Sample records for conventional software systems

  1. Knowledge-based system V and V in the Space Station Freedom program

    NASA Technical Reports Server (NTRS)

    Kelley, Keith; Hamilton, David; Culbert, Chris

    1992-01-01

    Knowledge Based Systems (KBS's) are expected to be heavily used in the Space Station Freedom Program (SSFP). Although SSFP Verification and Validation (V&V) requirements are based on the latest state-of-the-practice in software engineering technology, they may be insufficient for Knowledge Based Systems (KBS's); it is widely stated that there are differences in both approach and execution between KBS V&V and conventional software V&V. In order to better understand this issue, we have surveyed and/or interviewed developers from sixty expert system projects in order to understand the differences and difficulties in KBS V&V. We have used this survey results to analyze the SSFP V&V requirements for conventional software in order to determine which specific requirements are inappropriate for KBS V&V and why they are inappropriate. Further work will result in a set of recommendations that can be used either as guidelines for applying conventional software V&V requirements to KBS's or as modifications to extend the existing SSFP conventional software V&V requirements to include KBS requirements. The results of this work are significant to many projects, in addition to SSFP, which will involve KBS's.

  2. Pilot Study of an Open-source Image Analysis Software for Automated Screening of Conventional Cervical Smears.

    PubMed

    Sanyal, Parikshit; Ganguli, Prosenjit; Barui, Sanghita; Deb, Prabal

    2018-01-01

    The Pap stained cervical smear is a screening tool for cervical cancer. Commercial systems are used for automated screening of liquid based cervical smears. However, there is no image analysis software used for conventional cervical smears. The aim of this study was to develop and test the diagnostic accuracy of a software for analysis of conventional smears. The software was developed using Python programming language and open source libraries. It was standardized with images from Bethesda Interobserver Reproducibility Project. One hundred and thirty images from smears which were reported Negative for Intraepithelial Lesion or Malignancy (NILM), and 45 images where some abnormality has been reported, were collected from the archives of the hospital. The software was then tested on the images. The software was able to segregate images based on overall nuclear: cytoplasmic ratio, coefficient of variation (CV) in nuclear size, nuclear membrane irregularity, and clustering. 68.88% of abnormal images were flagged by the software, as well as 19.23% of NILM images. The major difficulties faced were segmentation of overlapping cell clusters and separation of neutrophils. The software shows potential as a screening tool for conventional cervical smears; however, further refinement in technique is required.

  3. Extending the Capture Volume of an Iris Recognition System Using Wavefront Coding and Super-Resolution.

    PubMed

    Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen

    2016-12-01

    Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.

  4. Turbine Aeration Design Software for Mitigating Adverse Environmental Impacts Resulting From Conventional Hydropower Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, John S.

    2015-03-01

    Conventional hydropower turbine aeration test-bed for computational routines and software tools for improving environmental mitigation technologies for conventional hydropower systems. In achieving this goal, we have partnered with Alstom, a global leader in energy technology development and United States power generation, with additional funding from the Initiative for Renewable Energy and the Environment (IREE) and the College of Science and Engineering (CSE) at the UMN

  5. High-precision measurements of cementless acetabular components using model-based RSA: an experimental study.

    PubMed

    Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L; Søballe, Kjeld

    2007-08-01

    In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years, new software systems have been developed to solve this problem. We compared the precision of 3 RSA systems in migration analysis of the acetabular component. A hemispherical and a non-hemispherical acetabular component were mounted in a phantom. Both acetabular components underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. We found narrow confidence intervals, indicating high precision of the conventional marker system and model-based RSA with regard to migration and rotation. The confidence intervals of conventional RSA and model-based RSA were narrower than those of the hemispherical cup algorithm-based system regarding cup migration and rotation. The model-based RSA software combines the precision of the conventional RSA software with the convenience of the hemispherical cup algorithm-based system. Based on our findings, we believe that these new tools offer an improvement in the measurement of acetabular component migration.

  6. Storage system software solutions for high-end user needs

    NASA Technical Reports Server (NTRS)

    Hogan, Carole B.

    1992-01-01

    Today's high-end storage user is one that requires rapid access to a reliable terabyte-capacity storage system running in a distributed environment. This paper discusses conventional storage system software and concludes that this software, designed for other purposes, cannot meet high-end storage requirements. The paper also reviews the philosophy and design of evolving storage system software. It concludes that this new software, designed with high-end requirements in mind, provides the potential for solving not only the storage needs of today but those of the foreseeable future as well.

  7. Validation of highly reliable, real-time knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1988-01-01

    Knowledge-based systems have the potential to greatly increase the capabilities of future aircraft and spacecraft and to significantly reduce support manpower needed for the space station and other space missions. However, a credible validation methodology must be developed before knowledge-based systems can be used for life- or mission-critical applications. Experience with conventional software has shown that the use of good software engineering techniques and static analysis tools can greatly reduce the time needed for testing and simulation of a system. Since exhaustive testing is infeasible, reliability must be built into the software during the design and implementation phases. Unfortunately, many of the software engineering techniques and tools used for conventional software are of little use in the development of knowledge-based systems. Therefore, research at Langley is focused on developing a set of guidelines, methods, and prototype validation tools for building highly reliable, knowledge-based systems. The use of a comprehensive methodology for building highly reliable, knowledge-based systems should significantly decrease the time needed for testing and simulation. A proven record of delivering reliable systems at the beginning of the highly visible testing and simulation phases is crucial to the acceptance of knowledge-based systems in critical applications.

  8. SEPAC flight software detailed design specifications, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The detailed design specifications (as built) for the SEPAC Flight Software are defined. The design includes a description of the total software system and of each individual module within the system. The design specifications describe the decomposition of the software system into its major components. The system structure is expressed in the following forms: the control-flow hierarchy of the system, the data-flow structure of the system, the task hierarchy, the memory structure, and the software to hardware configuration mapping. The component design description includes details on the following elements: register conventions, module (subroutines) invocaton, module functions, interrupt servicing, data definitions, and database structure.

  9. AVE-SESAME program for the REEDA System

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1981-01-01

    The REEDA system software was modified and improved to process the AVE-SESAME severe storm data. A random access file system for the AVE storm data was designed, tested, and implemented. The AVE/SESAME software was modified to incorporate the random access file input and to interface with new graphics hardware/software now available on the REEDA system. Software was developed to graphically display the AVE/SESAME data in the convention normally used by severe storm researchers. Software was converted to AVE/SESAME software systems and interfaced with existing graphics hardware/software available on the REEDA System. Software documentation was provided for existing AVE/SESAME programs underlining functional flow charts and interacting questions. All AVE/SESAME data sets in random access format was processed to allow developed software to access the entire AVE/SESAME data base. The existing software was modified to allow for processing of different AVE/SESAME data set types including satellite surface and radar data.

  10. The cost of software fault tolerance

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1982-01-01

    The proposed use of software fault tolerance techniques as a means of reducing software costs in avionics and as a means of addressing the issue of system unreliability due to faults in software is examined. A model is developed to provide a view of the relationships among cost, redundancy, and reliability which suggests strategies for software development and maintenance which are not conventional.

  11. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  12. HOMER® Energy Modeling Software 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Tom

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  13. HOMER® Energy Modeling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Tom

    2000-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  14. Software For Design Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1991-01-01

    Design Assistant Workstation (DAWN) computer program is prototype of expert software system for analysis and design of regenerative, physical/chemical life-support systems that revitalize air, reclaim water, produce food, and treat waste. Incorporates both conventional software for quantitative mathematical modeling of physical, chemical, and biological processes and expert system offering user stored knowledge about materials and processes. Constructs task tree as it leads user through simulated process, offers alternatives, and indicates where alternative not feasible. Also enables user to jump from one design level to another.

  15. HOMER® Energy Modeling Software V2.63

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Tom

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  16. HOMER® Energy Modeling Software V2.64

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Tom

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  17. HOMER® Energy Modeling Software V2.65

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Tom

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  18. HOMER® Energy Modeling Software V2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Tom

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  19. HOMER® Energy Modeling Software V2.19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Tom

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  20. HOMER® Energy Modeling Software V2.67

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Tom

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  1. CORMIX2: AN EXPERT SYSTEM FOR HYDRODYNAMIC MIXING ZONE ANALYSIS OF CONVENTIONAL AND TOXIC MULTIPORT DIFFUSER DISCHARGES

    EPA Science Inventory

    CORMIX is a series of software systems for the analysis, prediction, and design of aqueous toxic or conventional pollutant discharges into watercourses, with emphasis on the geometry and dilution characteristics of the initial mixing zone. ubsystem CORMIX1 deals with submerged si...

  2. Software safety - A user's practical perspective

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1990-01-01

    Software safety assurance philosophy and practices at the NASA Ames are discussed. It is shown that, to be safe, software must be error-free. Software developments on two digital flight control systems and two ground facility systems are examined, including the overall system and software organization and function, the software-safety issues, and their resolution. The effectiveness of safety assurance methods is discussed, including conventional life-cycle practices, verification and validation testing, software safety analysis, and formal design methods. It is concluded (1) that a practical software safety technology does not yet exist, (2) that it is unlikely that a set of general-purpose analytical techniques can be developed for proving that software is safe, and (3) that successful software safety-assurance practices will have to take into account the detailed design processes employed and show that the software will execute correctly under all possible conditions.

  3. Discharge-measurement system using an acoustic Doppler current profiler with applications to large rivers and estuaries

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.

    1993-01-01

    Discharge measurement of large rivers and estuaries is difficult, time consuming, and sometimes dangerous. Frequently, discharge measurements cannot be made in tide-affected rivers and estuaries using conventional discharge-measurement techniques because of dynamic discharge conditions. The acoustic Doppler discharge-measurement system (ADDMS) was developed by the U.S. Geological Survey using a vessel-mounted acoustic Doppler current profiler coupled with specialized computer software to measure horizontal water velocity at 1-meter vertical intervals in the water column. The system computes discharge from water-and vessel-velocity data supplied by the ADDMS using vector-algebra algorithms included in the discharge-measurement software. With this system, a discharge measurement can be obtained by engaging the computer software and traversing a river or estuary from bank to bank; discharge in parts of the river or estuarine cross sections that cannot be measured because of ADDMS depth limitations are estimated by the system. Comparisons of ADDMS-measured discharges with ultrasonic-velocity-meter-measured discharges, along with error-analysis data, have confirmed that discharges provided by the ADDMS are at least as accurate as those produced using conventional methods. In addition, the advantage of a much shorter measurement time (2 minutes using the ADDMS compared with 1 hour or longer using conventional methods) has enabled use of the ADDMS for several applications where conventional discharge methods could not have been used with the required accuracy because of dynamic discharge conditions.

  4. Open Architecture SDR for Space

    NASA Technical Reports Server (NTRS)

    Smith, Carl; Long, Chris; Liebetreu, John; Reinhart, Richard C.

    2005-01-01

    This paper describes an open-architecture SDR (software defined radio) infrastructure that is suitable for space-based operations (Space-SDR). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and significantly less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, reduced obsolescence, interoperability, and software re-use. Significant progress has been recorded on developments like the Joint Tactical Radio System (JSTRS) Software Communication Architecture (SCA), which is oriented toward reconfigurable radios for defense forces operating in multiple theaters of engagement. The JTRS-SCA presents a consistent software interface for waveform development, and facilitates interoperability, waveform portability, software re-use, and technology evolution.

  5. VA's Integrated Imaging System on three platforms.

    PubMed

    Dayhoff, R E; Maloney, D L; Majurski, W J

    1992-01-01

    The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability.

  6. VA's Integrated Imaging System on three platforms.

    PubMed Central

    Dayhoff, R. E.; Maloney, D. L.; Majurski, W. J.

    1992-01-01

    The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability. PMID:1482983

  7. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  8. State analysis requirements database for engineering complex embedded systems

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  9. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    NASA Technical Reports Server (NTRS)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  10. NetCDF-CF: Supporting Earth System Science with Data Access, Analysis, and Visualization

    NASA Astrophysics Data System (ADS)

    Davis, E.; Zender, C. S.; Arctur, D. K.; O'Brien, K.; Jelenak, A.; Santek, D.; Dixon, M. J.; Whiteaker, T. L.; Yang, K.

    2017-12-01

    NetCDF-CF is a community-developed convention for storing and describing earth system science data in the netCDF binary data format. It is an OGC recognized standard with numerous existing FOSS (Free and Open Source Software) and commercial software tools can explore, analyze, and visualize data that is stored and described as netCDF-CF data. To better support a larger segment of the earth system science community, a number of efforts are underway to extend the netCDF-CF convention with the goal of increasing the types of data that can be represented as netCDF-CF data. This presentation will provide an overview and update of work to extend the existing netCDF-CF convention. It will detail the types of earth system science data currently supported by netCDF-CF and the types of data targeted for support by current netCDF-CF convention development efforts. It will also describe some of the tools that support the use of netCDF-CF compliant datasets, the types of data they support, and efforts to extend them to handle the new data types that netCDF-CF will support.

  11. Expert system verification and validation study: ES V/V Workshop

    NASA Technical Reports Server (NTRS)

    French, Scott; Hamilton, David

    1992-01-01

    The primary purpose of this document is to build a foundation for applying principles of verification and validation (V&V) of expert systems. To achieve this, some V&V as applied to conventionally implemented software is required. Part one will discuss the background of V&V from the perspective of (1) what is V&V of software and (2) V&V's role in developing software. Part one will also overview some common analysis techniques that are applied when performing V&V of software. All of these materials will be presented based on the assumption that the reader has little or no background in V&V or in developing procedural software. The primary purpose of part two is to explain the major techniques that have been developed for V&V of expert systems.

  12. Time-lapse systems for embryo incubation and assessment in assisted reproduction.

    PubMed

    Armstrong, Sarah; Bhide, Priya; Jordan, Vanessa; Pacey, Allan; Farquhar, Cindy

    2018-05-25

    Embryo incubation and assessment is a vital step in assisted reproductive technology (ART). Traditionally, embryo assessment has been achieved by removing embryos from a conventional incubator daily for quality assessment by an embryologist, under a light microscope. Over recent years time-lapse systems have been developed which can take digital images of embryos at frequent time intervals. This allows embryologists, with or without the assistance of embryo selection software, to assess the quality of the embryos without physically removing them from the incubator.The potential advantages of a time-lapse system (TLS) include the ability to maintain a stable culture environment, therefore limiting the exposure of embryos to changes in gas composition, temperature and movement. A TLS has the potential advantage of improving embryo selection for ART treatment by utilising additional information gained through continuously monitoring embryo development. Use of a TLS often adds significant extra cost onto an in vitro fertilisation (IVF) cycle. To determine the effect of a TLS compared to conventional embryo incubation and assessment on clinical outcomes in couples undergoing ART. We used standard methodology recommended by Cochrane. We searched the Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, CINAHL and two trials registers on 2 August 2017. We included randomised controlled trials (RCTs) in the following comparisons: comparing a TLS, with or without embryo selection software, versus conventional incubation with morphological assessment; and TLS with embryo selection software versus TLS without embryo selection software among couples undergoing ART. We used standard methodological procedures recommended by Cochrane. The primary review outcomes were live birth, miscarriage and stillbirth. Secondary outcomes were clinical pregnancy and cumulative clinical pregnancy. We reported quality of the evidence for important outcomes using GRADE methodology. We made the following comparisons.TLS with conventional morphological assessment of still TLS images versus conventional incubation and assessmentTLS utilising embryo selection software versus TLS with conventional morphological assessment of still TLS images TLS utilising embryo selection software versus conventional incubation and assessment MAIN RESULTS: We included eight RCTs (N = 2303 women). The quality of the evidence ranged from very low to moderate. The main limitations were imprecision and risk of bias associated with lack of blinding of participants and researchers, and indirectness secondary to significant heterogeneity between interventions in some studies. There were no data on cumulative clinical pregnancy.TLS with conventional morphological assessment of still TLS images versus conventional incubation and assessmentThere is no evidence of a difference between the interventions in terms of live birth rates (odds ratio (OR) 0.73, 95% CI 0.47 to 1.13, 2 RCTs, N = 440, I 2 = 11% , moderate-quality evidence) and may also be no evidence of difference in miscarriage rates (OR 2.25, 95% CI 0.84 to 6.02, 2 RCTs, N = 440, I 2 = 44%, low-quality evidence). The evidence suggests that if the live birth rate associated with conventional incubation and assessment is 33%, the rate with use of TLS with conventional morphological assessment of still TLS images is between 19% and 36%; and that if the miscarriage rate with conventional incubation is 3%, the rate associated with conventional morphological assessment of still TLS images would be between 3% and 18%. There is no evidence of a difference between the interventions in the stillbirth rate (OR 1.00, 95% CI 0.13 to 7.49, 1 RCT, N = 76, low-quality evidence). There is no evidence of a difference between the interventions in clinical pregnancy rates (OR 0.88, 95% CI 0.58 to 1.33, 3 RCTs, N = 489, I 2 = 0%, moderate-quality evidence).TLS utilising embryo selection software versus TLS with conventional morphological assessment of still TLS imagesNo data were available on live birth or stillbirth. We are uncertain whether TLS utilising embryo selection software influences miscarriage rates (OR 1.39, 95% CI 0.64 to 3.01, 2 RCTs, N = 463, I 2 = 0%, very low-quality evidence) and there may be no difference in clinical pregnancy rates (OR 0.97, 95% CI 0.67 to 1.42, 2 RCTs, N = 463, I 2 = 0%, low-quality evidence). The evidence suggests that if the miscarriage rate associated with assessment of still TLS images is 5%, the rate with embryo selection software would be between 3% and 14%.TLS utilising embryo selection software versus conventional incubation and assessmentThere is no evidence of a difference between TLS utilising embryo selection software and conventional incubation improving live birth rates (OR 1.21, 95% CI 0.96 to 1.54, 2 RCTs, N = 1017, I 2 = 0%, very low-quality evidence). We are uncertain whether TLS influences miscarriage rates (OR 0.73, 95% CI 0.49 to 1.08, 3 RCTs, N = 1351, I 2 = 0%, very low-quality evidence). The evidence suggests that if the live birth rate associated with no TLS is 38%, the rate with use of conventional incubation would be between 36% and 58%, and that if miscarriage rate with conventional incubation is 9%, the rate associated with TLS would be between 4% and 10%. No data on stillbirths were available. It was uncertain whether the intervention influenced clinical pregnancy rates (OR 1.17, 95% CI 0.94 to 1.45, 3 RCTs, N = 1351, I 2 = 42%, very low-quality evidence). There is insufficient evidence of differences in live birth, miscarriage, stillbirth or clinical pregnancy to choose between TLS, with or without embryo selection software, and conventional incubation. The studies were at high risk of bias for randomisation and allocation concealment, the result should be interpreted with extreme caution.

  13. The KATE shell: An implementation of model-based control, monitor and diagnosis

    NASA Technical Reports Server (NTRS)

    Cornell, Matthew

    1987-01-01

    The conventional control and monitor software currently used by the Space Center for Space Shuttle processing has many limitations such as high maintenance costs, limited diagnostic capabilities and simulation support. These limitations have caused the development of a knowledge based (or model based) shell to generically control and monitor electro-mechanical systems. The knowledge base describes the system's structure and function and is used by a software shell to do real time constraints checking, low level control of components, diagnosis of detected faults, sensor validation, automatic generation of schematic diagrams and automatic recovery from failures. This approach is more versatile and more powerful than the conventional hard coded approach and offers many advantages over it, although, for systems which require high speed reaction times or aren't well understood, knowledge based control and monitor systems may not be appropriate.

  14. A survey of program slicing for software engineering

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field.

  15. pcircle - A Suite of Scalable Parallel File System Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG, FEIYI

    2015-10-01

    Most of the software related to file system are written for conventional local file system, they are serialized and can't take advantage of the benefit of a large scale parallel file system. "pcircle" software builds on top of ubiquitous MPI in cluster computing environment and "work-stealing" pattern to provide a scalable, high-performance suite of file system tools. In particular - it implemented parallel data copy and parallel data checksumming, with advanced features such as async progress report, checkpoint and restart, as well as integrity checking.

  16. Integrated Software Development System/Higher Order Software Conceptual Description (ISDS/HOS)

    DTIC Science & Technology

    1976-11-01

    Structured Flowchart Conventions 270 6.3.5.3 Design Diagram Notation 273 xii HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS...associated with the process steps. They also reference other HIPO diagrams as well an non-HIPO documentation such as flowcharts or decision tables of...syntax that is easy to learn and must provide the novice with some prompting to help him avoid classic beginner errors. Desirable editing capabilities

  17. Extreme Programming: Maestro Style

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme-programming practices. The single most influential of these factors is that continuous interaction between customers and programmers is not feasible.

  18. Tutorial: Crystal orientations and EBSD — Or which way is up?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, T.B., E-mail: b.britton@imperial.ac.uk; Jiang, J.; Guo, Y.

    2016-07-15

    Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figuremore » and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader.« less

  19. ANOPP programming and documentation standards document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Standards defining the requirements for preparing software for the Aircraft Noise Prediction Program (ANOPP) were given. It is the intent of these standards to provide definition, design, coding, and documentation criteria for the achievement of a unity among ANOPP products. These standards apply to all of ANOPP's standard software system. The standards encompass philosophy as well as techniques and conventions.

  20. Development and Operation of a Database Machine for Online Access and Update of a Large Database.

    ERIC Educational Resources Information Center

    Rush, James E.

    1980-01-01

    Reviews the development of a fault tolerant database processor system which replaced OCLC's conventional file system. A general introduction to database management systems and the operating environment is followed by a description of the hardware selection, software processes, and system characteristics. (SW)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, G.J.; Seaver, C.L.; Kowalkowski, J.B.

    As controls needs at the Advanced Photon Source matured from an installation phase to an operational phase, the need to monitor the existing conventional facilities control system with the EPICS-based accelerator control system was realized. This existing conventional facilities control network is based on a proprietary system from Johnson Controls called Metasys. Initially read-only monitoring of the Metasys parameters will be provided; however, the ability for possible future expansion to full control is available. This paper describes a method of using commercially available hardware and existing EPICS software as a bridge between the Metasys and EPICS control systems.

  2. Space shuttle onboard navigation console expert/trainer system

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bochsler, Dan

    1987-01-01

    A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.

  3. Automating software design system DESTA

    NASA Technical Reports Server (NTRS)

    Lovitsky, Vladimir A.; Pearce, Patricia D.

    1992-01-01

    'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.

  4. On the engineering of crucial software

    NASA Technical Reports Server (NTRS)

    Pratt, T. W.; Knight, J. C.; Gregory, S. T.

    1983-01-01

    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described.

  5. Human Benchmarking of Expert Systems. Literature Review

    DTIC Science & Technology

    1990-01-01

    effetiveness of the development procedures used in order to predict whether the aplication of similar approaches will likely have effective and...they used in their learning and problem solving. We will describe these approaches later. Reasoning. Reasoning usually includes inference. Because to ... in the software engineering process. For example, existing approaches to software evaluation in the military are based on a model of conventional

  6. Simulation and animation of sensor-driven robots.

    PubMed

    Chen, C; Trivedi, M M; Bidlack, C R

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.

  7. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    NASA Astrophysics Data System (ADS)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  8. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can describe the concentrations of chemical species and of particulate matter as functions of time. A system of the present developmental type and a conventional fire detector were tested under both fire and false-alarm conditions in a Federal Aviation Administration cargo-compartment- testing facility. Both systems consistently detected fires. However, the conventional fire detector consistently generated false alarms, whereas the developmental system did not generate any false alarms.

  9. Appendix B: Rapid development approaches for system engineering and design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Conventional processes often produce systems which are obsolete before they are fielded. This paper explores some of the reasons for this, and provides a vision of how we can do better. This vision is based on our explorations in improved processes and system/software engineering tools.

  10. CAD/CAM complete dentures: a review of two commercial fabrication systems.

    PubMed

    Kattadiyil, Mathew T; Goodacre, Charles J; Baba, Nadim Z

    2013-06-01

    The use of computer-aided design and computer-aided manufacturing (CAD/CAM) has become available for complete dentures through the AvaDent and Dentca systems. AvaDent uses laser scanning and computer technology. Teeth are arranged and bases formed using proprietary software.The bases are milled from prepolymerized pucks of resin. Dentca uses computer software to produce virtual maxillary and mandibular edentulous ridges, arrange the teeth and form bases. The dentures are fabricated using a conventional processing technique.

  11. Reliability Analysis and Optimal Release Problem Considering Maintenance Time of Software Components for an Embedded OSS Porting Phase

    NASA Astrophysics Data System (ADS)

    Tamura, Yoshinobu; Yamada, Shigeru

    OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.

  12. Conjunctive programming: An interactive approach to software system synthesis

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1992-01-01

    This report introduces a technique of software documentation called conjunctive programming and discusses its role in the development and maintenance of software systems. The report also describes the conjoin tool, an adjunct to assist practitioners. Aimed at supporting software reuse while conforming with conventional development practices, conjunctive programming is defined as the extraction, integration, and embellishment of pertinent information obtained directly from an existing database of software artifacts, such as specifications, source code, configuration data, link-edit scripts, utility files, and other relevant information, into a product that achieves desired levels of detail, content, and production quality. Conjunctive programs typically include automatically generated tables of contents, indexes, cross references, bibliographic citations, tables, and figures (including graphics and illustrations). This report presents an example of conjunctive programming by documenting the use and implementation of the conjoin program.

  13. What Is An Expert System? ERIC Digest.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    This digest describes and defines the various components of an expert system, e.g., a computerized tool designed to enhance the quality and availability of knowledge required by decision makers. It is noted that expert systems differ from conventional applications software in the following areas: (1) the existence of the expert systems shell, or…

  14. Randomized controlled within-subject evaluation of digital and conventional workflows for the fabrication of lithium disilicate single crowns. Part II: CAD-CAM versus conventional laboratory procedures.

    PubMed

    Sailer, Irena; Benic, Goran I; Fehmer, Vincent; Hämmerle, Christoph H F; Mühlemann, Sven

    2017-07-01

    Clinical studies are needed to evaluate the entire digital and conventional workflows in prosthetic dentistry. The purpose of the second part of this clinical study was to compare the laboratory production time for tooth-supported single crowns made with 4 different digital workflows and 1 conventional workflow and to compare these crowns clinically. For each of 10 participants, a monolithic crown was fabricated in lithium disilicate-reinforced glass ceramic (IPS e.max CAD). The computer-aided design and computer-aided manufacturing (CAD-CAM) systems were Lava C.O.S. CAD software and centralized CAM (group L), Cares CAD software and centralized CAM (group iT), Cerec Connect CAD software and lab side CAM (group CiL), and Cerec Connect CAD software with centralized CAM (group CiD). The conventional fabrication (group K) included a wax pattern of the crown and heat pressing according to the lost-wax technique (IPS e.max Press). The time for the fabrication of the casts and the crowns was recorded. Subsequently, the crowns were clinically evaluated and the corresponding treatment times were recorded. The Paired Wilcoxon test with the Bonferroni correction was applied to detect differences among treatment groups (α=.05). The total mean (±standard deviation) active working time for the dental technician was 88 ±6 minutes in group L, 74 ±12 minutes in group iT, 74 ±5 minutes in group CiL, 92 ±8 minutes in group CiD, and 148 ±11 minutes in group K. The dental technician spent significantly more working time for the conventional workflow than for the digital workflows (P<.001). No statistically significant differences were found between group L and group CiD or between group iT and group CiL. No statistical differences in time for the clinical evaluation were found among groups, indicating similar outcomes (P>.05). Irrespective of the CAD-CAM system, the overall laboratory working time for a digital workflow was significantly shorter than for the conventional workflow, since the dental technician needed less active working time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    NASA Astrophysics Data System (ADS)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  16. Making automated computer program documentation a feature of total system design

    NASA Technical Reports Server (NTRS)

    Wolf, A. W.

    1970-01-01

    It is pointed out that in large-scale computer software systems, program documents are too often fraught with errors, out of date, poorly written, and sometimes nonexistent in whole or in part. The means are described by which many of these typical system documentation problems were overcome in a large and dynamic software project. A systems approach was employed which encompassed such items as: (1) configuration management; (2) standards and conventions; (3) collection of program information into central data banks; (4) interaction among executive, compiler, central data banks, and configuration management; and (5) automatic documentation. A complete description of the overall system is given.

  17. Mesoscale and severe storms (Mass) data management and analysis system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.; Dickerson, M.

    1984-01-01

    Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.

  18. Perspective on intelligent avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.L.

    1987-01-01

    Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.

  19. A novel energy recovery system for parallel hybrid hydraulic excavator.

    PubMed

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  20. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    PubMed Central

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented. PMID:25405215

  1. Process and information integration via hypermedia

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Labasse, Daniel L.; Myers, Robert M.

    1990-01-01

    Success stories for advanced automation prototypes abound in the literature but the deployments of practical large systems are few in number. There are several factors that militate against the maturation of such prototypes into products. Here, the integration of advanced automation software into large systems is discussed. Advanced automation systems tend to be specific applications that need to be integrated and aggregated into larger systems. Systems integration can be achieved by providing expert user-developers with verified tools to efficiently create small systems that interface to large systems through standard interfaces. The use of hypermedia as such a tool in the context of the ground control centers that support Shuttle and space station operations is explored. Hypermedia can be an integrating platform for data, conventional software, and advanced automation software, enabling data integration through the display of diverse types of information and through the creation of associative links between chunks of information. Further, hypermedia enables process integration through graphical invoking of system functions. Through analysis and examples, researchers illustrate how diverse information and processing paradigms can be integrated into a single software platform.

  2. Novel Software for Performing Leksell Stereotactic Surgery without the Use of Printing Films: Technical Note.

    PubMed

    Hashizume, Akira; Akimitsu, Tomohide; Iida, Koji; Kagawa, Kota; Katagiri, Masaya; Hanaya, Ryosuke; Arita, Kazunori; Kurisu, Kaoru

    2016-01-01

    Hospitals in Japan have recently begun to employ the DICOM viewer system on desktop or laptop monitors. However, conventional embedding surgery for deep-brain stimulation with the Leksell stereotactic system (LSS) requires printed X-ray films for defining the coordination, coregistration of actual surgical films with the reference coordinates, and validation of the needle trajectories. While just performing these procedures on desktop or laptop monitors, the authors were able to develop novel software to facilitate complete digital manipulation with the Leksell frame without printing films. In this study, we validated the practical use of LSS, and benefit of this software in the Takanobashi Central Hospital and Kagoshima University Hospital.

  3. Verification and Validation of Autonomy Software at NASA

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles

    2000-01-01

    Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.

  4. Verification and Validation of Autonomy Software at NASA

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles

    2000-01-01

    Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.

  5. Development of online NIR urine analyzing system based on AOTF

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Sun, Zhendong; Li, Xiaoxia

    2006-09-01

    In this paper, some key techniques on development of on-line MR urine analyzing system based on AOTF (Acousto - Optics Tunable Filter) are introduced. Problems about designing the optical system including collimation of incident light and working distance (the shortest distance for separating incident light and diffracted light) are analyzed and researched. DDS (Direct Digital Synthesizer) controlled by microprocessor is used to realize the wavelength scan. The experiment results show that this MR urine analyzing system based on. AOTF has 10000 - 4000cm -1 wavelength range and O.3ms wavelength transfer rate. Compare with the conventional Fourier Transform NIP. spectrophotometer for analyzing multi-components in urine, this system features low cost, small volume and on-line measurement function. Unscrambler software (multivariate statistical software by CAMO Inc. Norway) is selected as the software for processing the data. This system can realize on line quantitative analysis of protein, urea and creatinine in urine.

