semiconductor Ribbon Waveguides at 30 to 1,000 GHz

    NASA Technical Reports Server (NTRS)

    Yeh, Cavour; Rascoe, Daniel; Shimabukuro, Fred; Tope, Michael; Siegel, Peter

    2005-01-01

    Ribbon waveguides made of alumina or of semiconductors (Si, InP, or GaAs) have been proposed as low-loss transmission lines for coupling electronic components and circuits that operate at frequencies from 30 to 1,000 GHz. In addition to low losses (and a concomitant ability to withstand power levels higher than would otherwise be possible), the proposed ribbon waveguides would offer the advantage of compatibility with the materials and structures now commonly incorporated into integrated circuits. Heretofore, low-loss transmission lines for this frequency range have been unknown, making it necessary to resort to designs that, variously, place circuits and components to be coupled in proximity of each other and/or provide for coupling via free space through bulky and often lossy optical elements. Even chip-to-chip interconnections have been problematic in this frequency range. Metal wave-guiding structures (e.g., microstriplines and traditional waveguides) are not suitable for this frequency range because the skin depths of electromagnetic waves in this frequency range are so small as to give rise to high losses. Conventional rod-type dielectric waveguide structures are also not suitable for this frequency range because dielectric materials, including ones that exhibit ultralow losses at lower frequencies, exhibit significant losses in this frequency range. Unlike microstripline structures or metallic waveguides, the proposed ribbon waveguides would be free of metal and would therefore not be subject to skin-depth losses. Moreover, although they would be made of materials that are moderately lossy in the frequency range of interest, the proposed ribbon waveguides would cause the propagating electromagnetic waves to configure themselves in a manner that minimizes losses.

  2. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1−xSnx nanowires

    PubMed Central

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-01-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1−xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour–liquid–solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth. PMID:27095012

  3. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires

    NASA Astrophysics Data System (ADS)

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-04-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

  4. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.

    PubMed

    Singh, P; Nanda, A

    2014-06-01

    A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  5. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment.

    PubMed

    Sun, Xueshi; Fan, Dejiang; Liu, Ming; Tian, Yuan; Pang, Yue; Liao, Huijie

    2018-06-18

    Sediment samples, including 40 surface samples and 12 sediment cores, were collected from 52 stations of the Yangtze River Estuary (YRE) in 2015 and 2016. The 95% linear prediction intervals (LPI) and principal components analysis (PCA), were conducted to evaluate the metal sources and grain-size effect (GSE). The in situ physico-chemical properties of pH, Eh, DO, salinity, temperature and turbidity were combined to elucidate the relationships between environmental factors and the fate of heavy metals in the river-estuary-shelf system. This study indicates a decreasing trend of metals in sediments from the estuary towards the adjacent shelf and the river channel and that Zn, Cu and Cr are mainly derived from natural processes throughout the catchment, whereas Pb appears to have anthropogenic inputs via atmospheric deposition. Furthermore, considering the best fit regression lines between the concentrations of Al and heavy metals as well as the deficiencies of the conventional C elements /C Al method, we introduce an approach (Al-SN: Al-scope normalization) that can eliminate the GSE on heavy metals and be applied to other estuaries. After Al-scope normalization, the relatively constant levels of Zn, Cu and Cr that remain in sediments from the river channel to the estuary and shelf confirmed that the variation of grain size in sediments almost entirely explained the distribution patterns of sediment toxicity in the YRE, while the enrichment of Pb in estuarine sediments could be attributed to its chemical species and physico-chemical properties. The results further suggest that the relationship between grain size and spatial behavior of sediment pollutants should be given priority over the contamination assessment and provenance discrimination in estuarine or similar environments with complex sediment compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Machining of Molybdenum by EDM-EP and EDC Processes

    NASA Astrophysics Data System (ADS)

    Wu, K. L.; Chen, H. J.; Lee, H. M.; Lo, J. S.

    2017-12-01

    Molybdenum metal (Mo) can be machined with conventional tools and equipment, however, its refractory propertytends to chip when being machined. In this study, the nonconventional processes of electrical discharge machining (EDM) and electro-polishing (EP) have been conducted to investigate the machining of Mo metal and fabrication of Mo grid. Satisfactory surface quality was obtained using appropriate EDM parameters of Ip ≦ 3A and Ton < 80μs at a constant pulse interval of 100μs. The finished Mometal has accomplished by selecting appropriate EP parameters such as electrolyte flow rate of 0.42m/s under EP voltage of 50V and flush time of 20 sec to remove the recast layer and craters on the surface of Mo metal. The surface roughness of machined Mo metal can be improved from Ra of 0.93μm (Rmax = 8.51μm) to 0.23μm (Rmax = 1.48μm). Machined Mo metal surface, when used as grid component in electron gun, needs to be modified by coating materials with high work function, such as silicon carbide (SiC). The main purpose of this study is to explore the electrical discharge coating (EDC) process for coating the SiC layer on EDMed Mo metal. Experimental results proved that the appropriate parameters of Ip = 5A and Ton = 50μs at Toff = 10μs can obtain the deposit with about 60μm thickness. The major phase of deposit on machined Mo surface was SiC ceramic, while the minor phases included MoSi2 and/or SiO2 with the presence of free Si due to improper discharging parameters and the use of silicone oil as the dielectric fluid.

  7. 21 CFR 888.3320 - Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. 888.3320 Section 888.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic...

  8. 21 CFR 888.3320 - Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. 888.3320 Section 888.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic...

  9. 21 CFR 888.3320 - Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. 888.3320 Section 888.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic...

  10. Core disruptive accident margin seal

    DOEpatents

    Garin, John

    1978-01-01

    An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible metal member having a first side attached to one of the riser components and a second side extending toward the other riser component and an actuating mechanism attached to the flexible metal member while extending to an accessible location. When the actuating mechanism is not activated, the flexible metal member does not contact the other riser component thus allowing the free rotation of the riser assembly and plug combination. When desired, the actuating mechanism causes the second side of the flexible metal member to contact the other riser component thereby sealing the annulus between the components.

  11. Compatibility of Niobium Alloys and Superalloys in a Flowing He-Xe Power Conversion System

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Ritzert, Frank J.; Smialek, James L.; Jaster, Mark L.; rker, Samuel P.

    2004-01-01

    Proposed concepts for an ambitious mission to explore Jupiter's three icy moons place significant demands on the various spacecraft systems. There are many challenges related to the high output power conversion systems being considered, and one example is the need to ensure system compatibility at all levels. The utilization of appropriate materials for component structures is important to ensuring long mission life. Refractory metal alloys have attractive high-temperature properties in inert environments, but these alloys are sometimes susceptible to contamination. Potential material compatibility issues exist between refractory metal candidates and more conventional alloys. Nb-1Zr has long been considered one of the most well characterized refractory alloys that is well suited for elevated-temperature use and liquid-metal compatibility. However, previous studies have suggested that niobium alloys can not co-exist in a closed system with traditional stainless steels or superalloys due to transport of contaminants. The relevance of this information to a proposed power conversion system is discussed. Also, experiments and fundamental calculations are being performed to determine contamination transport from candidate superalloys to Nb-1Zr in a closed system with an inert carrier gas. Potential protective schemes are explored to ensure system level compatibility between the refractory alloy Nb-1Zr and a nickel-based superalloy.

  12. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    PubMed

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  13. Intrinsically shunted Josephson junctions for electronics applications

    NASA Astrophysics Data System (ADS)

    Belogolovskii, M.; Zhitlukhina, E.; Lacquaniti, V.; De Leo, N.; Fretto, M.; Sosso, A.

    2017-07-01

    Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities that are so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two super-conducting electrodes, while a small part of the interface is well transparent. We discuss the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.

  14. Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties.

    PubMed

    Jia, Jiangang; Siddiq, Abdur R; Kennedy, Andrew R

    2015-08-01

    Porous Ti with open porosity in the range of 70-80% has been made using Ti powder and a particulate leaching technique using porous, spherical, NaCl beads. By incorporating the Ti powder into a pre-existing network of salt beads, by tapping followed by compaction, salt dissolution and "sintering", porous structures with uniform density, pore and strut sizes and a predictable level of connectivity have been produced, showing a significant improvement on the structures made by conventional powder mixing processes. Parts made using beads with sizes in the range of 0.5-1.0 mm show excellent promise as porous metals for medical devices, showing structures and porosities similar to those of commercial porous metals used in this sector, with inter-pore connections that are similar to trabecular bone. The elastic modulus (0.86 GPa) is lower than those for commercial porous metals and more closely matches that of trabecular bone and good compressive yield strength is retained (21 MPa). The ability to further tailor the structure, in terms of the density and the size of the pores and interconnections has also been demonstrated by immersion of the porous components in acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same soil sample and quantified spectrophotometrically using a Nanodrop ND-1000. Analysis of variance (ANOVA) was carried out in order to evaluate the significant differences in SMCs activity between all soil matrices. To associate the SMCs responses to the tracers of distinct agricultural farming systems, data were further explored under Principal Component Analysis (PCA). Biomarkers responses were combined into a stress index (IBR), described by Beliaeff & Burgeot (2002). Results/Discussion: All SMCs parameters displayed significant differences between agricultural soils and reference soils, except for metabolic quotient and RNA to DNA ratio (p<0.05), revealing that SMCs are suitable bioindicators of agricultural soil quality in volcanic soils. No significant differences were found for the soil basal respiration and acid phosphatase among the farming systems, suggesting that soils amendments (a cross farming practice) are a stressing factor disrupting local SMCs activities. The PCA analysis revealed that lithium is the priority metal affecting the SMCs responses in conventional farming systems. The IBR values indicated that soils ecosystem health between farming systems are ranked as: organic (4.96) > traditional (12.94) > conventional (17.28) (the higher the value, the worse the soil health status). Conclusion: Results support the soil microbial toolbox as suitable bioindicators of metal pollution in agricultural volcanic soils, highlighting the importance of integrated biomarker-based strategies for the development of the "Trace Metal Footprint" in Andosols.

  16. Oxidation Behavior of a Refractory NbCrMo0.5Ta0.5TiZr Alloy

    DTIC Science & Technology

    2014-04-01

    DANIEL J. EVANS, Chief Metals Branch Metals Branch Structural Materials Division...damage, is dif- ficult to achieve [2]. Thus, new metallic systems with higher melting points and a good balance of structural properties at high...has been considered to be the main issue during oxidation of conventional refractory alloys [14]. Heavy alloying of refractory metals with other

  17. Machining of Fibre Reinforced Plastic Composite Materials.

    PubMed

    Caggiano, Alessandra

    2018-03-18

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  18. Machining of Fibre Reinforced Plastic Composite Materials

    PubMed Central

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  19. Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets.

    PubMed

    Francisconi, Manoela Fávaro; Janson, Guilherme; Henriques, José Fernando Castanha; Freitas, Karina Maria Salvatore de

    2016-01-01

    The purpose of this study was to evaluate the deflection forces of Nitinol orthodontic wires placed in different types of brackets: metallic, reinforced polycarbonate with metallic slots, sapphire, passive and active self-ligating, by assessing strength values variation according to gradual increase in wire diameter and deflection and comparing different combinations in the different deflections. Specimens were set in a clinical simulation model and evaluated in a Universal Testing Machine (INSTRON 3342), using the ISO 15841 protocol. Data were subjected to One-way ANOVA, followed by Tukey tests (p<0.05). Self-ligating brackets presented the most similar behavior to each other. For conventional brackets there was no consistent behavior for any of the deflections studied. Self-ligating brackets presented the most consistent and predictable results while conventional brackets, as esthetic brackets, showed very different patterns of forces. Self-ligating brackets showed higher strength in all deflections when compared with the others, in 0.020-inch wires.

  20. Superhydrophobic films and methods for making superhydrophobic films

    DOEpatents

    Aytug, Tolga; Paranthaman, Mariappan Parans; Simpson, John T.; Bogorin, Daniela Florentina

    2017-09-26

    This disclosure relates to methods that include depositing a first component and a second component to form a film including a plurality of nanostructures, and coating the nanostructures with a hydrophobic layer to render the film superhydrophobic. The first component and the second component can be immiscible and phase-separated during the depositing step. The first component and the second component can be independently selected from the group consisting of a metal oxide, a metal nitride, a metal oxynitride, a metal, and combinations thereof. The films can have a thickness greater than or equal to 5 nm; an average surface roughness (Ra) of from 90 to 120 nm, as measured on a 5 .mu.m.times.5 .mu.m area; a surface area of at least 20 m.sup.2/g; a contact angle with a drop of water of at least 120 degrees; and can maintain the contact angle when exposed to harsh conditions.

  1. Hip Resurfacing: An Alternative to Conventional Hip Replacement?

    MedlinePlus

    ... and capped with a metal prosthesis. The hip socket is fitted with a metal cup. As these ... problem, but higher levels may be problematic. The socket prosthesis for a traditional hip replacement is usually ...

  2. Dynamic Image Forces Near a Metal Surface and the Point-Charge Motion

    ERIC Educational Resources Information Center

    Gabovich, A. M.; Voitenko, A. I.

    2012-01-01

    The problem of charge motion governed by image force attraction near a plane metal surface is considered and solved self-consistently. The temporal dispersion of metal dielectric permittivity makes the image forces dynamic and, hence, finite, contrary to the results of the conventional approach. Therefore, the maximal attainable velocity turns out…

  3. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  4. Understanding topological phase transition in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, K. J.

    2016-03-01

    Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as M X2 with M =(Mo ,W ) and X =(S ,Se ,Te ) , the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the nontrivial topology of electron bands in TMDs is caused by the band inversion between metal d - and chalcogen p -orbital bands where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, M S2 and M S e2 exhibits the opposite behavior of TPT such that the chalcogen p -orbital band moves down below the metal d -orbital band. More interestingly, in M T e2 , the band inversion occurs between the metal d -orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered.

  5. Laboratory studies on the tribology of hard bearing hip prostheses: ceramic on ceramic and metal on metal.

    PubMed

    Vassiliou, K; Scholes, S C; Unsworth, A

    2007-01-01

    Total hip replacements offer relief to a great many patients every year around the world. With an expected service life of around 25 years on most devices, and with younger and younger patients undergoing this surgery, it is of great importance to understand the mechanisms of their function. Tribological testing of both conventional and hard bearing joint combinations have been conducted in many centres throughout the world, and, after being initially abandoned owing to premature failures, hard bearing combinations have been revisited as viable options for joint replacements. Improved design, manufacturing procedures, and material compositions have led to improved performance over first-generation designs in both metal-on-metal and ceramic-on-ceramic hip prostheses. This paper offers a review of the work conducted in an attempt to highlight the most important factors affecting joint performance and tribology of hard bearing combinations. The tribological performance of these joints is superior to that of conventional metal- or ceramic-on-polymer designs.

