Optimizing gene transfer to conventional outflow cells in living mouse eyes
Li, G; Gonzalez, P; Camras, LJ; Navarro, I; Qiu, J; Challa, P; Stamer, WD
2013-01-01
The mouse eye has physiological and genetic advantages to study conventional outflow function. However, its small size and shallow anterior chamber presents technical challenges to efficient intracameral delivery of genetic material to conventional outflow cells. The goal of this study was to optimize methods to overcome this technical hurdle, without damaging ocular structures or compromising outflow function. Gene targeting was monitored by immunofluorescence microscopy after transduction of adenovirus encoding green fluorescent protein driven by a CMV promoter. Guided by a micromanipulator and stereomicroscope, virus was delivered intracamerally to anesthetized mice by bolus injection using 33 gauge needle attached to Hamilton syringe or infusion with glass micropipette connected to syringe pump. The total number of particles introduced remained constant, while volume of injected virus solution (3–10 µl) was varied for each method and time of infusion (3–40 min) tested. Outflow facility and intraocular pressure were monitored invasively using established techniques. Unlike bolus injections or slow infusions, introduction of virus intracamerally during rapid infusions (3 min) at any volume tested preferentially targeted trabecular meshwork and Schlemm's canal cells, with minimal transduction of neighboring cells. While infusions resulted in transient intraocular pressure spikes (commensurate with volume infused, Δ40–70 mmHg), eyes typically recovered within 60 minutes. Transduced eyes displayed normal outflow facility and tissue morphology 3–6 days after infusions. Taken together, fast infusion of virus solution in small volumes intracamerally is a novel and effective method to selectively deliver agents to conventional outflow cells in living mice. PMID:23337742
Roy Chowdhury, Uttio; Rinkoski, Tommy A.; Bahler, Cindy K.; Millar, J. Cameron; Bertrand, Jacques A.; Holman, Bradley H.; Sherwood, Joseph M.; Overby, Darryl R.; Stoltz, Kristen L.; Dosa, Peter I.; Fautsch, Michael P.
2017-01-01
Purpose Cromakalim prodrug 1 (CKLP1) is a water-soluble ATP-sensitive potassium channel opener that has shown ocular hypotensive properties in ex vivo and in vivo experimental models. To determine its mechanism of action, we assessed the effect of CKLP1 on aqueous humor dynamics and in combination therapy with existing ocular hypotensive agents. Methods Outflow facility was assessed in C57BL/6 mice by ex vivo eye perfusions and by in vivo constant flow infusion following CKLP1 treatment. Human anterior segments with no trabecular meshwork were evaluated for effect on pressure following CKLP1 treatment. CKLP1 alone and in combination with latanoprost, timolol, and Rho kinase inhibitor Y27632 were evaluated for effect on intraocular pressure in C57BL/6 mice and Dutch-belted pigmented rabbits. Results CKLP1 lowered episcleral venous pressure (control: 8.9 ± 0.1 mm Hg versus treated: 6.2 ± 0.1 mm Hg, P < 0.0001) but had no detectable effect on outflow facility, aqueous humor flow rate, or uveoscleral outflow. Treatment with CKLP1 in human anterior segments without the trabecular meshwork resulted in a 50% ± 9% decrease in pressure, suggesting an effect on the distal portion of the conventional outflow pathway. CKLP1 worked additively with latanoprost, timolol, and Y27632 to lower IOP, presumably owing to combined effects on different aspects of aqueous humor dynamics. Conclusions CKLP1 lowered intraocular pressure by reducing episcleral venous pressure and lowering distal outflow resistance in the conventional outflow pathway. Owing to this unique mechanism of action, CKLP1 works in an additive manner to lower intraocular pressure with latanoprost, timolol, and Rho kinase inhibitor Y27632. PMID:29114841
Netarsudil Increases Outflow Facility in Human Eyes Through Multiple Mechanisms
Ren, Ruiyi; Li, Guorong; Le, Thuy Duong; Kopczynski, Casey; Stamer, W. Daniel; Gong, Haiyan
2016-01-01
Purpose Netarsudil is a Rho kinase/norepinephrine transporter inhibitor currently in phase 3 clinical development for glaucoma treatment. We investigated the effects of its active metabolite, netarsudil-M1, on outflow facility (C), outflow hydrodynamics, and morphology of the conventional outflow pathway in enucleated human eyes. Methods Paired human eyes (n = 5) were perfused with either 0.3 μM netarsudil-M1 or vehicle solution at constant pressure (15 mm Hg). After 3 hours, fluorescent microspheres were added to perfusion media to trace the outflow patterns before perfusion-fixation. The percentage effective filtration length (PEFL) was calculated from the measured lengths of tracer distribution in the trabecular meshwork (TM), episcleral veins (ESVs), and along the inner wall (IW) of Schlemm's canal after global and confocal imaging. Morphologic changes along the trabecular outflow pathway were investigated by confocal, light, and electron microscopy. Results Perfusion with netarsudil-M1 significantly increased C when compared to baseline (51%, P < 0.01) and to paired controls (102%, P < 0.01), as well as significantly increased PEFL in both IW (P < 0.05) and ESVs (P < 0.01). In treated eyes, PEFL was significantly higher in ESVs than in the IW (P < 0.01) and was associated with increased cross-sectional area of ESVs (P < 0.01). Percentage effective filtration length in ESVs positively correlated with the percentage change in C (R2 = 0.58, P = 0.01). A significant increase in juxtacanalicular connective tissue (JCT) thickness (P < 0.05) was found in treated eyes compared to controls. Conclusions Netarsudil acutely increased C by expansion of the JCT and dilating the ESVs, which led to redistribution of aqueous outflow through a larger area of the IW and ESVs. PMID:27842161
Yang, Chen-Yuan Charlie
2014-01-01
Abstract Rho-kinase inhibitors affect actomyosin cytoskeletal networks and have been shown to significantly increase outflow facility and lower intraocular pressure in various animal models and human eyes. This article summarizes common morphological changes in the trabecular meshwork induced by Rho-kinase inhibitors and specifically compares the morphological and hydrodynamic correlations with increased outflow facility by Rho-kinase inhibitor, Y-27632, in bovine, monkey, and human eyes under similar experimental conditions. Interspecies comparison has shown that morphological changes in the juxtacanalicular connective tissue (JCT) of these 3 species were different. However, these different morphological changes in the JCT, no matter if it's separation between the JCT and inner wall in bovine eyes, or separation between the JCT cells or between the JCT cells and their matrix in monkey eyes, or even no separation between the inner wall and the JCT but a more subtle expansion of the JCT in human eyes, appear to correlate with the increased percent change of outflow facility. More importantly, these different morphological changes all resulted in an increase in effective filtration area, which was positively correlated with increased outflow facility in all 3 species. These results suggest a link among changes in outflow facility, tissue architecture, and aqueous outflow pattern. Y-27632 increases outflow facility by redistributing aqueous outflow through a looser and larger area in the JCT. PMID:24460021
Yang, Chen-Yuan Charlie; Liu, Ye; Lu, Zhaozeng; Ren, Ruiyi; Gong, Haiyan
2013-08-28
To determine the effect of Y27632, a Rho-kinase inhibitor on aqueous outflow facility, flow pattern, and juxtacanalicular tissue (JCT)/trabecular meshwork (TM) morphology in human eyes. Sixteen enucleated human eyes were perfused with PBS plus glucose (GPBS) at 15 mm Hg to establish the baseline outflow facility. Six eyes were perfused for short-duration (30 minute) with either 50 μM Y27632 or GPBS (n = 3 per group). Ten eyes were perfused for long duration (3 hours) with either 50 μM Y27632 or GPBS (n = 5 per group). Outflow pattern was labeled using fluorescent microspheres, and effective filtration length (EFL) was measured. Morphologic changes and their relationship to EFL and facility were analyzed. Outflow facility significantly increased after short-duration perfusion with Y27632 compared with its own baseline (P = 0.03), but did not reach statistical significance compared with its controls (P = 0.07). Outflow facility (P = 0.01) and EFL (P < 0.05) were significantly increased after long-duration perfusion with Y27632 compared with its controls. Increases in outflow facility and EFL demonstrated a positive correlation. Morphologically, the TM and JCT of high-tracer regions were more expanded compared with low-tracer regions. A significant increase in JCT thickness was found in the long-duration Y27632 group compared with its control group (10.0 vs. 8.0 μm, P < 0.01). Y27632 increases outflow facility in human eyes. This increase correlates positively with an increase in EFL, which is associated with an increased expansion in the JCT. Our data suggest that EFL could serve as a novel parameter to correlate with outflow facility.
Bimatoprost, prostamide activity, and conventional drainage.
Wan, Zhou; Woodward, David F; Cornell, Clive L; Fliri, Hans G; Martos, José L; Pettit, Simon N; Wang, Jenny W; Kharlamb, Alexander B; Wheeler, Larry A; Garst, Michael E; Landsverk, Kari J; Struble, Craig S; Stamer, W Daniel
2007-09-01
Despite structural similarity with prostaglandin F(2 alpha), the ocular hypotensive agent bimatoprost (Lumigan; Allergan, Inc., Irvine, CA) shows unique pharmacology in vitro and functional activity in vivo. Unfortunately, the precise mechanisms that underlie bimatoprost's distinctive impact on aqueous humor dynamics are unclear. The purpose of the present study was to investigate the effects of bimatoprost and a novel prostamide-selective antagonist AGN 211334 on human conventional drainage. Two model systems were used to test the consequences of bimatoprost and/or AGN 211334 treatment on conventional drainage. Human anterior segments in organ culture were perfused at a constant flow rate of 2.5 microL/min while pressure was recorded continuously. After stable baseline facilities were established, segments were treated with drug(s), and pressure was monitored for an additional 3 days. In parallel, the drugs' effects on hydraulic conductivity of human trabecular meshwork (TM) cell monolayers were evaluated. Pharmacological properties of AGN 211334 were characterized in isolated feline iris preparations in organ culture and heterologously expressed G-protein-coupled receptors were examined in vitro. Bimatoprost increased outflow facility by an average of 40% +/- 10% within 48 hours of treatment (n = 10, P < 0.001). Preincubation or coincubation with AGN 211334 significantly blunted bimatoprost's effects by 95% or 43%, respectively. Similar results were obtained in cell culture experiments in which bimatoprost increased hydraulic conductivity of TM cell monolayers by 78% +/- 25%. Pretreatment with AGN 211334 completely blocked bimatoprost's effects, while coincubation decreased its effects on average by 74%. In both models, AGN 211334 alone significantly decreased fluid flux across trabecular tissues and cells. The findings indicate that bimatoprost interacts with a prostamide receptor in the trabecular meshwork to increase outflow facility.
Segmental Versican Expression in the Trabecular Meshwork and Involvement in Outflow Facility
Keller, Kate E.; Bradley, John M.; Vranka, Janice A.
2011-01-01
Purpose. Versican is a large proteoglycan with numerous chondroitin sulfate (CS) glycosaminoglycan (GAG) side chains attached. To assess versican's potential contributions to aqueous humor outflow resistance, its segmental distribution in the trabecular meshwork (TM) and the effect on outflow facility of silencing the versican gene were evaluated. Methods. Fluorescent quantum dots (Qdots) were perfused to label outflow pathways of anterior segments. Immunofluorescence with confocal microscopy and quantitative RT-PCR were used to determine versican protein and mRNA distribution relative to Qdot-labeled regions. Lentiviral delivery of shRNA-silencing cassettes to TM cells in perfused anterior segment cultures was used to evaluate the involvement of versican and CS GAG chains in outflow facility. Results. Qdot uptake by TM cells showed considerable segmental variability in both human and porcine outflow pathways. Regional levels of Qdot labeling were inversely related to versican protein and mRNA levels; versican levels were relatively high in sparsely Qdot-labeled regions and low in densely labeled regions. Versican silencing decreased outflow facility in human and increased facility in porcine anterior segments. However, RNAi silencing of ChGn, an enzyme unique to CS GAG biosynthesis, increased outflow facility in both species. The fibrillar pattern of versican immunostaining in the TM juxtacanalicular region was disrupted after versican silencing in perfusion culture. Conclusions. Versican appears to be a central component of the outflow resistance, where it may organize GAGs and other ECM components to facilitate and control open flow channels in the TM. However, the exact molecular organization of this resistance appears to differ between human and porcine eyes. PMID:21596823
Triamcinolone Acetonide Decreases Outflow Facility in C57BL/6 Mouse Eyes
Kumar, Sandeep; Shah, Shaily; Deutsch, Emily Rose; Tang, Hai Michael; Danias, John
2013-01-01
Purpose. To determine the effect of triamcinolone acetonide (TA) on outflow facility in mice. Methods. Animals received 20 μL of TA (40 mg/mL) suspension subconjunctivally either bilaterally or unilaterally and were euthanized after either 1 week or 3 weeks. Before mice were killed, IOP was measured with a rebound tonometer. Outflow facility was determined using simultaneous pressure and flow measurements. Another set of animals received bilateral injection of anecortave acetate (AA) with or without bilateral TA injection and their outflow facility was also determined. Myocilin expression was investigated in a subset of eyes using quantitative PCR (qPCR). Results. Outflow facility of eyes in animals receiving bilateral TA injection (TABL) and TA-treated eyes of animals receiving unilateral injection (TAUL) was significantly decreased compared to naïve control eyes (Cnaive) after 1 week and 3 weeks of TA treatment (ANOVA P < 0.01, P < 0.001, respectively). Eyes treated with AA (with or without TA) had higher outflow facility than animals treated with TA (P < 0.05). IOP data did not show any significant difference between groups. qPCR analysis revealed significant decrease in myocilin expression in eyes receiving AA compared to naïve control and TA-treated eyes (ANOVA P < 0.001). Conclusions. Steroid treatment significantly decreases outflow facility in C57BL/6 mice despite having small effect on IOP. This animal model can be useful for studying the pathogenesis of steroid-induced glaucoma. PMID:23322580
Unconventional Aqueous Humor Outflow: A Review
Johnson, Mark; McLaren, Jay W.; Overby, Darryl R.
2016-01-01
Aqueous humor flows out of the eye primarily through the conventional outflow pathway that includes the trabecular meshwork and Schlemm's canal. However, a fraction of aqueous humor passes through an alternative or ‘unconventional’ route that includes the ciliary muscle, supraciliary and suprachoroidal spaces. From there, unconventional outflow may drain through two pathways: a uveoscleral pathway where aqueous drains across the sclera to be resorbed by orbital vessels, and a uveovortex pathway where aqueous humor enters the choroid to drain through the vortex veins. We review the anatomy, physiology and pharmacology of these pathways. We also discuss methods to determine unconventional outflow rate, including direct techniques that use radioactive or fluorescent tracers recovered from tissues in the unconventional pathway and indirect methods that estimate unconventional outflow based on total outflow over a range of pressures. Indirect methods are subject to a number of assumptions and generally give poor agreement with tracer measurements. We review the variety of animal models that have been used to study conventional and unconventional outflow. The mouse appears to be a promising model because it captures several aspects of conventional and unconventional outflow dynamics common to humans, although questions remain regarding the magnitude of unconventional outflow in mice. Finally, we review future directions. There is a clear need to develop improved methods for measuring unconventional outflow in both animals and humans. PMID:26850315
Estimating outflow facility through pressure dependent pathways of the human eye
Gardiner, Bruce S.
2017-01-01
We develop and test a new theory for pressure dependent outflow from the eye. The theory comprises three main parameters: (i) a constant hydraulic conductivity, (ii) an exponential decay constant and (iii) a no-flow intraocular pressure, from which the total pressure dependent outflow, average outflow facilities and local outflow facilities for the whole eye may be evaluated. We use a new notation to specify precisely the meaning of model parameters and so model outputs. Drawing on a range of published data, we apply the theory to animal eyes, enucleated eyes and in vivo human eyes, and demonstrate how to evaluate model parameters. It is shown that the theory can fit high quality experimental data remarkably well. The new theory predicts that outflow facilities and total pressure dependent outflow for the whole eye are more than twice as large as estimates based on the Goldman equation and fluorometric analysis of anterior aqueous outflow. It appears likely that this discrepancy can be largely explained by pseudofacility and aqueous flow through the retinal pigmented epithelium, while any residual discrepancy may be due to pathological processes in aged eyes. The model predicts that if the hydraulic conductivity is too small, or the exponential decay constant is too large, then intraocular eye pressure may become unstable when subjected to normal circadian changes in aqueous production. The model also predicts relationships between variables that may be helpful when planning future experiments, and the model generates many novel testable hypotheses. With additional research, the analysis described here may find application in the differential diagnosis, prognosis and monitoring of glaucoma. PMID:29261696
Lu, Zhaozeng; Zhang, Yuyan; Freddo, Thomas F.; Gong, Haiyan
2011-01-01
Our previous studies in bovine eyes demonstrated that the structural correlate to the increase in outflow facility after either Rho-kinase inhibitor Y-27632 (Y27) treatment or washout appeared to be separation between the juxtacanalicular tissue (JCT) and inner wall (IW) of the aqueous plexus, the bovine equivalent of Schlemm's canal (SC). While these findings suggest that Y27 and washout may increase outflow facility through a similar mechanism, the anatomy of bovine outflow pathway differs considerably from both the human and monkey outflow pathway; however, only the human eye does not exhibit washout. In light of this, we compared the effects of Y27 and washout on outflow facility, hydrodynamic patterns of outflow, and the morphology of the IW and JCT in monkey eyes, given that their anatomy is closer to human eyes. Twelve freshly enucleated monkey eyes were used in this study. Eyes were perfused with Dulbecco's PBS containing 5.5 mM glucose (GPBS) to establish a baseline facility at 15 mmHg. Four eyes were perfused for a short-duration (30 min) as a control, 4 eyes for a long-duration (180 min) to induce washout, and 4 eyes with GPBS+50 μM Y27 for 30 min. All eyes were then perfused with fluorescent microspheres (0.5μm; 0.002%) to label the hydrodynamic patterns of outflow and then perfusion-fixed. Confocal images of frontal sections were taken along the IW of SC. The total length (TL) and the tracer decorated length (FL) of the IW were measured to calculate the average percent effective filtration length (PEFL=FL/TL). Sections with SC were examined by light and electron microscopy. The TL of the IW and the length exhibiting separation (SL) in the JCT were measured to calculate the average percent separation length (PSL= SL/TL). Outflow facility increased 149.2% (p<0.01) from baseline after washout during long-duration perfusion, and 114.9% (p=0.004) after Y27 treatment, but did not change significantly after short-duration perfusion in control eyes (p=0.46). Distribution of the tracer labeling appeared punctate along the IW of control eyes, while a more uniform pattern was observed after washout and Y27 treatment. PEFL in washout (83.4±2.1%) and Y27 treated eyes (82.5±1.6%) was 3.4-fold larger compared to controls (24.2±4.2%, P<0.001). The JCT appeared distended with loss of connections between JCT cells and between JCT cells and their extracelluar matrix in eyes with washout or after Y-27 treatment. PSL in the JCT was 2.3-fold larger in washout eyes (77.4±3.3%) and 2.2-fold larger in Y27 treated eyes (75.2±5.3%) versus controls (33.5±5.3%, p=0.001). Significant positive correlations were found between outflow facility and PEFL, facility and PSL and between PEFL and PSL. Our data demonstrated that similar hydrodynamic and morphological changes occurred in the aqueous humor outflow pathway of monkey eyes after induction of washout and Y27 treatment. Both Y27 and washout increase outflow facility by redistributing aqueous outflow through a larger area in the JCT. These hydrodynamic changes are likely driven by morphologic changes associated with a decrease in cell-cell and cell-matrix connections in the JCT. PMID:21669200
Aqueous Humor Dynamics of the Brown-Norway Rat
Ficarrotta, Kayla R.; Bello, Simon A.; Mohamed, Youssef H.; Passaglia, Christopher L.
2018-01-01
Purpose The study aimed to provide a quantitative description of aqueous humor dynamics in healthy rat eyes. Methods One eye of 26 anesthetized adult Brown-Norway rats was cannulated with a needle connected to a perfusion pump and pressure transducer. Pressure-flow data were measured in live and dead eyes by varying pump rate (constant-flow technique) or by modulating pump duty cycle to hold intraocular pressure (IOP) at set levels (modified constant-pressure technique). Data were fit by the Goldmann equation to estimate conventional outflow facility (\\begin{document}\
NASA Technical Reports Server (NTRS)
Symons, E. P.
1979-01-01
An analysis is presented for defining the outlet contour of a hemispherical-bottomed cylindrical tank that will prevent vapor ingestion when the tank is drained. The analysis was used to design two small-scale tanks that were fabricated and then tested in a low gravity environment. The draining performance of the tanks was compared with that for a tank with a conventional outlet having a constant circular cross-sectional area, under identical conditions. Even when drained at off-design conditions, the contoured tank had less liquid residuals at vapor ingestion than the conventional outlet tank. Effects of outflow rate, gravitational environment, and fluid properties on the outlet contour are discussed. Two potential applications of outlet contouring are also presented and discussed.
Francis, Andrew W.; Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Folz, Steven; Overby, Darryl R.; Sigal, Ian A.; Wang, Bo; Schuman, Joel S.
2012-01-01
Purpose. To describe morphometric details of the human aqueous humor (AH) outflow microvasculature visualized with 360-degree virtual castings during active AH outflow in cadaver eyes and to compare these structures with corrosion casting studies. Methods. The conventional AH outflow pathways of donor eyes (n = 7) and eyes in vivo (n = 3) were imaged with spectral-domain optical coherence tomography (SD-OCT) and wide-bandwidth superluminescent diode array during active AH outflow. Digital image contrast was adjusted to isolate AH microvasculature, and images were viewed in a 3D viewer. Additional eyes (n = 3) were perfused with mock AH containing fluorescent tracer microspheres to compare microvasculature patterns. Results. Observations revealed components of the conventional outflow pathway from Schlemm's canal (SC) to the superficial intrascleral venous plexus (ISVP). The superficial ISVP in both our study and corrosion casts were composed of interconnected venules (10–50 μm) forming a hexagonal meshwork. Larger radial arcades (50–100 μm) drained the region nearest SC and converged with larger tortuous vessels (>100 μm). A 360-degree virtual casting closely approximated corrosion casting studies. Tracer studies corroborated our findings. Tracer decorated several larger vessels (50–100 μm) extending posteriorly from the limbus in both raw and contrast-enhanced fluorescence images. Smaller tracer-labeled vessels (30–40 μm) were seen branching between larger vessels and exhibited a similar hexagonal network pattern. Conclusions. SD-OCT is capable of detailed morphometric analysis of the conventional outflow pathway in vivo or ex vivo with details comparable to corrosion casting techniques. PMID:22499987
Lee, Yong S; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y; Levin, Lonny R; Buck, Jochen; Marmorstein, Alan D
2011-12-02
Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.
Kazemi, Arash; McLaren, Jay W; Kopczynski, Casey C; Heah, Theresa G; Novack, Gary D; Sit, Arthur J
2018-06-01
Netarsudil, an inhibitor of Rho kinase and a norepinephrine transporter, has been shown to lower elevated intraocular pressure (IOP) in controlled studies of patients with open-angle glaucoma and ocular hypertension, and in healthy volunteers. The mechanism of this ocular hypotensive effect in humans is unknown. The objective of this study was to evaluate the effect of netarsudil 0.02% on aqueous humor dynamics (AHD) parameters. In this double-masked, vehicle-controlled, paired-eye comparison study, 11 healthy volunteers received topical netarsudil ophthalmic solution 0.02% or its vehicle once daily for 7 days (morning dosing). The primary endpoints were the change in AHD parameters, compared between active and vehicle-treated eyes. In netarsudil-treated eyes, diurnal outflow facility increased from 0.27 ± 0.10 μL/min/mmHg to 0.33 ± 0.11 μL/min/mmHg (+22%; P = 0.02) after 7 days of treatment. In placebo-treated eyes, diurnal outflow facility did not significantly change (P = 0.94). The difference between netarsudil and placebo eyes in diurnal change of outflow facility was 0.08 μL/min/mmHg (P < 0.001). Diurnal episcleral venous pressure (EVP) in netarsudil-treated eyes decreased from 7.9 ± 1.2 mmHg to 7.2 ± 1.8 (-10%; P = 0.01). Diurnal EVP was not significantly different between netarsudil- and placebo-treated eyes. There was a trend toward decreasing aqueous humor flow rate (-15%; P = 0.08). No treatment changes were seen in uveoscleral outflow rate. Once-daily dosing of netarsudil ophthalmic solution 0.02% lowered IOP through increasing trabecular outflow facility and reducing EVP. This suggests a combination of mechanisms that affect both the proximal and distal outflow pathways.
Improvement in Outflow Facility by Two Novel Microinvasive Glaucoma Surgery Implants
Hays, Cassandra L.; Gulati, Vikas; Fan, Shan; Samuelson, Thomas W.; Ahmed, Iqbal Ike K.; Toris, Carol B.
2014-01-01
Purpose. To determine improvement in outflow facility (C) in human anterior segments implanted with a novel Schlemm's canal scaffold or two trabecular micro-bypasses. Methods. Human anterior segments were isolated from 12 pairs of eyes from donors with no history of ocular disease and then perfused at 50, 40, 30, 20, and 10 mm Hg pressures for 10 minutes each. Baseline C was calculated from perfusion pressures and flow rates. The scaffold was implanted into Schlemm's canal of one anterior segment, and two micro-bypasses were implanted three clock-hours apart in the contralateral anterior segment. Outflow facility and resistance were compared at various standardized perfusion pressures and between each device. Results. Compared to baseline, C increased by 0.16 ± 0.12 μL/min/mm Hg (74%) with the scaffold, and 0.08 ± 0.12 μL/min/mm Hg (34%) with two micro-bypasses. The scaffold increased C at perfusion pressures of 50, 40, 30, and 20 mm Hg (P < 0.005). Two micro-bypasses increased C at a perfusion pressure of 40 mm Hg (P < 0.05). Conclusions. Both implants effectively increased C in human eyes ex vivo. The scaffold increased C by a greater percentage (73% vs. 34%) and at a greater range of perfusion pressures (20 to 50 mm Hg vs. 40 mm Hg) than the two micro-bypasses, suggesting that the 8-mm dilation of Schlemm's canal by the scaffold may have additional benefits in lowering the outflow resistance. The Hydrus Microstent scaffold may be an effective therapy for increasing outflow facility and thus reducing the IOP in patients with glaucoma. PMID:24550367
Comparative analysis of the outflow water quality of two sustainable linear drainage systems.
Andrés-Valeri, V C; Castro-Fresno, D; Sañudo-Fontaneda, L A; Rodriguez-Hernandez, J
2014-01-01
Three different drainage systems were built in a roadside car park located on the outskirts of Oviedo (Spain): two sustainable urban drainage systems (SUDS), a swale and a filter drain; and one conventional drainage system, a concrete ditch, which is representative of the most frequently used roadside drainage system in Spain. The concentrations of pollutants were analyzed in the outflow of all three systems in order to compare their capacity to improve water quality. Physicochemical water quality parameters such as dissolved oxygen, total suspended solids, pH, electrical conductivity, turbidity and total petroleum hydrocarbons were monitored and analyzed for 25 months. Results are presented in detail showing significantly smaller amounts of outflow pollutants in SUDS than in conventional drainage systems, especially in the filter drain which provided the best performance.
Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro
2012-01-01
Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289
Quantification of Focal Outflow Enhancement Using Differential Canalograms
Loewen, Ralitsa T.; Brown, Eric N.; Scott, Gordon; Parikh, Hardik; Schuman, Joel S.; Loewen, Nils A.
2016-01-01
Purpose To quantify regional changes of conventional outflow caused by ab interno trabeculectomy (AIT). Methods Gonioscopic, plasma-mediated AIT was established in enucleated pig eyes. We developed a program to automatically quantify outflow changes (R, package eye-canalogram, github.com) using a fluorescent tracer reperfusion technique. Trabecular meshwork (TM) ablation was demonstrated with fluorescent spheres in six eyes before formal outflow quantification with two-dye reperfusion canalograms in six additional eyes. Eyes were perfused with a central, intracameral needle at 15 mm Hg. Canalograms and histology were correlated for each eye. Results The pig eye provided a model with high similarity to AIT in human patients. Histology indicated ablation of TM and unroofing of most Schlemm's canal segments. Spheres highlighted additional circumferential and radial outflow beyond the immediate area of ablation. Differential canalograms showed that AIT caused an increase of outflow of 17 ± 5-fold inferonasally, 14 ± 3-fold superonasally, and also an increase in the opposite quadrants with a 2 ± 1-fold increase superotemporally, and 3 ± 3 inferotemporally. Perilimbal specific flow image analysis showed an accelerated nasal filling with an additional perilimbal flow direction into adjacent quadrants. Conclusions A quantitative, differential canalography technique was developed that allows us to quantify supraphysiological outflow enhancement by AIT. PMID:27227352
An In Vitro Perfusion System to Enhance Outflow Studies in Mouse Eyes
Kizhatil, Krishnakumar; Chlebowski, Arthur; Tolman, Nicholas G.; Freeburg, Nelson F.; Ryan, Margaret M.; Shaw, Nicholas N.; Kokini, Alexander D. M.; Marchant, Jeffrey K.; John, Simon W. M.
2016-01-01
Purpose The molecular mechanisms controlling aqueous humor (AQH) outflow and IOP need much further definition. The mouse is a powerful system for characterizing the mechanistic basis of AQH outflow. To enhance outflow studies in mice, we developed a perfusion system that is based on human anterior chamber perfusion culture systems. Our mouse system permits previously impractical experiments. Methods We engineered a computer-controlled, pump-based perfusion system with a platform for mounting whole dissected mouse eyes (minus lens and iris, ∼45% of drainage tissue is perfused). We tested the system's ability to monitor outflow and tested the effects of the outflow-elevating drug, Y27632, a rho-associated protein kinase (ROCK) inhibitor. Finally, we tested the system's ability to detect genetically determined decreases in outflow by determining if deficiency of the candidate genes Nos3 and Cav1 alter outflow. Results Using our system, the outflow facility (C) of C57BL/6J mouse eyes was found to range between 7.7 and 10.4 nl/minutes/mm Hg (corrected for whole eye). Our system readily detected a 74.4% Y27632-induced increase in C. The NOS3 inhibitor L-NG-nitroarginine methyl ester (L-NAME) and a Nos3 null mutation reduced C by 28.3% and 35.8%, respectively. Similarly, in Cav1 null eyes C was reduced by 47.8%. Conclusions We engineered a unique perfusion system that can accurately measure changes in C. We then used the system to show that NOS3 and CAV1 are key components of mechanism(s) controlling outflow. PMID:27701632
Kanno, M.; Araie, M.; Koibuchi, H.; Masuda, K.
2000-01-01
AIMS—To study the effects of topical nipradilol, a non-selective β blocker with α blocking and nitroglycerin-like activities, on intraocular pressure (IOP) and aqueous humour dynamics in normal humans and in patients with ocular hypertension. METHODS—Nipradilol (0.06%, 0.125%, 0.25%, 0.5%) was applied to normal volunteers (n = 12) to test for IOP lowering effects. In a second group of normal volunteers (n = 11), nipradilol (0.125% and 0.25%) and timolol (0.5%) were compared for IOP lowering effects. After a single administration of 0.25% nipradilol, IOP, flare intensity in the anterior chamber, aqueous flow, uveoscleral outflow, tonographic outflow facility, and episcleral venous pressure were either directly measured or mathematically calculated. Topical nipradilol (0.25%) was administered to 24 patients with ocular hypertension twice daily for 8 weeks. RESULTS—Administration of 0.25% nipradilol decreased IOP with a maximum reduction of 4.2 mm Hg lasting 12 hours. A single instillation of both 0.25% nipradilol and 0.5% timolol reduced the IOP in normotensive human subjects to the same degree. A single instillation of 0.25% nipradilol decreased the aqueous flow rate in the treated eye by 20%. Nipradilol produced no significant effect in tonographic outflow facility or episcleral venous pressure, but uveoscleral outflow was increased. In patients with ocular hypertension, twice daily instillation of 0.25% nipradilol decreased IOP without tachyphylaxis for the 8 week test period. CONCLUSION—Topical nipradilol (0.25%) reduced IOP by decreasing the aqueous flow rate and probably also by increasing uveoscleral outflow. Nipradilol should be further investigated as a new antiglaucoma drug. PMID:10684841
NASA Technical Reports Server (NTRS)
Whitmire, D. P.; Matese, John J.; Reynolds, R. T.
1989-01-01
A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.
Polymer tensiometer with ceramic cones: a case study for a Brazilian soil.
NASA Astrophysics Data System (ADS)
Durigon, A.; de Jong van Lier, Q.; van der Ploeg, M. J.; Gooren, H. P. A.; Metselaar, K.; de Rooij, G. H.
2009-04-01
Laboratory outflow experiments, in combination with inverse modeling techniques, allow to simultaneously determine retention and hydraulic conductivity functions. A numerical model solves the pressure-head-based form of the Richards' equation for unsaturated flow in a rigid porous medium. Applying adequate boundary conditions, the cumulative outflow is calculated at prescribed times, and as a function of the set of optimized parameters. These parameters are evaluated by nonlinear least-squares fitting of predicted to observed cumulative outflow with time. An objective function quantifies this difference between calculated and observed cumulative outflow and between predicted and measured soil water retention data. Using outflow data only in the objective function, the multistep outflow method results in unique estimates of the retention and hydraulic conductivity functions. To obtain more reliable estimates of the hydraulic conductivity as a function of the water content using the inverse method, the outflow data must be supplemented with soil retention data. To do so tensiometers filled with a polymer solution instead of water were used. The measurement range of these tensiometers is larger than that of the conventional tensiometers, being able to measure the entire pressure head range over which crops take up water, down to values in the order of -1.6 MPa. The objective of this study was to physically characterize a Brazilian red-yellow oxisol using measurements in outflow experiments by polymer tensiometers and processing these data with the inverse modeling technique for use in the analysis of a field experiment and in modeling. The soil was collected at an experimental site located in Piracicaba, Brazil, 22° 42 S, 47° 38 W, 550 m above sea level.
A Closer Look at Schlemm's Canal Cell Physiology: Implications for Biomimetics.
Dautriche, Cula N; Tian, Yangzi; Xie, Yubing; Sharfstein, Susan T
2015-09-21
Among ocular pathologies, glaucoma is the second leading cause of progressive vision loss, expected to affect 80 million people worldwide by 2020. A primary cause of glaucoma appears to be damage to the conventional outflow tract. Conventional outflow tissues, a composite of the trabecular meshwork and the Schlemm's canal, regulate and maintain homeostatic responses to intraocular pressure. In glaucoma, filtration of aqueous humor into the Schlemm's canal is hindered, leading to an increase in intraocular pressure and subsequent damage to the optic nerve, with progressive vision loss. The Schlemm's canal encompasses a unique endothelium. Recent advances in culturing and manipulating Schlemm's canal cells have elucidated several aspects of their physiology, including ultrastructure, cell-specific marker expression, and biomechanical properties. This review highlights these advances and discusses implications for engineering a 3D, biomimetic, in vitro model of the Schlemm's canal endothelium to further advance glaucoma research, including drug testing and gene therapy screening.
Parikh, Hardik A; Loewen, Ralitsa T; Roy, Pritha; Schuman, Joel S; Lathrop, Kira L; Loewen, Nils A
2016-11-04
Recently introduced microincisional glaucoma surgeries that enhance conventional outflow offer a favorable risk profile over traditional surgeries, but can be unpredictable. Two paramount challenges are the lack of an adequate training model for angle surgeries and the absence of an intraoperative quantification of surgical success. To address both, we developed an ex vivo training system and a differential, quantitative canalography method that uses slope-adjusted fluorescence intensities of two different chromophores to avoid quenching. We assessed outflow enhancement by trabecular micro-bypass (TMB) implantation or by ab interno trabeculectomy (AIT). In this porcine model, TMB resulted in an insignificant (p > 0.05) outflow increase of 13 ± 5%, 14 ± 8%, 9 ± 3%, and 24 ± 9% in the inferonasal, superonasal, superotemporal, and inferotemporal quadrant, respectively. AIT caused a 100 ± 50% (p = 0.002), 75 ± 28% (p = 0.002), 19 ± 8%, and 40 ± 21% increase in those quadrants. The direct gonioscopy and tactile feedback provided a surgical experience that was very similar to that in human patients. Despite the more narrow and discontinuous circumferential drainage elements in the pig with potential for underperformance or partial stent obstruction, unequivocal patterns of focal outflow enhancement by TMB were seen in this training model. AIT achieved extensive access to outflow pathways beyond the surgical site itself.
Parikh, Hardik A.; Loewen, Ralitsa T.; Roy, Pritha; Schuman, Joel S.; Lathrop, Kira L.; Loewen, Nils A.
2016-01-01
Recently introduced microincisional glaucoma surgeries that enhance conventional outflow offer a favorable risk profile over traditional surgeries, but can be unpredictable. Two paramount challenges are the lack of an adequate training model for angle surgeries and the absence of an intraoperative quantification of surgical success. To address both, we developed an ex vivo training system and a differential, quantitative canalography method that uses slope-adjusted fluorescence intensities of two different chromophores to avoid quenching. We assessed outflow enhancement by trabecular micro-bypass (TMB) implantation or by ab interno trabeculectomy (AIT). In this porcine model, TMB resulted in an insignificant (p > 0.05) outflow increase of 13 ± 5%, 14 ± 8%, 9 ± 3%, and 24 ± 9% in the inferonasal, superonasal, superotemporal, and inferotemporal quadrant, respectively. AIT caused a 100 ± 50% (p = 0.002), 75 ± 28% (p = 0.002), 19 ± 8%, and 40 ± 21% increase in those quadrants. The direct gonioscopy and tactile feedback provided a surgical experience that was very similar to that in human patients. Despite the more narrow and discontinuous circumferential drainage elements in the pig with potential for underperformance or partial stent obstruction, unequivocal patterns of focal outflow enhancement by TMB were seen in this training model. AIT achieved extensive access to outflow pathways beyond the surgical site itself. PMID:27811973
A Massive Molecular Outflow in the Dense Dust Core AGAL G337.916-00.477
NASA Astrophysics Data System (ADS)
Torii, Kazufumi; Hattori, Yusuke; Hasegawa, Keisuke; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Tokuda, Kazuki; Onishi, Toshikazu; Hattori, Yasuki; Ishihara, Daisuke; Kaneda, Hidehiro; Fukui, Yasuo
2017-05-01
Massive molecular outflows erupting from high-mass young stellar objects (YSOs) provide important clues to understanding the mechanism of high-mass star formation. Based on new CO J = 3-2 and J = 1-0 observations using the Atacama Submillimeter Telescope Experiment (ASTE) and Mopra telescope facilities, we discovered a massive bipolar outflow associated with the dense dust core AGAL G337.916-00.477 (AGAL337.9-S), located 3.48 kpc from the Sun. The outflow lobes have extensions of less than 1 pc—and thus were not fully resolved in the angular resolutions of ASTE and Mopra—and masses of ˜50 M ⊙. The maximum velocities of the outflow lobes are as high as 36-40 {km} {{{s}}}-1. Our analysis of the infrared and submillimeter data indicates that AGAL337.9-S is in an early evolutionary stage of high-mass star formation, having the total far-infrared luminosity of ˜ 5× {10}4 {L}⊙ . We also found that another dust core, AGAL G337.922-00.456 (AGAL337.9-N), located 2‧ north of AGAL337.9-S, is a high-mass YSO in an earlier evolutionary stage than AGAL337.9-S, as it is less bright in the mid-infrared than AGAL337.9-S.
Development of cloud-operating platform for detention facility design
NASA Astrophysics Data System (ADS)
Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping
2017-04-01
In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.
Estimating Human Trabecular Meshwork Stiffness by Numerical Modeling and Advanced OCT Imaging.
Wang, Ke; Johnstone, Murray A; Xin, Chen; Song, Shaozhen; Padilla, Steven; Vranka, Janice A; Acott, Ted S; Zhou, Kai; Schwaner, Stephen A; Wang, Ruikang K; Sulchek, Todd; Ethier, C Ross
2017-09-01
The purpose of this study was to estimate human trabecular meshwork (hTM) stiffness, thought to be elevated in glaucoma, using a novel indirect approach, and to compare results with direct en face atomic force microscopy (AFM) measurements. Postmortem human eyes were perfused to measure outflow facility and identify high- and low-flow regions (HF, LF) by tracer. Optical coherence tomography (OCT) images were obtained as Schlemm's canal luminal pressure was directly manipulated. TM stiffness was deduced by an inverse finite element modeling (FEM) approach. A series of AFM forcemaps was acquired along a line traversing the anterior angle on a radially cut flat-mount corneoscleral wedge with TM facing upward. The elastic modulus of normal hTM estimated by inverse FEM was 70 ± 20 kPa (mean ± SD), whereas glaucomatous hTM was slightly stiffer (98 ± 19 kPa). This trend was consistent with TM stiffnesses measured by AFM: normal hTM stiffness = 1.37 ± 0.56 kPa, which was lower than glaucomatous hTM stiffness (2.75 ± 1.19 kPa). None of these differences were statistically significant. TM in HF wedges was softer than that in LF wedges for both normal and glaucomatous eyes based on the inverse FEM approach but not by AFM. Outflow facility was significantly correlated with TM stiffness estimated by FEM in six human eyes (P = 0.018). TM stiffness is higher, but only modestly so, in glaucomatous patients. Outflow facility in both normal and glaucomatous human eyes appears to associate with TM stiffness. This evidence motivates further studies to investigate factors underlying TM biomechanical property regulation.
Functional Anatomy of the Outflow Facilities.
Pizzirani, Stefano; Gong, Haiyan
2015-11-01
In order to understand the pathophysiology, select optimal therapeutic options for patients and provide clients with honest expectations for cases of canine glaucoma, clinicians should be familiar with a rational understanding of the functional anatomy of the ocular structures involved in this group of diseases. The topographical extension and the structural and humoral complexity of the regions involved with the production and the outflow of aqueous humor undergo numerous changes with aging and disease. Therefore, the anatomy relative to the fluid dynamics of aqueous has become a pivotal yet flexible concept to interpret the different phenotypes of glaucoma. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M
2015-02-05
Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Hydraulic properties of coarsely and finely ground woodchips
NASA Astrophysics Data System (ADS)
Subroy, Vandana; Giménez, Daniel; Qin, Mingming; Krogmann, Uta; Strom, Peter F.; Miskewitz, Robert J.
2014-09-01
Recent evidence suggests that leachate from woodchips stockpiled at recycling facilities could negatively impact water quality. Models that can be used to simulate water movement/leachate production require information on water retention and hydraulic conductivity functions of the stockpiled material. The objectives of this study were to (1) determine water retention and hydraulic conductivity functions of woodchips with particle size distributions (PSDs) representative of field stockpiled material by modeling multistep outflow and (2) assess the performance of three pore structure models for their ability to simulate outflow. Six samples with contrasting PSDs were assessed in duplicate. Samples were packed in cylindrical columns (15.3 cm high, 12.1 cm wide) to measure saturated hydraulic conductivity (Ks), cumulative outflow and water content at equilibrium with pressure potentials of -2, -10 and -40 cm. Water retention at pressure potentials between -200 and -10,000 cm were obtained using pressure plate extractors and used to supplement data from the outflow experiment. Hydraulic parameters of the pore models were derived from these measurements using HYDRUS-1D run by DREAM(ZS). Ks was independent of PSD with values between 55 and 80 cm/h. Cumulative outflow at each pressure potential was correlated with the PSD geometric mean diameters, and was best predicted by a model having two interacting pore domains, each with separate hydraulic conductivity and water retention functions (DPeM). Unsaturated conductivities were predicted to drop on an average to 0.24 cm/h at -10 cm and 3 × 10-3 cm/h at -50 cm for the DPeM model, suggesting that water would move slowly through stockpiles except during intense rainfalls.
Calcutteea, Avin; Chung, Robin; Lindqvist, Per; Hodson, Margaret; Henein, Michael Y
2011-06-01
The right ventricle is multicompartmental in orientation. To assess the normal differential function of the right ventricular (RV) inflow, apical and outflow compartments, also their inter-relations and the response to pulmonary arterial hypertension (PAH). 45 people were studied--16 controls and 29 patients with left-sided heart failure, 15 without (group 1) and 14 with (group 2) secondary PAH, using two-dimensional (2D) and 3D echocardiography in addition to conventional Doppler techniques. There was a strong correlation between RV inlet diameter (2D) and end-diastolic volume (3D) (r=0.69, p<0.001) and between tricuspid annular plane systolic excursion and RV ejection fraction (3D) (r=0.71, p<0.001). In controls and patients, the apical ejection fraction was less than the inflow and outflow (controls: p<0.01 and p<0.01, group 1: p<0.05 and p<0.01 and group 2: p<0.05 and p<0.01, respectively). Ejection fraction was reduced in patients (inflow: p<0.001 for both, apical: p<0.01 for both and outflow tract: p<0.05 for both). In controls, the inflow compartment reached the minimum volume 20 ms before the outflow and apex but in group 2 it was simultaneous. Isovolumic contraction and relaxation times were prolonged in patients (Group 1: p=0.02 and p<0.01 and Group 2: p=0.01 for both). Peak RV ejection time correlated with the rate of outflow volume fall in controls but with the apex in group 2 (r=0.6, p<0.05). The right ventricle has distinct features for the inflow, apical and outflow tract compartments, with different extent of contribution to the overall systolic function. In PAH, the right ventricle becomes one dyssynchronous compartment, which itself may have perpetual effect on overall cardiac dysfunction.
Colocalization of outflow segmentation and pores along the inner wall of Schlemm's canal.
Braakman, Sietse T; Read, A Thomas; Chan, Darren W-H; Ethier, C Ross; Overby, Darryl R
2015-01-01
All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm's canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular "I" and paracellular "B" pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD(2) and nD(3)) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and B-pores (p < 0.0015 and p < 10(-4)) but not I-pores (p > 0.38). These data suggest that aqueous humor passes through micron-sized pores in the inner wall endothelium of SC. Paracellular B-pores appear to have a dominant contribution towards transendothelial filtration across the inner wall relative to transcellular I-pores. Impaired pore formation, as previously described in glaucomatous SC cells, may thereby contribute to greater outflow heterogeneity, outflow obstruction, and IOP elevation in glaucoma. Copyright © 2014 Elsevier Ltd. All rights reserved.
Colocalization of Outflow Segmentation and Pores Along the Inner Wall of Schlemm’s Canal
Braakman, Sietse T.; Read, A. Thomas; Chan, Darren W.-H.; Ethier, C. Ross; Overby, Darryl R.
2014-01-01
All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm’s canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular “I” and paracellular “B” pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD2 and nD3) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and B-pores (p < 0.0015 and p < 10−4) but not I-pores (p > 0.38). These data suggest that aqueous humor passes through micron-sized pores in the inner wall endothelium of SC. Paracellular B-pores appear to have a dominant contribution towards transendothelial filtration across the inner wall relative to transcellular I-pores. Impaired pore formation, as previously described in glaucomatous SC cells, may thereby contribute to greater outflow heterogeneity, outflow obstruction, and IOP elevation in glaucoma. PMID:25450060
Water-quality assessment of Peruque Creek, St Charles County, Missouri, July 1983 and July 1984
Berkas, W.R.
1987-01-01
Physical, chemical, and biological data collected along the downstream 24.1-river-mi reach of Peruque Creek, Missouri, on July 18-19, 1983 and July 9-10, 1984, were used to characterize the water quality conditions in the creek. Wastewater discharges into the creek at the Lake St. Louis sewage-disposal ponds and at the O'Fallon wastewater-treatment facility. The effluent from the sewage disposal ponds did not have a substantial effect on downstream water quality but that from the wastewater treatment facility caused the Missouri un-ionized ammonia standard of 0.1 mg/l as nitrogen to be exceeded downstream from the outflow. Discharge from the O'Fallon facility also caused all dissolved-oxygen concentrations measured downstream from the outflow to be less than the Missouri dissolved-oxygen standard of 5.0 mg/L. Attempts were made to calibrate and verify the QUAL-II/SEMCOG version water quality model. The model could not be adequately calibrated or verified, because of the non-uniform hydraulic conditions in Peruque Creek, which is characterized by slow velocities; long, deep pools; and inadequate mixing characteristics; and also the non-uniform quantity and quality of effluent discharged from the O'Fallon wastewater treatment facility. Thus, the assumptions of one-dimensional flow and steady-state conditions necessary for the model were not valid. The attempt to calibrate and verify the model indicated that during low-flow conditions the waste-load assimilative capacity of the downstream 17.9 river miles of Peruque Creek was limited. (USGS)
Alvarado, Jorge A.; Chau, Phuonglan; Wu, Jianfeng; Juster, Richard; Shifera, Amde Selassie; Geske, Michael
2015-01-01
Purpose To profile which cytokine genes are differentially expressed (DE) as up- or downregulated by cultured human trabecular meshwork (TMEs) and Schlemm's canal endothelial cells (SCEs) after three experimental treatments consisting of selective laser trabeculoplasty (SLT) irradiation, exposure to media conditioned either by SLT-irradiated TMEs (TME-cm) or by SCEs (SCE-cm). Also, to profile which cytokines are upregulated ex vivo in SLT-irradiated human conventional aqueous outflow pathway (CAOP) tissues. Methods After each treatment, Affymetrix microarray assays were used to detect upregulated and downregulated genes for cytokines and their receptors in TMEs and SCEs. ELISA and protein antibody arrays were used to detect upregulated cytokines secreted in SLT-irradiated CAOP tissues ex vivo. Results The SLT irradiation upregulated numerous cytokine genes in TMEs, but only a few in SCEs. Exposure to TME- and SCE-cm induced SCEs to upregulate many more cytokine genes than TMEs. Selective laser trabeculoplasty irradiation and exposure to TME-cm downregulated several cytokine genes in TMEs but none in SCEs. Selective laser trabeculoplasty irradiation induced one upregulated and three downregulated cytokine-receptor genes in TMEs but none in SCEs. Exposure to TME-cm induced upregulation of one and downregulation of another receptor gene in TMEs, whereas two unique cytokine-receptor genes were upregulated in SCEs. Cytokine protein expression analysis showed that at least eight cytokines were upregulated in SLT-irradiated human CAOP tissues in situ/ex vivo. Conclusions This study has helped us identify a cytokine signaling pathway and to consider newly identified mechanisms regulating aqueous outflow that may lay the foundation for the future development of cytokine-based glaucoma therapies. PMID:26529044
Alvarado, Jorge A; Chau, Phuonglan; Wu, Jianfeng; Juster, Richard; Shifera, Amde Selassie; Geske, Michael
2015-11-01
To profile which cytokine genes are differentially expressed (DE) as up- or downregulated by cultured human trabecular meshwork (TMEs) and Schlemm's canal endothelial cells (SCEs) after three experimental treatments consisting of selective laser trabeculoplasty (SLT) irradiation, exposure to media conditioned either by SLT-irradiated TMEs (TME-cm) or by SCEs (SCE-cm). Also, to profile which cytokines are upregulated ex vivo in SLT-irradiated human conventional aqueous outflow pathway (CAOP) tissues. After each treatment, Affymetrix microarray assays were used to detect upregulated and downregulated genes for cytokines and their receptors in TMEs and SCEs. ELISA and protein antibody arrays were used to detect upregulated cytokines secreted in SLT-irradiated CAOP tissues ex vivo. The SLT irradiation upregulated numerous cytokine genes in TMEs, but only a few in SCEs. Exposure to TME- and SCE-cm induced SCEs to upregulate many more cytokine genes than TMEs. Selective laser trabeculoplasty irradiation and exposure to TME-cm downregulated several cytokine genes in TMEs but none in SCEs. Selective laser trabeculoplasty irradiation induced one upregulated and three downregulated cytokine-receptor genes in TMEs but none in SCEs. Exposure to TME-cm induced upregulation of one and downregulation of another receptor gene in TMEs, whereas two unique cytokine-receptor genes were upregulated in SCEs. Cytokine protein expression analysis showed that at least eight cytokines were upregulated in SLT-irradiated human CAOP tissues in situ/ex vivo. This study has helped us identify a cytokine signaling pathway and to consider newly identified mechanisms regulating aqueous outflow that may lay the foundation for the future development of cytokine-based glaucoma therapies.
Rizzo, Stanislao; Fantoni, Gualtiero; de Santis, Giovanni; Lue, Jaw-Chyng Lormen; Ciampi, Jonathan; Palla, Michele; Genovesi Ebert, Federica; Savastano, Alfonso; De Maria, Carmelo; Vozzi, Giovanni; Brant Fernandes, Rodrigo A; Faraldi, Francesco; Criscenti, Giuseppe
2017-09-01
Thorough this experimental study, the physic features of a modified 23-gauge vitrectomy probe were evaluated in vitro. A modified vitrectomy probe to increase vitreous outflow rate with a small-diameter probe, that also minimized tractional forces on the retina, was created and tested. The "new" probe was created by drilling an opening into the inner duct of a traditional 23-gauge probe with electrochemical or electrodischarge micromachining. Both vitreous outflow and tractional forces on the retina were examined using experimental models of vitreous surgery. The additional opening allowed the modified probe to have a cutting rate of 5,000 cuts per minute, while sustaining an outflow approximately 45% higher than in conventional 23-gauge probes. The modified probe performed two cutting actions per cycle, not one, as in standard probes. Because tractional force is influenced by cutting rate, retinal forces were 2.2 times lower than those observed with traditional cutters. The modified probe could be useful in vitreoretinal surgery. It allows for faster vitreous removal while minimizing tractional forces on the retina. Moreover, any available probe can be modified by creating a hole in the inner duct.
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
NASA Astrophysics Data System (ADS)
Toberman, Matthew; Inall, Mark; Boyd, Tim; Dumount, Estelle; Griffiths, Colin
2017-07-01
The tidally modulated outflow of brackish water from a sea loch forms a thin surface layer that propagates into the coastal ocean as a buoyant gravity current, transporting nutrients and sediments, as well as fresh water, heat and momentum. The fresh intrusion both propagates into and generates a strongly stratified environment which supports trains of nonlinear internal waves (NLIWs). NLIWs are shown to propagate ahead of this buoyancy input in response to propagation of the outflow water into the stratified environment generated by the previous release as well as in the opposing direction after the reflection from steep bathymetry. Oblique aerial photographs were taken and photogrammetric rectification led to the identification of the buoyant intrusion and the subsequent generation of NLIWs. An autonomous underwater vehicle (AUV) was deployed on repeated reciprocal transects in order to make simultaneous CTD, ADCP, and microstructure shear measurements of the evolution of these phenomena in conjunction with conventional mooring measurements. AUV-based temperature and salinity signals of NLIWs of depression were observed together with increased turbulent kinetic energy dissipation rates of over 2 orders of magnitude within and in the wake of the NLIWs. Repeated measurements allow a unique opportunity to investigate the horizontal structure of these phenomena. Simple metric scaling demonstrates that these processes are likely to be feature of many fjordic systems located on the west coast of Scotland but may also play a key role in the assimilation of the outflow from many tidally dominated fjordic systems throughout the world.
A model to measure fluid outflow in rabbit capsules post glaucoma implant surgery.
Nguyen, Dan Q; Ross, Craig M; Li, Yu Qin; Pandav, Surinder; Gardiner, Bruce; Smith, David; How, Alicia C; Crowston, Jonathan G; Coote, Michael A
2012-10-05
Prior models of glaucoma filtration surgery assess bleb morphology, which does not always reflect function. Our aim is to establish a model that directly measures tissue hydraulic conductivity of postsurgical outflow in rabbit bleb capsules following experimental glaucoma filtration surgery. Nine rabbits underwent insertion of a single-plate pediatric Molteno implant into the anterior chamber of their left eye. Right eyes were used as controls. The rabbits were then allocated to one of two groups. Group one had outflow measurements performed at 1 week after surgery (n = 5), and group two had measurements performed at 4 weeks (n = 4). Measurements were performed by cannulating the drainage tube ostium in situ with a needle attached to a pressure transducer and a fluid column at 15 mm Hg. The drop in the fluid column was measured every minute for 5 minutes. For the control eyes (n = 6), the anterior chamber of the unoperated fellow eye was cannulated. Animals were euthanized with the implant and its surrounding capsule dissected and fixed in 4% paraformaldehyde, and embedded in paraffin before 6-μm sections were cut for histologic staining. By 7 days after surgery, tube outflow was 0.117 ± 0.036 μL/min/mm Hg at 15 mm Hg (mean ± SEM), whereas at 28 days, it was 0.009 ± 0.003 μL/min/mm Hg. Control eyes had an outflow of 0.136 ± 0.007 μL/min/mm Hg (P = 0.004, one-way ANOVA). Hematoxylin and eosin staining demonstrated a thinner and looser arrangement of collagenous tissue in the capsules at 1 week compared with that at 4 weeks, which had thicker and more densely arranged collagen. We describe a new model to directly measure hydraulic conductivity in a rabbit glaucoma surgery implant model. The principal physiologic endpoint of glaucoma surgery can be reliably quantified and consistently measured with this model. At 28 days post glaucoma filtration surgery, a rabbit bleb capsule has significantly reduced tissue hydraulic conductivity, in line with loss of implant outflow facility, and increased thickness and density of fibrous encapsulation.
Griffin, Andrew S; Gage, Shawn M; Lawson, Jeffrey H; Kim, Charles Y
2017-01-01
This study evaluated whether the use of a staged Hemodialysis Reliable Outflow (HeRO; Merit Medical, South Jordan, Utah) implantation strategy incurs increased early infection risk compared with conventional primary HeRO implantation. A retrospective review was performed of 192 hemodialysis patients who underwent HeRO graft implantation: 105 patients underwent primary HeRO implantation in the operating room, and 87 underwent a staged implantation where a previously inserted tunneled central venous catheter was used for guidewire access for the venous outflow component. Within the staged implantation group, 32 were performed via an existing tunneled hemodialysis catheter (incidentally staged), and 55 were performed via a tunneled catheter inserted across a central venous occlusion in an interventional radiology suite specifically for HeRO implantation (intentionally staged). Early infection was defined as episodes of bacteremia or HeRO infection requiring resection ≤30 days of HeRO implantation. For staged HeRO implantations, the median interval between tunneled catheter insertion and conversion to a HeRO graft was 42 days. The overall HeRO-related infection rate ≤30 days of implantation was 8.6% for primary HeRO implantation and 2.3% for staged implantations (P = .12). The rates of early bacteremia and HeRO resection requiring surgical resection were not significantly different between groups (P = .19 and P = .065, respectively), nor were age, gender, laterality, anastomosis to an existing arteriovenous access, human immunodeficiency virus status, diabetes, steroids, chemotherapy, body mass index, or graft location. None of the patient variables, techniques, or graft-related variables correlated significantly with the early infection rate. The staged HeRO implantation strategy did not result in an increased early infection risk compared with conventional primary implantation and is thus a reasonable strategy for HeRO insertion in hemodialysis patients with complex central venous disease. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure
Wang, Wan-Heng; McNatt, Loretta G.; Pang, Iok-Hou; Millar, J. Cameron; Hellberg, Peggy E.; Hellberg, Mark H.; Steely, H. Thomas; Rubin, Jeffrey S.; Fingert, John H.; Sheffield, Val C.; Stone, Edwin M.; Clark, Abbot F.