  6. Simulation and animation of sensor-driven robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Trivedi, M.M.; Bidlack, C.R.

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less

  7. A VxD-based automatic blending system using multithreaded programming.

    PubMed

    Wang, L; Jiang, X; Chen, Y; Tan, K C

    2004-01-01

    This paper discusses the object-oriented software design for an automatic blending system. By combining the advantages of a programmable logic controller (PLC) and an industrial control PC (ICPC), an automatic blending control system is developed for a chemical plant. The system structure and multithread-based communication approach are first presented in this paper. The overall software design issues, such as system requirements and functionalities, are then discussed in detail. Furthermore, by replacing the conventional dynamic link library (DLL) with virtual X device drivers (VxD's), a practical and cost-effective solution is provided to improve the robustness of the Windows platform-based automatic blending system in small- and medium-sized plants.

  8. Courseware Development with Animated Pedagogical Agents in Learning System to Improve Learning Motivation

    ERIC Educational Resources Information Center

    Chin, Kai-Yi; Hong, Zeng-Wei; Huang, Yueh-Min; Shen, Wei-Wei; Lin, Jim-Min

    2016-01-01

    The addition of animated pedagogical agents (APAs) in computer-assisted learning (CAL) systems could successfully enhance students' learning motivation and engagement in learning activities. Conventionally, the APA incorporated multimedia materials are constructed through the cooperation of teachers and software programmers. However, the thinking…

  9. Computer software configuration description, 241-AY and 241-AZ tank farm MICON automation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkelman, W.D.

    This document describes the configuration process, choices and conventions used during the configuration activities, and issues involved in making changes to the configuration. Includes the master listings of the Tag definitions, which should be revised to authorize any changes. Revision 2 incorporates minor changes to ensure the document setpoints accurately reflect limits (including exhaust stack flow of 800 scfm) established in OSD-T-151-00019. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes.

  10. Evaluation of three electronic report processing systems for preparing hydrologic reports of the U.S Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Stiltner, G.J.

    1990-01-01

    In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25% less than costs of printing the reports prepared by conventional methods. Because the largest report workload in the offices conducting water resources investigations is preparation of Water-Resources Investigations Reports, Open-File Reports, and annual State Data Reports, the pilot studies only involved these projects. (USGS)

  11. Automated Predictive Diagnosis (APD): A 3-tiered shell for building expert systems for automated predictions and decision making

    NASA Technical Reports Server (NTRS)

    Steib, Michael

    1991-01-01

    The APD software features include: On-line help, Three level architecture, (Logic environments, Setup/Application environment, Data environment), Explanation capability, and File handling. The kinds of experimentation and record keeping that leads to effective expert systems is facilitated by: (1) a library of inferencing modules (in the logic environment); (2) an explanation capability which reveals logic strategies to users; (3) automated file naming conventions; (4) an information retrieval system; and (5) on-line help. These aid with effective use of knowledge, debugging and experimentation. Since the APD software anticipates the logical rules becoming complicated, it is embedded in a production system language (CLIPS) to insure the full power of the production system paradigm of CLIPS and availability of the procedural language C. The development is discussed of the APD software and three example applications: toy, experimental, and operational prototype for submarine maintenance predictions.

  12. A Functional Description of a Digital Flight Test System for Navigation and Guidance Research in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Hegarty, D. M.

    1974-01-01

    A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.

  13. Software Maintenance Exercises for a Software Engineering Project Course

    DTIC Science & Technology

    1989-02-01

    what is program style and how can it be measured? Program style has been defined as a "followed convention with respect to punctuation, capitalization ...convention with respect to punctuation, capitalization , and typographic arrangement and display." *DASC is a software tool that takes a syntactically...Specilleauons: A Frarnewo* * CM-12 Software Metrws CM- 13 Introduction to Softwarell Verification and Validation CM-14 Intelectual Property Protection for

  14. Appendix C: Rapid development approaches for system engineering and design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Conventional system architectures, development processes, and tool environments often produce systems which exceed cost expectations and are obsolete before they are fielded. This paper explores some of the reasons for this and provides recommendations for how we can do better. These recommendations are based on DoD and NASA system developments and on our exploration and development of system/software engineering tools.

  15. Evaluation of an expert system for fault detection, isolation, and recovery in the manned maneuvering unit

    NASA Technical Reports Server (NTRS)

    Rushby, John; Crow, Judith

    1990-01-01

    The authors explore issues in the specification, verification, and validation of artificial intelligence (AI) based software, using a prototype fault detection, isolation and recovery (FDIR) system for the Manned Maneuvering Unit (MMU). They use this system as a vehicle for exploring issues in the semantics of C-Language Integrated Production System (CLIPS)-style rule-based languages, the verification of properties relating to safety and reliability, and the static and dynamic analysis of knowledge based systems. This analysis reveals errors and shortcomings in the MMU FDIR system and raises a number of issues concerning software engineering in CLIPs. The authors came to realize that the MMU FDIR system does not conform to conventional definitions of AI software, despite the fact that it was intended and indeed presented as an AI system. The authors discuss this apparent disparity and related questions such as the role of AI techniques in space and aircraft operations and the suitability of CLIPS for critical applications.

  16. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  17. Facilitating mathematics learning for students with upper extremity disabilities using touch-input system.

    PubMed

    Choi, Kup-Sze; Chan, Tak-Yin

    2015-03-01

    To investigate the feasibility of using tablet device as user interface for students with upper extremity disabilities to input mathematics efficiently into computer. A touch-input system using tablet device as user interface was proposed to assist these students to write mathematics. User-switchable and context-specific keyboard layouts were designed to streamline the input process. The system could be integrated with conventional computer systems only with minor software setup. A two-week pre-post test study involving five participants was conducted to evaluate the performance of the system and collect user feedback. The mathematics input efficiency of the participants was found to improve during the experiment sessions. In particular, their performance in entering trigonometric expressions by using the touch-input system was significantly better than that by using conventional mathematics editing software with keyboard and mouse. The participants rated the touch-input system positively and were confident that they could operate at ease with more practice. The proposed touch-input system provides a convenient way for the students with hand impairment to write mathematics and has the potential to facilitate their mathematics learning. Implications for Rehabilitation Students with upper extremity disabilities often face barriers to learning mathematics which is largely based on handwriting. Conventional computer user interfaces are inefficient for them to input mathematics into computer. A touch-input system with context-specific and user-switchable keyboard layouts was designed to improve the efficiency of mathematics input. Experimental results and user feedback suggested that the system has the potential to facilitate mathematics learning for the students.

  18. Expert System Software

    NASA Technical Reports Server (NTRS)

    1989-01-01

    C Language Integrated Production System (CLIPS) is a software shell for developing expert systems is designed to allow research and development of artificial intelligence on conventional computers. Originally developed by Johnson Space Center, it enables highly efficient pattern matching. A collection of conditions and actions to be taken if the conditions are met is built into a rule network. Additional pertinent facts are matched to the rule network. Using the program, E.I. DuPont de Nemours & Co. is monitoring chemical production machines; California Polytechnic State University is investigating artificial intelligence in computer aided design; Mentor Graphics has built a new Circuit Synthesis system, and Brooke and Brooke, a law firm, can determine which facts from a file are most important.

  19. High-throughput state-machine replication using software transactional memory.

    PubMed

    Zhao, Wenbing; Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin

    2016-11-01

    State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload.

  20. High-throughput state-machine replication using software transactional memory

    PubMed Central

    Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin

    2017-01-01

    State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload. PMID:29075049

  1. Diagnostic accuracy of phosphor plate systems and conventional radiography in the detection of simulated internal root resorption.

    PubMed

    Vasconcelos, Karla de Faria; Rovaris, Karla; Nascimento, Eduarda Helena Leandro; Oliveira, Matheus Lima; Távora, Débora de Melo; Bóscolo, Frab Norberto

    2017-11-01

    To evaluate the performance of conventional radiography and photostimulable phosphor (PSP) plate in the detection of simulated internal root resorption (IRR) lesions in early stages. Twenty single-rooted teeth were X-rayed before and after having a simulated IRR early lesion. Three imaging systems were used: Kodak InSight dental film and two PSPs digital systems, Digora Optime and VistaScan. The digital images were displayed on a 20.1″ LCD monitor using the native software of each system, and the conventional radiographs were evaluated on a masked light box. Two radiologists were asked to indicate the presence or absence of IRR and, after two weeks, all images were re-evaluated. Cohen's kappa coefficient was calculated to assess intra- and interobserver agreement. The three imaging systems were compared using the Kruskal-Wallis test. For interexaminer agreement, overall kappa values were 0.70, 0.65 and 0.70 for conventional film, Digora Optima and VistaScan, respectively. Both the conventional and digital radiography presented low sensitivity, specificity, accuracy, positive and negative predictive values with no significant difference between imaging systems (p = .0725). The performance of conventional and PSP was similar in the detection of simulated IRR lesions in early stages with low accuracy.

  2. A Thermal Expert System (TEXSYS) development overview - AI-based control of a Space Station prototype thermal bus

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hack, E. C.

    1990-01-01

    A knowledge-based control system for real-time control and fault detection, isolation and recovery (FDIR) of a prototype two-phase Space Station Freedom external thermal control system (TCS) is discussed in this paper. The Thermal Expert System (TEXSYS) has been demonstrated in recent tests to be capable of both fault anticipation and detection and real-time control of the thermal bus. Performance requirements were achieved by using a symbolic control approach, layering model-based expert system software on a conventional numerical data acquisition and control system. The model-based capabilities of TEXSYS were shown to be advantageous during software development and testing. One representative example is given from on-line TCS tests of TEXSYS. The integration and testing of TEXSYS with a live TCS testbed provides some insight on the use of formal software design, development and documentation methodologies to qualify knowledge-based systems for on-line or flight applications.

  3. Computer software configuration description, 241-AY and 241 AZ tank farm MICON automation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkelman, W.D.

    This document describes the configuration process, choices and conventions used during the Micon DCS configuration activities, and issues involved in making changes to the configuration. Includes the master listings of the Tag definitions, which should be revised to authorize any changes. Revision 3 provides additional information on the software used to provide communications with the W-320 project and incorporates minor changes to ensure the document alarm setpoint priorities correctly match operational expectations.

  4. Dental radiography in New Zealand: digital versus film.

    PubMed

    Ting, N A; Broadbent, J M; Duncan, W J

    2013-09-01

    Digital x-ray systems offer advantages over conventional film systems, yet many dentists have not adopted digital technology. To assess New Zealand dental practitioners' use of--and preferences for--dental radiography systems. Cross-sectional survey. General and specialist dental practice. Postal questionnaire survey of a sample of 770 dentists (520 randomly selected general dental practitioners and all 250 specialists) listed in the 2012 NZ Dental Council Register. Type of radiography systems used by dentists. Dentists' experiences and opinions of conventional film and digital radiography. The participation rate was 55.2%. Digital radiography systems were used by 58.0% of participating dentists, most commonly among those aged 31-40 years. Users of digital radiography tended to report greater satisfaction with their radiography systems than users conventional films. Two-thirds of film users were interested in switching to digital radiography in the near future. Reasons given by conventional film users for not using digital radiography included cost, difficulty in integrating with other software systems, concern about potential technical errors, and the size and nature of the intra-oral sensors. Many dental practitioners have still not adopted digital radiography, yet its users are more satisfied with their radiography systems than are conventional film users. The latter may find changing to a digital system to be satisfying and rewarding.

  5. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  6. SIDS-toADF File Mapping Manual

    NASA Technical Reports Server (NTRS)

    McCarthy, Douglas; Smith, Matthew; Poirier, Diane; Smith, Charles A. (Technical Monitor)

    2002-01-01

    The "CFD General Notation System" (CGNS) consists of a collection of conventions, and conforming software, for the storage and retrieval of Computational Fluid Dynamics (CFD) data. It facilitates the exchange of data between sites and applications, and helps stabilize the archiving of aerodynamic data. This effort was initiated in order to streamline the procedures in exchanging data and software between NASA and its customers, but the goal is to develop CGNS into a National Standard for the exchange of aerodynamic data. The CGNS development team is comprised of members from Boeing Commercial Airplane Group, NASA-Ames, NASA-Langley, NASA-Lewis, McDonnell-Douglas Corporation (now Boeing-St. Louis), Air Force-Wright Lab., and ICEM-CFD Engineering. The elements of CGNS address all activities associated with the storage of data on external media and its movement to and from application programs. These elements include: 1) The Advanced Data Format (ADF) Database manager, consisting of both a file format specification and its I/O software, which handles the actual reading and writing of data from and to external storage media; 2) The Standard Interface Data Structures (SIDS), which specify the intellectual content of CFD data and the conventions governing naming and terminology; 3) The SIDS-to-ADF File Mapping conventions, which specify the exact location where the CFD data defined by the SIDS is to be stored within the ADF file(s); and 4) The CGNS Mid-level Library, which provides CFD-knowledgeable routines suitable for direct installation into application codes. The SIDS-toADF File Mapping Manual specifies the exact manner in which, under CGNS conventions, CFD data structures (the SIDS) are to be stored in (i.e., mapped onto) the file structure provided by the database manager (ADF). The result is a conforming CGNS database. Adherence to the mapping conventions guarantees uniform meaning and location of CFD data within ADF files, and thereby allows the construction of universal software to read and write the data.

  7. Multisource energy system project

    NASA Astrophysics Data System (ADS)

    Dawson, R. W.; Cowan, R. A.

    1987-03-01

    The mission of this project is to investigate methods of providing uninterruptible power to Army communications and navigational facilities, many of which have limited access or are located in rugged terrain. Two alternatives are currently available for deploying terrestrial stand-alone power systems: (1) conventional electric systems powered by diesel fuel, propane, or natural gas, and (2) alternative power systems using renewable energy sources such as solar photovoltaics (PV) or wind turbines (WT). The increased cost of fuels for conventional systems and the high cost of energy storage for single-source renewable energy systems have created interest in the hybrid or multisource energy system. This report will provide a summary of the first and second interim reports, final test results, and a user's guide for software that will assist in applying and designing multi-source energy systems.

  8. Final Report - Regulatory Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  9. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  10. MAX - An advanced parallel computer for space applications

    NASA Technical Reports Server (NTRS)

    Lewis, Blair F.; Bunker, Robert L.

    1991-01-01

    MAX is a fault-tolerant multicomputer hardware and software architecture designed to meet the needs of NASA spacecraft systems. It consists of conventional computing modules (computers) connected via a dual network topology. One network is used to transfer data among the computers and between computers and I/O devices. This network's topology is arbitrary. The second network operates as a broadcast medium for operating system synchronization messages and supports the operating system's Byzantine resilience. A fully distributed operating system supports multitasking in an asynchronous event and data driven environment. A large grain dataflow paradigm is used to coordinate the multitasking and provide easy control of concurrency. It is the basis of the system's fault tolerance and allows both static and dynamical location of tasks. Redundant execution of tasks with software voting of results may be specified for critical tasks. The dataflow paradigm also supports simplified software design, test and maintenance. A unique feature is a method for reliably patching code in an executing dataflow application.

  11. Use of Soft Computing Technologies For Rocket Engine Control

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  12. Crystal Symmetry Algorithms in a High-Throughput Framework for Materials

    NASA Astrophysics Data System (ADS)

    Taylor, Richard

    The high-throughput framework AFLOW that has been developed and used successfully over the last decade is improved to include fully-integrated software for crystallographic symmetry characterization. The standards used in the symmetry algorithms conform with the conventions and prescriptions given in the International Tables of Crystallography (ITC). A standard cell choice with standard origin is selected, and the space group, point group, Bravais lattice, crystal system, lattice system, and representative symmetry operations are determined. Following the conventions of the ITC, the Wyckoff sites are also determined and their labels and site symmetry are provided. The symmetry code makes no assumptions on the input cell orientation, origin, or reduction and has been integrated in the AFLOW high-throughput framework for materials discovery by adding to the existing code base and making use of existing classes and functions. The software is written in object-oriented C++ for flexibility and reuse. A performance analysis and examination of the algorithms scaling with cell size and symmetry is also reported.

  13. Realtime Multichannel System for Beat to Beat QT Interval Variability

    NASA Technical Reports Server (NTRS)

    Starc, Vito; Schlegel, Todd T.

    2006-01-01

    The measurement of beat-to-beat QT interval variability (QTV) shows clinical promise for identifying several types of cardiac pathology. However, until now, there has been no device capable of displaying, in real time on a beattobeat basis, changes in QTV in all 12 conventional leads in a continuously monitored patient. While several software programs have been designed to analyze QTV, heretofore, such programs have all involved only a few channels (at most) and/or have required laborious user interaction or offline calculations and postprocessing, limiting their clinical utility. This paper describes a PC-based ECG software program that in real time, acquires, analyzes and displays QTV and also PQ interval variability (PQV) in each of the eight independent channels that constitute the 12lead conventional ECG. The system also processes certain related signals that are derived from singular value decomposition and that help to reduce the overall effects of noise on the realtime QTV and PQV results.

  14. 2D projection-based software application for mobile C-arms optimises wire placement in the proximal femur - An experimental study.

    PubMed

    Swartman, B; Frere, D; Wei, W; Schnetzke, M; Beisemann, N; Keil, H; Franke, J; Grützner, P A; Vetter, S Y

    2017-10-01

    A new software application can be used without fixed reference markers or a registration process in wire placement. The aim was to compare placement of Kirschner wires (K-wires) into the proximal femur with the software application versus the conventional method without guiding. As study hypothesis, we assumed less placement attempts, shorter procedure time and shorter fluoroscopy time using the software. The same precision inside a proximal femur bone model using the software application was premised. The software detects a K-wire within the 2D fluoroscopic image. By evaluating its direction and tip location, it superimposes a trajectory on the image, visualizing the intended direction of the K-wire. The K-wire was positioned in 20 artificial bones with the use of software by one surgeon; 20 bones served as conventional controls. A brass thumb tack was placed into the femoral head and its tip targeted with the wire. Number of placement attempts, duration of the procedure, duration of fluoroscopy time and distance to the target in a postoperative 3D scan were recorded. Compared with the conventional method, use of the application showed fewer attempts for optimal wire placement (p=0.026), shorter duration of surgery (p=0.004), shorter fluoroscopy time (p=0.024) and higher precision (p=0.018). Final wire position was achieved in the first attempt in 17 out of 20 cases with the software and in 9 out of 20 cases with the conventional method. The study hypothesis was confirmed. The new application optimised the process of K-wire placement in the proximal femur in an artificial bone model while also improving precision. Benefits lie especially in the reduction of placement attempts and reduction of fluoroscopy time under the aspect of radiation protection. The software runs on a conventional image intensifier and can therefore be easily integrated into the daily surgical routine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design of a steganographic virtual operating system

    NASA Astrophysics Data System (ADS)

    Ashendorf, Elan; Craver, Scott

    2015-03-01

    A steganographic file system is a secure file system whose very existence on a disk is concealed. Customarily, these systems hide an encrypted volume within unused disk blocks, slack space, or atop conventional encrypted volumes. These file systems are far from undetectable, however: aside from their ciphertext footprint, they require a software or driver installation whose presence can attract attention and then targeted surveillance. We describe a new steganographic operating environment that requires no visible software installation, launching instead from a concealed bootstrap program that can be extracted and invoked with a chain of common Unix commands. Our system conceals its payload within innocuous files that typically contain high-entropy data, producing a footprint that is far less conspicuous than existing methods. The system uses a local web server to provide a file system, user interface and applications through a web architecture.

  16. Virtual chromoendoscopy can be a useful software tool in capsule endoscopy.

    PubMed

    Duque, Gabriela; Almeida, Nuno; Figueiredo, Pedro; Monsanto, Pedro; Lopes, Sandra; Freire, Paulo; Ferreira, Manuela; Carvalho, Rita; Gouveia, Hermano; Sofia, Carlos

    2012-05-01

    capsule endoscopy (CE) has revolutionized the study of small bowel. One major drawback of this technique is that we cannot interfere with image acquisition process. Therefore, the development of new software tools that could modify the images and increase both detection and diagnosis of small-bowel lesions would be very useful. The Flexible Spectral Imaging Color Enhancement (FICE) that allows for virtual chromoendoscopy is one of these software tools. to evaluate the reproducibility and diagnostic accuracy of the FICE system in CE. this prospective study involved 20 patients. First, four physicians interpreted 150 static FICE images and the overall agreement between them was determined using the Fleiss Kappa Test. Second, two experienced gastroenterologists, blinded to each other results, analyzed the complete 20 video streams. One interpreted conventional capsule videos and the other, the CE-FICE videos at setting 2. All findings were reported, regardless of their clinical value. Non-concordant findings between both interpretations were analyzed by a consensus panel of four gastroenterologists who reached a final result (positive or negative finding). in the first arm of the study the overall concordance between the four gastroenterologists was substantial (0.650). In the second arm, the conventional mode identified 75 findings and the CE-FICE mode 95. The CE-FICE mode did not miss any lesions identified by the conventional mode and allowed the identification of a higher number of angiodysplasias (35 vs 32), and erosions (41 vs. 24). there is reproducibility for the interpretation of CE-FICE images between different observers experienced in conventional CE. The use of virtual chromoendoscopy in CE seems to increase its diagnostic accuracy by highlighting small bowel erosions and angiodysplasias that weren´t identified by the conventional mode.

  17. Applied Research Study

    NASA Technical Reports Server (NTRS)

    Leach, Ronald J.

    1997-01-01

    The purpose of this project was to study the feasibility of reusing major components of a software system that had been used to control the operations of a spacecraft launched in the 1980s. The study was done in the context of a ground data processing system that was to be rehosted from a large mainframe to an inexpensive workstation. The study concluded that a systematic approach using inexpensive tools could aid in the reengineering process by identifying a set of certified reusable components. The study also developed procedures for determining duplicate versions of software, which were created because of inadequate naming conventions. Such procedures reduced reengineering costs by approximately 19.4 percent.

  18. New quests for better attitudes

    NASA Technical Reports Server (NTRS)

    Shuster, Malcolm D.

    1991-01-01

    During the past few years considerable insight was gained into the QUEST algorithm both as a maximum likelihood estimator and as a Kalman filter/smoother for systems devoid of dynamical noise. The new algorithms and software are described and analytical comparisons are made with the more conventional attitude Kalman filter. It is also described how they may be accommodated to noisy dynamical systems.

  19. Advanced Automation for Ion Trap Mass Spectrometry-New Opportunities for Real-Time Autonomous Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.

  20. Cognitive Radio Application for Evaluating Coexistence with Cognitive Radars: A Software User’s Guide

    DTIC Science & Technology

    2017-10-01

    with both conventional wireless systems as well as other types of cognitive RF systems (e.g., cognitive radar). The radio hardware for this...WBX daughtercard. This technical report begins with a system -level overview in Section 1. Then, the remaining sections explain the configuration and...Approved for public release; distribution is unlimited. 1 1. Introduction and Theory of Operation The system model has 2 kinds of cognitive radio

  1. A knowledge based software engineering environment testbed

    NASA Technical Reports Server (NTRS)

    Gill, C.; Reedy, A.; Baker, L.

    1985-01-01

    The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing

  2. Functional Fault Modeling Conventions and Practices for Real-Time Fault Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the conventions, best practices, and processes that were established based on the prototype development of a Functional Fault Model (FFM) for a Cryogenic System that would be used for real-time Fault Isolation in a Fault Detection, Isolation, and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using a suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FFMs were created offline but would eventually be used by a real-time reasoner to isolate faults in a Cryogenic System. Through their development and review, a set of modeling conventions and best practices were established. The prototype FFM development also provided a pathfinder for future FFM development processes. This paper documents the rationale and considerations for robust FFMs that can easily be transitioned to a real-time operating environment.

  3. Embedded systems for supporting computer accessibility.

    PubMed

    Mulfari, Davide; Celesti, Antonio; Fazio, Maria; Villari, Massimo; Puliafito, Antonio

    2015-01-01

    Nowadays, customized AT software solutions allow their users to interact with various kinds of computer systems. Such tools are generally available on personal devices (e.g., smartphones, laptops and so on) commonly used by a person with a disability. In this paper, we investigate a way of using the aforementioned AT equipments in order to access many different devices without assistive preferences. The solution takes advantage of open source hardware and its core component consists of an affordable Linux embedded system: it grabs data coming from the assistive software, which runs on the user's personal device, then, after processing, it generates native keyboard and mouse HID commands for the target computing device controlled by the end user. This process supports any operating system available on the target machine and it requires no specialized software installation; therefore the user with a disability can rely on a single assistive tool to control a wide range of computing platforms, including conventional computers and many kinds of mobile devices, which receive input commands through the USB HID protocol.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  5. A microkernel design for component-based parallel numerical software systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.

    1999-01-13

    What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objectsmore » share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.« less

  6. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions.

    PubMed

    Ender, Andreas; Zimmermann, Moritz; Attin, Thomas; Mehl, Albert

    2016-09-01

    Quadrant impressions are commonly used as alternative to full-arch impressions. Digital impression systems provide the ability to take these impressions very quickly; however, few studies have investigated the accuracy of the technique in vivo. The aim of this study is to assess the precision of digital quadrant impressions in vivo in comparison to conventional impression techniques. Impressions were obtained via two conventional (metal full-arch tray, CI, and triple tray, T-Tray) and seven digital impression systems (Lava True Definition Scanner, T-Def; Lava Chairside Oral Scanner, COS; Cadent iTero, ITE; 3Shape Trios, TRI; 3Shape Trios Color, TRC; CEREC Bluecam, Software 4.0, BC4.0; CEREC Bluecam, Software 4.2, BC4.2; and CEREC Omnicam, OC). Impressions were taken three times for each of five subjects (n = 15). The impressions were then superimposed within the test groups. Differences from model surfaces were measured using a normal surface distance method. Precision was calculated using the Perc90_10 value. The values for all test groups were statistically compared. The precision ranged from 18.8 (CI) to 58.5 μm (T-Tray), with the highest precision in the CI, T-Def, BC4.0, TRC, and TRI groups. The deviation pattern varied distinctly depending on the impression method. Impression systems with single-shot capture exhibited greater deviations at the tooth surface whereas high-frame rate impression systems differed more in gingival areas. Triple tray impressions displayed higher local deviation at the occlusal contact areas of upper and lower jaw. Digital quadrant impression methods achieve a level of precision, comparable to conventional impression techniques. However, there are significant differences in terms of absolute values and deviation pattern. With all tested digital impression systems, time efficient capturing of quadrant impressions is possible. The clinical precision of digital quadrant impression models is sufficient to cover a broad variety of restorative indications. Yet the precision differs significantly between the digital impression systems.

  7. Application Reuse Library for Software, Requirements, and Guidelines

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Thronesbery, Carroll

    1994-01-01

    Better designs are needed for expert systems and other operations automation software, for more reliable, usable and effective human support. A prototype computer-aided Application Reuse Library shows feasibility of supporting concurrent development and improvement of advanced software by users, analysts, software developers, and human-computer interaction experts. Such a library expedites development of quality software, by providing working, documented examples, which support understanding, modification and reuse of requirements as well as code. It explicitly documents and implicitly embodies design guidelines, standards and conventions. The Application Reuse Library provides application modules with Demo-and-Tester elements. Developers and users can evaluate applicability of a library module and test modifications, by running it interactively. Sub-modules provide application code and displays and controls. The library supports software modification and reuse, by providing alternative versions of application and display functionality. Information about human support and display requirements is provided, so that modifications will conform to guidelines. The library supports entry of new application modules from developers throughout an organization. Example library modules include a timer, some buttons and special fonts, and a real-time data interface program. The library prototype is implemented in the object-oriented G2 environment for developing real-time expert systems.

  8. SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2008-01-01

    This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.

  9. CONTIN XPCS: software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less

  10. CONTIN XPCS: software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics

    DOE PAGES

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less

  11. Analytical Study of Cockpit Information Requirements.

    DTIC Science & Technology

    1981-04-01

    monitoring and control of engine case heating and cooling . Generally, the crew will be buffered from these changes by the increasingly more...advantages of color for prioritization, data separation and added dimensionality should apply equally well here as with conventional EADI and EHSI formats...addition of position/time control to a 3-D RNAV system converts it into a 4-D system. A 3-D system requires the addition of a time source plus software

  12. Real-Time 12-Lead High-Frequency QRS Electrocardiography for Enhanced Detection of Myocardial Ischemia and Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Kulecz, Walter B.; DePalma, Jude L.; Feiveson, Alan H.; Wilson, John S.; Rahman, M. Atiar; Bungo, Michael W.

    2004-01-01

    Several studies have shown that diminution of the high-frequency (HF; 150-250 Hz) components present within the central portion of the QRS complex of an electrocardiogram (ECG) is a more sensitive indicator for the presence of myocardial ischemia than are changes in the ST segments of the conventional low-frequency ECG. However, until now, no device has been capable of displaying, in real time on a beat-to-beat basis, changes in these HF QRS ECG components in a continuously monitored patient. Although several software programs have been designed to acquire the HF components over the entire QRS interval, such programs have involved laborious off-line calculations and postprocessing, limiting their clinical utility. We describe a personal computer-based ECG software program developed recently at the National Aeronautics and Space Administration (NASA) that acquires, analyzes, and displays HF QRS components in each of the 12 conventional ECG leads in real time. The system also updates these signals and their related derived parameters in real time on a beat-to-beat basis for any chosen monitoring period and simultaneously displays the diagnostic information from the conventional (low-frequency) 12-lead ECG. The real-time NASA HF QRS ECG software is being evaluated currently in multiple clinical settings in North America. We describe its potential usefulness in the diagnosis of myocardial ischemia and coronary artery disease.

  13. Advanced Protection & Service Restoration for FREEDM Systems

    NASA Astrophysics Data System (ADS)

    Singh, Urvir

    A smart electric power distribution system (FREEDM system) that incorporates DERs (Distributed Energy Resources), SSTs (Solid State Transformers - that can limit the fault current to two times of the rated current) & RSC (Reliable & Secure Communication) capabilities has been studied in this work in order to develop its appropriate protection & service restoration techniques. First, a solution is proposed that can make conventional protective devices be able to provide effective protection for FREEDM systems. Results show that although this scheme can provide required protection but it can be quite slow. Using the FREEDM system's communication capabilities, a communication assisted Overcurrent (O/C) protection scheme is proposed & results show that by using communication (blocking signals) very fast operating times are achieved thereby, mitigating the problem of conventional O/C scheme. Using the FREEDM System's DGI (Distributed Grid Intelligence) capability, an automated FLISR (Fault Location, Isolation & Service Restoration) scheme is proposed that is based on the concept of 'software agents' & uses lesser data (than conventional centralized approaches). Test results illustrated that this scheme is able to provide a global optimal system reconfiguration for service restoration.

  14. Timing characterization and analysis of the Linux-based, closed loop control computer for the Subaru Telescope laser guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Dinkins, Matthew; Colley, Stephen

    2008-07-01

    Hardware and software specialized for real time control reduce the timing jitter of executables when compared to off-the-shelf hardware and software. However, these specialized environments are costly in both money and development time. While conventional systems have a cost advantage, the jitter in these systems is much larger and potentially problematic. This study analyzes the timing characterstics of a standard Dell server running a fully featured Linux operating system to determine if such a system would be capable of meeting the timing requirements for closed loop operations. Investigations are preformed on the effectiveness of tools designed to make off-the-shelf system performance closer to specialized real time systems. The Gnu Compiler Collection (gcc) is compared to the Intel C Compiler (icc), compiler optimizations are investigated, and real-time extensions to Linux are evaluated.

  15. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  16. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  17. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE PAGES

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; ...

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  18. Artefacts found in computed radiography.