  6. Model of bidirectional reflectance distribution function for metallic materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  7. Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component.

    PubMed

    Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki

    2018-02-01

    Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P < 0.01). We concluded that combined CT-based and image-free navigation systems decreased the number of rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.

  8. Depth of cure of proximal composite resin restorations using a new perforated metal matrix.

    PubMed

    Nguyen, Duke P; Motyka, Nancy C; Meyers, Erik J; Vandewalle, Kraig S

    2018-01-01

    The purpose of this study was to compare the depths of cure of a proximal box preparation filled in bulk with various approaches: filled with a bulk-fill or conventional composite; placed with a new perforated metal matrix, a traditional metal matrix, or a clear matrix; and polymerized with either occlusal-only or tri-sited light curing. After tri-sited curing, the use of the new perforated metal matrix band resulted in a depth of cure that was not significantly different from that achieved with the use of metal bands (removed during curing) or transparent matrix bands. Adequate polymerization was obtained at depths of more than 5.0 mm for the bulk-fill composite and more than 4.0 mm for the conventional composite when tri-sited light curing was used. Tri-sited light curing resulted in a significantly greater depth of cure than occlusal-only curing. The perforated metal band may be used as an alternative to the use of solid metal bands or transparent matrix bands to provide similar depths of cure for composite resins, with the possible benefits of malleability and the ability to leave the band in place during tri-sited light curing.

  9. Monitoring the integrity of the cement-metal interface of total joint components in vitro using acoustic emission and ultrasound.

    PubMed

    Davies, J P; Tse, M K; Harris, W H

    1996-08-01

    Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.

  10. Application of linear mixed-effects model with LASSO to identify metal components associated with cardiac autonomic responses among welders: a repeated measures study

    PubMed Central

    Zhang, Jinming; Cavallari, Jennifer M; Fang, Shona C; Weisskopf, Marc G; Lin, Xihong; Mittleman, Murray A; Christiani, David C

    2017-01-01

    Background Environmental and occupational exposure to metals is ubiquitous worldwide, and understanding the hazardous metal components in this complex mixture is essential for environmental and occupational regulations. Objective To identify hazardous components from metal mixtures that are associated with alterations in cardiac autonomic responses. Methods Urinary concentrations of 16 types of metals were examined and ‘acceleration capacity’ (AC) and ‘deceleration capacity’ (DC), indicators of cardiac autonomic effects, were quantified from ECG recordings among 54 welders. We fitted linear mixed-effects models with least absolute shrinkage and selection operator (LASSO) to identify metal components that are associated with AC and DC. The Bayesian Information Criterion was used as the criterion for model selection procedures. Results Mercury and chromium were selected for DC analysis, whereas mercury, chromium and manganese were selected for AC analysis through the LASSO approach. When we fitted the linear mixed-effects models with ‘selected’ metal components only, the effect of mercury remained significant. Every 1 µg/L increase in urinary mercury was associated with −0.58 ms (−1.03, –0.13) changes in DC and 0.67 ms (0.25, 1.10) changes in AC. Conclusion Our study suggests that exposure to several metals is associated with impaired cardiac autonomic functions. Our findings should be replicated in future studies with larger sample sizes. PMID:28663305

  11. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has beenmore » funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  12. Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes.

    PubMed

    Liu, Liqin; Luo, Yunfei; Zhao, Zeyu; Zhang, Wei; Gao, Guohan; Zeng, Bo; Wang, Changtao; Luo, Xiangang

    2016-07-28

    In this paper, large area and deep sub-wavelength interference patterns are realized experimentally by using odd surface plasmon modes in the metal/insulator/metal structure. Theoretical investigation shows that the odd modes possesses much higher transversal wave vector and great inhibition of tangential electric field components, facilitating surface plasmon interference fringes with high resolution and contrast in the measure of electric field intensity. Interference resist patterns with 45 nm (∼λ/8) half-pitch, 50 nm depth, and area size up to 20 mm × 20 mm were obtained by using 20 nm Al/50 nm photo resist/50 nm Al films with greatly reduced surface roughness and 180 nm pitch exciting grating fabricated with conventional laser interference lithography. Much deeper resolution down to 19.5 nm is also feasible by decreasing the thickness of PR. Considering that no requirement of expensive EBL or FIB tools are employed, it provides a cost-effective way for large area and nano-scale fabrication.

  13. Metal-Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis.

    PubMed

    Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu

    2016-05-25

    We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component.

  14. Liquid-Metal-Fed Pulsed Electromagnetic Thrusters For In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.

    2004-01-01

    We describe three pulsed electromagnetic thruster concepts, which span four orders of magnitude in power processing capability (100 W to >100 kW), for in-space propulsion applications. The primary motivation for using a pulsed system is to is to enable high (instantaneous) power operation, which provides high acceleration efficiency, while using considerably less (continuous) power from the spacecraft power system. Unfortunately, conventional pulsed thrusters require failure-prone electrical switches and gas-puff valves. The series of thrusters described here directly address this problem, through the use of liquid metal propellant, by either eliminating both components or providing less taxing operational requirements, thus yielding a path toward both efficient and reliable pulsed electromagnetic thrusters. The emphasis of this paper is to conceptually describe each of the thruster concepts; however, initial test results with gallium propellant in one thruster geometry are presented. These tests reveal that a greater understanding of gallium material compatibility, contamination, and wetting behavior will be necessary before a completely functional thruster can be developed. Initial experimental results aimed at providing insight into these issues are presented.

  15. Fabrication of micro-optical components using femtosecond oscillator pulses

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.

  16. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan W.; Siccardi, Anthony J.; Huysman, Nathan D.

    In this paper, the suitability of crude and purified struvite (MgNH 4PO 4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media weremore » found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20 ± 4 g AFDW/m 2/day). Finally, analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.« less

  17. Towards Industrial Application of Damage Models for Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  18. Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts

    NASA Astrophysics Data System (ADS)

    Senn, Sergei; Liewald, Mathias

    2018-05-01

    This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.

  19. Summary of Liquid Oxygen/Hydrogen, Direct Metal Laser Sintering Injector Testing and Evaluation Effort at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barnett, Gregory; Bullard, David B.

    2015-01-01

    The last several years have witnessed a significant advancement in the area of additive manufacturing technology. One area that has seen substantial expansion in application has been laser sintering (or melting) in a powder bed. This technology is often termed 3D printing or various acronyms that may be industry, process, or company specific. Components manufactured via 3D printing have the potential to significantly reduce development and fabrication time and cost. The usefulness of 3D printed components is influenced by several factors such as material properties and surface roughness. This paper details three injectors that were designed, fabricated, and tested in order to evaluate the utility of 3D printed components for rocket engine applications. The three injectors were tested in a hot-fire environment with chamber pressures of approximately 1400 psia. One injector was a 28 element design printed by Directed Manufacturing. The other two injectors were identical 40 element designs printed by Directed Manufacturing and Solid Concepts. All the injectors were swirl-coaxial designs and were subscale versions of a full-scale injector currently in fabrication. The test and evaluation programs for the 28 element and 40 element injectors provided a substantial amount of data that confirms the feasibility of 3D printed parts for future applications. The operating conditions of previously tested, conventionally manufactured injectors were reproduced in the 28 and 40 element programs in order to contrast the performance of each. Overall, the 3D printed injectors demonstrated comparable performance to the conventionally manufactured units. The design features of the aforementioned injectors can readily be implemented in future applications with a high degree of confidence.

  20. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes duringmore » consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.« less

  1. Smelting Magnesium Metal using a Microwave Pidgeon Method

    PubMed Central

    Wada, Yuji; Fujii, Satoshi; Suzuki, Eiichi; Maitani, Masato M.; Tsubaki, Shuntaro; Chonan, Satoshi; Fukui, Miho; Inazu, Naomi

    2017-01-01

    Magnesium (Mg) is a lightweight metal with applications in transportation and sustainable battery technologies, but its current production through ore reduction using the conventional Pidgeon process emits large amounts of CO2 and particulate matter (PM2.5). In this work, a novel Pidgeon process driven by microwaves has been developed to produce Mg metal with less energy consumption and no direct CO2 emission. An antenna structure consisting of dolomite as the Mg source and a ferrosilicon antenna as the reducing material was used to confine microwave energy emitted from a magnetron installed in a microwave oven to produce a practical amount of pure Mg metal. This microwave Pidgeon process with an antenna configuration made it possible to produce Mg with an energy consumption of 58.6 GJ/t, corresponding to a 68.6% reduction when compared to the conventional method. PMID:28401910

  2. Plastic Behavior of Metallic Damping Materials under Cyclical Shear Loading

    PubMed Central

    Zhang, Chaofeng; Wang, Longfei; Wu, Meiping; Zhao, Junhua

    2016-01-01

    Metallic shear panel dampers (SPDs) have been widely adopted in seismic engineering. In this study, axial and torsional specimens of four types of metallic damping materials, including three conventional metallic steels as well as low yield strength steel 160 (LYS160), were tested in order to investigate the material response under repeated large plastic strain and low cycle fatigue between 10 and 30 cycles. The present study demonstrated that both the deformation capacity and fatigue performance of LYS160 were underestimated by the conversion from the traditional uniaxial tensile test. The main difference in the failure mechanism between LYS160 and the three conventional materials was determined from the scanning electron microscopy data. The dominant failure mode in LYS160 is stable interlaminate slip and not bucking. Our results provide physical insights into the origin of the large deformation capacity, which is an important foundation for the lightweight design of SPDs. PMID:28773618

  3. Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.

    PubMed

    Santavirta, Seppo

    2003-12-01

    Particulate wear debris in totally replaced hips causes adverse local host reactions. The extreme form of such a reaction, aggressive granulomatosis, was found to be a distinct condition and different from simple aseptic loosening. Reactive and adaptive tissues around the totally replaced hip were made of proliferation of local fibroblast like cells and activated macrophages. Methylmethacrylate and high-molecular-weight polyethylene were shown to be essentially immunologically inert implant materials, but in small particulate form functioned as cellular irritants initiating local biological reactions leading to loosening of the implants. Chromium-cobalt-molybdenum is the most popular metallic implant material; it is hard and tough, and the bearings of this metal are partially self-polishing. In total hip implants, prerequisites for longevity of the replaced hip are good biocompatibility of the materials and sufficient tribological properties of the bearings. The third key issue is that the bearing must minimize frictional shear at the prosthetic bone-implant interface to be compatible with long-term survival. Some of the approaches to meet these demands are alumina-on-alumina and metal-on-metal designs, as well as the use of highly crosslinked polyethylene for the acetabular component. In order to avoid the wear-based deleterious properties of the conventional total hip prosthesis materials or coatings, the present work included biological and tribological testing of amorphous diamond. Previous experiments had demonstrated that a high adhesion of tetrahedral amorphous carbon coatings to a substrate can be achieved by using mixing layers or interlayers. Amorphous diamond was found to be biologically inert, and simulator testing indicated excellent wear properties for conventional total hip prostheses, in which either the ball or both bearing surfaces were coated with hydrogen-free tetrahedral amorphous diamond films. Simulator testing with such total hip prostheses showed no measurable wear or detectable delamination after 15,000,000 test cycles corresponding to 15 years of clinical use. The present work clearly shows that wear is one of the basic problems with totally replaced hips. Diamond coating of the bearing surfaces appears to be an attractive solution to improve longevity of the totally replaced hip.

  4. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.

    PubMed

    Chang, J; Månsson, M; Pailhès, S; Claesson, T; Lipscombe, O J; Hayden, S M; Patthey, L; Tjernberg, O; Mesot, J

    2013-01-01

    High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.

  5. Induction of Metallothionein Expression After Exposure to Conventional Cigarette Smoke but Not Electronic Cigarette (ECIG)-Generated Aerosol in Caenorhabditis elegans

    PubMed Central

    Cobb, Eric; Hall, Julie; Palazzolo, Dominic L.

    2018-01-01

    Aim: With the invention of electronic cigarettes (ECIG), many questions have been raised regarding their safety as an alternative to smoking conventional cigarettes. Conventional cigarette smoke contains a variety of toxicants including heavy metals. However, ECIG-generated aerosol contains only trace amounts of metals, adding to the argument for it being a safer alternative. In response to heavy metal exposure, metallothioneins are induced in cells to help store the metal, detoxify the body, and are also known responders to oxidative stress. In an attempt to add to the evaluation of the safety of ECIGs, metallothionein expression was quantified using the nematode Caenorhabditis elegans as an assessment of stress induced cellular damage caused by exposure. Methods: Adult nematodes were exposed to either ECIG aerosol or conventional cigarette smoke at doses of 15, 30, and 45 puffs, the equivalent of one, two, and three cigarettes, respectively. Movement, survival, and stress-induced sleep were assessed for up to 24 h after exposure. Relative expression levels for mtl-1 and mtl-2, C. elegans metallothionein genes, were analyzed after 1, 5, and 24 h post exposure using quantitative RT-PCR. Results: Nematodes exposed to conventional cigarette smoke underwent stress-induced sleep in a dose dependent manner with animals recovering to values within the range of air control after 5 h post exposure. Those exposed to ECIG aerosol did not undergo stress-induced sleep and were indistinguishable from controls. The expression of mtl-1 increased in a dose and time dependent manner in C. elegans exposed to conventional cigarette smoke, with a maximum expression observed at 5 h post exposure of 45 puffs. No induction of mtl-2 was observed in any animals. Additionally, ECIG aerosol did not induce expression of mtl-1 and mtl-2 at levels different than those of untreated. Conclusion: ECIG aerosol failed to induce a stress response in C. elegans. In contrast, conventional cigarette smoke induced the production of mtl-1 in a manner that correlates with the induction of stress-induced sleep suggesting a stress response to damage. The lack of cellular stress response to ECIG aerosol suggests it may be a safer alternative to conventional cigarettes. PMID:29740339

  6. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  7. Quasi-static strength and fractography analysis of two dental implants manufactured by direct metal laser sintering.

    PubMed

    Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina

    2018-06-01

    New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.

  8. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOEpatents

    Kramer, D.P.; Massey, R.T.

    1985-07-18

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  9. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOEpatents

    Kramer, Daniel P.; Massey, Richard T.

    1986-01-01

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  10. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  11. Forging of metallic nano-objects for the fabrication of submicron-size components

    NASA Astrophysics Data System (ADS)

    Rösler, J.; Mukherji, D.; Schock, K.; Kleindiek, S.