2008-01-01
Elevated intraocular pressure (IOP) is the principal risk factor for glaucoma and results from excessive impedance of the fluid outflow from the eye. This abnormality likely originates from outflow pathway tissues such as the trabecular meshwork (TM), but the associated molecular etiology is poorly understood. We discovered what we believe to be a novel role for secreted frizzled-related protein-1 (sFRP-1), an antagonist of Wnt signaling, in regulating IOP. sFRP1 was overexpressed in human glaucomatous TM cells. Genes involved in the Wnt signaling pathway were expressed in cultured TM cells and human TM tissues. Addition of recombinant sFRP-1 to ex vivo perfusion-cultured human eyes decreased outflow facility, concomitant with reduced levels of β-catenin, the Wnt signaling mediator, in the TM. Intravitreal injection of an adenoviral vector encoding sFRP1 in mice produced a titer-dependent increase in IOP. Five days after vector injection, IOP increased 2 fold, which was significantly reduced by topical ocular administration of an inhibitor of a downstream suppressor of Wnt signaling. Thus, these data indicate that increased expression of sFRP1 in the TM appears to be responsible for elevated IOP in glaucoma and restoring Wnt signaling in the TM may be a novel disease intervention strategy for treating glaucoma. PMID:18274669
Aqueous humour dynamics and biometrics in the ageing Chinese eye.
Guo, Tao; Sampathkumar, Sruthi; Fan, Shan; Morris, Nathan; Wang, Fang; Toris, Carol B
2017-09-01
This study evaluates ocular biometrics and aqueous humour dynamics (AHD) in healthy Chinese volunteers to determine how the various ocular parameters interact to maintain physiological intraocular pressure (IOP) at all ages. Sixty-nine volunteers enrolled in this cross-sectional study and were categorised into young (20-30 years) and old (≥50 years) groups. Measurements included IOP, ocular biometrics and AHD. Data were analysed using mixed model with random sampling to account for both eyes from the same individual. Spearman's rank correlation with bootstrap resampling was used to find associations between parameters. Compared with young subjects, old subjects had significantly (p<0.05) thinner corneas (CCT; 549.7±5.7 vs 530.6±5.3 µm; mean±SEM), shallower anterior chambers (3.14±0.05 vs 2.37±0.05 mm) and slower aqueous flow (Fa; 3.0±0.1 vs 2.7±0.1 µL/min). Uveoscleral outflow slowed (Fu; 1.0±0.2 vs 0.7±0.1) but not significantly. A positive linear association between IOP and episcleral venous pressure was found (young: R 2 =0.16; old: R 2 =0.08). Negative correlation between Fa and CCT (R 2 =0.06) and positive correlation between Fa and outflow facility (R 2 =0.08) was found in old participants. In the healthy ageing Chinese eye, IOP remains unchanged, while Fa slows, which is counterbalanced by slowing of Fu. Aqueous humour exits the eye preferentially through the trabecular route at all ages. Ageing is also associated with shallowing of the anterior chamber and thinning of the cornea. A slower Fa with lower outflow facility supports existence of autoregulatory mechanisms. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Drake, J. F.; Swisdak, M.
2017-12-01
How ions and electrons are energized in magnetic reconnection outflows is an essential topic throughout the heliosphere. Here we carry out guide field PIC Riemann simulations to explore the ion and electron energization mechanisms far downstream of the x-line. Riemann simulations, with their simple magnetic geometry, facilitate the study of the reconnection outflow far downstream of the x-line in much more detail than is possible with conventional reconnection simulations. We find that the ions get accelerated at rotational discontinuities, counter stream, and give rise to two slow shocks. We demonstrate that the energization mechanism at the slow shocks is essentially the same as that of parallel electrostatic shocks. Also, the electron confining electric potential at the slow shocks is driven by the counterstreaming beams, which tend to break the quasi-neutrality. Based on this picture, we build a kinetic model to self consistently predict the downstream ion and electron temperatures. Additional explorations using parallel shock simulations also imply that in a very low beta(0.001 0.01 for a modest guide field) regime, electron energization will be insignificant compared to the ion energization. Our model and the parallel shock simulations might be used as simple tools to understand and estimate the energization of ions and electrons and the energy partition far downstream of the x-line.
TECHNIQUES AND OUTCOMES OF MINIMALLY-INVASIVE TRABECULAR ABLATION AND BYPASS SURGERY
Kaplowitz, Kevin; Schuman, Joel S.; Loewen, Nils A.
2014-01-01
Minimally invasive glaucoma surgeries (MIGS) can improve the conventional, pressure dependent outflow by bypassing or ablating the trabecular meshwork or create alternative drainage routes into the suprachoroidal or subconjunctival space. They have a highly favorable risk profile compared to penetrating surgeries and lower intraocular pressure with variable efficacy that may depend on the extent of outflow segments accessed. Since they are highly standardized procedures that use clear corneal incisions, they can elegantly be combined with cataract and refractive procedures to improve vision in the same session. There is a growing need for surgeons to become proficient in MIGS to address the increasing prevalence of glaucoma and cataracts in a well-informed, aging population. Techniques of visualization and instrumentation in an anatomically highly confined space with semi-transparent tissues are fundamentally different from other anterior segment surgeries and present even experienced surgeons with a substantial learning curve. Here, we provide practical tips and review techniques and outcomes of TM bypass and ablation MIGS. PMID:24338085
Trabecular meshwork stiffness in glaucoma.
Wang, Ke; Read, A Thomas; Sulchek, Todd; Ethier, C Ross
2017-05-01
Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β 2 (TGF-β 2 ), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Proposal for a new categorization of aseptic processing facilities based on risk assessment scores.
Katayama, Hirohito; Toda, Atsushi; Tokunaga, Yuji; Katoh, Shigeo
2008-01-01
Risk assessment of aseptic processing facilities was performed using two published risk assessment tools. Calculated risk scores were compared with experimental test results, including environmental monitoring and media fill run results, in three different types of facilities. The two risk assessment tools used gave a generally similar outcome. However, depending on the tool used, variations were observed in the relative scores between the facilities. For the facility yielding the lowest risk scores, the corresponding experimental test results showed no contamination, indicating that these ordinal testing methods are insufficient to evaluate this kind of facility. A conventional facility having acceptable aseptic processing lines gave relatively high risk scores. The facility showing a rather high risk score demonstrated the usefulness of conventional microbiological test methods. Considering the significant gaps observed in calculated risk scores and in the ordinal microbiological test results between advanced and conventional facilities, we propose a facility categorization based on risk assessment. The most important risk factor in aseptic processing is human intervention. When human intervention is eliminated from the process by advanced hardware design, the aseptic processing facility can be classified into a new risk category that is better suited for assuring sterility based on a new set of criteria rather than on currently used microbiological analysis. To fully benefit from advanced technologies, we propose three risk categories for these aseptic facilities.
High explosive spot test analyses of samples from Operable Unit (OU) 1111
DOE Office of Scientific and Technical Information (OSTI.GOV)
McRae, D.; Haywood, W.; Powell, J.
1995-01-01
A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soilmore » and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.« less
Intensive Hemodialysis and Mortality Risk in Australian and New Zealand Populations.
Marshall, Mark R; Polkinghorne, Kevan R; Kerr, Peter G; Hawley, Carmel M; Agar, John W M; McDonald, Stephen P
2016-04-01
Intensive hemodialysis (HD) is characterized by increased frequency and/or session length compared to conventional HD. Previous analyses from Australia and New Zealand did not suggest benefit with intensive HD, although recent research suggests that relationships have changed. We present updated analyses. Observational cohort study using marginal structural modeling to adjust for changes in renal replacement modality and time-varying medical comorbid conditions. Adults initiating renal replacement therapy since March 31, 1996, followed up through December 31, 2012; this analysis included 40,842 patients over 2,187,689 patient-months. Time-varying renal replacement modality: conventional facility HD (≤3 times per week, ≤6 hours per session), quasi-intensive facility HD (between conventional and intensive), intensive facility HD (≥5 times per week, any hours per session), conventional home HD, quasi-intensive home HD, intensive home HD, peritoneal dialysis, deceased donor kidney transplantation, and living donor kidney transplantation. Patient mortality, with a 3-month lag in primary analyses and 6- and 12-month lags in sensitivity analyses. Conventional facility HD was the reference group. Conventional home HD had a similar mortality risk. For quasi-intensive home HD, mortality risk was lower (HR, 0.56; 95% CI, 0.44-0.73). For intensive home HD, mortality risk was nonsignificantly lower in primary analyses and significantly lower using a 6-month lag (HR, 0.41; 95% CI, 0.20-0.85), but not using a 12-month lag. For quasi-intensive facility HD, mortality risk was nonsignificantly lower in primary analyses, although significantly lower using 6- (HR, 0.41; 95% CI, 0.20-0.85) and 12-month lags (HR, 0.59; 95% CI, 0.44-0.80). Mortality risk was similar between intensive and conventional facility HD. For peritoneal dialysis, mortality risk was greater than for conventional facility HD (HR, 1.07; 95% CI, 1.03-1.12). Kidney transplantation had the lowest mortality risk. Potential residual confounding from limited collection of comorbid condition, socioeconomic, and medication data. There is an emerging HD dose-effect in Australia and New Zealand, with lower mortality risks associated with some of the more intensive HD regimens in these countries. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Ionospheric Outflow in the Magnetosphere: Circulation and Consequences
NASA Astrophysics Data System (ADS)
Welling, D. T.; Liemohn, M. W.
2017-12-01
Including ionospheric outflow in global magnetohydrodynamic models of near-Earth outer space has become an important step towards understanding the role of this plasma source in the magnetosphere. Such simulations have revealed the importance of outflow in populating the plasma sheet and inner magnetosphere as a function of outflow source characteristics. More importantly, these experiments have shown how outflow can control global dynamics, including tail dynamics and dayside reconnection rate. The broad impact of light and heavy ion outflow can create non-linear feedback loops between outflow and the magnetosphere. This paper reviews some of the most important revelations from global magnetospheric modeling that includes ionospheric outflow of light and heavy ions. It also introduces new advances in outflow modeling and coupling outflow to the magnetosphere.
Effect of elevation resolution on evapotranspiration simulations using MODFLOW.
Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J
2012-01-01
Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Radiation shielding design of a new tomotherapy facility.
Zacarias, Albert; Balog, John; Mills, Michael
2006-10-01
It is expected that intensity modulated radiation therapy (IMRT) and image guided radiation therapy (IGRT) will replace a large portion of radiation therapy treatments currently performed with conventional MLC-based 3D conformal techniques. IGRT may become the standard of treatment in the future for prostate and head and neck cancer. Many established facilities may convert existing vaults to perform this treatment method using new or upgraded equipment. In the future, more facilities undoubtedly will be considering de novo designs for their treatment vaults. A reevaluation of the design principles used in conventional vault design is of benefit to those considering this approach with a new tomotherapy facility. This is made more imperative as the design of the TomoTherapy system is unique in several aspects and does not fit well into the formalism of NCRP 49 for a conventional linear accelerator.
Acoustic sounding in the planetary boundary layer
NASA Technical Reports Server (NTRS)
Kelly, E. H.
1974-01-01
Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polukhin, S. N., E-mail: snpol@lebedev.ru; Dzhamankulov, A. M.; Gurei, A. E.
The velocities of the plasma jets formed from Ne, N{sub 2}, Ar, and Xe gases in plasma focus facilities were determined by means of laser-optical shadowgraphy of the shock waves generated at the jet leading edge. In spite of the almost tenfold ratio between the atomic weights of these gases, the outflow velocities of the plasma jets formed in experiments with these gases differ by less than twice, in the range of (0.7–1.1) × 10{sup 7} cm/s under similar discharge conditions. The energies of the jet ions were found to vary from 0.7 keV for nitrogen to 4 keV formore » xenon.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... types of new uranium recovery facilities (conventional mills, heap leach facilities, and in situ... from the ground for processing at a mill. Rather, the ore is processed in-situ with the resulting...
NASA Astrophysics Data System (ADS)
Kalumba, Mulenga; Nyirenda, Edwin
2017-12-01
The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s of riverflow is available. There is river flow available in the wet and dry seasons for e-flow allocation at ITT. On average per month 25 m3/s is allocated for e-flows at ITT for downstream purposes. On the other hand, it may be impossible to implement e-flows at KGS with the limited available outflow (river flow). The available river flow from ITT plays a very vital role in satisfying the current hydropower generating capacity at KGS. Therefore, the operations of KGS heavily depends on the available outflow (river flow) from ITT.
NASA Technical Reports Server (NTRS)
Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.;
2001-01-01
Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.
[Pharmacological profiles of latanoprost (Xalatan), a novel anti-glaucoma drug].
Nomura, S; Hashimoto, M
2000-05-01
Latanoprost is a novel prostaglandin F2 alpha (PGF2 alpha) derivative. Topically applied latanoprost into the glaucomatous monkey eyes lowered intraocular pressure (IOP). Latanoprost, however, failed to produce the hypotensive effect in either rabbit or cat eyes. This species difference may be attributed to its high selectivity for the FP receptor and differences in prostaglandin receptor subtypes existed in the eye amongst these species. In ligand binding studies with bovine corpus luteum cell membranes, the Kd value for the FP receptor of latanoprost was the same as that for PGF2 alpha, 2.8 nM. Latanoprost augmented uveoscleral outflow (Uv) in monkeys without affecting trabecular outflow or outflow facility like PGF2 alpha. Although the precise mechanism of the increase in Uv is not fully understood, it is suggested that a decrease in extracellular matrix components in ciliary muscle may contribute to the increase in Uv. On the other hand, an increase in blood flow at the optic nerve head and neuroprotective action in addition to the IOP lowering effect may contribute to the efficacy of latanoprost in glaucoma therapy. Only tolerable conjunctival hyperemia was seen in rabbits. A phase III clinical trial revealed latanoprost (0.005%) once daily produced sustained reduction of IOP in ocular hypertension or primary open-angle glaucoma patients to a greater extent than timolol did. Furthermore, the effects of latanoprost on aqueous humor dynamics in normal human volunteers were similar to those in monkeys, indicating that latanoprost lowers IOP by the increase in Uv in humans.
Ivahnenko, Tamara I.
2017-12-07
Changes in municipal and industrial point-source discharges over time have been an important factor affecting nutrient trends in many of the Nation’s streams and rivers. This report documents how three U.S. Environmental Protection Agency (EPA) national datasets—the Permit Compliance System, the Integrated Compliance Information System, and the Clean Watersheds Needs Survey—were evaluated for use in the U.S. Geological Survey National Water-Quality Assessment project to assess the causes of nutrient trends. This report also describes how a database of total nitrogen load and total phosphorous load was generated for select wastewater treatment facilities in the United States based on information reported in the EPA Clean Watersheds Needs Survey. Nutrient loads were calculated for the years 1978, 1980, 1982, 1984, 1986, 1988, 1990, 1992, 1996, 2000, 2004, 2008, and 2012 based on average nitrogen and phosphorous concentrations for reported treatment levels and on annual reported flow values.The EPA Permit Compliance System (PCS) and Integrated Compliance Information System (ICIS), which monitor point-source facility discharges, together are the Nation’s most spatially comprehensive dataset for nutrients released to surface waters. However, datasets for many individual facilities are incomplete, the PCS/ICIS historical data date back only to 1989, and historical data are available for only a limited number of facilities. Additionally, inconsistencies in facility reporting make it difficult to track or identify changes in nutrient discharges over time. Previous efforts made by the U.S. Geological Survey to “fill in” gaps in the PCS/ICIS data were based on statistical methods—missing data were filled in through the use of a statistical model based on the Standard Industrial Classification code, size, and flow class of the facility and on seasonal nutrient discharges of similar facilities. This approach was used to estimate point-source loads for a single point in time; it was not evaluated for use in generating a consistent data series over time.Another national EPA dataset that is available is the Clean Watersheds Needs Survey (CWNS), conducted every 4 years beginning 1973. The CWNS is an assessment of the capital needs of wastewater facilities to meet the water-quality goals set in the Clean Water Act. Data collected about these facilities include location and contact information for the facilities; population served; flow and treatment level of the facility; estimated capital needs to upgrade, repair, or improve facilities for water quality; and nonpoint-source best management practices.Total nitrogen and total phosphorous load calculations for each of the CWNS years were based on treatment level information and average annual outflow (in million gallons per day) from each of the facilities that had reported it. Treatment levels categories (such as Primary, Secondary, or Advanced) were substituted with average total nitrogen and total phosphorous concentrations for each treatment level based on those reported in literature. The CWNS dataset, like the PCS/ICIS dataset, has years where facilities did not report either a treatment level or an annual average outflow, or both. To fill in the data gaps, simple linear assumptions were made based on each facility’s responses to the survey in years bracketing the data gap or immediately before or after the data gap if open ended. Treatment level and flow data unique to each facility were used to complete the CWNS dataset for that facility.
High power heating of magnetic reconnection in merging tokamak experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Y.; Tanabe, H.; Gi, K.
2015-05-15
Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magneticmore » reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2} ∼ B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.« less
NASA Astrophysics Data System (ADS)
Zhang, Yichen; Arce, Hector G.; Mardones, Diego; Dunham, Michael; Garay, Guido; Noriega-Crespo, Alberto; Corder, Stuartt; Offner, Stella; Cabrit, Sylvie
2016-01-01
We present ALMA Cycle 1 observations of the HH 46/47 molecular outflow which is driven by a low-mass Class 0/I protostar. Previous ALMA Cycle 0 12CO observation showed outflow cavities produced by the entrainment of ambient gas by the protostellar jet and wide-angle wind. Here we present analysis of observation of 12CO, 13CO, C18O and other species using combined 12m array and ACA observations. The improved angular resolution and sensitivity allow us to detect details of the outflow structure. Specially, we see that the outflow cavity wall is composed of two or more layers of outflowing gas, which separately connect to different shocked regions along the outflow axis inside the cavity, suggesting the outflow cavity wall is composed of multiple shells entrained by a series of jet bow-shock events. The new 13CO and C18O data also allow us to trace relatively denser and slower outflow material than that traced by the 12CO. These species are only detected within about 1 to 2 km/s from the cloud velocity, tracing the outflow to lower velocities than what is possible using only the 12CO emission. Interestingly, the cavity wall of the red lobe appears at very low outflow velocities (as low as ~0.2 km/s). In addition, 13CO and C18O allow us to correct for the CO optical depth, allowing us to obtain more accurate estimates of the outflow mass, momentum and kinetic energy. Applying the optical depth correction significantly increases the previous mass estimate by a factor of 14. The outflow kinetic energy distribution shows that even though the red lobe is mainly entrained by jet bow-shocks, most of the outflow energy is being deposited into the cloud at the base of the outflow cavity rather than around the heads of the bow shocks. The estimated total mass, momentum, and energy of the outflow indicate that the outflow has the ability to disperse the parent core. We found possible evidence for a slowly moving rotating outflow in CS. Our 13CO and C18O observations also trace a circumstellar envelope with both rotation and infall motions.
Fast Outflow of Molecular Gas in the Seyfert Galaxy IC 5063
NASA Astrophysics Data System (ADS)
Morganti, Raffaella; Oosterloo, T.; Oonk, R.; Tadhunter, C.
2017-11-01
AGN-driven gas outflows may play an important role in the evolution of galaxies, as they impact on the growth on the central supermassive black hole as well on the star formation of the host galaxy. Much of the detailed physics of these gas outflows, and their actual impact on the host galaxy, is still not well understood. We present a detailed analysis, using ALMA observations, of the radio-jet driven outflow of molecular gas in the nearby radio-loud Seyfert galaxy IC 5063 which allows to derive important physical parameters of the gas and the outflow which, in turn, provide crucial input to numerical models. In recent years, a surprising result in the field of AGN-driven outflows has been that the cold phases of the gas (atomic and molecular) in some galaxies are the massive components of these outflows, despite the huge amounts of energy involved in driving these outflows. However, why most of the outflowing gas should be molecular/atomic, and in general, what are the physical conditions of the gas in the outflows and what really drives them, are still open questions. We present the results obtained from ALMA observations of multiple CO transitions and other molecules of what appears to be a textbook case of a jet-driven multi- phase outflow in the central regions of the Seyfert galaxy IC 5063. The data on multiple transitions allow us to derive the physical conditions in the different regions of the outflowing molecular gas. The signature of the impact of the radio jet is clearly seen in the spatial distribution of the excitation temperature and pressure of the outflowing gas, with the highest excitation and pressure found for the gas with the highest outflow velocities. We obtain a detailed three- dimensional picture of the outflow, and its kinematics, and find that outflowing molecular gas is present across the entire region co-spatial with the radio plasma, providing unambiguous evidence that the radio jets/cocoon are responsible for the outflow. The detailed information about the physical condition of the gas in a fast outflow will serve as template for the signatures of the impact of a radio plasma jet on a gas-rich ISM and its associated star formation, and guide the studies of outflows in other galaxies, including higher redshift objects.
NASA Astrophysics Data System (ADS)
1981-09-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
NASA Technical Reports Server (NTRS)
1981-01-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
Malekzadeh-Milani, Sophie; Ladouceur, Magalie; Cohen, Sarah; Iserin, Laurence; Boudjemline, Younes
2014-11-01
Although widely accepted worldwide, indications for percutaneous valve replacement are limited to treatment of dysfunction of prosthetic conduits inserted in the right ventricular outflow tract (RVOT). There has been little evaluation of the use of the Melody(®) valve for patched non-circular pulmonary pathways. To evaluate the outcomes of Melody valve insertion in patients with a patched non-circular RVOT. We analysed procedural and outcomes data from 34 patients who underwent Melody valve implantation for a non-circular RVOT. RVOT preparation was done in all patients, using different techniques (conventional, Russian doll and/or PA jailing). Melody valve insertion was performed concomitantly in most patients. All procedures were successful. Sixteen patients had complex additional procedures, including the jailing technique (n=5), the Russian doll technique (n=6) and multiple stent implantations (Russian jailing; n=5). The remaining patients were treated using the conventional technique with systematic prestenting. Three early complications occurred: one haemoptysis; one residual RVOT obstruction needing recatheterization 48 hours after percutaneous pulmonary valve implantation; and one stent embolization during advancement of the Ensemble(®) delivery system. The mean follow-up period was 2.6 years postprocedure. There was no stent fracture, migration or embolization. Two patients developed a significant paraprosthetic leak and one received a second Melody valve. Careful patient selection, balloon sizing and RVOT preparation with prestenting are required to create a safe landing zone for the Melody valve. Short-term follow-up shows excellent results with no stent fracture or migration and appears promising. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Massive Outflows Associated with ATLASGAL Clumps
NASA Astrophysics Data System (ADS)
Yang, A. Y.; Thompson, M. A.; Urquhart, J. S.; Tian, W. W.
2018-03-01
We have undertaken the largest survey for outflows within the Galactic plane using simultaneously observed {}13{CO} and {{{C}}}18{{O}} data. Out of a total of 919 ATLASGAL clumps, 325 have data suitable to identify outflows, and 225 (69% ± 3%) show high-velocity outflows. The clumps with detected outflows show significantly higher clump masses ({M}clump}), bolometric luminosities ({L}bol}), luminosity-to-mass ratios ({L}bol}/{M}clump}), and peak H2 column densities ({N}{{{H}}2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e., 70 μ {{m}} weak) in this sample, and we find that the outflow detection rate increases with {M}clump}, {L}bol}, {L}bol}/{M}clump}, and {N}{{{H}}2}, approaching 90% in some cases (UC H II regions = 93% ± 3%; masers = 86% ± 4%; HC H II regions = 100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation (MSF). The mean outflow mass entrainment rate implies a mean accretion rate of ∼ {10}-4 {M}ȯ {yr}}-1, in full agreement with the accretion rate predicted by theoretical models of MSF. Outflow properties are tightly correlated with {M}clump}, {L}bol}, and {L}bol}/{M}clump} and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump; however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.
Klepiszewski, K; Schmitt, T G
2002-01-01
While conventional rule based, real time flow control of sewer systems is in common use, control systems based on fuzzy logic have been used only rarely, but successfully. The intention of this study is to compare a conventional rule based control of a combined sewer system with a fuzzy logic control by using hydrodynamic simulation. The objective of both control strategies is to reduce the combined sewer overflow volume by an optimization of the utilized storage capacities of four combined sewer overflow tanks. The control systems affect the outflow of four combined sewer overflow tanks depending on the water levels inside the structures. Both systems use an identical rule base. The developed control systems are tested and optimized for a single storm event which affects heterogeneously hydraulic load conditions and local discharge. Finally the efficiencies of the two different control systems are compared for two more storm events. The results indicate that the conventional rule based control and the fuzzy control similarly reach the objective of the control strategy. In spite of the higher expense to design the fuzzy control system its use provides no advantages in this case.
The Dependence of Galactic Outflows on the Properties and Orientation of zCOSMOS Galaxies at z ~ 1
NASA Astrophysics Data System (ADS)
Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Carollo, C. M.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kovač, K.; Knobel, C.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Oesch, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Cappi, A.; Cimatti, A.; Coppa, G.; Franzetti, P.; Koekemoer, A.; Moresco, M.; Nair, P.; Pozzetti, L.
2014-10-01
We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 <= z <= 1.5. These galaxies span a range of stellar masses (9.45 <= log10[M */M ⊙] <= 10.7) and star formation rates (0.14 <= log10[SFR/M ⊙ yr-1] <= 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (ΣSFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -150 km s-1 ~-200 km s-1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ⊙ yr-1 and a mass loading factor ({ η = \\dot{M}out /SFR}) comparable to the star formation rates of the galaxies. Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Program 175.A-0839.
ERIC Educational Resources Information Center
Educational Facilities Labs., Inc., New York, NY.
A description is presented of the design features of a high school's geodesic dome field house. Following consideration of various design features and criteria for the physical education facility, a comprehensive analysis is given of comparative costs of a geodesic dome field house and conventional gymnasium. On the basis of the study it would…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
.... Discussion Uranium recovery facility licensees, including in-situ recovery facilities and conventional... Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance AGENCY... Staff Guidance, ``Evaluations of Uranium Recovery Facility Surveys of Radon and Radon Progeny in Air and...
Ionised outflows in z ~ 2.4 quasar host galaxies
NASA Astrophysics Data System (ADS)
Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.
2015-08-01
Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A).
Massive outflow properties suggest AGN fade slowly
NASA Astrophysics Data System (ADS)
Zubovas, Kastytis
2018-01-01
Massive large-scale active galactic nucleus (AGN) outflows are an important element of galaxy evolution, being a way through which the AGN can affect most of the host galaxy. However, outflows evolve on time-scales much longer than typical AGN episode durations, therefore most AGN outflows are not observed simultaneously with the AGN episode that inflated them. It is therefore remarkable that rather tight correlations between outflow properties and AGN luminosity exist. In this paper, I show that such correlations can be preserved during the fading phase of the AGN episode, provided that the AGN luminosity evolves as a power law with exponent αd ∼ 1 at late times. I also show that subsequent AGN episodes that illuminate an ongoing outflow are unlikely to produce outflow momentum or energy rates rising above the observed correlations. However, there may be many difficult-to-detect outflows with momentum and energy rates lower than expected from the current AGN luminosity. Detailed observations of AGN outflow properties might help constrain the activity histories of typical and/or individual AGN.
Low-drag ground vehicle particularly suited for use in safely transporting livestock
NASA Technical Reports Server (NTRS)
Saltzman, E. J. (Inventor)
1982-01-01
A low-drag truck consisting of a tractor-trailer rig characterized by a rounded forebody and a protective fairing for the gap conventionally found to exist between the tractor and the trailer is described. The fairing particularly suited for establishing an attached flow of ambient air along its surfaces. The truck is also comprised of a forward facing, ram air inlet and duct and a plurality of submerged inlets and outflow ports communicating with the trailer for continuously flushing heated gases from the trailer as the rig is propelled at highway speeds.
Collective neutrino oscillations and r-process nucleosynthesis in supernovae
NASA Astrophysics Data System (ADS)
Duan, Huaiyu
2012-10-01
Neutrinos can oscillate collectively in a core-collapse supernova. This phenomenon can occur much deeper inside the supernova envelope than what is predicted from the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect, and hence may have an impact on nucleosynthesis. The oscillation patterns and the r-process yields are sensitive to the details of the emitted neutrino fluxes, the sign of the neutrino mass hierarchy, the modeling of neutrino oscillations and the astrophysical conditions. The effects of collective neutrino oscillations on the r-process will be illustrated using representative late-time neutrino spectra and outflow models.
Lütjen-Drecoll, Elke; Kaufman, Paul L.
2016-01-01
The ciliary muscle plays a major role in controlling both accommodation and outflow facility in primates. The ciliary muscle and the choroid functionally form an elastic network that extends from the trabecular meshwork all the way to the back of the eye and ultimately attaches to the elastic fiber ring that surrounds the optic nerve and to the lamina cribrosa through which the nerve passes. The ciliary muscle governs the accommodative movement of the elastic network. With age ciliary muscle mobility is restricted by progressively inelastic posterior attachments and the posterior restriction makes the contraction progressively isometric; placing increased tension on the optic nerve region. In addition, outflow facility also declines with age and limbal corneoscleral contour bows inward. Age-related loss in muscle movement and altered limbal corneoscleral contour could both compromise the basal function of the trabecular meshwork. Further, recent studies in non-human primates show that the central vitreous moves posteriorly all the way back to the optic nerve region, suggesting a fluid current and a pressure gradient toward the optic nerve. Thus, there may be pressure and tension spikes on the optic nerve region during accommodation and these pressure and tension spikes may increase with age. This constellation of events could be relevant to glaucomatous optic neuropathy. In summary, our hypothesis is that glaucoma and presbyopia may be literally linked to each other, via the choroid, and that damage to the optic nerve may be inflicted by accommodative intraocular pressure and choroidal tension “spikes”, which may increase with age. PMID:27453343
Croft, Mary Ann; Lütjen-Drecoll, Elke; Kaufman, Paul L
2017-05-01
The ciliary muscle plays a major role in controlling both accommodation and outflow facility in primates. The ciliary muscle and the choroid functionally form an elastic network that extends from the trabecular meshwork all the way to the back of the eye and ultimately attaches to the elastic fiber ring that surrounds the optic nerve and to the lamina cribrosa through which the nerve passes. The ciliary muscle governs the accommodative movement of the elastic network. With age ciliary muscle mobility is restricted by progressively inelastic posterior attachments and the posterior restriction makes the contraction progressively isometric; placing increased tension on the optic nerve region. In addition, outflow facility also declines with age and limbal corneoscleral contour bows inward. Age-related loss in muscle movement and altered limbal corneoscleral contour could both compromise the basal function of the trabecular meshwork. Further, recent studies in non-human primates show that the central vitreous moves posteriorly all the way back to the optic nerve region, suggesting a fluid current and a pressure gradient toward the optic nerve. Thus, there may be pressure and tension spikes on the optic nerve region during accommodation and these pressure and tension spikes may increase with age. This constellation of events could be relevant to glaucomatous optic neuropathy. In summary, our hypothesis is that glaucoma and presbyopia may be literally linked to each other, via the choroid, and that damage to the optic nerve may be inflicted by accommodative intraocular pressure and choroidal tension "spikes", which may increase with age. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulating Supernovae Driven Outflows in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Rodriguez, Jaimee-Ian
2018-01-01
Galactic outflows, or winds, prove to be a necessary input for galactic simulations to produce results comparable to observation, for it solves issues caused by what previous literature dubbed the “angular momentum catastrophe.” While it is known that the nature of outflows depends on the nature of the Interstellar Medium (ISM), the mechanisms behind outflows are still not completely understood. We investigate the driving force behind galactic outflows and the factors that influence their behavior, hypothesizing that supernovae within the galaxy drive these winds. We study isolated, high-resolution, smooth particle hydrodynamic simulations, focusing specifically on dwarf galaxies due to their shallow potential wells, which allow for more significant outflows. We find that outflows follow star formation (and associated supernovae) suggesting the causal relationship between the two. Furthermore, simulations with higher diffusivity differ little in star formation rate, but show significantly lower outflow rates, suggesting that environmental factors that have little effect on regulating star formation can greatly influence outflows, and so efficient outflows can be driven by a constant rate of supernovae, depending on ISM behavior. We are currently analyzing disk morphology and ambient density in order to comprehend the effect of supernovae on the immediate interstellar gas. By attaining greater understanding of the origin of galactic outflows, we will be able to not only improve the accuracy of simulations, we will also be able to gain greater insight into galactic formation and evolution, as outflows and resultant inflows may be vital to the regulation of galaxies throughout their lifetimes.
An evaluation of three experimental processes for two-dimensional transonic tests
NASA Technical Reports Server (NTRS)
Zuppardi, Gennaro
1989-01-01
The aerodynamic measurements in conventional wind tunnels usually suffer from the interference effects of the sting supporting the model and the test section walls. These effects are particularly severe in the transonic regime. Sting interference effects can be overcome through the Magnetic Suspension technique. Wall effects can be alleviated by: testing airfoils in conventional, ventilated tunnels at relatively small model to tunnel size ratios; treatment of the tunnel wall boundary layers; or by utilization of the Adaptive Wall Test Section (AWTS) concept. The operating capabilities and results from two of the foremost two-dimensional, transonic, AWTS facilities in existence are assessed. These facilities are the NASA 0.3-Meter Transonic Cryogenic Tunnel and the ONERA T-2 facility located in Toulouse, France. In addition, the results derived from the well known conventional facility, the NAE 5 ft x 5 ft Canadian wind tunnel will be assessed. CAST10/D0A2 Airfoil results will be used in all of the evaluations.
Far-Ultraviolet Observations of Outflows from Infrared-Luminous Galaxies
NASA Astrophysics Data System (ADS)
Leitherer, Claus; Chandar, Rupali; Tremonti, Christy A.; Wofford, Aida
2013-03-01
We have obtained ultraviolet spectra between 1150 and 1450 Å of four ultraviolet-bright, infrared-luminous starburst galaxies. Our selected sight-lines towards the starburst nuclei probe the conditions in the starburst-driven outflows. We detect outflowing gas with velocities of up to ˜900 km s-1. It is likely that the outflows are a major source of metal enrichment of the galaxies' halos. The mass outflow rates of several tens of M⊙ yr-1 are similar to the star-formation rates. The outflows may quench star formation and ultimately regulate the starburst.
RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW CONTROL
Available technologies were evaluated to demonstrate the feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow (WWF). Cost/benefit relationships were compared to construction of new conventional control and treatment facilities. Desktop...
RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT
Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...
Forskolin induces myosin light chain dephosphorylation in bovine trabecular meshwork cells.
Ramachandran, Charanya; Satpathy, Minati; Mehta, Dolly; Srinivas, Sangly P
2008-02-01
Enhanced contractility of the actin cytoskeleton in trabecular meshwork (TM) cells is implicated in increased resistance to aqueous humor outflow. In this study, we have investigated effects of forskolin, which is known to elevate cAMP and also enhance aqueous humor outflow, on myosin light chain (MLC) phosphorylation, a biochemical marker of actin contractility. Experiments were performed using cultured bovine TM cells. Phosphorylated MLC (pMLC), expressed as the % of untreated cells, was assessed by urea-glycerol gel electrophoresis and Western blotting. RhoA activity was determined by affinity precipitation of RhoA-GTP to RhoA binding domain of an effector of RhoA. Intracellular cAMP levels were measured by ELISA. Exposure to LPA (lysophosphatidic acid) led to increased MLC phosphorylation (LPA: pMLC=133%) and activation of RhoA. These responses of LPA were suppressed by co-treatment with forskolin (LPA+forskolin: pMLC=88%). Similarly, ET-1 and nocodazole-induced MLC phosphorylation (ET-1: pMLC=145%; nocodazole: pMLC=145%) as well as RhoA activation were suppressed by co-treatment with forskolin (ET-1+forskolin: pMLC=99%; nocodazole+forskolin: pMLC=107%). Exposure to forskolin alone led to MLC dephosphorylation (pMLC=68%). Forskolin alone led to a 4-fold increase in cAMP levels. This increase was not affected when co-treated with LPA or ET-1. Forskolin prevents MLC phosphorylation induced by LPA, ET-1, and nocodazole through inhibition of RhoA-Rho kinase axis. MLC dephosphorylation and consequent relaxation of actin cytoskeleton in TM cells presumably underlies the increased outflow facility reported in response to forskolin.
Rizzo, Giuseppe; Capponi, Alessandra; Pietrolucci, Maria Elena; Capece, Giuseppe; Cimmino, Ernesto; Colosi, Enrico; Ferrentino, Salvatore; Sica, Carmine; Di Meglio, Aniello; Arduini, Domenico
2011-01-01
The aim of this study was to evaluate the feasibility of visualizing standard cardiac views from 4-dimensional (4D) cardiac volumes obtained at ultrasound facilities with no specific experience in fetal echocardiography. Five sonographers prospectively recorded 4D cardiac volumes starting from the 4-chamber view on 500 consecutive pregnancies at 19 to 24 weeks' gestation undergoing routine ultrasound examinations (100 pregnancies for each sonographer). Volumes were sent to the referral center, and 2 independent reviewers with experience in 4D fetal echocardiography assessed their quality in the display of the abdominal view, 4-chamber view, left and right ventricular outflow tracts, and 3-vessel and trachea view. Cardiac volumes were acquired in 474 of 500 pregnancies (94.8%). The 2 reviewers respectively acknowledged the presence of satisfactory images in 92.4% and 93.6% of abdominal views, 91.5% and 93.0% of 4-chamber views, in 85.0% and 86.2% of left ventricular outflow tracts, 83.9% and 84.5% of right ventricular outflow tracts, and 85.2% and 84.5% of 3-vessel and trachea views. The presence of a maternal body mass index of greater than 30 altered the probability of achieving satisfactory cardiac views, whereas previous maternal lower abdominal surgery did not affect the quality of reconstructed cardiac views. In conclusion, cardiac volumes acquired by 4D sonography in peripheral centers showed high enough quality to allow satisfactory diagnostic cardiac views.
NASA Astrophysics Data System (ADS)
Tadhunter, C.; Zaurín, J. Rodríguez; Rose, M.; Spence, R. A. W.; Batcheldor, D.; Berg, M. A.; Ramos Almeida, C.; Spoon, H. W. W.; Sparks, W.; Chiaberge, M.
2018-05-01
The true importance of the warm, AGN-driven outflows for the evolution of galaxies remains uncertain. Measurements of the radial extents of the outflows are key for quantifying their masses and kinetic powers, and also establishing whether the AGN outflows are galaxy-wide. Therefore, as part of a larger project to investigate the significance of warm, AGN-driven outflows in the most rapidly evolving galaxies in the local universe, here we present deep Hubble Space Telescope (HST) narrow-band [OIII]λ5007 observations of a complete sample of 8 nearby ULIRGs with optical AGN nuclei. Combined with the complementary information provided by our ground-based spectroscopy, the HST images show that the warm gas outflows are relatively compact for most of the objects in the sample: in three objects the outflow regions are barely resolved at the resolution of HST (0.065 < R[OIII] < 0.12 kpc); in a further four cases the outflows are spatially resolved but with flux weighted mean radii in the range 0.65 < R[OIII] < 1.2 kpc; and in only one object (Mrk273) is there clear evidence for a more extended outflow, with a maximum extent of R[OIII] ˜ 5 kpc. Overall, our observations show little evidence for the galaxy-wide outflows predicted by some models of AGN feedback.
Microbiological monitoring of guinea pigs reared conventionally at two breeding facilities in Korea.
Park, Jong-Hwan; Seok, Seung-Hyeok; Baek, Min-Won; Lee, Hui-Young; Kim, Dong-Jae; Cho, Jung-Sik; Kim, Chuel-Kyu; Hwang, Dae-Youn; Park, Jae-Hak
2006-10-01
In this study, microbiological monitoring of guinea pigs reared conventionally in two facilities was performed twice in 2004, with a three-month-interval between surveys. This study was based on the recommendations of the FELASA Working Group, with some modifications. In serological tests in the first survey, some animals from facility A showed positive results for Encephalitozoon cuniculi, Sendai virus, pneumonia virus of mice (PVM), and Reovirus-3 (Reo-3); facility B showed a positive result only for E. cuniculi. The results of the second survey were similar to the first, except for the presence of Sendai virus; all animals from the two facilities were Sendai virus-negative in the second experiment. No pathogenic bacteria were cultured in the organs of any of the animals in the first survey. However, in the second survey, Bordetella bronchiseptica was cultured from the lung tissue of two 10-week-old animals from facility A. Chlamydial infection was examined by the Macchiavello method, but no animal showed positive results. Tests using fecal flotation or the KOH wet mount method showed no infection of endoparasites, protozoa, ectoparasites, or dermatophytes in any animal in both surveys. However, in the histopathological examination, an infection of protozoa-like organisms was observed in the cecum of some animals from facility A. The present study revealed that microbiological contamination was present in guinea pigs reared conventionally in two facilities in Korea, suggesting that there is a need to improve environmental conditions in order to eradicate microbial contamination.
Evidence that 50% of BALQSO Outflows Are Situated at Least 100 pc from the Central Source
NASA Astrophysics Data System (ADS)
Arav, Nahum; Liu, Guilin; Xu, Xinfeng; Stidham, James; Benn, Chris; Chamberlain, Carter
2018-04-01
The most robust way for determining the distance of quasar absorption outflows is the use of troughs from ionic excited states. The column density ratio between the excited and resonance states yields the outflow number density. Combined with a knowledge of the outflow’s ionization parameter, a distance from the central source (R) can be determined. Here we report results from two surveys targeting outflows that show troughs from S IV. One survey includes 1091 SDSS and BOSS quasar spectra, and the other includes higher-quality spectra of 13 quasars observed with the Very Large Telescope. Our S IV samples include 38 broad absorption line (BAL) outflows and four mini-BAL outflows. The S IV is formed in the same physical region of the outflow as the canonical outflow-identifying species C IV. Our results show that S IV absorption is only detected in 25% of C IV BAL outflows. The smaller detection fraction is due to the higher total column density (N H) needed to detect S IV absorption. Since R empirically anticorrelates with N H, the results of these surveys can be extrapolated to C IV quasar outflows with lower N H as well. We find that at least 50% of quasar outflows are at distances larger than 100 pc from the central source, and at least 12% are at distances larger than 1000 pc. These results have profound implications for the study of the origin and acceleration mechanism of quasar outflows and their effects on the host galaxy.
Character and dynamics of the Red Sea and Persian Gulf outflows
NASA Astrophysics Data System (ADS)
Bower, Amy S.; Hunt, Heather D.; Price, James F.
2000-03-01
Historical hydrographic data and a numerical plume model are used to investigate the initial transformation, dynamics, and spreading pathways of Red Sea and Persian Gulf outflow waters where they enter the Indian Ocean. The annual mean transport of these outflows is relatively small (<0.4 Sv), but they have a major impact on the hydrographic properties of the Indian Ocean at the thermocline level because of their high salinity. They are different from other outflows in that they flow over very shallow sills (depth < 200 m) into a highly stratified upper ocean environment and they are located at relatively low latitudes (12°N and 26°N). Furthermore, the Red Sea outflow exhibits strong seasonal variability in transport. The four main results of this study are as follows. First, on the basis of observed temperature-salinity (T-S) characteristics of the outflow source and product waters we estimate that the Red Sea and Persian Gulf outflows are diluted by factors of ˜2.5 and 4, respectively, as they descend from sill depth to their depth of neutral buoyancy. The high-dilution factor for the Persian Gulf outflow results from the combined effects of large initial density difference between the outflow source water and oceanic water and low outflow transport. Second, the combination of low latitude and low outflow transport (and associated low outflow thickness) results in Ekman numbers for both outflows that are O(1). This indicates that they should be thought of as frictional density currents modified by rotation rather than geostrophic density currents modified by friction. Third, different mixing histories along the two channels that direct Red Sea outflow water into the open ocean result in product waters with significantly different densities, which probably contributes to the multilayered structure of the Red Sea product waters. In both outflows, seasonal variations in source water and oceanic properties have some effect on the T-S of the product waters, but they have only a minor impact on equilibrium depth. Fourth, product waters from both outflows are advected away from the sill region in narrow boundary currents, at least during part of the year. At other times, the product water appears more in isolated patches.
On the Fraction of Quasars with Outflows
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Brotherton, Michael S.
2008-01-01
Outflows from active galactic nuclei (AGNs) seem to be common and are thought to be important from a variety of perspectives: as an agent of chemical enhancement of the interstellar and intergalactic media, as an agent of angular momentum removal from the accreting central engine, and as an agent limiting star formation in starbursting systems by blowing out gas and dust from the host galaxy. To understand these processes, we must determine what fraction of AGNs feature outflows and understand what forms they take. We examine recent surveys of quasar absorption lines, reviewing the best means to determine if systems are intrinsic and result from outflowing material, and the limitations of approaches taken to date. The surveys reveal that, while the fraction of specific forms of outflows depends on AGN properties, the overall fraction displaying outflows is fairly constant, approximately 60%, over many orders of magnitude in luminosity. We emphasize some issues concerning classification of outflows driven by data type rather than necessarily the physical nature of outflows and illustrate how understanding outflows probably requires a more comprehensive approach than has usually been taken in the past.
Two separate outflows in the dual supermassive black hole system NGC 6240
NASA Astrophysics Data System (ADS)
Müller-Sánchez, F.; Nevin, R.; Comerford, J. M.; Davies, R. I.; Privon, G. C.; Treister, E.
2018-04-01
Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content1-3. Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows4-6, it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown7-9. Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O iii] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O iii] cone, respectively. Their combined mass outflow is comparable to the star formation rate10, suggesting that negative feedback on star formation is occurring.
Two separate outflows in the dual supermassive black hole system NGC 6240.
Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E
2018-04-01
Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.
NASA Astrophysics Data System (ADS)
Lagaria, A.; Mandalakis, M.; Mara, P.; Frangoulis, C.; Karatsolis, B.-Th.; Pitta, P.; Triantaphyllou, M.; Tsiola, A.; Psarra, S.
2017-10-01
The structure of phytoplankton community in the salinity-stratified Northeastern Aegean frontal area adjacent to the Dardanelles Straits was investigated on a seasonal basis (autumn, spring and summer) and in relation to circulating water masses: the modified Black Sea Water (BSW) and the Levantine Water (LW). By employing High Performance Liquid Chromatography (HPLC) for the analysis of phytoplankton pigments in conjunction with conventional cell counting methodologies (i.e. inverted light microscopy, flow cytometry) and primary production measurements, a comprehensive qualitative and quantitative characterization of phytoplankton community composition and its activity was conducted. Chlorophyll-a normalized production and estimated growth rates presented the highest values within the 'fresh' BSW mass during summer, though generally growth rates were low (<0.4 d-1) at all seasons. The spatiotemporal variation of BSW outflow was found to greatly affect the relative contribution of pico-, nano- and micro-phytoplankton to total phytoplankton biomass and production. Large cell organisms, and in particular diatoms, were closely associated with the surface BSW masses outflowing from the Straits. Our results showed that all phytoplankton size components were significant over time and space suggesting a rather multivorous food web functioning of the system.
NASA Astrophysics Data System (ADS)
Osborne, Stephen; Smith, Eryn; Woster, Eric; Pelayo, Anthony
2002-03-01
As integrated circuits require smaller lines to provide the memory and processing capability for tomorrow's marketplace, the photomask industry is adopting higher contrast resists to improve photomask lithography. Photomask yield for several high-contrast resist recipes may be improved by coating masks at the mask shop. When coating at a mask shop, an effective method is available that uses coat/bake cluster tools to ensure blanks are clean prior to coating. Many high-contrast resists are available, and some are more susceptible to time-dependent performance factors than conventional resists. One of these factors is the time between coating and writing. Although future methods may reduce the impact of this factor, one current trend is to reduce this time by coating plates at the mask shop just prior to writing. Establishing an effective process to clean blanks prior to coating is necessary for product quality control and is a new task that is critical for maskmakers who previously purchased mask plates but have decided to begin coating them within their facility. This paper provides a strategy and method to be used within coat/bake cluster tools to remove particle contamination from mask blanks. The process uses excimer-UV ionizing radiation and ozone to remove organic contaminants, and then uses a wet process combined with megasonic agitation, surfactant, and spin forces. Megasonic agitation with surfactant lifts up particles, while the convective outflow of water enhances centripetal shear without accumulating harmful charge.
Key Issues in the Production of Ionospheric Outflows
NASA Astrophysics Data System (ADS)
Lotko, W.
2017-12-01
Global models demonstrate that outflows of ionospheric ions can have profound effects on the dynamics of the solar wind-magnetosphere-ionosphere-thermosphere system, particularly during geomagnetic storms. Yet the processes that determine where and when outflows occur are poorly understood, in large part because a full complement of critical multivariable measurements of outflows and their causal drivers has yet to be assembled. Development of accurate regional and global predictive models of outflows has been hampered by this lack of empirical knowledge, but models are also challenged by the additional requirement of having to reduce the complex microphysics of ion energization into lumped relations that specify outflow characteristics through causal regulators. Opportunities to improve understanding of this problem are vast. This overview will focus on a limited set of priority questions that address how ions overcome gravity to leave the ionosphere; the timing, rate, spatial distribution and energetics of their exodus; how their flight impacts the ionosphere-thermosphere environment that spawns outflows; and the influence of magnetospheric feedback on outflow production.
Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151
NASA Astrophysics Data System (ADS)
Mou, Guobin; Wang, Tinggui; Yang, Chenwei
2017-07-01
The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.
The JCMT Gould Belt Survey: Understanding the influence of outflows on Gould Belt clouds
NASA Astrophysics Data System (ADS)
Drabek-Maunder, E.; Hatchell, J.; Buckle, J. V.; Di Francesco, J.; Richer, J.
2016-03-01
Using James Clerk Maxwell Telescope (JCMT) Gould Belt Survey data from CO J = 3 → 2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is evidence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions.
The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.
2016-08-01
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.
THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overallmore » clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.« less
A Comparison of Techniques for Determining Mass Outflow Rates in the Type 2 Quasar Markarian 34
NASA Astrophysics Data System (ADS)
Revalski, Mitchell; Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R.; Dashtamirova, Dzhuliya; Pope, Crystal L.
2018-06-01
We present spatially resolved measurements of the mass outflow rates and energetics for the Narrow Line Region (NLR) outflows in the type 2 quasar Markarian 34. Using data from the Hubble Space Telescope and Apache point observatory, together with Cloudy photoionization models, we calculate the radial mass distribution of ionized gas and map its kinematics. We compare the results of this technique to global outflow rates that characterize NLR outflows with a single outflow rate and energetic measurement. We find that NLR mass estimates based on emission line luminosities produce more consistent results than techniques employing filling factors.
DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, A.; Mathur, S.; Krongold, Y.
2013-07-20
We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as K{alpha} transitions of O VII (two lines) and O VI at outflow velocities of {approx}0.1c. These lines are detected at 6.9{sigma}, 6.2{sigma}, and 4.7{sigma}, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectralmore » fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L{sub bol} lower limit of {>=}0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.« less
The energetics of AGN radiation pressure-driven outflows
NASA Astrophysics Data System (ADS)
Ishibashi, W.; Fabian, A. C.; Maiolino, R.
2018-05-01
The increasing observational evidence of galactic outflows is considered as a sign of active galactic nucleus (AGN) feedback in action. However, the physical mechanism responsible for driving the observed outflows remains unclear, and whether it is due to momentum, energy, or radiation is still a matter of debate. The observed outflow energetics, in particular the large measured values of the momentum ratio (\\dot{p}/(L/c) ˜ 10) and energy ratio (\\dot{E}_k/L ˜ 0.05), seems to favour the energy-driving mechanism; and most observational works have focused their comparison with wind energy-driven models. Here, we show that AGN radiation pressure on dust can adequately reproduce the observed outflow energetics (mass outflow rate, momentum flux, and kinetic power), as well as the scalings with luminosity, provided that the effects of radiation trapping are properly taken into account. In particular, we predict a sublinear scaling for the mass outflow rate (\\dot{M} ∝ L^{1/2}) and a superlinear scaling for the kinetic power (\\dot{E}_k ∝ L^{3/2}), in agreement with the observational scaling relations reported in the most recent compilation of AGN outflow data. We conclude that AGN radiative feedback can account for the global outflow energetics, at least equally well as the wind energy-driving mechanism, and therefore both physical models should be considered in the interpretation of future AGN outflow observations.
Broad Absorption Line Quasars with Polar Outflows
NASA Astrophysics Data System (ADS)
Wang, Junxian
2005-10-01
It is widely accepted that the broad absorption line (BAL) outflow exists in most (if not all) quasars with a small covering factor. Various evidences show that equatorial outflows are responsible for the BALs in most BAL QSOs. By searching for radio variable quasars in SDSS, we built the first sample of 6 BAL QSOs with polar BAL outflows. It is very likely that polar outflows are associated with relativistic jets, and their origins should be different from the equatorial outflows in the majority of BAL QSOs. We propose an XMM snapshot survey to a) check whether strong X-ray absorption, one of the most prominent characteristics of most BAL QSOs, also exist in the polar outflows b) check whether face-on BAL QSOs are otherwise X-ray normal c) provide a baseline for future extensive X-ray studies.
A resolved outflow of matter from a brown dwarf.
Whelan, Emma T; Ray, Thomas P; Bacciotti, Francesca; Natta, Antonella; Testi, Leonardo; Randich, Sofia
2005-06-02
The birth of stars involves not only accretion but also, counter-intuitively, the expulsion of matter in the form of highly supersonic outflows. Although this phenomenon has been seen in young stars, a fundamental question is whether it also occurs among newborn brown dwarfs: these are the so-called 'failed stars', with masses between stars and planets, that never manage to reach temperatures high enough for normal hydrogen fusion to occur. Recently, evidence for accretion in young brown dwarfs has mounted, and their spectra show lines that are suggestive of outflows. Here we report spectro-astrometric data that spatially resolve an outflow from a brown dwarf. The outflow's characteristics appear similar to, but on a smaller scale than, outflows from normal young stars. This result suggests that the outflow mechanism is universal, and perhaps relevant even to the formation of planets.
Safety Management for Water Play Facilities.
ERIC Educational Resources Information Center
Thompson, Claude
1986-01-01
Modern aquatic facilities, which include wave pools, water slides, and shallow water activity play pools, have a greater potential for injuries and lawsuits than conventional swimming pools. This article outlines comprehensive safety management for such facilities, including potential accident identification and injury control planning. (MT)
Yoon, William J; Lorelli, David R
2015-01-01
To evaluate a two-stage Hemodialysis Reliable Outflow (HeRO) implantation technique that avoids the use of a femoral bridging catheter versus the conventional one-stage technique requiring a bridging catheter in selected patients. A retrospective review was performed on 20 end-stage renal disease patients with an internal jugular vein (IJV) catheter selected for two-stage HeRO implantation at our institution between January 2010 and March 2013. The arterial graft component (AGC) was implanted without anastomosing it to the target artery (first stage). After AGC incorporation, the venous outflow component was inserted (second stage). The preexisting IJV catheter was maintained for hemodialysis access during the interstage period. Patient characteristics, patency using Kaplan-Meier method and infection rates were analyzed. A total of 17 patients with a mean age of 59 years (70.6% women) completed the two-stage procedure. During the interstage period (mean 12 weeks, range 4-22 weeks), no graft- or surgery-related infection occurred. The need of a femoral bridging catheter was avoided by utilizing the preexisting IJV dialysis catheter. The accumulated HeRO days were 3,916 days with a mean follow-up of 7.7 months (range 1-22.6 months). The HeRO-related infection rate was 0.3/1,000 days. The primary assisted and secondary patency rates at 6 months were 69% and 82%, respectively, which were similar to those of arteriovenous grafts. Staging conferred immediate vascular accessibility. Avoiding the use of a femoral bridging catheter using the two-stage technique may lower infection rate, with comparable primary assisted and secondary patency to arteriovenous grafts and added benefit of immediate cannulatability in this subset of patients.
Vymazal, Jan; Březinová, Tereza; Koželuh, Milan
2015-12-01
Estrogenic hormones, progesterone and testosterone are endocrine-disrupting chemicals and their presence in aquatic environments represents a potentially adverse environmental and public health impact. There is a considerable amount of information about removal of estrogens, progesterone and testosterone in conventional wastewater treatment plants, namely activated sludge systems. However, the information about removal of these compounds in constructed wetlands is very limited. Three constructed wetlands with horizontal subsurface flow in the Czech Republic have been selected to evaluate removal of estrogens (estrone, estriol, 17β-estradiol, 17α-ethinylestradiol), testosterone and progesterone. Monitored constructed wetlands for 100, 150 and 200 PE have been in operation for more than 10 years and all systems exhibit very high treatment efficiency for organics and suspended solids. The results indicate that removal of all estrogens, progesterone and testosterone was high and only estrone was found in the outflow from one constructed wetland in concentrations above the limit of quantification 1 ng l(-1). The limits of quantification for other estrogens, i.e., 10 ng l(-1) for estriol, 1 ng l(-1) for 17β-estradiol and 2 ng l(-1) for 17α-ethinylestradiol were not exceeded in the outflow of all monitored constructed wetlands. Also, for progesterone and testosterone, all outflow concentrations were below the LOQ of 0.5 ng l(-1). The results indicated that constructed wetlands with horizontal subsurface flow are a promising technology for elimination of estrogens, progesterone and testosterone from municipal sewage but more information is needed to confirm this finding. Copyright © 2015 Elsevier B.V. All rights reserved.
A distance-limited sample of massive molecular outflows
NASA Astrophysics Data System (ADS)
Maud, L. T.; Moore, T. J. T.; Lumsden, S. L.; Mottram, J. C.; Urquhart, J. S.; Hoare, M. G.
2015-10-01
We have observed 99 mid-infrared-bright, massive young stellar objects and compact H II regions drawn from the Red MSX source survey in the J = 3-2 transition of 12CO and 13CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 per cent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic time-scale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation, we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to ˜30 M⊙ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of ˜10-3 M⊙ yr-1 on to the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores.
The Dual Role of Starbursts and Active Galactic Nuclei in Driving Extreme Molecular Outflows
NASA Astrophysics Data System (ADS)
Gowardhan, Avani; Spoon, Henrik; Riechers, Dominik A.; González-Alfonso, Eduardo; Farrah, Duncan; Fischer, Jacqueline; Darling, Jeremy; Fergulio, Chiara; Afonso, Jose; Bizzocchi, Luca
2018-05-01
We report molecular gas observations of IRAS 20100‑4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using Atacama Large Millimeter Array and Plateau de Bure Interferometer observations, we spatially resolve the CO (1‑0) emission from the outflowing molecular gas in both and find maximum outflow velocities of v max ∼ 1600 and ∼1700 km s‑1 for IRAS 20100‑4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of {\\dot{M}}OF}∼ 670 and ∼350 M ⊙ yr‑1, respectively, corresponding to molecular gas depletion timescales {τ }OF}dep}∼ 11 and ∼16 Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, {τ }SFR}dep}∼ 33 and ∼46 Myr, respectively. To determine the outflow driving mechanism, we compare the starburst luminosity (L *) and active galactic nucleus (AGN) luminosity (L AGN) to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern L AGN. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with L * and L IR as with L AGN, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows.