    PubMed

    Cesar, L J; Schueler, B A; Zink, F E; Daly, T R; Taubel, J P; Jorgenson, L L

    2001-02-01

    Artefacts on radiographic images are distracting and may compromise accurate diagnosis. Although most artefacts that occur in conventional radiography have become familiar, computed radiography (CR) systems produce artefacts that differ from those found in conventional radiography. We have encountered a variety of artefacts in CR images that were produced from four different models plate reader. These artefacts have been identified and traced to the imaging plate, plate reader, image processing software or laser printer or to operator error. Understanding the potential sources of CR artefacts will aid in identifying and resolving problems quickly and help prevent future occurrences.

  19. A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1)

    NASA Astrophysics Data System (ADS)

    Hassell, David; Gregory, Jonathan; Blower, Jon; Lawrence, Bryan N.; Taylor, Karl E.

    2017-12-01

    The CF (Climate and Forecast) metadata conventions are designed to promote the creation, processing, and sharing of climate and forecasting data using Network Common Data Form (netCDF) files and libraries. The CF conventions provide a description of the physical meaning of data and of their spatial and temporal properties, but they depend on the netCDF file encoding which can currently only be fully understood and interpreted by someone familiar with the rules and relationships specified in the conventions documentation. To aid in development of CF-compliant software and to capture with a minimal set of elements all of the information contained in the CF conventions, we propose a formal data model for CF which is independent of netCDF and describes all possible CF-compliant data. Because such data will often be analysed and visualised using software based on other data models, we compare our CF data model with the ISO 19123 coverage model, the Open Geospatial Consortium CF netCDF standard, and the Unidata Common Data Model. To demonstrate that this CF data model can in fact be implemented, we present cf-python, a Python software library that conforms to the model and can manipulate any CF-compliant dataset.

  20. The Project Of Another Low-Cost Metaphase Finder.

    PubMed

    Furukawa, Akira

    2016-12-01

    The most popular and 'gold standard' phenomenon in Biological dosimetry is the appearance of dicentric chromosomes in metaphase in white blood cells. The metaphase finder is a tool for biological dosimetry that finds metaphase cells on slide glasses. The author and a software company were using new special software that was faster than conventional systems. A Nikon Eclipse Ni-E microscope with motorised X-Y stage, 4× objective lens and 1920 × 1024 pixels colour camera for hardware were used. The software uses mathematical morphology filters. The new system was compact and low-priced. And the remarkable point is, this system can be applicable not only to human blood, but also to non-human samples. The speed was 208-236 s per 5 × 20 mm area, while capturing 378 images, which achieved the aim of the project. The false-positive ratio achieved below 5% in some slides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Semi-automatic computerized approach to radiological quantification in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Steiner, Wolfgang; Schoeffmann, Sylvia; Prommegger, Andrea; Boegl, Karl; Klinger, Thomas; Peloschek, Philipp; Kainberger, Franz

    2004-04-01

    Rheumatoid Arthritis (RA) is a common systemic disease predominantly involving the joints. Precise diagnosis and follow-up therapy requires objective quantification. For this purpose, radiological analyses using standardized scoring systems are considered to be the most appropriate method. The aim of our study is to develop a semi-automatic image analysis software, especially applicable for scoring of joints in rheumatic disorders. The X-Ray RheumaCoach software delivers various scoring systems (Larsen-Score and Ratingen-Rau-Score) which can be applied by the scorer. In addition to the qualitative assessment of joints performed by the radiologist, a semi-automatic image analysis for joint detection and measurements of bone diameters and swollen tissue supports the image assessment process. More than 3000 radiographs from hands and feet of more than 200 RA patients were collected, analyzed, and statistically evaluated. Radiographs were quantified using conventional paper-based Larsen score and the X-Ray RheumaCoach software. The use of the software shortened the scoring time by about 25 percent and reduced the rate of erroneous scorings in all our studies. Compared to paper-based scoring methods, the X-Ray RheumaCoach software offers several advantages: (i) Structured data analysis and input that minimizes variance by standardization, (ii) faster and more precise calculation of sum scores and indices, (iii) permanent data storing and fast access to the software"s database, (iv) the possibility of cross-calculation to other scores, (v) semi-automatic assessment of images, and (vii) reliable documentation of results in the form of graphical printouts.

  2. From WSN towards WoT: Open API Scheme Based on oneM2M Platforms.

    PubMed

    Kim, Jaeho; Choi, Sung-Chan; Ahn, Il-Yeup; Sung, Nak-Myoung; Yun, Jaeseok

    2016-10-06

    Conventional computing systems have been able to be integrated into daily objects and connected to each other due to advances in computing and network technologies, such as wireless sensor networks (WSNs), forming a global network infrastructure, called the Internet of Things (IoT). To support the interconnection and interoperability between heterogeneous IoT systems, the availability of standardized, open application programming interfaces (APIs) is one of the key features of common software platforms for IoT devices, gateways, and servers. In this paper, we present a standardized way of extending previously-existing WSNs towards IoT systems, building the world of the Web of Things (WoT). Based on the oneM2M software platforms developed in the previous project, we introduce a well-designed open API scheme and device-specific thing adaptation software (TAS) enabling WSN elements, such as a wireless sensor node, to be accessed in a standardized way on a global scale. Three pilot services are implemented (i.e., a WiFi-enabled smart flowerpot, voice-based control for ZigBee-connected home appliances, and WiFi-connected AR.Drone control) to demonstrate the practical usability of the open API scheme and TAS modules. Full details on the method of integrating WSN elements into three example systems are described at the programming code level, which is expected to help future researchers in integrating their WSN systems in IoT platforms, such as oneM2M. We hope that the flexibly-deployable, easily-reusable common open API scheme and TAS-based integration method working with the oneM2M platforms will help the conventional WSNs in diverse industries evolve into the emerging WoT solutions.

  3. From WSN towards WoT: Open API Scheme Based on oneM2M Platforms

    PubMed Central

    Kim, Jaeho; Choi, Sung-Chan; Ahn, Il-Yeup; Sung, Nak-Myoung; Yun, Jaeseok

    2016-01-01

    Conventional computing systems have been able to be integrated into daily objects and connected to each other due to advances in computing and network technologies, such as wireless sensor networks (WSNs), forming a global network infrastructure, called the Internet of Things (IoT). To support the interconnection and interoperability between heterogeneous IoT systems, the availability of standardized, open application programming interfaces (APIs) is one of the key features of common software platforms for IoT devices, gateways, and servers. In this paper, we present a standardized way of extending previously-existing WSNs towards IoT systems, building the world of the Web of Things (WoT). Based on the oneM2M software platforms developed in the previous project, we introduce a well-designed open API scheme and device-specific thing adaptation software (TAS) enabling WSN elements, such as a wireless sensor node, to be accessed in a standardized way on a global scale. Three pilot services are implemented (i.e., a WiFi-enabled smart flowerpot, voice-based control for ZigBee-connected home appliances, and WiFi-connected AR.Drone control) to demonstrate the practical usability of the open API scheme and TAS modules. Full details on the method of integrating WSN elements into three example systems are described at the programming code level, which is expected to help future researchers in integrating their WSN systems in IoT platforms, such as oneM2M. We hope that the flexibly-deployable, easily-reusable common open API scheme and TAS-based integration method working with the oneM2M platforms will help the conventional WSNs in diverse industries evolve into the emerging WoT solutions. PMID:27782058

  4. Tactical Action Officer Intelligent Tutoring System (TAO ITS)

    DTIC Science & Technology

    2006-01-01

    scenario. As well as the intrinsic feedback that free - play simulations naturally provide a student, the TAO ITS provides detailed, useful extrinsic feedback...incorporate use of free - play simulators into their curriculum, affordably. This is a major shortcoming of conventional CBT as student manipulation of...tutoring systems are ideal for incorporating desktop free - play simulators into computer-based training since the software can stand in for a human

  5. The EMIR experience in the use of software control simulators to speed up the time to telescope

    NASA Astrophysics Data System (ADS)

    Lopez Ramos, Pablo; López-Ruiz, J. C.; Moreno Arce, Heidy; Rosich, Josefina; Perez Menor, José Maria

    2012-09-01

    One of the main problems facing development teams working on instrument control systems consists on the need to access mechanisms which are not available until well into the integration phase. The need to work with real hardware creates additional problems like, among others: certain faults cannot be tested due to the possibility of hardware damage, taking the system to the limit may shorten its operational lifespan and the full system may not be available during some periods due to maintenance and/or testing of individual components. These problems can be treated with the use of simulators and by applying software/hardware standards. Since information on the construction and performance of electro-mechanical systems is available at relatively early stages of the project, simulators are developed in advance (before the existence of the mechanism) or, if conventions and standards have been correctly followed, a previously developed simulator might be used. This article describes our experience in building software simulators and the main advantages we have identified, which are: the control software can be developed even in the absence of real hardware, critical tests can be prepared using the simulated systems, test system behavior for hardware failure situations that represent a risk of the real system, and the speed up of in house integration of the entire instrument. The use of simulators allows us to reduce development, testing and integration time.

  6. [Comparison of root resorption between self-ligating and conventional brackets using cone-beam CT].

    PubMed

    Liu, Yun; Guo, Hong-ming

    2016-04-01

    To analyze the differences of root resorption between passive self-ligating and conventional brackets, and to determine the relationship between passive self-ligating brackets and root resorption. Fifty patients were randomly divided into 2 groups using passive self-ligating brackets or conventional straight wire brackets (0.022 system), respectively. Cone-beam CT was taken before and after treatment. The amount of external apical root resorption of maxillary incisors was measured on CBCT images. Student's t test was performed to analyze the differences of root apical resorption between the 2 groups with SPSS17.0 software package. No significant difference(P> 0.05) in root resorption of maxillary incisors was found between passive self-ligating brackets and conventional brackets. Passive self-ligating brackets and conventional brackets can cause root resorption, but the difference was not significant. Passive self-ligating brackets do not induce more root resorption.

  7. Technical Note: Development and performance of a software tool for quality assurance of online replanning with a conventional Linac or MR-Linac.

    PubMed

    Chen, Guang-Pei; Ahunbay, Ergun; Li, X Allen

    2016-04-01

    To develop an integrated quality assurance (QA) software tool for online replanning capable of efficiently and automatically checking radiation treatment (RT) planning parameters and gross plan quality, verifying treatment plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary monitor unit (MU) calculation with or without a presence of a magnetic field from MR-Linac, and validating the delivery record consistency with the plan. The software tool, named ArtQA, was developed to obtain and compare plan and treatment parameters from both the TPS and the R&V system database. The TPS data are accessed via direct file reading and the R&V data are retrieved via open database connectivity and structured query language. Plan quality is evaluated with both the logical consistency of planning parameters and the achieved dose-volume histograms. Beams in between the TPS and R&V system are matched based on geometry configurations. To consider the effect of a 1.5 T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. ArtQA has been used in their clinic and can quickly detect inconsistencies and deviations in the entire RT planning process. With the use of the ArtQA tool, the efficiency for plan check including plan quality, data transfer, and delivery check can be improved by at least 60%. The newly developed independent MU calculation tool for MR-Linac reduces the difference between the plan and calculated MUs by 10%. The software tool ArtQA can be used to perform a comprehensive QA check from planning to delivery with conventional Linac or MR-Linac and is an essential tool for online replanning where the QA check needs to be performed rapidly.

  8. Technical Note: Development and performance of a software tool for quality assurance of online replanning with a conventional Linac or MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Ahunbay, Ergun; Li, X. Allen

    Purpose: To develop an integrated quality assurance (QA) software tool for online replanning capable of efficiently and automatically checking radiation treatment (RT) planning parameters and gross plan quality, verifying treatment plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary monitor unit (MU) calculation with or without a presence of a magnetic field from MR-Linac, and validating the delivery record consistency with the plan. Methods: The software tool, named ArtQA, was developed to obtain and compare plan and treatment parameters from both the TPS and the R&V system database. The TPS data aremore » accessed via direct file reading and the R&V data are retrieved via open database connectivity and structured query language. Plan quality is evaluated with both the logical consistency of planning parameters and the achieved dose–volume histograms. Beams in between the TPS and R&V system are matched based on geometry configurations. To consider the effect of a 1.5 T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. Results: ArtQA has been used in their clinic and can quickly detect inconsistencies and deviations in the entire RT planning process. With the use of the ArtQA tool, the efficiency for plan check including plan quality, data transfer, and delivery check can be improved by at least 60%. The newly developed independent MU calculation tool for MR-Linac reduces the difference between the plan and calculated MUs by 10%. Conclusions: The software tool ArtQA can be used to perform a comprehensive QA check from planning to delivery with conventional Linac or MR-Linac and is an essential tool for online replanning where the QA check needs to be performed rapidly.« less

  9. Intelligent fault management for the Space Station active thermal control system

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Faltisco, Robert M.

    1992-01-01

    The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.

  10. Fault-Tolerant Software-Defined Radio on Manycore

    NASA Technical Reports Server (NTRS)

    Ricketts, Scott

    2015-01-01

    Software-defined radio (SDR) platforms generally rely on field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), but such architectures require significant software development. In addition, application demands for radiation mitigation and fault tolerance exacerbate programming challenges. MaXentric Technologies, LLC, has developed a manycore-based SDR technology that provides 100 times the throughput of conventional radiationhardened general purpose processors. Manycore systems (30-100 cores and beyond) have the potential to provide high processing performance at error rates that are equivalent to current space-deployed uniprocessor systems. MaXentric's innovation is a highly flexible radio, providing over-the-air reconfiguration; adaptability; and uninterrupted, real-time, multimode operation. The technology is also compliant with NASA's Space Telecommunications Radio System (STRS) architecture. In addition to its many uses within NASA communications, the SDR can also serve as a highly programmable research-stage prototyping device for new waveforms and other communications technologies. It can also support noncommunication codes on its multicore processor, collocated with the communications workload-reducing the size, weight, and power of the overall system by aggregating processing jobs to a single board computer.

  11. Knowledge-based control of an adaptive interface

    NASA Technical Reports Server (NTRS)

    Lachman, Roy

    1989-01-01

    The analysis, development strategy, and preliminary design for an intelligent, adaptive interface is reported. The design philosophy couples knowledge-based system technology with standard human factors approaches to interface development for computer workstations. An expert system has been designed to drive the interface for application software. The intelligent interface will be linked to application packages, one at a time, that are planned for multiple-application workstations aboard Space Station Freedom. Current requirements call for most Space Station activities to be conducted at the workstation consoles. One set of activities will consist of standard data management services (DMS). DMS software includes text processing, spreadsheets, data base management, etc. Text processing was selected for the first intelligent interface prototype because text-processing software can be developed initially as fully functional but limited with a small set of commands. The program's complexity then can be increased incrementally. The intelligent interface includes the operator's behavior and three types of instructions to the underlying application software are included in the rule base. A conventional expert-system inference engine searches the data base for antecedents to rules and sends the consequents of fired rules as commands to the underlying software. Plans for putting the expert system on top of a second application, a database management system, will be carried out following behavioral research on the first application. The intelligent interface design is suitable for use with ground-based workstations now common in government, industrial, and educational organizations.

  12. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    PubMed Central

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079

  13. Improving Earth Science Metadata: Modernizing ncISO

    NASA Astrophysics Data System (ADS)

    O'Brien, K.; Schweitzer, R.; Neufeld, D.; Burger, E. F.; Signell, R. P.; Arms, S. C.; Wilcox, K.

    2016-12-01

    ncISO is a package of tools developed at NOAA's National Center for Environmental Information (NCEI) that facilitates the generation of ISO 19115-2 metadata from NetCDF data sources. The tool currently exists in two iterations: a command line utility and a web-accessible service within the THREDDS Data Server (TDS). Several projects, including NOAA's Unified Access Framework (UAF), depend upon ncISO to generate the ISO-compliant metadata from their data holdings and use the resulting information to populate discovery tools such as NCEI's ESRI Geoportal and NOAA's data.noaa.gov CKAN system. In addition to generating ISO 19115-2 metadata, the tool calculates a rubric score based on how well the dataset follows the Attribute Conventions for Dataset Discovery (ACDD). The result of this rubric calculation, along with information about what has been included and what is missing is displayed in an HTML document generated by the ncISO software package. Recently ncISO has fallen behind in terms of supporting updates to conventions such updates to the ACDD. With the blessing of the original programmer, NOAA's UAF has been working to modernize the ncISO software base. In addition to upgrading ncISO to utilize version1.3 of the ACDD, we have been working with partners at Unidata and IOOS to unify the tool's code base. In essence, we are merging the command line capabilities into the same software that will now be used by the TDS service, allowing easier updates when conventions such as ACDD are updated in the future. In this presentation, we will discuss the work the UAF project has done to support updated conventions within ncISO, as well as describe how the updated tool is helping to improve metadata throughout the earth and ocean sciences.

  14. Design and Development of a Virtual Facility Tour Using iPIX(TM) Technology

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2002-01-01

    The capabilities of the iPIX virtual tour software, in conjunction with a web-based interface create a unique and valuable system that provides users with an efficient virtual capability to tour facilities while being able to acquire the necessary technical content is demonstrated. A users guide to the Mechanics and Durability Branch's virtual tour is presented. The guide provides the user with instruction on operating both scripted and unscripted tours as well as a discussion of the tours for Buildings 1148, 1205 and 1256 and NASA Langley Research Center. Furthermore, an indepth discussion has been presented on how to develop a virtual tour using the iPIX software interface with conventional html and JavaScript. The main aspects for discussion are on network and computing issues associated with using this capability. A discussion of how to take the iPIX pictures, manipulate them and bond them together to form hemispherical images is also presented. Linking of images with additional multimedia content is discussed. Finally, a method to integrate the iPIX software with conventional HTML and JavaScript to facilitate linking with multi-media is presented.

  15. Investigation of Electronic Generation of Visual Images for Air Force Technical Training. Interim Report for Period May 1974-October 1975.

    ERIC Educational Resources Information Center

    Filinger, Ronald H.; Hall, Paul W.

    Because large scale individualized learning systems place excessive demands on conventional means of producing audiovisual software, electronic image generation has been investigated as an alternative. A prototype, experimental device, Scanimate-500, was designed and built by the Computer Image Corporation. It uses photographic, television, and…

  16. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  17. Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  18. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Astrophysics Data System (ADS)

    Glass, B. J.

    1992-10-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  19. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  20. 4onse: four times open & non-conventional technology for sensing the environment

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Ratnayake, Rangageewa; Antonovic, Milan; Strigaro, Daniele; Cardoso, Mirko; Hoffmann, Marcus

    2017-04-01

    The availability of complete, quality and dense monitoring hydro-meteorological data is essential to address a number of practical issues including, but not limited to, flood-water and urban drainage management, climate change impact assessment, early warning and risk management, now-casting and weather predictions. Thanks to the recent technological advances such as Internet Of Things, Big Data and Ubiquitous Internet, non-conventional monitoring systems based on open technologies and low cost sensors may represent a great opportunity either as a complement of authoritative monitoring network or as a vital source of information wherever existing monitoring networks are in decline or completely missing. Nevertheless, scientific literature on such a kind of open and non-conventional monitoring systems is still limited and often relates to prototype engineering and testing in rather limited case studies. For this reason the 4onse project aims at integrating existing open technologies in the field of Free & Open Source Software, Open Hardware, Open Data, and Open Standards and evaluate this kind of system in a real case (about 30 stations) for a medium period of 2 years to better scientifically understand strengths, criticalities and applicabilities in terms of data quality; system durability; management costs; performances; sustainability. The ultimate objective is to contribute in non-conventional monitoring systems adoption based on four open technologies.

  1. pyam: Python Implementation of YaM

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    pyam is a software development framework with tools for facilitating the rapid development of software in a concurrent software development environment. pyam provides solutions for development challenges associated with software reuse, managing multiple software configurations, developing software product lines, and multiple platform development and build management. pyam uses release-early, release-often development cycles to allow developers to integrate their changes incrementally into the system on a continual basis. It facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. It uses modules and packages to organize and share software across multiple software products, and uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One sidebenefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability, and software reuse. pyam is written in Python and is organized as a set of utilities on top of the open source SVN software version control package. All development software is organized into a collection of modules. pyam packages are defined as sub-collections of the available modules. Developers can set up private sandboxes for module/package development. All module/package development takes place on private SVN branches. High-level pyam commands support the setup, update, and release of modules and packages. Released and pre-built versions of modules are available to developers. Developers can tailor the source/link module mix for their sandboxes so that new sandboxes (even large ones) can be built up easily and quickly by pointing to pre-existing module releases. All inter-module interfaces are publicly exported via links. A minimal, but uniform, convention is used for building modules.

  2. A Discussion of the Software Quality Assurance Role

    NASA Technical Reports Server (NTRS)

    Kandt, Ronald Kirk

    2010-01-01

    The basic idea underlying this paper is that the conventional understanding of the role of a Software Quality Assurance (SQA) engineer is unduly limited. This is because few have asked who the customers of a SQA engineer are. Once you do this, you can better define what tasks a SQA engineer should perform, as well as identify the knowledge and skills that such a person should have. The consequence of doing this is that a SQA engineer can provide greater value to his or her customers. It is the position of this paper that a SQA engineer providing significant value to his or her customers must not only assume the role of an auditor, but also that of a software and systems engineer. This is because software engineers and their managers particularly value contributions that directly impact products and their development. These ideas are summarized as lessons learned, based on my experience at Jet Propulsion Laboratory (JPL).

  3. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    NASA Astrophysics Data System (ADS)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.

  4. Analysis of geothermal temperatures for heat pumps application in Paraná (Brasil)

    NASA Astrophysics Data System (ADS)

    Santos, Alexandre F.; de Souza, Heraldo J. L.; Cantao, Mauricio P.; Gaspar, Pedro D.

    2016-11-01

    Geothermal heat pumps are broadly used in developed countries but scarcely in Brazil, in part because there is a lack of Brazilian soil temperature data. The aims of this work are: to present soil temperature measurements and to compare geothermal heat pump system performances with conventional air conditioning systems. Geothermal temperature measurement results are shown for ten Paraná State cities, representing different soil and climate conditions. The measurements were made yearlong with calibrated equipment and digital data acquisition system in different measuring stations. Geothermal and ambient temperature data were used for simulations of the coeficient of performance (COP), by means of a working fluid pressure-enthalpy diagram based software for vapor-compression cycle. It was verified that geothermal temperature measured between January 13 to October 13, 2013, varied from 16 to 24 °C, while room temperature has varied between 2 and 35 °C. Average COP values for conventional system were 3.7 (cooling mode) and 5.0 kW/kW (heating mode), corresponding to 5.9 and 7.9 kW/kW for geothermal system. Hence it was verified an average eficiency gain of 59%with geothermal system utilization in comparison with conventional system.

  5. Optimisation of the hybrid renewable energy system by HOMER, PSO and CPSO for the study area

    NASA Astrophysics Data System (ADS)

    Khare, Vikas; Nema, Savita; Baredar, Prashant

    2017-04-01

    This study is based on simulation and optimisation of the renewable energy system of the police control room at Sagar in central India. To analyse this hybrid system, the meteorological data of solar insolation and hourly wind speeds of Sagar in central India (longitude 78°45‧ and latitude 23°50‧) have been considered. The pattern of load consumption is studied and suitably modelled for optimisation of the hybrid energy system using HOMER software. The results are compared with those of the particle swarm optimisation and the chaotic particle swarm optimisation algorithms. The use of these two algorithms to optimise the hybrid system leads to a higher quality result with faster convergence. Based on the optimisation result, it has been found that replacing conventional energy sources by the solar-wind hybrid renewable energy system will be a feasible solution for the distribution of electric power as a stand-alone application at the police control room. This system is more environmentally friendly than the conventional diesel generator. The fuel cost reduction is approximately 70-80% more than that of the conventional diesel generator.

  6. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  7. Shade matching assisted by digital photography and computer software.

    PubMed

    Schropp, Lars

    2009-04-01

    To evaluate the efficacy of digital photographs and graphic computer software for color matching compared to conventional visual matching. The shade of a tab from a shade guide (Vita 3D-Master Guide) placed in a phantom head was matched to a second guide of the same type by nine observers. This was done for twelve selected shade tabs (tests). The shade-matching procedure was performed visually in a simulated clinic environment and with digital photographs, and the time spent for both procedures was recorded. An alternative arrangement of the shade tabs was used in the digital photographs. In addition, a graphic software program was used for color analysis. Hue, chroma, and lightness values of the test tab and all tabs of the second guide were derived from the digital photographs. According to the CIE L*C*h* color system, the color differences between the test tab and tabs of the second guide were calculated. The shade guide tab that deviated least from the test tab was determined to be the match. Shade matching performance by means of graphic software was compared with the two visual methods and tested by Chi-square tests (alpha= 0.05). Eight of twelve test tabs (67%) were matched correctly by the computer software method. This was significantly better (p < 0.02) than the performance of the visual shade matching methods conducted in the simulated clinic (32% correct match) and with photographs (28% correct match). No correlation between time consumption for the visual shade matching methods and frequency of correct match was observed. Shade matching assisted by digital photographs and computer software was significantly more reliable than by conventional visual methods.

  8. Autonomous Performance Monitoring System: Monitoring and Self-Tuning (MAST)

    NASA Technical Reports Server (NTRS)

    Peterson, Chariya; Ziyad, Nigel A.

    2000-01-01

    Maintaining the long-term performance of software onboard a spacecraft can be a major factor in the cost of operations. In particular, the task of controlling and maintaining a future mission of distributed spacecraft will undoubtedly pose a great challenge, since the complexity of multiple spacecraft flying in formation grows rapidly as the number of spacecraft in the formation increases. Eventually, new approaches will be required in developing viable control systems that can handle the complexity of the data and that are flexible, reliable and efficient. In this paper we propose a methodology that aims to maintain the accuracy of flight software, while reducing the computational complexity of software tuning tasks. The proposed Monitoring and Self-Tuning (MAST) method consists of two parts: a flight software monitoring algorithm and a tuning algorithm. The dependency on the software being monitored is mostly contained in the monitoring process, while the tuning process is a generic algorithm independent of the detailed knowledge on the software. This architecture will enable MAST to be applicable to different onboard software controlling various dynamics of the spacecraft, such as attitude self-calibration, and formation control. An advantage of MAST over conventional techniques such as filter or batch least square is that the tuning algorithm uses machine learning approach to handle uncertainty in the problem domain, resulting in reducing over all computational complexity. The underlying concept of this technique is a reinforcement learning scheme based on cumulative probability generated by the historical performance of the system. The success of MAST will depend heavily on the reinforcement scheme used in the tuning algorithm, which guarantees the tuning solutions exist.

  9. Reliable prediction of heat transfer coefficient in three-phase bubble column reactor via adaptive neuro-fuzzy inference system and regularization network

    NASA Astrophysics Data System (ADS)

    Garmroodi Asil, A.; Nakhaei Pour, A.; Mirzaei, Sh.

    2018-04-01

    In the present article, generalization performances of regularization network (RN) and optimize adaptive neuro-fuzzy inference system (ANFIS) are compared with a conventional software for prediction of heat transfer coefficient (HTC) as a function of superficial gas velocity (5-25 cm/s) and solid fraction (0-40 wt%) at different axial and radial locations. The networks were trained by resorting several sets of experimental data collected from a specific system of air/hydrocarbon liquid phase/silica particle in a slurry bubble column reactor (SBCR). A special convection HTC measurement probe was manufactured and positioned in an axial distance of 40 and 130 cm above the sparger at center and near the wall of SBCR. The simulation results show that both in-house RN and optimized ANFIS due to powerful noise filtering capabilities provide superior performances compared to the conventional software of MATLAB ANFIS and ANN toolbox. For the case of 40 and 130 cm axial distance from center of sparger, at constant superficial gas velocity of 25 cm/s, adding 40 wt% silica particles to liquid phase leads to about 66% and 69% increasing in HTC respectively. The HTC in the column center for all the cases studied are about 9-14% larger than those near the wall region.

  10. Improved Real-Time Monitoring Using Multiple Expert Systems

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia

    1993-01-01

    Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.

  11. The design of wavefront coded imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Shun; Cen, Zhaofeng; Li, Xiaotong

    2016-10-01

    Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.

  12. The Stability and Validity of Automated Vocal Analysis in Preverbal Preschoolers With Autism Spectrum Disorder

    PubMed Central

    Woynaroski, Tiffany; Oller, D. Kimbrough; Keceli-Kaysili, Bahar; Xu, Dongxin; Richards, Jeffrey A.; Gilkerson, Jill; Gray, Sharmistha; Yoder, Paul

    2017-01-01

    Theory and research suggest that vocal development predicts “useful speech” in preschoolers with autism spectrum disorder (ASD), but conventional methods for measurement of vocal development are costly and time consuming. This longitudinal correlational study examines the reliability and validity of several automated indices of vocalization development relative to an index derived from human coded, conventional communication samples in a sample of preverbal preschoolers with ASD. Automated indices of vocal development were derived using software that is presently “in development” and/or only available for research purposes and using commercially available Language ENvironment Analysis (LENA) software. Indices of vocal development that could be derived using the software available for research purposes: (a) were highly stable with a single day-long audio recording, (b) predicted future spoken vocabulary to a degree that was nonsignificantly different from the index derived from conventional communication samples, and (c) continued to predict future spoken vocabulary even after controlling for concurrent vocabulary in our sample. The score derived from standard LENA software was similarly stable, but was not significantly correlated with future spoken vocabulary. Findings suggest that automated vocal analysis is a valid and reliable alternative to time intensive and expensive conventional communication samples for measurement of vocal development of preverbal preschoolers with ASD in research and clinical practice. PMID:27459107

  13. Application of finite-element methods to dynamic analysis of flexible spatial and co-planar linkage systems, part 2

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1989-01-01

    An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.

  14. Programmed database system at the Chang Gung Craniofacial Center: part II--digitizing photographs.

    PubMed

    Chuang, Shiow-Shuh; Hung, Kai-Fong; de Villa, Glenda H; Chen, Philip K T; Lo, Lun-Jou; Chang, Sophia C N; Yu, Chung-Chih; Chen, Yu-Ray

    2003-07-01

    The archival tools used for digital images in advertising are not to fulfill the clinic requisition and are just beginning to develop. The storage of a large amount of conventional photographic slides needs a lot of space and special conditions. In spite of special precautions, degradation of the slides still occurs. The most common degradation is the appearance of fungus flecks. With the recent advances in digital technology, it is now possible to store voluminous numbers of photographs on a computer hard drive and keep them for a long time. A self-programmed interface has been developed to integrate database and image browser system that can build and locate needed files archive in a matter of seconds with the click of a button. This system requires hardware and software were market provided. There are 25,200 patients recorded in the database that involve 24,331 procedures. In the image files, there are 6,384 patients with 88,366 digital pictures files. From 1999 through 2002, NT400,000 dollars have been saved using the new system. Photographs can be managed with the integrating Database and Browse software for database archiving. This allows labeling of the individual photographs with demographic information and browsing. Digitized images are not only more efficient and economical than the conventional slide images, but they also facilitate clinical studies.