    2007-03-01

    In recent years, nanoscale fabrication has developed considerably, but the fabrication of free-standing nanosize components is still a great challenge. The fabrication of metallic nanocomponents utilizing three basic steps is demonstrated here. First, metallic alloys are used as factories to produce a metallic raw stock of nano-objects/nanoparticles in large numbers. These objects are then isolated from the powder containing thousands of such objects inside a scanning electron microscope using manipulators, and placed on a micro-anvil or a die. Finally, the shape of the individual nano-object is changed by nanoforging using a microhammer. In this way free-standing, high-strength, metallic nano-objects may be shaped into components with dimensions in the 100 nm range. By assembling such nanocomponents, high-performance microsystems can be fabricated, which are truly in the micrometre scale (the size ratio of a system to its component is typically 10:1).

  12. Metal fractionation in olive oil and urban sewage sludges using the three-stage BCR sequential extraction method and microwave single extractions.

    PubMed

    Pérez Cid, B; Fernández Alborés, A; Fernández Gómez, E; Faliqé López, E

    2001-08-01

    The conventional three-stage BCR sequential extraction method was employed for the fractionation of heavy metals in sewage sludge samples from an urban wastewater treatment plant and from an olive oil factory. The results obtained for Cu, Cr, Ni, Pb and Zn in these samples were compared with those attained by a simplified extraction procedure based on microwave single extractions and using the same reagents as employed in each individual BCR fraction. The microwave operating conditions in the single extractions (heating time and power) were optimized for all the metals studied in order to achieve an extraction efficiency similar to that of the conventional BCR procedure. The measurement of metals in the extracts was carried out by flame atomic absorption spectrometry. The results obtained in the first and third fractions by the proposed procedure were, for all metals, in good agreement with those obtained using the BCR sequential method. Although in the reducible fraction the extraction efficiency of the accelerated procedure was inferior to that of the conventional method, the overall metals leached by both microwave single and sequential extractions were basically the same (recoveries between 90.09 and 103.7%), except for Zn in urban sewage sludges where an extraction efficiency of 87% was achieved. Chemometric analysis showed a good correlation between the results given by the two extraction methodologies compared. The application of the proposed approach to a certified reference material (CRM-601) also provided satisfactory results in the first and third fractions, as it was observed for the sludge samples analysed.

  13. Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy.

    PubMed

    Krug, Klaus-Peter; Knauber, Andreas W; Nothdurft, Frank P

    2015-03-01

    The aim of this study was to investigate the fracture behavior of metal-ceramic bridges with frameworks from cobalt-chromium-molybdenum (CoCrMo), which are manufactured using conventional casting or a new computer-aided design/computer-aided manufacturing (CAD/CAM) milling and sintering technique. A total of 32 metal-ceramic fixed dental prostheses (FDPs), which are based on a nonprecious metal framework, was produced using a conventional casting process (n = 16) or a new CAD/CAM milling and sintering process (n = 16). Eight unveneered frameworks were manufactured using each of the techniques. After thermal and mechanical aging of half of the restorations, all samples were subjected to a static loading test in a universal testing machine, in which acoustic emission monitoring was performed. Three different critical forces were revealed: the fracture force (F max), the force at the first reduction in force (F decr1), and the force at the critical acoustic event (F acoust1). With the exception of the veneered restorations with cast or sintered metal frameworks without artificial aging, which presented a statistically significant but slightly different F max, no statistically significant differences between cast and CAD/CAM sintered and milled FDPs were detected. Thermal and mechanical loading did not significantly affect the resulting forces. Cast and CAD/CAM milled and sintered metal-ceramic bridges were determined to be comparable with respect to the fracture behavior. FDPs based on CAD/CAM milled and sintered frameworks may be an applicable and less technique-sensitive alternative to frameworks that are based on conventionally cast frameworks.

  14. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  15. Microchannel plate detector and methods for their fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Mane, Anil U.; Peng, Qing

    A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.

  16. Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Suh, Eric J. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)

    2015-01-01

    Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.

  17. Oxide-dispersion strengthening of porous powder metalurgy parts

    DOEpatents

    Judkins, Roddie R.

    2002-01-01

    Oxide dispersion strengthening of porous metal articles includes the incorporation of dispersoids of metallic oxides in elemental metal powder particles. Porous metal articles, such as filters, are fabricated using conventional techniques (extrusion, casting, isostatic pressing, etc.) of forming followed by sintering and heat treatments that induce recrystallization and grain growth within powder grains and across the sintered grain contact points. The result is so-called "oxide dispersion strengthening" which imparts, especially, large increases in creep (deformation under constant load) strength to the metal articles.

  18. Sci—Thur AM: YIS - 08: Constructing an Attenuation map for a PET/MR Breast coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, John C.; Imaging, Lawson Health Research Institute, Knoxville, TN; London Regional Cancer Program, Knoxville, TN

    2014-08-15

    In 2013, around 23000 Canadian women and 200 Canadian men were diagnosed with breast cancer. An estimated 5100 women and 55 men died from the disease. Using the sensitivity of MRI with the selectivity of PET, PET/MRI combines anatomical and functional information within the same scan and could help with early detection in high-risk patients. MRI requires radiofrequency coils for transmitting energy and receiving signal but the breast coil attenuates PET signal. To correct for this PET attenuation, a 3-dimensional map of linear attenuation coefficients (μ-map) of the breast coil must be created and incorporated into the PET reconstruction process.more » Several approaches have been proposed for building hardware μ-maps, some of which include the use of conventional kVCT and Dual energy CT. These methods can produce high resolution images based on the electron densities of materials that can be converted into μ-maps. However, imaging hardware containing metal components with photons in the kV range is susceptible to metal artifacts. These artifacts can compromise the accuracy of the resulting μ-map and PET reconstruction; therefore high-Z components should be removed. We propose a method for calculating μ-maps without removing coil components, based on megavoltage (MV) imaging with a linear accelerator that has been detuned for imaging at 1.0MeV. Containers of known geometry with F18 were placed in the breast coil for imaging. A comparison between reconstructions based on the different μ-map construction methods was made. PET reconstructions with our method show a maximum of 6% difference over the existing kVCT-based reconstructions.« less

  19. Embedding Optical Fibers In Cast Metal Parts

    NASA Technical Reports Server (NTRS)

    Gibler, William N.; Atkins, Robert A.; Lee, Chung E.; Taylor, Henry F.

    1995-01-01

    Use of metal strain reliefs eliminates breakage of fibers during casting process. Technique for embedding fused silica optical fibers in cast metal parts devised. Optical fiber embedded in flange, fitting, or wall of vacuum or pressure chamber, to provide hermetically sealed feedthrough for optical transmission of measurement or control signals. Another example, optical-fiber temperature sensor embedded in metal structural component to measure strain or temperature inside component.

  20. Electroplating eliminates gas leakage in brazed areas

    NASA Technical Reports Server (NTRS)

    Leigh, J. D.

    1966-01-01

    Electroplating method seals brazed or welded joints against gas leakage under high pressure. Any conventional electroplating process with many different metal anodes can be used, as well as the build up of layers of different metals to any required thickness.

  1. Temperature detection in a gas turbine

    DOEpatents

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  2. 21 CFR 888.3330 - Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...

  3. 21 CFR 888.3330 - Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...

  4. 21 CFR 888.3330 - Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...

  5. 21 CFR 888.3330 - Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...

  6. 21 CFR 888.3330 - Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...

  7. Heavy metals in the cell nucleus - role in pathogenesis.

    PubMed

    Sas-Nowosielska, Hanna; Pawlas, Natalia

    2015-01-01

    People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.

  8. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol.

    PubMed

    Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue

    2013-01-01

    Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry. The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm) of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.

  9. Composition of grain and forage from insect-protected and herbicide-tolerant corn, MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax), is equivalent to that of conventional corn (Zea mays L.).

    PubMed

    Lundry, Denise R; Burns, J Austin; Nemeth, Margaret A; Riordan, Susan G

    2013-02-27

    Monsanto Company and Dow AgroSciences LLC have developed the combined-trait corn product MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax, a registered trademark of Monsanto Technology LLC). The combination of four biotechnology-derived events into a single corn product (stacking) through conventional breeding provides broad protection against lepidopteran and corn rootworm insect pests as well as tolerance to the glyphosate and glufosinate-ammonium herbicide families. The purpose of the work described here was to assess whether the nutrient, antinutrient, and secondary metabolite levels in grain and forage tissues of the combined-trait product are comparable to those in conventional corn. Compositional analyses were conducted on grain and forage from SmartStax, a near-isogenic conventional corn hybrid (XE6001), and 14 conventional reference hybrids, grown at multiple locations across the United States. No statistically significant differences between SmartStax and conventional corn were observed for the 8 components analyzed in forage and for 46 of the 52 components analyzed in grain. The six significant differences observed in grain components (p < 0.05) were assessed in context of the natural variability for that component. These results demonstrate that the stacked product, SmartStax, produced through conventional breeding of four single-event products containing eight proteins, is compositionally equivalent to conventional corn, as previously demonstrated for the single-event products.

  10. Deformable known component model-based reconstruction for coronary CT angiography

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Tilley, S.; Xu, S.; Mathews, A.; McVeigh, E. R.; Stayman, J. W.

    2017-03-01

    Purpose: Atherosclerosis detection remains challenging in coronary CT angiography for patients with cardiac implants. Pacing electrodes of a pacemaker or lead components of a defibrillator can create substantial blooming and streak artifacts in the heart region, severely hindering the visualization of a plaque of interest. We present a novel reconstruction method that incorporates a deformable model for metal leads to eliminate metal artifacts and improve anatomy visualization even near the boundary of the component. Methods: The proposed reconstruction method, referred as STF-dKCR, includes a novel parameterization of the component that integrates deformation, a 3D-2D preregistration process that estimates component shape and position, and a polyenergetic forward model for x-ray propagation through the component where the spectral properties are jointly estimated. The methodology was tested on physical data of a cardiac phantom acquired on a CBCT testbench. The phantom included a simulated vessel, a metal wire emulating a pacing lead, and a small Teflon sphere attached to the vessel wall, mimicking a calcified plaque. The proposed method was also compared to the traditional FBP reconstruction and an interpolation-based metal correction method (FBP-MAR). Results: Metal artifacts presented in standard FBP reconstruction were significantly reduced in both FBP-MAR and STF- dKCR, yet only the STF-dKCR approach significantly improved the visibility of the small Teflon target (within 2 mm of the metal wire). The attenuation of the Teflon bead improved to 0.0481 mm-1 with STF-dKCR from 0.0166 mm-1 with FBP and from 0.0301 mm-1 with FBP-MAR - much closer to the expected 0.0414 mm-1. Conclusion: The proposed method has the potential to improve plaque visualization in coronary CT angiography in the presence of wire-shaped metal components.

  11. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2016-05-10

    A device fabrication method includes: (1) providing a growth substrate including an oxide layer; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing fluid-assisted interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  12. Polyenergetic known-component CT reconstruction with unknown material compositions and unknown x-ray spectra

    NASA Astrophysics Data System (ADS)

    Xu, S.; Uneri, A.; Khanna, A. Jay; Siewerdsen, J. H.; Stayman, J. W.

    2017-04-01

    Metal artifacts can cause substantial image quality issues in computed tomography. This is particularly true in interventional imaging where surgical tools or metal implants are in the field-of-view. Moreover, the region-of-interest is often near such devices which is exactly where image quality degradations are largest. Previous work on known-component reconstruction (KCR) has shown the incorporation of a physical model (e.g. shape, material composition, etc) of the metal component into the reconstruction algorithm can significantly reduce artifacts even near the edge of a metal component. However, for such approaches to be effective, they must have an accurate model of the component that include energy-dependent properties of both the metal device and the CT scanner, placing a burden on system characterization and component material knowledge. In this work, we propose a modified KCR approach that adopts a mixed forward model with a polyenergetic model for the component and a monoenergetic model for the background anatomy. This new approach called Poly-KCR jointly estimates a spectral transfer function associated with known components in addition to the background attenuation values. Thus, this approach eliminates both the need to know component material composition a prior as well as the requirement for an energy-dependent characterization of the CT scanner. We demonstrate the efficacy of this novel approach and illustrate its improved performance over traditional and model-based iterative reconstruction methods in both simulation studies and in physical data including an implanted cadaver sample.

  13. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    PubMed Central

    Wei, Hsiang-Chun; Su, Guo-Dung John

    2012-01-01

    Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM) provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC) is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young's modulus and Poisson's ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens. PMID:23112648

  14. Biomedical Implementation of Liquid Metal Ink as Drawable ECG Electrode and Skin Circuit

    PubMed Central

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Background Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Methods Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. Results With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as −0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. Conclusions The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent. PMID:23472220

  15. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    PubMed

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent.

  16. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods.

    PubMed

    Kaleli, Necati; Saraç, Duygu

    2017-07-01

    Most studies evaluating dental laser sintering systems have focused on the marginal accuracy of the restorations. However, the bond strength at the metal-ceramic interface is another important factor that affects the survival of restorations, and currently, few studies focus on this aspect. The purpose of this in vitro study was to compare the porcelain bond strength of cobalt-chromium (Co-Cr) metal frameworks prepared by using the conventional lost-wax technique, milling, direct metal laser sintering (DMLS), and laser cusing, a direct process powder-bed system. A total of 96 metal frameworks (n=24 in each group) were prepared by using conventional lost-wax (group C), milling (group M), DMLS (group LS), and direct process powder-bed (group LC) methods according to International Organization for Standardization standard ISO 9693-1. After porcelain application, a 3-point bend test was applied to each specimen by using a universal testing machine. Data were statistically analyzed using 1-way ANOVA and Tukey honest significant difference tests (α=.05). Failure types at the metal-ceramic interfaces were examined using stereomicroscopy. Additionally, 1 specimen from each group was prepared for scanning electron microscopy analysis to evaluate the surface topography of metal frameworks. The mean bond strength was 38.08 ±3.82 MPa for group C, 39.29 ±3.51 MPa for group M, 40.73 ±3.58 MPa for group LS, and 41.24 ±3.75 MPa for group LC. Statistically significant differences were observed among the 4 groups (P=.016). All groups, except for LS, exhibited adhesive and mixed type bond failure. Both of the laser sintering methods were found to be successful in terms of metal-ceramic bond strength. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Optical fibre sensing in metals by embedment in 3D printed metallic structures

    NASA Astrophysics Data System (ADS)

    Maier, R. R. J.; Havermann, D.; Schneller, O.; Mathew, J.; Polyzos, D.; MacPherson, W. N.; Hand, D. P.

    2014-05-01

    Additive manufacturing or 3D printing of structural components in metals has potential to revolutionise the manufacturing industry. Embedded sensing in such structures opens a route towards SMART metals, providing added functionality, intelligence and enhanced performance in many components. Such embedded sensors would be capable of operating at extremely high temperatures by utilizing regenerated fibre Bragg gratings and in-fibre Fabry-Perot cavities.