Binary energy source of the HH 250 outflow and its circumstellar environment
NASA Astrophysics Data System (ADS)
Comerón, Fernando; Reipurth, Bo; Yen, Hsi-Wei; Connelley, Michael S.
2018-04-01
Aims: Herbig-Haro flows are signposts of recent major accretion and outflow episodes. We aim to determine the nature and properties of the little-known outflow source HH 250-IRS, which is embedded in the Aquila clouds. Methods: We have obtained adaptive optics-assisted L-band images with the NACO instrument on the Very Large Telescope (VLT), together with N- and Q-band imaging with VISIR also on the VLT. Using the SINFONI instrument on the VLT we carried out H- and K-band integral field spectroscopy of HH 250-IRS, complemented with spectra obtained with the SpeX instrument at the InfraRed Telescope Facility (IRTF) in the JHKL bands. Finally, the SubMillimeter Array (SMA) interferometer was used to study the circumstellar environment of HH 250-IRS at 225 and 351 GHz with CO (2-1) and CO (3-2) maps and 0.9 mm and 1.3 mm continuum images. Results: The HH 250-IRS source is resolved into a binary with 0.''53 separation, corresponding to 120 AU at the adopted distance of 225 pc. The individual components show heavily veiled spectra with weak CO absorption indicative of late-type stars. Both are Class I sources, but their spectral energy distributions between 1.5 μm and 19 μm differ markedly and suggest the existence of a large cavity around one of the components. The millimeter interferometric observations indicate that the gas mainly traces a circumbinary envelope or disk, while the dust emission is dominated by one of the circumstellar envelopes. Conclusions: HH 250-IRS is a new addition to the handful of multiple systems where the individual stellar components, the circumstellar disks and a circumbinary disk can be studied in detail, and a rare case among those systems in which a Herbig-Haro flow is present. Based on observations obtained with the VLT (Cerro Paranal, Chile) in programs 089.C-0196(A), 095.C-0488(A), and 095.C-0488(B), as well as with IRTF (Mauna Kea, Hawaii), SMA (Mauna Kea, Hawaii), and the Nordic Optical Telescope (La Palma, Canary Islands, Spain).Staff Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration.
Development of High-Field ST Merging Experiment: TS-U for High Power Reconnection Heating
NASA Astrophysics Data System (ADS)
Ono, Y.; Koike, H.; Tanabe, H.; Himeno, S.; Ishida, S.; Kimura, K.; Kawanami, M.; Narita, M.; Takahata, Y.; Yokoyama, T.; Inomoto, M.; Cheng, C. Z.
2016-10-01
We are developing high-magnetic field ST merging/ reconnection experiment TS-U with Brec = 0.3-0.5T, based on our scaling law of reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field Brec. This scaling law indicates that the high-Brec ST merging will heat ions to the burning plasma regime without using any additional heating facility. Its mechanism is that the reconnection outflow accelerates mainly ions up to the poloidal Alfven speed like the Sweet-Parker model. The shock-like density pileups thermalize the accelerated ions in the down-streams in agreement with recent solar satellite observations and PIC simulation results. We already documented significant ion heating of spheromak and ST mergings up to 0.25keV in TS-3 and 1.2keV in MAST, leading us to the high-Brec merging experiment TS-U. It is noted that high-resolution (>500 channel) 2D measurements of ion and electron temperatures is being developed for the purpose of solving all acceleration and heating effects of magnetic reconnection, such as the huge outflow heating of ions in the downstream and electron heating localized at the X-point.
Multispectral study of CO production from C/1995 O1 (Hale-Bopp)
NASA Astrophysics Data System (ADS)
Harris, W. M.; Nordsieck, K. H.; Scherb, F.; Mierkiwicz, E. J.; Morgenthaler, J. P.; Oliversen, R. J.
1998-09-01
A series of unique observartions of CO and its daughter products that were obtained simultaneously as part of the University of Wisconsin/Goddard Space Flight Center Hale-Bopp campaign are presented. CO is the second most abundant volatile species in the coma of comets, one that actually dominates production at large heliocentric distances, however its photchemical evolution is poorly understood due to the lack of good emission line tracers in the visible. On 8 April, 1997, we obtained wide field simultaneous observations of CI (1657 Angstroms) intensity and polarization from a sounding rocket, OI (6300 Angstroms) emission using the Wisconsin Hα Mapper (WHaM) facility, and measurements using the McMath-Pierce Solar telescope of CI (9850 Angstroms) emission at different points in the inner coma. Combined, these data contain information on the radial distribution, source function, equilibrium structure, photochemical lifetime of CO, and the outflow speed of its C and O daughter products. Combined, these results suggest rapid dissociation of CO in the collisionally thick inner coma of Hale-Bopp, followed by a high velocity outflow of the daughter products. Both results suggest some discrepancies with expectations, and we discuss their implications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-17
... facility fee, we divide the $132,945,000 by the total number of facilities (758) which gives us a domestic... domestic API facility fee, we divide the $23,415,000 by the total number of facilities (885) which gives us..., Attention: Government Lockbox 979108, 1005 Convention Plaza, St. Louis, MO 63101. (Note: This U.S. Bank...
Compact binary merger and kilonova: outflows from remnant disc
NASA Astrophysics Data System (ADS)
Yi, Tuan; Gu, Wei-Min; Liu, Tong; Kumar, Rajiv; Mu, Hui-Jun; Song, Cui-Ying
2018-05-01
Outflows launched from a remnant disc of compact binary merger may have essential contribution to the kilonova emission. Numerical calculations are conducted in this work to study the structure of accretion flows and outflows. By the incorporation of limited-energy advection in the hyper-accretion discs, outflows occur naturally from accretion flows due to imbalance between the viscous heating and the sum of the advective and radiative cooling. Following this spirit, we revisit the properties of the merger outflow ejecta. Our results show that around 10-3 ˜ 10-1 M⊙ of the disc mass can be launched as powerful outflows. The amount of unbound mass varies with the disc mass and the viscosity. The outflow-contributed peak luminosity is around 1040 ˜ 1041 erg s-1. Such a scenario can account for the observed kilonovae associated with short gamma-ray bursts, including the recent event AT2017gfo (GW170817).
Esophageal manometry in gastroesophageal reflux disease.
Mello, Michael; Gyawali, C Prakash
2014-03-01
High-resolution manometry (HRM) allows nuanced evaluation of esophageal motor function, and more accurate evaluation of lower esophageal sphincter (LES) function, in comparison with conventional manometry. Pathophysiologic correlates of gastroesophageal reflux disease (GERD) and esophageal peristaltic performance are well addressed by this technique. HRM may alter the surgical decision by assessment of esophageal peristaltic function and exclusion of esophageal outflow obstruction before antireflux surgery. Provocative testing during HRM may assess esophageal smooth muscle peristaltic reserve and help predict the likelihood of transit symptoms following antireflux surgery. HRM represents a continuously evolving new technology that compliments the evaluation and management of GERD. Copyright © 2014 Elsevier Inc. All rights reserved.
Intracardiac echocardiography to diagnose pannus formation after aortic valve replacement.
Yamamoto, Yoshiya; Ohara, Takahiro; Funada, Akira; Takahama, Hiroyuki; Amaki, Makoto; Hasegawa, Takuya; Sugano, Yasuo; Kanzaki, Hideaki; Anzai, Toshihisa
2016-03-01
A 66-year-old female, under regular follow-up for 20 years after aortic valve replacement (19-mm Carbomedics), presented dyspnea on effort and hypotension during hemodialysis. A transthoracic echocardiogram showed elevation of transvalvular velocity up to 4 m/s, but the structure around the aortic prosthesis was difficult to observe due to artifacts. Fluoroscopy revealed normal motion of the leaflets of the mechanical valve. Intracardiac echocardiography (ICE) revealed a pannus-like structure in the left ventricular outflow tract. Transesophageal echocardiogram also revealed this structure. ICE can visualize structural abnormalities around a prosthetic valve after cardiac surgery even in patients in whom conventional imaging modalities failed.
Generation of shockwave and vortex structures at the outflow of a boiling water jet
NASA Astrophysics Data System (ADS)
Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.
2014-12-01
Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.
Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn
The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but ismore » close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.« less
Formation and spatial distribution of hypervelocity stars in AGN outflows
NASA Astrophysics Data System (ADS)
Wang, Xiawei; Loeb, Abraham
2018-05-01
We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.
Codreanu, Andrea; Tran, Hoai V; Wiaux, Christophe; Mansouri, Kaweh; Roy, Sylvain; Mermoud, Andre; Schnyder, Corinne
2011-03-01
Study in vivo characteristics of a polymethylmethacrylate (PMMA) implant compared to the standard cylindrical collagen implant for deep sclerectomy (DS). Six-month comparative study. Twenty eyes of ten rabbits. Eyes were randomized to have DS with PMMA implant in one eye and collagen implant in the opposite eye. The growth of the new subconjunctival drainage vessels was assessed by combined fluorescein and indocyanin green anterior segment angiography; intrascleral and subconjunctival blebs were imaged by ultrasound biomicroscopy (UBM). At six months, outflow facility (C) was measured by anterior chamber perfusion and portions of one side of the DS were compared to portions on the 180° opposite side and native sclera on histology. The mean IOP preoperatively and at one, four, twelve, and twenty-four weeks was comparable in both groups (P > 0.1). UBM showed a statistically insignificant quicker regression of the subconjunctival bleb as well as a durable intrascleral lake in the PMMA group (P > 0.05). New drainage vessels were initially observed one month after surgery; they were more numerous in the PMMA group on angiographic and histological findings at 6 months (P < 0.05). The mean C increased significantly after surgery compared to preoperative values (P < 0.05) and no difference was observed between the implants (0.24 ± 0.06 µl/min/mmHg [PMMA] and 0.23 ± 0.07 µl/min/mmHg [collagen implant]) (P = 0.39). Deep sclerectomy performed with PMMA or collagen implants showed similar IOP lowering effects, outflow facility increase, and degree of inflammatory reaction. © 2010 The Authors. Clinical and Experimental Ophthalmology © 2010 Royal Australian and New Zealand College of Ophthalmologists.
AGN outflows as neutrino sources: an observational test
NASA Astrophysics Data System (ADS)
Padovani, P.; Turcati, A.; Resconi, E.
2018-04-01
We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 "bona fide" AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Second, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23,264 AGN at z < 0.4, a sub-sample of which includes mostly possible outflows sources. We find no significant evidence of an association between the AGN and the IceCube events, although we get the smallest p-values (˜6 and 18 per cent respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.
Bright crater outflows: Possible emplacement mechanisms
NASA Technical Reports Server (NTRS)
Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.
1992-01-01
Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.
AGN outflows as neutrino sources: an observational test
NASA Astrophysics Data System (ADS)
Padovani, P.; Turcati, A.; Resconi, E.
2018-07-01
We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 'bona fide' AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Secondly, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23 264 AGN at z < 0.4, a subsample of which includes mostly possible outflow sources. We find no significant evidence of an association between the AGN and the IceCube events, although we get the smallest p-values (˜6 and 18 per cent, respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.
THE MOLECULAR WIND IN THE NEAREST SEYFERT GALAXY CIRCINUS REVEALED BY ALMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zschaechner, Laura K.; Walter, Fabian; Farina, Emanuele P.
2016-12-01
We present ALMA observations of the inner 1′ (1.2 kpc) of the Circinus galaxy, the nearest Seyfert. We target CO (1–0) in the region associated with a well-known multiphase outflow driven by the central active galactic nucleus (AGN). While the geometry of Circinus and its outflow make disentangling the latter difficult, we see indications of outflowing molecular gas at velocities consistent with the ionized outflow. We constrain the mass of the outflowing molecular gas to be 1.5 × 10{sup 5}−5.1 × 10{sup 6} M {sub ⊙}, yielding a molecular outflow rate of 0.35–12.3 M {sub ⊙} yr{sup −1}. The values within this range aremore » comparable to the star formation (SF) rate in Circinus, indicating that the outflow indeed regulates SF to some degree. The molecular outflow in Circinus is considerably lower in mass and energetics than previously studied AGN-driven outflows, especially given its high ratio of AGN luminosity to bolometric luminosity. The molecular outflow in Circinus is, however, consistent with some trends put forth by Cicone et al., including a linear relation between kinetic power and AGN luminosity, as well as its momentum rate versus bolometric luminosity (although the latter places Circinus among the starburst galaxies in that sample). We detect additional molecular species including CN and C{sup 17}O.« less
Jijeh, Abdulraouf; Ismail, Muna; Alhabshan, Fahad
2017-09-01
Ventricular septal defect and aortic arch obstruction are usually associated with a narrow left ventricular outflow tract. The aim of the present study was to analyse the growth and predictors of future obstruction of the left ventricular outflow tract after surgical repair. We carried out a retrospective review of patients who underwent repair for ventricular septal defect and aortic arch obstruction - coarctation or interrupted aortic arch - between July, 2002 and June, 2013. Echocardiographic data were reviewed, and the need for re-intervention was evaluated. A total of 89 patients were included in this study. A significant left ventricular outflow tract growth was noticed after surgical repair. Preoperatively, the mean left ventricular outflow tract Z-score was -1.46±1 (range -5.5 to 1.1) and increased to a mean value of -0.7±1.3 (range -2.7 to 3.2) at last follow-up (p=0.0001), demonstrating relevant growth of the left ventricular outflow tract after repair for ventricular septal defect and aortic arch obstruction. After primary repair, 11 patients (12.3%) required re-intervention with surgical repair for left ventricular outflow tract obstruction after a mean period of 36±21 months. There were no significant differences in age, weight, and indexed aortic valve and left ventricular outflow tract measurements between those who developed obstruction and those who did not. Significant left ventricular outflow tract growth is expected after repair of ventricular septal defect and aortic arch obstruction. Small aortic valve and left ventricular outflow tract at diagnosis are not risk factors to predict the need for surgical re-intervention for left ventricular outflow tract obstruction in future.
Global-scale Ionospheric Outflow: Major Processes and Unresolved Problems
NASA Astrophysics Data System (ADS)
Liemohn, M. W.; Welling, D. T.; Ilie, R.; Khazanov, G. V.; Jahn, J. M.; Zou, S.; Ganushkina, N. Y.; Valek, P. W.; Elliott, H. A.; Gilchrist, B. E.; Hoegy, W. R.; Glocer, A.
2016-12-01
Outflow from the ionosphere is a major source of plasma to the magnetosphere. Its presence, especially that of ions heavier than He+, mass loads the magnetosphere and changes reconnection rates, current system configurations, plasma wave excitation and wave-particle interactions. It even impacts the propagation of information. We present a brief overview of the major processes and scientific history of this field. There are still major gaps, however, in our understanding of the global-scale nature of ionospheric outflow. We discuss these unresolved problems highlighting the leading questions still outstanding on this topic. First and foremost, since the measurements of ionospheric outflow have largely come from individual satellites and sounding rockets, the processes are best known on the local level, while the spatial distribution of outflow has never been simultaneously measured on more global scales. The spatial coherence and correlation of outflow across time and space have not been quantified. Furthermore, the composition of the outflow is often only measured at a coarse level of H+, He+, and O+, neglecting other species such as N+ or moleculars. However, resolving O+ from N+, as is customary in planetary research, aids in revealing the physics and altitude dependence of the energization processes in the ionosphere. Similarly, fine-resolution velocity space measurements of ionospheric outflow have been limited, yet such observations can also reveal energization processes driving the outflow. A final unresolved issue to mention is magnetically conjugate outflow and the full extent of hemispherically asymmetric outflow fluxes or fluence. Each of these open questions have substantial ramifications for magnetospheric physics; their resolution could yield sweeping changes in our understanding of nonlinear feedback and cross-scale physical interactions, magnetosphere-ionosphere coupling, and geospace system-level science.
Perilimbal sclera mechanical properties: Impact on intraocular pressure in porcine eyes
Man, Xiaofei; Arroyo, Elizabeth; Dunbar, Martha; Reed, David M.; Shah, Neil; Kagemann, Larry; Kim, Wonsuk; Moroi, Sayoko E.
2018-01-01
There is extensive knowledge on the relationship of posterior scleral biomechanics and intraocular pressure (IOP) load on glaucomatous optic neuropathy; however, the role for biomechanical influence of the perilimbal scleral tissue on the aqueous humor drainage pathway, including the distal venous outflow system, and IOP regulation is not fully understood. The purpose of this work is to study the outflow characteristics of perfused porcine eyes relative to the biomechanical properties of the perilimbal sclera, the posterior sclera and the cornea. Enucleated porcine eyes from eleven different animals were perfused with surrogate aqueous at two fixed flow rates while monitoring their IOP. After perfusion, mechanical stress-strain and relaxation tests were conducted on specimens of perilimbal sclera, posterior sclera, and cornea from the same perfused eyes. Statistical analysis of the data demonstrated a strong correlation between increased tangent modulus of the perilimbal sclera tissues and increased perfusion IOP (R2 = 0.74, p = 0.0006 at lower flow rate and R2 = 0.71, p = 0.0011 at higher flow rate). In contrast, there were no significant correlations between IOP and the tangent modulus of the other tissues (Posterior sclera: R2 = 0.17 at lower flow rate and R2 = 0.30 at higher flow rate; cornea: R2 = 0.02 at lower flow rate and R2<0.01 at higher flow rate) nor the viscoelastic properties of any tissue (R2 ≤ 0.08 in all cases). Additionally, the correlation occurred for IOP and not net outflow facility (R2 ≤ 0.12 in all cases). These results provide new evidence that IOP in perfused porcine eyes is strongly influenced by the tangent modulus, sometimes called the tissue stiffness, of the most anterior portion of the sclera, i.e. the limbus. PMID:29718942
Big Explosives Experimental Facility - BEEF
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.
Big Explosives Experimental Facility - BEEF
None
2018-01-16
The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.
15 CFR 712.4 - New Schedule 1 production facility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.4 New Schedule 1 production facility. (a) Establishment of a...) of the CWCR, and you intend to begin production of Schedule 1 chemicals at your facility in...
15 CFR 712.4 - New Schedule 1 production facility.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.4 New Schedule 1 production facility. (a) Establishment of a...) of the CWCR, and you intend to begin production of Schedule 1 chemicals at your facility in...
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.
1993-01-01
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov
2016-11-20
We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less
Broad [C II] Line Wings as Tracer of Molecular and Multi-phase Outflows in Infrared Bright Galaxies
NASA Astrophysics Data System (ADS)
Janssen, A. W.; Christopher, N.; Sturm, E.; Veilleux, S.; Contursi, A.; González-Alfonso, E.; Fischer, J.; Davies, R.; Verma, A.; Graciá-Carpio, J.; Genzel, R.; Lutz, D.; Sternberg, A.; Tacconi, L.; Burtscher, L.; Poglitsch, A.
2016-05-01
We report a tentative correlation between the outflow characteristics derived from OH absorption at 119 μm and [C II] emission at 158 μm in a sample of 22 local and bright ultraluminous infrared galaxies (ULIRGs). For this sample, we investigate whether [C II] broad wings are a good tracer of molecular outflows, and how the two tracers are connected. Fourteen objects in our sample have a broad wing component as traced by [C II], and all of these also show OH119 absorption indicative of an outflow (in one case an inflow). The other eight cases, where no broad [C II] component was found, are predominantly objects with no OH outflow or a low-velocity (≤100 km s-1) OH outflow. The FWHM of the broad [C II] component shows a trend with the OH119 blueshifted velocity, although with significant scatter. Moreover, and despite large uncertainties, the outflow masses derived from OH and broad [C II] show a 1:1 relation. The main conclusion is therefore that broad [C II] wings can be used to trace molecular outflows. This may be particularly relevant at high redshift, where the usual tracers of molecular gas (like low-J CO lines) become hard to observe. Additionally, observations of blueshifted Na I D λλ 5890, 5896 absorption are available for 10 of our sources. Outflow velocities of Na I D show a trend with OH velocity and broad [C II] FWHM. These observations suggest that the atomic and molecular gas phases of the outflow are connected.
NASA Astrophysics Data System (ADS)
Oya, Yoko; Sakai, Nami; Lefloch, Bertrand; López-Sepulcre, Ana; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Yamamoto, Satoshi
2015-10-01
Subarcsecond-resolution images of the rotational line emissions of CS and c-C3H2 obtained toward the low-mass protostar IRAS 04368+2557 in L1527 with the Atacama Large Millimeter/submillimeter Array are investigated to constrain the orientation of the outflow/envelope system. The distribution of CS consists of an envelope component extending from north to south and a faint butterfly shaped outflow component. The kinematic structure of the envelope is well reproduced by a simple ballistic model of an infalling rotating envelope. Although the envelope has a nearly edge-on configuration, we find that the western side of the envelope faces the observer. This configuration is opposite to the direction of the large-scale (˜104 AU) outflow suggested previously from the 12CO (J = 3-2) observation, and to the morphology of infrared reflection near the protostar (˜200 AU). The latter discrepancy could originate from high extinction by the outflow cavity of the western side, or may indicate that the outflow axis is not parallel to the rotation axis of the envelope. Position-velocity diagrams show the accelerated outflow cavity wall, and its kinematic structure in the 2000 AU scale is explained by a standard parabolic model with the inclination angle derived from the analysis of the envelope. The different orientation of the outflow between the small and large scale implies a possibility of precession of the outflow axis. The shape and the velocity of the outflow in the vicinity of the protostar are compared with those of other protostars.
Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904
NASA Astrophysics Data System (ADS)
Arav, Nahum; Borguet, Benoit; Chamberlain, Carter; Edmonds, Doug; Danforth, Charles
2013-12-01
Spectroscopic observations of quasar outflows at rest-frame 500-1000 Å have immense diagnostic power. We present analyses of such data, where absorption troughs from O IV and O IV* allow us to obtain the distance of the outflows from the AGN and troughs from Ne VIII and Mg X reveal the warm absorber phase of the outflow. Their inferred column densities, combined with those of O VI, N IV and H I, yield two important results. (1) The outflow shows two ionization phases, where the high-ionization phase carries the bulk of the material. This is similar to the situation seen in X-ray warm absorber studies. Furthermore, the low-ionization phase is inferred to have a volume filling factor of 10-5-10-6. (2) We determine a distance of 3000 pc from the outflow to the central source using the O IV*/O IV column density ratio and the knowledge of the ionization parameter. Since this is a typical high-ionization outflow, we can determine robust values for the outflow's mass flux and kinetic luminosity of 40 M⊙ yr-1 and 1045 erg s-1, respectively, where the latter is roughly equal to 1 per cent of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high-ionization wind suggest that quasar outflows are a major contributor to AGN feedback mechanisms.
Star formation inside a galactic outflow.
Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E
2017-04-13
Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.
NASA Astrophysics Data System (ADS)
Revalski, M.; Crenshaw, D. M.; Kraemer, S. B.; Fischer, T. C.; Schmitt, H. R.; Machuca, C.
2018-03-01
We present the first spatially resolved mass outflow rate measurements ({\\dot{M}}out}) of the optical emission line gas in the narrow line region (NLR) of a Seyfert 2 galaxy, Markarian 573. Using long slit spectra and [O III] imaging from the Hubble Space Telescope and Apache Point Observatory in conjunction with emission line diagnostics and Cloudy photoionization models, we find a peak outflow rate of {\\dot{M}}out}≈ 3.4 +/- 0.5 {M}ȯ {yr}}-1 at a distance of 210 pc from the central supermassive black hole (SMBH). The outflow extends to distances of 600 pc from the nucleus with a total mass and kinetic energy of M ≈ 2.2 × 106 M ⊙ and E ≈ 5.1 × 1054 erg, revealing the outflows to be more energetic than those in the lower luminosity Seyfert 1 galaxy NGC 4151. The peak outflow rate is an order of magnitude larger than the mass accretion and nuclear outflow rates, indicating local in situ acceleration of the circumnuclear NLR gas. We compare these results to global techniques that quantify an average outflow rate across the NLR, and find the latter are subject to larger uncertainties. These results indicate that spatially resolved observations are critical for probing AGN feedback on scales where circumnuclear star formation occurs.
AGN feedback in action? - outflows and star formation in type 2 AGNs
NASA Astrophysics Data System (ADS)
Woo, Jong-Hak
2017-01-01
We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z < 0.3. First, we find a dramatic difference of the outflow signatures between AGNs and star-forming galaxies based on the [OIII] emission line kinematics. While the [OIII] velocity and velocity dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.
A continuous silicon-coating facility
NASA Technical Reports Server (NTRS)
Butter, C.; Heaps, J. D.
1979-01-01
Automatic continuous silicon-coating facility is used to process 100 by 10 cm graphite-coated ceramic substrates for silicon solar cells. Process reduces contamination associated with conventional dip-coating processes, improving material service life.
THE ORION FINGERS: NEAR-IR SPECTRAL IMAGING OF AN EXPLOSIVE OUTFLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, Allison; Bally, John; Ginsburg, Adam, E-mail: allison.youngblood@colorado.edu
2016-06-01
We present near-IR (1.1–2.4 μ m) position–position–velocity cubes of the 500 year old Orion BN/KL explosive outflow with spatial resolution 1″ and spectral resolution 86 km s{sup −1}. We construct integrated intensity maps free of continuum sources of 15 H{sub 2} and [Fe ii] lines while preserving kinematic information of individual outflow features. Included in the detected H{sub 2} lines are the 1-0 S(1) and 1-0 Q(3) transitions, allowing extinction measurements across the outflow. Additionally, we present dereddened flux ratios for over two dozen outflow features to allow for the characterization of the true excitation conditions of the BN/KL outflow. All of themore » ratios show the dominance of the shock excitation of the H{sub 2} emission, although some features exhibit signs of fluorescent excitation from stellar radiation or J-type shocks. We also detect tracers of the PDR/ionization front north of the Trapezium stars in [O i] and [Fe ii] and analyze other observed outflows not associated with the BN/KL outflow.« less
Density diagnostics of ionized outflows in active galacitc nuclei
NASA Astrophysics Data System (ADS)
Mao, J.; Kaastra, J.; Mehdipour, M.; Raassen, T.; Gu, L.
2017-10-01
Ionized outflows in Active Galactic Nuclei are thought to influence their nuclear and local galactic environment. However, the distance of outflows with respect to the central engine is poorly constrained, which limits our understanding of the kinetic power by the outflows. Therefore, the impact of AGN outflows on their host galaxies is uncertain. Given the density of the outflows, their distance can be immediately obtained by the definition of the ionization parameter. Here we carry out a theoretical study of density diagnostics of AGN outflows using absorption lines from metastable levels in Be-like to F-like ions. With the new self-consistent photoionization model (PION) in the SPEX code, we are able to calculate ground and metastable level populations. This enable us to determine under what physical conditions these levels are significantly populated. We then identify characteristic transitions from these metastable levels in the X-ray band. Firm detections of absorption lines from such metastable levels are challenging for current grating instruments. The next generation of spectrometers like X-IFU onboard Athena will certainly identify the presence/absence of these density- sensitive absorption lines, thus tightly constraining the location and the kinetic power of AGN outflows.
Scaling Relations Between Warm Galactic Outflows and Their Host Galaxies
NASA Astrophysics Data System (ADS)
Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida; Lundgren, Britt
2015-10-01
We report on a sample of 48 nearby, star-forming galaxies observed with the Cosmic Origin Spectrograph on the Hubble Space Telescope. We measure the kinematics of warm gas in galactic outflows using a combination of four Si ii absorption lines. We use multi-wavelength ancillary data to estimate stellar masses (M*), star formation rates (SFR), circular velocities (vcirc), and morphologies. The galaxies cover four orders of magnitude in M* and SFR, and sample a wide range of morphologies from starbursting mergers to normal star-forming galaxies. We derive 3.0-3.5σ relations between outflow velocity and SFR, M*, and vcirc. The outflow velocities scale as SFR0.08-0.22, {M}*0.12-0.20 and {v}{circ}0.44-0.87, with the range depending on whether we use a maximum or a central velocity to quantify the outflow velocity. After accounting for their increased SFR, mergers drive 32% faster outflows than non-merging galaxies, with all of the highest velocity outflows arising from mergers. Low-mass galaxies (log(M*/ M⊙) < 10.5) lose some low-ionization gas through galactic outflows, while more massive galaxies retain all of their low-ionization gas, unless they undergo a merger.
What Fraction of Active Galaxies Actually Show Outflows?
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Brotherton, M. S.
2007-12-01
Outflows from active galactic nuclei (AGNs) seem to be common and are thought to be important from a variety of perspectives: as an agent of chemical enhancement of the interstellar and intergalactic media, as an agent of angular momentum removal from the accreting central engine, and as an agent limiting star formation in starbursting systems by blowing out gas and dust from the host galaxy. To understand these processes, we must determine what fraction of AGNs feature outflows and understand what forms they take. We examine recent surveys of outflows detected in ultraviolet absorption over the entire range of velocities and velocity widths (i.e., broad absorption lines, associated absorption lines, and high-velocity narrow absorption lines). While the fraction of specific forms of outflows depends on AGN properties, the overall fraction displaying outflows is fairly constant, approximately 60%, over many orders of magnitude in luminosity. We discuss implications of this result and ways to refine our understanding of outflows. We acknowledge support from the US National Science Foundation through grant AST 05-07781.
Unveiling the molecular bipolar outflow of the peculiar red supergiant VY Canis Majoris
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Claussen, Mark J.; Lim, Jeremy; Dinh-van-Trung; Tsuboi, Masato
2003-04-01
We carried out polarimetric spectral-line imaging of the molecular outflow of the peculiar red supergiant VY Canis Majoris in SiO J=1-0 line in the ground vibrational state, which contains highly linearly-polarized velocity components, using the Very Large Array. We succeeded in unveiling the highly linearly polarized bipolar outflow for the first time at subarcsecond spatial resolution. The results clearly show that the direction of linear polarization of the brightest maser components is parallel to the outflow axis. The results strongly suggest that the linear polarization of the SiO maser is closely related to the outflow phenomena of the star. Furthermore, the results indicate that the linear polarization observed in the optical and infrared also occur due to the outflow phenomena.
Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063
NASA Astrophysics Data System (ADS)
Oosterloo, Tom; Raymond Oonk, J. B.; Morganti, Raffaella; Combes, Françoise; Dasyra, Kalliopi; Salomé, Philippe; Vlahakis, Nektarios; Tadhunter, Clive
2017-12-01
We present a detailed study of the properties of the molecular gas in the fast outflow driven by the active galactic nucleus (AGN) in the nearby radio-loud Seyfert galaxy IC 5063. By using ALMA observations of a number of tracers of the molecular gas (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the differences in excitation, density and temperature of the gas as function of position and kinematics. The results show that in the immediate vicinity of the radio jet, a fast outflow, with velocities up to 800 km s-1, is occurring of which the gas has high excitation with excitation temperatures in the range 30-55 K, demonstrating the direct impact of the jet on the ISM. The relative brightness of the 12CO lines, as well as that of 13CO(2-1) vs. 12CO(2-1), show that the outflow is optically thin. We estimate the mass of the molecular outflow to be at least 1.2 × 106 M⊙ and likely to be a factor between two and three larger than this value. This is similar to that of the outflow of atomic gas, but much larger than that of the ionised outflow, showing that the outflow in IC 5063 is dominated by cold gas. The total mass outflow rate we estimated to be 12 M⊙ yr-1. The mass of the outflow is much smaller than the total gas mass of the ISM of IC 5063. Therefore, although the influence of the AGN and its radio jet is very significant in the inner regions of IC 5063, globally speaking the impact will be very modest. We used RADEX non-LTE modelling to explore the physical conditions of the molecular gas in the outflow. Models with the outflowing gas being quite clumpy give the most consistent results and our preferred solutions have kinetic temperatures in the range 20-100 K and densities between 105 and 106 cm-3. The resulting pressures are 106-107.5 K cm-3, about two orders of magnitude higher than in the outer quiescent disk. The highest densities and temperatures are found in the regions with the fastest outflow. The results strongly suggest that the outflow in IC 5063 is driven by the radio plasma jet expanding into a clumpy gaseous medium and creating a cocoon of (shocked) gas which is pushed away from the jet axis resulting in a lateral outflow, very similar to what is predicted by numerical simulations.
Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer
NASA Astrophysics Data System (ADS)
Ooms, T. A.; Lindken, R.; Westerweel, J.
2009-12-01
In this paper, we describe measurements of a three-dimensional (3D) flow in a T-shaped micromixer by means of digital holographic microscopy. Imaging tracer particles in a microscopic flow with conventional microscopy is accompanied by a small depth-of-field, which hinders true volumetric flow measurements. In holographic microscopy, the depth of the measurement domain does not have this limitation because any desired image plane can be reconstructed after recording. Our digital holographic microscope (DHM) consists of a conventional in-line recording system with an added magnifying optical element. The measured flow velocity and the calculated vorticity illustrate four streamwise vortices in the micromixer outflow channel. Because the investigated flow is stationary and strongly 3D, the DHM performance (i.e. accuracy and resolution) can be precisely investigated. The obtained Dynamic spatial range and Dynamic velocity range are larger than 20 and 30, respectively. High-speed multiple-frame measurements illustrate the capability to simultaneously track about 80 particles in a volumetric measurement domain.
Gumińska, Jolanta; Kłos, Marcin
2015-01-01
Filtration efficiency in a conventional water treatment system was analyzed in the context of pre-hydrolyzed coagulant overdosing. Two commercial coagulants of different aluminum speciation were tested. A study was carried out at a water treatment plant supplied with raw water of variable quality. The lack of stability of water quality caused many problems with maintaining the optimal coagulant dose. The achieved results show that the type of coagulant had a very strong influence on the effectiveness of filtration resulting from the application of an improper coagulant dose. The overdosing of high basicity coagulant (PAC85) caused a significant increase of fine particles in the outflow from the sedimentation tanks, which could not be retained in the filter bed due to high surface charge and the small size of hydrolysis products. When using a coagulant of lower basicity (PAC70), it was much easier to control the dose of coagulant and to adjust it to the changing water quality.
Bankruptcy Prevention: New Effort to Reflect on Legal and Social Changes.
Kliestik, Tomas; Misankova, Maria; Valaskova, Katarina; Svabova, Lucia
2018-04-01
Every corporation has an economic and moral responsibility to its stockholders to perform well financially. However, the number of bankruptcies in Slovakia has been growing for several years without an apparent macroeconomic cause. To prevent a rapid denigration and to prevent the outflow of foreign capital, various efforts are being zealously implemented. Robust analysis using conventional bankruptcy prediction tools revealed that the existing models are adaptable to local conditions, particularly local legislation. Furthermore, it was confirmed that most of these outdated tools have sufficient capability to warn of impending financial problems several years in advance. A novel bankruptcy prediction tool that outperforms the conventional models was developed. However, it is increasingly challenging to predict bankruptcy risk as corporations have become more global and more complex and as they have developed sophisticated schemes to hide their actual situations under the guise of "optimization" for tax authorities. Nevertheless, scepticism remains because economic engineers have established bankruptcy as a strategy to limit the liability resulting from court-imposed penalties.
Solar forcing, and ionospheric ion outflow from Venus, Earth and Mars - A comparison
NASA Astrophysics Data System (ADS)
Lundin, R. N.
2012-12-01
Solar forcing by e.g. EUV radiation and the solar wind leads to outflow and escape of ionospheric ions from Earth, Venus and Mars. In-situ measurements in the Earth's space environment have demonstrated that the ion escape rate correlates with the magnitude of solar forcing, i.e. high solar EUV and solar wind forcing leads to enhanced escape rates. The Terrestrial outflow is dominated by H+ and O+ suggesting that the ultimate origin of outflowing ions is water. Recent measurements from the two arid planets Mars and Venus, their atmospheres dominated by CO2, display characteristics similar to that of the Earth - an outflow dominated by hydrogen (H+) and oxygen (O+, O2+) ions. Despite major differences in atmospheric composition, the composition of the ion outflow from Earth and Venus is very similar, i.e. H+ and O+ dominates and the outflow has a stoichiometric H/O ratio of close to 2. The latter implies escape of water. The ion outflow from Mars is dominated by O+, O2+, and H+. Here the stoichiometric ratio between hydrogen and oxygen ion is ≈1, implying that if the ion outflow originates from water, about half of the hydrogen mass disappears by other means. The primary origin of the ion outflow from Earth, Venus and Mars is a complex issue. Nevertheless, a predominant hydrogen and oxygen loss implies that water can easily escape planets orbiting close to the Sun, while Carbon-based molecules (e.g. CO2) resides more easily. Observations shows that the outflow of e.g. CO+ and CO2+ from Mars and Venus is minute compared to the outflow of hydrogen and oxygen ions. Magnetic shielding is an issue affecting the net ion outflow and escape from a planet, because acceleration processes are also the characteristics of magnetized plasmas. Recent findings suggests that, despite magnetic field pile-up at Mars and Venus, the stand-off distance is insufficient to prohibit a direct interaction between the solar wind and the magnetized ionospheric plasma in the induced magnetospheres of Mars and Venus. On the other hand, a planetary magnetic field, such as the Earth's dipole field and the Martian multipole crustal field, may foster shielding as well as plasma acceleration. However, in this case the ion acceleration may be confined in closed planetary magnetic flux tubes, leading to a low escape rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimori, Masashi, E-mail: fujimorim@clin.medic.mie-u.ac.jp; Yamakado, Koichiro, E-mail: yamakado47@gmail.com; Takaki, Haruyuki, E-mail: takaki-h@clin.medic.mie-u.ac.jp
PurposeTo evaluate long-term results of stent placement retrospectively in patients with outflow block after living-donor-liver transplantation (LDLT).Materials and MethodsFor this institutional review board approved retrospective study conducted during 2002–2012, stents were placed in outflow veins in 15 patients (11.3 %, 15/133) (12 men; 3 female) in whom outflow block developed after LDLT. Their mean age was 52.3 years ± 15.3 (SD) (range, 4–69 years). Venous stenosis with a pressure gradient ≥5 mmHg (outflow block) was observed in the inferior vena cava in seven patients, hepatic vein in seven patients, and both in one patient. Technical success, change in a pressure gradient and clinical manifestations, and complicationsmore » were evaluated. Overall survival of 15 patients undergoing outflow block stenting was compared with that of 116 patients without outflow block after LDLT.ResultsStents were placed across the outflow block veins without complications, lowering the pressure gradient ≤ 3 mmHg in all patients (100 %, 15/15). Clinical manifestations improved in 11 patients (73.3 %, 11/15), and all were discharged from the hospital. However, they did not improve in the other 4 patients (26.7 %, 4/15) who died in the hospital 1.0–3.7 months after stenting (mean, 2.0 ± 1.2 months). No significant difference in 5-year survival rates was found between patients with and without outflow block after LDLT (61.1 vs. 72.2 %, p = .405).ConclusionStenting is a feasible, safe, and useful therapeutic option to resolve outflow block following LDLT, providing equal survival to that of patients without outflow block.« less
NASA Astrophysics Data System (ADS)
Spence, R. A. W.; Tadhunter, C. N.; Rose, M.; Rodríguez Zaurín, J.
2018-05-01
As part of the QUADROS project to quantify the impact of AGN-driven outflows in rapidly evolving galaxies in the local universe, we present observations of 8 nearby ULIRGs (0.04 < z < 0.2) taken with the ISIS spectrograph on the William Herschel Telescope (WHT), and also summarize the results of the project as a whole. Consistent with Rose et al. (2018), we find that the outflow regions are compact (0.08 < R_{[O III]} < 1.5 kpc), and the electron densities measured using the [S II], [O II] trans-auroral emission-line ratios are relatively high (2.5 < log ne (cm-3) < 4.5, median log ne (cm-3) ˜ 3.1). Many of the outflow regions are also significantly reddened (median E(B - V) ˜ 0.5). Assuming that the de-projected outflow velocities are represented by the 5^{th} percentile velocities (v05) of the broad, blueshifted components of [O III] λ5007, we calculate relatively modest mass outflow rates (0.1 < \\dot{M} < 20 M⊙ yr-1, median \\dot{M} ˜ 2 M⊙ yr-1), and find kinetic powers as a fraction of the AGN bolometric luminosity (\\dot{F} = \\dot{E}/L_bol) in the range 0.02 < \\dot{F} < 3 per cent, median \\dot{F} ˜ 0.3 per cent). The latter estimates are in line with the predictions of multi-stage outflow models, or single-stage models in which only a modest fraction of the initial kinetic power of the inner disk winds is transferred to the larger-scale outflows. Considering the QUADROS sample as a whole, we find no clear evidence for correlations between the properties of the outflows and the bolometric luminosities of the AGN, albeit based on a sample that covers a relatively small range in Lbol. Overall, our results suggest that there is a significant intrinsic scatter in outflow properties of ULIRGs for a given AGN luminosity.
Quasars Outflows As A Function of SED - An Empirical Approach
NASA Astrophysics Data System (ADS)
Richmond, Joseph M.; Ganguly, Rajib
2015-08-01
Feedback from quasars (jets, outflows, and luminosity) is now recognized as a vital phase in describing galaxy evolution, growth, and star formation efficiency. Regarding outflows, roughly 60% are observed to have outflowing gas appearing at large velocities and with a variety of velocity dispersions. The most extreme observed form of these outflows appears in the ultraviolet spectrum of 15-20% of objects. Understanding the physics of these outflows is important for both astrophysical and cosmological reasons. Establishing empirical relationships to test the theoretical models of how these outflows are driven (and hence, how they impact their surroundings) is currently plagued by having too few objects, where other parameters like the black hole mass or accretion rate, may add to the scatter. We aim to fix this by using a systematic study of a large sample of objects. As a follow up to a previous study, we have identified a sample of nearly 11000 z=1.7-2 quasars using archived data from the Sloan Digital Sky Survey (Data Release 7), of which roughly 4400 appear to show outflows according to the visual inspection. The specific redshift range is chosen to feature both the Mg II 2800 emission line as well as wavelengths extending to nearly 20,000 km/s blueward of the C IV 1549 emission line. Our goals for this study are: (1) To temper our visual inspection schemes with a more automated, computer-driven scheme; (2) To measure the properties of the outflows (velocity, velocity dispersion, equivalent width, ionization); (3) To supplement the SDSS spectra with photometric measurements from GALEX, 2MASS, and WISE to further characterize the spectral energy distributions (SEDs) and dust content; (4) To form spectral composites to investigate possible SED changes with outflow properties; and (5) To use published estimates of the quasar physical properties (black hole mass, accretion rate, etc.) to fully establish in an empirical way the complex dependencies between the properties of the outflow, and the physical properties of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strait, James; McCluskey, Elaine; Lundin, Tracy
2016-01-21
This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.
YSO jets in the Galactic plane from UWISH2 - V. Jets and outflows in M17
NASA Astrophysics Data System (ADS)
Samal, M. R.; Chen, W. P.; Takami, M.; Jose, J.; Froebrich, D.
2018-07-01
Jets and outflows are the first signposts of stellar birth. Emission in the H2 1-0 S(1) line at 2.122- μm is a powerful tracer of shock excitation in these objects. Here we present the analysis of 2.0 × 0.8 deg2 data from the UK Wide-field Infrared Survey for H2 (UWISH2) in the 1-0 S(1) line to identify and characterize the outflows of the M17 complex. We uncover 48 probable outflows, of which 93 per cent are new discoveries. We identified driving source candidates for 60 per cent of outflows. Among the driving source candidate young stellar objects (YSOs), 90 per cent are protostars and the remaining 10 per cent are Class II YSOs. In comparison with results from other surveys, we suggest that H2 emission fades very quickly as the objects evolve from protostars to pre-main-sequence stars. We fit spectral energy distribution (SED) models to 14 candidate outflow-driving sources and conclude that the outflows of our sample are mostly driven by moderate-mass YSOs that are still actively accreting from their protoplanetary disc. We examined the spatial distribution of the outflows with the gas and dust distribution of the complex and observed that the filamentary dark cloud M17SWex, located on the south-western side of the complex, is associated with a greater number of outflows. We find that our results corroborate previous suggestions that, in the M17 complex, M17SWex is the most active site of star formation. Several of our newly identified outflow candidates are excellent targets for follow-up studies to understand better the very early phase of protostellar evolution.
A Study of PG Quasar-Driven Outflows with COS
NASA Astrophysics Data System (ADS)
Hamann, Frederick
2013-10-01
Quasar outflows are an important part of the quasar phenomenon, but many questions remain about their energetics, physical properties and the role they might play in providing feedback to host galaxy evolution. We searched our own COS far-UV observations from the QUEST survey and other large COS programs to find a sample of 6 bright PG quasars with broad {FWHM > 400 km/s} high velocity {v > 1000 km/s} absorption lines that clearly form in quasar-driven winds. These quasars can fill an important gap in our understanding between local Seyferts with low-speed winds and high-redshift quasars with extreme BAL outflows. They are also well-studied at other wavelengths, with some evidence for the quasars driving galaxy-scale blowouts and shutting down star formation. But almost nothing is known about the quasar outflows themselves. We propose a detailed study of these 6 outflow quasars using new COS FUV observations to 1} expand the existing wavelength coverage across critical lines that are diagnostic of the outflow physical conditions, kinetic energies, and metallicities, and 2} check for line variability as an indicator of the outflow structure and locations. This quasar sample includes unusual cases with many low-abundance {PV 1118,1128 and SIV 1063} and excited-state lines {SIV 1073*, CIII* 1175, CII* 1335} that will provide unprecedented constraints on the outflow properties, plus the first known OVI-only mini-BAL outflow {no lower ions detected} for which we will cover NeVIII 770,780 to probe the highest ionization gas. The high FUV sensitivity of COS is uniquely able to measure this wide range of outflow lines in low-redshift quasars with no Lya forest contamination.
Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.
2003-10-01
The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (<60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.
Quenching star formation with quasar outflows launched by trapped IR radiation
NASA Astrophysics Data System (ADS)
Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.
2018-06-01
We present cosmological radiation-hydrodynamic simulations, performed with the code RAMSES-RT, of radiatively-driven outflows in a massive quasar host halo at z = 6. Our simulations include both single- and multi-scattered radiation pressure on dust from a quasar and are compared against simulations performed with thermal feedback. For radiation pressure-driving, we show that there is a critical quasar luminosity above which a galactic outflow is launched, set by the equilibrium of gravitational and radiation forces. While this critical luminosity is unrealistically high in the single-scattering limit for plausible black hole masses, it is in line with a ≈ 3 × 10^9 M_⊙ black hole accreting at its Eddington limit, if infrared (IR) multi-scattering radiation pressure is included. The outflows are fast (v ≳ 1000 km s^{-1}) and strongly mass-loaded with peak mass outflow rates ≈ 10^3 - 10^4 M_⊙ yr^{-1}, but short-lived (< 10 Myr). Outflowing material is multi-phase, though predominantly composed of cool gas, forming via a thermal instability in the shocked swept-up component. Radiation pressure- and thermally-driven outflows both affect their host galaxies significantly, but in different, complementary ways. Thermally-driven outflows couple more efficiently to diffuse halo gas, generating more powerful, hotter and more volume-filling outflows. IR radiation, through its ability to penetrate dense gas via diffusion, is more efficient at ejecting gas from the bulge. The combination of gas ejection through outflows with internal pressurisation by trapped IR radiation leads to a complete shut down of star formation in the bulge. We hence argue that radiation pressure-driven feedback may be an important ingredient in regulating star formation in compact starbursts, especially during the quasar's `obscured' phase.
Transport Pathways for Asian Pollution Outflow Over the Pacific: Interannual and Seasonal Variations
NASA Technical Reports Server (NTRS)
Liu, Hong-Yu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.
2003-01-01
The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (less than 60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Nina) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.
Lauer, Nancy E; Warner, Nathaniel R; Vengosh, Avner
2018-02-06
In Pennsylvania, Appalachian oil and gas wastewaters (OGW) are permitted for release to surface waters after some treatment by centralized waste treatment (CWT) facilities. While this practice was largely discontinued in 2011 for unconventional Marcellus OGW at facilities permitted to release high salinity effluents, it continues for conventional OGW. This study aimed to evaluate the environmental implications of the policy allowing the disposal of conventional OGW. We collected stream sediments from three disposal sites receiving treated OGW between 2014 and 2017 and measured 228 Ra, 226 Ra, and their decay products, 228 Th and 210 Pb, respectively. We consistently found elevated activities of 228 Ra and 226 Ra in stream sediments in the vicinity of the outfall (total Ra = 90-25,000 Bq/kg) compared to upstream sediments (20-80 Bq/kg). In 2015 and 2017, 228 Th/ 228 Ra activity ratios in sediments from two disposal sites were relatively low (0.2-0.7), indicating that a portion of the Ra has accumulated in the sediments in recent (<3) years, when no unconventional Marcellus OGW was reportedly discharged. 228 Ra/ 226 Ra activity ratios were also higher than what would be expected solely from disposal of low 228 Ra/ 226 Ra Marcellus OGW. Based on these variations, we concluded that recent disposal of treated conventional OGW is the source of high Ra in stream sediments at CWT facility disposal sites. Consequently, policies pertaining to the disposal of only unconventional fluids are not adequate in preventing radioactive contamination in sediments at disposal sites, and the permission to release treated Ra-rich conventional OGW through CWT facilities should be reconsidered.
Comparative study of antibiotic-containing polymethylmetacrylate capsules and beads.
Borzsei, László; Mintál, Tibor; Horváth, Aranka; Koós, Zoltán; Kocsis, Béla; Nyárády, József
2006-01-01
This study aimed at making local antibiotic therapy wider in cases of chronic suppurations by administering antibiotics which previously could not be given in this way through the conventional polymethylmetacrylate (PMMA) carrier techniques. Capsules from this material were produced with a pressing machine designed and laid out by us. The characteristics of antibiotic penetration from this novel carrier were compared to those of PMMA beads. The time-dependent outflow of amikacin, clindamycin, pefloxacin, piperacillin + tazobactam, amoxicillin + clavulanic acid and cefotaxime was examined from the capsules and the beads with standard microbiological techniques using the Micrococcus luteus ATCC9341 test strain. The diameter of the inhibitory zones was measured after 24 h incubation at 37 degrees C and converted to mug/ml antibiotic concentrations. Our results revealed that all antibiotics showed longer-lasting and higher concentration outflow from the PMMA capsules than from the beads. Therefore, these capsules can provide a more promising new opportunity for specific local antimicrobial treatment in cases of chronic suppurative bone and soft tissue injuries. In these cases the polymerization has already been completed and the heat does not influence the structure of the antibiotics; therefore, it can be inserted into the capsules in powder or solution form. Copyright 2006 S. Karger AG, Basel.
Kaufman, Paul L
2017-03-01
Intraocular pressure (IOP)-lowering has been demonstrated to slow the progression or onset of visual field loss in open-angle glaucoma (OAG) or ocular hypertension (OHT). Pharmacological lowering of IOP is the most common initial intervention in patients with OAG or OHT, however, many patients will require more than one therapy to achieve target IOP. Latanoprostene bunod is a novel nitric oxide (NO)-donating prostaglandin F2α analog for the reduction of IOP. Areas covered: Current knowledge concerning the mechanism of action of latanoprostene bunod is presented. Additionally, clinical safety and efficacy data from published Phase 1 (KRONUS), Phase 2 (VOYAGER, CONSTELLATION) and Phase 3 (APOLLO, LUNAR, JUPITER) studies are reviewed. Expert opinion: Latanoprostene bunod is a dual mechanism, dual pathway molecule, consisting of latanoprost acid, which is known to enhance uveoscleral (unconventional) outflow by upregulating matrix metalloproteinase expression and remodeling of the ciliary muscle's extracellular matrix, linked to an NO-donating moiety, which enhances trabecular meshwork/Schlemm's canal (conventional) outflow by inducing cytoskeletal relaxation via the soluble guanylyl cyclase-cyclic guanosine monophosphate (sGC-cGMP) signaling pathway. Latanoprostene bunod 0.024% solution applied topically once daily appears more effective in reducing IOP in OHT and OAG subjects than either latanoprost or timolol, with a side effect profile similar to that of latanoprost.
AGN outflows and feedback twenty years on
NASA Astrophysics Data System (ADS)
Harrison, C. M.; Costa, T.; Tadhunter, C. N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G.
2018-03-01
It is twenty years since the seminal works by Magorrian and co-authors and by Silk and Rees, which, along with other related work, ignited an explosion of publications connecting active galactic nucleus (AGN)-driven outflows to galaxy evolution. With a surge in observations of AGN outflows, studies are attempting to test AGN feedback models directly using the outflow properties. With a focus on outflows traced by optical and CO emission lines, we discuss significant challenges that greatly complicate this task, from both an observational and theoretical perspective. We highlight the observational uncertainties involved and the assumptions required when deriving kinetic coupling efficiencies (that is, outflow kinetic power as a fraction of AGN luminosity) from typical observations. Based on recent models we demonstrate that extreme caution should be taken when comparing observationally derived kinetic coupling efficiencies to coupling efficiencies from fiducial feedback models.
Broad Redshifted Line as a Signature of Outflow
NASA Astrophysics Data System (ADS)
Titarchuk, Lev; Kazanas, Demos; Becker, Peter A.
2003-11-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
Broad Red-Shifted Lines as a Signature of Outflow
NASA Astrophysics Data System (ADS)
Kazanas, Demosthenes; Titarchuk, Lev; Becker, Peter A.
2004-07-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
Broad Red-Shifted Lines as a Signature of Outflows
NASA Astrophysics Data System (ADS)
Titarchuck, Lev; Kazanas, Demos; Becker, Peter A.
2006-02-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in υ/c, where υ the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
The Simbol-X Perspective on the Physics of Quasar Outflows
NASA Astrophysics Data System (ADS)
Giustini, M.; Cappi, M.; Vignali, C.; Palumbo, G. G. C.; Fiore, F.; Malaguti, G.
2009-05-01
There is increasing evidence that quasar outflows may play a key role in providing the feedback between AGN/QSOs and their surrounding (and feeding) media, in regulating the central supermassive black hole growth and the galaxy formation and, on larger scales, in shaping the growth of cosmic structures (see e.g. [1]). X-ray observations of quasar outflows are crucial to probe their innermost parts and assess the global energetics entrained in the outflow by studying its most extreme (in terms of velocity, ionization state, mass outflow rate) phases. Simbol-X-with its high effective area in the Fe K energy band and above-will allow the detection and the characterization of powerful outflows in bright, nearby AGN and notably also in moderately faint AGN, thus shedding light on feedback processes in these objects.
Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms
NASA Astrophysics Data System (ADS)
Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.
2017-12-01
Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.
Quasar Outflows and AGN Feedback in the Extreme UV: HST/COS Observations of QSO HE0238-1904
NASA Astrophysics Data System (ADS)
Arav, Nahum; Borguet, B.; Chamberlain, C.; Edmonds, D.; Danforth, C.
2014-01-01
Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offner, Stella S. R.; Arce, Héctor G., E-mail: stella.offner@yale.edu
2014-03-20
We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from θ = 0.01-0.1 and find that even well-collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in themore » surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to simulation of a cluster of protostars, which is not gravitationally centrally condensed, we find that the outflows drive motions that are mainly solenoidal. The final turbulent velocity dispersion is about twice the initial value of the cores, indicating that an individual outflow is easily able to replenish turbulent motions on sub-parsec scales. We post-process the simulations to produce synthetic molecular line emission maps of {sup 12}CO, {sup 13}CO, and C{sup 18}O and evaluate how well these tracers reproduce the underlying mass and velocity structure.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.5 Annual declaration requirements for facilities engaged in... facilities engaged in the production of Schedule 1 chemicals for purposes not prohibited by the CWC. 712.5...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbak, S. C.; Reichle, D. R.; Shriner, C. R.
1981-01-01
This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner)more » has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, A.N.; Graham, M.M.
1991-03-01
Combined technetium radioisotope penile plethysmography and xenon washout is a new technique that measures both corporal arterial inflow and venous sinusoidal outflow during early tumescence in patients with erectile dysfunction. Fourteen patients were studied using 99mTc-RBCs to measure inflow and 133Xe or 127Xe in saline to measure outflow. Tumescence was induced by injecting papaverine intracorporally. Peak corporal rates corrected for inflow (r = 0.88) and uncorrected for outflow (r = 0.91) and change in volume over 2 min centered around peak inflow (r = 0.96) all correlated with angiography. Outflow measurements did not correlate with intracorporal resistance. Thus, outflow ratesmore » alone could not be used to predict venous sinusoidal competence. Normal inflow rate is greater than 20 ml/min; probable normal 12-20; indeterminate inflow 7-12; and abnormal inflow less than 7 ml/min. Technetium-99m radioisotope penile plethysmography and xenon washout can be performed together and both provide a method for simultaneously evaluating the relationship between corporal inflow and outflow rates in patients with erectile dysfunction.« less
X-Ray Evidence for the Accretion Disc-Outflow Connection in 3C 111
NASA Technical Reports Server (NTRS)
Tombesi, Frank; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.
2011-01-01
We present the spectral analysis of three Suzaku X-ray Imaging Spectrometer observations of 3C III requested to monitor the predicted variability of its ultrafast outflow on approximately 7 d time-scales. We detect an ionized iron emission line in the first observation and a blueshifted absorption line in the second, when the flux is approximately 30 per cent higher. The location of the material is constrained at less than 0.006 pc from the variability. Detailed modelling supports an identification with ionized reflection off the accretion disc at approximately 20-100rg from the black hole and a highly ionized and massive ultrafast outflow with velocity approximately 0.1c, respectively. The outflow is most probably accelerated by radiation pressure, but additional magnetic thrust cannot be excluded. The measured high outflow rate and mechanical energy support the claims that disc outflows may have a significant feedback role. This work provides the first direct evidence for an accretion disc-outflow connection in a radio-loud active galactic nucleus, possibly linked also to the jet activity.
Bipolar outflows and Jets From Young Stars
NASA Astrophysics Data System (ADS)
Bally, J.
2000-05-01
Stars produce powerful jets and winds during their birth. These primary outflows power shock waves (Herbig-Haro objects) and entrain surrounding gas to produce molecular outflows. Many outflows reach parsec-scale dimensions whose dynamical ages can become comparable to the accretion age of the source star. Thus, these giant outflows provide fossil records of the mass loss histories of their parent stars. Jet symmetries provide tantalizing clues about the violent history of stellar accretion and dynamical interactions with nearby companions. These flows inject sufficient energy and momentum into the surrounding medium to alter the physical and chemical state of the gas, generate turbulence, disrupt the parent cloud, and self-regulate the rate of star formation. Recent observations have revealed a new class of externally irradiated jets which are rendered visible by the light of nearby massive stars. Some of these jets appear to be millions of years old, indicating that outflow activity can persist for much longer than previously thought. Stellar jets provide ideal laboratories for the investigation of accretion powered outflows and associated shocks since their time-dependent behavior can be observed with a rich variety of spectral line diagnostics.
Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings
NASA Astrophysics Data System (ADS)
Plunkett, Adele
2018-01-01
Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.
NASA Astrophysics Data System (ADS)
Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.