  15. Software for embedded processors: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Bogaerts, J. A. C.

    1990-08-01

    Data Acquistion systems in HEP experiments use a wide spectrum of computers to cope with two major problems: high event rates and a large data volume. They do this by using special fast trigger processors at the source to reduce the event rate by several orders of magnitude. The next stage of a data acquisition system consists of a network of fast but conventional microprocessors which are embedded in high speed bus systems where data is still further reduced, filtered and merged. In the final stage complete events are farmed out to a another collection of processors, which reconstruct the events and perhaps achieve a further event rejection by a small factor, prior to recording onto magnetic tape. Detectors are monitored by analyzing a fraction of the data. This may be done for individual detectors at an early state of the data acquisition or it may be delayed till the complete events are available. A network of workstations is used for monitoring, displays and run control. Software for trigger processors must have a simple structure. Rejection algorithms are carefully optimized, and overheads introduced by system software cannot be tolerated. The embedded microprocessors have to co-operate, and need to be synchronized with the preceding and following stages. Real time kernels are typically used to solve synchronization and communication problems. Applications are usually coded in C, which is reasonably efficient and allows direct control over low level hardware functions. Event reconstruction software is very similar or even identical to offline software, predominantly written in FORTRAN. With the advent of powerful RISC processors, and with manufacturers tending to adopt open bus architectures, there is a move towards commercial processors and hence the introduction of the UNIX operating system. Building and controlling such a heterogeneous data acquisition system puts a heavy strain on the software. Communications is now as important as CPU capacity and I/O bandwidth, the traditional key parameters of a HEP data acquisition system. Software engineering and real time system simulation tools are becoming indispensible for the design of future data acquisition systems.

  16. The Emergence of Open-Source Software in North America

    ERIC Educational Resources Information Center

    Pan, Guohua; Bonk, Curtis J.

    2007-01-01

    Unlike conventional models of software development, the open source model is based on the collaborative efforts of users who are also co-developers of the software. Interest in open source software has grown exponentially in recent years. A "Google" search for the phrase open source in early 2005 returned 28.8 million webpage hits, while…

  17. Sensor control of robot arc welding

    NASA Technical Reports Server (NTRS)

    Sias, F. R., Jr.

    1985-01-01

    A basic problem in the application of robots for welding which is how to guide a torch along a weld seam using sensory information was studied. Improvement of the quality and consistency of certain Gas Tungsten Arc welds on the Space Shuttle Main Engine (SSME) that are too complex geometrically for conventional automation and therefore are done by hand was examined. The particular problems associated with space shuttle main egnine (SSME) manufacturing and weld-seam tracking with an emphasis on computer vision methods were analyzed. Special interface software for the MINC computr are developed which will allow it to be used both as a test system to check out the robot interface software and later as a development tool for further investigation of sensory systems to be incorporated in welding procedures.

  18. Mercury⊕: An evidential reasoning image classifier

    NASA Astrophysics Data System (ADS)

    Peddle, Derek R.

    1995-12-01

    MERCURY⊕ is a multisource evidential reasoning classification software system based on the Dempster-Shafer theory of evidence. The design and implementation of this software package is described for improving the classification and analysis of multisource digital image data necessary for addressing advanced environmental and geoscience applications. In the remote-sensing context, the approach provides a more appropriate framework for classifying modern, multisource, and ancillary data sets which may contain a large number of disparate variables with different statistical properties, scales of measurement, and levels of error which cannot be handled using conventional Bayesian approaches. The software uses a nonparametric, supervised approach to classification, and provides a more objective and flexible interface to the evidential reasoning framework using a frequency-based method for computing support values from training data. The MERCURY⊕ software package has been implemented efficiently in the C programming language, with extensive use made of dynamic memory allocation procedures and compound linked list and hash-table data structures to optimize the storage and retrieval of evidence in a Knowledge Look-up Table. The software is complete with a full user interface and runs under Unix, Ultrix, VAX/VMS, MS-DOS, and Apple Macintosh operating system. An example of classifying alpine land cover and permafrost active layer depth in northern Canada is presented to illustrate the use and application of these ideas.

  19. OnlineTED.com--a novel web-based audience response system for higher education. A pilot study to evaluate user acceptance.

    PubMed

    Kühbeck, Felizian; Engelhardt, Stefan; Sarikas, Antonio

    2014-01-01

    Audience response (AR) systems are increasingly used in undergraduate medical education. However, high costs and complexity of conventional AR systems often limit their use. Here we present a novel AR system that is platform independent and does not require hardware clickers or additional software to be installed. "OnlineTED" was developed at Technische Universität München (TUM) based on Hypertext Preprocessor (PHP) with a My Structured Query Language (MySQL)-database as server- and Javascript as client-side programming languages. "OnlineTED" enables lecturers to create and manage question sets online and start polls in-class via a web-browser. Students can participate in the polls with any internet-enabled device (smartphones, tablet-PCs or laptops). A paper-based survey was conducted with undergraduate medical students and lecturers at TUM to compare "OnlineTED" with conventional AR systems using clickers. "OnlineTED" received above-average evaluation results by both students and lecturers at TUM and was seen on par or superior to conventional AR systems. The survey results indicated that up to 80% of students at TUM own an internet-enabled device (smartphone or tablet-PC) for participation in web-based AR technologies. "OnlineTED" is a novel web-based and platform-independent AR system for higher education that was well received by students and lecturers. As a non-commercial alternative to conventional AR systems it may foster interactive teaching in undergraduate education, in particular with large audiences.

  20. Closing the Certification Gaps in Adaptive Flight Control Software

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2008-01-01

    Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.

  1. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  2. PyParse: a semiautomated system for scoring spoken recall data.

    PubMed

    Solway, Alec; Geller, Aaron S; Sederberg, Per B; Kahana, Michael J

    2010-02-01

    Studies of human memory often generate data on the sequence and timing of recalled items, but scoring such data using conventional methods is difficult or impossible. We describe a Python-based semiautomated system that greatly simplifies this task. This software, called PyParse, can easily be used in conjunction with many common experiment authoring systems. Scored data is output in a simple ASCII format and can be accessed with the programming language of choice, allowing for the identification of features such as correct responses, prior-list intrusions, extra-list intrusions, and repetitions.

  3. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations

    PubMed Central

    Romero, Luis; Jiménez, Mariano; Espinosa, María del Mar; Domínguez, Manuel

    2015-01-01

    Aim This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. Method From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Results Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants. PMID:26696528

  4. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations.

    PubMed

    Romero, Luis; Jiménez, Mariano; Espinosa, María Del Mar; Domínguez, Manuel

    2015-01-01

    This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants.

  5. Preliminary results from the use of the novel Interactive binocular treatment (I-BiT) system, in the treatment of strabismic and anisometropic amblyopia.

    PubMed

    Waddingham, P E; Butler, T K H; Cobb, S V; Moody, A D R; Comaish, I F; Haworth, S M; Gregson, R M; Ash, I M; Brown, S M; Eastgate, R M; Griffiths, G D

    2006-03-01

    We have developed a novel application of adapted virtual reality (VR) technology, for the binocular treatment of amblyopia. We describe the use of the system in six children. Subjects consisted of three conventional treatment 'failures' and three conventional treatment 'refusers', with a mean age of 6.25 years (5.42-7.75 years). Treatment consisted of watching video clips and playing interactive games with specifically designed software to allow streamed binocular image presentation. Initial vision in the amblyopic eye ranged from 6/12 to 6/120 and post-treatment 6/7.5 to 6/24-1. Total treatment time was a mean of 4.4 h. Five out of six children have shown an improvement in their vision (average increase of 10 letters), including those who had previously failed to comply with conventional occlusion. Improvements in vision were demonstrable within a short period of time, in some children after 1 h of treatment. This system is an exciting and promising application of VR technology as a new treatment for amblyopia.

  6. Combining real-time monitoring and knowledge-based analysis in MARVEL

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Quan, A. G.; Angelino, R.; Veregge, J. R.

    1993-01-01

    Real-time artificial intelligence is gaining increasing attention for applications in which conventional software methods are unable to meet technology needs. One such application area is the monitoring and analysis of complex systems. MARVEL, a distributed monitoring and analysis tool with multiple expert systems, was developed and successfully applied to the automation of interplanetary spacecraft operations at NASA's Jet Propulsion Laboratory. MARVEL implementation and verification approaches, the MARVEL architecture, and the specific benefits that were realized by using MARVEL in operations are described.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoaf, S.; APS Engineering Support Division

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  8. Identification by 16S rRNA gene sequencing of an Actinomyces hongkongensis isolate recovered from a patient with pelvic actinomycosis.

    PubMed

    Flynn, A N; Lyndon, C A; Church, D L

    2013-08-01

    A case of Actinomyces hongkongensis pelvic actinomycosis in an adult woman is described. Conventional phenotypic tests failed to identify the Gram-positive bacillus isolated from a fluid aspirate of a pelvic abscess. The bacterium was identified by 16S rRNA gene sequencing and analysis using the SmartGene Integrated Database Network System software.

  9. Chips: A Tool for Developing Software Interfaces Interactively.

    DTIC Science & Technology

    1987-10-01

    of the application through the objects on the screen. Chips makes this easy by supplying simple and direct access to the source code and data ...object-oriented programming, user interface management systems, programming environments. Typographic Conventions Technical terms appearing in the...creating an environment in which we could do our work. This project could not have happened without him. Jeff Bonar started and managed the Chips

  10. Improvement in QEPAS system utilizing a second harmonic based wavelength calibration technique

    NASA Astrophysics Data System (ADS)

    Zhang, Qinduan; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Xie, Yulei; Gong, Weihua

    2018-05-01

    A simple laser wavelength calibration technique, based on second harmonic signal, is demonstrated in this paper to improve the performance of quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensing system, e.g. improving the signal to noise ratio (SNR), detection limit and long-term stability. Constant current, corresponding to the gas absorption line, combining f/2 frequency sinusoidal signal are used to drive the laser (constant driving mode), a software based real-time wavelength calibration technique is developed to eliminate the wavelength drift due to ambient fluctuations. Compared to conventional wavelength modulation spectroscopy (WMS), this method allows lower filtering bandwidth and averaging algorithm applied to QEPAS system, improving SNR and detection limit. In addition, the real-time wavelength calibration technique guarantees the laser output is modulated steadily at gas absorption line. Water vapor is chosen as an objective gas to evaluate its performance compared to constant driving mode and conventional WMS system. The water vapor sensor was designed insensitive to the incoherent external acoustic noise by the numerical averaging technique. As a result, the SNR increases 12.87 times in wavelength calibration technique based system compared to conventional WMS system. The new system achieved a better linear response (R2 = 0 . 9995) in concentration range from 300 to 2000 ppmv, and achieved a minimum detection limit (MDL) of 630 ppbv.

  11. Computer Software Information for Educators: A New Approach to Portrayal of Student Tryout Data.

    ERIC Educational Resources Information Center

    Della-Piana, Gabriel; Della-Piana, Connie Kubo

    1984-01-01

    Suggests conventional evaluation reports are inappropriate for what needs to be portrayed for software users concerned with acquisition, software adaptation, design and development, and teacher implementation decisions. Two forms for evaluating information are described and illustrated--a narrative portrayal form and a design and development…

  12. Modular preoperative planning software for computer-aided oral implantology and the application of a novel stereolithographic template: a pilot study.

    PubMed

    Chen, Xiaojun; Yuan, Jianbing; Wang, Chengtao; Huang, Yuanliang; Kang, Lu

    2010-09-01

    In the field of oral implantology, there is a trend toward computer-aided implant surgery, especially the application of computerized tomography (CT)-derived surgical templates. However, because of relatively unsatisfactory match between the templates and receptor sites, conventional surgical templates may not be accurate enough for the severely resorbed edentulous cases during the procedure of transferring the preoperative plan to the actual surgery. The purpose of this study is to introduce a novel bone-tooth-combined-supported surgical guide, which is designed by utilizing a special modular software and fabricated via stereolithography technique using both laser scanning and CT imaging, thus improving the fit accuracy and reliability. A modular preoperative planning software was developed for computer-aided oral implantology. With the introduction of dynamic link libraries and some well-known free, open-source software libraries such as Visualization Toolkit (Kitware, Inc., New York, USA) and Insight Toolkit (Kitware, Inc.) a plug-in evolutive software architecture was established, allowing for expandability, accessibility, and maintainability in our system. To provide a link between the preoperative plan and the actual surgery, a novel bone-tooth-combined-supported surgical template was fabricated, utilizing laser scanning, image registration, and rapid prototyping. Clinical studies were conducted on four partially edentulous cases to make a comparison with the conventional bone-supported templates. The fixation was more stable than tooth-supported templates because laser scanning technology obtained detailed dentition information, which brought about the unique topography between the match surface of the templates and the adjacent teeth. The average distance deviations at the coronal and apical point of the implant were 0.66 mm (range: 0.3-1.2) and 0.86 mm (range: 0.4-1.2), and the average angle deviation was 1.84 degrees (range: 0.6-2.8 degrees ). This pilot study proves that the novel combined-supported templates are superior to the conventional ones. However, more clinical cases will be conducted to demonstrate their feasibility and reliability.

  13. Common software and interface for different helmet-mounted display (HMD) aircraft symbology sets

    NASA Astrophysics Data System (ADS)

    Mulholland, Fred F.

    2000-06-01

    Different aircraft in different services and countries have their own set of symbology they want displayed on their HMD. Even as flight symbolgy is standardized, there will still be some differences for types of aircraft, different weapons, different sensors, and different countries. As an HMD supplier, we want to provide a system that can be used across all these applications with no changes in the system, including no changes in the software. This HMD system must also provide the flexibility to accommodate new symbology as it is developed over the years, again, with no change in the HMD software. VSI has developed their HMD software to accommodate F-15, F- 16, F-18, and F-22 symbology sets for the Joint Helmet Mounted Cueing System. It also has the flexibility to accommodate the aircraft types and services of the Joint Strike Fighter: Conventional Takeoff and Landing variant for the USAF, Carrier-based Variant for the USN, and the Short Takeoff and Vertical Landing variant for the USMC and U.K. Royal Navy and Air Force. The key to this flexibility is the interface definition. The interface parameters are established at power-on with the download of an interface definition data set. This data set is used to interpret symbology commands from the aircraft OFP during operation and provide graphic commands to the HMD software. This presentation will define the graphics commands, provide an example of how the interface definition data set is defined, and then show how symbology commands produce a display.

  14. Meta-analysis of Odds Ratios: Current Good Practices

    PubMed Central

    Chang, Bei-Hung; Hoaglin, David C.

    2016-01-01

    Background Many systematic reviews of randomized clinical trials lead to meta-analyses of odds ratios. The customary methods of estimating an overall odds ratio involve weighted averages of the individual trials’ estimates of the logarithm of the odds ratio. That approach, however, has several shortcomings, arising from assumptions and approximations, that render the results unreliable. Although the problems have been documented in the literature for many years, the conventional methods persist in software and applications. A well-developed alternative approach avoids the approximations by working directly with the numbers of subjects and events in the arms of the individual trials. Objective We aim to raise awareness of methods that avoid the conventional approximations, can be applied with widely available software, and produce more-reliable results. Methods We summarize the fixed-effect and random-effects approaches to meta-analysis; describe conventional, approximate methods and alternative methods; apply the methods in a meta-analysis of 19 randomized trials of endoscopic sclerotherapy in patients with cirrhosis and esophagogastric varices; and compare the results. We demonstrate the use of SAS, Stata, and R software for the analysis. Results In the example, point estimates and confidence intervals for the overall log-odds-ratio differ between the conventional and alternative methods, in ways that can affect inferences. Programming is straightforward in the three software packages; an appendix gives the details. Conclusions The modest additional programming required should not be an obstacle to adoption of the alternative methods. Because their results are unreliable, use of the conventional methods for meta-analysis of odds ratios should be discontinued. PMID:28169977

  15. Can light-field photography ease focusing on the scalp and oral cavity?

    PubMed

    Taheri, Arash; Feldman, Steven R

    2013-08-01

    Capturing a well-focused image using an autofocus camera can be difficult in oral cavity and on a hairy scalp. Light-field digital cameras capture data regarding the color, intensity, and direction of rays of light. Having information regarding direction of rays of light, computer software can be used to focus on different subjects in the field after the image data have been captured. A light-field camera was used to capture the images of the scalp and oral cavity. The related computer software was used to focus on scalp or different parts of oral cavity. The final pictures were compared with pictures taken with conventional, compact, digital cameras. The camera worked well for oral cavity. It also captured the pictures of scalp easily; however, we had to repeat clicking between the hairs on different points to choose the scalp for focusing. A major drawback of the system was the resolution of the resulting pictures that was lower than conventional digital cameras. Light-field digital cameras are fast and easy to use. They can capture more information on the full depth of field compared with conventional cameras. However, the resolution of the pictures is relatively low. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Use of Field Programmable Gate Array Technology in Future Space Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Tate, Robert

    2005-01-01

    Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.

  17. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    PubMed Central

    Cha, Yong Ho; Lee, Keun Ho; Ryu, Hong Jong; Joo, Il Won; Seo, Anna; Kim, Dong-Hyeon

    2017-01-01

    We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient's lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec) and 3D-printed AFO (56.5 cm/sec) compared to that without an AFO (42.2 cm/sec). The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software. PMID:28827977

  18. CGNS Mid-Level Software Library and Users Guide

    NASA Technical Reports Server (NTRS)

    Poirier, Diane; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The "CFD General Notation System" (CGNS) consists of a collection of conventions, and conforming software, for the storage and retrieval of Computational Fluid Dynamics (CFD) data. It facilitates the exchange of data between sites and applications, and helps stabilize the archiving of aerodynamic data. This effort was initiated in order to streamline the procedures in exchanging data and software between NASA and its customers, but the goal is to develop CGNS into a National Standard for the exchange of aerodynamic data. The CGNS development team is comprised of members from Boeing Commercial Airplane Group, NASA-Ames, NASA-Langley, NASA-Lewis, McDonnell-Douglas Corporation (now Boeing-St. Louis), Air Force-Wright Lab., and ICEM-CFD Engineering. The elements of CGNS address all activities associated with the storage of data on external media and its movement to and from application programs. These elements include: - The Advanced Data Format (ADF) Database manager, consisting of both a file format specification and its I/O software, which handles the actual reading and writing of data from and to external storage media; - The Standard Interface Data Structures (SIDS), which specify the intellectual content of CFD data and the conventions governing naming and terminology; - The SIDS-to-ADF File Mapping conventions, which specify the exact location where the CFD data defined by the SIDS is to be stored within the ADF file(s); and - The CGNS Mid-level Library, which provides CFD-knowledgeable routines suitable for direct installation into application codes. The CGNS Mid-level Library was designed to ease the implementation of CGNS by providing developers with a collection of handy I/O functions. Since knowledge of the ADF core is not required to use this library, it will greatly facilitate the task of interfacing with CGNS. There are currently 48 user callable functions that comprise the Mid-level library and are described in the Users Guide. The library is written in C, but each function has a FORTRAN counterpart.

  19. InterProScan 5: genome-scale protein function classification

    PubMed Central

    Jones, Philip; Binns, David; Chang, Hsin-Yu; Fraser, Matthew; Li, Weizhong; McAnulla, Craig; McWilliam, Hamish; Maslen, John; Mitchell, Alex; Nuka, Gift; Pesseat, Sebastien; Quinn, Antony F.; Sangrador-Vegas, Amaia; Scheremetjew, Maxim; Yong, Siew-Yit; Lopez, Rodrigo; Hunter, Sarah

    2014-01-01

    Motivation: Robust large-scale sequence analysis is a major challenge in modern genomic science, where biologists are frequently trying to characterize many millions of sequences. Here, we describe a new Java-based architecture for the widely used protein function prediction software package InterProScan. Developments include improvements and additions to the outputs of the software and the complete reimplementation of the software framework, resulting in a flexible and stable system that is able to use both multiprocessor machines and/or conventional clusters to achieve scalable distributed data analysis. InterProScan is freely available for download from the EMBl-EBI FTP site and the open source code is hosted at Google Code. Availability and implementation: InterProScan is distributed via FTP at ftp://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/ and the source code is available from http://code.google.com/p/interproscan/. Contact: http://www.ebi.ac.uk/support or interhelp@ebi.ac.uk or mitchell@ebi.ac.uk PMID:24451626

  20. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  1. The Implementation of Satellite Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

    1998-01-01

    NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.

  2. Quantitative fluorescence angiography for neurosurgical interventions.

    PubMed

    Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.

  3. System Advisor Model, SAM 2011.12.2: General Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, P.; Dobos, A.

    2012-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2011.12.2, released on December 2, 2011. SAM is software that models the cost and performance of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of solar, wind, geothermal, biomass, and conventional power systems. The financial model can represent financing structures for projects that either buy and sell electricity at retail ratesmore » (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). Advanced analysis options facilitate parametric, sensitivity, and statistical analyses, and allow for interfacing SAM with Microsoft Excel or with other computer programs. SAM is available as a free download at http://sam.nrel.gov. Technical support and more information about the software are available on the website.« less

  4. Lunar Applications in Reconfigurable Computing

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin

    2008-01-01

    NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.

  5. Simplified formulae for the estimation of offshore wind turbines clutter on marine radars.

    PubMed

    Grande, Olatz; Cañizo, Josune; Angulo, Itziar; Jenn, David; Danoon, Laith R; Guerra, David; de la Vega, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.

  6. Simplified Formulae for the Estimation of Offshore Wind Turbines Clutter on Marine Radars

    PubMed Central

    Grande, Olatz; Cañizo, Josune; Jenn, David; Danoon, Laith R.; Guerra, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario. PMID:24782682

  7. A Concept for the One Degree Imager (ODI) Data Reduction Pipeline and Archiving System

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia; Stobie, B.; Michael, S.; Valdes, F.; Marru, S.; Henschel, R.; Pierce, M.

    2010-05-01

    The One Degree Imager (ODI), currently being built by the WIYN Observatory, will provide tremendous possibilities for conducting diverse scientific programs. ODI will be a complex instrument, using non-conventional Orthogonal Transfer Array (OTA) detectors. Due to its large field of view, small pixel size, use of OTA technology, and expected frequent use, ODI will produce vast amounts of astronomical data. If ODI is to achieve its full potential, a data reduction pipeline must be developed. Long-term archiving must also be incorporated into the pipeline system to ensure the continued value of ODI data. This paper presents a concept for an ODI data reduction pipeline and archiving system. To limit costs and development time, our plan leverages existing software and hardware, including existing pipeline software, Science Gateways, Computational Grid & Cloud Technology, Indiana University's Data Capacitor and Massive Data Storage System, and TeraGrid compute resources. Existing pipeline software will be augmented to add functionality required to meet challenges specific to ODI, enhance end-user control, and enable the execution of the pipeline on grid resources including national grid resources such as the TeraGrid and Open Science Grid. The planned system offers consistent standard reductions and end-user flexibility when working with images beyond the initial instrument signature removal. It also gives end-users access to computational and storage resources far beyond what are typically available at most institutions. Overall, the proposed system provides a wide array of software tools and the necessary hardware resources to use them effectively.

  8. OnlineTED.com − a novel web-based audience response system for higher education. A pilot study to evaluate user acceptance

    PubMed Central

    Kühbeck, Felizian; Engelhardt, Stefan; Sarikas, Antonio

    2014-01-01

    Background and aim: Audience response (AR) systems are increasingly used in undergraduate medical education. However, high costs and complexity of conventional AR systems often limit their use. Here we present a novel AR system that is platform independent and does not require hardware clickers or additional software to be installed. Methods and results: “OnlineTED” was developed at Technische Universität München (TUM) based on Hypertext Preprocessor (PHP) with a My Structured Query Language (MySQL)-database as server- and Javascript as client-side programming languages. “OnlineTED” enables lecturers to create and manage question sets online and start polls in-class via a web-browser. Students can participate in the polls with any internet-enabled device (smartphones, tablet-PCs or laptops). A paper-based survey was conducted with undergraduate medical students and lecturers at TUM to compare "OnlineTED" with conventional AR systems using clickers. "OnlineTED" received above-average evaluation results by both students and lecturers at TUM and was seen on par or superior to conventional AR systems. The survey results indicated that up to 80% of students at TUM own an internet-enabled device (smartphone or tablet-PC) for participation in web-based AR technologies. Summary and Conclusion: “OnlineTED” is a novel web-based and platform-independent AR system for higher education that was well received by students and lecturers. As a non-commercial alternative to conventional AR systems it may foster interactive teaching in undergraduate education, in particular with large audiences. PMID:24575156

  9. Analyzing the Energy Performance, Wind Loading, and Costs of Photovoltaic Slat Modules on Commercial Rooftops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Geet, Otto D.; Fu, Ran; Horowitz, Kelsey A.

    NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air tomore » flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.« less

  10. Software Reviews. PC Software for Artificial Intelligence Applications.

    ERIC Educational Resources Information Center

    Epp, Helmut; And Others

    1988-01-01

    Contrasts artificial intelligence and conventional programming languages. Reviews Personal Consultant Plus, Smalltalk/V, and Nexpert Object, which are PC-based products inspired by problem-solving paradigms. Provides information on background and operation of each. (RT)

  11. High-stability Shuttle pointing system

    NASA Technical Reports Server (NTRS)

    Van Riper, R.

    1981-01-01

    It was recognized that precision pointing provided by the Orbiter's attitude control system would not be good enough for Shuttle payload scientific experiments or certain Defense department payloads. The Annular Suspension Pointing System (ASPS) is being developed to satisfy these more exacting pointing requirements. The ASPS is a modular pointing system which consists of two principal parts, including an ASPS Gimbal System (AGS) which provides three conventional ball-bearing gimbals and an ASPS Vernier System (AVS) which magnetically isolates the payload. AGS performance requirements are discussed and an AGS system description is given. The overall AGS system consists of the mechanical hardware, sensors, electronics, and software. Attention is also given to system simulation and performance prediction, and support facilities.

  12. The theory of interface slicing

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.

  13. Identification by 16S rRNA Gene Sequencing of an Actinomyces hongkongensis Isolate Recovered from a Patient with Pelvic Actinomycosis

    PubMed Central

    Flynn, A. N.; Lyndon, C. A.

    2013-01-01

    A case of Actinomyces hongkongensis pelvic actinomycosis in an adult woman is described. Conventional phenotypic tests failed to identify the Gram-positive bacillus isolated from a fluid aspirate of a pelvic abscess. The bacterium was identified by 16S rRNA gene sequencing and analysis using the SmartGene Integrated Database Network System software. PMID:23698532

  14. Interactive Structure (EUCLID) For Static And Dynamic Representation Of Human Body

    NASA Astrophysics Data System (ADS)

    Renaud, Ch.; Steck, R.

    1983-07-01

    A specific software (EUCLID) for static and dynamic representation of human models is described. The data processing system is connected with ERGODATA and used in interactive mode by intrinsic or specific functions. More or less complex representations in 3-D view of models of the human body are developed. Biostereometric and conventional anthropometric raw data from the data bank are processed for different applications in ergonomy.

  15. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  16. A Realization of Theoretical Maximum Performance in IPSec on Gigabit Ethernet

    NASA Astrophysics Data System (ADS)

    Onuki, Atsushi; Takeuchi, Kiyofumi; Inada, Toru; Tokiniwa, Yasuhisa; Ushirozawa, Shinobu

    This paper describes “IPSec(IP Security) VPN system" and how it attains a theoretical maximum performance on Gigabit Ethernet. The Conventional System is implemented by software. However, the system has several bottlenecks which must be overcome to realize a theoretical maximum performance on Gigabit Ethernet. Thus, we newly propose IPSec VPN System with the FPGA(Field Programmable Gate Array) based hardware architecture, which transmits a packet by the pipe-lined flow processing and has 6 parallel structure of encryption and authentication engines. We show that our system attains the theoretical maximum performance in the short packet which is difficult to realize until now.

  17. Validation of Left Ventricular Ejection Fraction with the IQ•SPECT System in Small-Heart Patients.

    PubMed

    Yoneyama, Hiroto; Shibutani, Takayuki; Konishi, Takahiro; Mizutani, Asuka; Hashimoto, Ryosuke; Onoguchi, Masahisa; Okuda, Koichi; Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo

    2017-09-01

    The IQ•SPECT system, which is equipped with multifocal collimators ( SMART ZOOM) and uses ordered-subset conjugate gradient minimization as the reconstruction algorithm, reduces the acquisition time of myocardial perfusion imaging compared with conventional SPECT systems equipped with low-energy high-resolution collimators. We compared the IQ•SPECT system with a conventional SPECT system for estimating left ventricular ejection fraction (LVEF) in patients with a small heart (end-systolic volume < 20 mL). Methods: The study consisted of 98 consecutive patients who underwent a 1-d stress-rest myocardial perfusion imaging study with a 99m Tc-labeled agent for preoperative risk assessment. Data were reconstructed using filtered backprojection for conventional SPECT and ordered-subset conjugate gradient minimization for IQ•SPECT. End-systolic volume, end-diastolic volume, and LVEF were calculated using quantitative gated SPECT (QGS) and cardioREPO software. We compared the LVEF from gated myocardial perfusion SPECT to that from echocardiographic measurements. Results: End-diastolic volume, end-systolic volume, and LVEF as obtained from conventional SPECT, IQ•SPECT, and echocardiography showed a good to excellent correlation regardless of whether they were calculated using QGS or using cardioREPO. Although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (65.4% ± 13.8% vs. 68.4% ± 15.2%) ( P = 0.0002), LVEF calculated using cardioREPO did not (69.5% ± 10.6% vs. 69.5% ± 11.0%). Likewise, although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (75.0 ± 9.6 vs. 79.5 ± 8.3) ( P = 0.0005), LVEF calculated using cardioREPO did not (72.3% ± 9.0% vs. 74.3% ± 8.3%). Conclusion: In small-heart patients, the difference in LVEF between IQ•SPECT and conventional SPECT was less when calculated using cardioREPO than when calculated using QGS. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  18. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying onmore » natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal projects, not just software designers. It is hoped that, as a result, HeatEx will prove useful during the early stages of the development of EGS technology. The basic objective was to design a tool that could use field data that are likely to become available during the early phases of an EGS project (that is, during initial reconnaissance and fracture stimulation operations) to guide forecasts of the longer-term behavior of the system during production and heat-mining.« less

  19. Automated water analyser computer supported system (AWACSS) Part I: Project objectives, basic technology, immunoassay development, software design and networking.

    PubMed

    Tschmelak, Jens; Proll, Guenther; Riedt, Johannes; Kaiser, Joachim; Kraemmer, Peter; Bárzaga, Luis; Wilkinson, James S; Hua, Ping; Hole, J Patrick; Nudd, Richard; Jackson, Michael; Abuknesha, Ram; Barceló, Damià; Rodriguez-Mozaz, Sara; de Alda, Maria J López; Sacher, Frank; Stien, Jan; Slobodník, Jaroslav; Oswald, Peter; Kozmenko, Helena; Korenková, Eva; Tóthová, Lívia; Krascsenits, Zoltan; Gauglitz, Guenter

    2005-02-15

    A novel analytical system AWACSS (automated water analyser computer-supported system) based on immunochemical technology has been developed that can measure several organic pollutants at low nanogram per litre level in a single few-minutes analysis without any prior sample pre-concentration nor pre-treatment steps. Having in mind actual needs of water-sector managers related to the implementation of the Drinking Water Directive (DWD) (98/83/EC, 1998) and Water Framework Directive WFD (2000/60/EC, 2000), drinking, ground, surface, and waste waters were major media used for the evaluation of the system performance. The instrument was equipped with remote control and surveillance facilities. The system's software allows for the internet-based networking between the measurement and control stations, global management, trend analysis, and early-warning applications. The experience of water laboratories has been utilised at the design of the instrument's hardware and software in order to make the system rugged and user-friendly. Several market surveys were conducted during the project to assess the applicability of the final system. A web-based AWACSS database was created for automated evaluation and storage of the obtained data in a format compatible with major databases of environmental organic pollutants in Europe. This first part article gives the reader an overview of the aims and scope of the AWACSS project as well as details about basic technology, immunoassays, software, and networking developed and utilised within the research project. The second part article reports on the system performance, first real sample measurements, and an international collaborative trial (inter-laboratory tests) to compare the biosensor with conventional anayltical methods.