  18. Teaching the Double Layer.

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1983-01-01

    Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified…

  19. On numerical integration and computer implementation of viscoplastic models

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Chang, J. P.; Thompson, R. L.

    1985-01-01

    Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method.

  20. Propogation loss with frequency of ultrasound guided waves in a composite metal-honeycomb structure

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.; Baid, Harsh K.; Guzman, Narciso; Kempen, Lothar U.; Mal, Ajit

    2009-05-01

    Non-destructive testing of critical structural components is time consuming, while necessary for maintaining safe operation. Large aerospace structures, such as the vertical stabilizers of aircraft undergo inspection at regular intervals for damage diagnostics. However, conventional techniques for damage detection and identification before repair can be scheduled are conducted off-line and therefore can take weeks. The use of guided ultrasound waves is being investigated to expedite damage detection in composites. We measure the frequency dependent loss of ultrasonic guided waves for a structure comprising a boron-nitride composite skin sandwiching an aluminum honeycomb. A wide range of ultrasound frequencies propagate as measured using PZTs, with the lowest attenuation observed about 200-250 kHz. These measurements are confirmed using optical fiber Bragg grating arrays used as ultrasound transducers.

  1. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  2. Mobile-bearing knee systems: ultra-high molecular weight polyethylene wear and design issues.

    PubMed

    Greenwald, A Seth; Heim, Christine S

    2005-01-01

    In June 2004, the U.S. Food and Drug Administration Orthopaedic Advisory Panel recommended the reclassification of mobile-bearing knee systems for general use. This reflects the increasing use of mobile-bearing knee systems internationally, which is currently limited in the United States by regulatory requirement. Mobile-bearing knee systems are distinguished from conventional, fixed-plateau systems in that they allow dual-surface articulation between an ultra-high molecular weight polyethylene insert and metallic femoral and tibial tray components. Their in vivo success is dependent on patient selection, design, and material choice, as well as surgical precision during implantation. Laboratory and clinical experience extending over 25 years with individual systems suggests that mobile-bearing knee systems represent a viable treatment option for patients with knee arthrosis.

  3. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    NASA Technical Reports Server (NTRS)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  4. Method for the preparation of ferrous low carbon porous material

    DOEpatents

    Miller, Curtis Jack

    2014-05-27

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  5. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  6. Clinical experiences of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw: a 5-year follow-up study.

    PubMed

    Ortorp, A; Jemt, T

    1999-01-01

    Titanium frameworks have been used in the endentulous implant patient for the last 10 years. However, knowledge of titanium frameworks for the partially dentate patient is limited. To report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw. A consecutive group of 383 partially edentulous patients were, on a routine basis, provided with fixed partial prostheses supported by Brånemark implants in the mandible or maxilla. Besides conventional frameworks in cast gold alloy, 58 patients were provided with titanium frameworks with three different veneering techniques, and clinical and radiographic 5-year data were collected for this group. The overall cumulative survival rate was 95.6% for titanium-framework prostheses and 93.6% for implants. Average bone loss during the follow-up period was 0.4 mm. The most common complications were minor veneering fractures. Loose and fractured implant screw components were fewer than 2%. An observation was that patients on medications for cardiovascular problems may lose more implants than others (p < .05). The clinical performance of prostheses with implant-supported laser-welded titanium frameworks was similar to that reported for conventional cast frames in partially edentulous jaws. Low-fusing porcelain veneers also showed clinical performance comparable to that reported for conventional porcelain-fused-to-metal techniques.

  7. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Wear versus Thickness and Other Features of 5-Mrad Crosslinked UHMWPE Acetabular Liners

    PubMed Central

    Shen, Fu-Wen; Lu, Zhen

    2010-01-01

    Background The low wear rates of crosslinked polyethylenes provide the potential to use larger diameters to resist dislocation. However, this requires the use of thinner liners in the acetabular component, with concern that higher contact stresses will increase wear, offsetting the benefits of the crosslinking. Questions/purposes We asked the following questions: Is the wear of conventional and crosslinked polyethylene liners affected by ball diameter, rigidity of backing, and liner thickness? Are the stresses in the liner affected by thickness? Methods Wear rates were measured in a hip simulator and stresses were calculated using finite element modeling. Results Without crosslinking, the wear rate was 4% to 10% greater with a 36-mm diameter than a 28-mm diameter. With crosslinking, wear was 9% lower with a 36-mm diameter without metal backing and 4% greater with metal backing. Reducing the thickness from 6 mm to 3 mm increased the contact stress by 46%, but the wear rate decreased by 19%. Conclusions The reduction in wear with 5 Mrad of crosslinking was not offset by increasing the diameter from 28 mm to 36 mm or by using a liner as thin as 3 mm. Clinical Relevance The results indicate, for a properly positioned 5-Mrad crosslinked acetabular component and within the range of dimensions evaluated, neither wear nor stresses in the polyethylene are limiting factors in the use of larger-diameter, thinner cups to resist dislocation. PMID:20848244

  9. Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets

    PubMed Central

    Francisconi, Manoela Fávaro; Janson, Guilherme; Henriques, José Fernando Castanha; de Freitas, Karina Maria Salvatore

    2016-01-01

    ABSTRACT Objective: The purpose of this study was to evaluate the deflection forces of Nitinol orthodontic wires placed in different types of brackets: metallic, reinforced polycarbonate with metallic slots, sapphire, passive and active self-ligating, by assessing strength values variation according to gradual increase in wire diameter and deflection and comparing different combinations in the different deflections. Material and Methods: Specimens were set in a clinical simulation model and evaluated in a Universal Testing Machine (INSTRON 3342), using the ISO 15841 protocol. Data were subjected to One-way ANOVA, followed by Tukey tests (p<0.05). Results: Self-ligating brackets presented the most similar behavior to each other. For conventional brackets there was no consistent behavior for any of the deflections studied. Conclusions: Self-ligating brackets presented the most consistent and predictable results while conventional brackets, as esthetic brackets, showed very different patterns of forces. Self-ligating brackets showed higher strength in all deflections when compared with the others, in 0.020-inch wires. PMID:27812620

  10. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingfang; Key Laboratory of Advanced Energy Materials Chemistry; Wang, Zhiqiang

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molarmore » ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.« less

  11. Experimental analysis of the sheet metal forming behavior of newly developed press hardening steels

    NASA Astrophysics Data System (ADS)

    Meza-García, Enrique; Kräusel, Verena; Landgrebe, Dirk

    2018-05-01

    The aim of this work was the characterization of the newly developed press hardening sheet alloys 1800 PHS and 2000 PHS developed by SSAB with regard to their hot forming behavior on the basis of the experimental determination of relevant mechanical and technological properties. For this purpose conventional and non-conventional sheet metal testing methods were used. To determine the friction coefficient, the strip drawing test was applied, while the deep drawing cup test was used to determine the maximum draw depth. Finally, a V-bending test was carried out to evaluate the springback behavior of the investigated alloys by varying the blank temperature and quenching media. This work provides a technological guideline for the production of press hardened sheet parts made of these investigated sheet metals.

  12. Corrosion behavior of self-ligating and conventional metal brackets.

    PubMed

    Maia, Lúcio Henrique Esmeraldo Gurgel; Lopes Filho, Hibernon; Ruellas, Antônio Carlos de Oliveira; Araújo, Mônica Tirre de Souza; Vaitsman, Delmo Santiago

    2014-01-01

    To test the null hypothesis that the aging process in self-ligating brackets is not higher than in conventional brackets. Twenty-five conventional (GN-3M/Unitek; GE-GAC; VE-Aditek) and 25 self-ligating (SCs-3M/Unitek; INs-GAC; ECs-Aditek) metal brackets from three manufacturers (n = 150) were submitted to aging process in 0.9% NaCl solution at a constant temperature of 37 ± 1°C for 21 days. The content of nickel, chromium and iron ions in the solution collected at intervals of 7, 14 and 21 days was quantified by atomic absorption spectrophotometry. After the aging process, the brackets were analyzed by scanning electron microscopy (SEM) under 22X and 1,000X magnifications. Comparison of metal release in self-ligating and conventional brackets from the same manufacturer proved that the SCs group released more nickel (p < 0.05) than the GN group after 7 and 14 days, but less chromium (p < 0.05) after 14 days and less iron (p < 0.05) at the three experimental time intervals. The INs group released less iron (p < 0.05) than the GE group after 7 days and less nickel, chromium and iron (p < 0.05) after 14 and 21 days. The ECs group released more nickel, chromium and iron (p < 0.05) than the VE group after 14 days, but released less nickel and chromium (p < 0.05) after 7 days and less chromium and iron (p < 0.05) after 21 days. The SEM analysis revealed alterations on surface topography of conventional and self-ligating brackets. The aging process in self-ligating brackets was not greater than in conventional brackets from the same manufacturer. The null hypothesis was accepted.

  13. Corrosion behavior of self-ligating and conventional metal brackets

    PubMed Central

    Maia, Lúcio Henrique Esmeraldo Gurgel; Lopes Filho, Hibernon; Ruellas, Antônio Carlos de Oliveira; Araújo, Mônica Tirre de Souza; Vaitsman, Delmo Santiago

    2014-01-01

    Objective To test the null hypothesis that the aging process in self-ligating brackets is not higher than in conventional brackets. Methods Twenty-five conventional (GN-3M/Unitek; GE-GAC; VE-Aditek) and 25 self-ligating (SCs-3M/Unitek; INs-GAC; ECs-Aditek) metal brackets from three manufacturers (n = 150) were submitted to aging process in 0.9% NaCl solution at a constant temperature of 37 ± 1ºC for 21 days. The content of nickel, chromium and iron ions in the solution collected at intervals of 7, 14 and 21 days was quantified by atomic absorption spectrophotometry. After the aging process, the brackets were analyzed by scanning electron microscopy (SEM) under 22X and 1,000X magnifications. Results Comparison of metal release in self-ligating and conventional brackets from the same manufacturer proved that the SCs group released more nickel (p < 0.05) than the GN group after 7 and 14 days, but less chromium (p < 0.05) after 14 days and less iron (p < 0.05) at the three experimental time intervals. The INs group released less iron (p < 0.05) than the GE group after 7 days and less nickel, chromium and iron (p < 0.05) after 14 and 21 days. The ECs group released more nickel, chromium and iron (p < 0.05) than the VE group after 14 days, but released less nickel and chromium (p < 0.05) after 7 days and less chromium and iron (p < 0.05) after 21 days. The SEM analysis revealed alterations on surface topography of conventional and self-ligating brackets. Conclusions The aging process in self-ligating brackets was not greater than in conventional brackets from the same manufacturer. The null hypothesis was accepted. PMID:24945521

  14. Accuracy of ringless casting and accelerated wax-elimination technique: a comparative in vitro study.

    PubMed

    Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V

    2014-02-01

    The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p < 0.05) than those castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.

  15. Computational simulation of weld microstructure and distortion by considering process mechanics

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  16. All-Polyethylene Tibial Components: An Analysis of Long-Term Outcomes and Infection.

    PubMed

    Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Watts, Chad D; Cass, Joseph R; Trousdale, Robert T

    2016-07-01

    There is debate regarding tibial component modularity and composition in total knee arthroplasty (TKA). Biomechanical studies have suggested improved stress distribution in metal-backed tibias; however, these results have not translated clinically. The purpose of this study was to analyze the outcomes of all-polyethylene components and to compare the results to those with metal-backed components. We reviewed 31,939 patients undergoing a primary TKA over a 43-year period (1970-2013). There were 28,224 (88%) metal-backed and 3715 (12%) all-polyethylene tibial components. The metal-backed and all-polyethylene groups had comparable demographics with respect to gender, age and body mass index (BMI). Mean follow-up was 7 years. The mean survival for all primary TKAs at the 5-, 10-, 20- and 30-year time points was 95%, 89%, 73%, and 57%, respectively. All-polyethylene tibial components were found to have a significantly improved (P < .0001) survivorship when compared with their metal-backed counterparts. All-polyethylene tibial components were also found to have a significantly lower rate of infection, instability, tibial component loosening, and periprosthetic fracture. The all-polyethylene group had improved survival rates in all age groups, except in patients 85 years old or greater, where there was no significant difference. All-polyethylene tibial components had improved survival for all BMI groups except in the morbidly obese (BMI ≥ 40) where there was no significant difference. All-polyethylene tibial components had significantly improved implant survival, reduced rates of postoperative infection, fracture, and tibial component loosening. All polyethylene should be considered for most of the patients, regardless of age and BMI. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Comparative study of material loss at the taper interface in retrieved metal-on-polyethylene and metal-on-metal femoral components from a single manufacturer.

    PubMed

    Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham

    2017-08-01

    There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.

  18. NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING

    EPA Science Inventory

    Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...

  19. Packaging material for thin film lithium batteries

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  20. Shallow Water UXO Technology Demonstration Site Scoring Record Number 5 (NAEVA/XTECH, EM61 MKII)

    DTIC Science & Technology

    2007-01-01

    Clutter items fit into one of three categories: ferrous, nonferrous , and mixed metals . The ferrous and nonferrous items have been further...fragments that have both a ferrous and nonferrous component and could reasonably be encountered in a range area. The mixed- metals clutter was placed...components; however, industrial scrap metal and cultural items are present as well. The mixed- metals clutter is composed of scrap ordnance items or

  1. Light metal explosives and propellants

    DOEpatents

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  2. Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal-Organic Frameworks.

    PubMed

    Zhang, Liangliang; Yuan, Shuai; Feng, Liang; Guo, Bingbing; Qin, Jun-Sheng; Xu, Ben; Lollar, Christina; Sun, Daofeng; Zhou, Hong-Cai

    2018-04-23

    Multi-component metal-organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi-component MOFs, namely PCN-900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare-earth hexanuclear clusters (RE 6 ) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm 2  g -1 ) and unlimited tunability by modification of metal nodes and/or linker components. Post-synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis.