2015-11-01
Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI. In addition, we analyze archival deep Chandra and NuSTAR X-ray observations. We use this unprecedented combination of multi-wavelength data sets to constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular CO(2-1) outflow has a size of 1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to 1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as r-2. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to 1 kpc, thus implying a limit on its age of 1 Myr. Mapping the mass and energy rates of the molecular outflow yields dot {M} OF = [500-1000] M⊙ yr-1 and Ėkin,OF = [7-10] × 1043 erg s-1. The total kinetic energy of the outflow is Ekin,OF is of the same order of the total energy of the molecular disk, Edisk. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20 000 km s-1, dot {M}UFO = [0.3-2.1] M⊙ yr-1, and momentum load dot {P}UFO/ dot {P}rad = [0.2-1.6]. We find Ėkin,UFO Ėkin,OF as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO kinetic energy is transferred to mechanical energy of the kpc-scale outflow, strongly supporting that the energy released during accretion of matter onto super-massive black holes is the ultimate driver of giant massive outflows. The momentum flux dot {P}OF derived for the large scale outflows in Mrk 231 enables us to estimate a momentum boost dot {P}OF/ dot {P} UFO ≈ [30-60]. The ratios Ėkin,UFO/Lbol,AGN = [1-5] % and Ėkin,OF/Lbol,AGN = [1-3] % agree with the requirements of the most popular models of AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain), and with Chandra and NuSTAR observatories.
Evidence that Most BALQSO Outflows are situated at Least 100 Parsecs from the Central Source
NASA Astrophysics Data System (ADS)
Arav, Nahum; Xu, Xinfeng
2018-01-01
The most robust way for determining the distance of quasar absorption outflows is the use of troughs from ionic excited states. The column densities ratio between the excited and resonance states is a sensitive diagnostic of the outflows’ number density. Combined with a knowledge of the outflow's ionization parameter a distance can be determined. Here we report the results of two surveys targeting outflows that show troughs from S IV. One survey includes 1091 SDSS and BOSS quasar spectra, and the other includes higher quality spectra of 13 quasar observed with the Very Large Telescope.We find that at least 50% of quasar outflows are at distances larger than 100 parsecs from the central source, and at least 12% are at distances larger than 1000 parsecs. These results have profound implications to the study of the origin and acceleration mechanism of quasar outflows, and their effects on the host galaxy.
Magnetically driven jets and winds: Exact solutions
NASA Technical Reports Server (NTRS)
Contopoulos, J.; Lovelace, R. V. E.
1994-01-01
We present a general class of self-similar solutions of the full set of MHD equations that include matter flow, electromagnetic fields, pressure, and gravity. The solutions represent axisymmetric, time-independent, nonrelativistic, ideal, magnetohydrodynamic, collimated outflows (jet and winds) from magnetized accretion disks around compact objects. The magnetic field extracts angular momentum from the disk, accelerates the outflows perpedicular to the disk, and provides collimation at large distances. The terminal outflow velocities are of the order of or greater than the rotational velocity of the disk at the base of the flow. When a nonzero electric current flows along the jet, the outflow radius oscillates with axial distance, whereas when the total electric current is zero (with the return current flowing across the jet's cross section), the outflow radius increase to a maximum and then decreases. The method can also be applied to relativistic outflows.
OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru
2017-01-20
Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less
RETROFITTING CONTROL FACILITIES FOR WET WEATHER FLOW TREATMENT
Available technologies were evaluated to demonstrate the technical feasibility and cost-effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilitie...
MOLECULAR OUTFLOWS FROM THE PROTOCLUSTER SERPENS SOUTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Fumitaka; Higuchi, Aya; Sugitani, Kohji
2011-08-20
We present the results of CO (J = 3-2) and HCO{sup +} (J = 4-3) mapping observations toward a nearby embedded cluster, Serpens South, using the ASTE 10 m telescope. Our CO (J = 3-2) map reveals that many outflows are crowded in the dense cluster-forming clump that can be recognized as an HCO{sup +} clump with a size of {approx}0.2 pc and mass of {approx}80 M{sub sun}. The clump contains several subfragments with sizes of {approx}0.05 pc. By comparing the CO (J = 3-2) map with the 1.1 mm dust continuum image taken by AzTEC on ASTE, we findmore » that the spatial extents of the outflow lobes are sometimes anti-correlated with the distribution of the dense gas, and some of the outflow lobes apparently collide with the dense gas. The total outflow mass, momentum, and energy are estimated to be 0.6 M{sub sun}, 8 M{sub sun} km s{sup -1}, and 64 M{sub sun} km{sup 2} s{sup -2}, respectively. The energy injection rate due to the outflows is comparable to the turbulence dissipation rate in the clump, implying that the protostellar outflows can maintain the supersonic turbulence in this region. The total outflow energy seems only about 10% of the clump gravitational energy. We conclude that the current outflow activity is not enough to destroy the whole cluster-forming clump, and therefore star formation is likely to continue for several or many local dynamical times.« less
Gabbert, Dominik D; Entenmann, Andreas; Jerosch-Herold, Michael; Frettlöh, Felicitas; Hart, Christopher; Voges, Inga; Pham, Minh; Andrade, Ana; Pardun, Eileen; Wegner, P; Hansen, Traudel; Kramer, Hans-Heiner; Rickers, Carsten
2013-12-01
The determination of right ventricular volumes and function is of increasing interest for the postoperative care of patients with congenital heart defects. The presentation of volumetry data in terms of volume-time curves allows a comprehensive functional assessment. By using manual contour tracing, the generation of volume-time curves is exceedingly time-consuming. This study describes a fast and precise method for determining volume-time curves for the right ventricle and for the right ventricular outflow tract. The method applies contour detection and includes a feature for identifying the right ventricular outflow tract volume. The segregation of the outflow tract is performed by four-dimensional curved smooth boundary surfaces defined by prespecified anatomical landmarks. The comparison with manual contour tracing demonstrates that the method is accurate and improves the precision of the measurement. Compared to manual contour tracing the bias is <0.1% ± 4.1% (right ventricle) and -2.6% ± 20.0% (right ventricular outflow tract). The standard deviations of inter- and intraobserver variabilities for determining the volume of the right ventricular outflow tract are reduced to less than half the values of manual contour tracing. The time consumption per patient is reduced from 341 ± 80 min (right ventricle) and 56 ± 11 min (right ventricular outflow tract) using manual contour tracing to 46 ± 9 min for a combined analysis of right ventricle and right ventricular outflow tract. The analysis of volume-time curves for the right ventricle and its outflow tract discloses new evaluation methods in clinical routine and science. Copyright © 2013 Wiley Periodicals, Inc.
Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.
NASA Astrophysics Data System (ADS)
Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.
1995-09-01
We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.
Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253
NASA Astrophysics Data System (ADS)
Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin
2017-02-01
We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ˜300 pc, with a width of ˜50 pc, and a velocity dispersion of ˜40 km s-1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s-1 pc-1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1-0)/CO(1-0) line ratio of ˜ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (˜ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ˜1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.
The COS revolution of AGN outflow science
NASA Astrophysics Data System (ADS)
Arav, Nahum
2016-10-01
HST/COS has opened a new discovery space for quasar outflow science. Specifically, it provides high quality FUV spectra covering the diagnostic-rich 500A-1050A rest-frame of medium redshift objects. We have published three refereed papers based on the analysis of such data that were supported by our concluded COS archive program, in which we reported: a) a new population of very high ionization outflows, b) robust cases of two-ionization-phase outflows, which are the missing link between UV AGN outflows and x-ray warm absorbers, and most importantly c) spectral diagnostics that allowed us to determine the distance of the outflows from the central source. The latter is a cardinal issue in the field as many researchers believe that most outflows are situated close to the accretion disk ( 0.01 pc) while the few reliable measurements show distances of 10-10,000 pc. Therefore, every empirical distance measurement is of importance. Our archive based publication also demonstrates that quasar outflows have sufficient energy to match theoretical predictions for AGN feedback influencing galaxy evolution.We propose to continue this successful archive program. Thus far we've analyzed about 300 COS G130M and G160M orbits of AGN observations. There are roughly 900 additional orbits that satisfy our criteria and will be available within a year. Based on our published survey, we expect that these 900 orbits will yield about 20-30 additional very-high ionization outflows and 4-6 cases of distance and kinetic luminosity determinations, all in cosmologically important luminous-quasars.
Infall and outflow motions towards a sample of massive star-forming regions from the RMS survey
NASA Astrophysics Data System (ADS)
Cunningham, N.; Lumsden, S. L.; Moore, T. J. T.; Maud, L. T.; Mendigutía, I.
2018-06-01
We present the results of an outflow and infall survey towards a distance-limited sample of 31 massive star-forming regions drawn from the Red MSX source (RMS) survey. The presence of young, active outflows is identified from SiO (8-7) emission and the infall dynamics are explored using HCO+/H13CO+ (4-3) emission. We investigate if the infall and outflow parameters vary with source properties, exploring whether regions hosting potentially young active outflows show similarities or differences with regions harbouring more evolved, possibly momentum-driven, `fossil' outflows. SiO emission is detected towards approximately 46 per cent of the sources. When considering sources with and without an SiO detection (i.e. potentially active and fossil outflows, respectively), only the 12CO outflow velocity shows a significant difference between samples, indicating SiO is more prevalent towards sources with higher outflow velocities. Furthermore, we find the SiO luminosity increases as a function of the Herschel 70 μm to WISE 22 μm flux ratio, suggesting the production of SiO is prevalent in younger, more embedded regions. Similarly, we find tentative evidence that sources with an SiO detection have a smaller bolometric luminosity-to-mass ratio, indicating SiO (8-7) emission is associated with potentially younger regions. We do not find a prevalence towards sources displaying signatures of infall in our sample. However, the higher energy HCO+ transitions may not be the best suited tracer of infall at this spatial resolution in these regions.
Powerful Molecular Outflows in Nearby Active Galaxies
NASA Astrophysics Data System (ADS)
Veilleux, Sylvain; Meléndez, Marcio
2014-07-01
We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel-PACS† in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7-μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~ 145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only 4 objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~ -1000 km s-1 are measured in several objects, but median outflow velocities are typically ~ -200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large AGN fractions and luminosities [log (L AGN/L ⊙) >= 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. In contrast, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.
Shining a light on galactic outflows: photoionized outflows
NASA Astrophysics Data System (ADS)
Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida
2016-04-01
We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.
HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou
We present Submillimeter Array polarization observations of the CO J = 3–2 line toward NGC 1333 IRAS 4A. The CO Stokes I maps at an angular resolution of ∼1″ reveal two bipolar outflows from the binary sources of NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at ∼20° inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of ∼2.″3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly frommore » an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind–envelope interaction in the wind-driven outflows. The CO data reveal a PA of ∼30° deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to ∼10° deflection of the outflows by means of Lorentz force.« less
Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption
NASA Astrophysics Data System (ADS)
Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.
2018-02-01
Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.
Subsonic Flows through S-Ducts with Flow Control
NASA Astrophysics Data System (ADS)
Chen, Yi
An inlet duct of an aircraft connects the air intake mounted on the fuselage to the engine within the aircraft body. The ideal outflow quality of the duct is steady, uniform and of high total pressure. Recently compact S-shaped inlet ducts are drawing more attention in the design of UAVs with short propulsion system. Compact ducts usually involve strong streamwise adverse pressure gradient and transverse secondary flow, leading to large-scale harmful vortical structures in the outflow. To improve the outflow quality modern flow control techniques have to be applied. Before designing successful flow control methods a solid understanding of the baseline flow field with the duct is crucial. In this work the fundamental mechanism of how the three dimensional flow topology evolves when the relevant parameters such as the duct geometry and boundary layer thickness are varied, is studied carefully. Two distinct secondary-flow patterns are identified. For the first time the sensitivity of the flow topology to the inflow boundary layer thickness in long ducts is clearly addressed. The interaction between the transverse motion induced by the transverse pressure gradient and the streamwise separation is revealed as the crucial reason for the various flow patterns existing in short ducts. A non-symmetric flow pattern is identified for the first time in both experiments and simulations in short ducts in which the intensity of the streamwise separation and the transverse invasion are in the same order of magnitude. A theory of energy accumulation and solution bifurcation is used to give a reasonable explanation for this non-symmetry. After gaining the knowledge of where and how the harmful vortical structures are generated several flow control techniques are tested to achieve a better outflow quality. The analysis of the flow control cases also provides a deeper insight into the behavior of the three-dimensional flow within the ducts. The conventional separation control method of Coanda injection is proved to be less effective in short ducts dominated by strong three-dimensional effects. Besides, the injection enhances the energy accumulation in duct with the asymmetric pattern and leads to the amplification of the asymmetry. Vortex generator jets are applied to generate spanwise near-wall motions opposing the transverse invasion and to break the strong interaction between the invasion and the separation. Symmetry is regained successfully.
The Outflow Pathway: A Tissue With Morphological and Functional Unity.
Saccà, Sergio Claudio; Gandolfi, Stefano; Bagnis, Alessandro; Manni, Gianluca; Damonte, Gianluca; Traverso, Carlo Enrico; Izzotti, Alberto
2016-09-01
The trabecular meshwork (TM) plays an important role in high-tension glaucomas. Indeed, the TM is a true organ, through which the aqueous humor flows from the anterior chamber to Schlemm's canal (SC). Until recently, the TM, which is constituted by endothelial-like cells, was described as a kind of passive filter. In reality, it is much more. The cells delineating the structures of the collagen framework of the TM are endowed with a cytoskeleton, and are thus able to change their shape. These cells also have the ability to secrete the extracellular matrix, which expresses proteins and cytokines, and are capable of phagocytosis and autophagy. The cytoskeleton is attached to the nuclear membrane and can, in millionths of a second, send signals to the nucleus in order to alter the expression of genes in an attempt to adapt to biomechanical insult. Oxidative stress, as happens in aging, has a deleterious effect on the TM, leading eventually to cell decay, tissue malfunction, subclinical inflammation, changes in the extracellular matrix and cytoskeleton, altered motility, reduced outflow facility, and (ultimately) increased IOP. TM failure is the most relevant factor in the cascade of events triggering apoptosis in the inner retinal layers, including ganglion cells. J. Cell. Physiol. 231: 1876-1893, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Modern tornado design of nuclear and other potentially hazardous facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, J.D.; Zhao, Y.
Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.
Maja Valley and the Chryse outflow complex sites
NASA Technical Reports Server (NTRS)
Rice, Jim W.
1994-01-01
This candidate landing site is located at 19 deg N, 53.5 deg W near the mouth of a major outflow channel. Maja Valles, and two 'valley network' channel systems, Maumee and Vedra Valles. The following objectives are to be analyzed in this region: (1) origin and paleohydrology of outflow and valley network channels; (2) fan delta complex composition (the deposit located in this area is one of the few identified at the mouth s of any channels on the planet); and (3) analysis of any paleolake sediments (carbonates, evaporites). The primary objectives of the Chryse Outflow Complex region (Ares, Tiu, Mawrth, Simud, and Shalbatana Valles) would be outflow channel dynamics (paleohydrology) of five different channel systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, G.J.; Seaver, C.L.; Kowalkowski, J.B.
As controls needs at the Advanced Photon Source matured from an installation phase to an operational phase, the need to monitor the existing conventional facilities control system with the EPICS-based accelerator control system was realized. This existing conventional facilities control network is based on a proprietary system from Johnson Controls called Metasys. Initially read-only monitoring of the Metasys parameters will be provided; however, the ability for possible future expansion to full control is available. This paper describes a method of using commercially available hardware and existing EPICS software as a bridge between the Metasys and EPICS control systems.
Simulation of California's Major Reservoirs Outflow Using Data Mining Technique
NASA Astrophysics Data System (ADS)
Yang, T.; Gao, X.; Sorooshian, S.
2014-12-01
The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.
The small observed scale of AGN-driven outflows, and inside-out disc quenching
NASA Astrophysics Data System (ADS)
Zubovas, Kastytis; King, Andrew
2016-11-01
Observations of massive outflows with detectable central active galactic nuclei (AGN) typically find them within radii ≲10 kpc. We show that this apparent size restriction is a natural result of AGN driving if this process injects total energy only of the order of the gas binding energy to the outflow, and the AGN varies over time (`flickers') as suggested in recent work. After the end of all AGN activity, the outflow continues to expand to larger radii, powered by the thermal expansion of the remnant-shocked AGN wind. We suggest that on average, outflows should be detected further from the nucleus in more massive galaxies. In massive gas-rich galaxies, these could be several tens of kpc in radius. We also consider the effect that pressure of such outflows has on a galaxy disc. In moderately gas-rich discs, with gas-to-baryon fraction <0.2, the outflow may induce star formation significant enough to be distinguished from quiescent by an apparently different normalization of the Kennicutt-Schmidt law. The star formation enhancement is probably stronger in the outskirts of galaxy discs, so coasting outflows might be detected by their effects upon the disc even after the driving AGN has shut off. We compare our results to the recent inference of inside-out quenching of star formation in galaxy discs.
Cold Ion Outflow Modulated by the Solar Wind Energy Input and Tilt of the Geomagnetic Dipole
NASA Astrophysics Data System (ADS)
Li, Kun; Wei, Y.; André, M.; Eriksson, A.; Haaland, S.; Kronberg, E. A.; Nilsson, H.; Maes, L.; Rong, Z. J.; Wan, W. X.
2017-10-01
The solar wind energy input into the Earth's magnetosphere-ionosphere system drives ionospheric outflow, which plays an important role in both the magnetospheric dynamics and evolution of the atmosphere. However, little is known about the cold ion outflow with energies lower than a few tens of eV, as the direct measurement of cold ions is difficult because a spacecraft gains a positive electric charge due to the photoemission effect, which prevents cold ions from reaching the onboard detectors. A recent breakthrough in the measurement technique using Cluster spacecraft revealed that cold ions dominate the ion population in the magnetosphere. This new technique yields a comprehensive data set containing measurements of the velocities and densities of cold ions for the years 2001-2010. In this paper, this data set is used to analyze the cold ion outflow from the ionosphere. We found that about 0.1% of the solar wind energy input is transformed to the kinetic energy of cold ion outflow at the topside ionosphere. We also found that the geomagnetic dipole tilt can significantly affect the density of cold ion outflow, modulating the outflow rate of cold ion kinetic energy. These results give us clues to study the evolution of ionospheric outflow with changing global magnetic field and solar wind condition in the history.
Multi-fluid simulations of the coupled solar wind-magnetosphere-ionsphere system
NASA Astrophysics Data System (ADS)
Lyon, J.
2011-12-01
This paper will review recent work done with the multi-fluid version of the Lyon-Fedder-Mobarry (MF-LFM) global MHD simulation code. We will concentrate on O+ outflow from the ionosphere and its importance for magnetosphere-ionosphere (MI) coupling and also the importance of ionospheric conditions in determining the outflow. While the predominant method of coupling between the magnetosphere and ionosphere is electrodynamic, it has become apparent the mass flows from the ionosphere into the magnetosphere can have profound effects on both systems. The earliest models to attempt to incorporate this effect used very crude clouds of plasma near the Earth. The earliest MF-LFM results showed that depending on the details of the outflow - where, how much, how fast - very different magnetospheric responses could be found. Two approaches to causally driven models for the outflow have been developed for use in global simulations, the Polar Wind Outflow Model (PWOM), started at the Univ. of Michigan, and the model used by Bill Lotko and co-workers at Dartmouth. We will give a quick review of this model which is based on the empirical relation between outflow fluence and Poynting flux discovered by Strangeway. An additional factor used in this model is the precipitating flux of electrons, which is presumed to correlate with the scale height of the upwelling ions. parameters such as outflow speed and density are constrained by the total fluence. The effects of the outflow depend on the speed. Slower outflow tends to land in the inner magnetosphere increasing the strength of the ring current. Higher speed flow out in the tail. Using this model, simulations have shown that solar wind dynamic pressure has a profound effect on the amount of fluence. The most striking result has been the simulation of magnetospheric sawtooth events. We will discuss future directions for this research, emphasizing the need for better physical models for the outflow process and its coupling to the ionosphere.
NASA Astrophysics Data System (ADS)
Welling, D. T.; Eccles, J. V.; Barakat, A. R.; Kistler, L. M.; Haaland, S.; Schunk, R. W.; Chappell, C. R.
2015-12-01
Two storm periods were selected by the Geospace Environment Modeling Ionospheric Outflow focus group for community collaborative study because of its high magnetospheric activity and extensive data coverage: the September 27 - October 4, 2002 corotating interaction region event and the October 22 - 29 coronal mass ejection event. During both events, the FAST, Polar, Cluster, and other missions made key observations, creating prime periods for data-model comparison. The GEM community has come together to simulate this period using many different methods in order to evaluate models, compare results, and expand our knowledge of ionospheric outflow and its effects on global dynamics. This paper presents Space Weather Modeling Framework (SWMF) simulations of these important periods compared against observations from the Polar TIDE, Cluster CODIF and EFW instruments. Emphasis will be given to the second event. Density and velocity of oxygen and hydrogen throughout the lobes, plasma sheet, and inner magnetosphere will be the focus of these comparisons. For these simulations, the SWMF couples the multifluid version of BATS-R-US MHD to a variety of ionospheric outflow models of varying complexity. The simplest is outflow arising from constant MHD inner boundary conditions. Two first-principles-based models are also leveraged: the Polar Wind Outflow Model (PWOM), a fluid treatment of outflow dynamics, and the Generalized Polar Wind (GPW) model, which combines fluid and particle-in-cell approaches. Each model is capable of capturing a different set of energization mechanisms, yielding different outflow results. The data-model comparisons will illustrate how well each approach captures reality and which energization mechanisms are most important. Inter-model comparisons will illustrate how the different outflow specifications affect the magnetosphere. Specifically, it is found that the GPW provides increased heavy ion outflow over a broader spatial range than the alternative models, improving comparisons in some regions but degrading the agreement in others. This work will also assess our current capability to reproduce ionosphere-magnetosphere mass coupling.
Controlling Factors of the Fate of Ionospheric Outflow at Earth and Mars
NASA Astrophysics Data System (ADS)
Liemohn, M. W.; Welling, D. T.; Ilie, R.; Ganushkina, N. Y.; Johnson, B. C.; Xu, S.; Dong, C.
2015-12-01
Both Earth and Mars experience ionospheric outflow, but the radically different magnetic field configurations at the two planets yield significantly different patterns of outflow and processes governing outflow. This study examines a set of numerical simulations for Earth and Mars to explore the factors controlling ionospheric outflow and the fate of the escaping ions (immediate precipitation, magnetospheric recirculation, or loss to deep space). Specifically, simulation results from the Space Weather Modeling Framework (SWMF), which is capable of handling both planetary space environments, are analyzed to assess the physical processes governing the fate of ionospheric ions. Velocity streamlines from the SWMF results are traced from the high-latitude inner boundary of the BATS-R-US MHD simulation domain and followed through geospace. Some of these streamlines return to the inner boundary of the simulation domain, others extend to the outer boundary of the domain, while most others eventually cross (or at least approach) the magnetospheric equatorial plane. At Earth, this plane is well defined, while at Mars there are multiple mini-magnetospheres in which ionospheric ions can become trapped. These streamlines are categorized according to their eventual destination. Multi-fluid MHD simulations are examined in this study, assessing the influence of species mass on trajectories through near-planet space. Steady-state numerical experiments with different levels of solar driving are examined to quantify the influence of each driver on outflow characteristics and the fate of outflowing ions. Real event intervals are considered to assess flows in a time-varying magnetospheric system. For Earth, as solar wind dynamic pressure increases, the dominant outflow region moves to lower latitudes and significantly more of the outflowing ions escape to deep space. As the interplanetary magnetic field increases in southward magnitude, the region of dominant outflow shifts to lower latitudes and more is injected into the inner magnetosphere. The ionospheric regions dominantly contributing to mass within the magnetosphere are assessed and compared for the different driving conditions. At Mars, the situation is much more complicated.
Theory of Bipolar Outflows from Accreting Hot Stars
NASA Astrophysics Data System (ADS)
Konigl, A.
1996-05-01
There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main sequence while they were still accreting? Does the evolution of protostellar disks differ in low-mass and high-mass objects?).
Breckenridge, R Reid; Bartholomew, Luanna R; Crosson, Craig E; Kent, Alexander R
2004-10-01
To determine outflow resistance of the Baerveldt glaucoma implant using different tube configurations. Outflow resistance of 6 tube configurations (C1- C6) of Baerveldt implants was measured under conditions of constant pressure perfusion. Pressures ranged from 2 to 55 mm Hg. Venting slits were created using a 7-0 Vicryl, spatulated suture-needle. Seton tubes were occluded by threading a retrograde suture approximately 1.5 cm into the lumen. At pressures between 2 and 55 mm Hg, mean outflow resistance of the normally configured seton (ie, open tube; C1) was 0.41 (+/- 0.6) mm Hg/microL/min. Resistance was unchanged (mean 0.41 (+/- 0.4) mm Hg/microL/min) by the addition of 4 venting slits (C2) to the seton tube. Occlusion of the open seton tube with a 3-0 Supramid suture (C3) significantly increased (P < 0.001) mean outflow resistance to 14.99 (+/- 0.6) mm Hg/microL/min. Occlusion of the tube with a 4-0 Supramid suture (C4) significantly increased (P < 0.001) mean outflow resistance to 1.09 (+/- 0.5) mm Hg/microL/min. In implants where tubes were occluded with a 3-0 Supramid suture, the addition of venting slits (C5) significantly decreased (P = 0.038) mean outflow resistance to 8.98 (+/- 0.4) mm Hg/microL/min. In tubes occluded with a 4-0 Supramid suture, the addition of venting slits (C6) decreased mean outflow resistance to 0.98 (+/- 0.6) mm Hg/microL/min. Although these results cannot be directly correlated to the clinical setting, they do show that outflow resistance can be modified at the time of surgery by changing tube configuration of the Baerveldt glaucoma implant. Configuration C5 (3-0 Supramid with venting slits) closely approximates the outflow rate in the normal intraocular pressure range.
NASA Astrophysics Data System (ADS)
Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.
2014-05-01
We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes decrease exponentially by excretion (biological outflow). The total outflow is the sum of physical outflow and biological outflow. As a result, the number of radioactive atoms in the human body also decreases exponentially. Half-life can be determined by outflow flux from the definition. Intensity of radioactivity is linear respect to the number of radioactive atoms, both are equivalent analytically. Internal total exposure can be calculated by the time integral of intensity of radioactivity. The absorbed energy into the human body per radioactive decay and the effective dose are calculated by aid of Fermi's theory of beta decay and special relativity. The effective doses calculated by the present method almost agree with those of a study by ICRP. The present method shows that standard limit in general foods for radioactive cesium enforced in Japan, 100 Bq/kg, is too excessive. When we eat foods which contain cesium-137 of 100 Bq/kg at 1 kg/d during 50 years, we receive the effective dose less than natural exposure. Similarly, it is shown that we cannot find significant health damage medically and statistically by ingestion of rice which is harvested from a paddy field deposited current (January, 2014) radioactive cesium.
Kinaci, Erdem; Kayaalp, Cuneyt; Yilmaz, Sezai; Otan, Emrah
2014-01-01
Hepatic venous outflow obstruction following liver transplantation is rare but disastrous. Here we described a 14-year-old boy who underwent a split right lobe liver transplantation with modified (side-to-side) piggyback technique which resulted in hepatic venous outflow obstruction. When the liver graft was lifted up, the outflow drainage returned to normal but when it was placed back into the abdomen, the outflow obstruction recurred. Because reanastomosis would have resulted in hepatic reischemia, alternatively, a second infrahepatic cavocavostomy was planned without requiring hepatic reischemia. During this procedure, the first assistant hung the liver up to provide sufficient outflow and the portal inflow of the graft continued as well. We only clamped the recipient's infrahepatic vena cava and the caudal cuff of the graft cava. After the second end-to-side cavocaval anastomosis, the graft was placed in its orthotopic position and there was no outflow problem anymore. The patient tolerated the procedure well and there were no problems after three months of follow-up. A second cavocavostomy can provide an extra bypass for some hepatic venous outflow problems after piggyback anastomosis by avoiding hepatic reischemia.
Kinaci, Erdem; Kayaalp, Cuneyt; Yilmaz, Sezai; Otan, Emrah
2014-01-01
Hepatic venous outflow obstruction following liver transplantation is rare but disastrous. Here we described a 14-year-old boy who underwent a split right lobe liver transplantation with modified (side-to-side) piggyback technique which resulted in hepatic venous outflow obstruction. When the liver graft was lifted up, the outflow drainage returned to normal but when it was placed back into the abdomen, the outflow obstruction recurred. Because reanastomosis would have resulted in hepatic reischemia, alternatively, a second infrahepatic cavocavostomy was planned without requiring hepatic reischemia. During this procedure, the first assistant hung the liver up to provide sufficient outflow and the portal inflow of the graft continued as well. We only clamped the recipient's infrahepatic vena cava and the caudal cuff of the graft cava. After the second end-to-side cavocaval anastomosis, the graft was placed in its orthotopic position and there was no outflow problem anymore. The patient tolerated the procedure well and there were no problems after three months of follow-up. A second cavocavostomy can provide an extra bypass for some hepatic venous outflow problems after piggyback anastomosis by avoiding hepatic reischemia. PMID:24959369
The Mass Outflow Rate of the Milky Way
NASA Astrophysics Data System (ADS)
Fox, Andrew
2017-08-01
The balance between gaseous inflow and outflow regulates star formation in spiral galaxies. This paradigm can be tested in the Milky Way, but whereas the star formation rate and inflow rate have both been measured, the outflow rate has not. We propose an archival COS program to determine the Galactic outflow rate in cool gas ( 10^4 K) by surveying UV absorption line high-velocity clouds (HVCs). This project will make use of the newly updated Hubble Spectroscopic Legacy Archive, which contains a uniformly reduced sample of 233 COS G130M spectra of background AGN. The outflow rate will be determined by (1) searching for redshifted HVCs; (2) modeling the clouds with photoionization simulations to determine their masses and physical properties; (3) combining the cloud masses with their velocities and distances. We will measure how the outflow is distributed spatially across the sky, calculate its mass loading factor, and compare the line profiles to synthetic spectra extracted from new hydrodynamic simulations. The distribution of HVC velocities will inform us what fraction of the outflowing clouds will escape the halo and what fraction will circulate back to the disk, to better understand how and where gas enters and exits the Milky Way.
Large-Scale Outflows in Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Baum, S. A.
1995-12-01
\\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.
Gas flows in the circumgalactic medium around simulated high-redshift galaxies
NASA Astrophysics Data System (ADS)
Mitchell, Peter D.; Blaizot, Jérémy; Devriendt, Julien; Kimm, Taysun; Michel-Dansac, Léo; Rosdahl, Joakim; Slyz, Adrianne
2018-03-01
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z ≥ 3, utilizing a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman α (Ly α) emitters recently obtained with the multi unit spectroscopic explorer (MUSE) instrument (halo masses ˜1010-1011 M⊙). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium (CGM) by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs, we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photoionization/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (˜50 km s-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.
Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics
Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em
2011-01-01
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548
Triggering a Wet Climate on Mars: The Role of Outflow Channels in Martian Water Cycles
NASA Astrophysics Data System (ADS)
Santiago, D.; Asphaug, E. I.; Colaprete, A.
2011-12-01
The triggering of a robust water cycle on Mars has been hypothesized to be caused by gigantic flooding events evidenced by outflow channels. Here we use the Ames Mars General Circulation Model (MGCM) to study how these presumably abrupt eruptions of water (Carr,1996) affected the climate of Mars. We model where the water ultimately went as part of a transient hydrologic cycle. Chryse Planitia, east of Tharsis, has evidence for multiple water outflow channels. One of the largest channels is Ares Valles, which was carved by floods with estimated water volumes of order 10^5 km^2 (Andrews-Hanna, 2007 & Carr, 1996). Outflow discharge rate estimates range from 10^6 to 10^7 m^3/seconds or greater (Andrews-Hanna & Phillips, 2007, Harrison & Grimm, 2008). Studies suggest that outflow channels formed with smaller, successive floods instead of a single large flood (Wilson, et al.,2004). Warner et al. (2009) suggest up to six outflow events for the formation of Ares Valles, while estimates for another large outflow, Kasei Valles, might have been flooded by over two thousand floods with a total water volume of 5.5 x 10^5 km^3 (Harrison & Grimm, 2008). By adding water to the surface of Mars at the given outflow rate, as an expanding one-layer lake, we are able to study quantitatively how these outflow events influenced Mars climate, particularly the hydrologic cycle. In particular: Could sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? Can we tie certain fluvial surface features to transient or sustained water cycles? What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? How are radiative feedbacks involved with this? What is the ultimate fate of the outflow water? This work uses the NASA Ames MGCM version 2.1 and other schemes that are part of the NASA Ames MGCM suite of tools. Various versions of the MGCM developed at Ames have been used extensively to examine dust and volatile distributions on Mars (e.g., Kahre et al., 2006, 2008). The MGCM 2.1 currently has a well-developed water ice cloud formation scheme (Montmessin et al., 2002, 2004a), which includes calculation of cloud particle concentrations, nucleation, growth, and gravitational sedimentation. For examining the effect of a large water outflow on the climate of Mars, we include water tracers, with an advanced cloud particle scheme Preliminary results suggest that water may have been transported globally for years post-outflow. Post-outflow water cloud formation increases dramatically, with water ice clouds and water vapor potentially transporting water globally. The global mass of water vapor and of water ice clouds increases substantially, with the post-outflow patterns settling into annual cycles, with increasing water entering the atmosphere from the surface over time. Future work will examine the radiative effects of the water vapor and water ice clouds, and the longer-term persistence of a new hydrological or climate regime Detailed comparisons of post-outflow precipitation locations with fluvial features on Mars will be done.
NASA Astrophysics Data System (ADS)
Nof, Doron; Paldor, Nathan; Gorder, Stephen Van
2002-09-01
A new mechanism for the formation of high-amplitude anticyclonic eddies (lenses) from outflows emptying into the ocean at mid-depth is proposed. The essence of the new mechanism is that, in order for an inviscid outflow to exist as a continuous (uninterrupted) current, the condition g' S/ f> α( g' H) 1/2 [where g' is the "reduced gravity", S the bottom slope, f the Coriolis parameter, α a coefficient of order unity whose value depends on the outflow's potential vorticity (it is 2 for a zero potential vorticity outflow and unity for a uniform potential vorticity) and H the maximum thickness] must hold. When the above condition is not met, i.e., when g' S/ f< α( g' H) 1/2, the outflow can only exist as a chain of propagating lenses. Nonlinear analytical considerations leading to the above conclusion are (successfully) compared to numerical simulations which we have conducted (using a reduced gravity layer-and-a-half model). The experiments show that an outflow situated on a bottom whose (uniform) slope gradually varies in the downstream direction is continuous (i.e., is not broken into eddies) where the slope is supercritical [ g' S/ f> α( g' H) 1/2] and discontinuous (i.e., constitutes a chain of eddies) where the slope is subcritical [ g' S/ f< α( g' H) 1/2]. Hence, the eddies are generated by the gradual reduction in the bottom slope rather than by an instability process. Namely, the eddies are not formed by the breakdown of a known steady solution because such a steady solution does not exist. We note that after reaching its "balanced depth", an outflow usually continues to (slowly) descend toward the bottom of the ocean due to frictional effects associated with an energy loss. [Note that the "balanced depth" is the depth at which the outflow has completed its initial adjustment in the sense that it has adjusted to a state where it no longer flows primarily offshore but rather propagates primarily along the isobaths. This depth needs to be distinguished from the (sometimes significantly greater) equilibrium depth corresponding to the point where the outflow's density equals the environmental density.] Most of the time, the outflow descent is accompanied by a reduction in the bottom slope S, and an entrainment which causes both a reduction in g' and an increase in H. All of these alterations bring the outflow closer and closer to the critical condition and it is, therefore, argued that all outflows ultimately reach the critical point (unless diffusion and mixing destroy them prior to that stage). It is suggested that Reddies (i.e., isolated lenses containing Red Sea water) are formed by the above processes. Namely, we propose that the "Reddy maker" is a combination of three processes, the natural reduction in the bottom slope which the outflow senses as it approaches the bottom of the ocean, the entrainment-induced increase in the outflow's thickness, and the entrainment-induced decrease in the outflow's density. An animation of the eddy generation process can be viewed at http://doronnof.net/features.html#video (click on "Reddy maker video").
NASA Technical Reports Server (NTRS)
Dehon, Rene
1992-01-01
The objectives are characterization of flow through outflow channels, sedimentation associated with Martian outflow systems, and documentation of Martian lakes. Over the period of the grant much, but not all, of the study centered on the Maja Valles outflow. Maja served as an example in which the effects of multiple channel routing and ponding could be studied. Maja Valles also served as the test case for calculating flow through an outflow system. Applying the lessons learned in Maja Valles and comparisons and contrast required a scrutiny of other channels.
YSO Jets in the Galactic Plane from UWISH2. IV. Jets and Outflows in Cygnus-X
NASA Astrophysics Data System (ADS)
Makin, S. V.; Froebrich, D.
2018-01-01
We have performed an unbiased search for outflows from young stars in Cygnus-X using 42 deg2 of data from the UKIRT Widefield Infrared Survey for H2 (UWISH2 Survey), to identify shock-excited near-IR H2 emission in the 1–0 S(1) 2.122 μm line. We uncovered 572 outflows, of which 465 are new discoveries, increasing the number of known objects by more than 430%. This large and unbiased sample allows us to statistically determine the typical properties of outflows from young stars. We found 261 bipolar outflows, and 16% of these are parsec scale. The typical bipolar outflow is 0.45 pc in length and has gaps of 0.025–0.1 pc between large knots. The median luminosity in the 1–0 S(1) line is 10‑3 {L}ȯ . The bipolar flows are typically asymmetrical, with the two lobes misaligned by 5°, one lobe 30% shorter than the other, and one lobe twice as bright as the other. Of the remaining outflows, 152 are single-sided and 159 are groups of extended, shock-excited H2 emission without identifiable driving sources. Half of all driving sources have sufficient WISE data to determine their evolutionary status as either protostars (80%) or classical T Tauri stars (20%). One-fifth of the driving sources are variable by more than 0.5 mag in the K-band continuum over several years. Several of the newly identified outflows provide excellent targets for follow-up studies. We particularly encourage the study of the outflows and young stars identified in a bright-rimmed cloud near IRAS 20294+4255, which seems to represent a textbook example of triggered star formation.
Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240
NASA Astrophysics Data System (ADS)
Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George
2018-01-01
Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.
Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel
NASA Technical Reports Server (NTRS)
Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.;
2013-01-01
We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.
Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel
NASA Astrophysics Data System (ADS)
Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Fischer, J.; González-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; de Jong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.
2013-10-01
We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~-1000 km s-1 are measured in several objects, but median outflow velocities are typically ~-200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L AGN/L ⊙) >= 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.
An X-ray/SDSS sample. II. AGN-driven outflowing gas plasma properties
NASA Astrophysics Data System (ADS)
Perna, M.; Lanzuisi, G.; Brusa, M.; Cresci, G.; Mignoli, M.
2017-10-01
Aims: Galaxy-scale outflows are currently observed in many active galactic nuclei (AGNs); however, characterisation of them in terms of their (multi-) phase nature, amount of flowing material, and effects on their host galaxy is still unresolved. In particular, ionised gas mass outflow rate and related energetics are still affected by many sources of uncertainty. In this respect, outflowing gas plasma conditions, being largely unknown, play a crucial role. Methods: We have analysed stacked spectra and sub-samples of sources with high signal-to-noise temperature- and density-sensitive emission lines to derive the plasma properties of the outflowing ionised gas component. We did this by taking advantage of the spectroscopic analysis results we obtained while studying the X-ray/SDSS sample of 563 AGNs at z < 0.8 presented in our companion paper. For these sources, we also studied in detail various diagnostic diagrams to infer information about outflowing gas ionisation mechanisms. Results: We derive, for the first time, median values for electron temperature and density of outflowing gas from medium-size samples ( 30 targets) and stacked spectra of AGNs. Evidence of shock excitation are found for outflowing gas. Conclusions: We measure electron temperatures of the order of 1.7 × 104 K and densities of 1200 cm-3 for faint and moderately luminous AGNs (intrinsic X-ray luminosity 40.5 < log (LX) < 44 in the 2-10 keV band). We note that the electron density that is usually assumed (Ne = 100 cm-3) in ejected material might result in relevant overestimates of flow mass rates and energetics and, as a consequence, of the effects of AGN-driven outflows on the host galaxy.
An X-Ray/SDSS Sample: Observational Characterization of The Outflowing Gas
NASA Astrophysics Data System (ADS)
Perna, Michele; Brusa, M.; Lanzuisi, G.; Mignoli, M.
2016-10-01
Powerful ionised AGN-driven outflows, commonly detected both locally and at high redshift, are invoked to contribute to the co-evolution of SMBH and galaxies through feedback phenomena. Our recent works (Brusa+2015; 2016; Perna+2015a,b) have shown that the XMM-COSMOS targets with evidence of outflows collected so far ( 10 sources) appear to be associated with low X-ray kbol corrections (Lbol /LX ˜ 18), in spite of their spread in obscuration, in the locations on the SFR-Mstar diagram, in their radio emission. A higher statistical significance is required to validate a connection between outflow phenomena and a X-ray loudness. Moreover, in order to validate their binding nature to the galaxy fate, it is crucial to correctly determine the outflow energetics. This requires time consuming integral field spectroscopic (IFS) observations, which are, at present, mostly limited to high luminosity objectsThe study of SDSS data offers a complementary strategy to IFS efforts. I will present physical and demographic characterization of the AGN-galaxy system during the feedback phase obtained studying a sample of 500 X-ray/SDSS AGNs, at z<0.8. Outflow velocity inferred from [OIII]5007 emission line profile has been related to optical (e.g., [OIII] and bolometric luminosities, Eddington ratio, stellar velocity dispersion) and X-ray properties (intrinsic X-ray luminosity, obscuration and X-ray kbol correction), to determine what drives ionised winds. Several diagnostic line ratios have been used to infer the physical properties of the ionised outflowing gas. The knowledge of these properties can reduce the actual uncertainties in the outflow energetics by a factor of ten, pointing to improve our understanding of the AGN outflow phenomenon and its impact on galaxy evolution.
Otero, Carles; Aldaba, Mikel; López, Silvia; Díaz-Doutón, Fernando; Vera-Díaz, Fuensanta A; Pujol, Jaume
2018-06-01
To study the accommodative dynamics for predictable and unpredictable stimuli using manual and automated accommodative facility tests Materials and Methods: Seventeen young healthy subjects were tested monocularly in two consecutive sessions, using five different conditions. Two conditions replicated the conventional monocular accommodative facility tests for far and near distances, performed with manually held flippers. The other three conditions were automated and conducted using an electro-optical system and open-field autorefractor. Two of the three automated conditions replicated the predictable manual accommodative facility tests. The last automated condition was a hybrid approach using a novel method whereby far and near-accommodative-facility tests were randomly integrated into a single test of four unpredictable accommodative demands. The within-subject standard deviations for far- and near-distance-accommodative reversals were (±1,±1) cycles per minute (cpm) for the manual flipper accommodative facility conditions and (±3, ±4) cpm for the automated conditions. The 95% limits of agreement between the manual and the automated conditions for far and near distances were poor: (-18, 12) and (-15, 3). During the hybrid unpredictable condition, the response time and accommodative response parameters were significantly (p < 0.05) larger for accommodation than disaccommodation responses for high accommodative demands only. The response times during the transitions 0.17/2.17 D and 0.50/4.50 D appeared to be indistinguishable between the hybrid unpredictable and the conventional predictable automated tests. The automated accommodative facility test does not agree with the manual flipper test results. Operator delays in flipping the lens may account for these differences. This novel test, using unpredictable stimuli, provides a more comprehensive examination of accommodative dynamics than conventional manual accommodative facility tests. Unexpectedly, the unpredictability of the stimulus did not to affect accommodation dynamics. Further studies are needed to evaluate the sensitivity of this novel hybrid technique on individuals with accommodative anomalies.
Low-energy ion outflow modulated by the solar wind energy input
NASA Astrophysics Data System (ADS)
Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas
2017-04-01
Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.
NASA Astrophysics Data System (ADS)
Chisholm, John
2013-10-01
Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.
NASA Astrophysics Data System (ADS)
Kim, Byung-Ho; Hyuck Kim, Yoon; Lee, Young Jin; Lee, Mi Jai; Kim, Jin-Ho; Hwang, Jonghee; Jeon, Dae-Woo
2018-01-01
We have developed a facile single-step synthesis of silver nanocomposite using a conventional spray dryer. We investigated the synthetic conditions by controlling the concentrations of the chemical reactants. Further, we confirmed the effect of the molecular weight of polyvinylpyrrolidones, and revealed that the molecular weight significantly affected the properties of the resultant silver nanocomposites. The long-term stability of the silver nanocomposites was tested, and little change was observed, even after storage for three months. Most of all, the simple commercial implementation, in combination with large-scale synthesis, possesses a variety of advantages, compared to conventional complicated and costly dry-process synthesis methods. Thus, our method presents opportunities for further investigation, for both lab-scale studies and large-scale industrial applications.
UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karouzos, Marios; Woo, Jong-Hak; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr
2016-12-20
Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization.more » The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.« less
NASA Astrophysics Data System (ADS)
Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika
2015-12-01
Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.
Spatially resolved galactic wind in lensed galaxy RCSGA 032727-132609
NASA Astrophysics Data System (ADS)
Bordoloi, Rongmon; Rigby, Jane R.; Tumlinson, Jason; Bayliss, Matthew B.; Sharon, Keren; Gladders, Michael G.; Wuyts, Eva
2016-05-01
We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg II and Fe II emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of -170 to -250 km s-1. The velocities of Mg II emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the Fe II fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg II and Fe II emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (≳30-50 M⊙ yr- 1), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is `locally sourced', that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe.
Spatially Resolved Galactic Wind in Lensed Galaxy RCSGA 032727-132609
NASA Technical Reports Server (NTRS)
Bordoloi, Rongmon; Rigby, Jane R.; Tumlinson, Janson; Bayliss, Matthew B.; Sharon, Keren; Gladders, Michael G.; Wuyts, Eva
2016-01-01
We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg II and Fe II emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of - 170 to - 250 km/s. The velocities of Mg II emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being backscattered. By contrast, the Fe II fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg II and Fe II emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (approx 30-50 M/yr), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is 'locally sourced', that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe.
MRI Evidence for Altered Venous Drainage and Intracranial Compliance in Mild Traumatic Brain Injury
Pomschar, Andreas; Koerte, Inga; Lee, Sang; Laubender, Ruediger P.; Straube, Andreas; Heinen, Florian; Ertl-Wagner, Birgit; Alperin, Noam
2013-01-01
Purpose To compare venous drainage patterns and associated intracranial hydrodynamics between subjects who experienced mild traumatic brain injury (mTBI) and age- and gender-matched controls. Methods Thirty adult subjects (15 with mTBI and 15 age- and gender-matched controls) were investigated using a 3T MR scanner. Time since trauma was 0.5 to 29 years (mean 11.4 years). A 2D-time-of-flight MR-venography of the upper neck was performed to visualize the cervical venous vasculature. Cerebral venous drainage through primary and secondary channels, and intracranial compliance index and pressure were derived using cine-phase contrast imaging of the cerebral arterial inflow, venous outflow, and the craniospinal CSF flow. The intracranial compliance index is the defined as the ratio of maximal intracranial volume and pressure changes during the cardiac cycle. MR estimated ICP was then obtained through the inverse relationship between compliance and ICP. Results Compared to the controls, subjects with mTBI demonstrated a significantly smaller percentage of venous outflow through internal jugular veins (60.9±21% vs. controls: 76.8±10%; p = 0.01) compensated by an increased drainage through secondary veins (12.3±10.9% vs. 5.5±3.3%; p<0.03). Mean intracranial compliance index was significantly lower in the mTBI cohort (5.8±1.4 vs. controls 8.4±1.9; p<0.0007). Consequently, MR estimate of intracranial pressure was significantly higher in the mTBI cohort (12.5±2.9 mmHg vs. 8.8±2.0 mmHg; p<0.0007). Conclusions mTBI is associated with increased venous drainage through secondary pathways. This reflects higher outflow impedance, which may explain the finding of reduced intracranial compliance. These results suggest that hemodynamic and hydrodynamic changes following mTBI persist even in the absence of clinical symptoms and abnormal findings in conventional MR imaging. PMID:23405151
The Properties and Prevalence of Galactic Outflows at z ~ 1 in the Extended Groth Strip
NASA Astrophysics Data System (ADS)
Kornei, Katherine A.; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.; Lotz, Jennifer M.; Schiminovich, David; Bundy, Kevin; Noeske, Kai G.
2012-10-01
We investigate galactic-scale outflowing winds in 72 star-forming galaxies at z ~ 1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering Si II, C IV, Fe II, Mg II, and Mg I lines in the rest-frame ultraviolet. Using Galaxy Evolution Explorer (GALEX), Hubble Space Telescope (HST), and Spitzer imaging available for the Extended Groth Strip, we examine galaxies on a per-object basis in order to better understand both the prevalence of galactic outflows at z ~ 1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from the centroids of Fe II interstellar absorption lines, are found to span the interval [-217, +155] km s-1. We find that ~40% (10%) of the sample exhibits blueshifted Fe II lines at the 1σ (3σ) level. We also measure maximal outflow velocities using the profiles of the Fe II and Mg II lines; we find that Mg II frequently traces higher velocity gas than Fe II. Using quantitative morphological parameters derived from the HST imaging, we find that mergers are not a prerequisite for driving outflows. More face-on galaxies also show stronger winds than highly inclined systems, consistent with the canonical picture of winds emanating perpendicular to galactic disks. In light of clumpy galaxy morphologies, we develop a new physically motivated technique for estimating areas corresponding to star formation. We use these area measurements in tandem with GALEX-derived star formation rates (SFRs) to calculate SFR surface densities. At least 70% of the sample exceeds an SFR surface density of 0.1 M ⊙ yr-1 kpc-2, the threshold necessary for driving an outflow in local starbursts. At the same time, the outflow detection fraction of only 40% in Fe II absorption provides further evidence for an outflow geometry that is not spherically symmetric. We see a ~3σ trend between outflow velocity and SFR surface density, but no significant trend between outflow velocity and SFR. Higher resolution data are needed in order to test the scaling relations between outflow velocity and both SFR and SFR surface density predicted by theory. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
DOT National Transportation Integrated Search
2001-11-01
This report describes the test results of the first project at the Louisiana Transportation Research Center's Accelerated Loading Facility (ALF). In 1995, 9 test lanes were constructed at the Louisiana Pavement Research Facility in Port Allen. These ...
Particle Acceleration in Relativistic Outflows
NASA Technical Reports Server (NTRS)
Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin
2012-01-01
In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.
Quintini, Cristiano; Miller, Charles M; Hashimoto, Koji; Philip, Ding; Uso, Teresa Diago; Aucejo, Federico; Kelly, Dympna; Winans, Charles; Eghtesad, Bijan; Vogt, David; Fung, John
2009-01-01
Venous outflow obstruction is a rare but potentially lethal complication after orthotopic liver transplantation (OLT) with the "piggyback" technique. Therapeutic options include angioplasty with or without stent placement, surgical reconstruction of the venous anastomosis, and retransplantation. Surgical options are technically very challenging and the outcomes discouraging. We describe here two cases of venous outflow obstruction in recipients of piggyback liver grafts, one involving both the vena cava and hepatic veins and the other affecting only hepatic vein outflow. Both patients were treated successfully with side-to-side cavo-cavostomy using an endovascular (endo-GIA) stapler. This novel technique is fast and effective in resolving the outflow obstruction. Copyright 2008 AASLD.
NASA Astrophysics Data System (ADS)
Song, Cui-Ying; Liu, Tong; Li, Ang
2018-06-01
The detections of some long gamma-ray bursts (LGRBs) relevant to mergers of neutron star (NS)-NS or black hole (BH)-NS, as well as some short gamma-ray bursts (SGRBs) probably produced by collapsars, muddle the boundary of two categories of gamma-ray bursts (GRBs). In both cases, a plausible candidate of central engine is a BH surrounded by a hyperaccretion disc with strong outflows, launching relativistic jets driven by Blandford-Znajek mechanism. In the framework of compact binary mergers, we test the applicability of the BH hyperaccretion inflow-outflow model on powering observed GRBs. We find that, for a low outflow ratio, ˜ 50 per cent, post-merger hyperaccretion processes could power not only all SGRBs but also most of LGRBs. Some LGRBs might originate from merger events in the BH hyperaccretion scenario, at least on the energy requirement. Moreover, kilonovae might be produced by neutron-rich outflows, and their luminosities and time-scales significantly depend on the outflow strengths. GRBs and their associated kilonovae are competitive with each other on the disc mass and total energy budgets. The stronger the outflow, the more similar the characteristics of kilonovae to supernovae (SNe). This kind of `nova' might be called `quasi-SN'.
Lusk, Mary G; Toor, Gurpal S
2016-04-05
Dissolved organic nitrogen (DON) can be a significant part of the reactive N in aquatic ecosystems and can accelerate eutrophication and harmful algal blooms. A bioassay method was coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to determine the biodegradability and molecular composition of DON in the urban stormwater runoff and outflow water from an urban stormwater retention pond. The biodegradability of DON increased from 10% in the stormwater runoff to 40% in the pond outflow water and DON was less aromatic and had lower overall molecular weight in the pond outflow water than in the stormwater runoff. More than 1227 N-bearing organic formulas were identified with FT-ICR-MS in the stormwater runoff and pond outflow water, which were only 13% different in runoff and outflow water. These molecular formulas represented a wide range of biomolecules such as lipids, proteins, amino sugars, lignins, and tannins in DON from runoff and pond outflow water. This work implies that the urban infrastructure (i.e., stormwater retention ponds) has the potential to influence biogeochemical processes in downstream water bodies because retention ponds are often a junction between the natural and the built environment.
Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?
Rodriguez, J Alexis P; Kargel, Jeffrey S; Baker, Victor R; Gulick, Virginia C; Berman, Daniel C; Fairén, Alberto G; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie
2015-09-08
Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which at the time was completely submerged under a primordial northern plains ocean [corrected]. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.
Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?
Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; Berman, Daniel C.; Fairén, Alberto G.; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie
2015-01-01
Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation. PMID:26346067
Shocks and Molecules in Protostellar Outflows
NASA Astrophysics Data System (ADS)
Arce, Héctor
2014-06-01
As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.
Comparing cosmological hydrodynamic simulations with observations of high- redshift galaxy formation
NASA Astrophysics Data System (ADS)
Finlator, Kristian Markwart
We use cosmological hydrodynamic simulations to study the impact of outflows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a "constant-wind" model in which the mass-loading factor and outflow speed are constant, and (iii) "momentum-driven" winds in which both parameters vary smoothly with mass. In order to treat radiative feedback, we develop a moment-based radiative transfer technique that operates in both post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energy distributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraints on reionization-epoch galaxies, (ii) individual SEDs do not constrain outflows, and (iii) SED comparisons efficiently isolate objects that challenge simulations. We next study how outflows impact the galaxy mass metallicity relation (MZR). Momentum-driven outflows uniquely reproduce observations at z = 2. In this scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate owing to star formation balances the dilution rate owing to inflows. Combining these conditions indicates that the MZR is dominated by the (instantaneous) variation of outflows with mass, with more-massive galaxies driving less gas into outflows per unit stellar mass formed. Turning to radiative feedback, we use post-processing simulations to study the topology of reionization. Reionization begins in overdensities and then "leaks" directly into voids, with filaments reionizing last owing to their high density and low emissivity. This result conflicts with previous findings that voids ionize last. We argue that it owes to the uniqely-biased emissivity field produced by our star formation prescriptions, which have previously been shown to reproduce numerous post-reionization constraints. Finally, preliminary results from coupled radiative hydrodynamic simulations indicate that reionization suppresses the star formation rate density by at most 10-20% by z = 5. This is much less than previous estimates, which we attribute to our unique reionization topology although confirmation will have to await more detailed modeling.
An X-ray/SDSS sample. I. Multi-phase outflow incidence and dependence on AGN luminosity
NASA Astrophysics Data System (ADS)
Perna, M.; Lanzuisi, G.; Brusa, M.; Mignoli, M.; Cresci, G.
2017-07-01
Aims: The connection between the growth of super-massive black holes (SMBHs) and the evolution of their host galaxies is nowadays well established, although the underlying mechanisms explaining their mutual relations are still debated. Multi-phase fast, massive outflows have been postulated to play a crucial role in this process. The aim of this work is to constrain the nature and the fraction of outflowing gas in active galactic nuclei (AGNs) as well as the nuclear conditions possibly at the origin of such phenomena. Methods: We present a large spectroscopic sample of X-ray detected SDSS AGNs at z< 0.8 with a high signal-to-noise ratio in the [O III]λ5007 line to unveil the faint wings of the emission profile associated with AGN-driven outflows. We used X-ray and optical flux ratio diagnostics to select the sample. We derived physical and kinematic characterization by re-analysing optical (and X-ray) spectra. Results: We derive the incidence of ionized ( 40%) and atomic (<1%) outflows covering a wide range of AGN bolometric luminosity from 1042 to 1046 erg/s. We also derive bolometric luminosities and X-ray bolometric corrections to test whether the presence of outflows is associated with an X-ray loudness, as suggested by our recent results obtained by studying high-z QSOs. Conclusions: We study the relations between the outflow velocity inferred from [O III] kinematic analysis and different AGN power tracers, such as black hole mass (MBH), [O III], and X-ray luminosity. We show a well-defined positive trend between outflow velocity and LX, for the first time, over a range of 5 order of magnitudes. Overall, we find that in the QSO-luminosity regime and at MBH> 108M⊙ the fraction of AGNs with outflows becomes >50%. Finally, we discuss our results about X-ray bolometric corrections and outflow incidence in cold and ionized phases in the context of an evolutionary sequence allowing two distinct stages for the feedback phase: first, an initial stage characterized by X-ray/optical obscured AGNs, in which the atomic gas is still present in the ISM and the outflow processes involve all the gas components and, second, a later stage associated with unobscured AGNs, in which the line of sight has been cleaned and the cold components have been heated or exhausted.