  20. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  1. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    PubMed

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  2. An object-oriented data reduction system in Fortran

    NASA Technical Reports Server (NTRS)

    Bailey, J.

    1992-01-01

    A data reduction system for the AAO two-degree field project is being developed using an object-oriented approach. Rather than use an object-oriented language (such as C++) the system is written in Fortran and makes extensive use of existing subroutine libraries provided by the UK Starlink project. Objects are created using the extensible N-dimensional Data Format (NDF) which itself is based on the Hierarchical Data System (HDS). The software consists of a class library, with each class corresponding to a Fortran subroutine with a standard calling sequence. The methods of the classes provide operations on NDF objects at a similar level of functionality to the applications of conventional data reduction systems. However, because they are provided as callable subroutines, they can be used as building blocks for more specialist applications. The class library is not dependent on a particular software environment thought it can be used effectively in ADAM applications. It can also be used from standalone Fortran programs. It is intended to develop a graphical user interface for use with the class library to form the 2dF data reduction system.

  3. Robotics control using isolated word recognition of voice input

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.

    1977-01-01

    A speech input/output system is presented that can be used to communicate with a task oriented system. Human speech commands and synthesized voice output extend conventional information exchange capabilities between man and machine by utilizing audio input and output channels. The speech input facility is comprised of a hardware feature extractor and a microprocessor implemented isolated word or phrase recognition system. The recognizer offers a medium sized (100 commands), syntactically constrained vocabulary, and exhibits close to real time performance. The major portion of the recognition processing required is accomplished through software, minimizing the complexity of the hardware feature extractor.

  4. Enabling high-precision nonlinear three-dimensional photoprocessing of premeditated designs on a conventional multiphoton imaging system

    NASA Astrophysics Data System (ADS)

    Garsha, Karl E.

    2004-06-01

    There is an increasing amount of interest in functionalized microstructural, microphotonic and microelectromechanical systems (MEMS) for use in biological applications. By scanning a tightly focused ultra-short pulsed laser beam inside a wide variety of commercially available polymer systems, the flexibility of the multiphoton microscope can be extended to include routine manufacturing of micro-devices with feature sizes well below the diffraction limit. Compared with lithography, two-photon polymerization has the unique ability to additively realize designs with high resolution in three dimensions; this permits the construction of cross-linked components and structures with hollow cavities. In light of the increasing availability of multiphoton imaging systems at research facilities, femtosecond laser manufacturing becomes particularly attractive in that the modality provides a readily accessible, rapid and high-accuracy 3-D processing capability to biological investigators interested in culture scaffolds and biomimetic tissue engineering, bio-MEMS, biomicrophotonics and microfluidics applications. This manuscript overviews recent efforts towards to enabling user accessible 3-D micro-manufacturing capabilities on a conventional proprietary-based imaging system. Software which permits the off-line design of microstructures and leverages the extensibility of proprietary LCSM image acquisition software to realize designs is introduced. The requirements for multiphoton photo-disruption (ablation) are in some ways analogous to those for multiphoton polymerization. Hence, "beam-steering" also facilitates precision photo-disruption of biological tissues with 3-D resolution, and applications involving tissue microdissection and intracellular microsurgery or three-dimensionally resolved fluorescence recovery after photobleaching (FRAP) studies can benefit from this work as well.

  5. The stability and validity of automated vocal analysis in preverbal preschoolers with autism spectrum disorder.

    PubMed

    Woynaroski, Tiffany; Oller, D Kimbrough; Keceli-Kaysili, Bahar; Xu, Dongxin; Richards, Jeffrey A; Gilkerson, Jill; Gray, Sharmistha; Yoder, Paul

    2017-03-01

    Theory and research suggest that vocal development predicts "useful speech" in preschoolers with autism spectrum disorder (ASD), but conventional methods for measurement of vocal development are costly and time consuming. This longitudinal correlational study examines the reliability and validity of several automated indices of vocalization development relative to an index derived from human coded, conventional communication samples in a sample of preverbal preschoolers with ASD. Automated indices of vocal development were derived using software that is presently "in development" and/or only available for research purposes and using commercially available Language ENvironment Analysis (LENA) software. Indices of vocal development that could be derived using the software available for research purposes: (a) were highly stable with a single day-long audio recording, (b) predicted future spoken vocabulary to a degree that was nonsignificantly different from the index derived from conventional communication samples, and (c) continued to predict future spoken vocabulary even after controlling for concurrent vocabulary in our sample. The score derived from standard LENA software was similarly stable, but was not significantly correlated with future spoken vocabulary. Findings suggest that automated vocal analysis is a valid and reliable alternative to time intensive and expensive conventional communication samples for measurement of vocal development of preverbal preschoolers with ASD in research and clinical practice. Autism Res 2017, 10: 508-519. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  6. Feedback loops and temporal misalignment in component-based hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  7. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  8. Development of Total Knee Replacement Digital Templating Software

    NASA Astrophysics Data System (ADS)

    Yusof, Siti Fairuz; Sulaiman, Riza; Thian Seng, Lee; Mohd. Kassim, Abdul Yazid; Abdullah, Suhail; Yusof, Shahril; Omar, Masbah; Abdul Hamid, Hamzaini

    In this study, by taking full advantage of digital X-ray and computer technology, we have developed a semi-automated procedure to template knee implants, by making use of digital templating method. Using this approach, a software system called OrthoKneeTMhas been designed and developed. The system is to be utilities as a study in the Department of Orthopaedic and Traumatology in medical faculty, UKM (FPUKM). OrthoKneeTMtemplating process employs uses a technique similar to those used by many surgeons, using acetate templates over X-ray films. Using template technique makes it easy to template various implant from every Implant manufacturers who have with a comprehensive database of templates. The templating functionality includes, template (knee) and manufactures templates (Smith & Nephew; and Zimmer). From an image of patient x-ray OrthoKneeTMtemplates help in quickly and easily reads to the approximate template size needed. The visual templating features then allow us quickly review multiple template sizes against the X-ray and thus obtain the nearly precise view of the implant size required. The system can assist by templating on one patient image and will generate reports that can accompany patient notes. The software system was implemented in Visual basic 6.0 Pro using the object-oriented techniques to manage the graphics and objects. The approaches for image scaling will be discussed. Several of measurement in orthopedic diagnosis process have been studied and added in this software as measurement tools features using mathematic theorem and equations. The study compared the results of the semi-automated (using digital templating) method to the conventional method to demonstrate the accuracy of the system.

  9. SU-E-T-76: A Software System to Monitor VMAT Plan Complexity in a Large Radiotherapy Centre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, S; Xing, A; Ingham Institute, Sydney, NSW

    2015-06-15

    Purpose: To develop a system that analyses and reports the complexity of Volumetric Modulated Arc Therapy (VMAT) plans to aid in the decision making for streamlining patient specific dosimetric quality assurance (QA) tests. Methods: A software system, Delcheck, was developed in-house to calculate VMAT plan and delivery complexity using the treatment delivery file. Delcheck has the functionality to calculate multiple plan complexity metrics including the Li-Xing Modulation Index (LI-MI), multiplicative combination of Leaf Travel and Modulation Complexity Score (LTMCSv), Monitor Units per prescribed dose (MU/D) and the delivery complexity index (MIt) that incorporates the modulation of dose rate, leaf speedmore » and gantry speed. Delcheck includes database functionality to store and compare plan metrics for a specified treatment site. The overall plan and delivery complexity is assessed based on the 95% conformance limit of the complexity metrics as Similar, More or Less complex. The functionality of the software was tested using 42 prostate conventional, 10 prostate SBRT and 15 prostate bed VMAT plans generated for an Elekta linear accelerator. Results: The mean(σ) of LI-MI for conventional, SBRT and prostate bed plans were 1690(486), 3215.4(1294) and 3258(982) respectively. The LTMCSv of the studied categories were 0.334(0.05), 0.325(0.07) and 0.3112(0.09). The MU/D of the studied categories were 2.4(0.4), 2.7(0.7) and 2.5(0.5). The MIt of the studied categories were 21.6(3.4), 18.2(3.0) and 35.9(6.6). The values of the complexity metrics show that LI-MI appeared to resolve the plan complexity better than LTMCSv and MU/D. The MIt value increased as the delivery complexity increased. Conclusion: The developed software was shown to be working as expected. In studied treatment categories Prostate bed plans are more complex in both plan and delivery and SBRT is more complex in plan and less complex in delivery as demonstrated by LI-MI and MIt. This project was funded through a Cancer Council NSW Project Grant (RG14-11)« less

  10. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Under an Army Small Business Innovation Research (SBIR) grant, Symbiotics, Inc. developed a software system that permits users to upgrade products from standalone applications so they can communicate in a distributed computing environment. Under a subsequent NASA SBIR grant, Symbiotics added additional tools to the SOCIAL product to enable NASA to coordinate conventional systems for planning Shuttle launch support operations. Using SOCIAL, data may be shared among applications in a computer network even when the applications are written in different programming languages. The product was introduced to the commercial market in 1993 and is used to monitor and control equipment for operation support and to integrate financial networks. The SBIR program was established to increase small business participation in federal R&D activities and to transfer government research to industry. InQuisiX is a reuse library providing high performance classification, cataloging, searching, browsing, retrieval and synthesis capabilities. These form the foundation for software reuse, producing higher quality software at lower cost and in less time. Software Productivity Solutions, Inc. developed the technology under Small Business Innovation Research (SBIR) projects funded by NASA and the Army and is marketing InQuisiX in conjunction with Science Applications International Corporation (SAIC). The SBIR program was established to increase small business participation in federal R&D activities and to transfer government research to industry.

  11. Spatial inventory integrating raster databases and point sample data. [Geographic Information System for timber inventory

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.; Logan, T. L.

    1983-01-01

    A timber inventory of the Eldorado National Forest, located in east-central California, provides an example of the use of a Geographic Information System (GIS) to stratify large areas of land for sampling and the collection of statistical data. The raster-based GIS format of the VICAR/IBIS software system allows simple and rapid tabulation of areas, and facilitates the selection of random locations for ground sampling. Algorithms that simplify the complex spatial pattern of raster-based information, and convert raster format data to strings of coordinate vectors, provide a link to conventional vector-based geographic information systems.

  12. Usefulness of the automatic quantitative estimation tool for cerebral blood flow: clinical assessment of the application software tool AQCEL.

    PubMed

    Momose, Mitsuhiro; Takaki, Akihiro; Matsushita, Tsuyoshi; Yanagisawa, Shin; Yano, Kesato; Miyasaka, Tadashi; Ogura, Yuka; Kadoya, Masumi

    2011-01-01

    AQCEL enables automatic reconstruction of single-photon emission computed tomogram (SPECT) without image degradation and quantitative analysis of cerebral blood flow (CBF) after the input of simple parameters. We ascertained the usefulness and quality of images obtained by the application software AQCEL in clinical practice. Twelve patients underwent brain perfusion SPECT using technetium-99m ethyl cysteinate dimer at rest and after acetazolamide (ACZ) loading. Images reconstructed using AQCEL were compared with those reconstructed using conventional filtered back projection (FBP) method for qualitative estimation. Two experienced nuclear medicine physicians interpreted the image quality using the following visual scores: 0, same; 1, slightly superior; 2, superior. For quantitative estimation, the mean CBF values of the normal hemisphere of the 12 patients using ACZ calculated by the AQCEL method were compared with those calculated by the conventional method. The CBF values of the 24 regions of the 3-dimensional stereotaxic region of interest template (3DSRT) calculated by the AQCEL method at rest and after ACZ loading were compared to those calculated by the conventional method. No significant qualitative difference was observed between the AQCEL and conventional FBP methods in the rest study. The average score by the AQCEL method was 0.25 ± 0.45 and that by the conventional method was 0.17 ± 0.39 (P = 0.34). There was a significant qualitative difference between the AQCEL and conventional methods in the ACZ loading study. The average score for AQCEL was 0.83 ± 0.58 and that for the conventional method was 0.08 ± 0.29 (P = 0.003). During quantitative estimation using ACZ, the mean CBF values of 12 patients calculated by the AQCEL method were 3-8% higher than those calculated by the conventional method. The square of the correlation coefficient between these methods was 0.995. While comparing the 24 3DSRT regions of 12 patients, the squares of the correlation coefficient between AQCEL and conventional methods were 0.973 and 0.986 for the normal and affected sides at rest, respectively, and 0.977 and 0.984 for the normal and affected sides after ACZ loading, respectively. The quality of images reconstructed using the application software AQCEL were superior to that obtained using conventional method after ACZ loading, and high correlations were shown in quantity at rest and after ACZ loading. This software can be applied to clinical practice and is a useful tool for improvement of reproducibility and throughput.

  13. New high-efficiency ion-trap mobility detection system for narcotics

    NASA Astrophysics Data System (ADS)

    McGann, William J.

    1997-02-01

    A new patented Ion Trap Mobility Spectrometer design is presented. Conventional IMS designs typically operate below 0.1 percent efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9 percent of the sample ions generated in the reaction region are lost int his discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an 'ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a 'field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. One application for this new detector is now being developed, a portable, hand-held system with switching capability for the detection of drugs and explosives. Preliminary ion spectra and sensitivity data are presented for cocaine and heroin using a hand sniffer configuration.

  14. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  15. Effective factors in providing holistic care: a qualitative study.

    PubMed

    Zamanzadeh, Vahid; Jasemi, Madineh; Valizadeh, Leila; Keogh, Brian; Taleghani, Fariba

    2015-01-01

    Holistic care is a comprehensive model of caring. Previous studies have shown that most nurses do not apply this method. Examining the effective factors in nurses' provision of holistic care can help with enhancing it. Studying these factors from the point of view of nurses will generate real and meaningful concepts and can help to extend this method of caring. A qualitative study was used to identify effective factors in holistic care provision. Data gathered by interviewing 14 nurses from university hospitals in Iran were analyzed with a conventional qualitative content analysis method and by using MAXQDA (professional software for qualitative and mixed methods data analysis) software. Analysis of data revealed three main themes as effective factors in providing holistic care: The structure of educational system, professional environment, and personality traits. Establishing appropriate educational, management systems, and promoting religiousness and encouragement will induce nurses to provide holistic care and ultimately improve the quality of their caring.

  16. A low-cost digital filing system for echocardiography data with MPEG4 compression and its application to remote diagnosis.

    PubMed

    Umeda, Akira; Iwata, Yasushi; Okada, Yasumasa; Shimada, Megumi; Baba, Akiyasu; Minatogawa, Yasuyuki; Yamada, Takayasu; Chino, Masao; Watanabe, Takafumi; Akaishi, Makoto

    2004-12-01

    The high cost of digital echocardiographs and the large size of data files hinder the adoption of remote diagnosis of digitized echocardiography data. We have developed a low-cost digital filing system for echocardiography data. In this system, data from a conventional analog echocardiograph are captured using a personal computer (PC) equipped with an analog-to-digital converter board. Motion picture data are promptly compressed using a moving pictures expert group (MPEG) 4 codec. The digitized data with preliminary reports obtained in a rural hospital are then sent to cardiologists at distant urban general hospitals via the internet. The cardiologists can evaluate the data using widely available movie-viewing software (Windows Media Player). The diagnostic accuracy of this double-check system was confirmed by comparison with ordinary super-VHS videotapes. We have demonstrated that digitization of echocardiography data from a conventional analog echocardiograph and MPEG 4 compression can be performed using an ordinary PC-based system, and that this system enables highly efficient digital storage and remote diagnosis at low cost.

  17. Crosstalk: The Journal of Defense Software Engineering. Volume 22, Number 3

    DTIC Science & Technology

    2009-04-01

    international standard for information security management systems like ISO /IEC 27001 :2005 [1] existed. Since that time, the organization has developed control...of ISO /IEC 27001 and the desire to make decisions based on business value and risk has prompted Ford’s IT Security and Controls organi- zation to begin...their conventional application security operation.u References 1. ISO /IEC 27001 :2005. “Information Technology – Security Techniques – Information

  18. Fast software-based volume rendering using multimedia instructions on PC platforms and its application to virtual endoscopy

    NASA Astrophysics Data System (ADS)

    Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro

    2003-05-01

    This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.

  19. Colonoscopy tutorial software made with a cadaver's sectioned images.

    PubMed

    Chung, Beom Sun; Chung, Min Suk; Park, Hyung Seon; Shin, Byeong-Seok; Kwon, Koojoo

    2016-11-01

    Novice doctors may watch tutorial videos in training for actual or computed tomographic (CT) colonoscopy. The conventional learning videos can be complemented by virtual colonoscopy software made with a cadaver's sectioned images (SIs). The objective of this study was to assist colonoscopy trainees with the new interactive software. Submucosal segmentation on the SIs was carried out through the whole length of the large intestine. With the SIs and segmented images, a three dimensional model was reconstructed. Six-hundred seventy-one proximal colonoscopic views (conventional views) and corresponding distal colonoscopic views (simulating the retroflexion of a colonoscope) were produced. Not only navigation views showing the current location of the colonoscope tip and its course, but also, supplementary description views were elaborated. The four corresponding views were put into convenient browsing software to be downloaded free from the homepage (anatomy.co.kr). The SI colonoscopy software with the realistic images and supportive tools was available to anybody. Users could readily notice the position and direction of the virtual colonoscope tip and recognize meaningful structures in colonoscopic views. The software is expected to be an auxiliary learning tool to improve technique and related knowledge in actual and CT colonoscopies. Hopefully, the software will be updated using raw images from the Visible Korean project. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform1[C][W][OA

    PubMed Central

    Clark, Randy T.; MacCurdy, Robert B.; Jung, Janelle K.; Shaff, Jon E.; McCouch, Susan R.; Aneshansley, Daniel J.; Kochian, Leon V.

    2011-01-01

    A novel imaging and software platform was developed for the high-throughput phenotyping of three-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and imaged daily for 10 d. Rotational image sequences consisting of 40 two-dimensional images were captured using an optically corrected digital imaging system. Three-dimensional root reconstructions were generated and analyzed using a custom-designed software, RootReader3D. Using the automated and interactive capabilities of RootReader3D, five rice root types were classified and 27 phenotypic root traits were measured to characterize these two genotypes. Where possible, measurements from the three-dimensional platform were validated and were highly correlated with conventional two-dimensional measurements. When comparing gellan gum-grown plants with those grown under hydroponic and sand culture, significant differences were detected in morphological root traits (P < 0.05). This highly flexible platform provides the capacity to measure root traits with a high degree of spatial and temporal resolution and will facilitate novel investigations into the development of entire root systems or selected components of root systems. In combination with the extensive genetic resources that are now available, this platform will be a powerful resource to further explore the molecular and genetic determinants of root system architecture. PMID:21454799

  1. Injection molding lens metrology using software configurable optical test system

    NASA Astrophysics Data System (ADS)

    Zhan, Cheng; Cheng, Dewen; Wang, Shanshan; Wang, Yongtian

    2016-10-01

    Optical plastic lens produced by injection molding machine possesses numerous advantages of light quality, impact resistance, low cost, etc. The measuring methods in the optical shop are mainly interferometry, profile meter. However, these instruments are not only expensive, but also difficult to alignment. The software configurable optical test system (SCOTS) is based on the geometry of the fringe refection and phase measuring deflectometry method (PMD), which can be used to measure large diameter mirror, aspheric and freeform surface rapidly, robustly, and accurately. In addition to the conventional phase shifting method, we propose another data collection method called as dots matrix projection. We also use the Zernike polynomials to correct the camera distortion. This polynomials fitting mapping distortion method has not only simple operation, but also high conversion precision. We simulate this test system to measure the concave surface using CODE V and MATLAB. The simulation results show that the dots matrix projection method has high accuracy and SCOTS has important significance for on-line detection in optical shop.

  2. Off-the-shelf real-time monitoring of satellite constellations in a visual 3-D environment

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Hervias, Felipe; Cheng, Cecilia Han; Mactutis, Anthony; Angelino, Robert

    1996-01-01

    The multimission spacecraft analysis system (MSAS) data monitor is a generic software product for future real-time data monitoring and analysis. The system represents the status of a satellite constellation through the shape, color, motion and position of graphical objects floating in a three dimensional virtual reality environment. It may be used for the monitoring of large volumes of data, for viewing results in configurable displays, and for providing high level and detailed views of a constellation of monitored satellites. It is considered that the data monitor is an improvement on conventional graphic and text-based displays as it increases the amount of data that the operator can absorb in a given period, and can be installed and configured without the requirement for software development by the end user. The functionality of the system is described, including: the navigation abilities; the representation of alarms in the cybergrid; limit violation; real-time trend analysis, and alarm status indication.

  3. Trusted Autonomy for Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Bonasso, Pete; Ingham, Mitch; Kortenkamp, David; Perix, John

    2005-01-01

    NASA has long supported research on intelligent control technologies that could allow space systems to operate autonomously or with reduced human supervision. Proposed uses range from automated control of entire space vehicles to mobile robots that assist or substitute for astronauts to vehicle systems such as life support that interact with other systems in complex ways and require constant vigilance. The potential for pervasive use of such technology to extend the kinds of missions that are possible in practice is well understood, as is its potential to radically improve the robustness, safety and productivity of diverse mission systems. Despite its acknowledged potential, intelligent control capabilities are rarely used in space flight systems. Perhaps the most famous example of intelligent control on a spacecraft is the Remote Agent system flown on the Deep Space One mission (1998 - 2001). However, even in this case, the role of the intelligent control element, originally intended to have full control of the spacecraft for the duration of the mission, was reduced to having partial control for a two-week non-critical period. Even this level of mission acceptance was exceptional. In most cases, mission managers consider intelligent control systems an unacceptable source of risk and elect not to fly them. Overall, the technology is not trusted. From the standpoint of those who need to decide whether to incorporate this technology, lack of trust is easy to understand. Intelligent high-level control means allowing software io make decisions that are too complex for conventional software. The decision-making behavior of these systems is often hard to understand and inspect, and thus hard to evaluate. Moreover, such software is typically designed and implemented either as a research product or custom-built for a particular mission. In the former case, software quality is unlikely to be adequate for flight qualification and the functionality provided by the system is likely driven largely by the need to publish innovative work. In the latter case, the mission represents the first use of the system, a risky proposition even for relatively simple software.

  4. SwarmSight: Real-time Tracking of Insect Antenna Movements and Proboscis Extension Reflex Using a Common Preparation and Conventional Hardware

    PubMed Central

    Birgiolas, Justas; Jernigan, Christopher M.; Gerkin, Richard C.; Smith, Brian H.; Crook, Sharon M.

    2017-01-01

    Many scientifically and agriculturally important insects use antennae to detect the presence of volatile chemical compounds and extend their proboscis during feeding. The ability to rapidly obtain high-resolution measurements of natural antenna and proboscis movements and assess how they change in response to chemical, developmental, and genetic manipulations can aid the understanding of insect behavior. By extending our previous work on assessing aggregate insect swarm or animal group movements from natural and laboratory videos using the video analysis software SwarmSight, we developed a novel, free, and open-source software module, SwarmSight Appendage Tracking (SwarmSight.org) for frame-by-frame tracking of insect antenna and proboscis positions from conventional web camera videos using conventional computers. The software processes frames about 120 times faster than humans, performs at better than human accuracy, and, using 30 frames per second (fps) videos, can capture antennal dynamics up to 15 Hz. The software was used to track the antennal response of honey bees to two odors and found significant mean antennal retractions away from the odor source about 1 s after odor presentation. We observed antenna position density heat map cluster formation and cluster and mean angle dependence on odor concentration. PMID:29364251

  5. Software-assisted post-interventional assessment of radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Rieder, Christian; Geisler, Benjamin; Bruners, Philipp; Isfort, Peter; Na, Hong-Sik; Mahnken, Andreas H.; Hahn, Horst K.

    2014-03-01

    Radiofrequency ablation (RFA) is becoming a standard procedure for minimally invasive tumor treatment in clinical practice. Due to its common technical procedure, low complication rate, and low cost, RFA has become an alternative to surgical resection in the liver. To evaluate the therapy success of RFA, thorough follow-up imaging is essential. Conventionally, shape, size, and position of tumor and coagulation are visually compared in a side-by-side manner using pre- and post-interventional images. To objectify the verification of the treatment success, a novel software assistant allowing for fast and accurate comparison of tumor and coagulation is proposed. In this work, the clinical value of the proposed assessment software is evaluated. In a retrospective clinical study, 39 cases of hepatic tumor ablation are evaluated using the prototype software and conventional image comparison by four radiologists with different levels of experience. The cases are randomized and evaluated in two sessions to avoid any recall-bias. Self-confidence of correct diagnosis (local recurrence vs. no local recurrence) on a six-point scale is given for each case by the radiologists. Sensitivity, specificity, positive and negative predictive values as well as receiver operating curves are calculated for both methods. It is shown that the software-assisted method allows physicians to correctly identify local tumor recurrence with a higher percentage than the conventional method (sensitivity: 0.6 vs. 0.35), whereas the percentage of correctly identified successful ablations is slightly reduced (specificity: 0.83 vs. 0.89).

  6. Quantitative analysis of tympanic membrane perforation: a simple and reliable method.

    PubMed

    Ibekwe, T S; Adeosun, A A; Nwaorgu, O G

    2009-01-01

    Accurate assessment of the features of tympanic membrane perforation, especially size, site, duration and aetiology, is important, as it enables optimum management. To describe a simple, cheap and effective method of quantitatively analysing tympanic membrane perforations. The system described comprises a video-otoscope (capable of generating still and video images of the tympanic membrane), adapted via a universal serial bus box to a computer screen, with images analysed using the Image J geometrical analysis software package. The reproducibility of results and their correlation with conventional otoscopic methods of estimation were tested statistically with the paired t-test and correlational tests, using the Statistical Package for the Social Sciences version 11 software. The following equation was generated: P/T x 100 per cent = percentage perforation, where P is the area (in pixels2) of the tympanic membrane perforation and T is the total area (in pixels2) for the entire tympanic membrane (including the perforation). Illustrations are shown. Comparison of blinded data on tympanic membrane perforation area obtained independently from assessments by two trained otologists, of comparative years of experience, using the video-otoscopy system described, showed similar findings, with strong correlations devoid of inter-observer error (p = 0.000, r = 1). Comparison with conventional otoscopic assessment also indicated significant correlation, comparing results for two trained otologists, but some inter-observer variation was present (p = 0.000, r = 0.896). Correlation between the two methods for each of the otologists was also highly significant (p = 0.000). A computer-adapted video-otoscope, with images analysed by Image J software, represents a cheap, reliable, technology-driven, clinical method of quantitative analysis of tympanic membrane perforations and injuries.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahanani, Nursinta Adi, E-mail: sintaadi@batan.go.id; Natsir, Khairina, E-mail: sintaadi@batan.go.id; Hartini, Entin, E-mail: sintaadi@batan.go.id

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this softwaremore » 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.« less

  8. VLBI Analysis with the Multi-Technique Software GEOSAT

    NASA Technical Reports Server (NTRS)

    Kierulf, Halfdan Pascal; Andersen, Per-Helge; Boeckmann, Sarah; Kristiansen, Oddgeir

    2010-01-01

    GEOSAT is a multi-technique geodetic analysis software developed at Forsvarets Forsknings Institutt (Norwegian defense research establishment). The Norwegian Mapping Authority has now installed the software and has, together with Forsvarets Forsknings Institutt, adapted the software to deliver datum-free normal equation systems in SINEX format. The goal is to be accepted as an IVS Associate Analysis Center and to provide contributions to the IVS EOP combination on a routine basis. GEOSAT is based on an upper diagonal factorized Kalman filter which allows estimation of time variable parameters like the troposphere and clocks as stochastic parameters. The tropospheric delays in various directions are mapped to tropospheric zenith delay using ray-tracing. Meteorological data from ECMWF with a resolution of six hours is used to perform the ray-tracing which depends both on elevation and azimuth. Other models are following the IERS and IVS conventions. The Norwegian Mapping Authority has submitted test SINEX files produced with GEOSAT to IVS. The results have been compared with the existing IVS combined products. In this paper the outcome of these comparisons is presented.

  9. Digital diagnosis of medical images

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu

    2001-08-01

    The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.

  10. Software Products

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MAST is a decision support system to help in the management of dairy herds. Data is collected on dairy herds around the country and processed at regional centers. One center is Cornell University, where Dr. Lawrence Jones and his team developed MAST. The system draws conclusions from the data and summarizes it graphically. CLIPS, which is embedded in MAST, gives the system the ability to make decisions without user interaction. With this technique, dairy managers can identify herd problems quickly, resulting in improved animal health and higher milk quality. CLIPS (C Language Integrated Production System) was developed by NASA's Johnson Space Center. It is a shell for developing expert systems designed to permit research, development and delivery on conventional computers.

  11. Designs for optimizing depth of focus and spot size for UV laser ablation

    NASA Astrophysics Data System (ADS)

    Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long

    2010-11-01

    The proposed optical systems are designed for extending the depths of foci (DOF) of UV lasers, which can be exploited in the laser-ablation technologies, such as laser machining and lithography. The designed systems are commonly constructed by an optical module that has at least one aspherical surface. Two configurations of optical module, lens-only and lens-reflector, are presented with the designs of 2-lens and 1-lens-1-reflector demonstrated by commercially optical software. Compared with conventional DOF-enhanced systems, which required the chromatic aberration lenses and the light sources with multiple wavelengths, the proposed designs are adapted to the single-wavelength systems, leading to more economical and efficient systems.

  12. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  13. Spacecraft command verification: The AI solution

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Smith, Brian K.

    1990-01-01

    Recently, a knowledge-based approach was used to develop a system called the Command Constraint Checker (CCC) for TRW. CCC was created to automate the process of verifying spacecraft command sequences. To check command files by hand for timing and sequencing errors is a time-consuming and error-prone task. Conventional software solutions were rejected when it was estimated that it would require 36 man-months to build an automated tool to check constraints by conventional methods. Using rule-based representation to model the various timing and sequencing constraints of the spacecraft, CCC was developed and tested in only three months. By applying artificial intelligence techniques, CCC designers were able to demonstrate the viability of AI as a tool to transform difficult problems into easily managed tasks. The design considerations used in developing CCC are discussed and the potential impact of this system on future satellite programs is examined.

  14. An architectural approach to create self organizing control systems for practical autonomous robots

    NASA Technical Reports Server (NTRS)

    Greiner, Helen

    1991-01-01

    For practical industrial applications, the development of trainable robots is an important and immediate objective. Therefore, the developing of flexible intelligence directly applicable to training is emphasized. It is generally agreed upon by the AI community that the fusion of expert systems, neural networks, and conventionally programmed modules (e.g., a trajectory generator) is promising in the quest for autonomous robotic intelligence. Autonomous robot development is hindered by integration and architectural problems. Some obstacles towards the construction of more general robot control systems are as follows: (1) Growth problem; (2) Software generation; (3) Interaction with environment; (4) Reliability; and (5) Resource limitation. Neural networks can be successfully applied to some of these problems. However, current implementations of neural networks are hampered by the resource limitation problem and must be trained extensively to produce computationally accurate output. A generalization of conventional neural nets is proposed, and an architecture is offered in an attempt to address the above problems.