    PubMed

    Santos, A L S; Sodre, C L; Valle, R S; Silva, B A; Abi-Chacra, E A; Silva, L V; Souza-Goncalves, A L; Sangenito, L S; Goncalves, D S; Souza, L O P; Palmeira, V F; d'Avila-Levy, C M; Kneipp, L F; Kellett, A; McCann, M; Branquinha, M H

    2012-01-01

    Infections caused by resistant microorganisms often fail to respond to conventional therapy, resulting in prolonged illness, increased treatment costs and greater risk of death. Consequently, the development of novel antimicrobial drugs is becoming more demanding every day since the existing drugs either have too many side-effects or they tend to lose effectiveness due to the selection of resistant strains. In view of these facts, a number of new strategies to obstruct vital biological processes of a microbial cell have emerged; one of these is focused on the use of metal-chelating agents, which are able to selectively disturb the essential metal metabolism of the microorganism by interfering with metal acquisition and bioavailability for crucial reactions. The chelation activity is able to inhibit the biological role of metal-dependent proteins (e.g., metalloproteases and transcription factors), disturbing the microbial cell homeostasis and culminating in the blockage of microbial nutrition, growth and development, cellular differentiation, adhesion to biotic (e.g., extracellular matrix components, cell and/or tissue) and abiotic (e.g., plastic, silicone and acrylic) structures as well as controlling the in vivo infection progression. Interestingly, chelating agents also potentiate the activity of classical antimicrobial compounds. The differences between the microorganism and host in terms of the behavior displayed in the presence of chelating agents could provide exploitable targets for the development of an effective chemotherapy for these diseases. Consequently, metal chelators represent a novel group of antimicrobial agents with potential therapeutic applications. This review will focus on the anti-fungal and anti-protozoan action of the most common chelating agents, deciphering and discussing their mode of action.

  4. Improved Joining of Metal Components to Composite Structures

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund

    2009-01-01

    Systems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techAn improved method of joining metal components to matrix/fiber composite material structures has been invented. The method is particularly applicable to equipping such thin-wall polymer-matrix composite (PMC) structures as tanks with flanges, ceramic matrix composite (CMC) liners for high heat engine nozzles, and other metallic-to-composite attachments. The method is oriented toward new architectures and distributing mechanical loads as widely as possible in the vicinities of attachment locations to prevent excessive concentrations of stresses that could give rise to delaminations, debonds, leaks, and other failures. The method in its most basic form can be summarized as follows: A metal component is to be joined to a designated attachment area on a composite-material structure. In preparation for joining, the metal component is fabricated to include multiple studs projecting from the aforementioned face. Also in preparation for joining, holes just wide enough to accept the studs are molded into, drilled, or otherwise formed in the corresponding locations in the designated attachment area of the uncured ("wet') composite structure. The metal component is brought together with the uncured composite structure so that the studs become firmly seated in the holes, thereby causing the composite material to become intertwined with the metal component in the joining area. Alternately, it is proposed to utilize other mechanical attachment schemes whereby the uncured composite and metallic parts are joined with "z-direction" fasteners. The resulting "wet" assembly is then subjected to the composite-curing heat treatment, becoming a unitary structure. It should be noted that this new art will require different techniques for CMC s versus PMC's, but the final architecture and companion curing philosophy is the same. For instance, a chemical vapor infiltration (CVI) fabrication technique may require special integration of the pre-form and

  5. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  6. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.

    PubMed

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng

    2014-08-01

    Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.

  7. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition energies being equal to 1.46, 1.50, 1.38, and 0.89 eV.

  8. NON-POLLUTING REPLACEMENT FOR CHROMATE CONVERSION COATING & ZINC PHOSPHATING IN POWDER COATING APPLICATIONS

    EPA Science Inventory

    Picklex, a proprietary formulation, is an alternative to conventional metal surface pretreatments. Its developers claim that it does not produce waste or lower production rates, and it will maintain performance compared to conventional processes. A laboratory program was designed...

  9. Cost-benefit analysis of copper recovery in remediation projects: A case study from Sweden.

    PubMed

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Karlfeldt Fedje, Karin

    2017-12-15

    Contamination resulting from past industrial activity is a problem throughout the world and many sites are severely contaminated by metals. Advances in research in recent years have resulted in the development of technologies for recovering metal from metal-rich materials within the framework of remediation projects. Using cost-benefit analysis (CBA), and explicitly taking uncertainties into account, this paper evaluates the potential social profitability of copper recovery as part of four remediation alternatives at a Swedish site. One alternative involves delivery of copper-rich ash to a metal production company for refining. The other three alternatives involve metal leaching from materials and sale of the resulting metal sludge for its further processing at a metal production company using metallurgical methods. All the alternatives are evaluated relative to the conventional excavation and disposal method. Metal recovery from the ash, metal sludge sale, and disposal of the contaminated soil and the ash residue at the local landfill site, was found to be the best remediation alternative. However, given the present conditions, its economic potential is low relative to the conventional excavation and disposal method but higher than direct disposal of the copper-rich ash for refining. Volatile copper prices, the high cost of processing equipment, the highly uncertain cost of the metal leaching and washing process, coupled with the substantial project risks, contribute most to the uncertainties in the CBA results for the alternatives involving metal leaching prior to refining. However, investment in processing equipment within the framework of a long-term investment project, production of safe, reusable soil residue, and higher copper prices on the metal market, can make metal recovery technology socially profitable. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.

    PubMed

    Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki

    2014-03-01

    Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.

  11. Comparison of the Debonding Characteristics of Conventional and New Debonding Instrument used for Ceramic, Composite and Metallic Brackets – An Invitro Study

    PubMed Central

    Gill, Vikas; Reddy, Y. N. N.; Sanadhya, Sudhanshu; Aapaliya, Pankaj; Sharma, Nidhi

    2014-01-01

    Background: Debonding procedure is time consuming and damaging to the enamel if performed with improper technique. Various debonding methods include: the conventional methods that use pliers or wrenches, an ultrasonic method, electrothermal devices, air pressure impulse devices, diamond burs to grind the brackets off the tooth surface and lasers. Among all these methods, using debonding pliers is most convenient and effective method but has been reported to cause damage to the teeth. Recently, a New Debonding Instrument designed specifically for ceramic and composite brackets has been introduced. As this is a new instrument, little information is available on efficacy of this instrument. The purpose of this study was to evaluate the debonding characteristics of both “the conventional debonding Pliers” and “the New debonding instrument” when removing ceramic, composite and metallic brackets. Materials and Methods: One Hundred Thirty eight extracted maxillary premolar teeth were collected and divided into two Groups: Group A and Group B (n = 69) respectively. They were further divided into 3 subGroups (n = 23) each according to the types of brackets to be bonded. In subGroups A1 and B1{stainless steel};A2 and B2{ceramic};A3 and B3{composite}adhesive precoated maxillary premolar brackets were used. Among them {ceramic and composite} adhesive pre-coated maxillary premolar brackets were bonded. All the teeth were etched using 37% phosphoric acid for 15 seconds and the brackets were bonded using Transbond XT primer. Brackets were debonded using Conventional Debonding Plier and New Debonding Instrument (Group B). After debonding, the enamel surface of each tooth was examined under stereo microscope (10X magnifications). Amodifiedadhesive remnant index (ARI) was used to quantify the amount of remaining adhesive on each tooth. Results: The observations demonstrate that the results of New Debonding Instrument for debonding of metal, ceramic and composite brackets were statistically significantly different (p = 0.04) and superior from the results of conventional debonding Pliers. Conclusion: The debonding efficiency of New Debonding Instrument is better than the debonding efficiency of Conventional Debonding Pliers for use of metal, ceramic and composite brackets respectively. PMID:25177639

  12. Comparison of the Debonding Characteristics of Conventional and New Debonding Instrument used for Ceramic, Composite and Metallic Brackets - An Invitro Study.

    PubMed

    Choudhary, Garima; Gill, Vikas; Reddy, Y N N; Sanadhya, Sudhanshu; Aapaliya, Pankaj; Sharma, Nidhi

    2014-07-01

    Debonding procedure is time consuming and damaging to the enamel if performed with improper technique. Various debonding methods include: the conventional methods that use pliers or wrenches, an ultrasonic method, electrothermal devices, air pressure impulse devices, diamond burs to grind the brackets off the tooth surface and lasers. Among all these methods, using debonding pliers is most convenient and effective method but has been reported to cause damage to the teeth. Recently, a New Debonding Instrument designed specifically for ceramic and composite brackets has been introduced. As this is a new instrument, little information is available on efficacy of this instrument. The purpose of this study was to evaluate the debonding characteristics of both "the conventional debonding Pliers" and "the New debonding instrument" when removing ceramic, composite and metallic brackets. One Hundred Thirty eight extracted maxillary premolar teeth were collected and divided into two Groups: Group A and Group B (n = 69) respectively. They were further divided into 3 subGroups (n = 23) each according to the types of brackets to be bonded. In subGroups A1 and B1{stainless steel};A2 and B2{ceramic};A3 and B3{composite}adhesive precoated maxillary premolar brackets were used. Among them {ceramic and composite} adhesive pre-coated maxillary premolar brackets were bonded. All the teeth were etched using 37% phosphoric acid for 15 seconds and the brackets were bonded using Transbond XT primer. Brackets were debonded using Conventional Debonding Plier and New Debonding Instrument (Group B). After debonding, the enamel surface of each tooth was examined under stereo microscope (10X magnifications). Amodifiedadhesive remnant index (ARI) was used to quantify the amount of remaining adhesive on each tooth. The observations demonstrate that the results of New Debonding Instrument for debonding of metal, ceramic and composite brackets were statistically significantly different (p = 0.04) and superior from the results of conventional debonding Pliers. The debonding efficiency of New Debonding Instrument is better than the debonding efficiency of Conventional Debonding Pliers for use of metal, ceramic and composite brackets respectively.

  13. Heart failure after conventional metal-on-metal hip replacements

    PubMed Central

    Gillam, Marianne H; Pratt, Nicole L; Inacio, Maria C S; Roughead, Elizabeth E; Shakib, Sepehr; Nicholls, Stephen J; Graves, Stephen E

    2017-01-01

    Background and purpose — It is unclear whether metal particles and ions produced by mechanical wear and corrosion of hip prostheses with metal-on-metal (MoM) bearings have systemic adverse effects on health. We compared the risk of heart failure in patients with conventional MoM total hip arthroplasty (THA) and in those with metal-on-polyethylene (MoP) THA. Patients and methods — We conducted a retrospective cohort study using data from the Australian Government Department of Veterans’ Affairs health claims database on patients who received conventional THA for osteoarthritis between 2004 and 2012. The MoM THAs were classified into groups: Articular Surface Replacement (ASR) XL Acetabular System, other large-head (LH) (> 32 mm) MoM, and small-head (SH) (≤ 32 mm) MoM. The primary outcome was hospitalization for heart failure after THA. Results — 4,019 patients with no history of heart failure were included (56% women). Men with an ASR XL THA had a higher rate of hospitalization for heart failure than men with MoP THA (hazard ratio (HR) = 3.2, 95% CI: 1.6–6.5). No statistically significant difference in the rate of heart failure was found with the other LH MoM or SH MoM compared to MoP in men. There was no statistically significant difference in heart failure rate between exposure groups in women. Interpretation — An association between ASR XL and hospitalization for heart failure was found in men. While causality between ASR XL and heart failure could not be established in this study, it highlights an urgent need for further studies to investigate the possibility of systemic effects associated with MoM THA. PMID:27759468

  14. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.

    PubMed

    Lin, Sheng-Lun; Huang, Kuo-Lin; Wang, I-Ching; Chou, I-Cheng; Kuo, Yi-Ming; Hung, Chung-Hsien; Lin, Chitsan

    2016-03-01

    Valuable metal materials can be recovered from spent nickel-metal hydride (NiMH) batteries. However, little attention has been paid to the metal compositions of individual components of NiMH batteries, although this is important for the selection of the appropriate recycling process. In this study, NiMH batteries were manually disassembled to identify the components and to characterize the metals in each of these. A preliminary economic analysis was also conducted to evaluate the recovery of valuable metals from spent NiMH batteries using thermal melting versus simple mechanical separation. The results of this study show that metallic components account for more than 60% of battery weight. The contents of Ni, Fe, Co, and rare earth elements (REEs) (i.e., valuable metals of interest for recovery) in a single battery were 17.9%, 15.4%, 4.41%, and 17.3%, respectively. Most of the Fe was in the battery components of the steel cathode collector, cathode cap, and anode metal grid, while Ni (>90%) and Co (>90%) were mainly in the electrode active materials (anode and cathode metal powders). About 1.88 g of REEs (Ce, La, and Y) could be obtained from one spent NiMH battery. The estimated profits from recovering valuable metals from spent NiMH batteries by using thermal melting and mechanical processes are 2,329 and 2,531 USD/ton, respectively, when including a subsidy of 1,710 USD/ton. The findings of this study are very useful for further research related to technical and economic evaluations of the recovery of valuable metals from spent NiMH batteries. The spent nickel-metal hydride (NiMH) batteries were manually disassembled and their components were identified. The metals account for more than 60% of battery weight, when Ni, Fe, Co, and rare earth elements (REEs) were 17.9%, 15.4%, 4.41%, and 17.3%, respectively, in a single battery. The estimated profits of recovering valuable metals from NiMH batteries by using thermal melting and mechanical processing are 2,329 and 2,531 USD/ton, respectively, when including a subsidy of 1,710 USD/ton. These findings are very useful to develop or select the recovery methods of valuable metals from spent NiMH batteries.

  15. Intrinsic superspin Hall current

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  16. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study.

    PubMed

    Alex, Deepa; Shetty, Y Bharath; Miranda, Glynis Anita; Prabhu, M Bharath; Karkera, Reshma

    2015-01-01

    Conventional investing and casting techniques are time-consuming and usually requires 2-4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30-40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.

  17. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.

  18. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  20. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel

    2009-04-07

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  1. A NOVEL SEPARATION TECHNOLOGY FOR REMOVAL RECOVERY OF METALS FROM AQUEOUS SOLUTIONS

    EPA Science Inventory

    Recovery/Recycling of metal ions from industrial process waste streams is a preferred alternative to disposal by conventional techniques. This paper presents methods for preparation of inorganic chemically active adsorbents to be used in fixed bed adsorbers. Methods for immobiliz...

  2. Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin.

    PubMed

    de Aquino, Luciana Cristina Lins; de Sousa, Heloisa Ribeiro Tunes; Miranda, Everson Alves; Vilela, Luciano; Bueno, Sônia Maria Alves

    2006-04-13

    Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).

  3. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control.

    PubMed

    Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija

    2015-08-01

    This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.