Another piece of the puzzle: The fast H I outflow in Mrk 231
NASA Astrophysics Data System (ADS)
Morganti, Raffaella; Veilleux, Sylvain; Oosterloo, Tom; Teng, Stacy H.; Rupke, David
2016-09-01
We present the detection, performed with the Westerbork Synthesis Radio Telescope (WSRT) and the Karl Jansky Very Large Array (VLA), of a fast H I 21 cm outflow in the ultra-luminous infrared galaxy Mrk 231. The outflow is observed as shallow H I absorption blueshifted ~1300 km s-1 with respect to the systemic velocity and located against the inner kpc of the radio source. The outflowing gas has an estimated column density between 5 and 15 × 1018Tspin cm-2. We derive the Tspin to lie in the range 400-2000 K and the corresponding H I densities are nHI ~ 10-100 cm-3. Our results complement previous findings and confirm the multiphase nature of the outflow in Mrk 231. Although effects of the interaction between the radio plasma and the surrounding medium cannot be ruled out, the energetics and the lack of a clear kpc-scale jet suggest that the most likely origin of the H I outflow is a wide-angle nuclear wind, as earlier proposed to explain the neutral outflow traced by Na I and molecular gas in this source. Our results suggest that an H I component is present in fast outflows regardless of the acceleration mechanism (wind vs. jet driven) and that it must be connected with common properties of the pre-interaction gas involved. Considering the observed similarity of their column densities, the H I outflow likely represents the inner part of the broad wind identified on larger scales in atomic Na I. The mass outflow rate of the H I outflow (between 8 and 18 M⊙ yr-1) does not appear to be as large as that observed in molecular gas, partly owing to the smaller sizes of the outflowing region sampled by the H I absorption. These characteristics are commonly seen in other cases of outflows driven by the active galactic nucleus (AGN) suggesting that the H I may represent a short intermediate phase in the rapid cooling of the gas. The results further confirm H I as a good tracer for AGN-driven outflows not only in powerful radio sources. We also obtained deeper continuum images than previously available. They confirm the complex structure of the radio continuum originating both from the AGN and star formation. At the resolution obtained with the VLA (~1'') we do not see a kpc-scale jet. Instead, we detect a plateau of emission, likely due to star formation, surrounding the bright nuclear region. We also detect a poorly collimated bridge which may represent the channel feeding the southern lobe. The unprecedented depth of the low-resolution WSRT image reveals radio emission extending 50'' (43 kpc) to the south and 20'' (17 kpc) to the north. The continuum images and the average spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A30
Assessing the protection function of Alpine forest ecosystems using BGC modelling theory
NASA Astrophysics Data System (ADS)
Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.
2009-04-01
The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (≤20yr). The WUE was also found directly proportional to the elevation. A positive correlation between annual outflow and the WUE could be shown. Yearly outflow predictions for the whole catchment for the years 1981-2005 showed no significant difference from the measurements. Key words: protection forests, outflow, flux dynamics, BGC-Modelling
ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment, and Core Impact
NASA Astrophysics Data System (ADS)
Zhang, Yichen; Arce, Héctor G.; Mardones, Diego; Cabrit, Sylvie; Dunham, Michael M.; Garay, Guido; Noriega-Crespo, Alberto; Offner, Stella S. R.; Raga, Alejandro C.; Corder, Stuartt A.
2016-12-01
We present Atacama Large Millimeter/sub-millimeter Array Cycle 1 observations of the HH 46/47 molecular outflow using combined 12 m array and Atacama Compact Array observations. The improved angular resolution and sensitivity of our multi-line maps reveal structures that help us study the entrainment process in much more detail and allow us to obtain more precise estimates of outflow properties than in previous observations. We use {}13{{CO}} (1-0) and {{{C}}}18{{O}} (1-0) emission to correct for the {}12{{CO}} (1-0) optical depth to accurately estimate the outflow mass, momentum, and kinetic energy. This correction increases the estimates of the mass, momentum, and kinetic energy by factors of about 9, 5, and 2, respectively, with respect to estimates assuming optically thin emission. The new {}13{{CO}} and {{{C}}}18{{O}} data also allow us to trace denser and slower outflow material than that traced by the {}12{{CO}} maps, and they reveal an outflow cavity wall at very low velocities (as low as 0.2 {\\text{km s}}-1 with respect to the core’s central velocity). Adding the slower material traced only by {}13{{CO}} and {{{C}}}18{{O}}, there is another factor of three increase in the mass estimate and 50% increase in the momentum estimate. The estimated outflow properties indicate that the outflow is capable of dispersing the parent core within the typical lifetime of the embedded phase of a low-mass protostar and that it is responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the outflow cavity wall is composed of multiple shells associated with a series of jet bow-shock events. Within about 3000 au of the protostar the {}13{{CO}} and {{{C}}}18{{O}} emission trace a circumstellar envelope with both rotation and infall motions, which we compare with a simple analytic model. The CS (2-1) emission reveals tentative evidence of a slowly moving rotating outflow, which we suggest is entrained not only poloidally but also toroidally by a disk wind that is launched from relatively large radii from the source.
15 CFR 716.6 - Facility agreements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS INITIAL AND... inspection because of the type or amount of chemicals it produces, processes or consumes. (1) Schedule 1... 1 chemicals. (2) Schedule 2 plant sites. The USNA will ensure that such facility agreements are...
Egress route of emulsified 20 centistokes silicone oil from anterior chamber of rabbit.
Ohira, A; Chihara, E; Soji, T
1994-07-01
Silicone oil is used in recent clinical practice, however, it may cause adverse reactions in the eyes. When the high viscosity silicone oil is contaminated with low molecular weight silicone oil, the contamination may cause ocular toxicity or elevation of the intraocular pressure. To obtain information on the distribution of this preparation, emulsified 20 centistokes silicone oil was injected into the anterior chamber of rabbit eyes. The silicone oil droplets were visualized by light and electron microscopy by using oil soluble phthalocyanine blue. This copper containing dye remains in the tissue after removal of the silicone oil by organic solvents. Two and 4 weeks after an injection, the silicone emulsion was observed as numerous small vacuoles with blue precipitate at the margin of vacuoles within elongated trabecular endothelial cells, fibroblasts along the route of uveoscleral outflow and cells of the iris. Three hours after the injection, only a few vacuoles were present in these cells. These results demonstrated that the emulsified silicone oil leaves the anterior chamber through the conventional and unconventional routes. Phagocytosis by the trabecular endothelial cells and fibroblasts along the uveoscleral route caused an accumulation of the emulsified silicone oil in these cells. With chronic exposure to emulsified silicone oil, changes in the trabecular meshwork may lead to a reduction in the outflow of aqueous humor and cause glaucoma.
A Novel Uveolymphatic Drainage Pathway-Possible New Target for Glaucoma Treatment.
Tomczyk-Socha, Martyna; Turno-Kręcicka, Anna
2017-12-01
Glaucoma is a heterogeneous group of ophthalmic diseases leading to irreversible damage to the optic nerve. While the overall mechanism responsible for glaucoma remains obscure, the most important risk factor is elevated intraocular pressure. The current therapies, whether pharmacological or surgical, are primarily symptomatic with the aim to lower the intraocular pressure (IOP). Poorer response to treatment is associated, for example, with pseudoexfoliation glaucoma, which is determined by blocking the trabecular meshwork (TM) both by pigment grains and the pseudoexfoliation material. It was thought that aqueous humor is drained from the eye by two main pathways: conventional outflow through the TM and Schlemm's canal; and unconventional outflow through the ciliary body through uveal tissue. In 2009 Yucel et al. described and proved the presence of a third pathway for aqueous humor drainage using two specific lymphatic markers: podoplanin, and lymphatic vessel endothelial hyaluronan receptor-1 to identify lymphatic channels in the human ciliary body. The discovery identifies a novel target for IOP-lowering therapies. The most promising group are prostaglandins, which are widely prescribed for glaucoma patients. An intriguing new possibility in glaucoma therapy is using ANGPT agonist. It is still not known if the lymphatic drainage in glaucoma is decreased or dysfunctional and whether lymphatic stimulation can help in removing the improperly accumulated substances, as is seen in pseudoexfoliation glaucoma. However, this new target for glaucoma treatment appears very promising.
Storm, J.B.
2004-01-01
The U.S. Geological Survey is computing continuous discharge of the Pearl River at the upper end of the Ross Barnett Reservoir near Jackson, Mississippi, using acoustic technology and conventional streamgaging methods. The computed inflow is posted "real-time" to the Mississippi District's web page where it can be monitored by the Pearl River Valley Water Supply District (PRVWSD) to aid in reservoir regulation. The use of this technology to determine discharge allows the PRVWSD to prepare for headwater flooding conditions ahead of time and adjust reservoir outflow accordingly. Hydraulic and acoustic problems inherent to this site have presented problems not normally encountered at a typical streamgaging site. Copyright ASCE 2004.
Asymmetric MHD outflows/jets from accreting T Tauri stars
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.
2015-06-01
Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.
Modeling Jet and Outflow Feedback during Star Cluster Formation
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.
2014-08-01
Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ~1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ~ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.
NASA Astrophysics Data System (ADS)
Li, Yingjie; Li, Fa-Cheng; Xu, Ye; Wang, Chen; Du, Xin-Yu; Yang, Wenjin; Yang, Ji
2018-03-01
We present a large-scale survey of CO outflows in the Gem OB1 molecular cloud complex and its surroundings, using the Purple Mountain Observatory Delingha 13.7 m telescope. A total of 198 outflow candidates were identified over a large area (∼58.5 square degrees), of which 193 are newly detected. Approximately 68% (134/198) are associated with the Gem OB1 molecular cloud complex, including clouds GGMC 1, GGMC 2, BFS 52, GGMC 3, and GGMC 4. Other regions studied are: the Local arm (Local Lynds, West Front), Swallow, Horn, and Remote cloud. Outflow candidates in GGMC 1, BFS 52, and Swallow are mainly located at ring-like or filamentary structures. To avoid excessive uncertainty in distant regions (≳3.8 kpc), we only estimated the physical parameters for clouds in the Gem OB1 molecular cloud complex and in the Local arm. In those clouds, the total kinetic energy and the energy injection rate of the identified outflow candidates are ≲1% and ≲3% of the turbulent energy and the turbulent dissipation rate of each cloud, indicating that the identified outflow candidates cannot provide enough energy to balance turbulence of their host cloud at the scale of the entire cloud (several to dozens of parsecs). The gravitational binding energy of each cloud is ≳135 times the total kinetic energy of the identified outflow candidates within the corresponding cloud, indicating that the identified outflow candidates cannot cause major disruptions to the integrity of their host cloud at the scale of the entire cloud.
[Channelography and mechanism of action in canaloplasty].
Grieshaber, M C
2015-04-01
Canaloplasty lowers the intraocular pressure (IOP) by restoring the natural outflow system. The success of canaloplasty depends on the function of this system. To evaluate the natural outflow system regarding canaloplasty by two clinical tests, provocative gonioscopy and channelography and to describe the mechanism of action of canaloplasty. Provocative gonioscopy evaluates the pattern of blood reflux which is induced by ocular hypotension as the result of a reversed pressure gradient between the episcleral venous pressure and IOP following paracentesis. In channelography the transtrabecular diffusion and the filling properties of the episcleral venous system are assessed by a microcatheter and a fluorescein tracer. Blood reflux varied greatly in glaucomatous eyes and showed an inverse correlation with the preoperative IOP. The higher the IOP, the poorer the blood reflux. The filling qualities of the episcleral venous system and diffusion through the trabecular meshwork were different. Poor trabecular passage and good episcleral fluorescein outflow indicates patent distal outflow pathways, poor trabecular passage and poor episcleral fluorescein outflow indicates obstructed trabecular meshwork and closed collector channels and good trabecular passage together with poor episcleral fluorescein outflow suggests that the site of impairment is mainly in the distal outflow system. The quality of blood reflux and the characteristics of the episcleral filling and the transtrabecular diffusion by fluorescein represent the clinical state of the outflow pathway and help in the prediction of the surgical outcome in canaloplasty. The mechanism for canaloplasty is not yet completely clarified; currently under discussion are circumferential viscodilation, permanent distension of the inner wall of Schlemm's canal using a suture and a Stegmann canal expander.
Danskin, Wesley R.; McPherson, Kelly R.; Woolfenden, Linda R.
2006-01-01
The San Bernardino area of southern California has complex water-management issues. As an aid to local water managers, this report provides an integrated analysis of the surface-water and ground-water systems, documents ground-water flow and constrained optimization models, and provides seven examples using the models to better understand and manage water resources of the area. As an aid to investigators and water managers in other areas, this report provides an expanded description of constrained optimization techniques and how to use them to better understand the local hydrogeology and to evaluate inter-related water-management problems. In this report, the hydrology of the San Bernardino area, defined as the Bunker Hill and Lytle Creek basins, is described and quantified for calendar years 1945-98. The major components of the surface-water system are identified, and a routing diagram of flow through these components is provided. Annual surface-water inflow and outflow for the area are tabulated using gaged measurements and estimated values derived from linear-regression equations. Average inflow for the 54-year period (1945-98) was 146,452 acre-feet per year; average outflow was 67,931 acre-feet per year. The probability of exceedance for annual surface-water inflow is calculated using a Log Pearson Type III analysis. Cumulative surface-water inflow and outflow and ground-water-level measurements indicate that the relation between the surface-water system and the ground-water system changed in about 1951, in about 1979, and again in about 1992. Higher ground-water levels prior to 1951 and between 1979 and 1992 induced ground-water discharge to Warm Creek. This discharge was quantified using streamflow measurements and can be estimated for other time periods using ground-water levels from a monitoring well (1S/4W-3Q1) and a logarithmic-regression equation. Annual wastewater discharge from the area is tabulated for the major sewage and power-plant facilities. More...
NASA Astrophysics Data System (ADS)
Tejman-Yarden, Shai; Rzasa, Callie; Benito, Yolanda; Alhama, Marta; Leone, Tina; Yotti, Raquel; Bermejo, Javier; Printz, Beth; Del Alamo, Juan C.
2012-11-01
Left ventricular vortices have been difficult to visualize in the clinical setting due to the lack of quantitative non-invasive modalities, and this limitation is especially important in pediatrics. We have developed and validated a new technique to reconstruct two-dimensional time-resolved velocity fields in the LV from conventional transthoracic color-Doppler images. This non-invasive modality was used to image LV flow in 10 healthy full-term neonates, ages 24-48 hours. Our results show that, in neonates, a diastolic vortex developed during LV filling, was maintained during isovolumic contraction, and decayed during the ejection period. The vortex was created near the base of the ventricle, moved toward the apex, and then back toward the base and LVOT during ejection. In conclusion, we have characterized for the first time the properties of the LV filling vortex in normal neonates, demonstrating that this vortex channels blood from the inflow to the outflow tract of the LV. Together with existing data from adults, our results confirm that the LV vortex is conserved through adulthood. Funded by NIH Grant R21HL108268.
Characterizing the origin and impact of the most extreme molecular outflows in the nearby universe
NASA Astrophysics Data System (ADS)
Gowardhan, Avani; Riechers, Dominik A.; Spoon, Henrik; Farrah, Duncan
2018-01-01
Observations over the last decade have revealed that feedback in the form of molecular gas outflows is ubiquitous in local ultra luminous infrared galaxies (ULIRGs). Such outflows can clear the nuclear environments of gas and dust, quench star formation and active galactic nuclei (AGN) growth, and they are a key step in the evolution of dust-obscured AGN to optically luminous quasars. We here present multi-spectral line observations of feedback in the two most powerful molecular gas outflows in the local universe. We spatially resolve the outflows to determine their kinematics and structure and find that they can drive out the molecular gas and quench star formation within ~ few Myr. Applying mid-IR diagnostics to constrain the relative contributions of AGN and nuclear starburst activity, we find that starburst activity plays a significant role in driving the outflow. We discuss the implications for future studies of feedback in the local universe and obscured AGN at high redshift, which is a key target population for JWST and ALMA over the next decade.
NASA Astrophysics Data System (ADS)
Liu, Yi; Sheng, Zhuping
2011-11-01
SummaryAtmospheric water, surface water, and groundwater interact very actively through hydrologic processes such as precipitation, infiltration, seepage, irrigation, drainage, evaporation, and evapotranspiration in the Upper Rio Grande Basin. A trend-outflow method has been developed in this paper to gain a better understanding of the interactions based on cumulated inflow and outflow data for any river reaches of interest. A general trend-outflow equation was derived by associating the net interaction of surface water with atmospheric water as a polynomial of inflow and the net interaction of surface water with groundwater as a constant based on surface water budget. Linear and quadratic relations are probably two common trend-outflow types in the real world. It was found that trend-outflows of the Upper Rio Grande reaches, Española, Albuquerque, Socorro-Engle, Palomas, and Rincon are linear with inflow, while those of reaches, Belen, Mesilla and Hueco are quadratic. Reaches Belen, Mesilla and Hueco are found as water deficit reaches mainly for irrigated agriculture in extreme drought years.
75 FR 43945 - Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... emitted by any source of radiation inside a nuclear installation, provided that such application does not... facilities, equipment, fuel, services, technology, or transport of nuclear materials related to any step... DEPARTMENT OF ENERGY Convention on Supplementary Compensation for Nuclear Damage Contingent Cost...
15 CFR 716.5 - Notification, duration and frequency of inspections.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS... and purpose of the Convention posed by the quantities of chemicals produced, the characteristics of... Convention posed by the quantities of chemicals produced, the characteristics of the facility and the nature...
VLA's Sharpened Vision Shows Details of Still-Forming Star
NASA Astrophysics Data System (ADS)
2001-01-01
Using a new observing capability of the National Science Foundation's Very Large Array (VLA) radio telescope, astronomers have discovered a solar-system-sized disk of gas and dust feeding material onto a young star with 8 to 10 times the mass of the Sun. This is the first time an inner "accretion disk" has been seen around such a massive star. The VLA images also revealed the inner portion of an energetic outflow of material powered by the accretion disk. Artist's conception "Disks and outflows in young stars increase dramatically in mass and energy as the mass of the young star increases. We don't know if the same process is at work in all young stars or how the disks can both power an outflow that extends more than 15 light-years and also start the process of forming planets," said Debra Shepherd, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. "By studying the birth of massive young stars, we're pushing the limits of our understanding and trying to learn if there are critical differences between the outflows from high and low mass young stars," she added Shepherd and Mark Claussen, also from the NRAO in Socorro, and Stan Kurtz of the National Autonomous University in Mexico, presented their findings today at the American Astronomical Society's meeting in San Diego, CA. The scientists made the discovery using the VLA connected by a newly- operational fiber-optic link to one of the radio-telescope antennas of the NSF's Very Long Baseline Array (VLBA), located at Pie Town, NM, 32 miles away from the VLA. Linking the VLA to the Pie Town antenna almost doubled the resolving power, or ability to see fine detail, available to the astronomers. "We could not have seen these structures without using the Pie Town antenna connected to the VLA," said Claussen. Work on the VLA-Pie Town fiber-optic link, financed by the NSF and Associated Universities, Inc., which operates NRAO for the NSF, began in late 1997. The linked facilities first were available for routine astronomical observations last autumn. In late November, the scientists pointed the sharpened vision of the combined telescopes at an object called G192.16-3.82, more than 6,000 light-years distant in the constellation Orion. First observed in 1990, G192.16-3.82 was found to be a massive young star powering one of the largest stellar outflows -- extending more than 30 light years from end to end -- in the entire Milky Way Galaxy. Earlier observations showed the young star is surrounded by a large, rotating disk with a diameter greater than 1,000 times the Sun-Earth distance. Astronomers, however, believed that the outflow had to originate from a structure much smaller than this disk. The VLA-Pie Town system gave them their first glimpse of the suspected smaller structure, another disk slightly larger than our own Solar System containing enough gas and dust to make 20 Suns. In addition, they saw the inner portion of the outflow of material powered by that disk. The new observations also showed that the smaller disk probably is truncated by the gravitational pull of another, previously-unseen young star less massive than the first. Close to the larger protostar, the outflow is wide, covering an angle of about 40 degrees. "With smaller protostars, the outflow begins wide but then is narrowed down to a thin jet relatively close to its origin. However, when the protostar is more massive, the outflow tends to remain wide," Shepherd said. "We think that magnetic fields narrow down the flow from the smaller protostars. It's possible that when the flow contains much more mass, such as in this system, the magnetic fields may be just too weak in most cases to get this done," she said. "Our new observations now make it possible to test this idea by comparing computer simulations to what we see in the real universe," Shepherd said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials, magazine articles and numerous published photos, the VLA has been one of the world's most versatile and productive astronomical observatories since its dedication in 1980. VLA image and model of system The VLBA is a continent-wide system of 10 radio telescopes distributed across the continental United States, Hawaii and St. Croix in the U.S. Virgin Islands. Dedicated in 1993, the VLBA has made important contributions to the understanding of stars in the Milky Way, the workings of distant galaxies, and to calibrating the distance scale of the universe. Both the VLA and the VLBA use multiple radio-telescope antennas to produce greater resolving power than is possible with an individual antenna. Because of the different sizes of these two arrays of antennas, they produce images showing different levels of detail. NRAO scientists and engineers have developed plans to combine the VLA with the VLBA antennas closest to it, in New Mexico, Texas and Arizona, along with a number of new antennas, to fill in a gap in resolving power that exists between the VLA and VLBA. If this plan is funded, the closer VLBA antennas and the new antennas will be connected to the VLA by fiber-optic links to produce the Expanded VLA (EVLA). "The successful linking of the Pie Town VLBA antenna to the VLA shows that we can connect these radio-telescope antennas with fiber-optic cable over long distances and make them work as a single instrument," said Claussen, who worked extensively on the project. "This has produced a valuable new capability for astronomers to use now -- as shown by our study of this young stellar system -- but it also proves that our concept for expanding the VLA is technically sound," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study
NASA Technical Reports Server (NTRS)
Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.
1994-01-01
Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10(exp -5) solar mass/yr and possibly as large as 9 x 10(exp -5) solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10(exp -6) solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10(exp -7) solar mass/yr. The disk mass is approximately equal 6 x 10(exp -3) solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB stars, probably as a result of enhancement of the CN and HCO(+) abundances due to photochemistry induced by the stellar UV. The CS J = 2-1, SiO J = 2-1 (v = 0), and SiS J = 6-5 lines were not detected to low levels. For the high-excitation molecules, adequate collisional excitation of rotational levels and survival against photodissociation by the UV radiation requires significant clumping of the molecular gas into clumps with H2 densities approximately 10(exp 5)/cu cm. The IRAS fluxes of M1-16, assuming negligible contribution from line emission, imply the presence of about (1.7-0.4) x 10(exp -3) solar mass of cool dust (temperature around 50 K) and a smaller quantity, (2.7-3.1) x 10(exp -6) solar mass, of warmer dust (temperature around 125 K) for a power-law emissivity index p = 1-2. The evolutionary nature of M1-16 cannot be explained by existing single-star models of post-AGB evolution. The very high (13)C/(12)C abundance ratio in M1-16 suggests a possible evolutionary connection between M1-16 and the rare class of J-type silicate-carbon stars which also have high (13)C/(12)C ratios and are thought to be binary systems with accretion disks.
Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study
NASA Astrophysics Data System (ADS)
Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.
1994-06-01
Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10-5 solar mass/yr and possibly as large as 9 x 10-5 solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10-6 solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10-7 solar mass/yr. The disk mass is approximately equal 6 x 10-3 solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB stars, probably as a result of enhancement of the CN and HCO(+) abundances due to photochemistry induced by the stellar UV. The CS J = 2-1, SiO J = 2-1 (v = 0), and SiS J = 6-5 lines were not detected to low levels. For the high-excitation molecules, adequate collisional excitation of rotational levels and survival against photodissociation by the UV radiation requires significant clumping of the molecular gas into clumps with H2 densities approximately 105/cu cm. The IRAS fluxes of M1-16, assuming negligible contribution from line emission, imply the presence of about (1.7-0.4) x 10-3 solar mass of cool dust (temperature around 50 K) and a smaller quantity, (2.7-3.1) x 10-6 solar mass, of warmer dust (temperature around 125 K) for a power-law emissivity index p = 1-2. The evolutionary nature of M1-16 cannot be explained by existing single-star models of post-AGB evolution. The very high (13)C/(12)C abundance ratio in M1-16 suggests a possible evolutionary connection between M1-16 and the rare class of J-type silicate-carbon stars which also have high (13)C/(12)C ratios and are thought to be binary systems with accretion disks.
Synoptic Observations of The Terrestrial Polar Wind
NASA Astrophysics Data System (ADS)
Pollock, C. J.; Jahn, J.-M.; Moore, T. E.; Valek, P.; Wiig, J.
High altitude passes of NASA"s Polar spacecraft, during intevals when the Plasma Source Investigation (PSI) was operating to neutralize the spacecraft charge, are uti- lized to study the relatively low energy outflow of plasma from Earth's polar iono- sphere into the magnetosphere. Four years (1996 - 2000) of data from the Themal Ion Dynamics Experiment (TIDE) are analyzed to determine typical polar wind outflow parameters and their variability. These outflows, which are typically but not always present, are usually of high mach number, are strongly collimated along the outgoing field aligned direction and display significant temporal variability. Multi-species out- flows are distinguished from those of a single-species based on the energy signature. Preliminary results show that single species outflow is the rule and that observation of multi-species outflow is often associated with geomagnetic storms.
Can Radio Emission From Luminous Obscured AGN Blow Kpc-scale Ionized Outflows?
NASA Astrophysics Data System (ADS)
Goulding, Andy
2017-09-01
We propose joint VLA radio and Chandra X-ray to observe 4 AGN selected from the SDSS-BOSS and the Hyper Suprime-Cam surveys that present spectacular extended outflowing [O III] regions, reaching up to 50kpc in diameter. Our proposed observations allow us to study the mechanical and kinematical output of the AGN through radio and X-ray observations, measure the fraction of the AGN bolometric luminosity that is transferred to the outflow, and to determine the morphology and spectral index (by producing high-res continuum maps) of the radio emission that may be co-spatial with the extended ionized AGN outflow. In turn, our study will determine what role the AGN plays in producing extended outflows, and hence, provide an in-depth understanding of the physical drivers of AGN feedback.
Cumulative neutrino background from quasar-driven outflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2016-12-01
Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission frommore » quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.« less
AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.
Constantz, Jim; Murphy, Fred
1987-01-01
The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.
Pellet to Part Manufacturing System for CNCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.
Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.
A Molecular-line Study of the Interstellar Bullet Engine IRAS05506+2414
NASA Astrophysics Data System (ADS)
Sahai, Raghvendra; Lee, Chin-Fei; Sánchez Contreras, Carmen; Patel, Nimesh; Morris, Mark R.; Claussen, Mark
2017-12-01
We present interferometric and single-dish molecular line observations of the interstellar bullet-outflow source IRAS 05506+2414, whose wide-angle bullet spray is similar to the Orion BN/KL explosive outflow and likely arises from an entirely different mechanism than the classical accretion-disk-driven bipolar flows in young stellar objects. The bullet-outflow source is associated with a large pseudo-disk and three molecular outflows—a high-velocity outflow (HVO), a medium-velocity outflow (MVO), and a slow, extended outflow (SEO). The size (mass) of the pseudo-disk is 10,350 au × 6400 au (0.64-0.17 M ⊙) from a model-fit assuming infall and rotation, we derive a central stellar mass of 8-19 M ⊙. The HVO (MVO) has an angular size ˜5180 (˜3330) au and a projected outflow velocity of ˜140 km s-1 (˜30 km s-1). The SEO size (outflow speed) is ˜0.9 pc (˜6 km s-1). The HVO’s axis is aligned with (orthogonal to) that of the SEO (pseudo-disk). The velocity structure of the MVO is unresolved. The scalar momenta in the HVO and SEO are very similar, suggesting that the SEO has resulted from the HVO interacting with ambient-cloud material. The bullet spray shares a common axis with the pseudo-disk and has an age comparable to that of MVO (few hundred years), suggesting that these three structures are intimately linked. We discuss several models for the outflows in IRAS 05506+2414 (including dynamical decay of a stellar cluster, chance encounter of a runaway star with a dense cloud, and close passage of two protostars), and conclude that second-epoch imaging to derive proper motions of the bullets and nearby stars can help to discriminate between them.
Toward a Prescription for Feedback from Quasar Outflows
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Bourjaily, M.; Munsell, J.; Brotherton, M. S.; Bhattacharjee, A.; Runnoe, J.; Charlton, J. C.; Eracleous, M.
2011-01-01
Models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, distance, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 14000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) estimates of the quasar black hole mass. To this, we are adding photometry from GALEX, 2MASS, and ROSAT in an effort to characterize more fully the quasar SEDs. ROSAT photometry provides estimates of the level of soft X-ray absorption, which helps regulate the velocity of outflows. GALEX photometry samples the extreme ultraviolet range where several high ionization species, that may be present in the outflows, absorb light. 2MASS photometry samples the rest-frame optical, where the effects of absorption and dust reddening are minimal, yield better estimates of the bolometric luminosity (hence, Eddington ratio). In this poster, we will present preliminary measurements of the amount of absorption in the soft X-ray and extreme ultraviolet bands as a function of both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow
NASA Astrophysics Data System (ADS)
Ramírez-Olivencia, N.; Varenius, E.; Pérez-Torres, M.; Alberdi, A.; Pérez, E.; Alonso-Herrero, A.; Deller, A.; Herrero-Illana, R.; Moldón, J.; Barcos-Muñoz, L.; Martí-Vidal, I.
2018-03-01
We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N-S direction ( ≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system. We also discuss HST/NICMOS [FeII] 1.64 μm and H2 2.12 μm images of Arp 299-A, which show similar features to those unveiled by our 150 MHz LOFAR observations, providing strong morphological support for the outflow scenario. Finally, we discuss unpublished Na I D spectra that confirm the outflow nature of this structure. From energetic arguments, we rule out the low-luminosity active galactic nucleus in Arp 299-A as a driver for the outflow. On the contrary, the powerful, compact starburst in the central regions of Arp 299-A provides plenty of mechanical energy to sustain an outflow, and we conclude that the intense supernova (SN) activity in the nuclear region of Arp 299-A is driving the observed outflow. We estimate that the starburst wind can support a mass-outflow rate in the range (11-63 M⊙ yr-1) at speeds of up to 370-890 km s-1, and is relatively young, with an estimated kinematic age of 3-7 Myr. Those results open an avenue to the use of low-frequency (150 MHz), sub-arcsecond imaging with LOFAR to detect outflows in the central regions of local luminous infrared galaxies.
The Anatomy of the Young Protostellar Outflow HH 211
NASA Astrophysics Data System (ADS)
Tappe, A.; Forbrich, J.; Martín, S.; Yuan, Y.; Lada, C. J.
2012-05-01
We present Spitzer Space Telescope 5-36 μm mapping observations toward the southeastern lobe of the young protostellar outflow HH 211. The southeastern terminal shock of the outflow shows a rich mid-infrared spectrum including molecular emission lines from OH, H2O, HCO+, CO2, H2, and HD. The spectrum also shows a rising infrared continuum toward 5 μm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v = 1-0 fundamental band. This interpretation is supported by a strong excess flux observed in the Spitzer/IRAC 4-5 μm channel 2 image compared to the other IRAC channels. The extremely high critical densities of the CO v = 1-0 ro-vibrational lines and a comparison to H2 and CO excitation models suggest jet densities larger than 106 cm-3 in the terminal shock. We also observed the southeastern terminal outflow shock with the Submillimeter Array and detected pure rotational emission from CO 2-1, HCO+ 3-2, and HCN 3-2. The rotationally excited CO traces the collimated outflow backbone as well as the terminal shock. HCN traces individual dense knots along the outflow and in the terminal shock, whereas HCO+ solely appears in the terminal shock. The unique combination of our mid-infrared and submillimeter observations with previously published near-infrared observations allow us to study the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help us to understand the nature of some of the so-called green fuzzies (Extended Green Objects), and elucidate the physical conditions that cause high OH excitation and affect the chemical OH/H2O balance in protostellar outflows and young stellar objects. In an appendix to this paper, we summarize our Spitzer follow-up survey of protostellar outflow shocks to find further examples of highly excited OH occurring together with H2O and H2.
A Doppler dimming determination of coronal outflow velocity
NASA Technical Reports Server (NTRS)
Strachan, Leonard; Kohl, John L.; Weiser, Heinz; Withbroe, George L.; Munro, Richard H.
1993-01-01
Outflow velocities in a polar coronal hole are derived from observations made during a 1982 sounding rocket flight. The velocity results are derived from a Doppler dimming analysis of resonantly scattered H I Ly-alpha. This analysis indicates radial outflow velocities of 217 km/s at 2 solar radii from sun-center with an uncertainty range of 153 to 251 km/s at a confidence level of 67 percent. These results are best characterized as strong evidence for supersonic outflow within 2 solar radii of sun-center in a polar coronal hole. Several means for obtaining improved accuracy in future observations are discussed.
ALMA Studies of the Disk-Jet-Outflow Connection
NASA Astrophysics Data System (ADS)
Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.
2017-06-01
I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.
NASA Astrophysics Data System (ADS)
Kukkonen, S.; Kostama, V.-P.
2018-01-01
Harmakhis Vallis is one of the four major outflow channel systems (Dao, Niger, Harmakhis, and Reull Valles) that cut the eastern rim region of the Hellas basin, the largest well-preserved impact structure on Mars. The structure of Harmakhis Vallis and the volume of its head depression, as well as earlier dating studies of the region, suggest that the outflow channel formed in the Hesperian period by collapsing when a large amount of subsurface fluid was released. Thus Harmakhis Vallis, as well as the other nearby outflow channels, represents a significant stage of the fluvial activity in the regional history. On the other hand, the outflow channel lies in the Martian mid-latitude zone, where there are several geomorphologic indicators of past and possibly also contemporary ground ice. The floor of Harmakhis also displays evidence of a later-stage ice-related activity, as the outflow channel has been covered by lineated valley fill deposits and debris apron material. The eastern rim region of the Hellas impact basin has been the subject of numerous geologic mapping studies at various scales and based on different imaging data sets. However, Harmakhis Vallis itself has received less attention and the studies on the outflow channel have focused only on limited parts of the outflow channel or on separated different geologic events. In this work, the Harmakhis Vallis floor is mapped and dated from the head depression to the beginning of the terminus based on the Mars Reconnaissance Orbiter's ConTeXt camera images (CTX; ∼ 6 m/pixel). Our results show that Harmakhis Vallis has been modified by several processes after its formation. Age determinations on the small uncovered parts of the outflow channel, which possibly represent the original floor of Harmakhis, imply that Harmakhis may have experienced fluvial activity only 780-850 ( ± 400-600) Ma ago. The discovered terrace structure instead shows that the on-surface activity of the outflow channel has been periodic. The most significant of the modification processes on Harmakhis Vallis has been the formation of lineated valley fill units. The lineated valley fills now cover the outflow channel almost entirely. They formed not later than ∼ 400 Ma ago based on stratigraphic analyses and crater counts. All the floor units have also been resurfaced several, usually two or three times. The resurfacing ages of the dated units show that the later modification processes have occurred at least on a local scale in the Harmakhis Vallis region, not only inside the outflow channel. This, in turn, may indicate that the processes resulted from a larger-scale change, for example in the local climate or endogenic conditions.
DOT National Transportation Integrated Search
1996-11-01
The Louisiana Transportation Research Center's (LTRC) Pavement Research Facility (PRF) is a permanent, outdoor, full-scale testing laboratory located on a six site in Port Allen, Louisiana. The purpose of this facility is to test and quantify full-sc...
Camara, A; Bah-Sow, O Y; Baldé, N M; Camara, L M; Barry, I S; Bah, B; Diallo, M; Chaperon, J; Riou, F
2009-06-01
Complex care pathways can result in detrimental treatment delay particularly in tuberculosis patients. The purpose of this retrospective study was to assess the care pathways followed by tuberculosis patients prior to diagnosis and to assess impact on the delay for initiation of treatment in Conakry, Guinea. A total of 112 patients were interviewed at the time of first admission for pulmonary tuberculosis with positive bacilloscopy. Based on interview data, pathways were classified as conventional (use of health care facilities only) and mixed (use of health care facilities, self-medication, and traditional medicine). The correlation between patient characteristics and type of pathway was assessed by univariate and multivariate analysis and the two groups, i.e., conventional vs. mixed, were compared with regard to delay for initiation of treatment. The care pathway was classified as mixed in two out of three patients. Multivariate analysis showed that this type of pathway was only correlated with schooling (p=0.02). The mean delay for treatment was similar, i.e., 13.4 and 12.8 weeks for conventional and mixed pathways respectively (p<0.68). The percentage of pathways including three consultations at health care facilities was significantly higher in the conventional than mixed group (72% vs. 30%, p<0.001). The main reasons given for delayed use of health care facilities were poor knowledge of tuberculosis symptoms (26%) and high cost of care (12%). The findings of this study indicate that tuberculosis patients follow a variety of care pathways that can lead to delayed treatment. An information campaign is needed to increase awareness among the population and care providers.
Iglesias, Raquel; Simón, Pedro; Moragas, Lucas; Arce, Augusto; Rodriguez-Roda, Ignasi
2017-06-01
The paper assesses the costs of full-scale membrane bioreactors (MBRs). Capital expenditures (CAPEX) and operating expenses (OPEX) of Spanish MBR facilities have been verified and compared to activated sludge plants (CAS) using water reclamation treatment (both conventional and advanced). Spanish MBR facilities require a production of 0.6 to 1.2 kWh per m 3 , while extended aeration (EA) and advanced reclamation treatment require 1.2 kWh per m 3 . The energy represents around 40% of the OPEX in MBRs. In terms of CAPEX, the implementation costs of a CAS facility followed by conventional water reclamation treatment (physical-chemical + sand filtration + disinfection) ranged from 730 to 850 €.m -3 d, and from 1,050 to 1,250 €.m -3 d in the case of advanced reclamation treatment facilities (membrane filtration) with a capacity of 8,000 to 15,000 m 3 d -1 . The MBR cost for similar capacities ranges between 700 and 960 €.m -3 d. This study shows that MBRs that have been recently installed represent a cost competitive option for water reuse applications for medium and large capacities (over 10,000 m 3 d -1 ), with similar OPEX to EA and conventional water reclamation treatment. In terms of CAPEX, MBRs are cheaper than EA, followed by advanced water reclamation treatment.
NASA Astrophysics Data System (ADS)
Wurster, James; Bate, Matthew R.; Price, Daniel J.
2018-04-01
We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.
Blowin' in the wind: both `negative' and `positive' feedback in an outflowing quasar at z~1.6
NASA Astrophysics Data System (ADS)
Cresci, Giovanni
2015-02-01
Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring `positive' AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. We present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U band flux show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (`negative feedback'), but also triggering star formation by outflow induced pressure at the edges (`positive feedback'). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.
11 CFR 9008.51 - Registration and reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... convention under 11 CFR 9008.52(b), a list of the categories of facilities and services the government agency... first report due under paragraph (b) of this section after the contract or agreement or modification is executed. (b) Post-convention and quarterly reports by host committees and municipal funds; content and...
11 CFR 9008.51 - Registration and reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... convention under 11 CFR 9008.52(b), a list of the categories of facilities and services the government agency... first report due under paragraph (b) of this section after the contract or agreement or modification is executed. (b) Post-convention and quarterly reports by host committees and municipal funds; content and...
ERIC Educational Resources Information Center
Petratos, Panagiotis; Damaskou, Evangelia
2015-01-01
Purpose: The purpose of this paper is to describe and analyze the effects of campus sustainability planning to annual campus energy inflows and outflows in California higher education. The paper also offers a preliminary statistical analysis for the evaluation of impact factors on energy outflows and a link between energy outflows and building…
NASA Technical Reports Server (NTRS)
Duke, E. L.; Regenie, V. A.; Deets, D. A.
1986-01-01
The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.
A rapid prototyping facility for flight research in advanced systems concepts
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.
1989-01-01
The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.
Isotopic tracing of the outflow during artificial rain-on-snow event
NASA Astrophysics Data System (ADS)
Juras, Roman; Pavlásek, Jirka; Vitvar, Tomáš; Šanda, Martin; Holub, Jirka; Jankovec, Jakub; Linda, Miloslav
2016-10-01
The frequency of rain-on-snow (ROS) occurrence is increasing and this natural phenomenon is beginning to play an important role in temperate climate regions. Present knowledge of outflow generation mechanisms and rainwater dynamics during ROS is still insufficient. The study introduces a combined method of artificial ROS, isotopic tracing and energy balance to partition the event rainwater and the pre-event non-rainwater in the outflow. A rainfall simulator and water enriched with deuterium were used for identifying event rainwater and pre-event non-rainwater during an ROS event. The ROS experiment was conducted in the Krkonoše Mountains in the Czech Republic. An experimental snow block consisting of ripe and isothermal snow was sprayed with deuterium enriched water. The outflow from the snowpack was continuously monitored to gain quantitative and qualitative information about outflow water. The isotopic deuterium content was further analysed from the samples by means of laser spectroscopy in order to separate the hydrograph components. The deuterium content was also analysed from the snow samples gathered before and after the experiment to identify the retention of event rainwater in the snowpack. Isotopic hydrograph separation revealed that although high rain intensity was applied, the event rainwater represented one half (52.7%) of the total outflow volume. The ripe snowpack retained about one third of the rainwater input (33.6%). Significant changes in the outflowing water quality can therefore be expected during ROS events. This experiment also shows that rainwater during ROS firstly pushes-out the non-rainwater and then contributes to the outflow. These results show that the presented technique allows us to gain sufficient information about rainwater dynamics during ROS.
Does the X-ray outflow quasar PDS 456 have a UV outflow at 0.3c?
NASA Astrophysics Data System (ADS)
Hamann, Fred; Chartas, George; Reeves, James; Nardini, Emanuele
2018-05-01
The quasar PDS 456 (at redshift ˜0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log NH(cm-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ˜1346 Å (observed) that might be Ly α at v ≈ 0.06c or N V λ1240 at v ≈ 0.08c. However, we use photoionization models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably C IV at v ≈ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The C IV BAL identification is also supported indirectly by the tentative detection of another broad C IV line at v ≈ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20-30 rg from the central black hole. We speculate that the C IV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only ≳0.4 dex compared to clumpy structures already inferred for the soft X-ray absorber in PDS 456. The C IV BAL might therefore be the first detection of low-ionization clumps proposed previously to boost the opacities in UFOs for radiative driving.
Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin
NASA Astrophysics Data System (ADS)
Lesack, Lance F. W.
1993-03-01
The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.
THE PREVALENCE OF GAS OUTFLOWS IN TYPE 2 AGNs. II. 3D BICONICAL OUTFLOW MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Hyun-Jin; Woo, Jong-Hak, E-mail: hjbae@galaxy.yonsei.ac.kr, E-mail: woo@astro.snu.ac.kr
We present 3D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclinationmore » increases, while velocity (i.e., velocity shifts with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O iii] line profiles, e.g., narrow core and broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O iii] velocity–velocity dispersion distribution of ∼39,000 type 2 AGNs, we constrain the intrinsic velocity of gas outflows ranging from ∼500 to ∼1000 km s{sup −1} for the majority of AGNs, and up to ∼1500–2000 km s{sup −1} for extreme cases. The Monte Carlo simulations show that the number ratio of AGNs with negative [O iii] velocity to AGNs with positive [O iii] velocity correlates with the outflow opening angle, suggesting that outflows with higher intrinsic velocity tend to have wider opening angles. These results demonstrate the potential of our 3D models for studying the physical properties of gas outflows, applicable to various observations, including spatially integrated and resolved gas kinematics.« less
Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling.
Park, Eon Joo; Ogden, Lisa A; Talbot, Amy; Evans, Sylvia; Cai, Chen-Leng; Black, Brian L; Frank, Deborah U; Moon, Anne M
2006-06-01
Fibroblast growth factor 8 (Fgf8) is a secreted signaling protein expressed in numerous temporospatial domains that are potentially relevant to cardiovascular development. However, the pathogenesis of complex cardiac and outflow tract defects observed in Fgf8-deficient mice, and the specific source(s) of Fgf8 required for outflow tract formation and subsequent remodeling are unknown. A detailed examination of the timing and location of Fgf8 production revealed previously unappreciated expression in a subset of primary heart field cells; Fgf8 is also expressed throughout the anterior heart field (AHF) mesoderm and in pharyngeal endoderm at the crescent and early somite stages. We used conditional mutagenesis to examine the requirements for Fgf8 function in these different expression domains during heart and outflow tract morphogenesis. Formation of the primary heart tube and the addition of right ventricular and outflow tract myocardium depend on autocrine Fgf8 signaling in cardiac crescent mesoderm. Loss of Fgf8 in this domain resulted in decreased expression of the Fgf8 target gene Erm, and aberrant production of Isl1 and its target Mef2c in the anterior heart field, thus linking Fgf8 signaling with transcription factor networks that regulate survival and proliferation of the anterior heart field. We further found that mesodermal- and endodermal-derived Fgf8 perform specific functions during outflow tract remodeling: mesodermal Fgf8 is required for correct alignment of the outflow tract and ventricles, whereas activity of Fgf8 emanating from pharyngeal endoderm regulates outflow tract septation. These findings provide a novel insight into how the formation and remodeling of primary and anterior heart field-derived structures rely on Fgf8 signals from discrete temporospatial domains.
NASA Technical Reports Server (NTRS)
Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Moore, T. E.; Russell, C. T.; Rose, M. Franklin (Technical Monitor)
2001-01-01
We examine ionospheric outflows in the high altitude magnetospheric polar cap during the POLAR satellite's apogee on April 19, 1996 using the Thermal Ion Dynamics Experiment (TIDE) instrument. The elevated levels of O(+) observed in this pass may be due to the geophysical conditions during and prior to the apogee pass. In addition to the high abundance of O(+) relative to H(+), several other aspects of this data are noteworthy. We observe relationships between the density, velocity, and temperature which appear to be associated with perpendicular heating and the mirror force, rather than adiabatic expansion. The H(+) outflow is at a fairly constant flux which is consistent with being source limited by charge exchange at lower altitudes. Local centrifugal acceleration in the polar cap is found to be insufficient to account for the main variations we observe in the outflow velocity. The solar wind speed is high during this pass approximately 700 kilometers per second, and there are Alfve'n waves present in the solar wind such that the solar wind speed and IMF Bx are correlated. In this pass both the H(+) and O(+) outflow velocities correlate with both the solar wind speed and IMF fluctuations. Polar cap magnetometer and Hydra electron data show the same long period wave structure as found in the solar wind and polar cap ion outflow. In addition, the polar cap Poynting flux along the magnetic field direction correlates well with the H(+) temperature (R=0.84). We conclude that the solar wind can drive polar cap ion outflow particularly during polar squalls by setting up a parallel drop that is tens of eV which then causes the ion outflow velocity of O(+) and H(+), the electrons, and magnetic perturbations to vary in a similar fashion.
NASA Astrophysics Data System (ADS)
Bonnema, M.; Sikder, M. S.; Hossain, F.; Chen, X.; Miao, Y.; Lee, H.
2015-12-01
Growing population and increased demand for water in developing nations is causing an increase in dam construction in these regions. Entities and stakeholders downstream of dams experience drastically altered river flows. When rivers cross international boundaries, these downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multi-sensor precipitation products can be used as a way to provide downstream stakeholders with the upstream information needed to make important water management decisions. This study uses a mass balance between three hydraulic controls, precipitation induced inflow, evaporation, and reservoir storage change, to estimate reservoir outflow at a monthly time scale. Two reservoirs were examined in differing regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the outflow of Kaptai Reservoir with reasonable skill when compared with observed flows. The estimation of outflow from Hungry Horse Reservoir was similarly skillful for outflows in winter and fall months, but summer and spring outflow estimates had high errors due to snowmelt effects. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir. In both cases, a standard energy balance approach of evaporation estimation appeared to have little effect on the accuracy of outflow estimation.
NASA Astrophysics Data System (ADS)
Toba, Yoshiki; Komugi, Shinya; Nagao, Tohru; Yamashita, Takuji; Wang, Wei-Hao; Imanishi, Masatoshi; Sun, Ai-Lei
2017-12-01
We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detailed analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([O III] λ5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at z spec = 0.493, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected 12CO(J = 2–1) and 12CO(J = 4–3) lines and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is log (L IR/L ⊙) = 12.40, which is classified as an ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite the fact that its optical spectrum shows a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy, at least for this DOG.
Mass-loss from advective accretion disc around rotating black holes
NASA Astrophysics Data System (ADS)
Aktar, Ramiz; Das, Santabrata; Nandi, Anuj
2015-11-01
We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.
Ma, Mancheong; Li, Peng; Shen, Hua; Estrada, Kristine D; Xu, Jian; Kumar, S Ram; Sucov, Henry M
2016-01-01
Heart outflow tract septation in mouse embryos carrying mutations in retinoic acid receptor genes fails with complete penetrance. In this mutant background, ectopic TGFβ signaling in the distal outflow tract is responsible for septation failure, but it was uncertain what tissue was responsive to ectopic TGFβ and why this response interfered with septation. By combining RAR gene mutation with tissue-specific Cre drivers and a conditional type II TGFβ receptor (Tgfbr2) allele, we determined that ectopic activation of TGFβ signaling in the endocardium is responsible for septation defects. Ectopic TGFβ signaling results in ectopic mesenchymal transformation of the endocardium and thereby in improperly constituted distal OFT cushions. Our analysis highlights the interactions between myocardium, endocardium, and neural crest cells in outflow tract morphogenesis, and demonstrates the requirement for proper TGFβ signaling in outflow tract cushion organization and septation. Copyright © 2015. Published by Elsevier Inc.
Expression of cardiac neural crest and heart genes isolated by modified differential display.
Martinsen, Brad J; Groebner, Nathan J; Frasier, Allison J; Lohr, Jamie L
2003-08-01
The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent outflow tract septation are critical events during vertebrate heart development. We have performed four modified differential display screens in the chick embryo to identify genes that may be involved in CNC, OFT, secondary heart field, and heart development. The screens included differential display of RNA isolated from three different axial segments containing premigratory cranial neural crest cells; of RNA from distal outflow tract, proximal outflow tract, and atrioventricular tissue of embryonic chick hearts; and of RNA isolated from left and right cranial tissues, including the early heart fields. These screens have resulted in the identification of the five cDNA clones presented here, which are expressed in the cardiac neural crest, outflow tract and developing heart in patterns that are unique in heart development.
(abstract) A Test of the Theoretical Models of Bipolar Outflows: The Bipolar Outflow in Mon R2
NASA Technical Reports Server (NTRS)
Xie, Taoling; Goldsmith, Paul; Patel, Nimesh
1993-01-01
We report some results of a study of the massive bipolar outflow in the central region of the relatively nearby giant molecular cloud Monoceros R2. We make a quantative comparison of our results with the Shu et al. outflow model which incorporates a radially directed wind sweeping up the ambient material into a shell. We find that this simple model naturally explains the shape of this thin shell. Although Shu's model in its simplest form predicts with reasonable parameters too much mass at very small polar angles, as previously pointed out by Masson and Chernin, it provides a reasonable good fit to the mass distribution at larger polar angles. It is possible that this discrepancy is due to inhomogeneities of the ambient molecular gas which is not considered by the model. We also discuss the constraints imposed by these results on recent jet-driven outflow models.
Laboratory Animal Housing--Parts I and II.
ERIC Educational Resources Information Center
Runkle, Robert S.
1963-01-01
In recent years, the use of laboratory animals for bio-medical research has shown marked increase. Economic and efficient housing is a necessity. This two part report established guidelines for design and selection of materials for conventional animal housing. Contents include--(1) production and breeding facilities, (2) quarantine facilities, (3)…
Air Structures. Educational Facilities Review Series Number 23.
ERIC Educational Resources Information Center
Finne, Mary Lou
Air structures can be erected quickly, cover large areas, cost substantially less than conventional buildings, and use less natural resources. Air structures are economically utilized for many facilities, such as athletic fields, swimming pools, high schools, day care centers, and college campuses. The literature on air structures covered in this…
ERIC Educational Resources Information Center
Cooke, Valerie; Arling, Greg; Lewis, Teresa; Abrahamson, Kathleen A.; Mueller, Christine; Edstrom, Lisa
2010-01-01
Purpose: Minnesota's Nursing Facility Performance-Based Incentive Payment Program (PIPP) supports provider-initiated projects aimed at improving care quality and efficiency. PIPP moves beyond conventional pay for performance. It seeks to promote implementation of evidence-based practices, encourage innovation and risk taking, foster collaboration…
School Facilities Planning. Research Report Number 1974-2.
ERIC Educational Resources Information Center
National School Boards Association, Washington, DC.
Literature reviewed in this report is intended to help school boards reconsider conventional approaches to school facilities planning. A blueprint is presented for good relationships between decision-makers and architects, explaining a sequence for the planning and construction process and the roles each party should fulfill to work successfully.…
15 CFR 716.1 - General information on the conduct of initial and routine inspections.
Code of Federal Regulations, 2010 CFR
2010-01-01
... WEAPONS CONVENTION REGULATIONS INITIAL AND ROUTINE INSPECTIONS OF DECLARED FACILITIES § 716.1 General... the conduct of initial and routine inspections of declared facilities subject to inspection under CWC... provisions concerning challenge inspections. (a) Overview. Each State Party to the CWC, including the United...
Radio Telescopes Provide Key Clue on Black Hole Growth
NASA Astrophysics Data System (ADS)
2007-01-01
Astronomers have discovered the strongest evidence yet found indicating that matter is being ejected by a medium-sized black hole, providing valuable insight on a process that may have been key to the development of larger black holes in the early Universe. The scientists combined the power of all the operational telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) to peer deep into the heart of the galaxy NGC 4395, 14 million light-years from Earth in the direction of the constellation Canes Venatici. NGC 4395 Core VLBI image of extended radio emission from core of NGC 4395, indicating suspected outflow powered by black hole CREDIT: Wrobel & Ho, NRAO/AUI/NSF Click on image for larger file Optical (visible light) image of NGC 4395 See here for detail and credit information for optical image. "We are seeing in this relatively nearby galaxy a process that may have been responsible for building intermediate-mass black holes into supermassive ones in the early Universe," said Joan Wrobel, an NRAO scientist in Socorro, NM. Wrobel and Luis Ho of the Observatories of the Carnegie Institution of Washington in Pasadena, CA, presented their findings to the American Astronomical Society's meeting in Seattle, WA. Black holes are concentrations of matter so dense that not even light can escape their powerful gravitational pull. The black hole in NGC 4395 is about 400,000 times more massive than the Sun. This puts it in a rarely-seen intermediate range between the supermassive black holes at the cores of many galaxies, which have masses millions to billions of times that of the Sun, and stellar-mass black holes only a few times more massive than the Sun. Energetic outflows of matter are common to both the supermassive and the stellar-mass black holes, but the new radio observations of NGC 4395 provided the first direct image of such a suspected outflow from an intermediate-mass black hole. The outflows presumably are generated by little-understood processes involving a spinning disk of material being drawn toward the black hole at the disk's center. "An outflow from a black hole can regulate its growth by pushing back on material being drawn toward it. This is an important aspect of black hole development. Our observations offer new and unique information on how this process works for intermediate-mass black holes," Ho said. "Intermediate-mass black holes may have been the starting points for the supermassive black holes that we now see throughout the Universe. By studying this contemporary analog to those earlier objects, we hope to learn how the less-massive ones grew into the more-massive ones," Wrobel explained. The black hole in NGC 4395 was added to a small number of known intermediate-mass black holes in 2005, when a research team led by Brad Peterson of the Ohio State University calculated its mass based on ultraviolet observations. Other ultraviolet and X-ray observations gave tantalizing hints that material might be flowing outward from the black hole. "Fortunately, this object also is detectable by radio telescopes, so we could use very high precision radio observing techniques to make extremely detailed images," Wrobel said. Wrobel and Ho used a technique called Very Long Baseline Interferometry (VLBI), in which multiple radio-telescope antennas are used together to simulate a much larger "virtual telescope," providing extremely great resolving power, or ability to see fine detail. The astronomers used all of NRAO's telescopes in their coordinated VLBI array, including the continent-wide Very Long Baseline Array (VLBA), the 27-antenna Very Large Array (VLA) in New Mexico, and the giant Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The combination of antennas spread far apart as well as the large amount of signal-collecting area in this system allowed the scientists to make a detailed image of the faint radio emission caused by fast-moving electrons in the suspected outflow from the black hole interacting with magnetic fields. The resulting image showed the suspected outflow stretching approximately one light-year from the black hole. "This direct image bolsters the case for an outflow that was suggested by the earlier indirect evidence from the ultraviolet and X-ray observations," Wrobel said. "By measuring the length of this suspected outflow, we offer a unique constraint on theoretical models for how intermediate-mass black holes operate," Ho said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Financial Crisis, Capital Outflows, and Policy Responses: Examples from East Asia
ERIC Educational Resources Information Center
Rajan, Ramkishen S.
2007-01-01
Financial crises seem to have become the norm rather than the exception since 1992. The author examines the impact of a crisis of confidence and resultant capital outflows from a small and open economy and the possible policy options in response to such outflows, using simple tools and definitions that will be familiar to any money and banking or…
Erdogan, Okan
2007-01-01
The present case report describes a patient who underwent successful dual-chamber pacemaker implantation with active ventricular lead fixation at a high septal region in the right ventricular outflow tract. Unexpectedly, stimulation at a high output in the right ventricular outflow tract caused an unusual extracardiac stimulation, specifically, intercostal muscle twitching. PMID:17703261
[Surgical treatment of congenital obstruction of the left ventricular outflow tract].
Biocina, B; Sutlić, Z; Husedinović, I; Letica, D; Sokolić, J
1993-01-01
This report presents the classification and all types of left ventricular outflow tract obstructions. The possibilities of operative therapies are surveyed as well. Results of surgical treatment in 34 patients with obstruction to left ventricular outflow are shown. The majority of patients underwent operation under extracorporeal circulation (84.4%), while the rest were operated by means of the inflow occlusion technique (14.7%). The obtained results were compared with those from the literature. The importance of echocardiographic evaluation of location of the left ventricular outflow tract obstruction and the appropriate choice of a surgical technique according to the patient's age are emphasized.
NGC 7538 IRS. 1. Interaction of a Polarized Dust Spiral and a Molecular Outflow
NASA Astrophysics Data System (ADS)
Wright, M. C. H.; Hull, Charles L. H.; Pillai, Thushara; Zhao, Jun-Hui; Sandell, Göran
2014-12-01
We present dust polarization and CO molecular line images of NGC 7538 IRS 1. We combined data from the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the James Clerk Maxwell Telescope to make images with ~2.''5 resolution at 230 and 345 GHz. The images show a remarkable spiral pattern in both the dust polarization and molecular outflow. These data dramatically illustrate the interplay between a high infall rate onto IRS 1 and a powerful outflow disrupting the dense, clumpy medium surrounding the star. The images of the dust polarization and the CO outflow presented here provide observational evidence for the exchange of energy and angular momentum between the infall and the outflow. The spiral dust pattern, which rotates through over 180° from IRS 1, may be a clumpy filament wound up by conservation of angular momentum in the infalling material. The redshifted CO emission ridge traces the dust spiral closely through the MM dust cores, several of which may contain protostars. We propose that the CO maps the boundary layer where the outflow is ablating gas from the dense gas in the spiral.
Estimation of cold plasma outflow during geomagnetic storms
NASA Astrophysics Data System (ADS)
Haaland, S.; Eriksson, A.; André, M.; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D.
2015-12-01
Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.
Estimation of cold plasma outflow during geomagnetic storms
NASA Astrophysics Data System (ADS)
Haaland, S.; Eriksson, A. I.; Andre, M.; Maes, L.; Baddeley, L. J.; Barakat, A. R.; Chappell, C. R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R. W.; Welling, D. T.
2015-12-01
Low energy ions of ionospheric origin provide a significant contributon to the magnetospheric plasmapopulation. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise arise if continuous longtime observations such as the during a geomagnetic storms are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near Earth region during gemagnetic storms.