  15. Advanced Data Format (ADF) Software Library and Users Guide

    NASA Technical Reports Server (NTRS)

    Smith, Matthew; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The "CFD General Notation System" (CGNS) consists of a collection of conventions, and conforming software, for the storage and retrieval of Computational Fluid Dynamics (CFD) data. It facilitates the exchange of data between sites and applications, and helps stabilize the archiving of aerodynamic data. This effort was initiated in order to streamline the procedures in exchanging data and software between NASA and its customers, but the goal is to develop CGNS into a National Standard for the exchange of aerodynamic data. The CGNS development team is comprised of members from Boeing Commercial. Airplane Group, NASA-Ames, NASA-Langley, NASA-Lewis, McDonnell-Douglas Corporation (now Boeing-St. Louis), Air Force-Wright Lab., and ICEM-CFD Engineering. The elements of CGNS address all activities associated with the storage of data on external media and its movement to and from application programs. These elements include: 1) The Advanced Data Format (ADF) Database manager, consisting of both a file format specification and its 1/0 software, which handles the actual reading and writing of data from and to external storage media; 2) The Standard Interface Data Structures (SIDS), which specify the intellectual content of CFD data and the conventions governing naming and terminology; 3) The SIDS-to-ADF File Mapping conventions, which specify the exact location where the CFD data defined by the SIDS is to be stored within the ADF file(s); and 4) The CGNS Mid-level Library, which provides CFD-knowledgeable routines suitable for direct installation into application codes. The ADF is a generic database manager with minimal intrinsic capability. It was written for the purpose of storing large numerical datasets in an efficient, platform independent manner. To be effective, it must be used in conjunction with external agreements on how the data will be organized within the ADF database such defined by the SIDS. There are currently 34 user callable functions that comprise the ADF Core library and are described in the Users Guide. The library is written in C, but each function has a FORTRAN counterpart.

  16. Adding an Intelligent Tutoring System to an Existing Training Simulation

    DTIC Science & Technology

    2006-01-01

    to apply information in a job should be the goal of training. Also, conventional IMI is not able to meaningfully incorporate use of free - play simulators...incorporating desktop free - play simulators into computer-based training since the software can stand in for a human tutor in all the roles. Existing IMI...2. ITS can integrate free - play simulators and IMI BC2010 ITS DESCRIPTION Overview Figure 3 illustrates the interaction between BC2010, ITS

  17. Personal manufacturing systems

    NASA Astrophysics Data System (ADS)

    Bailey, P.

    1992-04-01

    Personal Manufacturing Systems are the missing link in the automation of the design-to- manufacture process. A PMS will act as a CAD peripheral, closing the loop around the designer enabling him to directly produce models, short production runs or soft tooling with as little fuss as he might otherwise plot a drawing. Whereas conventional 5-axis CNC machines are based on orthogonal axes and simple incremental movements, the PMS is based on a geodetic structure and complex co-ordinated 'spline' movements. The software employs a novel 3D pixel technique for give itself 'spatial awareness' and an expert system to determine the optimum machining conditions. A completely automatic machining strategy can then be determined.

  18. [A personal computer-based system for online monitoring of neurologic intensive care patients].

    PubMed

    Stoll, M; Hamann, G; Jost, V; Schimrigk, K

    1992-03-01

    In the management of neurological intensive care patients with an intracranial space-consuming process the measurement and recording of intracranial pressure together with arterial blood pressure is of special interest. These parameters can be used to monitor the treatment of brain edema and hypertension. Intracranial pressure measurement is also important in the diagnosis of the various subtypes of hydrocephalus. Not only the absolute figures, but also the recognition of specific pressure-patterns is of particular clinical and scientific interest. This new, easily installed and inexpensive system comprises a PC and a conventional monitor, which are connected by an AD-conversion card. Our software, specially developed for this system demonstrates, stores and prints the online-course and the trend of the measurements. In addition it is also possible to view the online-course of conspicuous parts of the trend curve retrospectively and to use these values for statistical analyses. Object-orientated software development techniques were used for flexible graphic output on the screen, printer or to a file. Though developed for this specific purpose, this system is also suitable for recording continuous, longer-term measurements in general.

  19. Tailoring Software Inspections for Aspect-Oriented Programming

    ERIC Educational Resources Information Center

    Watkins, Charlette Ward

    2009-01-01

    Aspect-Oriented Software Development (AOSD) is a new approach that addresses limitations inherent in conventional programming, especially the principle of separation of concerns by emphasizing the encapsulation and modularization of crosscutting concerns through a new abstraction, the "aspect." Aspect-oriented programming is an emerging AOSD…

  20. The use of Virtual Analogy Simulation (VAS) in physics learning

    NASA Astrophysics Data System (ADS)

    Faizin, M. Noor; Samsudin, A.

    2018-05-01

    The purpose of this research is to explore the use of VAS software in electrical dynamic learning in junior high student, so as to obtain an overview of this software consistency in help students build a scientific conception. This research was administered via research and Development (R & D) with the design of embedded experimental models. The respondents which were involved in this research were 60 students of ninth grade in one of junior high schools in Kudus central java. The improving process of students’ concept is examined based on normalized gain analysis from pretest and posttest scores. The result of this research shows that there was difference between learning using conventional learning (power point software) with VAS software. VAS is more effective to assist students in understanding the electrical dynamic concept shown with N-gain of 0.36, or 36 % were included in the medium category, whereas the conventional learning with N-gain of 0.28, or 28%.

  1. Experiences in improving the state of the practice in verification and validation of knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; French, Scott W.; Hamilton, David

    1994-01-01

    Knowledge-based systems (KBS's) are in general use in a wide variety of domains, both commercial and government. As reliance on these types of systems grows, the need to assess their quality and validity reaches critical importance. As with any software, the reliability of a KBS can be directly attributed to the application of disciplined programming and testing practices throughout the development life-cycle. However, there are some essential differences between conventional software and KBSs, both in construction and use. The identification of these differences affect the verification and validation (V&V) process and the development of techniques to handle them. The recognition of these differences is the basis of considerable on-going research in this field. For the past three years IBM (Federal Systems Company - Houston) and the Software Technology Branch (STB) of NASA/Johnson Space Center have been working to improve the 'state of the practice' in V&V of Knowledge-based systems. This work was motivated by the need to maintain NASA's ability to produce high quality software while taking advantage of new KBS technology. To date, the primary accomplishment has been the development and teaching of a four-day workshop on KBS V&V. With the hope of improving the impact of these workshops, we also worked directly with NASA KBS projects to employ concepts taught in the workshop. This paper describes two projects that were part of this effort. In addition to describing each project, this paper describes problems encountered and solutions proposed in each case, with particular emphasis on implications for transferring KBS V&V technology beyond the NASA domain.

  2. System Advisor Model, SAM 2014.1.14: General Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Nate; Dobos, Aron P.; Freeman, Janine

    2014-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects thatmore » either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.« less

  3. Optimised layout and roadway support planning with integrated intelligent software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouniali, S.; Josien, J.P.; Piguet, J.P.

    1996-12-01

    Experience with knowledge-based systems for Layout planning and roadway support dimensioning is on hand in European coal mining since 1985. The systems SOUT (Support choice and dimensioning, 1989), SOUT 2, PLANANK (planning of bolt-support), Exos (layout planning diagnosis. 1994), Sout 3 (1995) have been developed in close cooperation by CdF{sup 1}. INERIS{sup 2} , EMN{sup 3} (France) and RAG{sup 4}, DMT{sup 5}, TH - Aachen{sup 6} (Germany); ISLSP (Integrated Software for Layout and support planning) development is in progress (completion scheduled for July 1996). This new software technology in combination with conventional programming systems, numerical models and existing databases turnedmore » out to be suited for setting-up an intelligent decision aid for layout and roadway support planning. The system enhances reliability of planning and optimises the safety-to-cost ratio for (1) deformation forecast for roadways in seam and surrounding rocks, consideration of the general position of the roadway in the rock mass (zones of increased pressure, position of operating and mined panels); (2) support dimensioning; (3) yielding arches, rigid arches, porch sets, rigid rings, yielding rings and bolting/shotcreting for drifts; (4) yielding arches, rigid arches and porch sets for roadways in seam; and (5) bolt support for gateroads (assessment of exclusion criteria and calculation of the bolting pattern) bolting of face-end zones (feasibility and safety assessment; stability guarantee).« less

  4. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.

    PubMed

    Stone, John E; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-05-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.

  5. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL

    PubMed Central

    Stone, John E.; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-01-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications. PMID:27747137

  6. Knowledge-based system verification and validation

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1990-01-01

    The objective of this task is to develop and evaluate a methodology for verification and validation (V&V) of knowledge-based systems (KBS) for space station applications with high reliability requirements. The approach consists of three interrelated tasks. The first task is to evaluate the effectiveness of various validation methods for space station applications. The second task is to recommend requirements for KBS V&V for Space Station Freedom (SSF). The third task is to recommend modifications to the SSF to support the development of KBS using effectiveness software engineering and validation techniques. To accomplish the first task, three complementary techniques will be evaluated: (1) Sensitivity Analysis (Worchester Polytechnic Institute); (2) Formal Verification of Safety Properties (SRI International); and (3) Consistency and Completeness Checking (Lockheed AI Center). During FY89 and FY90, each contractor will independently demonstrate the user of his technique on the fault detection, isolation, and reconfiguration (FDIR) KBS or the manned maneuvering unit (MMU), a rule-based system implemented in LISP. During FY91, the application of each of the techniques to other knowledge representations and KBS architectures will be addressed. After evaluation of the results of the first task and examination of Space Station Freedom V&V requirements for conventional software, a comprehensive KBS V&V methodology will be developed and documented. Development of highly reliable KBS's cannot be accomplished without effective software engineering methods. Using the results of current in-house research to develop and assess software engineering methods for KBS's as well as assessment of techniques being developed elsewhere, an effective software engineering methodology for space station KBS's will be developed, and modification of the SSF to support these tools and methods will be addressed.

  7. Simulation and energy analysis of distributed electric heating system

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  8. Digital processing of mesoscale analysis and space sensor data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.

    1985-01-01

    The mesoscale analysis and space sensor (MASS) data management and analysis system on the research computer system is presented. The MASS data base management and analysis system was implemented on the research computer system which provides a wide range of capabilities for processing and displaying large volumes of conventional and satellite derived meteorological data. The research computer system consists of three primary computers (HP-1000F, Harris/6, and Perkin-Elmer 3250), each of which performs a specific function according to its unique capabilities. The overall tasks performed concerning the software, data base management and display capabilities of the research computer system in terms of providing a very effective interactive research tool for the digital processing of mesoscale analysis and space sensor data is described.

  9. Expecting the Unexpected: Radiation Hardened Software

    NASA Technical Reports Server (NTRS)

    Penix, John; Mehlitz, Peter C.

    2005-01-01

    Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.

  10. A Software Architecture for Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    The NASA's Intelligent Synthesis Environment (ISE) program is a grand attempt to develop a system to transform the way complex artifacts are engineered. This paper discusses a "middleware" architecture for enabling the development of ISE. Desirable elements of such an Intelligent Synthesis Architecture (ISA) include remote invocation; plug-and-play applications; scripting of applications; management of design artifacts, tools, and artifact and tool attributes; common system services; system management; and systematic enforcement of policies. This paper argues that the ISA extend conventional distributed object technology (DOT) such as CORBA and Product Data Managers with flexible repositories of product and tool annotations and "plug-and-play" mechanisms for inserting "ility" or orthogonal concerns into the system. I describe the Object Infrastructure Framework, an Aspect Oriented Programming (AOP) environment for developing distributed systems that provides utility insertion and enables consistent annotation maintenance. This technology can be used to enforce policies such as maintaining the annotations of artifacts, particularly the provenance and access control rules of artifacts-, performing automatic datatype transformations between representations; supplying alternative servers of the same service; reporting on the status of jobs and the system; conveying privileges throughout an application; supporting long-lived transactions; maintaining version consistency; and providing software redundancy and mobility.

  11. How Is Open Source Special?

    ERIC Educational Resources Information Center

    Kapor, Mitchell

    2005-01-01

    Open source software projects involve the production of goods, but in software projects, the "goods" consist of information. The open source model is an alternative to the conventional centralized, command-and-control way in which things are usually made. In contrast, open source projects are genuinely decentralized and transparent. Transparent…

  12. Reuse-Driven Software Processes Guidebook. Version 02.00.03

    DTIC Science & Technology

    1993-11-01

    a required sys - tem without unduly constraining the details of the solution. The Naval Research Laboratory Software Cost Reduction project developed...conventional manner. The emphasis is still on the development of "one-of-a-kind" sys - tems and the phased completion and review of corresponding...Application Engineering to improve the life-cycle productivity of Sy - 21 OVM ftrdauntals of Syatbes the total software development enterprise. The

  13. HTMT-class Latency Tolerant Parallel Architecture for Petaflops Scale Computation

    NASA Technical Reports Server (NTRS)

    Sterling, Thomas; Bergman, Larry

    2000-01-01

    Computational Aero Sciences and other numeric intensive computation disciplines demand computing throughputs substantially greater than the Teraflops scale systems only now becoming available. The related fields of fluids, structures, thermal, combustion, and dynamic controls are among the interdisciplinary areas that in combination with sufficient resolution and advanced adaptive techniques may force performance requirements towards Petaflops. This will be especially true for compute intensive models such as Navier-Stokes are or when such system models are only part of a larger design optimization computation involving many design points. Yet recent experience with conventional MPP configurations comprising commodity processing and memory components has shown that larger scale frequently results in higher programming difficulty and lower system efficiency. While important advances in system software and algorithms techniques have had some impact on efficiency and programmability for certain classes of problems, in general it is unlikely that software alone will resolve the challenges to higher scalability. As in the past, future generations of high-end computers may require a combination of hardware architecture and system software advances to enable efficient operation at a Petaflops level. The NASA led HTMT project has engaged the talents of a broad interdisciplinary team to develop a new strategy in high-end system architecture to deliver petaflops scale computing in the 2004/5 timeframe. The Hybrid-Technology, MultiThreaded parallel computer architecture incorporates several advanced technologies in combination with an innovative dynamic adaptive scheduling mechanism to provide unprecedented performance and efficiency within practical constraints of cost, complexity, and power consumption. The emerging superconductor Rapid Single Flux Quantum electronics can operate at 100 GHz (the record is 770 GHz) and one percent of the power required by convention semiconductor logic. Wave Division Multiplexing optical communications can approach a peak per fiber bandwidth of 1 Tbps and the new Data Vortex network topology employing this technology can connect tens of thousands of ports providing a bi-section bandwidth on the order of a Petabyte per second with latencies well below 100 nanoseconds, even under heavy loads. Processor-in-Memory (PIM) technology combines logic and memory on the same chip exposing the internal bandwidth of the memory row buffers at low latency. And holographic storage photorefractive storage technologies provide high-density memory with access a thousand times faster than conventional disk technologies. Together these technologies enable a new class of shared memory system architecture with a peak performance in the range of a Petaflops but size and power requirements comparable to today's largest Teraflops scale systems. To achieve high-sustained performance, HTMT combines an advanced multithreading processor architecture with a memory-driven coarse-grained latency management strategy called "percolation", yielding high efficiency while reducing the much of the parallel programming burden. This paper will present the basic system architecture characteristics made possible through this series of advanced technologies and then give a detailed description of the new percolation approach to runtime latency management.

  14. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE PAGES

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman; ...

    2018-04-13

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  15. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  16. Weather forecasting with open source software

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Dörnbrack, Andreas

    2013-04-01

    To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.

  17. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques.

    PubMed

    Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi

    2017-01-01

    The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator.

  18. Dynamic modeling and verification of an energy-efficient greenhouse with an aquaponic system using TRNSYS

    NASA Astrophysics Data System (ADS)

    Amin, Majdi Talal

    Currently, there is no integrated dynamic simulation program for an energy efficient greenhouse coupled with an aquaponic system. This research is intended to promote the thermal management of greenhouses in order to provide sustainable food production with the lowest possible energy use and material waste. A brief introduction of greenhouses, passive houses, energy efficiency, renewable energy systems, and their applications are included for ready reference. An experimental working scaled-down energy-efficient greenhouse was built to verify and calibrate the results of a dynamic simulation model made using TRNSYS software. However, TRNSYS requires the aid of Google SketchUp to develop 3D building geometry. The simulation model was built following the passive house standard as closely as possible. The new simulation model was then utilized to design an actual greenhouse with Aquaponics. It was demonstrated that the passive house standard can be applied to improve upon conventional greenhouse performance, and that it is adaptable to different climates. The energy-efficient greenhouse provides the required thermal environment for fish and plant growth, while eliminating the need for conventional cooling and heating systems.

  19. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    NASA Astrophysics Data System (ADS)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  20. Critical Thinking Skills of Students through Mathematics Learning with ASSURE Model Assisted by Software Autograph

    NASA Astrophysics Data System (ADS)

    Kristianti, Y.; Prabawanto, S.; Suhendra, S.

    2017-09-01

    This study aims to examine the ability of critical thinking and students who attain learning mathematics with learning model ASSURE assisted Autograph software. The design of this study was experimental group with pre-test and post-test control group. The experimental group obtained a mathematics learning with ASSURE-assisted model Autograph software and the control group acquired the mathematics learning with the conventional model. The data are obtained from the research results through critical thinking skills tests. This research was conducted at junior high school level with research population in one of junior high school student in Subang Regency of Lesson Year 2016/2017 and research sample of class VIII student in one of junior high school in Subang Regency for 2 classes. Analysis of research data is administered quantitatively. Quantitative data analysis was performed on the normalized gain level between the two sample groups using a one-way anova test. The results show that mathematics learning with ASSURE assisted model Autograph software can improve the critical thinking ability of junior high school students. Mathematical learning using ASSURE-assisted model Autograph software is significantly better in improving the critical thinking skills of junior high school students compared with conventional models.

  1. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  2. SpaceWire Driver Software for Special DSPs

    NASA Technical Reports Server (NTRS)

    Clark, Douglas; Lux, James; Nishimoto, Kouji; Lang, Minh

    2003-01-01

    A computer program provides a high-level C-language interface to electronics circuitry that controls a SpaceWire interface in a system based on a space qualified version of the ADSP-21020 digital signal processor (DSP). SpaceWire is a spacecraft-oriented standard for packet-switching data-communication networks that comprise nodes connected through bidirectional digital serial links that utilize low-voltage differential signaling (LVDS). The software is tailored to the SMCS-332 application-specific integrated circuit (ASIC) (also available as the TSS901E), which provides three highspeed (150 Mbps) serial point-to-point links compliant with the proposed Institute of Electrical and Electronics Engineers (IEEE) Standard 1355.2 and equivalent European Space Agency (ESA) Standard ECSS-E-50-12. In the specific application of this software, the SpaceWire ASIC was combined with the DSP processor, memory, and control logic in a Multi-Chip Module DSP (MCM-DSP). The software is a collection of low-level driver routines that provide a simple message-passing application programming interface (API) for software running on the DSP. Routines are provided for interrupt-driven access to the two styles of interface provided by the SMCS: (1) the "word at a time" conventional host interface (HOCI); and (2) a higher performance "dual port memory" style interface (COMI).

  3. Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding

    NASA Astrophysics Data System (ADS)

    Bilici, Temel; Tabakoğlu, Haşim Özgür; Topaloğlu, Nermin; Kalaycıoğlu, Hamit; Kurt, Adnan; Sennaroglu, Alphan; Gülsoy, Murat

    2010-05-01

    Our aim is to explore the welding capabilities of a thulium (Tm:YAP) laser in modulated and continuous-wave (CW) modes of operation. The Tm:YAP laser system developed for this study includes a Tm:YAP laser resonator, diode laser driver, water chiller, modulation controller unit, and acquisition/control software. Full-thickness incisions on Wistar rat skin were welded by the Tm:YAP laser system at 100 mW and 5 s in both modulated and CW modes of operation (34.66 W/cm2). The skin samples were examined during a 21-day healing period by histology and tensile tests. The results were compared with the samples closed by conventional suture technique. For the laser groups, immediate closure at the surface layers of the incisions was observed. Full closures were observed for both modulated and CW modes of operation at day 4. The tensile forces for both modulated and CW modes of operation were found to be significantly higher than the values found by conventional suture technique. The 1980-nm Tm:YAP laser system operating in both modulated and CW modes maximizes the therapeutic effect while minimizing undesired side effects of laser tissue welding. Hence, it is a potentially important alternative tool to the conventional suturing technique.

  4. The GEMPAK Barnes objective analysis scheme

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Desjardins, M.; Kocin, P. J.

    1981-01-01

    GEMPAK, an interactive computer software system developed for the purpose of assimilating, analyzing, and displaying various conventional and satellite meteorological data types is discussed. The objective map analysis scheme possesses certain characteristics that allowed it to be adapted to meet the analysis needs GEMPAK. Those characteristics and the specific adaptation of the scheme to GEMPAK are described. A step-by-step guide for using the GEMPAK Barnes scheme on an interactive computer (in real time) to analyze various types of meteorological datasets is also presented.

  5. Using Distinct Sectors in Media Sampling and Full Media Analysis to Detect Presence of Documents from a Corpus

    DTIC Science & Technology

    2012-09-01

    relative performance of several conventional SQL and NoSQL databases with a set of one billion file block hashes. Digital Forensics, Sector Hashing, Full... NoSQL databases with a set of one billion file block hashes. v THIS PAGE INTENTIONALLY LEFT BLANK vi Table of Contents List of Acronyms and...Operating System NOOP No Operation assembly instruction NoSQL “Not only SQL” model for non-relational database management NSRL National Software

  6. Freeform Optics: current challenges for future serial production

    NASA Astrophysics Data System (ADS)

    Schindler, C.; Köhler, T.; Roth, E.

    2017-10-01

    One of the major developments in optics industry recently is the commercial manufacturing of freeform surfaces for optical mid- and high performance systems. The loss of limitation on rotational symmetry enables completely new optical design solutions - but causes completely new challenges for the manufacturer too. Adapting the serial production from radial-symmetric to freeform optics cannot be done just by the extension of machine capabilities and software for every process step. New solutions for conventional optics productions or completely new process chains are necessary.

  7. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  8. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study.

    PubMed

    Farsalinos, Konstantinos E; Daraban, Ana M; Ünlü, Serkan; Thomas, James D; Badano, Luigi P; Voigt, Jens-Uwe

    2015-10-01

    This study was planned by the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging to (1) test the variability of speckle-tracking global longitudinal strain (GLS) measurements among different vendors and (2) compare GLS measurement variability with conventional echocardiographic parameters. Sixty-two volunteers were studied using ultrasound systems from seven manufacturers. Each volunteer was examined by the same sonographer on all machines. Inter- and intraobserver variability was determined in a true test-retest setting. Conventional echocardiographic parameters were acquired for comparison. Using the software packages of the respective manufacturer and of two software-only vendors, endocardial GLS was measured because it was the only GLS parameter that could be provided by all manufactures. We compared GLSAV (the average from the three apical views) and GLS4CH (measured in the four-chamber view) measurements among vendors and with the conventional echocardiographic parameters. Absolute values of GLSAV ranged from 18.0% to 21.5%, while GLS4CH ranged from 17.9% to 21.4%. The absolute difference between vendors for GLSAV was up to 3.7% strain units (P < .001). The interobserver relative mean errors were 5.4% to 8.6% for GLSAV and 6.2% to 11.0% for GLS4CH, while the intraobserver relative mean errors were 4.9% to 7.3% and 7.2% to 11.3%, respectively. These errors were lower than for left ventricular ejection fraction and most other conventional echocardiographic parameters. Reproducibility of GLS measurements was good and in many cases superior to conventional echocardiographic measurements. The small but statistically significant variation among vendors should be considered in performing serial studies and reflects a reference point for ongoing standardization efforts. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  9. Development of a digital impression procedure using photogrammetry for complete denture fabrication.

    PubMed

    Matsuda, Takashi; Goto, Takaharu; Kurahashi, Kosuke; Kashiwabara, Toshiya; Ichikawa, Tetsuo

    We developed an innovative procedure for digitizing maxillary edentulous residual ridges with a photogrammetric system capable of estimating three-dimensional (3D) digital forms from multiple two-dimensional (2D) digital images. The aim of this study was to validate the effectiveness of the photogrammetric system. Impressions of the maxillary residual ridges of five edentulous patients were taken with four kinds of procedures: three conventional impression procedures and the photogrammetric system. Plaster models were fabricated from conventional impressions and digitized with a 3D scanner. Two 3D forms out of four forms were superimposed with 3D inspection software, and differences were evaluated using a least squares best fit algorithm. The in vitro experiment suggested that better imaging conditions were in the horizontal range of ± 15 degrees and at a vertical angle of 45 degrees. The mean difference between the photogrammetric image (Form A) and the image taken from conventional preliminarily impression (Form C) was 0.52 ± 0.22 mm. The mean difference between the image taken of final impression through a special tray (Form B) and Form C was 0.26 ± 0.06 mm. The mean difference between the image taken from conventional final impression (Form D) and Form C was 0.25 ± 0.07 mm. The difference between Forms A and C was significantly larger than the differences between Forms B and C and between Forms D and C. The results of this study suggest that obtaining digital impressions of edentulous residual ridges using a photogrammetric system is feasible and available for clinical use.

  10. PC Software for Artificial Intelligence Applications.

    PubMed

    Epp, H; Kalin, M; Miller, D

    1988-05-06

    Our review has emphasized that AI tools are programming languages inspired by some problem-solving paradigm. We want to underscore their status as programming languages; even if an AI tool seems to fit a problem perfectly, its proficient use still requires the training and practice associated with any programming language. The programming manuals for PC-Plus, Smalltalk/ V, and Nexpert Object are all tutorial in nature, and the corresponding software packages come with sample applications. We find the manuals to be uniformly good introductions that try to anticipate the problems of a user who is new to the technology. All three vendors offer free technical support by telephone to licensed users. AI tools are sometimes oversold as a way to make programming easy or to avoid it altogether. The truth is that AI tools demand programming-but programming that allows you to concentrate on the essentials of the problem. If we had to implement a diagnostic system, we would look first to a product such as PC-Plus rather than BASIC or C, because PC-Plus is designed specifically for such a problem, whereas these conventional languages are not. If we had to implement a system that required graphical interfaces and could benefit from inheritance, we would look first to an object-oriented system such as Smalltalk/V that provides built-in mechanisms for both. If we had to implement an expert system that called for some mix of AI and conventional techniques, we would look first to a product such as Nexpert Object that integrates various problem-solving technologies. Finally, we might use FORTRAN if we were concerned primarily with programming a well-defined numerical algorithm. AI tools are a valuable complement to traditional languages.

  11. Achrotech: achromat cost versus performance for conventional, diffractive, and GRIN components

    NASA Astrophysics Data System (ADS)

    Morris, Jeffrey; Wolf, Greg; Vandendriessche, Stefaan; Sparrold, Scott

    2016-09-01

    An achromatic component shares a common focus at two wavelengths and is a commonly used device in optical assemblies. This work explores the cost versus performance tradeoff for several types of achromatic lenses: conventional doublets with homogenous glass elements, hybrid doublets with a diffractive surface, axial GRadient INdex (GRIN) lenses (where the index of refraction changes along the length of the lens), and radial GRIN lenses (where the index of refraction changes depending on radial position). First order achromatic principles will be reviewed and applied to each system as a starting point and refined through the use of ray trace software. Optical performance will be assessed in terms of focusing efficiency and imaging. Cost will then be evaluated by accounting for current manufacturing costs and retail price through several distributors.

  12. Conceptual Design of a 150-Passenger Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo

    2012-01-01

    The conceptual design of a short-haul civil tiltrotor aircraft is presented. The concept vehicle is designed for runway-independent operations to increase the capacity of the National Airspace System without the need for increased infrastructure. This necessitates a vehicle that is capable of integrating with conventional air traffic without interfering with established flightpaths. The NASA Design and Analysis of Rotorcraft software was used to size the concept vehicle based on the mission requirements of this market. The final configuration was selected based upon performance metrics such as acquisition and maintenance costs, fuel fraction, empty weight, and required engine power. The concept presented herein has a proposed initial operating capability date of 2035, and is intended to integrate with conventional air traffic as well as proposed future air transportation concepts.

  13. Comparison of conventional study model measurements and 3D digital study model measurements from laser scanned dental impressions

    NASA Astrophysics Data System (ADS)

    Nugrahani, F.; Jazaldi, F.; Noerhadi, N. A. I.

    2017-08-01

    The field of orthodontics is always evolving,and this includes the use of innovative technology. One type of orthodontic technology is the development of three-dimensional (3D) digital study models that replace conventional study models made by stone. This study aims to compare the mesio-distal teeth width, intercanine width, and intermolar width measurements between a 3D digital study model and a conventional study model. Twelve sets of upper arch dental impressions were taken from subjects with non-crowding teeth. The impressions were taken twice, once with alginate and once with polivinylsiloxane. The alginate impressions used in the conventional study model and the polivinylsiloxane impressions were scanned to obtain the 3D digital study model. Scanning was performed using a laser triangulation scanner device assembled by the School of Electrical Engineering and Informatics at the Institut Teknologi Bandung and David Laser Scan software. For the conventional model, themesio-distal width, intercanine width, and intermolar width were measured using digital calipers; in the 3D digital study model they were measured using software. There were no significant differences between the mesio-distal width, intercanine width, and intermolar width measurments between the conventional and 3D digital study models (p>0.05). Thus, measurements using 3D digital study models are as accurate as those obtained from conventional study models

  14. Influence of standardization on the precision (reproducibility) of dental cast analysis with virtual 3-dimensional models.

    PubMed

    Hayashi, Kazuo; Chung, Onejune; Park, Seojung; Lee, Seung-Pyo; Sachdeva, Rohit C L; Mizoguchi, Itaru

    2015-03-01

    Virtual 3-dimensional (3D) models obtained by scanning of physical casts have become an alternative to conventional dental cast analysis in orthodontic treatment. If the precision (reproducibility) of virtual 3D model analysis can be further improved, digital orthodontics could be even more widely accepted. The purpose of this study was to clarify the influence of "standardization" of the target points for dental cast analysis using virtual 3D models. Physical plaster models were also measured to obtain additional information. Five sets of dental casts were used. The dental casts were scanned with R700 (3Shape, Copenhagen, Denmark) and REXCAN DS2 3D (Solutionix, Seoul, Korea) scanners. In this study, 3 system and software packages were used: SureSmile (OraMetrix, Richardson, Tex), Rapidform (Inus, Seoul, Korea), and I-DEAS (SDRC, Milford, Conn). Without standardization, the maximum differences were observed between the SureSmile software and the Rapidform software (0.39 mm ± 0.07). With standardization, the maximum differences were observed between the SureSmile software and measurements with a digital caliper (0.099 mm ± 0.01), and this difference was significantly greater (P <0.05) than the 2 other mean difference values. Furthermore, the results of this study showed that the mean differences "WITH" standardization were significantly lower than those "WITHOUT" standardization for all systems, software packages, or methods. The results showed that elimination of the influence of usability or habituation is important for improving the reproducibility of dental cast analysis. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. Novel semi-automated kidney volume measurements in autosomal dominant polycystic kidney disease.