  4. E-waste: impacts, issues and management strategies.

    PubMed

    Hussain, Mumtaz; Mumtaz, Saniea

    2014-01-01

    The present electronic era has seen massive proliferation of electrical and electronic equipment especially during the last two decades. These gadgets have become indispensable components of human life. The gravity of this sensitive 21st century problem is being felt by relevant stakeholders from the community to global level. Consequently, the annual global generation of e-waste is estimated to be 20-50 million tons. According to the Basel Action Network, 500 million computers contain 287 billion kilograms (kg) plastics; 716.7 million kg lead; and 286,700 kg mercury. These gadgets contain over 50 elements from the periodic table. The lethal components include heavy metals (like cadmium, mercury, copper, nickel, lead, barium, hexavalent chromium and beryllium); phosphor; plastics; and brominated flame retardants. These are persistent, mobile, and bioaccumulative toxins that remain in the environment but their forms are changed and are carcinogens, mutagens and teratogens. The ensuing hazardous waste has created deleterious impacts on physical, biological and socioeconomic environments. The lithosphere, hydrosphere, biosphere, and atmosphere of Earth are being gravely polluted. Human beings and other biodiversity face fatal diseases, such as cancer, reproductive disorders, neural damages, endocrine disruptions, asthmatic bronchitis, and brain retardation. Marginal populations of developing countries living in squatter/slums are most vulnerable. Numerous issues are associated with uncontrolled generation, unscientific and environmentally inappropriate recycling processes for the extraction of heavy and precious metals (e.g., gold, platinum, and silver), illegal transboundary shipments from advanced to developing countries and weak conventions/legislations at global and national levels. Although the Basel Convention has been ratified by most countries, illicit trading/trafficking of hazardous substances remains unchecked, sometimes "disguised" as donations. The fact of matter is that vested business interests have surpassed ethical values. Existing scenarios of unbridled e-waste generation has attained alarming levels for humanity. This warrants immediate attention by public and private sectors, civil society, NGOs, industrialists and the business community for the protection of nature and natural resources from future destruction. Multipronged strategies need to be adopted for the management of e-waste encompassing administrative, technical, environmental, regulatory, legislative, educative, stakeholders' participation and global cooperation.

  5. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  6. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    2002-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  7. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  8. A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.

    2012-04-01

    High-strength aluminum and titanium alloys with superior blast/ballistic resistance against armor piercing (AP) threats and with high vehicle light-weighing potential are being increasingly used as military-vehicle armor. Due to the complex structure of these vehicles, they are commonly constructed through joining (mainly welding) of the individual components. Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies [e.g., gas metal arc welding (GMAW)] and to obtain high-quality welds, solid-state joining technologies such as friction-stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military-vehicle-underbody structures is not straight forward and entails a comprehensive multi-prong approach which addresses concurrently and interactively all the aspects associated with the components/vehicle-underbody design, fabrication, and testing. One such approach is developed and applied in this study. The approach consists of a number of well-defined steps taking place concurrently and relies on two-way interactions between various steps. The approach is critically assessed using a strengths, weaknesses, opportunities, and threats (SWOT) analysis.

  9. The Significance of Small Cracks in Fatigue Design Concepts as Related to Rotorcraft Metallic Dynamic Components

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Elber, W.

    2000-01-01

    In this paper the significance of the "small" crack effect as defined in fracture mechanics will be discussed as it relates to life managing rotorcraft dynamic components using the conventional safe-life, the flaw tolerant safe-life, and the damage tolerance design philosophies. These topics will be introduced starting with an explanation of the small-crack theory, then showing how small-crack theory has been used to predict the total fatigue life of fatigue laboratory test coupons with and without flaws, and concluding with how small cracks can affect the crack-growth damage tolerance design philosophy. As stated in this paper the "small" crack effect is defined in fracture mechanics where it has been observed that cracks on the order of 300 microns or less in length will propagate at higher growth rates than long cracks and also will grow at AK values below the long crack AK threshold. The small-crack effect is illustrated herein as resulting from a lack of crack closure and is explained based on continuum mechanics principles using crack-closure concepts in fracture mechanics.

  10. Lightweight composite reflectors for space optics

    NASA Astrophysics Data System (ADS)

    Williams, Brian E.; McNeal, Shawn R.; Ono, Russell M.

    1998-01-01

    The primary goal of this work was to advance the state of the art in lightweight, high optical quality reflectors for space- and Earth-based telescopes. This was accomplished through the combination of a precision silicon carbide (SiC) reflector surface and a high specific strength, low-mass SiC structural support. Reducing the mass of components launched into space can lead to substantial cost savings, but an even greater benefit of lightweight reflectors for both space- and Earth-based optics applications is the fact that they require far less complex and less expensive positioning systems. While Ultramet is not the first company to produce SiC by chemical vapor deposition (CVD) for reflector surfaces, it is the first to propose and demonstrate a lightweight, open-cell SiC structural foam that can support a thin layer of the highly desirable polished SiC reflector material. SiC foam provides a substantial structural and mass advantage over conventional honeycomb supports and alternative finned structures. The result is a reflector component that meets or exceeds the optical properties of current high-quality glass, ceramic, and metal reflectors while maintaining a substantially lower areal density.

  11. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Astrophysics Data System (ADS)

    Arya, Vinod K.; Halford, Gary R.

    2002-10-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  12. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    This presentation provides an overview of the effort by Metal Matrix Cast Composites, Inc. to redesign turbopump housing joints using metal matrix composite material and a toolless net-shape pressure infiltration casting technology. Topics covered include: advantage of metal matrix composites for propulsion components, baseline pump design and analysis, advanced toolless pressure infiltration casting process, subscale pump housing, preform splicing and joining for large components, and fullscale pump housing redesign.

  13. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  14. 75 FR 76037 - General Motors Corporation Grand Rapids Metal Center Metal Fabricating Division Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Corporation Grand Rapids Metal Center Metal Fabricating Division Including On-Site Leased Workers From... Corporation, Grand Rapids Metal Center, Metal Fabricating Division, including on- site leased workers from... of metal stampings and sub- assembled metal sheet components. The company reports that workers leased...

  15. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.

    PubMed

    Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian

    2017-01-05

    Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the proposed algorithm has reduced the metal artifacts apparently.

  16. Chemical and petrochemical industry

    NASA Astrophysics Data System (ADS)

    Staszak, Katarzyna

    2018-03-01

    The potential sources of various metals in chemical and petrochemical processes are discussed. Special emphasis is put on the catalysts used in the industry. Their main applications, compositions, especially metal contents are presented both for fresh and spent ones. The focus is on the main types of metals used in catalysts: the platinum-group metals, the rare-earth elements, and the variety of transition metals. The analysis suggested that chemical and petrochemical sectors can be considered as the secondary source of metals. Because the utilization of spent refinery catalysts for metal recovery is potentially viable, different methods were applied. The conventional approaches used in metal reclamation as hydrometallurgy and pyrometallurgy, as well as new methods include bioleaching, were described. Some industrial solutions for metal recovery from spent solution were also presented.

  17. Plasma-Spray Metal Coating On Foam

    NASA Technical Reports Server (NTRS)

    Cranston, J.

    1994-01-01

    Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.

  18. Sprag Handle Wrenches

    NASA Technical Reports Server (NTRS)

    Vranishm, John M.

    2010-01-01

    Sprag handle wrenches have been proposed for general applications in which conventional pawl-and-ratchet wrenches and sprag and cam "clickless" wrenches are now used. Sprag handle wrenches are so named because they would include components that would function both as parts of handles and as sprags (roller locking/unlocking components). In comparison with all of the aforementioned conventional wrenches, properly designed sprag handle wrenches could operate with much less backlash; in comparison with the conventional clickless wrenches, sprag handle wrenches could be stronger and less expensive (because the sprags would be larger and more easily controllable than are conventional sprags and cams).

  19. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    NASA Astrophysics Data System (ADS)

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-08-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.

  20. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    PubMed Central

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-01-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications. PMID:27546059

  1. Investigation of rapidly solidified aluminum by using diamond turning and a magnetorheological finishing process

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan-Chieh; Hsu, Wei-Yao; Kuo, Ching-Hsiang; Abou-El-Hossein, Khaled; Otieno, Timothy

    2015-08-01

    The metal mirror has been widely used in optical application for a longtime. Especially the aluminum 6061 is often considered the preferred material for manufacturing optical components for ground-based astronomical applications. One reason for using this material is its high specific stiffness and excellent thermal properties. However, a large amount of data exists for this material and commercially available aluminum 6061 using single point diamond turning (SPDT) and polishing process can achieve surface roughness values of approximately 2 to 4 nm, which is adequate for applications that involve the infrared spectral range, but not for the shorter spectral range. A novel aluminum material, fabricated using a rapid solidification process that is equivalent to the conventional aluminum 6061 alloy grade has been used in optical applications in recent years because of its smaller grain size. In this study, the surface quality of the rapid solidification aluminum after single point diamond turning and followed by magnetorheological finish (MRF) process is investigated and compared with conventional aluminum 6061. Both the surface roughness Ra was evaluated using white light interferometers. Finally, indicators such as optimal fabrication parameter combination and optical performance are discussed.

  2. Mechanical Behaviour of Conventional Materials at Experimental Conditions of Deep Drawing Technological Process

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Pashkouleva, D.; Kavardzhikov, V.

    2012-09-01

    The paper deals with experimental investigations on the mechanical behaviour of body-centred-cubic (BCC) and face-centred-cubic (FCC)-conventionally structured sheet metalic-metalic materials under stress-strain conditions of a deep drawing process determined by a coefficient close to the limiting one for Steel 08 and punch diameter of 50 mm. The mechanical characteristics of the investigated materials are identified by one-dimensional tension tests. The materials' responses, as results of identical loading conditions, are described by the change of blank sizes and characteristics of the forming processes. The chosen deformation path ensures obtaining a qualitative steel piece and leads to failures of aluminium and brass blanks. The reported results could be useful for investigations and predictions of the mechanical responses of such type metallic structures applying microscopic instrumented observations and numerical simulations.

  3. Separation of fNIRS Signals into Functional and Systemic Components Based on Differences in Hemodynamic Modalities

    PubMed Central

    Yamada, Toru; Umeyama, Shinji; Matsuda, Keiji

    2012-01-01

    In conventional functional near-infrared spectroscopy (fNIRS), systemic physiological fluctuations evoked by a body's motion and psychophysiological changes often contaminate fNIRS signals. We propose a novel method for separating functional and systemic signals based on their hemodynamic differences. Considering their physiological origins, we assumed a negative and positive linear relationship between oxy- and deoxyhemoglobin changes of functional and systemic signals, respectively. Their coefficients are determined by an empirical procedure. The proposed method was compared to conventional and multi-distance NIRS. The results were as follows: (1) Nonfunctional tasks evoked substantial oxyhemoglobin changes, and comparatively smaller deoxyhemoglobin changes, in the same direction by conventional NIRS. The systemic components estimated by the proposed method were similar to the above finding. The estimated functional components were very small. (2) During finger-tapping tasks, laterality in the functional component was more distinctive using our proposed method than that by conventional fNIRS. The systemic component indicated task-evoked changes, regardless of the finger used to perform the task. (3) For all tasks, the functional components were highly coincident with signals estimated by multi-distance NIRS. These results strongly suggest that the functional component obtained by the proposed method originates in the cerebral cortical layer. We believe that the proposed method could improve the reliability of fNIRS measurements without any modification in commercially available instruments. PMID:23185590

  4. OVERVIEW OF UIN/CEC LRTAP PROTOCOLS ON POPS AND HEAVY METALS

    EPA Science Inventory

    The purpose of this workshop was to review the current state-of-the-science for persistent organic pollutants and heavy metal compounds, especially additional developments since the conclusion of the negotiations of the Protocols on these compounds under the Convention on Long Ra...

  5. Differentiating Organic and Conventional Sage by Chromatographic and Mass Spectrometry Flow-Injection Fingerprints Combined with Principal Component Analysis

    PubMed Central

    Gao, Boyan; Lu, Yingjian; Sheng, Yi; Chen, Pei; Yu, Liangli (Lucy)

    2013-01-01

    High performance liquid chromatography (HPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The individual components in the sage samples were also characterized with an ultra-performance liquid chromatography with a quadrupole-time of flight mass spectrometer (UPLC Q-TOF MS). The results suggested that both HPLC and FIMS fingerprints combined with PCA could differentiate organic and conventional sage samples effectively. FIMS may serve as a quick test capable of distinguishing organic and conventional sages in 1 min, and could potentially be developed for high-throughput applications; whereas HPLC fingerprints could provide more chemical composition information with a longer analytical time. PMID:23464755

  6. Traversing the Links between Heavy Metal Stress and Plant Signaling

    PubMed Central

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  7. Toxicity of electronic waste leachates to Daphnia magna: screening and toxicity identification evaluation of different products, components, and materials.

    PubMed

    Lithner, Delilah; Halling, Maja; Dave, Göran

    2012-05-01

    Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.

  8. Highly crosslinked polyethylene: a safe alternative to conventional polyethylene for dual mobility cup mobile component. A biomechanical validation.

    PubMed

    Malatray, Matthieu; Roux, Jean-Paul; Gunst, Stanislas; Pibarot, Vincent; Wegrzyn, Julien

    2017-03-01

    Dual mobility cup (DMC) consists of a cobalt-chromium (CoCr) alloy cup articulated with a polyethylene (PE) mobile component capturing the femoral head in force using a snap-fit technique. This biomechanical study was the first to evaluate and compare the generation of cracks in the retentive area of DMC mobile components made of highly crosslinked PE (XLPE) or conventional ultra-high molecular weight PE (UHMWPE). Eighty mobile components designed for a 52-mm diameter Symbol® DMC (Dedienne Santé, Mauguio, France) and a 28-mm diameter femoral head were analyzed. Four groups of 20 mobile components were constituted according to the PE material: raw UHMWPE, sterilized UHMWPE, annealed XLPE and remelted XLPE. Ten mobile components in each group were impacted with a 28-mm diameter CoCr femoral head using a snap-fit technique. The occurrence, location and area of the cracks in the retentive area were investigated using micro-CT (Skyscan 1176®, Bruker, Aarsellar, Belgium) with a 35 μm nominal isotropic voxel size by two observers blinded to the PE material and impaction or not of the mobile components. Compared to conventional UHMWPE, the femoral head snap-fit did not generate more or wider cracks in the retentive area of annealed or remelted XLPE mobile components. This biomechanical study suggests that XLPE in DMC could be a safe alternative to conventional UHMWPE regarding the generation of cracks in the retentive area related to the femoral head snap-fit.

  9. 40 CFR 144.6 - Classification of wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... including: (1) Mining of sulfur by the Frasch process; (2) In situ production of uranium or other metals; this category includes only in-situ production from ore bodies which have not been conventionally mined... are brought to the surface in connection with natural gas storage operations, or conventional oil or...

  10. 40 CFR 144.6 - Classification of wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... including: (1) Mining of sulfur by the Frasch process; (2) In situ production of uranium or other metals; this category includes only in-situ production from ore bodies which have not been conventionally mined... are brought to the surface in connection with natural gas storage operations, or conventional oil or...

  11. 40 CFR 144.6 - Classification of wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... including: (1) Mining of sulfur by the Frasch process; (2) In situ production of uranium or other metals; this category includes only in-situ production from ore bodies which have not been conventionally mined... are brought to the surface in connection with natural gas storage operations, or conventional oil or...