Mahoney, Liam; Fernandez-Alvarez, Jose R; Rojas-Anaya, Hector; Aiton, Neil; Wertheim, David; Seddon, Paul; Rabe, Heike
2018-02-24
To explore the intra- and inter-rater agreement of superior vena cava (SVC) flow and right ventricular (RV) outflow in healthy and unwell late preterm neonates (33-37 weeks' gestational age), term neonates (≥37 weeks' gestational age), and neonates receiving total-body cooling. The intra- and inter-rater agreement (n = 25 and 41 neonates, respectively) rates for SVC flow and RV outflow were determined by echocardiography in healthy and unwell late preterm and term neonates with the use of Bland-Altman plots, the repeatability coefficient, the repeatability index, and intraclass correlation coefficients. The intra-rater repeatability index values were 41% for SVC flow and 31% for RV outflow, with intraclass correlation coefficients indicating good agreement for both measures. The inter-rater repeatability index values for SVC flow and RV outflow were 63% and 51%, respectively, with intraclass correlation coefficients indicating moderate agreement for both measures. If SVC flow or RV outflow is used in the hemodynamic treatment of neonates, sequential measurements should ideally be performed by the same clinician to reduce potential variability. © 2018 by the American Institute of Ultrasound in Medicine.
Adekola, Henry; Soto, Eleazar; Dai, Jing; Lam-Rachlin, Jennifer; Gill, Navleen; Leon-Peters, Jocelyn; Puder, Karoline; Abramowicz, Jacques S
2015-01-01
To compare optimal visualization of the four-chamber and outflow-tract views of the fetal heart on sonographic examination between morbidly obese (body mass index [BMI] ≥ 40 kg/m(2) ) and nonobese (BMI < 25 kg/m(2) ) pregnant women. In this retrospective cohort study, we included records and images from 509 pregnant women who had first undergone sonographic examination between 18 and 36 weeks' fetal gestational age. Compared with the nonobese women, morbidly obese women had lower optimal visualization of the four-chamber and outflow-tract heart views: four-chamber view, morbidly obese, 83/186 (44.6%), versus nonobese, 283/323 (87.6%), and outflow-tract view, morbidly obese, 80/186 (43%) versus nonobese, 258/290 (89%); p < 0.0001 for each comparison. Similar outcomes were observed when the results from each subcategory of morbidly obese women (ie, BMI 40-49.9, 50-59.9, and ≥60 kg/m(2) ) were compared with that from nonobese women; p < 0.0001 for each comparison. These outcomes remained the same regardless of whether this comparison was made among those who had their examination before or at 19 weeks' or more gestational age. Among the morbidly obese women, there was no difference in optimal visualization of the four-chamber or outflow-tract views regardless of whether the examination was performed at <23 weeks' or at ≥23 weeks' gestational age: four-chamber view <23 weeks, 44.8% (78/174), versus four-chamber view ≥23 weeks, 41.7% (5/12); p = 0.8, and outflow-tract view <23 weeks, 43.1% (75/174), versus outflow-tract view ≥23 weeks, 41.7% (5/12); p = 0.9. After controlling for maternal age and race, the odds of visualizing the four-chamber and outflow-tract views in the morbidly obese were reduced compared with those in their nonobese counterparts: odds ratio (OR) for four-chamber, 0.13; 95% confidence interval (CI), 0.08-0.21, and OR for outflow-tract, 0.11; 95% CI, 0.07-0.17. Optimal visualization of the fetal four-chamber and outflow-tract views was achieved in less than 50% of morbidly obese women, compared with almost 90% in nonobese women. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.
2017-07-01
In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow is also reexamined.
Discovery of the Rotating Molecular Outflow and Disk in the CLASS-0/I Protostar [BHB2007]#11 in Pipe
NASA Astrophysics Data System (ADS)
Chihomi, Hara; Ryohei, Kawabe; Yoshito, Shimajiri; Junko, Ueda; Takashi, Tsukagoshi; Yasutaka, Kurono; Kazuya, Saigo; Fumitaka, Nakamura; Masao, Saito; Wilner, David
2013-07-01
The loss of angular momentum is inevitable in star formation processes, and the transportation of angular momentum by a molecular flow is widely thought to be one of the important processes. We present the results of our 2'h resolution Submillimeter Array (SMA) observations in CO, 13CO, and C18O(2-1) emissions toward a low-mass Class-0/I protostar, [BHB2007]#11 (hereafter B59#11) at the nearby star forming region, Barnard 59 in the Pipe Nebula (d=130 pc). B59#11 ejects a molecular outflow whose axis lies almost on the plane of the sky, and one of the best targets to investigate the envelope/disk rotation and the velocity structure of the molecular outflow. The 13CO and C18O observations have revealed that a compact (r ˜ 800 AU) and elongated structure of dense gas is associated with B59#11, which orients perpendicular to the outflow axis. Their distributions show the velocity gradients along their major axes, which are considered to arise from the envelope/disk rotation. The specific angular momentum is estimated to be (1.6+/-0.6)e-3 km/s pc. The power-law index of the radial profile of the rotation velocity changes from steeper one, i.e., ˜ -1 to -1/2 at a radius of 140 AU, suggesting the Keplerian disk is formed inside the radius. The central stellar mass is estimated to be ˜1.3 Msun. A collimated molecular outflow is detected from the CO observations. We found in the outflow a velocity gradient which direction is the same as that seen in the dense gas. This is interpreted to be due to the outflow rotation. The specific angular momentum of the outflow is comparable to that of the envelope, suggesting that this outflow play an important role to the ejection of the angular momentum from the envelope/disk system. This is the first case where both the Keplerian disk and the rotation of the molecular outflow were found in the Class-0 or I protostar, and provides one of good targets for ALMA to address the angular momentum ejection in course of star formation.
A New Look at Speeding Outflows
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-02-01
The compact centers of active galaxies known as active galactic nuclei, or AGN are known for the dynamic behavior they exhibit as the supermassive black holes at their centers accrete matter. New observations of outflows from a nearby AGN provide a more detailed look at what happens in these extreme environments.Outflows from GiantsThe powerful radio jets of Cygnus A, which extend far beyond the galaxy. [NRAO/AUI]AGN consist of a supermassive black hole of millions to tens of billions of solar masses surrounded by an accretion disk of in-falling matter. But not all the material falling toward the black hole accretes! Some of it is flung from the AGN via various types of outflows.The most well-known of these outflows are powerful radio jets collimated and incredibly fast-moving streams of particles that blast their way out of the host galaxy and into space. Only around 10% of AGN are observed to host such jets, however and theres another outflow thats more ubiquitous.Fast-Moving AbsorbersPerhaps 30% of AGN both those with and without observed radio jets host wider-angle, highly ionized gaseous outflows known as ultra-fast outflows (UFOs). Ultraviolet and X-ray radiation emitted from the AGN is absorbed by the UFO, revealing the outflows presence: absorption lines appear in the ultraviolet and X-ray spectra of the AGN, blue-shifted due to the high speeds of the absorbing gas in the outflow.Quasar PG 1211+143, indicated by the crosshairs at the center of the image, in the color context of its surroundings. [SDSS/S. Karge]But what is the nature of UFOs? Are they disk winds? Or are they somehow related to the radio jets? And what impact do they have on the AGNs host galaxy?X-ray and Ultraviolet CooperationNew observations are now providing fresh information about one particular UFO. A team of scientists led by Ashkbiz Danehkar (Harvard-Smithsonian Center for Astrophysics) recently used the Chandra and Hubble space telescopes to make the first simultaneous observations of the same outflow a UFO in quasar PG 1211+143 in both X-rays and in ultraviolet.Danehkar and collaborators found absorption lines in both sets of data revealing an outflow moving at 17,000 km/s (for reference, thats 5.6% of the speed of light, and more than 1,500 times faster than Elon Musks roadster will be traveling at its maximum speed in the orbit it was launched onto yesterday by the Falcon Heavy). Having the information both from the X-ray and the ultraviolet data provides the opportunity to better asses the UFOs physical characteristics.The X-ray spectrum for PG 1211+143 was obtained by Chandra HETGS (top); the ultraviolet spectrum was obtained by HST-COS G130M (bottom). [Adapted from Danehkar et al. 2018]A Link Between Black Holes and Galaxies?The authors use models of the data to demonstrate the plausibility of a scenario in which a shock driven by the radio jet gives rise to the fast bulk outflows detected in the X-ray and ultraviolet spectra.They also estimate the impact that the outflows might have on the AGNs host galaxy, demonstrating that the energy injected into the galaxy could be somewhere between 0.02% and 0.6% of the AGNs total luminosity. At the higher end of this range, this could have an evolutionary impact on the host galaxy, suggesting a possible link between the black holes behavior and how its host galaxy evolves.In order to draw definitive conclusions, we will need higher-resolution observations that can determine the total size and extent of these outflows. For that, we may need to wait for 2023, when a proposed X-ray spectrometer that might fit the bill, Arcus, may be launched.CitationAshkbiz Danehkar et al 2018 ApJ 853 165. doi:10.3847/1538-4357/aaa427
Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse, Mars
Rodriguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairen, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S.
2011-01-01
Higher outflow channel dissection in the martian region of southern circum-Chryse appears to have extended from the Late Hesperian to the Middle Amazonian Epoch. These outflow channels were excavated within the upper 1. km of the cryolithosphere, where no liquid water is expected to have existed during these geologic epochs. In accordance with previous work, our examination of outflow channel floor morphologies suggests the upper crust excavated by the studied outflow channels consisted of a thin (a few tens of meters) layer of dry geologic materials overlying an indurated zone that extends to the bases of the investigated outflow channels (1. km in depth). We find that the floors of these outflow channels contain widespread secondary chaotic terrains (i.e., chaotic terrains produced by the destruction of channel-floor materials). These chaotic terrains occur within the full range of outflow channel dissection and tend to form clusters. Our examination of the geology of these chaotic terrains suggests that their formation did not result in the generation of floods. Nevertheless, despite their much smaller dimensions, these chaotic terrains are comprised of the same basic morphologic elements (e.g., mesas, knobs, and smooth deposits within scarp-bound depressions) as those located in the initiation zones of the outflow channels, which suggests that their formation must have involved the release of ground volatiles. We propose that these chaotic terrains developed not catastrophically but gradually and during multiple episodes of nested surface collapse. In order to explain the formation of secondary chaotic terrains within zones of outflow channel dissection, we propose that the regional Martian cryolithosphere contained widespread lenses of volatiles in liquid form. In this model, channel floor collapse and secondary chaotic terrain formation would have taken place as a consequence of instabilities arising during their exhumation by outflow channel dissection. Within relatively warm upper crustal materials in volcanic settings, or within highly saline crustal materials where cryopegs developed, lenses of volatiles in liquid form within the cryolithosphere could have formed, and/or remained stable.In addition, our numerical simulations suggest that low thermal conductivity, dry fine-grained porous geologic materials just a few tens of meters in thickness (e.g., dunes, sand sheets, some types of regolith materials), could have produced high thermal anomalies resulting in subsurface melting. The existence of a global layer of dry geologic materials overlying the cryolithosphere would suggest that widespread lenses of fluids existed (and may still exist) at shallow depths wherever these materials are fine-grained and porous. The surface ages of the investigated outflow channels and chaotic terrains span a full 500 to 700. Myr. Chaotic terrains similar in dimensions and morphology to secondary chaotic terrains are not observed conspicuously throughout the surface of Mars, suggesting that intra-cryolithospheric fluid lenses may form relatively stable systems. The existence of widespread groundwater lenses at shallow depths of burial has tremendous implications for exobiological studies and future human exploration. We find that the clear geomorphologic anomaly that the chaotic terrains and outflow channels of southern Chryse form within the Martian landscape could have been a consequence of large-scale resurfacing resulting from anomalously extensive subsurface melt in this region of the planet produced by high concentrations of salts within the regional upper crust. Crater count statistics reveal that secondary chaotic terrains and the outflow channels within which they occur have overlapping ages, suggesting that the instabilities leading to their formation rapidly dissipated, perhaps as the thickness of the cryolithosphere was reset following the disruption of the upper crustal thermal structure produced during outflow channel ex
Jets from Young Stars in Cygnus-X
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-03-01
How do you spot very young, newly formed stars? One giveaway is the presence of jets and outflows that interact with the stars environments. In a new study, scientists have now discovered an unprecedented number of these outflows in a nearby star-forming region of our galaxy.Young Stars Hard at WorkCO map of the Cygnus-X region of the galactic plane, with the grid showing the UWISH2 coverage and the black triangles showing the positions of the detected outflows. [Makin Froebrich 2018]The birth and evolution of young stars is a dynamic, energetic process. As new stars form, material falls inward from the accretion disks surrounding young stellar objects, or YSOs. This material can power collimated streams of gas and dust that flow out along the stars rotation axes, plowing through the surrounding material. Where the outflows collide with the outside environment, shocks form that can be spotted in near-infrared hydrogen emission.Though weve learned a lot about these outflows, there remain a number of open questions. What factors govern their properties, such as their lengths, luminosities, and orientations? What is the origin of the emission features we see within the jets, known as knots? What roles do the driving sources and the environments play in the behavior and appearance of the jets?A selection of previously unknown outflows discovered as a result of this survey. Click for a closer look. [Makin Froebrich 2018]To answer these questions, we need to build a large, unbiased statistical sample of YSOs from across the galactic plane. Now, a large infrared survey known as the UKIRT Widefield Infrared Survey for H2 (UWISH2) is working toward that goal.Jackpot in Cygnus-XIn a recent publication, Sally Makin and Dirk Froebrich (University of Kent, UK), present results from UWISH2s latest release: a survey segment targeting a 42-square-degree region in the galactic plane known as the Cygnus-X star-forming region.The teams search for shock-excited emission in Cygnus-X yielded spectacular results. They found a treasure trove of outflows a remarkable 572 in total, representing a huge increase over the 107 known previously.Makin and Froebrich then measured properties of the outflows themselves such as length, orientation, and flux as well as properties of the sources that appear to drive them.Pinning Down PropertiesThis low-mass bright-rimmed cloud near IRAS 20294+4255 contains a number of stellar outflows. It may warrant further study as a classical example of triggered star formation. [Makin Froebrich 2018]Of the 572 outflows, the authors found that 27% are one-sided jets and 46% are bipolar. The bipolar outflows are typically 1.5 light-years in total length, and they are frequently asymmetric, with the shorter jet lobe averaging only 70% the length of the longer one. The flux from the two sides of bipolar jets is also often asymmetric: typically one side is brighter by about 50%.Exploring the knots of bright emission within the outflows, the authors found that they are typically closely spaced, suggesting that the material generating them is ejected every 9001,400 years. This rapid production faster than what has been found in YSO outflows in other regions rules out some models of how these knots are produced.Based on the fraction of UWISH2 data analyzed so far, the authors estimate that the entire UWISH2 survey will uncover a total of 2,000 jets and outflows from YSOs. This large, unbiased new sample is finally allowing astronomers to build out the statistics of YSO outflows to better understand them.CitationS. V. Makin and D. Froebrich 2018 ApJS 234 8. doi:10.3847/1538-4365/aa8862
STS-69 Liftoff across the water (landscape)
NASA Technical Reports Server (NTRS)
1995-01-01
The fifth Space Shuttle flight of 1995 thunders aloft from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. On board the Space Shuttle Endeavour, making its ninth trip into space, are a crew of five, an assortment of experiments and two deployable scientific spacecraft: the Wake Shield Facility-2 (WSF-2) and the Spartan-201 free-flyer. The Wake Shield Facility-2 will fly free of the Shuttle for a period of time during the 11-day mission, during which it will generate an ultra-vacuum environment in space in which to grow thin semiconductor films for next- generation advanced electronics. The Spartan-201 free-flyer is a scientific research effort aimed at the investigation of the interaction between the sun and its outflowing wind of charged particles. Commanding the mission is David M. Walker; Kenneth D. Cockrell is the pilot; Michael L. Gernhardt and James H. Newman are mission specialists and James S. Voss is the payload commander. Also scheduled is an extravehicular activity, or spacewalk, by Voss and Gernhardt to rehearse space station activities as well as to evaluate space suit design modifications.
Yue-Chun, Li; Jia-Feng, Lin; Jia-Xuan, Lin
2015-10-01
Electrocardiographic characteristics can be useful in differentiating between right ventricular outflow tract (RVOT) and aortic sinus cusp (ASC) ventricular arrhythmias. Ventricular arrhythmias originating from ASC, however, show preferential conduction to RVOT that may render the algorithms of electrocardiographic characteristics less reliable. Even though there are few reports describing ventricular arrhythmias with ASC origins and endocardial breakout sites of RVOT, progressive dynamic changes in QRS morphology of the ventricular arrhythmias during ablation obtained were rare.This case report describes a patient with symptomatic premature ventricular contractions of left ASC origin presenting an electrocardiogram (ECG) characteristic of right ventricular outflow tract before ablation. Pacing at right ventricular outflow tract reproduced an excellent pace map. When radiofrequency catheter ablation was applied to the right ventricular outflow tract, the QRS morphology of premature ventricular contractions progressively changed from ECG characteristics of right ventricular outflow tract origin to ECG characteristics of left ASC origin.Successful radiofrequency catheter ablation was achieved at the site of the earliest ventricular activation in the left ASC. The distance between the successful ablation site of the left ASC and the site with an excellent pace map of the RVOT was 20 mm.The ndings could be strong evidence for a preferential conduction via the myocardial bers from the ASC origin to the breakout site in the right ventricular outflow tract. This case demonstrates that ventricular arrhythmias with a single origin and exit shift may exhibit QRS morphology changes.
The HST-pNFL program: Mapping the Fluorescent Emission of Galactic Outflows
NASA Astrophysics Data System (ADS)
Heckman, Timothy
2017-08-01
Galactic outflows associated with star formation are believed to play a crucial role in the evolution of galaxies and the IGM. Most of our knowledge about outflows has come from down-the-barrel UV absorption spectroscopy of star-forming galaxies. However, absorption-line data alone provide only indirect information about the radial structure of the gas flows, which introduces large systematic uncertainties in some of the most important quantities, such as the outflow rate, the mass loading factor, and the momentum, metal, and energy fluxes. Recent spectroscopic observations of star-forming galaxies with large (projected physical) apertures have revealed non-resonant (fluorescent) emission in the UV, e.g., FeII* and SiII*, that can be naturally produced by spatially extended emission from the same outflowing material traced in absorption. Encouraged by the most recent observations of FeII* emission by the SDSS-IV/eBOSS survey (Zhu et al. 2015), we propose a pilot program to use narrow-band filter UVIS F280N images to map the extended FeII* 2626 and 2613 fluorescent emission in a carefully-chosen sample of 4 starburst galaxies at z=0.065, and COS G130M to obtain down-the- barrel spectra for SiII absorption and SiII* emission. This HST pilot program can provide unique information about the spatial structure of galactic outflows and can potentially lead to a revolution in our understanding of outflow physics and its impact on galaxies and the IGM.
NASA Astrophysics Data System (ADS)
Xie, Ze-Qiang; Qiu, Ke-Ping
2018-02-01
We present Caltech Submillimeter Observatory CO (2–1) and Spitzer IRAC observations toward IRAS 22506+5944, which is a 104 L ⊙ massive star-forming region. The CO (2–1) maps show an east-west bipolar molecular outflow originating from the 3 mm dust continuum peak. The Spitzer IRAC color-composite image reveals a pair of bow-shaped tips which are prominent in excess 4.5μm emission and are located at the leading fronts of the bipolar outflow, providing compelling evidence for the existence of bow-shocks as the driving agents of the molecular outflow. By comparing our CO (2–1) observations with previously published CO (1–0) data, we find that the CO (2–1)/(1–0) line ratio increases from low (∼5 kms‑1) to moderate (∼8–12 kms‑1) velocities, and then decreases at higher velocities. This is qualitatively consistent with the scenario that the molecular outflow is driven by multiple bow-shocks. We also revisit the position-velocity diagram of the CO (1–0) data, and find two spur structures along the outflow axis, which are further evidence for the presence of multiple jet bowshocks. Finally, power-law fittings to the mass spectrum of the outflow gives power law indexes more consistent with the jet bow-shock model than the wide-angle wind model.
A precessing jet in the NGC2264G outflow
NASA Astrophysics Data System (ADS)
McCoey, Carolyn; Teixeira, P. S.; Fich, M.; Lada, C. J.
2007-05-01
We present new infrared imaging of the NGC 2264 G protostellar outflow region, obtained with the Spitzer Space Telescope. A jet in the red (eastern) outflow lobe is clearly detected in all four IRAC bands and, for the first time, is shown to continuously extend over the entire length of the red outflow lobe, as traced by CO observations. The jet also extends to a deeply embedded Class 0 source, VLA2, confirming previous suggestions that it is the driving source of the outflow. The images show that the easternmost part of the jet exhibits what appears to be multiple changes of direction. We consider two possible explanations for the jet morphology: (i) deflection of the jet off the walls of the outflow lobes as proposed by Fich & Lada (1997) and (ii) precession. The jet structure shown in the IRAC images can be largely, although not entirely, explained by a slowly precessing jet (period 8000 yr) that lies mostly on the plane of the sky. In either case it appears that the observed and inferred changes in the jet direction are sufficient to broaden the NGC 2264 G outflow to an extent comparable to that observed in the CO emission. P. S. T. acknowledges support from the scholarship SFRH/BD/13984/2003 awarded by the Fundaçao para a Ciencia e Tecnologia (Portugal). Both M. F. and C. M. are supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf-Chase, Grace; Arvidsson, Kim; Smutko, Michael, E-mail: gwolfchase@adlerplanetarium.org
We present the results of a narrow-band near-infrared imaging survey for Molecular Hydrogen emission-line Objects (MHOs) toward 26 regions containing high-mass protostellar candidates and massive molecular outflows. We have detected a total of 236 MHOs, 156 of which are new detections, in 22 out of the 26 regions. We use H{sub 2} 2.12 μ m/H{sub 2} 2.25 μ m flux ratios, together with morphology, to separate the signatures of fluorescence associated with photo-dissociation regions (PDRs) from shocks associated with outflows in order to identify the MHOs. PDRs have typical low flux ratios of ∼1.5–3, while the vast majority of MHOsmore » display flux ratios typical of C-type shocks (∼6–20). A few MHOs exhibit flux ratios consistent with expected values for J-type shocks (∼3–4), but these are located in regions that may be contaminated with fluorescent emission. Some previously reported MHOs have low flux ratios, and are likely parts of PDRs rather than shocks indicative of outflows. We identify a total of 36 outflows across the 22 target regions where MHOs were detected. In over half these regions, MHO arrangements and fluorescent structures trace features present in CO outflow maps, suggesting that the CO emission traces a combination of dynamical effects, which may include gas entrained in expanding PDRs as well as bipolar outflows. Where possible, we link MHO complexes to distinct outflows and identify candidate driving sources.« less
Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition
NASA Astrophysics Data System (ADS)
Horton, Patrick; Eaton, David
2017-07-01
Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.
R.V. Nagubadi; D. Zhang
2008-01-01
This paper investigates the determinants of foreign direct investment (FDI) outflows from two major forest product importing countries: the U.S. and Japan. Exchange rate, per capita income, cost of capital, and cost of labour in host countries have significant impacts on the FDI outflows from these two countries. A complementary relationship is found between forest...
George M. Chescheir; François Birgand; Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya
2010-01-01
Nutrient loading in drainage outflow is estimated from measured flows and nutrient concentrations in the drainage water. The loading function is ideally continuous, representing the product of continuously measured outflows and nutrient concentrations in drainage water. However, loading is often estimated as the product of continuously measured outflow and nutrient...
Can Gas Outflows Explain The Strong Lyα Emission Of Lyman Alpha Emitters?
NASA Astrophysics Data System (ADS)
Hashimoto, Takuya; Ouchi, M.; Shimasaku, K.; Nakajima, K.; Ono, Y.; Rauch, M.
2012-05-01
Lyman alpha emitters (LAEs) are galaxies commonly seen at high redshift, probably playing an important role in galaxy evolution as building blocks of massive galaxies. The most interesting feature of LAEs is strong Lyα emission, because Lyα photons produced in a galaxy are expected to be easily absorbed by dust in the ISM before escaping the galaxy due to their resonant nature. Previous studies have suggested that outflow may help their escape thanks to reduced cross sections of outflowing (ie, redshifted) neutral hydrogen atoms. Although the presence of outflows can be examined from the offset of the Lyα emission from the systemic velocity defined by Hα emission, there are only four LAEs with reliable detection of Hα emission. We present the results of Magellan/MMIRS and Keck/NIRSPEC spectroscopic observations of five LAEs at z˜2.2 from our wide-field narrow-band survey with Subaru/Suprime-Cam. We successfully detect Hα emission for five objects. After eliminating an AGN contaminated object, we measure the velocityoffset between Lyα and Hα (Δ v_Lyα) for the remaining four, to find that three have a positive offset, suggesting an outflow. Since three among the four from the the literature also have an outflow, we conclude that ˜75% of LAEs have an outflow, with velocities of 75-280 km/s. We then use these eight LAEs to examine how the Lyα strength defined by Lyα escape fraction (f_esc) and/or Lyα equivalent width (EW(Lyα)) depend on other physical quantities including those derived from SED fitting. Contrary to our expectation, we find that both f_esc and EW(Lyα) decrease with Δ v_Lyα. Thus, although LAEs do have outflow, high outflow velocities are not the primary cause of strong Lyα emission. We also find that the Lyα strength does not depend on E(B-V). However, we find that objects with a clumpier gas distribution may have higher f_esc.
Is there any evidence that ionized outflows quench star formation in type 1 quasars at z < 1?
NASA Astrophysics Data System (ADS)
Balmaverde, B.; Marconi, A.; Brusa, M.; Carniani, S.; Cresci, G.; Lusso, E.; Maiolino, R.; Mannucci, F.; Nagao, T.
2016-01-01
Aims: The aim of this paper is to test the basic model of negative active galactic nuclei (AGN) feedback. According to this model, once the central black hole accretes at the Eddington limit and reaches a certain critical mass, AGN driven outflows blow out gas, suppressing star formation in the host galaxy and self-regulating black hole growth. Methods: We consider a sample of 224 quasars selected from the Sloan Digital Sky Survey (SDSS) at z< 1 observed in the infrared band by the Herschel Space Observatory in point source photometry mode. We evaluate the star formation rate in relation to several outflow signatures traced by the [O III] λ4959, 5007 and [O II] λ3726, 3729 emission lines in about half of the sample with high quality spectra. Results: Most of the quasars show asymmetric and broad wings in [O III], which we interpret as outflow signatures. We separate the quasars in two groups, "weakly" and "strongly" outflowing, using three different criteria. When we compare the mean star formation rate in five redshift bins in the two groups, we find that the star formation rate (SFR) are comparable or slightly larger in the strongly outflowing quasars. We estimate the stellar mass from spectral energy distribution (SED) fitting and the quasars are distributed along the star formation main sequence, although with a large scatter. The scatter from this relation is uncorrelated with respect to the kinematic properties of the outflow. Moreover, for quasars dominated in the infrared by starburst or by AGN emission, we do not find any correlation between the star formation rate and the velocity of the outflow, a trend previously reported in the literature for pure starburst galaxies. Conclusions: We conclude that the basic AGN negative feedback scenario seems not to agree with our results. Although we use a large sample of quasars, we did not find any evidence that the star formation rate is suppressed in the presence of AGN driven outflows on large scale. A possibility is that feedback is effective over much longer timescales than those of single episodes of quasar activity.
Geochemistry and source waters of rock glacier outflow, Colorado Front Range
Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.
2006-01-01
We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.
The WISSH quasars project. I. Powerful ionised outflows in hyper-luminous quasars
NASA Astrophysics Data System (ADS)
Bischetti, M.; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Sani, E.; Marconi, A.; Duras, F.; Zappacosta, L.; Brusa, M.; Comastri, A.; Cresci, G.; Feruglio, C.; Giallongo, E.; La Franca, F.; Mainieri, V.; Mannucci, F.; Martocchia, S.; Ricci, F.; Schneider, R.; Testa, V.; Vignali, C.
2017-02-01
Models and observations suggest that both the power and effects of AGN feedback should be maximised in hyper-luminous (LBol > 1047 erg s-1) quasars, I.e. objects at the brightest end of the AGN luminosity function. In this paper, we present the first results of a multiwavelength observing programme, focusing on a sample of WISE/SDSS selected hyper-luminous (WISSH) broad-line quasars at z ≈ 1.5-5. The WISSH quasars project has been designed to reveal the most energetic AGN-driven outflows, estimate their occurrence at the peak of quasar activity, and extend the study of correlations between outflows and nuclear properties up to poorly investigated, extreme AGN luminosities, I.e. LBol 1047 - 1048 erg s-1. We present near-infrared, long-slit LBT/LUCI1 spectroscopy of five WISSH quasars at z ≈ 2.3 - 3.5, showing prominent [OIII] emission lines with broad (FWHM 1200-2200 km s-1) and skewed profiles. The luminosities of these broad [OIII] wings are the highest measured so far, with L[OIII]broad ≳ 5 × 1044 erg s-1, and reveal the presence of powerful ionised outflows with associated mass outflow rates Ṁ ≳ 1700M⊙ yr-1 and kinetic powers Ėkin ≳ 1045 erg s-1. Although these estimates are affected by large uncertainties because of the use of [OIII] as a tracer of ionised outflows and the very basic outflow model adopted here, these results suggest that in our hyper-luminous targets the AGN is highly efficient at pushing large amounts of ionised gas outwards. Furthermore, the mechanical outflow luminosities measured for WISSH quasars correspond to higher percentages ( 1-3%) of LBol than those derived for AGN with lower LBol. Our targets host very massive (MBH ≳ 2 × 109M⊙) black holes that are still accreting at a high rate (I.e. a factor of 0.4-3 of the Eddington limit). These findings clearly demonstrate that WISSH quasars offer the opportunity to probe the extreme end of both luminosity and supermassive black holes (SMBH) mass functions and revealing powerful ionised outflows that are able to affect the evolution of their host galaxies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.3 Initial declaration requirements for... declared facilities which are engaged in the production of Schedule 1 chemicals for purposes not prohibited...
The Safe Drinking Water Act states that no drinking water facility is reuqired to fluoridate their water, however, any facility fluoridating their water is bound by the Maximum contaminant Level (MCL) of 4 mg/L. A survey of 600 large water utilities was conducted in conjunction w...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.3 Initial declaration requirements for... declared facilities which are engaged in the production of Schedule 1 chemicals for purposes not prohibited...
15 CFR 716.8 - On-site monitoring of Schedule 1 facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false On-site monitoring of Schedule 1 facilities. 716.8 Section 716.8 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...
15 CFR 716.8 - On-site monitoring of Schedule 1 facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false On-site monitoring of Schedule 1 facilities. 716.8 Section 716.8 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...
Status of the nuSTORM Facility and a Possible Extension for Long-Baseline $$\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bross, Alan D.; Liu, Ao; Lagrange, Jean-Baptiste
2015-11-03
Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called “Neo-conventional" muon neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. In this paper we describe the facility and give a detailed description of the neutrino beammore » fluxes that are available and the precision to which these fluxes can be determined. We then present sensitivity plots that indicated how well the facility can perform for short-baseline oscillation searches and show its potential for a neutrino interaction physics program. Finally, we comment on the performance potential of the "Neo-conventional" muon neutrino beam optimized for long- baseline neutrino-oscillation physics.« less
Overview of the Neutrinos from Stored Muons Facility - nuSTORM
Adey, D.; Appleby, R. B.; Bayes, R.; ...
2017-07-19
Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called 'Neo-conventional' muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. Here in this paper we describe the facility and give a detailed description of the neutrino beamsmore » that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Lastly, we comment on the performance potential of a 'Neo-conventional' muon neutrino beam optimized for long-baseline neutrino-oscillation physics.« less
Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy
NASA Technical Reports Server (NTRS)
Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact toroids called Field-Reversed Configurations. As reported earlier, it appears that the existing pulsed-power Shiva Star facility at the Air Force Research Laboratory in Albuquerque, NM can satisfy the heating requirements by means of imploding a thin metal cylinder (called a "liner") surrounding an FRC of the type presently being developed. The proposed next step is an integrated liner-on-plasma experiment in which an FRC would be heated to 10 keV by the imploding liner.
NASA Astrophysics Data System (ADS)
Duarte-Cabral, A.; Chrysostomou, A.; Peretto, N.; Fuller, G. A.; Matthews, B.; Schieven, G.; Davis, G. R.
2012-07-01
Context. Star forming regions may share many characteristics, but the specific interplay between gravity, magnetic fields, large-scale dynamics, and protostellar feedback will have an impact on the star formation history of each region. The importance of feedback from outflows is a particular subject to debate, as we are yet to understand the details of their impact on clouds and star formation. Aims: The Pipe Nebula is a nearby molecular cloud hosting the B59 region as its only active star-forming clump. This paper focuses on the global dynamics of B59, its temperature structure, and its outflowing gas, with the goal of revealing the local and global impact of the protostellar outflows. Methods: Using HARP at the James Clerk Maxwell Telescope, we have mapped the B59 region in the J = 3 → 2 transition of 12CO to study the kinematics and energetics of the outflows, and the same transitions of 13CO and C18O to study the overall dynamics of the ambient cloud, the physical properties of the gas, and the hierarchical structure of the region. Results: The B59 region has a total of ~30 M⊙ of cold and quiescent material, mostly gravitationally bound, with narrow line widths throughout. Such low levels of turbulence in the non-star-forming regions within B59 are indicative of the intrinsic initial conditions of the cloud. On the other hand, close to the protostars the impact of the outflows is observed as a localised increase of both C18O line widths from ~0.3 km s-1 to ~1 km s-1, and 13CO excitation temperatures by ~2-3 K. The impact of the outflows is also evident in the low column density material which shows signs of being shaped by the outflow bow shocks as they pierce their way out of the cloud. Much of this structure is readily apparent in a dendrogram analysis of the cloud and demonstrates that when decomposing clouds using such techniques a careful interpretation of the results is needed. Conclusions: The low mass of B59 together with its intrinsically quiescent gas and small number of protostars, allows the identification of specific regions where the outflows from the embedded sources interact the dense gas. Our study suggests that outflows are an important mechanism for injecting and sustaining supersonic turbulence at sub-parsec size scales. We find that less than half of the outflow energy is deposited as turbulent energy of the gas, however this turbulent energy is sufficient to slow down the collapse of the region.
Interannual variation, decadal trend, and future change in ozone outflow from East Asia
NASA Astrophysics Data System (ADS)
Zhu, Jia; Liao, Hong; Mao, Yuhao; Yang, Yang; Jiang, Hui
2017-03-01
We examine the past and future changes in the O3 outflow from East Asia using a global 3-D chemical transport model, GEOS-Chem. The simulations of Asian O3 outflow for 1986-2006 are driven by the assimilated GEOS-4 meteorological fields, and those for 2000-2050 are driven by the meteorological fields archived by the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 under the IPCC SRES A1B scenario. The evaluation of the model results against measurements shows that the GEOS-Chem model captures the seasonal cycles and interannual variations of tropospheric O3 concentrations fairly well with high correlation coefficients of 0.82-0.93 at four ground-based sites and 0.55-0.88 at two ozonesonde sites where observations are available. The increasing trends in surface-layer O3 concentrations in East Asia over the past 2 decades are captured by the model, although the modeled O3 trends have low biases. Sensitivity studies are conducted to examine the respective impacts of meteorological parameters and emissions on the variations in the outflow flux of O3. When both meteorological parameters and anthropogenic emissions varied from 1986-2006, the simulated Asian O3 outflow fluxes exhibited a statistically insignificant decadal trend; however, they showed large interannual variations (IAVs) with seasonal values of 4-9 % for the absolute percent departure from the mean (APDM) and an annual APDM value of 3.3 %. The sensitivity simulations indicated that the large IAVs in O3 outflow fluxes were mainly caused by variations in the meteorological conditions. The variations in meteorological parameters drove the IAVs in O3 outflow fluxes by altering the O3 concentrations over East Asia and by altering the zonal winds; the latter was identified to be the key factor, since the O3 outflow was highly correlated with zonal winds from 1986-2006. The simulations of the 2000-2050 changes show that the annual outflow flux of O3 will increase by 2.0, 7.9, and 12.2 % owing to climate change alone, emissions change alone, and changes in both climate and emissions, respectively. Therefore, climate change will aggravate the effects of the increases in anthropogenic emissions on future changes in the Asian O3 outflow. Future climate change is predicted to greatly increase the Asian O3 outflow in the spring and summer seasons as a result of the projected increases in zonal winds. The findings from the present study help us to understand the variations in tropospheric O3 in the downwind regions of East Asia on different timescales and have important implications for long-term air quality planning in the regions downwind of China, such as Japan and the US.
Remote magnetic navigation to map and ablate left coronary cusp ventricular tachycardia.
Burkhardt, J David; Saliba, Walid I; Schweikert, Robert A; Cummings, Jennifer; Natale, Andrea
2006-10-01
Premature ventricular contractions (PVCs) and ventricular tachycardia may arise from the coronary cusps. Navigation, mapping, and ablation in the coronary cusps can be challenging. Remote magnetic navigation may offer an alternative to conventional manually operated catheters. We report a case of left coronary cusp ventricular tachycardia ablation using remote magnetic navigation. Right ventricular outflow tract and coronary cusp mapping, and ablation of the left coronary cusp using a remote magnetic navigation and three-dimensional (3-D) mapping system was performed in a 28-year-old male with frequent, symptomatic PVCs and ventricular tachycardia. Successful ablation of left coronary cusp ventricular tachycardia was performed using remote magnetic navigation. Remote magnetic navigation may be used to map and ablate PVCs and ventricular tachycardia originating from the coronary cusps.
Internal cooling circuit for gas turbine bucket
Hyde, Susan Marie; Davis, Richard Mallory
2005-10-25
In a gas turbine bucket having a shank portion and an airfoil portion having leading and trailing edges and pressure and suction sides, an internal cooling circuit, the internal cooling circuit having a serpentine configuration including plural radial outflow passages and plural radial inflow passages, and wherein a coolant inlet passage communicates with a first of the radial outflow passages along the trailing edge, the first radial outflow passage having a plurality of radially extending and radially spaced elongated rib segments extending between and connecting the pressure and suction sides in a middle region of the first passage to prevent ballooning of the pressure and suction sides at the first radial outflow passage.
Tasse, Jordan; Borge, Marc; Pierce, Kenneth; Brems, John
2011-01-01
To describe the safety and efficacy of percutaneous transluminal angioplasty and stent placement in patients presenting with suprahepatic inferior vena cava (IVC) outflow compromise in the early postoperative period following orthotopic liver transplantation. Between October 2002 and April 2009, 3 patients presented with IVC outflow compromise in the first 2 months following orthotopic liver transplantation. All 3 underwent percutaneous transluminal angioplasty and stent placement without complication and showed significant clinical improvement at short and intermediate term follow-up. Percutaneous transluminal angioplasty and Gianturco stent placement is a safe and effective treatment for IVC outflow compromise in the early postoperative period following orthotopic liver transplantation.
Liu, A.; Bross, A.; Neuffer, D.
2015-05-28
This paper describes the strategy for optimizing the magnetic horn for the neutrinos from STORed Muons (nuSTORM) facility. The nuSTORM magnetic horn is the primary collection device for the secondary particles generated by bombarding a solid target with 120 GeV protons. As a consequence of the non-conventional beamline designed for nuSTORM, the requirements on the horn are different from those for a conventional neutrino beamline. At nuSTORM, muons decay while circulating in the storage ring, and the detectors are placed downstream of the production straight so as to be exposed to the neutrinos from muon decay. nuSTORM aims at preciselymore » measuring the neutrino cross sections, and providing a definitive statement about the existence of sterile neutrinos. The nuSTORM horn aims at focusing the pions into a certain phase space so that more muons from pion decay can be accepted by the decay ring. The paper demonstrates a numerical method that was developed to optimize the horn design to gain higher neutrino flux from the circulating muons. A Genetic Algorithm (GA) was applied to the simultaneous optimization of the two objectives in this study. In conclusion, the application of the technique discussed in this paper is not limited to either the nuSTORM facility or muon based facilities, but can be used for other neutrino facilities that use magnetic horns as collection devices.« less
Simulated O VI Doppler dimming measurements of coronal outflow velocities
NASA Technical Reports Server (NTRS)
Strachan, Leonard; Gardner, L. D.; Kohl, John L.
1992-01-01
The possibility of determining O(5+) outflow velocities by using a Doppler dimming analysis of the resonantly scattered intensities of O VI lambda 1031.9 and lambda 1037.6 is addressed. The technique is sensitive to outflow velocities, W, in the range W greater than 30 and less than 250 km/s and can be used for probing regions of the inner solar corona, where significant coronal heating and solar wind acceleration may be occurring. These velocity measurements, when combined with measurements of other plasma parameters (temperatures and densities of ions and electrons) can be used to estimate the energy and mass flux of O(5+). In particular, it may be possible to locate where the flow changes from subsonic to supersonic and to identify source regions for the high and low speed solar wind. The velocity diagnostic technique is discussed with emphasis placed on the requirements needed for accurate outflow velocity determinations. Model determinations of outflow velocities based on simulated Doppler observations are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, J. A.; Verth, G.; Fedun, V.
We investigate the long-term evolution of an initially buoyant magnetic flux tube emerging into a gravitationally stratified coronal hole environment and report on the resulting oscillations and outflows. We perform 2.5-dimensional nonlinear numerical simulations, generalizing the models of McLaughlin et al. and Murray et al. We find that the physical mechanism of oscillatory reconnection naturally generates quasi-periodic vertical outflows, with a transverse/swaying aspect. The vertical outflows consist of both a periodic aspect and evidence of a positively directed flow. The speed of the vertical outflow (20-60 km s{sup -1}) is comparable to those reported in the observational literature. We alsomore » perform a parametric study varying the magnetic strength of the buoyant flux tube and find a range of associated periodicities: 1.75-3.5 minutes. Thus, the mechanism of oscillatory reconnection may provide a physical explanation to some of the high-speed, quasi-periodic, transverse outflows/jets recently reported by a multitude of authors and instruments.« less
Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces
NASA Astrophysics Data System (ADS)
Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.
2014-10-01
A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.
Effects of stellar outflows on interstellar sulfur oxide chemistry
NASA Technical Reports Server (NTRS)
Welch, W. J.; Vogel, S.; Terebey, S.; Dreher, J.; Jackson, J.; Carlstrom, J.
1986-01-01
Interferometer Maps with 2" to 6" resolution of a number of regions with active star formation (Orion A, W49, W51, SGRB2) show that the distribution of the molecule SO is very compact around stellar outflow sources. Both SO and SO2 were studied near three outflows, OrionA/IRc2 and two sources in W49. The two molecules have similar distributions and abundances. More than 95% of the emission comes from regions whose extents are only .05 to .2 pc., being larger around the more energetic sources. Their spectra are broad, 30 km/sec or more, suggesting that the oxide production is associated with the flows. The outflows are identified by water masers and by extended bipolar flows in SiO. Maps in other molecules, such as HCO+ and CS, which have similar collisional excitation requirements, have much greater spatial extent. Thus it appears that the SO and SO2 abundances are truly compact and are closely associated with the outflows.
[Pressure-reducing effect of latanoprost 0.005%].
Albach, C; Wachsmuth, E D; Velte, K; Dekker, P; Robert, Y
1998-05-01
Earlier studies in monkeys have shown that latanoprost 0.005% lowers the IOP by improving the uveoscleral Outflow. We wanted to know if this is also the case in the human eye. We used our new aqueous humor outflow test with 2-nitrophenyl-acetate in 9 healthy human volunteers, mean age 32 +/- 8.3 years. They were measured before and 12 h after receiving one drop of latanoprost 0.005% in one eye, randomly chosen. The ocular Photometer was used to quantify the disappearance of the dye out of the anterior chamber. The half-life time of the dye is shortened after latanoprost 0.005%. It is significantly correlated to the pressure lowering effect of latanoprost 0.005% (r2 = 0.5968). The dye-dilution technique proves that latanoprost 0.005% influences the outflow of the human eye. The better the outflow, the greater the pressure drop in the eye. The experiment nicely shows that photometric quantification of 2-nitrophenyl-acetate is a simple, reliable test for the knowledge of the aqueous humor outflow.
Human Fitting Studies of Cleveland Clinic Continuous-Flow Total Artificial Heart
Karimov, Jamshid H.; Steffen, Robert J.; Byram, Nicole; Sunagawa, Gengo; Horvath, David; Cruz, Vincent; Golding, Leonard A.R.; Fukamachi, Kiyotaka; Moazami, Nader
2015-01-01
Implantation of mechanical circulatory support devices is challenging, especially in patients with a small chest cavity. We evaluated how well the Cleveland Clinic continuous-flow total artificial heart (CFTAH) fit the anatomy of patients about to receive a heart transplant. A mock pump model of the CFTAH was rapid-prototyped using biocompatible materials. The model was brought to the operative table, and the direction, length, and angulation of the inflow/outflow ports and outflow conduits were evaluated after the recipient's ventricles had been resected. Thoracic cavity measurements were based on preoperative computed tomographic data. The CFTAH fit well in all five patients (height, 170 ± 9 cm; weight, 75 ± 24 kg). Body surface area was 1.9 ± 0.3 m2 (range, 1.6-2.1 m2). The required inflow and outflow port orientation of both the left and right housings appeared consistent with the current version of the CFTAH implanted in calves. The left outflow conduit remained straight, but the right outflow direction necessitated a 73 ± 22 degree angulation to prevent potential kinking when crossing over the connected left outflow. These data support the fact that our design achieves the proper anatomical relationship of the CFTAH to a patient's native vessels. PMID:25806613
Zhang, Rui; Cao, Peijuan; Yang, Zhongzhou; Wang, Zhenzhen; Wu, Jiu-Lin; Chen, Yan; Pan, Yi
2015-01-01
Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.
Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics
NASA Astrophysics Data System (ADS)
Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.
2012-05-01
Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.
Poster - Thur Eve - 02: Regulatory oversight of the robotic radiosurgery facilities.
Broda, K
2012-07-01
Following a recent review of the Class II Nuclear Facilities and Prescribed Equipment Regulations and regulatory oversight of particle accelerators, the Canadian Nuclear Safety Commission (CNSC) has changed its policy concerning the regulation of particle accelerators. In November 2011, the CNSC began to exercise its regulatory authority with respect to all particle accelerators operating at a beam energy of 1 (one) MeV or greater. The CNSC already licences and inspects particle accelerators capable of operating at or above 10 MeV. The decision to now include low energy particle accelerators (i.e., those operating at or above 1 MeV) ensures adequate, uniform and consistent regulatory oversight for all Class II accelerators. The CNSC expects these facilities to comply with CNSC requirements by December 2013. Besides conventional linear accelerators of lower energy (6 MeV or below) typically found in cancer clinics, two types of equipment now fall under the CNSC's regulatory oversight as a result of the above change: robotic radiosurgery and tomotherapy equipment and facilities. A number of clinics in Canada already operates these types of equipment and facilities. The safety aspects of radiosurgery equipment differ slightly from those for conventional linear accelerators. This poster aims to present an approach taken by the CNSC to regulate robotic radiosurgery equipment and facilities. The presentation will explain how to meet regulatory requirements of the Class II Nuclear Facilities and Prescribed Equipment Regulations by licensees operating or planning to acquire these types of equipment and facilities. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, J.
Program of work to provide support to the Biological Arms Control Treaty Office (BACTO) of the U.S. Army Medical Research and Material Command (USAMRMC), in the development of Army and U.S. Government negotiation, implementation and compliance policies and preparations regarding potential verification and confidence measures for the 1975 Biological Weapons Convention (BWC) and related biological weapons agreements. Support services provided included the preparation of Army installations and commands for implementation of visits pursuant to the U.S./UK/Russian Trilateral Statement on BW. Support included site assistance visit, development of required facility documentation and briefings, identification of additional facilities potentially subject to access,more » and support to DOD development of guidelines, procedures, documentation, and other materials for the conduct of visits. Specific tasks under this contract included: identification and delineation of `Military Biological Facilities` and related activities at Army installations; development of visit implementation documentation for the Army; assessment of potentially at-risk equities and sensitivities at relevant facilities; facility staff training and preparation; and review and modification of facility inputs to annual BWC Confidence Building Measure Declarations. Also supported the provision of timely and critical technical support to the Joint Staff and OSD in the development of DoD negotiation biological arms control positions.« less
TRACING INFALL AND ROTATION ALONG THE OUTFLOW CAVITY WALLS OF THE L483 PROTOSTELLAR ENVELOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Gigi Y.C.; Lim, Jeremy; Takakuwa, Shigehisa
2016-12-10
Single-dish observations in CS(7–6) reveal emission extending out to thousands of au along the outflow axis of low-mass protostars and having a velocity gradient in the opposite direction to that of their outflows. This emission has been attributed to dense and warm gas flowing outward along the walls of bipolar outflow cavities. Here, we present combined single-dish and interferometric CS(7–6) maps for the low-mass protostar L483, revealing a newly discovered compact central component (radius ≲800 au) and previously unknown features in its extended component (visible out to ∼4000 au). The velocity gradient and skewed (toward the redshifted side) brightness distributionmore » of the extended component are detectable out to a radius of ∼2000 au, but not beyond. The compact central component exhibits a velocity gradient in the same direction as, but which is steeper than that of, the extended component. Furthermore, both components exhibit a velocity gradient with an approximately constant magnitude across the outflow axis, apparent in the extended component not just through but also away from the center out to 2000 au. We point out contradictions between our results and model predictions for outflowing gas and propose a new model in which all of the aforementioned emission can be qualitatively explained by gas inflowing along the outflow cavity walls of a rigidly rotating envelope. Our model also can explain the extended CS(7–6) emission observed around other low-mass protostars.« less
The two-way relationship between ionospheric outflow and the ring current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex
It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less
The two-way relationship between ionospheric outflow and the ring current
Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex; ...
2015-06-01
It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less
Data-Model Comparisons of the October, 2002 Event Using the Space Weather Modeling Framework
NASA Astrophysics Data System (ADS)
Welling, D. T.; Chappell, C. R.; Schunk, R. W.; Barakat, A. R.; Eccles, V.; Glocer, A.; Kistler, L. M.; Haaland, S.; Moore, T. E.
2014-12-01
The September 27 - October 4, 2002 time period has been selected by the Geospace Environment Modeling Ionospheric Outflow focus group for community collaborative study because of its high magnetospheric activity and extensive data coverage. The FAST, Polar, and Cluster missions, as well as others, all made key observations during this period, creating a prime event for data-model comparisons. The GEM community has come together to simulate this period using many different methods in order to evaluate models, compare results, and expand our knowledge of ionospheric outflow and its effects on global dynamics. This paper presents Space Weather Modeling Framework (SWMF) simulations of this important period compared against observations from the Polar TIDE, Cluster CODIF and EFW instruments. Density and velocity of oxygen and hydrogen throughout the lobes, plasmasheet, and inner magnetosphere will be the focus of these comparisons. For these simulations, the SWMF couples the multifluid version of BATS-R-US MHD to a variety of ionospheric outflow models of varying complexity. The simplest is outflow arising from constant MHD inner boundary conditions. Two first-principles-based models are also leveraged: the Polar Wind Outflow Model (PWOM), a fluid treatment of outflow dynamics, and the Generalized Polar Wind (GPW) model, which combines fluid and particle-in-cell approaches. Each model is capable of capturing a different set of energization mechanisms, yielding different outflow results. The data-model comparisons will illustrate how well each approach captures reality and which energization mechanisms are most important. This work will also assess our current capability to reproduce ionosphere-magnetosphere mass coupling.
Molecular Outflows: Explosive versus Protostellar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina
2017-02-10
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, butmore » with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.« less
Metal flows of the circumgalactic medium, and the metal budget in galactic haloes
NASA Astrophysics Data System (ADS)
Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Ma, Xiangcheng; Anglés-Alcázar, Daniel; Chan, T. K.; Torrey, Paul; Hafen, Zachary H.; Quataert, Eliot; Murray, Norman
2017-07-01
We present an analysis of the flow of metals through the circumgalactic medium (CGM) in the Feedback in Realistic Environments (FIRE) simulations of galaxy formation, ranging from isolated dwarfs to L* galaxies. We find that nearly all metals produced in high-redshift galaxies are carried out in winds that reach 0.25Rvir. When measured at 0.25Rvir the metallicity of outflows is slightly higher than the interstellar medium (ISM) metallicity. Many metals thus reside in the CGM. Cooling and recycling from this reservoir determine the metal budget in the ISM. The outflowing metal flux decreases by a factor of ˜2-5 between 0.25Rvir and Rvir. Furthermore, outflow metallicity is typically lower at Rvir owing to dilution of the remaining outflow by metal-poor material swept up from the CGM. The inflow metallicity at Rvir is generally low, but outflow and inflow metallicities are similar in the inner halo. At low redshift, massive galaxies no longer generate outflows that reach the CGM, causing a divergence in CGM and ISM metallicity. Dwarf galaxies continue to generate outflows, although they preferentially retain metal ejecta. In all but the least massive galaxy considered, a majority of the metals are within the halo at z = 0. We measure the fraction of metals in CGM, ISM and stars, and quantify the thermal state of CGM metals in each halo. The total amount of metals in the low-redshift CGM of two simulated L* galaxies is consistent with estimates from the Cosmic Origin Spectrograph haloes survey, while for the other two it appears to be lower.
Chnafa, C; Brina, O; Pereira, V M; Steinman, D A
2018-02-01
Computational fluid dynamics simulations of neurovascular diseases are impacted by various modeling assumptions and uncertainties, including outlet boundary conditions. Many studies of intracranial aneurysms, for example, assume zero pressure at all outlets, often the default ("do-nothing") strategy, with no physiological basis. Others divide outflow according to the outlet diameters cubed, nominally based on the more physiological Murray's law but still susceptible to subjective choices about the segmented model extent. Here we demonstrate the limitations and impact of these outflow strategies, against a novel "splitting" method introduced here. With our method, the segmented lumen is split into its constituent bifurcations, where flow divisions are estimated locally using a power law. Together these provide the global outflow rate boundary conditions. The impact of outflow strategy on flow rates was tested for 70 cases of MCA aneurysm with 0D simulations. The impact on hemodynamic indices used for rupture status assessment was tested for 10 cases with 3D simulations. Differences in flow rates among the various strategies were up to 70%, with a non-negligible impact on average and oscillatory wall shear stresses in some cases. Murray-law and splitting methods gave flow rates closest to physiological values reported in the literature; however, only the splitting method was insensitive to arbitrary truncation of the model extent. Cerebrovascular simulations can depend strongly on the outflow strategy. The default zero-pressure method should be avoided in favor of Murray-law or splitting methods, the latter being released as an open-source tool to encourage the standardization of outflow strategies. © 2018 by American Journal of Neuroradiology.
Shining a light on star formation driven outflows: the physical conditions within galactic outflows
NASA Astrophysics Data System (ADS)
Chisholm, John P.; Tremonti, Christina A.; Leitherer, Claus; Wofford, Aida; Chen, Yanmei
2016-01-01
Stellar feedback drives energy and momentum into the surrounding gas, which drives gas and metals out of galaxies through a galactic outflow. Unfortunately, galactic outflows are difficult to observe and characterize because they are extremely diffuse, and contain gas at many different temperatures. Here we present results from a sample of 37 nearby (z < 0.27) star forming galaxies observed in the ultraviolet with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The sample covers over three decades in stellar mass and star formation rate, probing different morphologies such as dwarf irregulars and high-mass merging systems. Using four different UV absorption lines (O I, Si II, Si III and Si IV) that trace a wide range of temperatures (ionization potentials between 13.6 eV and 45 eV), we find shallow correlations between the outflow velocity or the equivalent width of absorption lines with stellar mass or star formation rate. Absorption lines probing different temperature phases have similar centroid velocities and line widths, indicating that they are comoving. Using the equivalent width ratios of the four different transitions, we find the ratios to be consistent with photo-ionized outflows, with moderately strong ionization parameters. By constraining the ionization mechanism we model the ionization fractions for each transition, but find the ionization fractions depend crucially on input model parameters. The shallow velocity scalings imply that low-mass galaxies launch outflows capable of escaping their galactic potential, while higher mass galaxies retain all of their gas, unless they undergo a merger.
Structure and Evolution of an Undular Bore on the High Plains and Its Effects on Migrating Birds.
NASA Astrophysics Data System (ADS)
Locatelli, John D.; Stoelinga, Mark T.; Hobbs, Peter V.; Johnson, Jim
1998-06-01
On 18 September 1992 a series of thunderstorms in Nebraska and eastern Colorado, which formed south of a synoptic-scale cold front and north of a Rocky Mountain lee trough, produced a cold outflow gust front that moved southeastward into Kansas, southeastern Colorado, and Oklahoma around sunset. When this cold outflow reached the vicinity of the lee trough, an undular bore developed on a nocturnally produced stable layer and moved through the range of the Dodge City WSR-88D Doppler radar. The radar data revealed that the undular bore, in the leading portion of a region of northwesterly winds about 45 km wide by 4 km high directly abutting the cold outflow, developed five undulations over the course of 3 h. Contrary to laboratory tank experiments, observations indicated that the solitary waves that composed the bore probably did not form from the enveloping of the head of the cold air outflow by the stable layer and the breaking off of the head of the cold air outflow. The synoptic-scale cold front subsequently intruded on the surface layer of air produced by the cold outflow, but there was no evidence for the formation of another bore.Profiler winds, in the region affected by the cold air outflow and the undular bore, contained signals from nocturnally, southward-migrating birds (most likely waterfowl) that took off in nonfavorable southerly winds and remained aloft for several hours longer than usual, thereby staying ahead of the turbulence associated with the undular bore.
Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.
Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S
2015-03-26
Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).
NASA Astrophysics Data System (ADS)
Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.
2016-12-01
We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disc outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disc viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.
Evidence for Fluorescent Fe II Emission from Extended Low Ionization Outflows in Obscured Quasars
NASA Astrophysics Data System (ADS)
Wang, Tinggui; Ferland, Gary J.; Yang, Chenwei; Wang, Huiyuan; Zhang, Shaohua
2016-06-01
Recent studies have shown that outflows in at least some broad absorption line (BAL) quasars are extended well beyond the putative dusty torus. Such outflows should be detectable in obscured quasars. We present four WISE selected infrared red quasars with very strong and peculiar ultraviolet Fe II emission lines: strong UV Fe II UV arising from transitions to ground/low excitation levels, and very weak Fe II at wavelengths longer than 2800 Å. The spectra of these quasars display strong resonant emission lines, such as C IV, Al III and Mg II but sometimes, a lack of non-resonant lines such as C III], S III and He II. We interpret the Fe II lines as resonantly scattered light from the extended outflows that are viewed nearly edge-on, so that the accretion disk and broad line region are obscured by the dusty torus, while the extended outflows are not. We show that dust free gas exposed to strong radiation longward of 912 Å produces Fe II emission very similar to that observed. The gas is too cool to collisionally excite Fe II lines, accounting for the lack of optical emission. The spectral energy distribution from the UV to the mid-infrared can be modeled as emission from a clumpy dusty torus, with UV emission being reflected/scattered light either by the dusty torus or the outflow. Within this scenario, we estimate a minimum covering factor of the outflows from a few to 20% for the Fe II scattering region, suggesting that Fe II BAL quasars are at a special stage of quasar evolution.