    PubMed

    Muto, Satoru; Kawano, Haruna; Isotani, Shuji; Ide, Hisamitsu; Horie, Shigeo

    2018-06-01

    We assessed the effectiveness and convenience of a novel semi-automatic kidney volume (KV) measuring high-speed 3D-image analysis system SYNAPSE VINCENT ® (Fuji Medical Systems, Tokyo, Japan) for autosomal dominant polycystic kidney disease (ADPKD) patients. We developed a novel semi-automated KV measurement software for patients with ADPKD to be included in the imaging analysis software SYNAPSE VINCENT ® . The software extracts renal regions using image recognition software and measures KV (VINCENT KV). The algorithm was designed to work with the manual designation of a long axis of a kidney including cysts. After using the software to assess the predictive accuracy of the VINCENT method, we performed an external validation study and compared accurate KV and ellipsoid KV based on geometric modeling by linear regression analysis and Bland-Altman analysis. Median eGFR was 46.9 ml/min/1.73 m 2 . Median accurate KV, Vincent KV and ellipsoid KV were 627.7, 619.4 ml (IQR 431.5-947.0) and 694.0 ml (IQR 488.1-1107.4), respectively. Compared with ellipsoid KV (r = 0.9504), Vincent KV correlated strongly with accurate KV (r = 0.9968), without systematic underestimation or overestimation (ellipsoid KV; 14.2 ± 22.0%, Vincent KV; - 0.6 ± 6.0%). There were no significant slice thickness-specific differences (p = 0.2980). The VINCENT method is an accurate and convenient semi-automatic method to measure KV in patients with ADPKD compared with the conventional ellipsoid method.

  16. Clinical results of computerized tomography-based simulation with laser patient marking.

    PubMed

    Ragan, D P; Forman, J D; He, T; Mesina, C F

    1996-02-01

    Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.

  17. New, high-efficiency ion trap mobility detection system for narcotics and explosives

    NASA Astrophysics Data System (ADS)

    McGann, William J.; Bradley, V.; Borsody, A.; Lepine, S.

    1994-10-01

    A new patented Ion Trap Mobility Spectrometer (ITMS) design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC and LSD are reported.

  18. New high-efficiency ion trap mobility detection system for narcotics and explosives

    NASA Astrophysics Data System (ADS)

    McGann, William J.; Jenkins, Anthony; Ribiero, K.; Napoli, J.

    1994-03-01

    A new patented ion trap mobility spectrometer design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electrical-field-driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC, and LSD are reported.

  19. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering.

  20. Simple and efficient method for region of interest value extraction from picture archiving and communication system viewer with optical character recognition software and macro program.

    PubMed

    Lee, Young Han; Park, Eun Hae; Suh, Jin-Suck

    2015-01-01

    The objectives are: 1) to introduce a simple and efficient method for extracting region of interest (ROI) values from a Picture Archiving and Communication System (PACS) viewer using optical character recognition (OCR) software and a macro program, and 2) to evaluate the accuracy of this method with a PACS workstation. This module was designed to extract the ROI values on the images of the PACS, and created as a development tool by using open-source OCR software and an open-source macro program. The principal processes are as follows: (1) capture a region of the ROI values as a graphic file for OCR, (2) recognize the text from the captured image by OCR software, (3) perform error-correction, (4) extract the values including area, average, standard deviation, max, and min values from the text, (5) reformat the values into temporary strings with tabs, and (6) paste the temporary strings into the spreadsheet. This principal process was repeated for the number of ROIs. The accuracy of this module was evaluated on 1040 recognitions from 280 randomly selected ROIs of the magnetic resonance images. The input times of ROIs were compared between conventional manual method and this extraction module-assisted input method. The module for extracting ROI values operated successfully using the OCR and macro programs. The values of the area, average, standard deviation, maximum, and minimum could be recognized and error-corrected with AutoHotkey-coded module. The average input times using the conventional method and the proposed module-assisted method were 34.97 seconds and 7.87 seconds, respectively. A simple and efficient method for ROI value extraction was developed with open-source OCR and a macro program. Accurate inputs of various numbers from ROIs can be extracted with this module. The proposed module could be applied to the next generation of PACS or existing PACS that have not yet been upgraded. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  1. Effective Factors in Providing Holistic Care: A Qualitative Study

    PubMed Central

    Zamanzadeh, Vahid; Jasemi, Madineh; Valizadeh, Leila; Keogh, Brian; Taleghani, Fariba

    2015-01-01

    Background: Holistic care is a comprehensive model of caring. Previous studies have shown that most nurses do not apply this method. Examining the effective factors in nurses’ provision of holistic care can help with enhancing it. Studying these factors from the point of view of nurses will generate real and meaningful concepts and can help to extend this method of caring. Materials and Methods: A qualitative study was used to identify effective factors in holistic care provision. Data gathered by interviewing 14 nurses from university hospitals in Iran were analyzed with a conventional qualitative content analysis method and by using MAXQDA (professional software for qualitative and mixed methods data analysis) software. Results: Analysis of data revealed three main themes as effective factors in providing holistic care: The structure of educational system, professional environment, and personality traits. Conclusion: Establishing appropriate educational, management systems, and promoting religiousness and encouragement will induce nurses to provide holistic care and ultimately improve the quality of their caring. PMID:26009677

  2. Media processors using a new microsystem architecture designed for the Internet era

    NASA Astrophysics Data System (ADS)

    Wyland, David C.

    1999-12-01

    The demands of digital image processing, communications and multimedia applications are growing more rapidly than traditional design methods can fulfill them. Previously, only custom hardware designs could provide the performance required to meet the demands of these applications. However, hardware design has reached a crisis point. Hardware design can no longer deliver a product with the required performance and cost in a reasonable time for a reasonable risk. Software based designs running on conventional processors can deliver working designs in a reasonable time and with low risk but cannot meet the performance requirements. What is needed is a media processing approach that combines very high performance, a simple programming model, complete programmability, short time to market and scalability. The Universal Micro System (UMS) is a solution to these problems. The UMS is a completely programmable (including I/O) system on a chip that combines hardware performance with the fast time to market, low cost and low risk of software designs.

  3. Cleaning Effectiveness of a Reciprocating Single-file and a Conventional Rotary Instrumentation System.

    PubMed

    de Carvalho, Fredson Marcio Acris; Gonçalves, Leonardo Cantanhede de Oliveira; Marques, André Augusto Franco; Alves, Vanessa; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist

    2016-01-01

    To compare cleaning effectiveness by histological analysis of a reciprocating single-file system with ProTaper rotary instruments during the preparation of curved root canals in extracted teeth. A total of 40 root canals with curvatures ranging between 20 - 40 degrees were divided into two groups of 20 canals. Canals were prepared to the following apical sizes: Reciproc size 25 (n=20); ProTaper: F2 (n=20). The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for the test (Mann-Whitney U test, P < .05) were statistically analyzed using the GraphPad InStat for the Mac OS software (GraphPad Software, La Jolla, CA, USA). There were no significant differences in remaining debris (P > .05) between the two groups. The application of reciprocating motion during instrumentation did not result in increased debris when compared with continuous rotation motion, even in the apical part of curved canals. Both instruments resulted in debris in the canal lumen, irrespective of the movement kinematics applied.

  4. Gamma ray shielding and structural properties of PbO-P2O5-Na2WO4 glass system

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder

    2017-05-01

    The present work has been undertaken to study the gamma ray shielding properties of PbO-P2O5-Na2WO4 glass system. The values of mass attenuation coefficient and half value layer parameter at photon energies 511, 662 and 1173 KeV have been determined using XCOM computer software developed by National Institute of Standards and Technology. The density, molar volume, XRD, UV-VIS and Raman studies have been performed to study the structural properties of the prepared glass system to check the possibility of the use of prepared samples as an alternate to conventional concrete for gamma ray shielding applications.

  5. Usability and Interoperability Improvements for an EASE-Grid 2.0 Passive Microwave Data Product Using CF Conventions

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Long, D. G.

    2017-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Historical versions of the gridded passive microwave data sets were produced as flat binary files described in human-readable documentation. This format is error-prone and makes it difficult to reliably include all processing and provenance. Funded by NASA MEaSUREs, we have completely reprocessed the gridded data record that includes SMMR, SSM/I-SSMIS and AMSR-E. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR) files are self-describing. Our approach to the new data set was to create netCDF4 files that use standard metadata conventions and best practices to incorporate file-level, machine- and human-readable contents, geolocation, processing and provenance metadata. We followed the flexible and adaptable Climate and Forecast (CF-1.6) Conventions with respect to their coordinate conventions and map projection parameters. Additionally, we made use of Attribute Conventions for Dataset Discovery (ACDD-1.3) that provided file-level conventions with spatio-temporal bounds that enable indexing software to search for coverage. Our CETB files also include temporal coverage and spatial resolution in the file-level metadata for human-readability. We made use of the JPL CF/ACDD Compliance Checker to guide this work. We tested our file format with real software, for example, netCDF Command-line Operators (NCO) power tools for unlimited control on spatio-temporal subsetting and concatenation of files. The GDAL tools understand the CF metadata and produce fully-compliant geotiff files from our data. ArcMap can then reproject the geotiff files on-the-fly and work with other geolocated data such as coastlines, with no special work required. We expect this combination of standards and well-tested interoperability to significantly improve the usability of this important ESDR for the Earth Science community.

  6. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and it affords a previously unheard of potential for communicating the complexity of key exposures. For example, in studies of metamorphic structures we often search for days to find "Rosetta Stone" outcrops that display key geometric relationships. While conventional photographs rarely can capture the essence of the field exposure, capturing a true 3D representation of the exposure with multiple photos from many orientations can solve this communication problem. As spatial databases evolve these 3D models should be readily importable into the database.

  7. Techniques for the rapid display and manipulation of 3-D biomedical data.

    PubMed

    Goldwasser, S M; Reynolds, R A; Talton, D A; Walsh, E S

    1988-01-01

    The use of fully interactive 3-D workstations with true real-time performance will become increasingly common as technology matures and economical commercial systems become available. This paper provides a comprehensive introduction to high speed approaches to the display and manipulation of 3-D medical objects obtained from tomographic data acquisition systems such as CT, MR, and PET. A variety of techniques are outlined including the use of software on conventional minicomputers, hardware assist devices such as array processors and programmable frame buffers, and special purpose computer architecture for dedicated high performance systems. While both algorithms and architectures are addressed, the major theme centers around the utilization of hardware-based approaches including parallel processors for the implementation of true real-time systems.

  8. Nanopositioning for polarimetric characterization.

    PubMed

    Qureshi, Naser; Kolokoltsev, Oleg V; Ortega-Martínez, Roberto; Ordoñez-Romero, C L

    2008-12-01

    A positioning system with approximately nanometer resolution has been developed based on a new implementation of a motor-driven screw scheme. In contrast to conventional positioning systems based on piezoelectric elements, this system shows remarkably low levels of drift and vibration, and eliminates the need for position feedback during typical data acquisition processes. During positioning or scanning processes, non-repeatability and hysteresis problems inherent in mechanical positioning systems are greatly reduced using a software feedback scheme. As a result, we are able to demonstrate an average mechanical resolution of 1.45 nm and near diffraction-limited imaging using scanning optical microscopy. We propose this approach to nanopositioning as a readily accessible alternative enabling high spatial resolution scanning probe characterization (e.g., polarimetry) and provide practical details for its implementation.

  9. Phase Noise Influence in Long-range Coherent Optical OFDM Systems with Delay Detection, IFFT Multiplexing and FFT Demodulation

    NASA Astrophysics Data System (ADS)

    Jacobsen, Gunnar; Xu, Tianhua; Popov, Sergei; Sergeyev, Sergey; Zhang, Yimo

    2012-12-01

    We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.

  10. Aho-Corasick String Matching on Shared and Distributed Memory Parallel Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste; Chavarría-Miranda, Daniel

    String matching is at the core of many critical applications, including network intrusion detection systems, search engines, virus scanners, spam filters, DNA and protein sequencing, and data mining. For all of these applications string matching requires a combination of (sometimes all) the following characteristics: high and/or predictable performance, support for large data sets and flexibility of integration and customization. Many software based implementations targeting conventional cache-based microprocessors fail to achieve high and predictable performance requirements, while Field-Programmable Gate Array (FPGA) implementations and dedicated hardware solutions fail to support large data sets (dictionary sizes) and are difficult to integrate and customize.more » The advent of multicore, multithreaded, and GPU-based systems is opening the possibility for software based solutions to reach very high performance at a sustained rate. This paper compares several software-based implementations of the Aho-Corasick string searching algorithm for high performance systems. We discuss the implementation of the algorithm on several types of shared-memory high-performance architectures (Niagara 2, large x86 SMPs and Cray XMT), distributed memory with homogeneous processing elements (InfiniBand cluster of x86 multicores) and heterogeneous processing elements (InfiniBand cluster of x86 multicores with NVIDIA Tesla C10 GPUs). We describe in detail how each solution achieves the objectives of supporting large dictionaries, sustaining high performance, and enabling customization and flexibility using various data sets.« less

  11. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  12. Quality measures and assurance for AI (Artificial Intelligence) software

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1988-01-01

    This report is concerned with the application of software quality and evaluation measures to AI software and, more broadly, with the question of quality assurance for AI software. Considered are not only the metrics that attempt to measure some aspect of software quality, but also the methodologies and techniques (such as systematic testing) that attempt to improve some dimension of quality, without necessarily quantifying the extent of the improvement. The report is divided into three parts Part 1 reviews existing software quality measures, i.e., those that have been developed for, and applied to, conventional software. Part 2 considers the characteristics of AI software, the applicability and potential utility of measures and techniques identified in the first part, and reviews those few methods developed specifically for AI software. Part 3 presents an assessment and recommendations for the further exploration of this important area.

  13. Simulation for assessment of bulk cargo berths number

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. L.; Kirichenko, A. V.; Slitsan, A. E.

    2017-10-01

    The world trade volumes of mineral resources have been growing constantly for decades, notwithstanding any economical crises. At the same time, the proximity of the bulk materials as products to the starting point of the integrated value added or logistic supply chain makes their unit price relatively low. This fact automatically causes a strong economic sensitivity of the supply chain to the level of operational expenses in every link. The core of the integrated logistic supply chain is its maritime segment, with the fleet and terminals (i.e. the cargo transportation system) serving as the base platform for it. In its turn, the terminal berths play a role of the interface between the fleet and the land-transportation sub-system. Current development of the maritime transportation technologies, ships and terminal specialization, vessel size growth, rationalization of route patterns, regionalization of trade etc., has made conventional calculation methods inadequate. The solution of the problem is in using object oriented simulation. At the same time, this approch usually assumes only ad hoc models. Thus, it does not provide the generality of its conventional analytical predecessors. The time and labor consumpting procedure of simulation results in a very narrow application domain of the model. This article describes a new simulation instrument, combining the generality of the analytical technoques with the efficiency of the object-oriented simulation. The approach implemented as a software module, which validity and adequacy are proved. The software was tested on several sea terminal design projects and confirmed its efficiency.

  14. Expert systems for C3I. Volume 1. A user's introduction

    NASA Astrophysics Data System (ADS)

    Clapp, J. A.; Hockett, S. M.; Prelle, M. J.; Tallant, A. M.; Triant, D. D.

    1985-10-01

    There has been a tremendous burgeoning of interest in artificial intelligence (AI) over the last few years. Investments of commercial and government sponsors reflect a widespread belief that AI is now ready for practical applications. The area of AI currently receiving the greatest attention and investment is expert system technology. Most major high tech corporations have begun to develop expert systems, and many software houses specializing in expert system tools and applications have recently appeared. The defense community is one of the heaviest investors in expert system technology, and within this community one of the application areas receiving greatest attention is C3I. Many ESD programs are now beginning to ask whether expert system applications for C3I are ready for incorporation into ESD-developed systems, and, if so, what are the potential benefits and risks of doing so. This report was prepared to help ESD and MITRE personnel working on acquisition programs to address these issues and to gain a better understanding of what expert systems are all about. The primary intention of this report is to investigate what expert systems are and the advances that are being made in expert system technology for C3I applications. The report begins with a brief tutorial on expert systems, emphasizing how they differ from conventional software systems and what they are best at doing.

  15. SU-E-T-106: Development of a Collision Prediction Algorithm for Determining Problematic Geometry for SBRT Treatments Using a Stereotactic Body Frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagar, M; Friesen, S; Mannarino, E

    2014-06-01

    Purpose: Collision between the gantry and the couch or patient during Radiotherapy is not a common concern for conventional RT (static fields or arc). With the increase in the application of stereotactic planning techniques to the body, collisions have become a greater concern. Non-coplanar beam geometry is desirable in stereotatic treatments in order to achieve sharp gradients and a high conformality. Non-coplanar geometry is less intuitive in the body and often requires an iterative process of planning and dry runs to guarantee deliverability. Methods: Purpose written software was developed in order to predict the likelihood of collision between the headmore » of the gantry and the couch, patient or stereotatic body frame. Using the DICOM plan and structures set, exported by the treatment planning system, this software is able to predict the possibility of a collision. Given the plan's isocenter, treatment geometry and exterior contours, the software is able to determine if a particular beam/arc is clinically deliverable or if collision is imminent. Results: The software was tested on real world treatment plans with untreatable beam geometry. Both static non-coplanar and VMAT plans were tested. Of these, the collision prediction software could identify all as having potentially problematic geometry. Re-plans of the same cases were also tested and validated as deliverable. Conclusion: This software is capable of giving good initial indication of deliverability for treatment plans that utilize complex geometry (SBRT) or have lateral isocenters. This software is not intended to replace the standard pre-treatment QA dry run. The effectiveness is limited to those portions of the patient and immobilization devices that have been included in the simulation CT and contoured in the planning system. It will however aid the planner in reducing the iterations required to create complex treatment geometries necessary to achieve ideal conformality and organ sparing.« less

  16. Using Formal Methods to Assist in the Requirements Analysis of the Space Shuttle GPS Change Request

    NASA Technical Reports Server (NTRS)

    DiVito, Ben L.; Roberts, Larry W.

    1996-01-01

    We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using formal methods in Space Shuttle software requirements analysis. Several Change Requests (CR's) were selected as promising targets to demonstrate the utility of formal methods in this application domain. A CR to add new navigation capabilities to the Shuttle, based on Global Positioning System (GPS) technology, is the focus of this report. Carried out in parallel with the Shuttle program's conventional requirements analysis process was a limited form of analysis based on formalized requirements. Portions of the GPS CR were modeled using the language of SRI's Prototype Verification System (PVS). During the formal methods-based analysis, numerous requirements issues were discovered and submitted as official issues through the normal requirements inspection process. Shuttle analysts felt that many of these issues were uncovered earlier than would have occurred with conventional methods. We present a summary of these encouraging results and conclusions we have drawn from the pilot project.

  17. First international two-way satellite time and frequency transfer experiment employing dual pseudo-random noise codes.

    PubMed

    Tseng, Wen-Hung; Huang, Yi-Jiun; Gotoh, Tadahiro; Hobiger, Thomas; Fujieda, Miho; Aida, Masanori; Li, Tingyu; Lin, Shinn-Yan; Lin, Huang-Tien; Feng, Kai-Ming

    2012-03-01

    Two-way satellite time and frequency transfer (TWSTFT) is one of the main techniques used to compare atomic time scales over long distances. To both improve the precision of TWSTFT and decrease the satellite link fee, a new software-defined modem with dual pseudo-random noise (DPN) codes has been developed. In this paper, we demonstrate the first international DPN-based TWSTFT experiment over a period of 6 months. The results of DPN exhibit excellent performance, which is competitive with the Global Positioning System (GPS) precise point positioning (PPP) technique in the short-term and consistent with the conventional TWSTFT in the long-term. Time deviations of less than 75 ps are achieved for averaging times from 1 s to 1 d. Moreover, the DPN data has less diurnal variation than that of the conventional TWSTFT. Because the DPN-based system has advantages of higher precision and lower bandwidth cost, it is one of the most promising methods to improve international time-transfer links.

  18. a Prompt Methodology to Georeference Complex Hypogea Environments

    NASA Astrophysics Data System (ADS)

    Troisi, S.; Baiocchi, V.; Del Pizzo, S.; Giannone, F.

    2017-02-01

    Actually complex underground structures and facilities occupy a wide space in our cities, most of them are often unsurveyed; cable duct, drainage system are not exception. Furthermore, several inspection operations are performed in critical air condition, that do not allow or make more difficult a conventional survey. In this scenario a prompt methodology to survey and georeferencing such facilities is often indispensable. A visual based approach was proposed in this paper; such methodology provides a 3D model of the environment and the path followed by the camera using the conventional photogrammetric/Structure from motion software tools. The key-role is played by the lens camera; indeed, a fisheye system was employed to obtain a very wide field of view (FOV) and therefore high overlapping among the frames. The camera geometry is in according to a forward motion along the axis camera. Consequently, to avoid instability of bundle adjustment algorithm a preliminary calibration of camera was carried out. A specific case study was reported and the accuracy achieved.

  19. Modified virtual reality technology for treatment of amblyopia.

    PubMed

    Eastgate, R M; Griffiths, G D; Waddingham, P E; Moody, A D; Butler, T K H; Cobb, S V; Comaish, I F; Haworth, S M; Gregson, R M; Ash, I M; Brown, S M

    2006-03-01

    The conventional patching/occlusion treatment for amblyopia sometimes gives disappointing results for a number of reasons: it is unpopular, prolonged, frequently resulting in poor or noncompliance, and also disrupts fusion. The aim of this research was to develop a novel virtual-reality (VR)-based display system that facilitates the treatment of amblyopia with both eyes stimulated simultaneously. We have adopted a multidisciplinary approach, combining VR expertise with a team of ophthalmologists and orthoptists to develop the Interactive Binocular Treatment (I-BiT) system. This system incorporates adapted VR technology and specially written software providing interactive 2D and 3D games and videos to the patient via a stereo (binocular) display, and a control screen for the clinician. We developed a prototype research system designed for treatment of amblyopia in children. The result is a novel way to treat amblyopia, which allows binocular treatment. It is interactive, and as it is partially software based, can be adapted to suit the age/ability, and needs of the patient. This means that the treatment can be made captivating and enjoyable. Further research is on-going to determine the efficacy of this new modality in the treatment of amblyopia.

  20. Autonomous Power System intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  1. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  2. Serving Real-Time Point Observation Data in netCDF using Climate and Forecasting Discrete Sampling Geometry Conventions

    NASA Astrophysics Data System (ADS)

    Ward-Garrison, C.; May, R.; Davis, E.; Arms, S. C.

    2016-12-01

    NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. The Climate and Forecasting (CF) metadata conventions for netCDF foster the ability to work with netCDF files in general and useful ways. These conventions include metadata attributes for physical units, standard names, and spatial coordinate systems. While these conventions have been successful in easing the use of working with netCDF-formatted output from climate and forecast models, their use for point-based observation data has been less so. Unidata has prototyped using the discrete sampling geometry (DSG) CF conventions to serve, using the THREDDS Data Server, the real-time point observation data flowing across the Internet Data Distribution (IDD). These data originate in text format reports for individual stations (e.g. METAR surface data or TEMP upper air data) and are converted and stored in netCDF files in real-time. This work discusses the experiences and challenges of using the current CF DSG conventions for storing such real-time data. We also test how parts of netCDF's extended data model can address these challenges, in order to inform decisions for a future version of CF (CF 2.0) that would take advantage of features of the netCDF enhanced data model.

  3. Correlation and agreement of a digital and conventional method to measure arch parameters.

    PubMed

    Nawi, Nes; Mohamed, Alizae Marny; Marizan Nor, Murshida; Ashar, Nor Atika

    2018-01-01

    The aim of the present study was to determine the overall reliability and validity of arch parameters measured digitally compared to conventional measurement. A sample of 111 plaster study models of Down syndrome (DS) patients were digitized using a blue light three-dimensional (3D) scanner. Digital and manual measurements of defined parameters were performed using Geomagic analysis software (Geomagic Studio 2014 software, 3D Systems, Rock Hill, SC, USA) on digital models and with a digital calliper (Tuten, Germany) on plaster study models. Both measurements were repeated twice to validate the intraexaminer reliability based on intraclass correlation coefficients (ICCs) using the independent t test and Pearson's correlation, respectively. The Bland-Altman method of analysis was used to evaluate the agreement of the measurement between the digital and plaster models. No statistically significant differences (p > 0.05) were found between the manual and digital methods when measuring the arch width, arch length, and space analysis. In addition, all parameters showed a significant correlation coefficient (r ≥ 0.972; p < 0.01) between all digital and manual measurements. Furthermore, a positive agreement between digital and manual measurements of the arch width (90-96%), arch length and space analysis (95-99%) were also distinguished using the Bland-Altman method. These results demonstrate that 3D blue light scanning and measurement software are able to precisely produce 3D digital model and measure arch width, arch length, and space analysis. The 3D digital model is valid to be used in various clinical applications.

  4. A comparison of renewable energy technologies using two simulation softwares: HOMER and RETScreen

    NASA Astrophysics Data System (ADS)

    Ramli, Mohd Sufian; Wahid, Siti Sufiah Abd; Hassan, Khairul Kamarudin

    2017-08-01

    This paper concerns on modelling renewable energy technologies including PV standalone system (PVSS) and wind standalone system (WSS) as well as PV-wind hybrid system (PVWHS). To evaluate the performance of all power system configurations in term of economic analysis and optimization, simulation tools called HOMER and RETScreen are used in this paper. HOMER energy modeling software is a powerful tool for designing and analyzing hybrid power systems, which contains a mix of conventional generators, wind turbines, solar photovoltaic's, hydropower, batteries, and other inputs. RETScreen uses a Microsoft Excel-based spreadsheet model that consists of a set of workbooks which calculates the annual average energy flows with adjustment factors to account for temporal effects such as solar-load coincidence. Sizes of equipments are calculated and inserted as inputs to HOMER and RETScreen. The result obtained are analyzed and discussed. The cost per kWh to generate electricity using the PVSS system to supply the average demand of 8.4 kWh/day ranges between RM 1.953/kWh to RM 3.872/kWh. It has been found that the PVSS gives the lowest cost of energy compared to the other proposed two technologies that have been simulated by using HOMER and RETScreen.

  5. A Generic Modeling Process to Support Functional Fault Model Development

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Hemminger, Joseph A.; Oostdyk, Rebecca; Bis, Rachael A.

    2016-01-01

    Functional fault models (FFMs) are qualitative representations of a system's failure space that are used to provide a diagnostic of the modeled system. An FFM simulates the failure effect propagation paths within a system between failure modes and observation points. These models contain a significant amount of information about the system including the design, operation and off nominal behavior. The development and verification of the models can be costly in both time and resources. In addition, models depicting similar components can be distinct, both in appearance and function, when created individually, because there are numerous ways of representing the failure space within each component. Generic application of FFMs has the advantages of software code reuse: reduction of time and resources in both development and verification, and a standard set of component models from which future system models can be generated with common appearance and diagnostic performance. This paper outlines the motivation to develop a generic modeling process for FFMs at the component level and the effort to implement that process through modeling conventions and a software tool. The implementation of this generic modeling process within a fault isolation demonstration for NASA's Advanced Ground System Maintenance (AGSM) Integrated Health Management (IHM) project is presented and the impact discussed.

  6. MEDIC: medical embedded device for individualized care.

    PubMed

    Wu, Winston H; Bui, Alex A T; Batalin, Maxim A; Au, Lawrence K; Binney, Jonathan D; Kaiser, William J

    2008-02-01

    Presented work highlights the development and initial validation of a medical embedded device for individualized care (MEDIC), which is based on a novel software architecture, enabling sensor management and disease prediction capabilities, and commercially available microelectronic components, sensors and conventional personal digital assistant (PDA) (or a cell phone). In this paper, we present a general architecture for a wearable sensor system that can be customized to an individual patient's needs. This architecture is based on embedded artificial intelligence that permits autonomous operation, sensor management and inference, and may be applied to a general purpose wearable medical diagnostics. A prototype of the system has been developed based on a standard PDA and wireless sensor nodes equipped with commercially available Bluetooth radio components, permitting real-time streaming of high-bandwidth data from various physiological and contextual sensors. We also present the results of abnormal gait diagnosis using the complete system from our evaluation, and illustrate how the wearable system and its operation can be remotely configured and managed by either enterprise systems or medical personnel at centralized locations. By using commercially available hardware components and software architecture presented in this paper, the MEDIC system can be rapidly configured, providing medical researchers with broadband sensor data from remote patients and platform access to best adapt operation for diagnostic operation objectives.

  7. Lower Prevalence of Antibiotic-Resistant Enterococci on U.S. Conventional Poultry Farms that Transitioned to Organic Practices

    PubMed Central

    Hulet, R. Michael; Zhang, Guangyu; McDermott, Patrick; Kinney, Erinna L.; Schwab, Kellogg J.; Joseph, Sam W.

    2011-01-01

    Background: In U.S. conventional poultry production, antimicrobials are used for therapeutic, prophylactic, and nontherapeutic purposes. Researchers have shown that this can select for antibiotic-resistant commensal and pathogenic bacteria on poultry farms and in poultry-derived products. However, no U.S. studies have investigated on-farm changes in resistance as conventional poultry farms transition to organic practices and cease using antibiotics. Objective: We investigated the prevalence of antibiotic-resistant Enterococcus on U.S. conventional poultry farms that transitioned to organic practices. Methods: Poultry litter, feed, and water samples were collected from 10 conventional and 10 newly organic poultry houses in 2008 and tested for Enterococcus. Enterococcus (n = 259) was identified using the Vitek® 2 Compact System and tested for susceptibility to 17 antimicrobials using the Sensititre™ microbroth dilution system. Data were analyzed using SAS software (version 9.2), and statistical associations were derived based on generalized linear mixed models. Results: Litter, feed, and water samples were Enterococcus positive. The percentages of resistant Enterococcus faecalis and resistant Enterococcus faecium were significantly lower (p < 0.05) among isolates from newly organic versus conventional poultry houses for two (erythromycin and tylosin) and five (ciprofloxacin, gentamicin, nitrofurantoin, penicillin, and tetracycline) antimicrobials, respectively. Forty-two percent of E. faecalis isolates from conventional poultry houses were multidrug resistant (MDR; resistant to three or more antimicrobial classes), compared with 10% of isolates from newly organic poultry houses (p = 0.02); 84% of E. faecium isolates from conventional poultry houses were MDR, compared with 17% of isolates from newly organic poultry houses (p < 0.001). Conclusions: Our findings suggest that the voluntary removal of antibiotics from large-scale U.S. poultry farms that transition to organic practices is associated with a lower prevalence of antibiotic-resistant and MDR Enterococcus. PMID:21827979

  8. Effects of Using Requirements Catalogs on Effectiveness and Productivity of Requirements Specification in a Software Project Management Course

    ERIC Educational Resources Information Center

    Fernández-Alemán, José Luis; Carrillo-de-Gea, Juan Manuel; Meca, Joaquín Vidal; Ros, Joaquín Nicolás; Toval, Ambrosio; Idri, Ali

    2016-01-01

    This paper presents the results of two educational experiments carried out to determine whether the process of specifying requirements (catalog-based reuse as opposed to conventional specification) has an impact on effectiveness and productivity in co-located and distributed software development environments. The participants in the experiments…

  9. Digital Modeling in Design Foundation Coursework: An Exploratory Study of the Effectiveness of Conceptual Design Software

    ERIC Educational Resources Information Center

    Guidera, Stan; MacPherson, D. Scot

    2008-01-01

    This paper presents the results of a study that was conducted to identify and document student perceptions of the effectiveness of computer modeling software introduced in a design foundations course that had previously utilized only conventional manually-produced representation techniques. Rather than attempt to utilize a production-oriented CAD…

  10. Dose comparison between conventional and quasi-monochromatic systems for diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Baldelli, P.; Taibi, A.; Tuffanelli, A.; Gambaccini, M.