  12. 40 CFR 144.6 - Classification of wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... including: (1) Mining of sulfur by the Frasch process; (2) In situ production of uranium or other metals; this category includes only in-situ production from ore bodies which have not been conventionally mined... are brought to the surface in connection with natural gas storage operations, or conventional oil or...

  13. 40 CFR 144.6 - Classification of wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... including: (1) Mining of sulfur by the Frasch process; (2) In situ production of uranium or other metals; this category includes only in-situ production from ore bodies which have not been conventionally mined... are brought to the surface in connection with natural gas storage operations, or conventional oil or...

  14. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  15. Out of the SHADOW: watch parts in the spotlight -- laser beam microwelding of delicate watch components

    NASA Astrophysics Data System (ADS)

    Kramer, Thorsten; Olowinsky, Alexander M.

    2003-07-01

    Conventional joining techniques like press fitting or crimping require the application of mechanical forces to the parts which, in combination with the tolerances of both parts to be joined, lead to imprecision and poor tensile strength. In contrast, laser beam micro welding provides consistent joining and high flexibility and it acts as an alternative as long as press fitting, crimping, screwing or gluing are not capable of batch production. Different parts and even different metals can be joined in a non-contact process at feed rates of up to 60 m/min and with weld seam lengths from 0.6 mm to 15.7 mm. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 μm have been attained. This results in low distortion of the joined watch components. Since the first applications of laser beam micro welding of watch components showed promising results, the process has further been enhanced using the SHADOW technique. Aspects of the technique such as tensile strength, geometry and precision of the weld seam as well as the acceptance amongst the -mostly conservative- watch manufacturers have been improved.

  16. Development of Prototype Production ESR Facilities

    DTIC Science & Technology

    1977-07-01

    CJISTHIBUTION STATEMENT (ot (he aUxIr&cl entnred in lil^ck 21), If ctlfferert from Wfv.rtj 18. SiJPPi EMENTARV NOTES M9. Kfc y WORDS...Unlike in conventional foundry methods, electroslag castings are made in water-cooled metal molds by remelting of consumable electrodes in... CONSUMABLE ELECTRODE TOP MOLD SLAQ POOL MOLTEN METAL POOL LEVEL DETECTOR MOLTEN METAL POOL ESP INCrOT COPPER LINER mTER JACKET

  17. Present status of titanium removable dentures--a review of the literature.

    PubMed

    Ohkubo, C; Hanatani, S; Hosoi, T

    2008-09-01

    Although porcelain and zirconium oxide might be used for fixed partial dental prostheses instead of conventional dental metals in the near future, removable partial denture (RPD) frameworks will probably continue to be cast with biocompatible metals. Commercially pure (CP) titanium has appropriate mechanical properties, it is lightweight (low density) compared with conventional dental alloys, and has outstanding biocompatibility that prevents metal allergic reactions. This literature review describes the laboratory conditions needed for fabricating titanium frameworks and the present status of titanium removable prostheses. The use of titanium for the production of cast RPD frameworks has gradually increased. There are no reports about metallic allergy apparently caused by CP titanium dentures. The laboratory drawbacks still remain, such as the lengthy burn-out, inferior castability and machinability, reaction layer formed on the cast surface, difficulty of polishing, and high initial costs. However, the clinical problems, such as discoloration of the titanium surfaces, unpleasant metal taste, decrease of clasp retention, tendency for plaque to adhere to the surface, detachment of the denture base resin, and severe wear of titanium teeth, have gradually been resolved. Titanium RPD frameworks have never been reported to fail catastrophically. Thus, titanium is recommended as protection against metal allergy, particularly for large-sized prostheses such as RPDs or complete dentures.

  18. [Evaluation method with radiographic image quality indicator for internal defects of dental casting metallic restoration].

    PubMed

    Li, Y; Zheng, G; Lin, H

    2014-12-18

    To develop a new kind of dental radiographic image quality indicator (IQI) for internal quality of casting metallic restoration to influence on its usage life. Radiographic image quality indicator method was used to evaluate the depth of the defects region and internal quality of 127 casting metallic restoration and the accuracy was compared with that of conventional callipers method. In the 127 cases of casting metallic restoration, 9 were found the thickness less than 0.7 mm and the thinnest thickness only 0.2 mm in 26 casting metallic crowns or bridges' occlusal defects region. The data measured by image quality indicator were consistent with those measured by conventional gauging. Two metal inner crowns were found the thickness less than 0.3 mm in 56 porcelain crowns or bridges. The thickness of casting removable partial denture was more than 1.0 mm, but thinner regions were not found. It was found that in a titanium partial denture, the X-ray image of clasp was not uniform and there were internal porosity defects in the clasp. Special dental image quality indicator can solve the visual error problems caused by different observing backgrounds and estimate the depth of the defects region in the casting.

  19. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE PAGES

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; ...

    2016-07-08

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  20. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy.

    PubMed

    Tremsin, Anton S; Gao, Yan; Dial, Laura C; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  1. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin

    NASA Astrophysics Data System (ADS)

    Libourel, Guy; Krot, Alexander N.

    2007-02-01

    Chondrules are the major high-temperature components of chondritic meteorites, which are conventionally viewed as the samples from the very first generation of undifferentiated planetesimals. Growing evidences from long- and short-lived radionuclide chronologies indicate however that chondrite parent asteroids accreted after or contemporaneously with igneous activities on differentiated asteroids, questioning the pristine nature of chondrites. Here we report a discovery of metal-bearing olivine aggregates with granoblastic textures inside magnesian porphyritic (Type I) chondrules from the CV carbonaceous chondrite Vigarano. Formation of the granoblastic textures requires sintering and prolonged, high-temperature (> 1000 °C) annealing - conditions which are not expected in the solar nebula during chondrule formation, but could have been achieved on parent bodies of olivine-rich differentiated or thermally metamorphosed meteorites. The mineralogy and petrography of the metal-olivine aggregates thus indicate that they are relict, dunite-like lithic fragments which resulted from fragmentation of such bodies. The very old Pb-Pb absolute ages and Al-Mg relative model ages of bulk CV chondrules suggest that such planetesimals may have formed as early as the currently accepted age of the Solar System (4567.2 ± 0.6 Ma).

  2. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with 100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  3. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  4. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    PubMed Central

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Abstract Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components. PMID:27877885

  5. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  6. Silver plating ensures reliable diffusion bonding of dissimilar metals

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  7. The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, usually the methyl esters of plant oils or other triacylglycerol-containing materials, has become an established alternative to conventional, petroleum-derived diesel fuel. Several technical problems persist when using biodiesel, one of which is oxidation stability upon exposure to oxygen...

  8. EMERGING TECHNOLOGY BULLETIN: PROCESS FOR THE TREATMENT OF VOLATILE ORGANIC CARBON AND HEAVY-METAL- CONTAMINATED SOIL - INTERNATIONAL TECHNOLOGY CORPORATION

    EPA Science Inventory

    The batch steam distillation and metal extraction treatment process is a two-stage system that treats soils contaminated with organics and inorganics. This system uses conventional, readily available process equipment, and does not produce hazardous combustion products. Hazar...

  9. Feedstock powder processing research needs for additive manufacturing development

    DOE PAGES

    Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan

    2018-02-01

    Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less

  10. Feedstock powder processing research needs for additive manufacturing development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan

    Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less

  11. [Electronic cigarette : state of the science about toxicological aspects].

    PubMed

    Deville, M; Charlier, C

    2017-01-01

    Electronic cigarettes (e-cigarettes) are presented as a healthier alternative to tobacco smoking. They are designed to contain a solution which is heated to produce an aerosol inhaled by the user. The liquid is mainly composed of propylene glycol, glycerol, flavours and, in some cases, nicotine. Except for nicotine, which can be fatal when ingested at high dose, these components are generally considered as safe. However, the potential effect of long term exposure to inhaled propylene glycol is unknown at this time. As an advantage, toxic compounds responsible for the noxiousness of tobacco smoking (nitrosamines, metals, formaldehyde, carbon monoxide …) are either absent, or present in the smoke of e-cigarette at levels far less compared to conventional cigarette smoke. Finally, efficacy of e-cigarette as a tool for smoking cessation stays to be proven.

  12. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  13. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-02-03

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.

  14. Residual thermal stress control in composite reinforced metal structures. [by mechanical loading of metal component prior to bonding

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1972-01-01

    Advanced composite materials, composed of boron or graphite fibers and a supporting matrix, make significant structural efficiency improvements available to aircraft and aerospace designers. Residual stress induced during bonding of composite reinforcement to metal structural elements can be reduced or eliminated through suitable modification to the manufacturing processes. The most successful method employed during this program used a steel tool capable of mechanically loading the metal component in compression prior to the adhesive bonding cycle. Compression loading combined with heating to 350 F during the bond cycle can result in creep deformation in aluminum components. The magnitude of the deformation increases with increasing stress level during exposure to 350 F.

  15. Corrosion resistant metallic bipolar plate

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Schneibel, Joachim H [Knoxville, TN; Pint, Bruce A [Knoxville, TN; Maziasz, Philip J [Oak Ridge, TN

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  16. Laser hybrid joining of plastic and metal components for lightweight components

    NASA Astrophysics Data System (ADS)

    Rauschenberger, J.; Cenigaonaindia, A.; Keseberg, J.; Vogler, D.; Gubler, U.; Liébana, F.

    2015-03-01

    Plastic-metal hybrids are replacing all-metal structures in the automotive, aerospace and other industries at an accelerated rate. The trend towards lightweight construction increasingly demands the usage of polymer components in drive trains, car bodies, gaskets and other applications. However, laser joining of polymers to metals presents significantly greater challenges compared with standard welding processes. We present recent advances in laser hybrid joining processes. Firstly, several metal pre-structuring methods, including selective laser melting (SLM) are characterized and their ability to provide undercut structures in the metal assessed. Secondly, process parameter ranges for hybrid joining of a number of metals (steel, stainless steel, etc.) and polymers (MABS, PA6.6-GF35, PC, PP) are given. Both transmission and direct laser joining processes are presented. Optical heads and clamping devices specifically tailored to the hybrid joining process are introduced. Extensive lap-shear test results are shown that demonstrate that joint strengths exceeding the base material strength (cohesive failure) can be reached with metal-polymer joining. Weathering test series prove that such joints are able to withstand environmental influences typical in targeted fields of application. The obtained results pave the way toward implementing metalpolymer joints in manufacturing processes.

  17. 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium Metal

    DTIC Science & Technology

    2007-01-01

    The alumina was used as received. Anatase, rutile, aluminum, and titania metal powders, titanium (IV) isopropoxide , and pinacolyl methylphosphonate...Synthesis. Titanophosphonate synthesis was adapted from Mutin et al.4 using titanium (IV) isopropoxide (TIP) and pinacolyl methylphosphonate (PMPA...REPORT 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium

  18. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, E., E-mail: elias.dib@for.unipi.it; Carrillo-Nuñez, H.; Cavassilas, N.

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.

  19. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions

    NASA Astrophysics Data System (ADS)

    Liu, Rongji; Liu, Huibiao; Li, Yuliang; Yi, Yuanping; Shang, Xinke; Zhang, Shuangshuang; Yu, Xuelian; Zhang, Suojiang; Cao, Hongbin; Zhang, Guangjin

    2014-09-01

    Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts.Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts. Electronic supplementary information (ESI) available: Detailed RDE and RRDE experiments, additional tables and figures. See DOI: 10.1039/c4nr03185g

  20. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration.

    PubMed

    Zhu, Shiyang; Liow, T Y; Lo, G Q; Kwong, D L

    2011-04-25

    Horizontal metal/insulator/Si/insulator/metal nanoplasmonic slot waveguide (PWG), which is inserted in a conventional Si wire waveguide, is fabricated using the standard Si-CMOS technology. A thin insulator between the metal and the Si core plays a key role: it not only increases the propagation distance as the theoretical prediction, but also prevents metal diffusion and/or metal-Si reaction. Cu-PWGs with the Si core width of ~134-21 nm and ~12-nm-thick SiO2 on each side exhibit a relatively low propagation loss of ~0.37-0.63 dB/µm around the telecommunication wavelength of 1550 nm, which is ~2.6 times smaller than the Al-counterparts. A simple tapered coupler can provide an effective coupling between the PWG and the conventional Si wire waveguide. The coupling efficiency as high as ~0.1-0.4 dB per facet is measured. The PWG allows a sharp bending. The pure bending loss of a Cu-PWG direct 90° bend is measured to be ~0.6-1.0 dB. These results indicate the potential for seamless integration of various functional nanoplasmonic devices in existing Si electronic photonic integrated circuits (Si-EPICs).

  1. FUSED REACTOR FUELS

    DOEpatents

    Mayer, S.W.

    1962-11-13

    This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)

  2. TaC-coated graphite prepared via a wet ceramic process: Application to CVD susceptors for epitaxial growth of wide-bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Kimura, Taishi; Narita, Tetsuo; Suzumura, Akitoshi; Kimoto, Tsunenobu; Nakashima, Kenji

    2017-11-01

    A novel sintered tantalum carbide coating (SinTaC) prepared via a wet ceramic process is proposed as an approach to reducing the production cost and improving the crystal quality of bulk-grown crystals and epitaxially grown films of wide-bandgap semiconductors. Here, we verify the applicability of the SinTaC components as susceptors for chemical vapor deposition (CVD)-SiC and metal-organic chemical vapor deposition (MOCVD)-GaN epitaxial growth in terms of impurity incorporation from the SinTaC layers and also clarify the surface-roughness controllability of SinTaC layers and its advantage in CVD applications. The residual impurity elements in the SinTaC layers were confirmed to not severely incorporate into the CVD-SiC and MOCVD-GaN epilayers grown using the SinTaC susceptors. The quality of the epilayers was also confirmed to be equivalent to that of epilayers grown using conventional susceptors. Furthermore, the surface roughness of the SinTaC components was controllable over a wide range of average roughness (0.4 ≤ Ra ≤ 5 μm) and maximum height roughness (3 ≤ Rz ≤ 36 μm) through simple additional surface treatment procedures, and the surface-roughened SinTaC susceptor fabricated using these procedures was predicted to effectively reduce thermal stress on epi-wafers. These results confirm that SinTaC susceptors are applicable to epitaxial growth processes and are advantageous over conventional susceptor materials for reducing the epi-cost and improving the quality of epi-wafers.

  3. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salt, D.E.; Blaylock, M.; Kumar, N. P.B.A.