NASA Astrophysics Data System (ADS)
Sahai, R.; Vlemmings, W. H. T.; Nyman, L.-Å.
2017-06-01
Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the cosmic background temperature. Our new CO 1-0 data reveal heretofore unseen distant regions of this ultra-cold outflow, out to ≳120,000 au. We find that in the ultra-cold outflow, the mass-loss rate (\\dot{M}) increases with radius, similar to its expansion velocity (V)—taking V\\propto r, we find \\dot{M}\\propto {r}0.9{--2.2}. The mass in the ultra-cold outflow is ≳ 3.3 M ⊙, and the Boomerang’s main-sequence progenitor mass is ≳ 4 M ⊙. Our high angular resolution (˜ 0\\buildrel{\\prime\\prime}\\over{.} 3) CO J = 3-2 map shows the inner bipolar nebula’s precise, highly collimated shape, and a dense central waist of size (FWHM) ˜1740 au × 275 au. The molecular gas and the dust as seen in scattered light via optical Hubble Space Telescope imaging show a detailed correspondence. The waist shows a compact core in thermal dust emission at 0.87-3.3 mm, which harbors (4{--}7)× {10}-4 M ⊙ of very large (˜millimeter-to-centimeter sized), cold (˜ 20{--}30 K) grains. The central waist (assuming its outer regions to be expanding) and fast bipolar outflow have expansion ages of ≲ 1925 {years} and ≤slant 1050 {years}: the “jet-lag” (I.e., torus age minus the fast-outflow age) in the Boomerang supports models in which the primary star interacts directly with a binary companion. We argue that this interaction resulted in a common-envelope configuration, while the Boomerang’s primary was an RGB or early-AGB star, with the companion finally merging into the primary’s core, and ejecting the primary’s envelope that now forms the ultra-cold outflow.
NASA Astrophysics Data System (ADS)
Bonnema, Matthew; Sikder, Safat; Miao, Yabin; Chen, Xiaodong; Hossain, Faisal; Ara Pervin, Ismat; Mahbubur Rahman, S. M.; Lee, Hyongki
2016-05-01
Growing population and increased demand for water is causing an increase in dam and reservoir construction in developing nations. When rivers cross international boundaries, the downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow needed to make important and proactive water management decisions. This study uses a mass balance approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the importance of each of these hydrologic controls to the accuracy of outflow estimation. The hydrologic controls found to be unimportant could potentially be neglected from similar future studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the annual outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir.
Characterizing Quasar Outflows I: Sample, Spectral Measurements
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.; Stark, M. A.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we subjectively divide these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). We present measurements of the absorption (velocities, velocity widths, equivalent widths), composite spectral profiles of outflows as a function of velocity, as well as measurements of the continuum and CIV, MgII, and FeII emission-line properties. In accompanying posters, we add photometry from the rest-frame X-ray (ROSAT and Chandra), EUV (GALEX), optical (2MASS), and infrared (WISE) bands to complete the SED. The continuum and emission-line measurements from the SDSS spectra and accompanying photometry provides estimates on the black hole masses, bolometric luminsosities, and SED. We consider empirically how these affect the outflow properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
A STUDY OF THE X-RAYED OUTFLOW OF APM 08279+5255 THROUGH PHOTOIONIZATION CODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez, Cristian; Chartas, George, E-mail: saez@astro.psu.edu, E-mail: chartasg@cofc.edu
2011-08-20
We present new results from our study of the X-rayed outflow of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. These results are based on spectral fits to all the long exposure observations of APM 08279+5255 using a new quasar-outflow model. This model is based on CLOUDY{sup 3} CLOUDY is a photoionization code designed to simulate conditions in interstellar matter under a broad range of conditions. We have used version 08.00 of the code last described by Ferland et al. (1998). The atomic database used by CLOUDY is described in Ferguson et al. (2001) and http://www.pa.uky.edu/{approx}verner/atom.html.more » simulations of a near-relativistic quasar outflow. The main conclusions from our multi-epoch spectral re-analysis of Chandra, XMM-Newton, and Suzaku observations of APM 08279+5255 are the following. (1) In every observation, we confirm the presence of two strong features, one at rest-frame energies between 1-4 keV and the other between 7-18 keV. (2) We confirm that the low-energy absorption (1-4 keV rest frame) arises from a low-ionization absorber with log(N{sub H}/cm{sup -2}) {approx} 23 and the high-energy absorption (7-18 keV rest frame) arises from highly ionized (3 {approx}< log {xi} {approx}< 4, where {xi} is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation, we find that the velocities on the outflow could get up to {approx}0.7c. (3) We confirm a correlation between the maximum outflow velocity and the photon index and find possible trends between the maximum outflow velocity and the X-ray luminosity, and between the total column density and the photon index. We performed calculations of the force multipliers of material illuminated by absorbed power laws and a Mathews-Ferland spectral energy distribution (SED). We found that variations of the X-ray and UV parts of the SEDs and the presence of a moderate absorbing shield will produce important changes in the strength of the radiative driving force. These results support the observed trend found between the outflow velocity and X-ray photon index in APM 08279+5255. If this result is confirmed it will imply that radiation pressure is an important mechanism in producing quasar outflows.« less
Thomas, W P; Gaber, C E; Jacobs, G J; Kaplan, P M; Lombard, C W; Moise, N S; Moses, B L
1993-01-01
Recommendations are presented for standardized imaging planes and display conventions for two-dimensional echocardiography in the dog and cat. Three transducer locations ("windows") provide access to consistent imaging planes: the right parasternal location, the left caudal (apical) parasternal location, and the left cranial parasternal location. Recommendations for image display orientations are very similar to those for comparable human cardiac images, with the heart base or cranial aspect of the heart displayed to the examiner's right on the video display. From the right parasternal location, standard views include a long-axis four-chamber view and a long-axis left ventricular outflow view, and short-axis views at the levels of the left ventricular apex, papillary muscles, chordae tendineae, mitral valve, aortic valve, and pulmonary arteries. From the left caudal (apical) location, standard views include long-axis two-chamber and four-chamber views. From the left cranial parasternal location, standard views include a long-axis view of the left ventricular outflow tract and ascending aorta (with variations to image the right atrium and tricuspid valve, and the pulmonary valve and pulmonary artery), and a short-axis view of the aortic root encircled by the right heart. These images are presented by means of idealized line drawings. Adoption of these standards should facilitate consistent performance, recording, teaching, and communicating results of studies obtained by two-dimensional echocardiography.
Ship recycling and marine pollution.
Chang, Yen-Chiang; Wang, Nannan; Durak, Onur Sabri
2010-09-01
This paper discusses the historical background, structure and enforcement of the '2009 Hong Kong International Convention on the Safe and Environmentally Sound Recycling of Ships.' the 2009 Hong Kong Convention establishes control and enforcement instruments related to ship recycling, determining the control rights of Port States and the obligations of Flag States, Parties and recycling facilities under its jurisdiction. The Convention also controls the communication and exchange of information procedures, establishes a reporting system to be used upon the completion of recycling, and outlines an auditing system for detecting violations. The Convention, however, also contains some deficiencies. This paper concludes these deficiencies will eventually influence the final acceptance of this Convention by the international community. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bauer, Fabrice; Jones, Michael; Shiota, Takahiro; Firstenberg, Michael S.; Qin, Jian Xin; Tsujino, Hiroyuki; Kim, Yong Jin; Sitges, Marta; Cardon, Lisa A.; Zetts, Arthur D.;
2002-01-01
OBJECTIVE: The goal of this study was to analyze left ventricular outflow tract systolic acceleration (LVOT(Acc)) during alterations in left ventricular (LV) contractility and LV filling. BACKGROUND: Most indexes described to quantify LV systolic function, such as LV ejection fraction and cardiac output, are dependent on loading conditions. METHODS: In 18 sheep (4 normal, 6 with aortic regurgitation, and 8 with old myocardial infarction), blood flow velocities through the LVOT were recorded using conventional pulsed Doppler. The LVOT(Acc) was calculated as the aortic peak velocity divided by the time to peak flow; LVOT(Acc) was compared with LV maximal elastance (E(m)) acquired by conductance catheter under different loading conditions, including volume and pressure overload during an acute coronary occlusion (n = 10). In addition, a clinically validated lumped-parameter numerical model of the cardiovascular system was used to support our findings. RESULTS: Left ventricular E(m) and LVOT(Acc) decreased during ischemia (1.67 +/- 0.67 mm Hg.ml(-1) before vs. 0.93 +/- 0.41 mm Hg.ml(-1) during acute coronary occlusion [p < 0.05] and 7.9 +/- 3.1 m.s(-2) before vs. 4.4 +/- 1.0 m.s(-2) during coronary occlusion [p < 0.05], respectively). Left ventricular outflow tract systolic acceleration showed a strong linear correlation with LV E(m) (y = 3.84x + 1.87, r = 0.85, p < 0.001). Similar findings were obtained with the numerical modeling, which demonstrated a strong correlation between predicted and actual LV E(m) (predicted = 0.98 [actual] -0.01, r = 0.86). By analysis of variance, there was no statistically significant difference in LVOT(Acc) under different loading conditions. CONCLUSIONS: For a variety of hemodynamic conditions, LVOT(Acc) was linearly related to the LV contractility index LV E(m) and was independent of loading conditions. These findings were consistent with numerical modeling. Thus, this Doppler index may serve as a good noninvasive index of LV contractility.
An elutriation apparatus for assessing settleability of combined sewer overflows (CSOs).
Marsalek, J; Krishnappan, B G; Exall, K; Rochfort, Q; Stephens, R P
2006-01-01
An elutriation apparatus was proposed for testing the settleability of combined sewer outflows (CSOs) and applied to 12 CSO samples. In this apparatus, solids settling is measured under dynamic conditions created by flow through a series of settling chambers of varying diameters and upward flow velocities. Such a procedure reproduces better turbulent settling in CSO tanks than the conventional settling columns, and facilitates testing coagulant additions under dynamic conditions. Among the limitations, one could name the relatively large size of the apparatus and samples (60 L), and inadequate handling of floatables. Settleability results obtained for the elutriation apparatus and a conventional settling column indicate large inter-event variation in CSO settleability. Under such circumstances, settling tanks need to be designed for "average" conditions and, within some limits, the differences in test results produced by various settleability testing apparatuses and procedures may be acceptable. Further development of the elutriation apparatus is under way, focusing on reducing flow velocities in the tubing connecting settling chambers and reducing the number of settling chambers employed. The first measure would reduce the risk of floc breakage in the connecting tubing and the second one would reduce the required sample size.
NASA Astrophysics Data System (ADS)
Liu, Xiaoqin; Francis, Richard; Tobita, Kimimasa; Kim, Andy; Leatherbury, Linda; Lo, Cecilia W.
2013-02-01
Ultrasound biomicroscopy (UBM) is ideally suited for phenotyping fetal mice for congenital heart disease (CHD), as imaging can be carried out noninvasively to provide both hemodynamic and structural information essential for CHD diagnosis. Using the UBM (Vevo 2100; 40Hz) in conjunction with the clinical ultrasound system (Acuson Sequioa C512; 15Hz), we developed a two-step screening protocol to scan thousands fetuses derived from ENU mutagenized pedigrees. A wide spectrum of CHD was detected by the UBM, which were subsequently confirmed with follow-up necropsy and histopathology examination with episcopic fluorescence image capture. CHD observed included outflow anomalies, left/right heart obstructive lesions, septal/valvular defects and cardiac situs anomalies. Meanwhile, various extracardiac defects were found, such as polydactyly, craniofacial defects, exencephaly, omphalocele-cleft palate, most of which were associated with cardiac defects. Our analyses showed the UBM was better at assessing cardiac structure and blood flow profiles, while conventional ultrasound allowed higher throughput low-resolution screening. Our study showed the integration of conventional clinical ultrasound imaging with the UBM for fetal mouse cardiovascular phenotyping can maximize the detection and recovery of CHD mutants.
Multiplicity At Early Stages Of Star Formation, Small Clusters. Observations Overview
NASA Astrophysics Data System (ADS)
Saito, Masao
2017-07-01
The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes covering 10-10^4 AU scale. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. In the presentation, we will focus on angular momentum in dense cores in a filament, molecular outflows from young stars, and Class 0/I binary survey in Lupus as well as overview of our projects. Our binary survey was conducted in ALMA cycle 2 and achieved at 0.2-0.3 arcsec resolution discovering new binary systems in Lupus. At the same time, we obtained EX Lup, EXor type burst source, data in ALMA Cycle 3.
Multiplicity at Early Stages of Star Formation, Small Clusters. Observations Overview
NASA Astrophysics Data System (ADS)
Saito, Masao
2017-06-01
The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes covering 10-10^4 AU scale. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. In the presentation, we will focus on angular momentum in dense cores in a filament, molecular outflows from young stars, and Class 0/I binary survey in Lupus as well as overview of our projects. Our binary survey was conducted in ALMA cycle 2 and achieved at 0.2-0.3 arcsec resolution discovering new binary systems in Lupus. At the same time, we obtained EX Lup, EXor type burst source, data in ALMA Cycle 3.
Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars
Rodriguez, J.A.P.; Sasaki, S.; Kuzmin, R.O.; Dohm, J.M.; Tanaka, K.L.; Miyamoto, H.; Kurita, K.; Komatsu, G.; Fairen, A.G.; Ferris, J.C.
2005-01-01
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration. ?? 2004 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Voss, P. B.; Zaveri, R. A.; Flocke, F. M.; Mao, H.; Hartley, T. P.; Deamicis, P.; Deonandan, I.; Contreras-Jiménez, G.; Martínez-Antonio, O.; Figueroa Estrada, M.; Greenberg, D.; Campos, T. L.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Crounse, J. D.; Wennberg, P. O.; Apel, E.; Madronich, S.; de Foy, B.
2010-08-01
One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18-19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the campaign, the balloon-based trajectories appear to shear the outflow far more uniformly and decouple it from the surface, thus forming a thin but expansive polluted layer over the Gulf of Mexico that is well aligned with the aircraft observations. These results provide critical context for the extensive aircraft measurements made during the 18-19 March MCMA outflow event and may have broader implications for modelling and understanding long-range transport.
Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport
NASA Astrophysics Data System (ADS)
Holo, S.; Kite, E. S.
2017-12-01
Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale required for the delta forming flows to fill the crater. Comparison with the outflow channel dimensions from other craters on Mars provides the potential to both test our hypothesis of contemporaneous lake filling/channel incision and also constrain the hydrologic sources responsible for filling crater lakes.
The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds
NASA Astrophysics Data System (ADS)
Richings, Alexander J.; Faucher-Giguère, Claude-André
2018-03-01
We explore the origin of fast molecular outflows that have been observed in active galactic nuclei (AGNs). Previous numerical studies have shown that it is difficult to create such an outflow by accelerating existing molecular clouds in the host galaxy, as the clouds will be destroyed before they can reach the high velocities that are observed. In this work, we consider an alternative scenario where molecules form in situ within the AGN outflow. We present a series of hydro-chemical simulations of an isotropic AGN wind interacting with a uniform medium. We follow the time-dependent chemistry of 157 species, including 20 molecules, to determine whether molecules can form rapidly enough to produce the observed molecular outflows. We find H2 outflow rates up to 140 M_{⊙} yr^{-1}, which is sensitive to density, AGN luminosity, and metallicity. We compute emission and absorption lines of CO, OH, and warm (a few hundred K) H2 from the simulations in post-processing. The CO-derived outflow rates and OH absorption strengths at solar metallicity agree with observations, although the maximum line-of-sight velocities from the model CO spectra are a factor ≈2 lower than is observed. We derive a CO (1-0) to H2 conversion factor of α _{CO (1-0)} = 0.13 M_{⊙} (K km s^{-1} pc2)^{-1}, 6 times lower than is commonly assumed in observations of such systems. We find strong emission from the mid-infrared lines of H2. The mass of H2 traced by this infrared emission is within a few per cent of the total H2 mass. This H2 emission may be observable by James Webb Space Telescope.
Gregory, Shaun D; Schummy, Emma; Pearcy, Mark; Pauls, Jo P; Tansley, Geoff; Fraser, John F; Timms, Daniel
2015-02-01
Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm(5) until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm(5) ) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm(5) . Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Wind influence on a coastal buoyant outflow
NASA Astrophysics Data System (ADS)
Whitney, Michael M.; Garvine, Richard W.
2005-03-01
This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.
THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupke, David S. N.; Veilleux, Sylvain, E-mail: drupke@gmail.com
2013-05-01
Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], H{alpha}, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of themore » galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (but still high-velocity) flows are also present on scales up to 5 kpc in most systems. The three galaxies in our sample with obscured QSOs host higher velocity outflows than those in the three galaxies with no evidence for an active galactic nucleus. The peak outflow velocity in each of the QSOs is in the range 1450-3350 km s{sup -1}, and the highest velocities (2000-3000 km s{sup -1}) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.« less
NASA Astrophysics Data System (ADS)
Bozem, H.; Fischer, H.; Gurk, C.; Schiller, C. L.; Parchatka, U.; Koenigstedt, R.; Stickler, A.; Martinez, M.; Harder, H.; Kubistin, D.; Williams, J.; Eerdekens, G.; Lelieveld, J.
2014-02-01
Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular that of the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During a measurement flight on 12 October the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized, providing evidence of convective transport. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low ozone air from the boundary layer to the outflow region. The enhanced mixing ratio of ozone in the outflow was mainly of dynamical origin. Entrainment of ozone rich air at the outflow level into the convective outflow accounts for 62% (range: 33-91%) of the observed O3. Ozone is enhanced by only 5-6% by photochemical production in the outflow due to enhanced NO from lightning, based on steady state model calculations, using in-situ observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash-1 (range: 9.89 × 1026-9.82 × 1028 molecules O3 flash-1), which is at the upper limit of the range of the values reported previously.
MASS OUTFLOW AND CHROMOSPHERIC ACTIVITY OF RED GIANT STARS IN GLOBULAR CLUSTERS. II. M13 AND M92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meszaros, Sz.; Dupree, A. K.; Szalai, T.
High-resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in H{alpha} and Ca II K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in H{alpha} generally appears in stars with T {sub eff} {approx}< 4500 K and log L/L {sub sun}{approx}> 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for H{alpha} revealsmore » the onset of chromospheric expansion in stars more luminous than log (L/L {sub sun}) {approx} 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in H{alpha} most probably due to decreased T {sub eff} and changing atmospheric structure. The Ca II K{sub 3} outflow velocities are larger than shown by H{alpha} at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in H{alpha} than RGB objects. While the H{alpha} velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92, shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the 'second-parameter' effect.« less
How stellar feedback simultaneously regulates star formation and drives outflows
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Hopkins, Philip F.
2017-02-01
We present an analytic model for how momentum deposition from stellar feedback simultaneously regulates star formation and drives outflows in a turbulent interstellar medium (ISM). Because the ISM is turbulent, a given patch of ISM exhibits sub-patches with a range of surface densities. The high-density patches are 'pushed' by feedback, thereby driving turbulence and self-regulating local star formation. Sufficiently low-density patches, however, are accelerated to above the escape velocity before the region can self-adjust and are thus vented as outflows. When the gas fraction is ≳ 0.3, the ratio of the turbulent velocity dispersion to the circular velocity is sufficiently high that at any given time, of the order of half of the ISM has surface density less than the critical value and thus can be blown out on a dynamical time. The resulting outflows have a mass-loading factor (η ≡ dot{M}_{out}/M_{star }) that is inversely proportional to the gas fraction times the circular velocity. At low gas fractions, the star formation rate needed for local self-regulation, and corresponding turbulent Mach number, declines rapidly; the ISM is 'smoother', and it is actually more difficult to drive winds with large mass-loading factors. Crucially, our model predicts that stellar-feedback-driven outflows should be suppressed at z ≲ 1 in M⋆ ≳ 1010 M⊙ galaxies. This mechanism allows massive galaxies to exhibit violent outflows at high redshifts and then 'shut down' those outflows at late times, thereby enabling the formation of a smooth, extended thin stellar disc. We provide simple fitting functions for η that should be useful for sub-resolution and semi-analytic models.
Formation of Hydrocarbons in the Outflows from Red Giants
NASA Technical Reports Server (NTRS)
Roberge, Wayne; Kress, Monika; Tielens, Alexander G.
1995-01-01
The formation of hydrocarbons in the oxygen-rich outflows from red giants was studied. The existence of organic molecules in such outflows has been known for several years; however, their surprisingly high abundances has been a mystery since all of the carbon had been thought to be irretrievably locked up in CO, the most strongly bound molecule. CO is the first molecule to form from the atoms present in the star's extended atmosphere, and as strong stellar winds drive a cooling outflow, dust grains condense out. In oxygen-rich outflows, the dust is thought to be composed mainly of silicates and other metal oxides. Perhaps the noble metals can condense out in metallic form, in particular the relatively abundant transition metals iron and nickel. We proposed that perhaps the carbon reservoir held as CO can be accessed through a catalytic process involving the chemisorption of CO and H2 onto grains rich in metallic iron. CO and H2 are the two most abundant molecules in circumstellar outflows, and they both are known to dissociate on transition metal surfaces at elevated temperatures, freeing carbon to form organic molecules such as methane. We believe methane is a precursor molecule to the organics observed in oxygen-rich red giants. We have developed a nonequilibrium numerical model of a surface chemical (catalytic) process. Based on this model, we believe that methane can be formed under the conditions present in circumstellar outflows. Although the methane formation rates are exceptionally low under these conditions, over dynamical timescales, a significant amount of CO can be converted to methane and driven further out in the envelope, explaining the presence of organics there.
NASA Astrophysics Data System (ADS)
Oh, Heeyoung; Pyo, Tae-Soo; Koo, Bon-Chul; Yuk, In-Soo; Kaplan, Kyle F.; Lee, Yong-Hyun; Sokal, Kimberly R.; Mace, Gregory N.; Park, Chan; Lee, Jae-Joon; Park, Byeong-Gon; Hwang, Narae; Kim, Hwihyun; Jaffe, Daniel T.
2018-05-01
We present a high-resolution, near-IR spectroscopic study of multiple outflows in the LkHα 234 star formation region using the Immersion GRating INfrared Spectrometer (IGRINS). Spectral mapping over the blueshifted emission of HH 167 allowed us to distinguish at least three separate, spatially overlapped outflows in H2 and [Fe II] emission. We show that the H2 emission represents not a single jet but rather complex multiple outflows driven by three known embedded sources: MM1, VLA 2, and VLA 3. There is a redshifted H2 outflow at a low velocity, V LSR <+50 km s‑1, with respect to the systemic velocity of V LSR = ‑11.5 km s‑1, that coincides with the H2O masers seen in earlier radio observations 2″ southwest of VLA 2. We found that the previously detected [Fe II] jet with | {V}LSR}| > 100 km s‑1 driven by VLA 3B is also detected in H2 emission and confirm that this jet has a position angle of about 240°. Spectra of the redshifted knots at 14″–65″ northeast of LkHα 234 are presented for the first time. These spectra also provide clues to the existence of multiple outflows. We detected high-velocity (50–120 km s‑1) H2 gas in the multiple outflows around LkHα 234. Since these gases move at speeds well over the dissociation velocity (>40 km s‑1), the emission must originate from the jet itself rather than H2 gas in the ambient medium. Also, position–velocity and excitation diagrams indicate that emission from knot C in HH 167 comes from two different phenomena, shocks and photodissociation.
Momentum-driven Winds from Radiatively Efficient Black Hole Accretion and Their Impact on Galaxies
NASA Astrophysics Data System (ADS)
Brennan, Ryan; Choi, Ena; Somerville, Rachel S.; Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.
2018-06-01
We explore the effect of momentum-driven winds representing radiation-pressure-driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ∼1012.0–1013.4 M ⊙ run with two different feedback models. Our “NoAGN” model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating, and cosmic X-ray background heating from a metagalactic background. Our fiducial “MrAGN” model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows, which result in both “ejective” feedback—the outflows themselves that drive gas out of galaxies—and “preventative” feedback, which suppresses the inflow of new and recycling gas. As much as 80% of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling dominated, with ∼70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas reaccretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has a higher characteristic velocity (500–1000 km s‑1 versus 100–300 km s‑1 for outflowing NoAGN gas) and travels as far as a few megaparsecs. Only ∼10% of ejected material is reaccreted in the MrAGN galaxies.
Did the martian outflow channels mostly form during the Amazonian Period?
NASA Astrophysics Data System (ADS)
Rodriguez, J. Alexis P.; Platz, Thomas; Gulick, Virginia; Baker, Victor R.; Fairén, Alberto G.; Kargel, Jeffrey; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie
2015-09-01
Simud, Tiu, and Ares Valles comprise some of the largest outflow channels on Mars. Their excavation has been attributed variously to (or a combination of) erosion by catastrophic floods, glaciers, and debris flows. Numerous investigations indicate that they formed largely during the Late Hesperian (3.61-3.37 Ga). However, these studies mostly equate the ages of the outflow channel floors to those of the flows that generated mesoscale (several hundred meters to a few kilometers) bedforms within them. To improve the statistical accuracy in the age determinations of these flow events, we have used recently acquired high-resolution image and topographic data to map and date portions of Simud, Tiu and Ares Valles, which are extensively marked by these bedforms. Our results, which remove the statistical effects of older and younger outflow channel floor surfaces on the generation of modeled ages, reveal evidence for major outflow channel discharges occurring during the Early (3.37-1.23 Ga) and Middle (1.23-0.328 Ga) Amazonian, with activity significantly peaking during the Middle Amazonian stages. We also find that during the documented stages of Middle Amazonian discharges, the floor of Tiu Valles underwent widespread collapse, resulting in chaotic terrain formation. In addition, we present evidence showing that following the outflow channel discharges, collapse within northern Simud Valles generated another chaotic terrain. This younger chaos region likely represents the latest stage of large-scale outflow channel resurfacing within the study area. Our findings imply that in southern circum-Chryse the martian hydrosphere experienced large-scale drainage during the Amazonian, which likely led to periodic inundation and sedimentation within the northern plains.
Outflows in the narrow-line region of bright Seyfert galaxies - I. GMOS-IFU data
NASA Astrophysics Data System (ADS)
Freitas, I. C.; Riffel, R. A.; Storchi-Bergmann, T.; Elvis, M.; Robinson, A.; Crenshaw, D. M.; Nagar, N. M.; Lena, D.; Schmitt, H. R.; Kraemer, S. B.
2018-05-01
We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies - Mrk 6, Mrk 79, Mrk 348, Mrk 607, and Mrk 1058 - obtained from observations with the Gemini Multi-Object Spectrograph Integral Field Unit on the Gemini North Telescope. The data cover the inner 3.5 arcsec × 5.0 arcsec - corresponding to physical scales in the range 0.6 × 0.9-1.5 × 2.2 kpc2 - at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300-7100 Å and velocity resolution of ≈90 km s-1. The gas excitation is Seyfert like everywhere but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association with the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centred at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk 348 and Mrk 79, while in Mrk 1058 only the blueshifted part is clearly observed, while in cases of Mrk 6 and Mrk 607, the geometry of the outflow needs further constraints from modelling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.
NASA Astrophysics Data System (ADS)
Tappe, Achim; Forbrich, J.; Martín, S.; Lada, C. J.
2011-05-01
We present Spitzer Space Telescope 5-37 µm spectroscopic mapping observations toward the southeastern lobe of the young protostellar outflow HH 211 (part of IC 348 in Perseus, 260 pc). The terminal shock of the outflow shows a rich atomic and molecular spectrum with emission lines from OH, H2O, HCO+, CO2, H2, HD, [Fe II], [Si II], [Ne II], [S I], and [Cl I]. The spectrum also shows a rising continuum towards 5 µm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v=1-0 fundamental band. This interpretation is confirmed by a strong excess flux observed in the Spitzer IRAC 4-5 µm channel 2 image. We also observed the terminal outflow shock of this lobe with the Submillimeter Array (SMA) and detected pure rotational emission from CO 2-1, HCO+ 3-2, and HCN 3-2. The rotationally excited CO traces the collimated outflow and the terminal shock, whereas the vibrationally excited CO seen with Spitzer follows the continuation of the collimated outflow backbone in the terminal shock. The extremely high critical densities of the CO v=1-0 rovibrational lines indicate terminal shock jet densities larger than 107 cm-3. The unique combination of mid-infrared, submillimeter, and previous near-infrared observations allow us to gain detailed insights into the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help to understand the nature of some of the so-called `green fuzzies’ (Extended Green Objects) identified by their Spitzer IRAC channel 2 excess and association with star-forming regions. They also provide a critical observational test to models of pulsed protostellar jets.
Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan
2013-10-11
Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bally, John; Ginsburg, Adam; Probst, Ron
We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionizationmore » front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.« less
Ultra-fast outflows (aka UFOs) from AGNs and QSOs
NASA Astrophysics Data System (ADS)
Cappi, M.; Tombesi, F.; Giustini, M.
During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.
Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics
NASA Technical Reports Server (NTRS)
Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.
2012-01-01
Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Wang, JunXian; Zheng, Zhen-Ya
Using the Lyα emission line as a tracer of high-redshift, star-forming galaxies, hundreds of Lyα emission line galaxies (LAEs) at z > 5 have been detected. These LAEs are considered to be low-mass young galaxies, critical to the re-ionization of the universe and the metal enrichment of the circumgalactic medium (CGM) and the intergalactic medium (IGM). It is assumed that outflows in LAEs can help both ionizing photons and Lyα photons escape from galaxies. However, we still know little about the outflows in high-redshift LAEs due to observational difficulties, especially at redshift >5. Models of Lyα radiative transfer predict asymmetricmore » Lyα line profiles with broad red wings in LAEs with outflows. Here, we report a z ∼ 5.7 Lyα emission line with a broad red wing extending to >1000 km s{sup –1} relative to the peak of Lyα line, which has been detected in only a couple of z > 5 LAEs until now. If the broad red wing is ascribed to gas outflow instead of active galactic nucleus activity, the outflow velocity could be larger than the escape velocity (∼500 km s{sup –1}) of a typical halo mass of z ∼ 5.7 LAEs, which is consistent with the idea that outflows in LAEs disperse metals to CGM and IGM.« less
Extreme gaseous outflows in radio-loud narrow-line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Komossa, S.; Xu, D. W.; Wagner, A. Y.
2018-07-01
We present four radio-loud narrow-line Seyfert 1 (NLS1) galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km s-1, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km s-1. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [O III] λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [Ne V] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.
Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Komossa, S.; Xu, D. W.; Wagner, A. Y.
2018-04-01
We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.
OUTFLOWS FROM EVOLVED STARS: THE RAPIDLY CHANGING FINGERS OF CRL 618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balick, Bruce; Huarte-Espinosa, Martin; Frank, Adam
2013-07-20
Our ultimate goal is to probe the nature of the collimator of the outflows in the pre-planetary nebula CRL 618. CRL 618 is uniquely suited for this purpose owing to its multiple, bright, and carefully studied finger-shaped outflows east and west of its nucleus. We compare new Hubble Space Telescope images to images in the same filters observed as much as 11 yr ago to uncover large proper motions and surface brightness changes in its multiple finger-shaped outflows. The expansion age of the ensemble of fingers is close to 100 yr. We find strong brightness variations at the fingertips duringmore » the past decade. Deep IR images reveal a multiple ring-like structure of the surrounding medium into which the outflows propagate and interact. Tightly constrained three-dimensional hydrodynamic models link the properties of the fingers to their possible formation histories. We incorporate previously published complementary information to discern whether each of the fingers of CRL 618 are the results of steady, collimated outflows or a brief ejection event that launched a set of bullets about a century ago. Finally, we argue on various physical grounds that fingers of CRL 618 are likely to be the result of a spray of clumps ejected at the nucleus of CRL 618 since any mechanism that form a sustained set of unaligned jets is unprecedented.« less
Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea.
Sclocco, Roberta; Kim, Jieun; Garcia, Ronald G; Sheehan, James D; Beissner, Florian; Bianchi, Anna M; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly
2016-02-01
While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?
NASA Astrophysics Data System (ADS)
Chang, Heon-Young
2001-06-01
In this paper we investigate the properties of advection-dominated accretion flows(ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs) in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.
Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.
1998-01-01
Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.
Northwestern Tharsis Latent Outflow Activity Mars
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Anderson, R. C.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Strom, R. G.; Rudd, L.; Rice, J. W., Jr.; Scott, D. H.
2000-01-01
Previously defined outflow channels, which are indicated by relict landforms similar to those observed on Earth, signify ancient catastrophic flood events on Mars. These conspicuous geomorphic features are some of the most remarkable yet profound discoveries made by geologists to date. These outflow channels, which debouched tremendous volumes of water into topographic lows such as Chryse, Utopia, Elysium, and Hellas Planitiae, may represent the beginning of warmer and wetter climatic periods unlike the present-day cold and dry Mars. In addition to the previously identified outflow channels, observations permitted by the newly acquired Mars Orbiter Laser Altimeter (MOLA) data have revealed a system of gigantic valleys, referred to as the northwestern slope valleys (NSV), that are located to the northwest of a huge shield volcano, Arsia Mons, western hemisphere of Mars. These features generally correspond spatially to gravity lows similar to the easternmost, circum-Chryse outflow channel systems. Geologic investigations of the Tharsis region suggest that the large valley system pre-dates the construction of Arsia Mons and its extensive associated lava flows of mainly Late Hesperian and Amazonian age and coincides stratigraphically with the early development of the circum-Chryse outflow channel systems that debouch into Chryse Planitia. This newly identified system, the NSV, potentially signifies the largest flood event(s) ever recorded for the solar system. Additional information is contained in original extended abstract.
Outflow activities in the young high-mass stellar object G23.44-0.18
NASA Astrophysics Data System (ADS)
Ren, Jeremy Zhiyuan; Liu, Tie; Wu, Yuefang; Li, Lixin
2011-07-01
We present an observational study towards the young high-mass star-forming region G23.44-0.18 using the Submillimeter Array. Two massive, radio-quiet dusty cores MM1 and MM2 are observed in 1.3-mm continuum emission and dense molecular gas tracers including thermal CH3OH, CH3CN, HNCO, SO, and OCS lines. The 12CO (2-1) line reveals a strong bipolar outflow originating from MM2. The outflow consists of a low-velocity component with wide-angle quasi-parabolic shape and a more compact and collimated high-velocity component. The overall geometry resembles the outflow system observed in the low-mass protostar which has a jet-driven fast flow and entrained gas shell. The outflow has a dynamical age of 6 × 103 yr and a mass loss rate ˜10-3 M ⊙ yr-1. A prominent shock emission in the outflow is observed in SO and OCS, and also detected in CH3OH and HNCO. We investigated the chemistry of MM1, MM2 and the shocked region. The dense core MM2 have molecular abundances of three to four times higher than those in MM1. The abundance excess, we suggest, can be a net effect of the stellar evolution and embedded shocks in MM2 that calls for further inspection.
Cosmic ray driven outflows in an ultraluminous galaxy
NASA Astrophysics Data System (ADS)
Fujita, Akimi; Mac Low, Mordecai-Mark
2018-06-01
In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.
Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.
Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl
2009-12-01
Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.
Molecular line study of massive star-forming regions from the Red MSX Source survey
NASA Astrophysics Data System (ADS)
Yu, Naiping; Wang, Jun-Jie
2014-05-01
In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.
Active galactic nucleus outflows in galaxy discs
NASA Astrophysics Data System (ADS)
Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar
2018-05-01
Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.
Catastrophic ice lake collapse in Aram Chaos, Mars
NASA Astrophysics Data System (ADS)
Roda, Manuel; Kleinhans, Maarten G.; Zegers, Tanja E.; Oosthoek, Jelmer H. P.
2014-07-01
Hesperian chaotic terrains have been recognized as the source of outflow channels formed by catastrophic outflows. Four main scenarios have been proposed for the formation of chaotic terrains that involve different amounts of water and single or multiple outflow events. Here, we test these scenarios with morphological and structural analyses of imagery and elevation data for Aram Chaos in conjunction with numerical modeling of the morphological evolution of the catastrophic carving of the outflow valley. The morphological and geological analyses of Aram Chaos suggest large-scale collapse and subsidence (1500 m) of the entire area, which is consistent with a massive expulsion of liquid water from the subsurface in one single event. The combined observations suggest a complex process starting with the outflow of water from two small channels, followed by continuous groundwater sapping and headward erosion and ending with a catastrophic lake rim collapse and carving of the Aram Valley, which is synchronous with the 2.5 Ga stage of the Ares Vallis formation. The water volume and formative time scale required to carve the Aram channels indicate that a single, rapid (maximum tens of days) and catastrophic (flood volume of 9.3 × 104 km3) event carved the outflow channel. We conclude that a sub-ice lake collapse model can best explain the features of the Aram Chaos Valley system as well as the time scale required for its formation.
A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind?
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Li, Zhi-Yun; Codella, Claudio; Ho, Paul T. P.; Podio, Linda; Hirano, Naomi; Shang, Hsien; Turner, Neal J.; Zhang, Qizhou
2018-03-01
HH 212 is a Class 0 protostellar system found to host a “hamburger”-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ∼400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the center along the jet axis at ∼52 au (0.″13) resolution. Here we resolve the compact outflow into a small-scale wide-opening rotating outflow shell and a collimated jet, with the observations in the same S-bearing molecules at ∼16 au (0.″04) resolution. The collimated jet is aligned with the SiO jet, tracing the shock interactions in the jet. The wide-opening outflow shell is seen extending out from the inner disk around the SiO jet and has a width of ∼100 au. It is not only expanding away from the center, but also rotating around the jet axis. The specific angular momentum of the outflow shell is ∼40 au km s‑1. Simple modeling of the observed kinematics suggests that the rotating outflow shell can trace either a disk wind or disk material pushed away by an unseen wind from the inner disk or protostar. We also resolve the disk atmosphere in the same S-bearing molecules, confirming the Keplerian rotation there.
Radio jets clearing the way through galaxies: the view from Hi and molecular gas
NASA Astrophysics Data System (ADS)
Morganti, Raffaella
2015-03-01
Massive gas outflows are considered a key component in the process of galaxy formation and evolution. Because of this, they are the topic of many studies aimed at learning more about their occurrence, location and physical conditions as well as the mechanism(s) at their origin. This contribution presents recent results on two of the best examples of jet-driven outflows traced by cold and molecular gas. Thanks to high-spatial resolution observations, we have been able to locate the region where the outflow occurs. This appears to be coincident with bright radio features and regions where the interaction between radio plasma jet and ISM is known to occur, thus strongly supporting the idea of jet-driven outflows. We have also imaged the distribution of the outflowing gas. The results clearly show the effect that expanding radio jets and lobes have on the ISM. This appears to be in good agreement with what predicted from numerical simulations. Furthermore, the results show that cold gas is associated with these powerful phenomena and can be formed - likely via efficient cooling - even after a strong interaction and fast shocks. The discovery of similar fast outflows of cold gas in weak radio sources is further increasing the relevance that the effect of the radio plasma can have on the surrounding medium and on the host galaxy.
Cosmic Extremes: Probing Energetic Transients with Radio Observations
NASA Astrophysics Data System (ADS)
Denham Alexander, Kate
2018-01-01
With the advent of sensitive facilities like the Karl G. Jansky Very Large Array (VLA) and planning well underway for vastly more powerful wide-field interferometers like the Square Kilometer Array, the study of radio astrophysical transients is poised for dramatic growth. Radio observations provide a unique window into a wide variety of transient events, from gamma-ray bursts (GRBs) to supernovae to tidal disruption events (TDEs) in which a star is torn apart by a supermassive black hole. In particular, GRBs and TDEs have emerged as valuable probes of some of the most extreme physics in the Universe. In these high-energy laboratories, the longer timescale of radio emission allows for extensive followup and characterization of the event energies and the densities of surrounding material. I will present high-cadence broadband radio studies of GRB afterglows and TDEs undertaken with the goal of learning more about their physical properties, the physics underlying the formation and growth of relativistic jets and outflows, and the environments in which these events occur. Our observations confirm that only a small fraction of TDEs produce relativistic jets but reveal low-luminosity, non-relativistic outflows in two nearby TDEs, allowing us to begin constraining the bulk of the TDE population. Our GRB radio observations reveal both intrinsic variability (reverse shocks) and extrinsic variability (interstellar scintillation). The insights derived from these studies will be invaluable for designing and interpreting the results from future radio transient surveys.
Green Ocean Amazon 2014/15 Manaus Pollution Study Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keutsch, Frank N.
This work was part of the larger Green Ocean Amazon 2014/15 (GOAmazon 2014/15) experiment, which extended through the wet and dry seasons from January 2014 through December 2015 and which took place around the urban region of Manaus, Brazil in central Amazonia. This work was conducted as part of this experiment at the main U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground research site “T3” circa 100 km west of Manaus during two intensive operational periods, “IOP1” and “IOP2” (February 1 to March 31, 2014, and August 15 to October 15, 2014, respectively). Funding formore » this work was provided by the National Science Foundation AGS 1321987/1628491. The GoAmazon experiment was designed to enable the study of how aerosols and surface fluxes influence cloud cycles under clean conditions, as well as how aerosol and cloud life cycles, including cloud-aerosol-precipitation interactions, are influenced by pollutant outflow from a tropical megacity. These observations provide a data set vital to constrain tropical rain forest model parameterizations for organic aerosols, cloud and convection schemes, and terrestrial vegetation components and how these are perturbed by pollution. Research objectives specific to this work and the T3 ground site included studies of how outflow of pollution from Manaus modulated the photochemically driven conversion of emitted precursors to aerosol precursors and aerosol.« less
Exploring the engines of molecular outflows
NASA Astrophysics Data System (ADS)
Testi, Leonardo
1995-03-01
Water vapour masers and CO outflows are well known to be associated with the youngest phases of evolution of massive stellar objects. Nevertheless, up to now there is a lack of high resolution multiwavelength study of the regions containing these objects. Using the VLA, the CSO and the TIRGO equipped with the new Near-Infrared (NIR) camera ARNICA, we have begun a systematic study of water maser/CO outflow regions. These new high resolution and high sensitivity data have proved to be very useful in probing the star formation activity and the connection between infrared and radio sources. Here we report the results obtained in a preliminary sub- sample of objects. The NIR data showed that both the maser spots and the large- scale outflows tend to be associated to the most embedded and probably younger sources of the infrared clusters. Infrared emission lines observed with narrow band filters show the presence of jet-like structures in most of the sources observed. Water masers, jet-like and Herbig-Haro-like infrared structures, and CO outflows enable to probe ejection phenomena at all spacial scales ranging from 0.01 to 1 parsec.
New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku
NASA Technical Reports Server (NTRS)
Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.
2011-01-01
From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.
Time series regression and ARIMAX for forecasting currency flow at Bank Indonesia in Sulawesi region
NASA Astrophysics Data System (ADS)
Suharsono, Agus; Suhartono, Masyitha, Aulia; Anuravega, Arum
2015-12-01
The purpose of the study is to forecast the outflow and inflow of currency at Indonesian Central Bank or Bank Indonesia (BI) in Sulawesi Region. The currency outflow and inflow data tend to have a trend pattern which is influenced by calendar variation effects. Therefore, this research focuses to apply some forecasting methods that could handle calendar variation effects, i.e. Time Series Regression (TSR) and ARIMAX models, and compare the forecast accuracy with ARIMA model. The best model is selected based on the lowest of Root Mean Squares Errors (RMSE) at out-sample dataset. The results show that ARIMA is the best model for forecasting the currency outflow and inflow at South Sulawesi. Whereas, the best model for forecasting the currency outflow at Central Sulawesi and Southeast Sulawesi, and for forecasting the currency inflow at South Sulawesi and North Sulawesi is TSR. Additionally, ARIMAX is the best model for forecasting the currency outflow at North Sulawesi. Hence, the results show that more complex models do not neccessary yield more accurate forecast than the simpler one.
THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Dell, C. R.; Ferland, G. J.; Henney, W. J.
Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks aremore » the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.« less
Alignment between Protostellar Outflows and Filamentary Structure
NASA Astrophysics Data System (ADS)
Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Vorobyov, Eduard I.; Tobin, John J.; Pineda, Jaime E.; Offner, Stella S. R.; Lee, Katherine I.; Kristensen, Lars E.; Jørgensen, Jes K.; Goodman, Alyssa A.; Bourke, Tyler L.; Arce, Héctor G.; Plunkett, Adele L.
2017-09-01
We present new Submillimeter Array (SMA) observations of CO(2-1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ˜3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.
Nie, Xuguang; Brown, Christopher B.; Wang, Qin; Jiao, Kai
2011-01-01
Maldevelopment of outflow tract and aortic arch arteries is among the most common forms of human congenital heart diseases. Both Bmp4 and Tbx1 are known to play critical roles during cardiovascular development. Expression of these two genes partially overlaps in pharyngeal arch areas in mouse embryos. In this study, we applied a conditional gene inactivation approach to test the hypothesis that Bmp4 expressed from the Tbx1 expression domain plays a critical role for normal development of outflow tract and pharyngeal arch arteries. We showed that inactivation of Bmp4 from Tbx1-expressing cells leads to the spectrum of deformities resembling the cardiovascular defects observed in human DiGeorge syndrome patients. Inactivation of Bmp4 from the Tbx1 expression domain did not cause patterning defects, but affected remodeling of outflow tract and pharyngeal arch arteries. Our further examination revealed that Bmp4 is required for normal recruitment/differentiation of smooth muscle cells surrounding the PAA4 and survival of outflow tract cushion mesenchymal cells. PMID:21123999
An ultra-relativistic outflow from a neutron star accreting gas from a companion.
Fender, Rob; Wu, Kinwah; Johnston, Helen; Tzioumis, Tasso; Jonker, Peter; Spencer, Ralph; Van Der Klis, Michiel
2004-01-15
Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible for gamma-ray bursts. The physics of these jets, however, remains something of a mystery in that their bulk velocities, compositions and energetics remain poorly determined. Here we report the discovery of an ultra-relativistic outflow from a neutron star accreting gas within a binary stellar system. The velocity of the outflow is comparable to the fastest-moving flows observed from active galactic nuclei, and its strength is modulated by the rate of accretion of material onto the neutron star. Shocks are energized further downstream in the flow, which are themselves moving at mildly relativistic bulk velocities and are the sites of the observed synchrotron emission from the jet. We conclude that the generation of highly relativistic outflows does not require properties that are unique to black holes, such as an event horizon.
The influence of the environment on the propagation of protostellar outflows
NASA Astrophysics Data System (ADS)
Moraghan, Anthony; Smith, Michael D.; Rosen, Alexander
2008-06-01
The properties of bipolar outflows depend on the structure in the environment as well as the nature of the jet. To help distinguish between the two, we investigate here the properties pertaining to the ambient medium. We execute axisymmetric hydrodynamic simulations, injecting continuous atomic jets into molecular media with density gradients (protostellar cores) and density discontinuities (thick swept-up sheets). We determine the distribution of outflowing mass with radial velocity (the mass spectrum) to quantify our approach and to compare to observationally determined values. We uncover a sequence from clump entrainment in the flanks to bow shock sweeping as the density profile steepens. We also find that the dense, highly supersonic outflows remain collimated but can become turbulent after passing through a shell. The mass spectra vary substantially in time, especially at radial speeds exceeding 15 kms-1. The mass spectra also vary according to the conditions: both envelope-type density distributions and the passage through dense sheets generate considerably steeper mass spectra than a uniform medium. The simulations suggest that observed outflows penetrate highly non-uniform media.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... to validate the identity of individuals who enter Department facilities. The data will be entered... draft convention will be discussed September 16-20, 2013, at the 59th session of UNCITRAL Working Group... convention in advance of the meeting of Working Group II. Those who cannot attend but wish to comment are...
Rodríguez, Luis F; Li, Changying; Khanna, Madhu; Spaulding, Aslihan D; Lin, Tao; Eckhoff, Steven R
2010-07-01
An engineering economic model, which is mass balanced and compositionally driven, was developed to compare the conventional corn dry-grind process and the pre-fractionation process called quick germ-quick fiber (QQ). In this model, documented in a companion article, the distillers dried grains with solubles (DDGS) price was linked with its protein and fiber content as well as with the long-term average relationship with the corn price. The detailed economic analysis showed that the QQ plant retrofitted from conventional dry-grind ethanol plant reduces the manufacturing cost of ethanol by 13.5 cent/gallon and has net present value of nearly $4 million greater than the conventional dry-grind plant at an interest rate of 4% in 15years. Ethanol and feedstock price sensitivity analysis showed that the QQ plant gains more profits when ethanol price increases than conventional dry-grind ethanol plant. An optimistic analysis of the QQ process suggests that the greater value of the modified DDGS would provide greater resistance to fluctuations in corn price for QQ facilities. This model can be used to provide decision support for ethanol producers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
From bipolar to quadrupolar - The collimation processes of the Cepheus A outflow
NASA Technical Reports Server (NTRS)
Torrelles, Jose M.; Verdes-Montenegro, Lourdes; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge
1993-01-01
Results of new K-band observations of the (1, 1) and (2, 2) ammonia lines toward Cepheus A are reported. The lines are mapped with approximately 2 arcsec of angular resolution and 0.3 km/s of velocity resolution. A sensitivity of 10 mJy has been achieved. The observations reveal details of the spatial and kinematics structure of the ambient high-density gas. It is suggested that the interstellar high-density gas is diverting and redirecting the outflow in the sense that the quadrupolar structure of the molecular outflow is produced by the interaction with the ammonia condensationss, with Cep A-1 and Cep A-3 splitting in two halves, respectively the blue- and redshifted lobes of an east-west bipolar molecular outflow.
Multi-phase outflows as probes of AGN accretion history
NASA Astrophysics Data System (ADS)
Nardini, Emanuele; Zubovas, Kastytis
2018-05-01
Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.
Plasma Outflows: Known Knowns, Known Unknowns, and The Unknown
NASA Technical Reports Server (NTRS)
Moore, T. E.
2012-01-01
A brief summary is given of i) what we know from observing ionospheric outflows and ii) how outflow parameterizations are being used in global simulations to evaluate their effects on magnetospheric dynamics. Then, a list of unanswered questions and issues to be resolved is given, followed by a description of the known future mission plans expressed in the Heliophysics Roadmap, such as Origin of Near-Earth Plasmas (ONEP), and Ion-Neutral Coupling in the Atmosphere (INCA). Finally, a set of requirements for definitive plasma outflow observations are identified, along with possible methods for fulfilling them in future missions. Since results of the current Heliophysics Decadal Survey are expected soon, it is hoped that future plans can be summarized and discussed without speculation at the GEM 2012 meeting.
Ashrafian, L A; Fomin, D K; Trushin, V I; Trepin, A V
2011-01-01
The experience with dynamic renal scintigraphy has shown its high informative value and safety in evaluating the degree of intrarenal urine outflow disorders. However, failure to make an objective assessment of ureteral patency considerably limits its study. The set of studies, which is given in this paper, is devoted to precisely this, highly urgent, problem. The authors have developed an original procedure for diagnosing impaired urine outflow along the ureters during dynamic renal scintigraphy. The visual and digital characteristics of normal and impaired urine outflow in the supravesical segment are defined. The criteria characterizing severe impairments of renal urine derivation along the ureters are denoted. Risk factors for urine outflow disorders are identified in patients with cancer of the cervix uteri, who receive various treatment modalities.
The Feedback of Star Formation Based on Large-scale Spectroscopic Mapping Technology
NASA Astrophysics Data System (ADS)
Li, H. X.
2017-05-01
Star Formation is a fundamental topic in astrophysics. Although there is a popular model of low-mass star formation, every step of the process is full of physical and chemical complexity. One of the key questions is the dynamical feedback during the process of star formation. The answer of this question will help us to understand the star formation and the evolution of molecular clouds. We have identified outflows and bubbles in the Taurus molecular cloud based on the ˜ 100 deg2 Five College Radio Astronomy Observatory 12CO(1-0) and 13CO(1-0) maps and the Spitzer young stellar object (YSO) catalog. In the main 44 deg2 area of Taurus, we found 55 outflows, of which 31 were previously unknown. We also found 37 bubbles in the entire 100 deg2 area of Taurus, all of which had not been identified before. After visual inspection, we developed an interactive IDL pipeline to confirm the outflows and bubbles. This sample covers a contiguous region with a linear spatial dynamic range of ˜ 1000. Among the 55 outflows, we found that bipolar, monopolar redshifted, and monopolar blueshifted outflows account for 45%, 44%, and 11%, respectively. There are more red lobes than blue ones. The occurrence of more red lobes may result from the fact that Taurus is thin. Red lobes tend to be smaller and younger. The total mass and energy of red lobes are similar to blue lobes on average. There are 3 expanding bubbles and 34 broken bubbles among all the bubbles in Taurus. There are more outflow-driving YSOs in Class I, Flat, and Class II while few outflow-driving YSOs in Class III, which indicates that outflows more likely appear in the earlier stage (Class I) than in the later phase (Class III) of star formation. There are more bubble-driving YSOs of Class II and Class III while there are few bubble-driving YSOs of Class I and Flat, implying that the bubble structures are more likely to occur in the later stage of star formation. The total kinetic energy of the identified outflows is estimated to be ˜ 3.9 × 1045 erg, which is 1% of the cloud turbulent energy. The total kinetic energy of the detected bubbles is estimated to be ˜ 9.2 × 1046 erg, which is 29% of the turbulent energy of Taurus. The energy injection rate from the outflows is ˜ 1.3 × 1033 erg s-1, 0.4-2 times the turbulent dissipation rate of the cloud. The energy injection rate from bubbles is ˜ 6.4 × 1033 erg s-1, 2-10 times the turbulent dissipation rate of the cloud. The gravitational binding energy of the cloud is ˜ 1.5 × 1048 erg, 385 and 16 times the energy of outflows and bubbles, respectively. We conclude that neither outflows nor bubbles can provide sufficient energy to balance the overall gravitational binding energy and the turbulent energy of Taurus. However, in the current epoch, stellar feedback is sufficient to maintain the observed turbulence in Taurus. We studied the methods of spectral data processing for large-scale surveys, which is helpful in developing the data-processing software of FAST (Five-hundred-meter Aperture Spherical radio Telescope).
Research study on multi-KW-DC distribution system
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1975-01-01
A detailed definition of the HVDC test facility and the equipment required to implement the test program are provided. The basic elements of the test facility are illustrated, and consist of: the power source, conventional and digital supervision and control equipment, power distribution harness and simulated loads. The regulated dc power supplies provide steady-state power up to 36 KW at 120 VDC. Power for simulated line faults will be obtained from two banks of 90 ampere-hour lead-acid batteries. The relative merits of conventional and multiplexed power control will be demonstrated by the Supervision and Monitor Unit (SMU) and the Automatically Controlled Electrical Systems (ACES) hardware. The distribution harness is supported by a metal duct which is bonded to all component structures and functions as the system ground plane. The load banks contain passive resistance and reactance loads, solid state power controllers and active pulse width modulated loads. The HVDC test facility is designed to simulate a power distribution system for large aerospace vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adey, D.; Appleby, R. B.; Bayes, R.
Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called 'Neo-conventional' muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. Here in this paper we describe the facility and give a detailed description of the neutrino beamsmore » that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Lastly, we comment on the performance potential of a 'Neo-conventional' muon neutrino beam optimized for long-baseline neutrino-oscillation physics.« less
Indian programme on middle atmosphere - Some results
NASA Astrophysics Data System (ADS)
Mitra, A. P.
An account of the very extensive program on the middle atmosphere carried out in India since 1982 is presented. Three rocket ranges (Thumba, SHAR and Balasore), a high altitude balloon facility at Hyderabad, a lidar at Thumba, a laser heterodyning system at Delhi, a meteor radar in Thumba, a network of UVB and multiwavelength radiometers, and a host of conventional ground based facilities scattered over the entire subcontinent were used. These facilities covered a range of latitudes from 8 deg N to 34 deg N and largely around the same longitude zone of 75 deg E. The nature of the Indian effort is the emphasis on campaign mode operations, knitting special rocket and balloon efforts with more conventional ground based activities around specific themes. Major campaigns carried out included: (1) Indo-Soviet Ozone Intercomparison campaigns in 1983 and 1987, (2) Aerosol campaign (3), Ionization and conductivity campaigns, (4) Equatorial Wave Campaign, (5) Antarctic Ozone Hole campaign in Dakshin Gangotri. A few of the more important findings are outlined.
NASA Astrophysics Data System (ADS)
Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu
2015-12-01
We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d
Identification of specific organic contaminants in different units of a chemical production site.
Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J
2014-07-01
Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process. The chemical composition of the inflow samples showed a very heterogenic composition and strongly varied, reflecting that large scale industrial synthesis is carried out in batches. The outflow contained mainly unspecific chlorinated educts or intermediates of industrial syntheses as well as compounds which are known as typical constituents of municipal wastewaters.
Outflow from a Nocturnal Thunderstorm.
1980-11-01
P AD-A093 796 ILLINOIS STATE WATER SURVEY URBANAF/ .2 OUTFLOW FROM A NOCTURNAL THUNDERSTORM. (U) NOV a0 R W SCOTT NSF-ATHN78-0a865 UNCLASSIFIED SWS...CR-242 ARO-15529.5-6S N I muuuuuuuuuuuu iDA0937 9 6 State Water Survey Division k istitute of METEOROLOGY SECTION 0 uJD AT THE UNIVERSITY OF ILLINOIS...SWS Contract Report 242 / F OUTFLOW FROM A NOCTURNAL THUNDERSTORM Robert W. Scott Meteorology Section Illinois State Water Survey -- DTIC ELECTE CD
The Revolutionary Vertical Lift Technology (RVLT) Project
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2018-01-01
The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.
SAR observations in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Sheres, David
1992-01-01
The Gulf of Mexico (GOM) exhibits a wealth of energetic ocean features; they include the Loop Current with velocities of about 2 m/s and strong shear fronts, mesoscale eddies, double vortices, internal waves, and the outflow of the 'Mighty Mississippi' river. These energetic features can have a strong impact on the economies of the states surrounding the Gulf. Large fisheries, oil and gas production as well as pollution transport are relevant issues. These circulation features in the Gulf are invisible to conventional IR and visible satellite imagery during the Summer months due to cloud cover and uniform surface temperatures. Synthetic Aperture Radar (SAR) imagery of the Gulf does penetrate the cloud cover and shows a rich assembly of features there year-round. Below are preliminary results from GOM SAR imagery taken by SEASAT in 1978 and by the AIRSAR program in 1991.
Tapered Screened Channel PMD for Cryogenic Liquids
NASA Astrophysics Data System (ADS)
Dodge, Franklin T.; Green, Steve T.; Walter, David B.
2004-02-01
If a conventional spacecraft propellant management device (PMD) of the screened channel type were employed with a cryogenic liquid, vapor bubbles generated within the channel by heat transfer could ``dry out'' the channel screens and thereby cause the channels to admit large amounts of vapor from the tank into the liquid outflow. This paper describes a new tapered channel design that passively `pumps' bubbles away from the outlet port and vents them into the tank. A predictive mathematical model of the operating principle is presented and discussed. Scale-model laboratory tests were conducted and the mathematical model agreed well with the measured rates of bubble transport velocity. Finally, an example of the use of the predictive model for a realistic spacecraft application is presented. The model predicts that bubble clearing rates are acceptable even in tanks up to 2 m in length.
NASA Technical Reports Server (NTRS)
Allison, L. J.
1972-01-01
A complete documentation of Numbus 2 High Resolution infrared Radiometer data and ESSA-1 and 3 television photographs is presented for the life-time of Hurricane Inez, 1966. Ten computer produced radiation charts were analyzed in order to delineate the three dimensional cloud structure during the formative, mature and dissipating stages of this tropical cyclone. Time sections were drawn throughout the storm's life cycle to relate the warm core development and upper level outflow of the storm with their respective cloud canopies, as shown by the radiation data. Aerial reconnaissance weather reports, radar photographs and conventional weather analyses were used to complement the satellite data. A computer program was utilized to accept Nimbus 2 HRIR equivalent blackbody temperatures within historical maximum and minimum sea surface temperature limits over the tropical Atlantic Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, J.; Hosakawa, S.; Yoshida, O.
/sup 99m/Tc dimercaptosuccinic acid is a new renal scanning agent that provides a good quality of renal image as a result of preferential cortical accumulation and also makes feasible a quantitative assessment of separate kidney function, correlating well with renal plasma flow obtained from a /sup 131/I hippuran renogram of each kidney. By measuring the dimercaptosuccinic acid uptake, the cortical functioning nephrons can be determined independent of the activity from the urinary outflow tract. Such evaluations may replace the conventional split renal function study in which traumatic procedures, such as cystoscopy and ureteral catheterizations, are required. /sup 99m/Tc dimercaptosuccinic acidmore » scintigraphy causes less discomfort to the patient and can be performed repeatedly and routinely even in children and debilitated geriatric patients.« less
NASA Astrophysics Data System (ADS)
Hatch, Spencer M.; LaBelle, James; Chaston, Christopher C.
2018-01-01
We review the role of Alfvén waves in magnetosphere-ionosphere coupling during geomagnetically active periods, and use three years of high-latitude FAST satellite observations of inertial Alfvén waves (IAWs) together with 55 years of tabulated measurements of the Dst index to answer the following questions: 1) How do global rates of IAW-related energy deposition, electron precipitation, and ion outflow during storm main phase and storm recovery phase compare with global rates during geomagnetically quiet periods? 2) What fraction of net IAW-related energy deposition, electron precipitation, and ion outflow is associated with storm main phase and storm recovery phase; that is, how are these budgets partitioned by storm phase? We find that during the period between October 1996 and November 1999, rates of IAW-related energy deposition, electron precipitation, and ion outflow during geomagnetically quiet periods are increased by factors of 4-5 during storm phases. We also find that ∼62-68% of the net Alfvénic energy deposition, electron precipitation, and ion outflow in the auroral ionosphere occurred during storm main and recovery phases, despite storm phases comprising only 31% of this period. In particular storm main phase, which comprised less than 14% of the three-year period, was associated with roughly a third of the total Alfvénic energy input and ion outflow in the auroral ionosphere. Measures of geomagnetic activity during the IAW study period fall near corresponding 55-year median values, from which we conclude that each storm phase is associated with a fraction of total Alfvénic energy, precipitation, and outflow budgets in the auroral ionosphere that is, in the long term, probably as great or greater than the fraction associated with geomagnetic quiescence for all times except possibly those when geomagnetic activity is protractedly weak, such as solar minimum. These results suggest that the budgets of IAW-related energy deposition, electron precipitation, and ion outflow are roughly equally partitioned by geomagnetic storm phase.
NASA Technical Reports Server (NTRS)
Bey, Isabelle; Jacob, Daniel J.; Logan, Jennifer A.; Yantosca, Robert M.
2003-01-01
We analyze the Asian outflow of CO, ozone, and nitrogen oxides (NOx) to the Pacific in spring by using the GEOS-CHEM global three-dimensional model of tropospheric chemistry and simulating the Pacific Exploratory Mission-West (PEM-West B) aircraft mission in February-March 1994. The GEOS-CHEM model uses assimilated meteorological fields from the NASA Goddard Earth Observing System (GEOS). It reproduces relatively well the main features of tropospheric ozone, CO, and reactive nitrogen species observed in PEM-West B, including latitudinal and vertical gradients of the Asian pollution outflow over the western Pacific although simulated concentrations of CO tend to be too low (possibly because biogenic sources are underestimated). We use CO as a long-lived tracer to diagnose the processes contributing to the outflow. The highest concentrations in the outflow are in the boundary layer (0-2 km), but the strongest outflow fluxes are in the lower free troposphere (2-5 km) and reflect episodic lifting of pollution over central and eastern China ahead of eastward moving cold fronts. This frontal lifting, followed by westerly transport in the lower free troposphere, is the principal process responsible for export of both anthropogenic and biomass burning pollution from Asia. Anthropogenic emissions from Europe and biomass burning emissions from Africa make also major contributions to the Asian outflow over the western Pacific; European sources dominate in the lower troposphere north of 40 degrees N, while African sources are important in the upper troposphere at low latitudes. For the period of PEM-West B (February-March) we estimate that fossil fuel combustion and biomass burning make comparable contributions to the budgets of CO, ozone, and NO, in the Asian outflow. We find that 13% of NO, emitted in Asia is exported as NO, or PAN, a smaller fraction than for the United States because of higher aerosol concentrations that promote heterogeneous conversion of NOx to HNO3. Production and export of ozone from Asia in spring is much greater than from the United States because of the higher photochemical activity.
The near-infrared outflow and cavity of the proto-brown dwarf candidate ISO-Oph 200
NASA Astrophysics Data System (ADS)
Whelan, E. T.; Riaz, B.; Rouzé, B.
2018-03-01
In this Letter a near-infrared integral field study of a proto-brown dwarf candidate is presented. A 0.''5 blue-shifted outflow is detected in both H2 and [Fe II] lines at Vsys = (–35 ± 2) km s-1 and Vsys = (–51 ± 5) km s-1 respectively. In addition, slower ( ±10 km s-1) H2 emission is detected out to <5.''4, in the direction of both the blue and red-shifted outflow lobes but along a different position angle to the more compact faster emission. It is argued that the more compact emission is a jet and the extended H2 emission is tracing a cavity. The source extinction is estimated at Av = 18 ± 1 mag and the outflow extinction at Av = 9 ± 0.4 mag. The H2 outflow temperature is calculated to be 1422 ± 255 K and the electron density of the [Fe II] outflow is measured at 10 000 cm-3. Furthermore, the mass outflow rate is estimated at Ṁout [H2] = 3.8 × 10-10 M⊙ yr-1 and Ṁout[Fe II] = 1 × 10-8 M⊙ yr-1. Ṁout[Fe II] takes a Fe depletion of 88% into account. The depletion is investigated using the ratio of the [Fe II] 1.257 μm and [P II] 1.188 μm lines. Using the Paβ and Brγ lines and a range in stellar mass and radius Ṁacc is calculated to be (3–10) × 10-8 M⊙ yr-/1. Comparing these rates puts the jet efficiency in line with predictions of magneto-centrifugal models of jet launching in low mass protostars. This is a further case of a brown dwarf outflow exhibiting analogous properties to protostellar jets. Based on Observations collected with SINFONI at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 097.C-0732(A).
Kojima, Shu-Ichi; Kojima, Ken; Fujita, Tomoe
2017-03-15
The effect of a 5-HT 3 receptor-selective agonist SR57227A was investigated on the outflow of 5-hydroxytryptamine (5-HT) from isolated muscle layer-free mucosal preparations of guinea-pig colon. The mucosal preparations were incubated in vitro and the outflow of 5-HT from these preparations was determined by high-performance liquid chromatography with electrochemical detection. SR57227A (100μM) produced a tetrodotoxin-resistant and sustained increase in the outflow of 5-HT from the mucosal preparations. The SR57227A-evoked sustained 5-HT outflow was completely inhibited by the 5-HT 3 receptor antagonist ramosetron (1μM). The neuropeptide Y 1 receptor antagonist BIBO3304 (100nM) partially inhibited the SR57227A-evoked sustained 5-HT outflow, but the Y 2 receptor antagonist BIIE0246 (1μM) or the glucagon-like peptide-1 (GLP-1) receptor antagonist exendin-(9-39) (1μM), showed a minimal effect on the SR57227A-evoked sustained 5-HT outflow. In the presence of BIBO3304 (100nM) and exendin-(9-39) (1μM), SR57227A (100μM) failed to produce a sustained increase in the outflow of 5-HT. The Y 1 receptor agonist [Leu 31 , Pro 34 ]-neuropeptide Y (10nM), but not GLP-1-(7-36) amide (100nM), produced a sustained increase in the outflow of 5-HT. We found that 5-HT 3 receptor-triggered 5-HT release from guinea-pig colonic mucosa is mediated by the activation of 5-HT 3 receptors located at endocrine cells (enterochromaffin cells and peptide YY (PYY)-containing endocrine cells). The activation of both Y 1 and GLP-1 receptors appears to be required for the maintenance of 5-HT 3 receptor-triggered 5-HT release. It is therefore considered that 5-HT 3 receptors located at colonic mucosa play a crucial role in paracrine signaling between enterochromaffin cells and PYY-containing endocrine cells. Copyright © 2017 Elsevier B.V. All rights reserved.
High-temperature combustor liner tests in structural component response test facility
NASA Technical Reports Server (NTRS)
Moorhead, Paul E.
1988-01-01
Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.
Nature and characteristics of the flows that carved the Simud and Tiu outflow channels, Mars
Rodriguez, J.A.P.; Tanaka, K.L.; Miyamoto, H.; Sasaki, S.
2006-01-01
Geomorphic and topographic relations of higher and lower levels of dissection within the Simud and Tiu Valles outflow channels on Mars reveal new insights into their formational histories. We find that the water floods that carved the higher channel floors were primarily sourced from Hydaspis Chaos. The floods apparently branched into distributaries downstream that promoted rapid freezing and sublimation of water and limited discharge into the lowlands. In contrast, we suggest that the lower outflow channels were carved by debris flows from Hydraotes Chaos. Surges within individual debris flows possessed variable volatile contents and led to the deposition of smooth deposits marked by low relief longitudinal ridges. Lower outflow channel discharges resulted in widespread deposition within the Simud/Tiu Valles as well as within the northern plains of Mars. Copyright 2006 by the American Geophysical Union.
Pokorney, Sean D; Stone, Neil J; Passman, Rod; Oyer, David; Rigolin, Vera H; Bonow, Robert O
2010-12-01
Patients with obstructive hypertrophic cardiomyopathy who undergo septal myectomy are at risk for developing postoperative atrial fibrillation. Amiodarone is effective in treating this arrhythmia but is associated with multiple adverse effects, often with delayed onset. A novel case is described of a patient who developed type 2 amiodarone-induced hyperthyroidism that presented as recurrence of outflow obstruction after septal myectomy. The patient's symptoms and echocardiographic findings of outflow obstruction resolved substantially with the treatment of the amiodarone-induced hyperthyroidism. Amiodarone-induced hyperthyroidism of delayed onset can be a subtle diagnosis, requiring a high index of suspicion. In conclusion, recognition of this diagnosis in patients with recurrence of outflow obstruction by symptoms and cardiac imaging after septal myectomy may avoid unnecessary repeat surgical intervention. Copyright © 2010 Elsevier Inc. All rights reserved.
Positron annihilation in the nuclear outflows of the Milky Way
NASA Astrophysics Data System (ADS)
Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.
2018-02-01
Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.
Condensation onto grains in the outflows from mass-losing red giants
NASA Technical Reports Server (NTRS)
Jura, M.; Morris, M.
1985-01-01
In the outflows from red giants, grains are formed which are driven by radiation pressure. For the development of a model of the outflows, a detailed understanding of the interaction between the gas and dust is critical. The present investigation is concerned with condensation processes which occur after the grains nucleate near the stars. A physical process considered results from the cooling of the grains as they flow away from the star. Molecules which initially do not condense onto the grains can do so far from the star. It is shown that for some species this effect can be quite important in determining their gas-phase abundances in the outer circumstellar envelope. One of the major motivations of this investigation was provided by the desire to understand the physical conditions and molecular abundances in the outflows from the considered stars.
Disentangling the outflow and protostars in HH 900 in the Carina Nebula
NASA Astrophysics Data System (ADS)
Reiter, Megan; Smith, Nathan; Kiminki, Megan M.; Bally, John; Anderson, Jay
2015-04-01
HH 900 is a peculiar protostellar outflow emerging from a small, tadpole-shaped globule in the Carina Nebula. Previous Hα imaging with Hubble Space Telescope (HST)/Advanced Camera for Surveys showed an ionized outflow with a wide opening angle that is distinct from the highly collimated structures typically seen in protostellar jets. We present new narrowband near-IR [Fe II] images taken with the Wide Field Camera 3 on the HST that reveal a remarkably different structure than Hα. In contrast to the unusual broad Hα outflow, the [Fe II] emission traces a symmetric, collimated bipolar jet with the morphology and kinematics that are more typical of protostellar jets. In addition, new Gemini adaptive optics images reveal near-IR H2 emission coincident with the Hα emission, but not the [Fe II]. Spectra of these three components trace three separate and distinct velocity components: (1) H2 from the slow, entrained molecular gas, (2) Hα from the ionized skin of the accelerating outflow sheath, and (3) [Fe II] from the fast, dense, and collimated protostellar jet itself. Together, these data require a driving source inside the dark globule that remains undetected behind a large column density of material. In contrast, Hα and H2 emission trace the broad outflow of material entrained by the jet, which is irradiated outside the globule. As it get dissociated and ionized, it remains visible for only a short time after it is dragged into the H II region.
Outflow and Infall in Star-forming Region L1221
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Ho, Paul T. P.
2005-10-01
We have mapped the 3.3 mm continuum, CO, HCO+, N2H+, and CS emission around a nearby Class I source, IRAS 22266+6845, in the L1221 cometary dark cloud. L1221 is a complicated star-forming region. It hosts three infrared sources: a close binary consisting of an east source and a west source around the IRAS source position and a southeast source ~45" to the southeast (T. Bourke 2004, private communication). The east source is identified as the IRAS source. Continuum emission is seen around the east and southeast sources, probably tracing the dust around them. No continuum emission is seen toward the west source, probably indicating that there is not much dust there. An east-west molecular outflow is seen in CO, HCO+, and CS originated from around the binary. It is bipolar with an east lobe and a west lobe, both appearing as a wide-opening outflow shell originated from around the binary. It is likely powered by the east source, which shows a southeast extension along the outflow axis in the K' image. A ringlike envelope is seen in N2H+ around the binary surrounding the outflow waist. It is tilted with the major axis perpendicular to the outflow axis. The kinematics is well reproduced by a thin-disk model with both infall and rotation, and a column density peak in a ring. The ringlike envelope is not rotationally supported, as the rotation velocity is smaller than the infall velocity.
The IRS 1 circumstellar disk, and the origin of the jet and CO outflow in B5
NASA Technical Reports Server (NTRS)
Langer, W. D.; Velusamy, T.; Xie, T.; Levin, S. M. (Principal Investigator)
1996-01-01
We report the discovery of the inner edge of the high velocity CO outflow associated with the bipolar jet originating from IRS 1 in Barnard 5 and the first ever resolution of its circumstellar disk in the 2.6 mm dust continuum and C18O. From high spatial resolution observations made with the Owens Valley Millimeter Array we are able to locate the origin of the outflow to within approximately 500 AU on either side of IRS 1 and apparently at the edge of, or possibly within, its circumstellar disk. The orientation of the continuum disk is perpendicular to the highly collimated jet outflow recently seen in optical emission at much farther distances. The disk has been detected in C18O giving a disk mass approximately 0.16 M (solar). Our HCO+ and HCN maps indicate significant chemical differentiation in the circumstellar region on small scales with HCO+ tracing an extended disk of material. The 12CO interferometer maps of the outflow show two conelike features originating at IRS 1, the blue one fanning open to the northeast and the red one to the southwest. The vertices of the cones are on either side of the circumstellar disk and have a projected opening angle of about 90 degrees. The intrinsic opening angle is in the range of 60 degrees-90 degrees which leads to significant interaction between outflow and infall.
NASA Astrophysics Data System (ADS)
Cassanelli, James P.; Head, James W.
2018-05-01
The Reull Vallis outflow channel is a segmented system of fluvial valleys which originates from the volcanic plains of the Hesperia Planum region of Mars. Explanation of the formation of the Reull Vallis outflow channel by canonical catastrophic groundwater release models faces difficulties with generating sufficient hydraulic head, requiring unreasonably high aquifer permeability, and from limited recharge sources. Recent work has proposed that large-scale lava-ice interactions could serve as an alternative mechanism for outflow channel formation on the basis of predictions of regional ice sheet formation in areas that also underwent extensive contemporaneous volcanic resurfacing. Here we assess in detail the potential formation of outflow channels by large-scale lava-ice interactions through an applied case study of the Reull Vallis outflow channel system, selected for its close association with the effusive volcanic plains of the Hesperia Planum region. We first review the geomorphology of the Reull Vallis system to outline criteria that must be met by the proposed formation mechanism. We then assess local and regional lava heating and loading conditions and generate model predictions for the formation of Reull Vallis to test against the outlined geomorphic criteria. We find that successive events of large-scale lava-ice interactions that melt ice deposits, which then undergo re-deposition due to climatic mechanisms, best explains the observed geomorphic criteria, offering improvements over previously proposed formation models, particularly in the ability to supply adequate volumes of water.
NASA Astrophysics Data System (ADS)
Susanti, Ana; Suhartono; Jati Setyadi, Hario; Taruk, Medi; Haviluddin; Pamilih Widagdo, Putut
2018-03-01
Money currency availability in Bank Indonesia can be examined by inflow and outflow of money currency. The objective of this research is to forecast the inflow and outflow of money currency in each Representative Office (RO) of BI in East Java by using a hybrid exponential smoothing based on state space approach and calendar variation model. Hybrid model is expected to generate more accurate forecast. There are two studies that will be discussed in this research. The first studies about hybrid model using simulation data that contain pattern of trends, seasonal and calendar variation. The second studies about the application of a hybrid model for forecasting the inflow and outflow of money currency in each RO of BI in East Java. The first of results indicate that exponential smoothing model can not capture the pattern calendar variation. It results RMSE values 10 times standard deviation of error. The second of results indicate that hybrid model can capture the pattern of trends, seasonal and calendar variation. It results RMSE values approaching the standard deviation of error. In the applied study, the hybrid model give more accurate forecast for five variables : the inflow of money currency in Surabaya, Malang, Jember and outflow of money currency in Surabaya and Kediri. Otherwise, the time series regression model yields better for three variables : outflow of money currency in Malang, Jember and inflow of money currency in Kediri.
Far-ultraviolet Observations of Outflows from Infrared-luminous Galaxies
NASA Astrophysics Data System (ADS)
Leitherer, Claus; Chandar, Rupali; Tremonti, Christy A.; Wofford, Aida; Schaerer, Daniel
2013-08-01
We obtained medium-resolution ultraviolet (UV) spectra between 1150 and 1450 Å of the four UV-bright, infrared-luminous starburst galaxies IRAS F08339+6517, NGC 3256, NGC 6090, and NGC 7552 using the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The selected sightlines toward the starburst nuclei probe the properties of the recently formed massive stars and the physical conditions in the starburst-driven galactic superwinds. Despite being metal-rich and dusty, all four galaxies are strong Lyα emitters with equivalent widths ranging between 2 and 13 Å. The UV spectra show strong P Cygni-type high-ionization features indicative of stellar winds and blueshifted low-ionization lines formed in the interstellar and circumgalactic medium. We detect outflowing gas with bulk velocities of ~400 km s-1 and maximum velocities of almost 900 km s-1. These are among the highest values found in the local universe and comparable to outflow velocities found in luminous Lyman-break galaxies at intermediate and high redshift. The outflow velocities are unlikely to be high enough to cause escape of material from the galactic gravitational potential. However, the winds are significant for the evolution of the galaxies by transporting heavy elements from the starburst nuclei and enriching the galaxy halos. The derived mass outflow rates of ~100 M ⊙ yr-1 are comparable to or even higher than the star formation rates. The outflows can quench star formation and ultimately regulate the starburst as has been suggested for high-redshift galaxies.
Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr
2017-04-20
We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagrammore » dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.« less
AIRES: an Airborne Infra-Red Echelle Spectrometer for SOFIA
NASA Astrophysics Data System (ADS)
Erickson, E. F.; Haas, M. R.; Colgan, S. W. J.; Roellig, T.; Simpson, J. P.; Telesco, C. M.; Pina, R. K.; Young, E. T.; Wolf, J.
1997-12-01
The Stratospheric Observatory for Infrared Astronomy, SOFIA, is a 2.7 meter telescope which is scheduled to begin observations in a Boeing 747 in October 2001. Among other SOFIA science instruments recently selected for development is the facility spectrometer AIRES. AIRES is designed for studies of a broad range of phenomena occuring in the interstellar medium (ISM) which are uniquely enabled by SOFIA. Examples include accretion and outflow in protostars and young stellar objects, the morphology, dynamics, and excitation of neutral and ionized gas at the Galactic center, and the recycling of material to the ISM from evolved stars. Astronomers using AIRES will be able to select any wavelength from 17 to 210 mu m., with corresponding spectral resolving powers ranging from 60,000 to 4000 in less than a minute. This entire wavelength range is important because it contains spectral features, often widely separated in wavelength, which characterize fundamental ISM processes. AIRES will utilize two-dimensional detector arrays and a large echelle grating to achieve spectral imaging with excellent sensitivity and unparalleled angular resolution at these wavelengths. As a facility science instrument, AIRES will provide guest investigators frequent opportunities for far infrared spectroscopic observations when SOFIA begins operations.
Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula.
Hull, Jeffrey E; Balakin, Boris V; Kellerman, Brad M; Wrolstad, David K
2013-07-01
The goal of this research was to compare side-to-side (STS) and end-to-side (ETS) anastomoses in a computer model of the arteriovenous fistula with computational fluid dynamic analysis. A matrix of 17 computer arteriovenous fistula models (SolidWorks, Dassault Systèmes, France) of artery-vein pairs (3-mm-diameter artery + 3-mm-diameter vein and 4-mm-diameter artery +6-mm-diameter vein elliptical anastomoses) in STS, 45° ETS, and 90° ETS configurations with cross-sectional areas (CSAs) of 3.5 to 18.8 mm(2) were evaluated with computational fluid dynamic software (STAR-CCM+; CD-adapco, Melville, NY) in simulations at defined flow rates from 600 to 1200 mL/min and mean arterial pressures of 50 to 140 mm Hg. Models and configurations were evaluated for pressure drop across the anastomosis, arterial inflow, venous outflow, arterial outflow, velocity vector, and wall shear stress (WSS) profile. Pressure drop across the anastomosis was inversely proportional to anastomotic CSA and to venous outflow and was proportional to arterial inflow. Pressure drop was greater in 3 + 3 models than in 4 + 6 STS models; 90° ETS configurations had the lowest pressure drops and were nearly identical, whereas 45° ETS configurations had the highest pressure drops. Venous outflow in the 4 + 6 model in STS configurations, evaluated at 100 mm Hg arterial inflow pressure, was 390, 592, 610, and 886 mL/min in anastomotic CSAs of 3.5, 5.3, 7.1, and 18.8 mm(2), respectively, and was similar in 90° ETS (609 and 908 mL/min) and lower in 45° ETS (534 and 562 mL/min) configurations at CSAs of 5.3 and 18.8 mm(2). The mean increase in venous outflow was 69 mL/min (range, -59 to 134) between 3 + 3 and 4 + 6 models at 100 mm Hg arterial inflow. The most uniform WSS profile occurs in STS anastomoses followed by 45° ETS and then 90° ETS anastomoses. The STS and 90° ETS anastomoses have high venous outflow and a tendency toward reversed arterial outflow. The 45° ETS anastomosis has reduced venous outflow but resists reversed arterial outflow. The STS anastomosis has more uniform WSS characteristics compared with the 45° and 90° ETS anastomoses. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Montegani, F. J.
1974-01-01
Methods of handling one-third-octave band noise data originating from the outdoor full-scale fan noise facility and the engine acoustic facility at the Lewis Research Center are presented. Procedures for standardizing, retrieving, extrapolating, and reporting these data are explained. Computer programs are given which are used to accomplish these and other noise data analysis tasks. This information is useful as background for interpretation of data from these facilities appearing in NASA reports and can aid data exchange by promoting standardization.
Alignment between Protostellar Outflows and Filamentary Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.
2017-09-01
We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mixmore » of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Daeun; Woo, Jong-Hak; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr
Energetic ionized gas outflows driven by active galactic nuclei (AGNs) have been studied as a key phenomenon related to AGN feedback. To probe the kinematics of the gas in the narrow-line region, [O iii] λ 5007 has been utilized in a number of studies showing nonvirial kinematic properties due to AGN outflows. In this paper, we statistically investigate whether the H α emission line is influenced by AGN-driven outflows by measuring the kinematic properties based on the H α line profile and comparing them with those of [O iii]. Using the spatially integrated spectra of ∼37,000 Type 2 AGNs atmore » z < 0.3 selected from the Sloan Digital Sky Survey DR7, we find a nonlinear correlation between H α velocity dispersion and stellar velocity dispersion that reveals the presence of the nongravitational component, especially for AGNs with a wing component in H α . The large H α velocity dispersion and velocity shift of luminous AGNs are clear evidence of AGN outflow impacts on hydrogen gas, while relatively smaller kinematic properties compared to those of [O iii] imply that the observed outflow effect on the H α line is weaker than the case of [O iii].« less
Aqueous outflow - a continuum from trabecular meshwork to episcleral veins
Carreon, Teresia; van der Merwe, Elizabeth; Fellman, Ronald L.; Johnstone, Murray; Bhattacharya, Sanjoy K.
2016-01-01
In glaucoma, lowered intraocular pressure (IOP) confers neuroprotection. Elevated IOP characterizes glaucoma and arises from impaired aqueous humor (AH) outflow. Increased resistance in the trabecular meshwork (TM), a filter-like structure essential to regulate AH outflow, may result in the impaired outflow. Flow through the 360° circumference of TM structures may be non-uniform, divided into high and low flow regions, termed as segmental. After flowing through the TM, AH enters Schlemm’s canal (SC), which expresses both blood and lymphatic markers; AH then passes into collector channel entrances (CCE) along the SC external well. From the CCE, AH enters a deep scleral plexus (DSP) of vessels that typically run parallel to SC. From the DSP, intrascleral collector vessels run radially to the scleral surface to connect with AH containing vessels called aqueous veins to discharge AH to blood-containing episcleral veins. However, the molecular mechanisms that maintain homeostatic properties of endothelial cells along the pathways are not well understood. How these molecular events change during aging and in glaucoma pathology remain unresolved. In this review, we propose mechanistic possibilities to explain the continuum of AH outflow control, which originates at the TM and extends through collector channels to the episcleral veins. PMID:28028002
NASA Astrophysics Data System (ADS)
Grosso, Nicolas
2016-10-01
Ou4 is a giant bipolar outflow with a total length of 1.2 degrees on the sky that was discovered in the optical in the direction of the blister HII region Sh2-129. The distance, the nature, and the driving source of Ou4 are, however, not known. Ou4 is relevant for the study of the eruptive phenomena producing collimated outflows from evolved low-mass binary stars and young, massive stellar systems. Our morpho-kinematics study of the Ou4 south bow-shock has allowed us to predict its expansion proper motion that is directly related to its distance. We propose to image the brightest [O III] emission of this bow-shock with the UVIS channel of the WFC3 in Cycle 24 and 26 in order to determine the distance of this largest known stellar bipolar outflow from its expansion proper motions. This measurement is crucial to determine the true nature of Ou4: either a foreground planetary nebula or a giant bipolar outflow launched 90,000 years ago by HR 8119, the young massive triple system ionising Sh2-129.
Observations of Water Vapor Outflow from NML Cygnus
NASA Astrophysics Data System (ADS)
Zubko, Viktor; Li, Di; Lim, Tanya; Feuchtgruber, Helmut; Harwit, Martin
2004-07-01
We report new observations of the far-infrared and submillimeter water vapor emission of NML Cygnus based on data gathered with the Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite. We compare the emission from NML Cyg to that previously published for VY CMa and W Hya in an attempt to establish the validity of recently proposed models for the outflow from evolved stars. The data obtained support the contention by Ivezić & Elitzur that the atmospheres of evolved stars obey a set of scaling laws in which the optical depth of the outflow is the single most significant scaling parameter, affecting both the radiative transfer and the dynamics of the outflow. Specifically, we provide observations comparing the water vapor emission from NML Cyg, VY CMa, and W Hya and find, to the extent permitted by the quality of our data, that the results are in reasonable agreement with a model developed by Zubko & Elitzur. Using this model we derive a mass loss based on the dust opacities, spectral line fluxes, and outflow velocities of water vapor observed in the atmospheres of these oxygen-rich giants. For VY CMa and NML Cyg, we also obtain an estimate of the stellar mass.
Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows
NASA Astrophysics Data System (ADS)
Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton
2018-01-01
The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.
A green roof experimental site in the Mediterranean climate: the storm water quality issue.
Gnecco, Ilaria; Palla, Anna; Lanza, Luca G; La Barbera, Paolo
2013-01-01
Since 2007, the University of Genoa has been carrying out a monitoring programme to investigate the hydrologic response of green roofs in the Mediterranean climate by installing a green roof experimental site. In order to assess the influence of green roofs on the storm water runoff quality, water chemistry data have been included in the monitoring programme since 2010, providing rainfall and outflow data. For atmospheric source, the bulk deposition is collected to evaluate the role of the overall atmospheric deposition in storm water runoff quality. For subsurface outflow, a maximum of 24 composite samples are taken on an event basis, thus aiming at a full characterization of the outflow hydrograph. Water chemistry data reveal that the pollutant loads associated with green roof outflow is low; in particular, solids and metal concentrations are lower than values generally observed in storm water runoff from traditional rooftops. The concentration values of chemical oxygen demand, total dissolved solids, Fe, Ca and K measured in the subsurface outflow are significantly higher than those observed in the bulk deposition (p < 0.05). With respect to the atmospheric deposition, the green roof behaviour as a sink/source of pollutants is investigated based on both concentration and mass.
X-ray Evidence for Ultra-Fast Outflows in Local AGNs
NASA Astrophysics Data System (ADS)
Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.
2012-08-01
X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.
Did ice streams carve martian outflow channels?
Lucchitta, B.K.; Anderson, D.M.; Shoji, H.
1981-01-01
Outflow channels on Mars1 are long sinuous linear depressions that occur mostly in the equatorial area (??30?? lat.). They differ from small valley networks2 by being larger and arising full born from chaotic terrains. Outflow channels resemble terrestrial stream beds, and their origin has generally been attributed to water3-5 in catastrophic floods6,7 or mudflows8. The catastrophic-flood hypothesis is derived primarily from the morphological similarities of martian outflow channels and features created by the catastrophic Spokane flood that formed the Washington scablands. These similarities have been documented extensively3,6,7, but differences of scale remain a major problemmartian channel features are on the average much larger than their proposed terrestrial analogues. We examine here the problem of channel origin from the perspective of erosional characteristics and the resultant landf orms created by former and present-day ice streams and glaciers on Earth. From morphologic comparisons, an ice-stream origin seems equally well suited to explain the occurrences and form of the outflow channels on Mars, and in contrast with the hydraulic hypothesis, ice streams and ice sheets produce terrestrial features of the same scale as those observed on Mars. ?? 1981 Nature Publishing Group.
Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures
NASA Technical Reports Server (NTRS)
Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)
2000-01-01
We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.
Mine, Takahiko; Murata, Satoru; Yasui, Daisuke; Yokota, Hiroyuki; Tajima, Hiroyuki; Kumita, Shin-ichiro
2016-01-01
We report on a rare case of blunt traumatic hepatic arteriovenous fistula arising from a pseudoaneurysm in a 35-year-old woman. Transarterial embolization was performed with n-butyl-2-cyanoacrylate, under inflow control with loose coil packing within the pseudoaneurysm and outflow control by balloon occlusion of the hepatic vein. A promising therapeutic outcome was achieved without any serious adverse events. Thus, the combination of these techniques to control inflow and outflow was successfully used to treat this rare hepatic vascular injury.
Benetatos, Nikolaos; Scalera, Irene; Isaac, John R; Mirza, Darius F; Muiesan, Paolo
2014-10-01
Hepatic venous outflow reconstruction is of critical significance in pediatric patients undergoing living donor liver transplantation. Accurate knowledge of the anatomical variations is important to obtain appropriate size segmental grafts. The diameter of the hepatic veins and the potential risk of complications at the level of the anastomosis require an adequate primary vascular reconstruction. We describe a venous outflow reconstruction technique, in a living related left lateral lobe graft, with unfavorable hepatic venous anatomy. © 2014 Steunstichting ESOT.
NASA Technical Reports Server (NTRS)
Arav, Nahum
2002-01-01
The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.
Sodium Orthovanadate Effect on Outflow Facility and Intraocular Pressure in Live Monkeys
Tan, James C.H.; Kiland, Julie A.; Gonzalez, Jose M.; Gabelt, B’Ann T.; Peters, Donna M.; Kaufman, Paul L.
2010-01-01
Sodium orthovanadate (Na3VO4) is reported to reduce IOP by affecting aqueous formation, but whether it also affects outflow facility (OF) is unclear. We tested the effect of Na3VO4 on OF and intraocular pressure (IOP) in live cynomolgus monkeys, and on actin and cell adhesion organization in cultured human trabecular meshwork (HTM) cells. Total OF (n = 12) was measured by 2-level constant pressure perfusion of the monkey anterior chamber (AC) before and after exchange with 1 mM Na3VO4 or vehicle in opposite eyes. Topical 1% Na3VO4 or vehicle only was given twice daily (each 2×20 μL drops) for 4 days to opposite eyes (n = 8), and Goldmann IOP was measured before and hourly after treatment for 6 hours on Days 1 and 4. Filamentous actin and vinculin-containing cell adhesions were examined by epifluorescence microscopy after the cells had been incubated with 1 mM Na3VO4 for 24 hours. A) In monkeys, Na3VO4 increased OF by 29.3 ± 8.8% (mean ± s.e.m.) over the perfusion interval when adjusted for baseline and contralateral eye washout (p = 0.01; n = 12). B) Day 1 baseline IOP was 16.2 ± 1.5 mmHg in treated eyes and 15.9 ± 1.3 mmHg in the contralateral control eyes. Following treatment on Day 1, IOP was no different (p>0.05) between treated eyes and control eyes at any time-point or compared to baseline. Day 4 mean IOP averaged over hours 2–6 was 13.5 ± 0.8 mmHg in treated eyes and 16.1 ± 0.2 mmHg in control eyes. Treated eye IOP was lower than its Day 4 baseline (p<0.005), lower than control eyes for the same Day 4 interval (p = 0.009), and lower than the Day 1 baseline (p = 0.0000). Control eye IOP on Day 4 was not significantly different from baseline on Day 1. C) Incubation of HTM cells with 1 mM Na3VO4 for 24 hours caused a loss of actin stress fibers and vinculin-containing adhesions. Cell retraction and separation was also observed in vanadate-treated cultures. Reformation of actin stress fibers, vinculin-containing adhesions and confluent monolayers occurred within 24 hours after Na3VO4-containing culture medium was replaced with Na3VO4-free medium. Ocular administration of Na3VO4 to live monkeys significantly increases OF and reduces IOP. Na3VO4 reversibly disrupts actin and cell adhesion organization and causes retraction and separation of cultured HTM cells. Na3VO4 increases pressure-dependent outflow in live monkeys. Altered actin architecture in the TM may play a part in this increased OF. PMID:20620138
Steam jacket dynamics in underground coal gasification
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas
2017-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.
NASA Astrophysics Data System (ADS)
Chang, Shih-Yu; Lee, Chung-Te; Chou, Charles C.-K.; Liu, Shaw-Chen; Wen, Tian-Xue
The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas-aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl -, NO 2-, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m -3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.
Harding, T W
1989-05-27
A new European convention creates a mechanism for the prevention of torture and inhuman or degrading treatments of detained people through visits by outside, independent teams with unlimited access to places of detention. The convention has important implications for the medical profession: firstly, visits to psychiatric hospitals will be included and, in particular, to secure facilities, where the risk of human rights abuses is well established; and, secondly, the adequacy and ethics of medical care in prisons will be a key issue in assessing the protection of prisoners' human rights. The convention should be welcomed by the medical profession as a stimulus to the improvement of medical care for detained people.
Hurst, C. J.
1991-01-01
A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatment process. For this purpose, the conventional treatment process was defined as an operation that included coagulation followed by sedimentation, filtration, and disinfection. Also assessed was the stepwise efficiency of the conventional treatment process, as practised at full-scale facilities, for removing indigenous viruses from naturally occurring freshwaters. A list was compiled of statistical correlations relating to the occurrence of indigenous viruses in water. PMID:1647273
A young bipolar outflow from IRAS 15398-3359
NASA Astrophysics Data System (ADS)
Bjerkeli, P.; Jørgensen, J. K.; Brinch, C.
2016-03-01
Context. Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry as well as the kinematical information, allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. Aims: We aim to determine the spatial distribution of different species that are of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim to determine the nature of the infalling and outflowing gas in the system. We also aim to determine the physical properties of the outflow. Methods: Maps from the Submillimeter Array (SMA) reveal the spatial distribution of the gaseous emission towards IRAS 15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. Results: CO, HCO+, and N2H+ are detected and shown to trace the motions of the outflow. For CO, the circumstellar envelope and the surrounding cloud also have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps because of the competing reaction between CO and H3+ in the densest regions as well as the destruction of N2H+ by CO. N2D+ is detected in a ridge south-west of the protostellar condensation and is not associated with the outflow. The morphology and kinematics of the CO emission suggests that the source is younger than ~1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy, and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.
Role of hyaluronan chain length in buffering interstitial flow across synovium in rabbits
Coleman, P J; Scott, D; Mason, R M; Levick, J R
2000-01-01
Synovial fluid drains out of joints through an interstitial pathway. Hyaluronan, the major polysaccharide of synovial fluid, attenuates this fluid drainage; it creates a graded opposition to outflow that increases with pressure (outflow ‘buffering’). This has been attributed to size-related molecular reflection at the interstitium-fluid interface. Chain length is reduced in inflammatory arthritis. We therefore investigated the dependence of outflow buffering on hyaluronan chain length.Hyaluronan molecules of mean molecular mass ≈2200, 530, 300 and 90 kDa and concentration 3.6 mg ml−1 were infused into the knees of anaesthetized rabbits, with Ringer solution as control in the contralateral joint. Trans-synovial drainage rate was recorded at known joint pressures. Pressure was raised in steps every 30–60 min (range 2–24 cmH2O).With hyaluronan-90 and hyaluronan-300 the fluid drainage rate was reduced relative to Ringer solution (P < 0.001, ANOVA) but increased steeply with pressure. The opposition to outflow, defined as the pressure required to drive unit outflow, did not increase with pressure, i.e. there was no outflow buffering.With hyaluronan-530 and hyaluronan-2000 the fluid drainage rate became relatively insensitive to pressure, causing a near plateau of flow. Opposition to outflow increased markedly with pressure, by up to 3.3 times over the explored pressures.Hyaluronan concentration in the joint cavity increased over the drainage period, indicating partial reflection of hyaluronan by synovial interstitium. Reflected fractions were 0.12, 0.33, 0.25 and 0.79 for hyaluronan-90, -300, -530 and -2200, respectively.Thus the flow-buffering effect of hyaluronan depended on chain length, and shortening the chains reduced the degree of molecular reflection. The latter should reduce the concentration polarization at the tissue interface, and hence the local osmotic pressure opposing fluid drainage. In rheumatoid arthritis the reduced chain length will facilitate the escape of hyaluronan and fluid. PMID:10896731
Star formation quenching in quasar host galaxies
NASA Astrophysics Data System (ADS)
Carniani, Stefano
2017-10-01
Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.
Characterizing Quasar Outflows III: SEDs, and Bolometric Luminosity Estimates
NASA Astrophysics Data System (ADS)
Richmond, Joseph; Robbins, J. M.; Ganguly, R.; Stark, M. A.; Christenson, D. H.; Derseweh, J. A.; Townsend, S. L.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from both the Two Micron All-Sky Survey (2MASS) and from the Wide-Field Infrared Survey Explorer (WISE). 2MASS photometry covers the rest-frame optical regime of these qusars, while the WISE W1, W2, and W3 bands cover the rest-frame wavelength ranges 0.9-1.27 micron, 1.35-1.75 micron, and 2.52-5.51 micron, respectively. The preliminary release of WISE data cover 3800 of our quasars. In an accompnying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). Here, we present average SEDs for these subsamples, estimates of bolometric luminosity, and explore changes in SED based on both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Characterizing Quasar Outflows II: The Incidence of the Highest Velocity Outflows
NASA Astrophysics Data System (ADS)
Stark, Michele A.; Ganguly, R.; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In an accompanying poster, we subjectively divide these quasars into four categories (broad absorption-line quasars, associated absorption-line quasars, reddened quasars, and unabsorbed/unreddened quasars). This subjective scheme is limited with regard to classifying narrow absorption-line systems (NALs). With single epoch, low dispersion SDSS spectra, we cannot distinguish between cosmologically intervening NALs, and intrinsic NALs that appear at large velocity offsets. In this poster, we tackle this uncertainty statistically by considering the incidence of both CIV and MgII NALs as a function of velocity, and how this distribution changes with quasar properties. We expect that absorption by intervening structures should not vary with quasar property. Other accompanying posters add photometry from rest-frame X-ray through the infrared (WISE) to complete the SED, which we utilize in these efforts. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Lu, Y; Li, M; Shen, Y
1998-03-01
To determine the effects of epinephrine (EPI) and adrenergic antagonists on adenosine 3', 5'-monophosphate (cAMP) level of bovine trabecular cells (BTC) in vitro. (3)H-cAMP was used in protein binding assay for measuring the intracellular level of cAMP. (1) 10(-5) mol/L EPI induced a fold increase of cAMP in cultured BTC in vitro; (2) Timilol and ICI 118, 551 blocked efficiently the effect of EPI at a lower concentration (10(-6) mol/L). (3) Bisoprolol did not efficiently block the effect of EPI unless at high concentrations (>or= 10(-5) mol/L). The effects of EPI increasing outflow facility may be associated with its increase of cAMP in trabecular cells; BTC contains beta-adrenergic receptors, and beta(2)-adrenergic receptors are dominant.
14 CFR 171.207 - Performance requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
....” (Annex 10 to the Convention on International Civil Aviation) except those portions that pertain to... electronic engineering practices for the desired service. The facility must be checked periodically during...
14 CFR 171.207 - Performance requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
....” (Annex 10 to the Convention on International Civil Aviation) except those portions that pertain to... electronic engineering practices for the desired service. The facility must be checked periodically during...
Cloud Formation and Water Transport on Mars after Major Outflow Events
NASA Technical Reports Server (NTRS)
Santiago, D. L.; Colaprete, A.; Kreslavsky, M.; Kahre, M. A.; Asphaug, E.
2012-01-01
The triggering of a robust water cycle on Mars might have been caused by the gigantic flooding events evidenced by outflow channels. We use the Ames Mars General Circulation Model (MGCM) to test this hypothesis, studying how these presumably abrupt eruptions of water might have affected the climate of Mars in the past. We model where the water ultimately went as part of a transient atmospheric water cycle, to answer questions including: (1) Can sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? (2) What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? (3) How are radiative feedbacks involved with this? (4) What is the ultimate fate of the outflow water? (5) Can we tie certain geological features to outflow water redistributed by the atmosphere?
Poser, H; Russello, G; Zanella, A; Bellini, L; Gelli, D
2011-12-01
Echocardiographic evaluation was performed in six healthy young adult non-sedated terrapins (Trachemys scripta elegans). The best imaging quality was obtained through the right cervical window. Base-apex inflow and outflow views were recorded, ventricular size, ventricular wall thickness and ventricular outflow tract were measured, and fractional shortening was calculated. Pulsed-wave Doppler interrogation enabled the diastolic biphasic atrio-ventricular flow and the systolic ventricular outflow patterns to be recorded. The following Doppler-derived functional parameters were calculated: early diastolic (E) and late diastolic (A) wave peak velocities, E/A ratio, ventricular outflow systolic peak and mean velocities and gradients, Velocity-Time Integral, acceleration and deceleration times, and Ejection Time. For each parameter the mean, standard deviation and 95% confidence interval were calculated. Echocardiography resulted as a useful and easy-to-perform diagnostic tool in this poorly known species that presents difficulties during evaluation.
Dependence of Ca outflow and depression of frog myocardium contraction on ryodipine concentration.
Narusevicius, E; Gendviliene, V; Macianskiene, R; Hmelj-Dunai, G; Velena, A; Duburs, G
1988-02-01
The effect of ryodipine on calcium outflow from tissues, on contraction force, the duration of action potentials and the relaxation phase time-constant in the contraction cycles of myocardial strips was studied using frog heart preparations. It was found that calcium outflow (delta Ca) as a function on ryodipine concentration can be represented as: (formula; see text) A linear correlation exists between Ca2+, contraction blocking and the shortening of the action potential in the presence of various ryodipine concentrations. Ryodipine (10(-5) mol/l) decreased the relaxation time-constant by about 20% as compared to controls. It was concluded that calcium outflow from myocardial tissues in response to ryodipine is due to blockade of calcium entry into the cells and their output through the Na+--Ca2+ exchange system. Frog heart myocardial contractions are essentially under the control of calcium entry through sarcolemmal calcium channels.
NASA Astrophysics Data System (ADS)
Korteniemi, J.; Kukkonen, S.
2018-04-01
Outflow channel formation on the eastern Hellas rim region is traditionally thought to have been triggered by activity phases of the nearby volcanoes Hadriacus and Tyrrhenus Montes: As a result of volcanic heating subsurface volatiles were mobilized. It is, however, under debate, whether eastern Hellas volcanism was in fact more extensive, and if there were volcanic centers separate from the identified central volcanoes. This work describes previously unrecognized structures in the Niger-Dao Valles outflow channel complex. We interpret them as volcanic edifices: cones, a shield, and a caldera. The structures provide evidence of an additional volcanic center within the valles and indicate volcanic activity both prior to and following the formation of the outflow events. They expand the extent, type, and duration of volcanic activity in the Circum-Hellas Volcanic Province and provide new information on interaction between volcanism and fluvial activity.
The Escaping Upper Atmospheres of Hot Jupiters
NASA Astrophysics Data System (ADS)
Davidson, Eric; Jones, Gabrielle; Uribe, Ana; Carson, Joseph
2017-01-01
Hot Jupiters are massive gaseous planets which orbit closely to their parent star. The strong stellar irradiation at these small orbital separations causes the temperature of the upper atmosphere of the planet to rise. This can cause the planet's atmosphere to escape into space, creating an exoplanet outflow. We ascertained which factors determine the presence and structure of these outflows by creating one dimensional simulations of the density, pressure, velocity, optical depth, and neutral fraction of hot Jupiter atmospheres. This was done for planets of masses and radii ranging from 0.5-1.5 Mj and 0.5-1.5 Rj. We found the outflow rate to be highest for a planet of 0.5 Mj and 1.5 Rj at 5.3×10-14 Mj/Yr. We also found that the higher the escape velocity, the lower the chance of the planet having an outflow.
Resistance to outflow of cerebrospinal fluid after central infusions of angiotensin
NASA Technical Reports Server (NTRS)
Morrow, B. A.; Keil, L. C.; Severs, W. B.
1992-01-01
Infusions of artificial cerebrospinal fluid (CSF) into the cerebroventricles of conscious rats can raise CSF pressure (CSFp). This response can be modified by some neuropeptides. One of these, angiotensin, facilitates the rise in CSFp. We measured CSFp in conscious rats with a computerized system and evaluated resistance to CSF outflow during infusion of artificial CSF, with or without angiotensin, from the decay kinetics of superimposed bolus injections. Angiotensin (10 ng/min) raised CSFp (P less than 0.05) compared with solvent, but the resistance to CSF outflow of the two groups was similar (P greater than 0.05). Because CSFp was increased by angiotensin without an increase in the outflow resistance, a change in some volume compartment is likely. Angiotensin may raise CSFp by increasing CSF synthesis; this possibility is supported, since the choroid plexuses contain an intrinsic isorenin-angiotensin system. Alternatively, angiotensin may dilate pial arteries, leading to an increased intracranial blood volume.
On the X-Ray Low- and High-Velocity Outflows in Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Ramirez, J. M.; Tombesi, F.
2012-01-01
An exploration of the relationship between bolometric luminosity and outflow velocity for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v approx. 100-1000 km/s, and on comparable but less stringent grounds the ultrafast outflows, v approx. 0.03-0.3c. If comparable with the escape velocity of the system, the first is naturally located at distances of the dusty torus, '" I pc, and the second at subparsec scales, approx.0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the centre of galaxies, the feedback process and its impact on the evolution of the host galaxy.
NASA Astrophysics Data System (ADS)
Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki
The reduction effect of life cycle CO2 emission is examined in case of introducing a PV/solar heat/cogeneration system into public welfare facilities(hotel and hospital). Life cycle CO2 emission is calculated as the sum of that when operating and that when manufacturing equipments. The system is operated with the dynamic programming method, into which hourly data of electric and heat loads, solar insolation, and atmospheric temperature during a year are input. The proposed system is compared with a conventional system and a cogeneration system. The life cycle CO2 emission of the PV/solar heat/cogeneration system is lower than that of the conventional system by 20% in hotel and by 14% in hospital.
The structure of the Cepheus E protostellar outflow: The jet, the bowshock, and the cavity
NASA Astrophysics Data System (ADS)
Lefloch, B.; Gusdorf, A.; Codella, C.; Eislöffel, J.; Neri, R.; Gómez-Ruiz, A. I.; Güsten, R.; Leurini, S.; Risacher, C.; Benedettini, M.
2015-09-01
Context. Protostellar outflows are a crucial ingredient of the star-formation process. However, the physical conditions in the warm outflowing gas are still poorly known. Aims: We present a multi-transition, high spectral resolution CO study of the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow and to constrain the physical conditions of the various components in order to understand the origin of the mass-loss phenomenon. Methods: We have observed the J = 12-11, J = 13-12, and J = 16-15 CO lines at high spectral resolution with SOFIA/GREAT and the J = 5-4, J = 9-8, and J = 14-13 CO lines with HIFI/Herschel towards the position of the terminal bowshock HH377 in the southern outflow lobe. These observations were complemented with maps of CO transitions obtained with the IRAM 30 m telescope (J = 1-0, 2-1), the Plateau de Bure interferometer (J = 2-1), and the James Clerk Maxwell Telescope (J = 3-2, 4-3). Results: We identify three main components in the protostellar outflow: the jet, the cavity, and the bowshock, with a typical size of 1.7″ × 21″, 4.5″, and 22″ × 10″, respectively. In the jet, the emission from the low-J CO lines is dominated by a gas layer at Tkin = 80-100 K, column density N(CO) = 9 × 1016 cm-2, and density n(H2) = (0.5-1) × 105 cm-3; the emission of the high-J CO lines arises from a warmer (Tkin = 400-750 K), denser (n(H2) = (0.5-1) × 106 cm-3), lower column density (N(CO) = 1.5 × 1016 cm-2) gas component. Similarly, in the outflow cavity, two components are detected: the emission of the low-J lines is dominated by a gas layer of column density N(CO) = 7 × 1017 cm-2 at Tkin = 55-85 K and density in the range (1-8) × 105 cm-3; the emission of the high-J lines is dominated by a hot, denser gas layer with Tkin = 500-1500K, n(H2) = (1-5) × 106 cm-3, and N(CO) = 6 × 1016 cm-2. A temperature gradient as a function of the velocity is found in the high-excitation gas component. In the terminal bowshock HH377, we detect gas of moderate excitation, with a temperature in the range Tkin ≈ 400-500 K, density n(H2) ≃ (1 -2) × 106 cm-3 and column density N(CO) = 1017 cm-2. The amounts of momentum carried away in the jet and in the entrained ambient medium are similar. Comparison with time-dependent shock models shows that the hot gas emission in the jet is well accounted for by a magnetized shock with an age of 220-740 yr propagating at 20-30 km s-1 in a medium of density n(H2) = (0.5-1) × 105 cm-3, consistent with that of the bulk material. Conclusions: The Cep E protostellar outflow appears to be a convincing case of jet bowshock driven outflow. Our observations trace the recent impact of the protostellar jet into the ambient cloud, produing a non-stationary magnetized shock, which drives the formation of an outflow cavity. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; Karska, A.; San José-García, I.; Khanna, S.; Herczeg, G. J.; André, Ph.; Bontemps, S.; Cabrit, S.; Carney, M. T.; Drozdovskaya, M. N.; Dunham, M. M.; Evans, N. J.; Fedele, D.; Green, J. D.; Harsono, D.; Johnstone, D.; Jørgensen, J. K.; Könyves, V.; Nisini, B.; Persson, M. V.; Tafalla, M.; Visser, R.; Yıldız, U. A.
2017-04-01
Context. Herschel observations of water and highly excited CO (J > 9) have allowed the physical and chemical conditions in the more active parts of protostellar outflows to be quantified in detail for the first time. However, to date, the studied samples of Class 0/I protostars in nearby star-forming regions have been selected from bright, well-known sources and have not been large enough for statistically significant trends to be firmly established. Aims: We aim to explore the relationships between the outflow, envelope and physical properties of a flux-limited sample of embedded low-mass Class 0/I protostars. Methods: We present spectroscopic observations in H2O, CO and related species with Herschel HIFI and PACS, as well as ground-based follow-up with the JCMT and APEX in CO, HCO+ and isotopologues, of a sample of 49 nearby (d < 500 pc) candidate protostars selected from Spitzer and Herschel photometric surveys of the Gould Belt. This more than doubles the sample of sources observed by the WISH and DIGIT surveys. These data are used to study the outflow and envelope properties of these sources. We also compile their continuum spectral energy distributions (SEDs) from the near-IR to mm wavelengths in order to constrain their physical properties (e.g. Lbol, Tbol and Menv). Results: Water emission is dominated by shocks associated with the outflow, rather than the cooler, slower entrained outflowing gas probed by ground-based CO observations. These shocks become less energetic as sources evolve from Class 0 to Class I. Outflow force, measured from low-J CO, also decreases with source evolutionary stage, while the fraction of mass in the outflow relative to the total envelope (I.e. Mout/Menv) remains broadly constant between Class 0 and I. The median value of 1% is consistent with a core to star formation efficiency on the order of 50% and an outflow duty cycle on the order of 5%. Entrainment efficiency, as probed by FCO/Ṁacc, is also invariant with source properties and evolutionary stage. The median value implies a velocity at the wind launching radius of 6.3 km s-1, which in turn suggests an entrainment efficiency of between 30 and 60% if the wind is launched at 1 AU, or close to 100% if launched further out. L[O I] is strongly correlated with Lbol but not with Menv, in contrast to low-J CO, which is more closely correlated with the latter than the former. This suggests that [O I] traces the present-day accretion activity of the source while CO traces time-averaged accretion over the dynamical timescale of the outflow. H2O is more strongly correlated with Menv than Lbol, but the difference is smaller than low-J CO, consistent with water emission primarily tracing actively shocked material between the wind, traced by [O I], and the entrained molecular outflow, traced by low-J CO. L[O I] does not vary from Class 0 to Class I, unlike CO and H2O. This is likely due to the ratio of atomic to molecular gas in the wind increasing as the source evolves, balancing out the decrease in mass accretion rate. Infall signatures are detected in HCO+ and H2O in a few sources, but still remain surprisingly illusive in single-dish observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Alonso-Martínez, M.; Riviere-Marichalar, P.; Meeus, G.; Kamp, I.; Fang, M.; Podio, L.; Dent, W. R. F.; Eiroa, C.
2017-07-01
Context. At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. Aims: We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, H2O, and OH) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. Methods: The atomic and molecular FIR (60-190 μm) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. Results: Outflow sources exhibit brighter atomic and molecular emission lines and higher detection rates than non-outflow sources. The line detection fractions decrease with SED evolutionary status (from Class I to Class III). We find correlations between [OI] 63.18 μm and [OI] 6300 Å, o-H2O 78.74 μm, CO 144.78 μm, OH 79.12+79.18 μm, and the continuum flux at 24 μm. The atomic line ratios can be explain either by fast (Vshock > 50 km s-1) dissociative J-shocks at low densities (n 103 cm-3) occurring along the jet and/or PDR emission (G0 > 102, n 103-106 cm-3). To account for the [CII] absolute fluxes, PDR emission or UV irradiation of shocks is needed. In comparison, the molecular emission is more compact and the line ratios are better explained with slow (Vshock < 40 km s-1) C-type shocks with high pre-shock densities (104-106 cm-3), with the exception of OH lines, that are better described by J-type shocks. Disc models alone fail to reproduce the observed molecular line fluxes, but a contribution to the line fluxes from UV-illuminated discs and/or outflow cavities is expected. Far-IR lines dominate disc cooling at early stages and weaken as the star+disc system evolves from Class I to Class III, with an increasing relative disc contribution to the line fluxes. Conclusions: Models which take into account jets, discs, and their mutual interaction are needed to disentangle the different components and study their evolution. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinn, Jong-Ho; Kim, Kee-Tae; Lee, Jae-Joon
We present [Fe II] 1.644 μm features around ultracompact H II regions (UCHIIs) found on a quest for the ''footprint'' outflow features of UCHIIs—the features produced by outflowing materials ejected during an earlier, active accretion phase of massive young stellar objects (MYSOs). We surveyed 237 UCHIIs in the first Galactic quadrant, employing the CORNISH UCHII catalog and UWIFE data, which is an imaging survey in [Fe II] 1.644 μm performed with UKIRT-WFCAM under ∼0.''8 seeing conditions. The [Fe II] features were found around five UCHIIs, one of which was less plausible. We interpret the [Fe II] features to be shock-excitedmore » by outflows from YSOs and estimate the outflow mass-loss rates from the [Fe II] flux which are ∼1 × 10{sup –6}-4 × 10{sup –5} M {sub ☉} yr{sup –1}. We propose that the [Fe II] features might be the ''footprint'' outflow features, but more studies are required to clarify whether or not this is the case. This is based on the morphological relation between the [Fe II] and 5 GHz radio features, the outflow mass-loss rate, the travel time of the [Fe II] features, and the existence of several YSO candidates near the UCHIIs. The UCHIIs accompanying the [Fe II] features have relatively higher peak flux densities. The fraction of UCHIIs accompanying the [Fe II] features, 5/237, is small when compared to the ∼90% detection rate of high-velocity CO gas around UCHIIs. We discuss some possible explanations for the low detection rate.« less
NASA Astrophysics Data System (ADS)
Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron
2017-12-01
Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.