    1995-05-01

    Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction: the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizofiltration: the use of plant roots to remove toxic metals from polluted waters; and (3) Phytostabilization: the use of plants to eliminate the bioavailability of toxic metals in soils. Biological mechanisms of toxic metal uptake,more » translocation and resistance as well as strategies for improving phytoremediation are also discussed. 83 refs., 4 figs., 1 tab.« less

  4. Metal anesthesia circuit components stop the progression of laser fires.

    PubMed

    Sosis, M B; Braverman, B

    1994-01-01

    To determine whether metallic Y-pieces and elbows would halt the progression of a laser-induced endotracheal tube fire. A segment of polyvinyl chloride endotracheal tube was attached to either an all-plastic anesthesia circle breathing system (n = 5) or a circuit consisting of a metal Y-piece and elbow with plastic hoses (n = 5). In each case, an Nd-YAG laser was used to ignite the endotracheal tube segment and attached anesthesia circuit as 5 L/min of oxygen was flowing through them. Research laboratory of a university-affiliated metropolitan medical center. The flames from the endotracheal tubes burned through the 22 mm hoses that were part of the all-plastic circuits in 49.5 +/- 8.8 seconds (mean +/- SD). In none of the trials with the metal components did the fire advance beyond the endotracheal tube's 15 mm adapter. Metal circuit components halt the progression of laser-induced endotracheal tube fires toward the anesthesia machine.

  5. Carrier generation and electronic properties of a single-component pure organic metal

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuka; Terauchi, Takeshi; Sumi, Satoshi; Matsushita, Yoshitaka

    2017-01-01

    Metallic conduction generally requires high carrier concentration and wide bandwidth derived from strong orbital interaction between atoms or molecules. These requisites are especially important in organic compounds because a molecule is fundamentally an insulator; only multi-component salts with strong intermolecular interaction--namely, only charge transfer complexes and conducting polymers--have demonstrated intrinsic metallic behaviour. Herein we report a single-component electroactive molecule, zwitterionic tetrathiafulvalene(TTF)-extended dicarboxylate radical (TED), exhibiting metallic conduction even at low temperatures. TED exhibits d.c. conductivities of 530 S cm-1 at 300 K and 1,000 S cm-1 at 50 K with copper-like electronic properties. Spectroscopic and theoretical investigations of the carrier-generation mechanism and the electronic states of this single molecular species reveal a unique electronic structure with a spin-density gradient in the extended TTF moieties that becomes, in itself, a metallic state.

  6. Corrosion Damage and Wear Mechanisms in Long-Term Retrieved CoCr Femoral Components for Total Knee Arthroplasty.

    PubMed

    Arnholt, Christina M; MacDonald, Daniel W; Malkani, Arthur L; Klein, Gregg R; Rimnac, Clare M; Kurtz, Steven M; Kocagoz, Sevi B; Gilbert, Jeremy L

    2016-12-01

    Metal debris and ion release has raised concerns in joint arthroplasty. The purpose of this study was to characterize the sources of metallic ions and particulate debris released from long-term (in vivo >15 years) total knee arthroplasty femoral components. A total of 52 CoCr femoral condyles were identified as having been implanted for more than 15 years. The femoral components were examined for incidence of 5 types of damage (metal-on-metal wear due to historical polyethylene insert failure, mechanically assisted crevice corrosion at taper interfaces, cement interface corrosion, third-body abrasive wear, and inflammatory cell-induced corrosion [ICIC]). Third-body abrasive wear was evaluated using the Hood method for polyethylene components and a similar method quantifying surface damage of the femoral condyle was used. The total area damaged by ICIC was quantified using digital photogrammetry. Surface damage associated with corrosion and/or CoCr debris release was identified in 51 (98%) CoCr femoral components. Five types of damage were identified: 98% of femoral components exhibited third-body abrasive wear (mostly observed as scratching, n = 51/52), 29% of femoral components exhibited ICIC damage (n = 15/52), 41% exhibited cement interface damage (n = 11/27), 17% exhibited metal-on-metal wear after wear-through of the polyethylene insert (n = 9/52), and 50% of the modular femoral components exhibited mechanically assisted crevice corrosion taper damage (n = 2/4). The total ICIC-damaged area was an average of 0.11 ± 0.12 mm 2 (range: 0.01-0.46 mm 2 ). Although implant damage in total knee arthroplasty is typically reported with regard to the polyethylene insert, the results of this study demonstrate that abrasive and corrosive damage occurs on the CoCr femoral condyle in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mars Aqueous Processing System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron ore concentrate, which demonstrates that lunar-derived material can be used in a manner similar to conventional terrestrial iron. Metallic iron was also produced from the Mars soil simulant. The aluminum and magnesium oxide products produced by MAPS from lunar and Mars soil simulants exhibited excellent thermal stability, and were shown to be capable of use for refractory oxide structural materials, or insulation at temperatures far in excess of what could be achieved using unrefined soils. These materials exhibited the refractory characteristics needed to support iron casting and forming operations, as well as other thermal processing needs. Extraction residue samples contained up to 79 percent silica. Such samples were successfully fused into a glass that exhibited high light transmittance.

  8. Comparison of disposable sutureless silicone ring and traditional metal ring in 23-gauge vitrectomy combined with cataract surgery

    PubMed Central

    Wu, Jian-Guo; Wei, Rui-Hua; Liu, Ai-Hua; Zhou, Xiao-Xu; Sun, Guo-Ling; Li, Xiao-Rong

    2011-01-01

    Background: The purpose of this prospective, interventional, comparative case series was to evaluate the efficiency and feasibility of a disposable sutureless silicone lens ring for corneal contact lens stabilization during combined 23-gauge vitrectomy and cataract surgery. Methods: We developed a ring consisting of a single silicone component with three footplates along the ring margin to fit cannulae for holding conventional contact lenses. Thirty eyes from 30 patients with cataract and vitreoretinal disease were included, and divided into two matched groups according to disease type and ring used. In Group A, we used a 23-gauge transconjunctival vitrectomy system and a disposable sutureless silicone lens ring (n = 15). In Group B, we used a 23-gauge transconjunctival vitrectomy system and a conventional metal lens ring (n = 15). The main outcome measures were: time required for vitrectomy preparation, rate of intraoperative corneal limbus bleeding, and limbus scar rate at the final follow-up visit. Results: Thirty cases were successfully completed. The average vitrectomy preparation time was less in Group A than in Group B (P < 0.01), and the average preparation time saved was 3.94 minutes. None of the Group A patients had intraoperative bleeding or postoperative scarring, whereas all 15 Group B cases had bleeding and five had scarring. There was a statistically significant difference between Group A and Group B for these complications (P ≤ 0.05). Conclusion: This report demonstrates the advantages of using a sutureless silicone ring during combined 23-gauge vitrectomy and cataract surgery. Using this method could allow extra time for the surgeon to pay more attention to complex vitreoretinal procedures. PMID:21760720

  9. Comparison of disposable sutureless silicone ring and traditional metal ring in 23-gauge vitrectomy combined with cataract surgery.

    PubMed

    Wu, Jian-Guo; Wei, Rui-Hua; Liu, Ai-Hua; Zhou, Xiao-Xu; Sun, Guo-Ling; Li, Xiao-Rong

    2011-01-01

    The purpose of this prospective, interventional, comparative case series was to evaluate the efficiency and feasibility of a disposable sutureless silicone lens ring for corneal contact lens stabilization during combined 23-gauge vitrectomy and cataract surgery. We developed a ring consisting of a single silicone component with three footplates along the ring margin to fit cannulae for holding conventional contact lenses. Thirty eyes from 30 patients with cataract and vitreoretinal disease were included, and divided into two matched groups according to disease type and ring used. In Group A, we used a 23-gauge transconjunctival vitrectomy system and a disposable sutureless silicone lens ring (n = 15). In Group B, we used a 23-gauge transconjunctival vitrectomy system and a conventional metal lens ring (n = 15). The main outcome measures were: time required for vitrectomy preparation, rate of intraoperative corneal limbus bleeding, and limbus scar rate at the final follow-up visit. Thirty cases were successfully completed. The average vitrectomy preparation time was less in Group A than in Group B (P < 0.01), and the average preparation time saved was 3.94 minutes. None of the Group A patients had intraoperative bleeding or postoperative scarring, whereas all 15 Group B cases had bleeding and five had scarring. There was a statistically significant difference between Group A and Group B for these complications (P ≤ 0.05). This report demonstrates the advantages of using a sutureless silicone ring during combined 23-gauge vitrectomy and cataract surgery. Using this method could allow extra time for the surgeon to pay more attention to complex vitreoretinal procedures.

  10. G4-FETs as Universal and Programmable Logic Gates

    NASA Technical Reports Server (NTRS)

    Johnson, Travis; Fijany, Amir; Mojarradi, Mohammad; Vatan, Farrokh; Toomarian, Nikzad; Kolawa, Elizabeth; Cristoloveanu, Sorin; Blalock, Benjamin

    2007-01-01

    An analysis of a patented generic silicon- on-insulator (SOI) electronic device called a G4-FET has revealed that the device could be designed to function as a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer discrete components than are required for conventional transistor-based circuits performing the same logic functions. A G4-FET is a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G4-FET can also be regarded as a single transistor having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of the SOI substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry. With proper choice of the specific dimensions for the gates, channels, and ancillary features of the generic G4-FET, the device could be made to function as a three-input, one-output logic gate. As illustrated by the truth table in the top part of the figure, the behavior of this logic gate would be the inverse (the NOT) of that of a majority gate. In other words, the device would function as a NOT-majority gate. By simply adding an inverter, one could obtain a majority gate. In contrast, to construct a majority gate in conventional complementary metal oxide/semiconductor (CMOS) circuitry, one would need four three-input AND gates and a four-input OR gate, altogether containing 32 transistors.

  11. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  12. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.

    PubMed

    Kim, Jeongmin; Sung, Bong June

    2015-06-17

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  13. Conventional (MG-BR46 Conquista) and transgenic (BRS Valiosa RR) soybeans have no mutagenic effects and may protect against induced-DNA damage in vivo.

    PubMed

    Venâncio, Vinicius P; Silva, João Paulo L; Almeida, Alaor A; Brigagão, Maísa R P L; Azevedo, Luciana

    2012-01-01

    In the present study, we evaluated the pesticide and metal concentrations as well as the antimutagenic and mutagenic properties of commercial soybeans (Glycine max). Male Swiss mice were fed diets containing 1%, 10%, or 20% (w/w) transgenic soybeans (BRS Valiosa RR) or parental isogenic conventional soybeans (MG-BR46 Conquista). Cyclophosphamide (50 mg kg⁻¹ b.w.) was added in a single dose 24 h before euthanasia as an induction agent. There was no difference in the composition (ash, total fat, protein, moisture, and carbohydrates) of the diets containing the same soybean concentration. The results show that the commercially available Brazilian soybeans tested are free of organochlorine, organophosphate, and carbamate pesticides and contain acceptable heavy metal concentrations. Both cyclophosphamide and soybean treatments were not sufficient to cause detectable oxidative damage on liver by the levels of malondialdehyde and protein carbonyl. The transgenic soybeans are also nonmutagenic and have protective effects against DNA damage similar to those of conventional soybeans but to a lesser percentage (64%-101% for conventional and 23%-33% for transgenic diets).

  14. Resistivity of Rotated Graphite-Graphene Contacts.

    PubMed

    Chari, Tarun; Ribeiro-Palau, Rebeca; Dean, Cory R; Shepard, Kenneth

    2016-07-13

    Robust electrical contact of bulk conductors to two-dimensional (2D) material, such as graphene, is critical to the use of these 2D materials in practical electronic devices. Typical metallic contacts to graphene, whether edge or areal, yield a resistivity of no better than 100 Ω μm but are typically >10 kΩ μm. In this Letter, we employ single-crystal graphite for the bulk contact to graphene instead of conventional metals. The graphite contacts exhibit a transfer length up to four-times longer than in conventional metallic contacts. Furthermore, we are able to drive the contact resistivity to as little as 6.6 Ω μm(2) by tuning the relative orientation of the graphite and graphene crystals. We find that the contact resistivity exhibits a 60° periodicity corresponding to crystal symmetry with additional sharp decreases around 22° and 39°, which are among the commensurate angles of twisted bilayer graphene.

  15. A rapid microwave-assisted synthesis of a sodium-cadmium metal-organic framework having improved performance as a CO2 adsorbent for CCS.

    PubMed

    Palomino Cabello, Carlos; Arean, Carlos Otero; Parra, José B; Ania, Conchi O; Rumori, P; Turnes Palomino, G

    2015-06-07

    We report on a facile and rapid microwave-assisted method for preparing a sodium-cadmium metal-organic framework (having coordinatively unsaturated sodium ions) that considerably shortens the conventional synthesis time from 5 days to 1 hour. The obtained (Na,Cd)-MOF showed an excellent volumetric CO2 adsorption capacity (5.2 mmol cm(-3) at 298 K and 1 bar) and better CO2 adsorption properties than those shown by the same metal-organic framework when synthesized following a more conventional procedure. Moreover, the newly prepared material was found to display high selectivity for adsorption of carbon dioxide over nitrogen, and good regenerability and stability during repeated CO2 adsorption-desorption cycles, which are the required properties for any adsorbent intended for carbon dioxide capture and sequestration (CSS) from the post-combustion flue gas of fossil fuelled power stations.

  16. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  17. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  18. Sleep monitoring sensor using flexible metal strain gauge

    NASA Astrophysics Data System (ADS)

    Kwak, Yeon Hwa; Kim, Jinyong; Kim, Kunnyun

    2018-05-01

    This paper presents a sleep monitoring sensor based on a flexible metal strain gauge. As quality of life has improved, interest in sleep quality, and related products, has increased. In this study, unlike a conventional single sensor based on a piezoelectric material, a metal strain gauge-based array sensor based on polyimide and nickel chromium (NiCr) is applied to provide movement direction, respiration, and heartbeat data as well as contact-free use by the user during sleeping. Thin-film-type resistive strain gage sensors are fabricated through the conventional flexible printed circuit board (FPCB) process, which is very useful for commercialization. The measurement of movement direction and respiratory rate during sleep were evaluated, and the heart rate data were compared with concurrent electrocardiogram (ECG) data. An algorithm for analyzing sleep data was developed using MATLAB, and the error rate was 4.2% when compared with ECG for heart rate.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahlek, Matthew; Koirala, Nikesh; Salehi, Maryam

    Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photo-emission spectroscopy and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI Bi 2Se 3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that theremore » is a change in material’s topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically-protected surface states, and will provoke new studies as to the fundamental nature of topological phase of matter in the presence of disorder.« less

  20. Characteristics of Superjunction Lateral-Double-Diffusion Metal Oxide Semiconductor Field Effect Transistor and Degradation after Electrical Stress

    NASA Astrophysics Data System (ADS)

    Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng

    2006-04-01

    The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.

Top