    2004-09-01

    Several techniques have been introduced in the last year to reduce the dose to the patient by minimizing the risk of tumour induced by radiation. In this work the radiological potential of dose reduction in quasi-monochromatic spectra produced via mosaic crystal Bragg diffraction has been evaluated, and a comparison with conventional spectra has been performed for four standard examinations: head, chest, abdomen and lumbar sacral spine. We have simulated quasi-monochromatic x-rays with the Shadow code, and conventional spectra with the Spectrum Processor. By means of the PCXMC software, we have simulated four examinations according to parameters established by the European Guidelines, and calculated absorbed dose for principal organs and the effective dose. Simulations of quasi-monochromatic laminar beams have been performed without anti-scatter grid, because of their inherent scatter geometry, and compared with simulations with conventional beams with anti-scatter grids. Results have shown that the dose reduction due to the introduction of quasi-monochromatic x-rays depends on different parameters related to the quality of the beam, the organ composition and the anti-scatter grid. With parameters chosen in this study a significant dose reduction can be achieved for two out of four kinds of examination.

  11. NASA Tech Briefs, June 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Nulling Infrared Radiometer for Measuring Temperature; The Ames Power Monitoring System; Hot Films on Ceramic Substrates for Measuring Skin Friction; Probe Without Moving Parts Measures Flow Angle; Detecting Conductive Liquid Leaking from Nonconductive Pipe; Adaptive Suppression of Noise in Voice Communications; High-Performance Solid-State W-Band Power Amplifiers; Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries; Correcting for Beam Aberrations in a Beam-Waveguide Antenna; Advanced Rainbow Solar Photovoltaic Arrays; Metal Side Reflectors for Trapping Light in QWIPs; Software for Collaborative Engineering of Launch Rockets; Software Assists in Extensive Environmental Auditing; Software Supports Distributed Operations via the Internet; Software Estimates Costs of Testing Rocket Engines; yourSky: Custom Sky-Image Mosaics via the Internet; Software for Managing Inventory of Flight Hardware; Lower-Conductivity Thermal-Barrier Coatings; Process for Smoothing an Si Substrate after Etching of SiO2; Flexible Composite-Material Pressure Vessel; Treatment to Destroy Chlorohydrocarbon Liquids in the Ground; Noncircular Cross Sections Could Enhance Mixing in Sprays; Small, Untethered, Mobile Roots for Inspecting Gas Pipes; Paint-Overspray Catcher; Preparation of Regular Specimens for Atom Probes; Inverse Tomo-Lithography for Making Microscopic 3D Parts; Predicting and Preventing Incipient Flameout in Combustors; MEMS-Based Piezoelectric/Electrostatic Inchworm Actuator; Metallized Capillaries as Probes for Raman Spectroscopy; Adaptation of Mesoscale Weather Models to Local Forecasting; Aerodynamic Design using Neural Networks; Combining Multiple Gyroscope Outputs for Increased Accuracy; and Improved Collision-Detection Method for Robotic Manipulator.

  12. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  13. Stress analysis in oral obturator prostheses: imaging photoelastic

    NASA Astrophysics Data System (ADS)

    Pesqueira, Aldiéris Alves; Goiato, Marcelo Coelho; dos Santos, Daniela Micheline; Haddad, Marcela Filié; Andreotti, Agda Marobo; Moreno, Amália

    2013-06-01

    Maxillary defects resulting from cancer, trauma, and congenital malformation affect the chewing efficiency and retention of dentures in these patients. The use of implant-retained palatal obturator dentures has improved the self-esteem and quality of life of several subjects. We evaluate the stress distribution of implant-retained palatal obturator dentures with different attachment systems by using the photoelastic analysis images. Two photoelastic models of the maxilla with oral-sinus-nasal communication were fabricated. One model received three implants on the left side of the alveolar ridge (incisive, canine, and first molar regions) and the other did not receive implants. Afterwards, a conventional palatal obturator denture (control) and two implant-retained palatal obturator dentures with different attachment systems (O-ring; bar-clip) were constructed. Models were placed in a circular polariscope and a 100-N axial load was applied in three different regions (incisive, canine, and first molar regions) by using a universal testing machine. The results were photographed and analyzed qualitatively using a software (Adobe Photoshop). The bar-clip system exhibited the highest stress concentration followed by the O-ring system and conventional denture (control). Images generated by the photoelastic method help in the oral rehabilitator planning.

  14. Open release of the DCA++ project

    NASA Astrophysics Data System (ADS)

    Haehner, Urs; Solca, Raffaele; Staar, Peter; Alvarez, Gonzalo; Maier, Thomas; Summers, Michael; Schulthess, Thomas

    We present the first open release of the DCA++ project, a highly scalable and efficient research code to solve quantum many-body problems with cutting edge quantum cluster algorithms. The implemented dynamical cluster approximation (DCA) and its DCA+ extension with a continuous self-energy capture nonlocal correlations in strongly correlated electron systems thereby allowing insight into high-Tc superconductivity. With the increasing heterogeneity of modern machines, DCA++ provides portable performance on conventional and emerging new architectures, such as hybrid CPU-GPU and Xeon Phi, sustaining multiple petaflops on ORNL's Titan and CSCS' Piz Daint. Moreover, we will describe how best practices in software engineering can be applied to make software development sustainable and scalable in a research group. Software testing and documentation not only prevent productivity collapse, but more importantly, they are necessary for correctness, credibility and reproducibility of scientific results. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) awarded by the INCITE program, and of the Swiss National Supercomputing Center. OLCF is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  15. A low power biomedical signal processor ASIC based on hardware software codesign.

    PubMed

    Nie, Z D; Wang, L; Chen, W G; Zhang, T; Zhang, Y T

    2009-01-01

    A low power biomedical digital signal processor ASIC based on hardware and software codesign methodology was presented in this paper. The codesign methodology was used to achieve higher system performance and design flexibility. The hardware implementation included a low power 32bit RISC CPU ARM7TDMI, a low power AHB-compatible bus, and a scalable digital co-processor that was optimized for low power Fast Fourier Transform (FFT) calculations. The co-processor could be scaled for 8-point, 16-point and 32-point FFTs, taking approximate 50, 100 and 150 clock circles, respectively. The complete design was intensively simulated using ARM DSM model and was emulated by ARM Versatile platform, before conducted to silicon. The multi-million-gate ASIC was fabricated using SMIC 0.18 microm mixed-signal CMOS 1P6M technology. The die area measures 5,000 microm x 2,350 microm. The power consumption was approximately 3.6 mW at 1.8 V power supply and 1 MHz clock rate. The power consumption for FFT calculations was less than 1.5 % comparing with the conventional embedded software-based solution.

  16. Exploration of the horizontally staggered light guides for high concentration CPV applications.

    PubMed

    Selimoglu, Ozgur; Turan, Rasit

    2012-08-13

    The material and processing costs are still the major drawbacks of the c-Si based photovoltaic (PV) technology. The wafer cost comprises up to 35-40% of the total module cost. New approaches and system designs are needed in order to reduce the share of the wafer cost in photovoltaic energy systems. Here we explore the horizontally staggered light guide solar optics for use in Concentrated Photovoltaic (CPV) applications. This optical system comprises a lens array system coupled to a horizontal light guide which directs the incoming light beam to its edge. We have designed and simulated this system using a commercial ray tracing software (Zemax). The system is more compact, thinner and more robust compared to the conventional CPV systems. Concentration levels as high as 1000x can easily be reached when the system is properly designed. With such a high concentration level, a good acceptance angle of + -1 degree is still be conserved. The analysis of the system reveals that the total optical efficiency of the system could be as high as %94.4 without any anti-reflection (AR) coating. Optical losses can be reduced by just accommodating a single layer AR coating on the initial lens array leading to a %96.5 optical efficiency. Thermal behavior of high concentration linear concentrator is also discussed and compared with a conventional point focus CPV system.

  17. Using GDAL to Convert NetCDF 4 CF 1.6 to GeoTIFF: Interoperability Problems and Solutions for Data Providers and Distributors

    NASA Astrophysics Data System (ADS)

    Haran, T. M.; Brodzik, M. J.; Nordgren, B.; Estilow, T.; Scott, D. J.

    2015-12-01

    An increasing number of new Earth science datasets are being producedby data providers in self-describing, machine-independent file formatsincluding Hierarchical Data Format version 5 (HDF5) and NetworkCommon Data Form version 4 (netCDF-4). Furthermore data providers maybe producing netCDF-4 files that follow the conventions for Climateand Forecast metadata version 1.6 (CF 1.6) which, for datasets mappedto a projected raster grid covering all or a portion of the earth,includes the Coordinate Reference System (CRS) used to define howlatitude and longitude are mapped to grid coordinates, i.e. columnsand rows, and vice versa. One problem that users may encounter is thattheir preferred visualization and analysis tool may not yet includesupport for one of these newer formats. Moreover, data distributorssuch as NASA's NSIDC DAAC may not yet include support for on-the-flyconversion of data files for all data sets produced in a new format toa preferred older distributed format.There do exist open source solutions to this dilemma in the form ofsoftware packages that can translate files in one of the new formatsto one of the preferred formats. However these software packagesrequire that the file to be translated conform to the specificationsof its respective format. Although an online CF-Convention compliancechecker is available from cfconventions.org, a recent NSIDC userservices incident described here in detail involved an NSIDC-supporteddata set that passed the (then current) CF Checker Version 2.0.6, butwas in fact lacking two variables necessary for conformance. Thisproblem was not detected until GDAL, a software package which reliedon the missing variables, was employed by a user in an attempt totranslate the data into a different file format, namely GeoTIFF.This incident indicates that testing a candidate data product with oneor more software products written to accept the advertised conventionsis proposed as a practice which improves interoperability. Differencesbetween data file contents and software package expectations areexposed, affording an opportunity to improve conformance of software,data or both. The incident can also serve as a demonstration that dataproviders, distributors, and users can work together to improve dataproduct quality and interoperability.

  18. Ex Vivo Comparison of Mtwo and RaCe Rotary File Systems in Root Canal Deviation: One File Only versus the Conventional Method.

    PubMed

    Aminsobhani, Mohsen; Razmi, Hasan; Nozari, Solmaz

    2015-07-01

    Cleaning and shaping of the root canal system is an important step in endodontic therapy. New instruments incorporate new preparation techniques that can improve the efficacy of cleaning and shaping. The aim of this study was to compare the efficacy of Mtwo and RaCe rotary file systems in straightening the canal curvature using only one file or the conventional method. Sixty mesial roots of extracted human mandibular molars were prepared by RaCe and Mtwo nickel-titanium (NiTi) rotary files using the conventional and only one rotary file methods. The working length was 18 mm and the curvatures of the root canals were between 15-45°. By superimposing x-ray images before and after the instrumentation, deviation of the canals was assessed using Adobe Photoshop CS3 software. Preparation time was recorded. Data were analyzed using three-way ANOVA and Tukey's post hoc test. There were no significant differences between RaCe and Mtwo or between the two root canal preparation methods in root canal deviation in buccolingual and mesiodistal radiographs (P>0.05). Changes of root canal curvature in >35° subgroups were significantly more than in other subgroups with smaller canal curvatures. Preparation time was shorter in one file only technique. According to the results, the two rotary systems and the two root canal preparation methods had equal efficacy in straightening the canals; but the preparation time was shorter in one file only group.

  19. System Advisor Model (SAM) General Description (Version 2017.9.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine M; DiOrio, Nicholas A; Blair, Nathan J

    This document describes the capabilities of the System Advisor Model (SAM) developed and distributed by the U.S. Department of Energy's National Renewable Energy Laboratory. The document is for potential users and others wanting to learn about the model's capabilities. SAM is a techno-economic computer model that calculates performance and financial metrics of renewable energy projects. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, andmore » conventional power systems. The financial models are for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (PPA). SAM's simulation tools facilitate parametric and sensitivity analyses, Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C plus plus, C sharp, Java, Python, MATLAB, and other languages. NREL provides both SAM and the SDK as free downloads at https://sam.nrel.gov. SAM is an open source project, so its source code is available to the public. Researchers can study the code to understand the model algorithms, and software programmers can contribute their own models and enhancements to the project. Technical support and more information about the software are available on the website.« less

  20. Intensity modulated neutron radiotherapy optimization by photon proxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning optimization algorithm, potentially allowing IMNRT to achieve similar conformality in treatment as photon IMRT. The only remaining requirements for the delivery of very highly modulated neutron treatments are incremental improvements upon already implemented hardware systems that should be readily achievable.« less

  1. User's Guide for a Modular Flutter Analysis Software System (Fast Version 1.0)

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Bennett, R. M.

    1978-01-01

    The use and operation of a group of computer programs to perform a flutter analysis of a single planar wing are described. This system of programs is called FAST for Flutter Analysis System, and consists of five programs. Each program performs certain portions of a flutter analysis and can be run sequentially as a job step or individually. FAST uses natural vibration modes as input data and performs a conventional V-g type of solution. The unsteady aerodynamics programs in FAST are based on the subsonic kernel function lifting-surface theory although other aerodynamic programs can be used. Application of the programs is illustrated by a sample case of a complete flutter calculation that exercises each program.

  2. A multitasking finite state architecture for computer control of an electric powertrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burba, J.C.

    1984-01-01

    Finite state techniques provide a common design language between the control engineer and the computer engineer for event driven computer control systems. They simplify communication and provide a highly maintainable control system understandable by both. This paper describes the development of a control system for an electric vehicle powertrain utilizing finite state concepts. The basics of finite state automata are provided as a framework to discuss a unique multitasking software architecture developed for this application. The architecture employs conventional time-sliced techniques with task scheduling controlled by a finite state machine representation of the control strategy of the powertrain. The complexitiesmore » of excitation variable sampling in this environment are also considered.« less

  3. Paired Associative Stimulation Using Brain-Computer Interfaces for Stroke Rehabilitation: A Pilot Study.

    PubMed

    Cho, Woosang; Sabathiel, Nikolaus; Ortner, Rupert; Lechner, Alexander; Irimia, Danut C; Allison, Brendan Z; Edlinger, Guenter; Guger, Christoph

    2016-06-13

    Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS. After 10 sessions of recoveriX training, one stroke patient partially regained control of dorsiflexion in her paretic wrist. A controlled group study is planned with a new version of the recoveriX system, which will use a new FES system and an avatar instead of bar feedback.

  4. Towards Automated Nanomanipulation under Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Ye, Xutao

    Robotic Nanomaterial Manipulation inside scanning electron microscopes (SEM) is useful for prototyping functional devices and characterizing one-dimensional nanomaterial's properties. Conventionally, manipulation of nanowires has been performed via teleoperation, which is time-consuming and highly skill-dependent. Manual manipulation also has the limitation of low success rates and poor reproducibility. This research focuses on a robotic system capable of automated pick-place of single nanowires. Through SEM visual detection and vision-based motion control, the system transferred individual silicon nanowires from their growth substrate to a microelectromechanical systems (MEMS) device that characterized the nanowires' electromechanical properties. The performances of the nanorobotic pick-up and placement procedures were quantified by experiments. The system demonstrated automated nanowire pick-up and placement with high reliability. A software system for a load-lock-compatible nanomanipulation system is also designed and developed in this research.

  5. Specialty pharmaceuticals care management in an integrated health care delivery system with electronic health records.

    PubMed

    Monroe, C Douglas; Chin, Karen Y

    2013-05-01

    The specialty pharmaceuticals market is expanding more rapidly than the traditional pharmaceuticals market. Specialty pharmacy operations have evolved to deliver selected medications and associated clinical services. The growing role of specialty drugs requires new approaches to managing the use of these drugs. The focus, expectations, and emphasis in specialty drug management in an integrated health care delivery system such as Kaiser Permanente (KP) can vary as compared with more conventional health care systems. The KP Specialty Pharmacy (KP-SP) serves KP members across the United States. This descriptive account addresses the impetus for specialty drug management within KP, the use of tools such as an electronic health record (EHR) system and process management software, the KP-SP approach for specialty pharmacy services, and the emphasis on quality measurement of services provided. Kaiser Permanente's integrated system enables KP-SP pharmacists to coordinate the provision of specialty drugs while monitoring laboratory values, physician visits, and most other relevant elements of the patient's therapy. Process management software facilitates the counseling of patients, promotion of adherence, and interventions to resolve clinical, logistic, or pharmacy benefit issues. The integrated EHR affords KP-SP pharmacists advantages for care management that should become available to more health care systems with broadened adoption of EHRs. The KP-SP experience may help to establish models for clinical pharmacy services as health care systems and information systems become more integrated.

  6. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  7. What can formal methods offer to digital flight control systems design

    NASA Technical Reports Server (NTRS)

    Good, Donald I.

    1990-01-01

    Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.

  8. Mapping a Nursing Terminology Subset to openEHR Archetypes. A Case Study of the International Classification for Nursing Practice.

    PubMed

    Nogueira, J R M; Cook, T W; Cavalini, L T

    2015-01-01

    Healthcare information technologies have the potential to transform nursing care. However, healthcare information systems based on conventional software architecture are not semantically interoperable and have high maintenance costs. Health informatics standards, such as controlled terminologies, have been proposed to improve healthcare information systems, but their implementation in conventional software has not been enough to overcome the current challenge. Such obstacles could be removed by adopting a multilevel model-driven approach, such as the openEHR specifications, in nursing information systems. To create an openEHR archetype model for the Functional Status concepts as published in Nursing Outcome Indicators Catalog of the International Classification for Nursing Practice (NOIC-ICNP). Four methodological steps were followed: 1) extraction of terms from the NOIC-ICNP terminology; 2) identification of previously published openEHR archetypes; 3) assessment of the adequacy of those openEHR archetypes to represent the terms; and 4) development of new openEHR archetypes when required. The "Barthel Index" archetype was retrieved and mapped to the 68 NOIC-ICNP Functional Status terms. There were 19 exact matches between a term and the correspondent archetype node and 23 archetype nodes that matched to one or more NOIC-INCP. No matches were found between the archetype and 14 of the NOIC-ICNP terms, and nine archetype nodes did not match any of the NOIC-ICNP terms. The openEHR model was sufficient to represent the semantics of the Functional Status concept according to the NOIC-ICNP, but there were differences in data granularity between the terminology and the archetype, thus producing a significantly complex mapping, which could be difficult to implement in real healthcare information systems. However, despite the technological complexity, the present study demonstrated the feasibility of mapping nursing terminologies to openEHR archetypes, which emphasizes the importance of adopting the multilevel model-driven approach for the achievement of semantic interoperability between healthcare information systems.

  9. Relation between Alice Software and Programming Learning: A Systematic Review of the Literature and Meta-Analysis

    ERIC Educational Resources Information Center

    Costa, Joana M.; Miranda, Guilhermina L.

    2017-01-01

    This paper presents the results of a systematic review of the literature, including a meta-analysis, about the effectiveness of the use of Alice software in programming learning when compared to the use of a conventional programming language. Our research included studies published between the years 2000 and 2014 in the main databases. We gathered…

  10. Finite element analysis of container ship's cargo hold using ANSYS and POSEIDON software

    NASA Astrophysics Data System (ADS)

    Tanny, Tania Tamiz; Akter, Naznin; Amin, Osman Md.

    2017-12-01

    Nowadays ship structural analysis has become an integral part of the preliminary ship design providing further support for the development and detail design of ship structures. Structural analyses of container ship's cargo holds are carried out for the balancing of their safety and capacity, as those ships are exposed to the high risk of structural damage during voyage. Two different design methodologies have been considered for the structural analysis of a container ship's cargo hold. One is rule-based methodology and the other is a more conventional software based analyses. The rule based analysis is done by DNV-GL's software POSEIDON and the conventional package based analysis is done by ANSYS structural module. Both methods have been applied to analyze some of the mechanical properties of the model such as total deformation, stress-strain distribution, Von Mises stress, Fatigue etc., following different design bases and approaches, to indicate some guidance's for further improvements in ship structural design.

  11. Synchronization and fault-masking in redundant real-time systems

    NASA Technical Reports Server (NTRS)

    Krishna, C. M.; Shin, K. G.; Butler, R. W.

    1983-01-01

    A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration.

  12. Anchorage in Orthodontics: Three-dimensional Scanner Input.

    PubMed

    Nabbout, Fidele; Baron, Pascal

    2018-01-01

    The aim of this article is to re-evaluate anchorage coefficient values in orthodontics and their influence in the treatment decision through the usage of three-dimensional (3D) scanner. A sample of 80 patients was analyzed with the 3D scanner using the C2000 and Cepha 3DT softwares (CIRAD Montpellier, France). Tooth anatomy parameters (linear measurements, root, and crown volumes) were then calculated to determine new anchorage coefficients based on root volume. Data were collected and statistically evaluated with the StatView software (version 5.0). The anchorage coefficient values found in this study are compared to those established in previous studies. These new values affect and modify our approach in orthodontic treatment from the standpoint of anchorage. The use of new anchorage coefficient values has significant clinical implications in conventional and in microimplants-assisted orthodontic mechanics through the selection and delivery of the optimal force system (magnitude and moment) for an adequate biological response.

  13. Wearable and low-stress ambulatory blood pressure monitoring technology for hypertension diagnosis.

    PubMed

    Altintas, Ersin; Takoh, Kimiyasu; Ohno, Yuji; Abe, Katsumi; Akagawa, Takeshi; Ariyama, Tetsuri; Kubo, Masahiro; Tsuda, Kenichiro; Tochikubo, Osamu

    2015-01-01

    We propose a highly wearable, upper-arm type, oscillometric-based blood pressure monitoring technology with low-stress. The low-stress is realized by new developments in the hardware and software design. In the hardware design, conventional armband; cuff, is almost halved in volume thanks to a flexible plastic core and a liquid bag which enhances the fitness and pressure uniformity over the arm. Reduced air bag volume enables smaller motor pump size and battery leading to a thinner, more compact and more wearable unified device. In the software design, a new prediction algorithm enabled to apply less stress (and less pain) on arm of the patient. Proof-of-concept experiments on volunteers show a high accuracy on both technologies. This paper mainly introduces hardware developments. The system is promising for less-painful and less-stressful 24-hour blood pressure monitoring in hypertension managements and related healthcare solutions.

  14. Sustainable and non-conventional monitoring systems to mitigate natural hazards in low income economies: the 4onse project approach.

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Ratnayake, Rangajeewa; Antonovic, Milan; Strigaro, Daniele

    2017-04-01

    Environmental monitoring systems in low economies countries are often in decline, outdated or missing with the consequence that there is a very scarce availability and accessibility to these information that are vital for coping and mitigating natural hazards. Non-conventional monitoring systems based on open technologies may constitute a viable solution to create low cost and sustainable monitoring systems that may be fully developed, deployed and maintained at local level without lock-in dependances on copyrights or patents or high costs of replacements. The 4onse research project , funded under the Research for Development program of the Swiss National Science Foundation and the Swiss Office for Development and Cooperation, propose a complete monitoring system that integrates Free & Open Source Software, Open Hardware, Open Data, and Open Standards. After its engineering, it will be tested in the Deduru Oya catchment (Sri Lanka) to evaluate the system and develop a water management information system to optimize the regulation of artificial basins levels and mitigate flash floods. One of the objective is to better scientifically understand strengths, criticalities and applicabilities in terms of data quality; system durability; management costs; performances; sustainability. Results, challenges and experiences from the first six months of the projects will be presented with particular focus on the activities of synergies building and data collection and dissemination system advances.

  15. Implementation of a Portable Personal EKG Signal Monitoring System

    NASA Astrophysics Data System (ADS)

    Tan, Tan-Hsu; Chang, Ching-Su; Chen, Yung-Fu; Lee, Cheng

    This research develops a portable personal EKG signal monitoring system to help patients monitor their EKG signals instantly to avoid the occurrence of tragedies. This system is built with two main units: signal pro-cessing unit and monitoring and evaluation unit. The first unit consists of EKG signal sensor, signal amplifier, digitalization circuit, and related control circuits. The second unit is a software tool developed on an embedded Linux platform (called CSA). Experimental result indicates that the proposed system has the practical potential for users in health monitoring. It is demonstrated to be more convenient and with greater portability than the conventional PC-based EKG signal monitoring systems. Furthermore, all the application units embedded in the system are built with open source codes, no licensed fee is required for operating systems and authorized applications. Thus, the building cost is much lower than the traditional systems.

  16. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  17. Seasonal-Scale Optimization of Conventional Hydropower Operations in the Upper Colorado System

    NASA Astrophysics Data System (ADS)

    Bier, A.; Villa, D.; Sun, A.; Lowry, T. S.; Barco, J.

    2011-12-01

    Sandia National Laboratories is developing the Hydropower Seasonal Concurrent Optimization for Power and the Environment (Hydro-SCOPE) tool to examine basin-wide conventional hydropower operations at seasonal time scales. This tool is part of an integrated, multi-laboratory project designed to explore different aspects of optimizing conventional hydropower operations. The Hydro-SCOPE tool couples a one-dimensional reservoir model with a river routing model to simulate hydrology and water quality. An optimization engine wraps around this model framework to solve for long-term operational strategies that best meet the specific objectives of the hydrologic system while honoring operational and environmental constraints. The optimization routines are provided by Sandia's open source DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) software. Hydro-SCOPE allows for multi-objective optimization, which can be used to gain insight into the trade-offs that must be made between objectives. The Hydro-SCOPE tool is being applied to the Upper Colorado Basin hydrologic system. This system contains six reservoirs, each with its own set of objectives (such as maximizing revenue, optimizing environmental indicators, meeting water use needs, or other objectives) and constraints. This leads to a large optimization problem with strong connectedness between objectives. The systems-level approach used by the Hydro-SCOPE tool allows simultaneous analysis of these objectives, as well as understanding of potential trade-offs related to different objectives and operating strategies. The seasonal-scale tool will be tightly integrated with the other components of this project, which examine day-ahead and real-time planning, environmental performance, hydrologic forecasting, and plant efficiency.

  18. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques

    PubMed Central

    Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi

    2017-01-01

    Purpose The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Materials and methods Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). Results The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). Conclusion The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator. PMID:28636642

  19. Design of energy storage system to improve inertial response for large scale PV generation

    DOE PAGES

    Wang, Xiaoyu; Yue, Meng

    2016-07-01

    With high-penetration levels of renewable generating sources being integrated into the existing electric power grid, conventional generators are being replaced and grid inertial response is deteriorating. This technical challenge is more severe with photovoltaic (PV) generation than with wind generation because PV generation systems cannot provide inertial response unless special countermeasures are adopted. To enhance the inertial response, this paper proposes to use battery energy storage systems (BESS) as the remediation approach to accommodate the degrading inertial response when high penetrations of PV generation are integrated into the existing power grid. A sample power system was adopted and simulated usingmore » PSS/E software. Here, impacts of different penetration levels of PV generation on the system inertial response were investigated and then BESS was incorporated to improve the frequency dynamics.« less

  20. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability

    PubMed Central

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.

    2017-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125

  1. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.

    PubMed

    Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R

    2016-07-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  2. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    NASA Technical Reports Server (NTRS)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; hide

    2016-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  3. Cleaning Effectiveness of a Reciprocating Single-file and a Conventional Rotary Instrumentation System

    PubMed Central

    de Carvalho, Fredson Marcio Acris; Gonçalves, Leonardo Cantanhede de Oliveira; Marques, André Augusto Franco; Alves, Vanessa; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist

    2016-01-01

    Objective: To compare cleaning effectiveness by histological analysis of a reciprocating single-file system with ProTaper rotary instruments during the preparation of curved root canals in extracted teeth. Methods: A total of 40 root canals with curvatures ranging between 20 - 40 degrees were divided into two groups of 20 canals. Canals were prepared to the following apical sizes: Reciproc size 25 (n=20); ProTaper: F2 (n=20). The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for the test (Mann-Whitney U test, P < .05) were statistically analyzed using the GraphPad InStat for the Mac OS software (GraphPad Software, La Jolla, CA, USA). Results: There were no significant differences in remaining debris (P > .05) between the two groups. Conclusion: The application of reciprocating motion during instrumentation did not result in increased debris when compared with continuous rotation motion, even in the apical part of curved canals. Both instruments resulted in debris in the canal lumen, irrespective of the movement kinematics applied. PMID:28217185

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Zhang, Zhao

    With each CMOS technology generation, leakage energy consumption has been dramatically increasing and hence, managing leakage power consumption of large last-level caches (LLCs) has become a critical issue in modern processor design. In this paper, we present EnCache, a novel software-based technique which uses dynamic profiling-based cache reconfiguration for saving cache leakage energy. EnCache uses a simple hardware component called profiling cache, which dynamically predicts energy efficiency of an application for 32 possible cache configurations. Using these estimates, system software reconfigures the cache to the most energy efficient configuration. EnCache uses dynamic cache reconfiguration and hence, it does not requiremore » offline profiling or tuning the parameter for each application. Furthermore, EnCache optimizes directly for the overall memory subsystem (LLC and main memory) energy efficiency instead of the LLC energy efficiency alone. The experiments performed with an x86-64 simulator and workloads from SPEC2006 suite confirm that EnCache provides larger energy saving than a conventional energy saving scheme. For single core and dual-core system configurations, the average savings in memory subsystem energy over a shared baseline configuration are 30.0% and 27.3%, respectively.« less

  5. The Development of a Remote Patient Monitoring System using Java-enabled Mobile Phones.

    PubMed

    Kogure, Y; Matsuoka, H; Kinouchi, Y; Akutagawa, M

    2005-01-01

    A remote patient monitoring system is described. This system is to monitor information of multiple patients in ICU/CCU via 3G mobile phones. Conventionally, various patient information, such as vital signs, is collected and stored on patient information systems. In proposed system, the patient information is recollected by remote information server, and transported to mobile phones. The server is worked as a gateway between hospital intranet and public networks. Provided information from the server consists of graphs and text data. Doctors can browse patient's information on their mobile phones via the server. A custom Java application software is used to browse these data. In this study, the information server and Java application are developed, and communication between the server and mobile phone in model environment is confirmed. To apply this system to practical products of patient information systems is future work.

  6. MDWiZ: a platform for the automated translation of molecular dynamics simulations.

    PubMed

    Rusu, Victor H; Horta, Vitor A C; Horta, Bruno A C; Lins, Roberto D; Baron, Riccardo

    2014-03-01

    A variety of popular molecular dynamics (MD) simulation packages were independently developed in the last decades to reach diverse scientific goals. However, such non-coordinated development of software, force fields, and analysis tools for molecular simulations gave rise to an array of software formats and arbitrary conventions for routine preparation and analysis of simulation input and output data. Different formats and/or parameter definitions are used at each stage of the modeling process despite largely contain redundant information between alternative software tools. Such Babel of languages that cannot be easily and univocally translated one into another poses one of the major technical obstacles to the preparation, translation, and comparison of molecular simulation data that users face on a daily basis. Here, we present the MDWiZ platform, a freely accessed online portal designed to aid the fast and reliable preparation and conversion of file formats that allows researchers to reproduce or generate data from MD simulations using different setups, including force fields and models with different underlying potential forms. The general structure of MDWiZ is presented, the features of version 1.0 are detailed, and an extensive validation based on GROMACS to LAMMPS conversion is presented. We believe that MDWiZ will be largely useful to the molecular dynamics community. Such fast format and force field exchange for a given system allows tailoring the chosen system to a given computer platform and/or taking advantage of a specific capabilities offered by different software engines. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Noble-TLBO MPPT Technique and its Comparative Analysis with Conventional methods implemented on Solar Photo Voltaic System

    NASA Astrophysics Data System (ADS)

    Patsariya, Ajay; Rai, Shiwani; Kumar, Yogendra, Dr.; Kirar, Mukesh, Dr.

    2017-08-01

    The energy crisis particularly with developing GDPs, has bring up to a new panorama of sustainable power source like solar energy, which has encountered huge development. Progressively high infiltration level of photovoltaic (PV) era emerges in keen matrix. Sunlight based power is irregular and variable, as the sun based source at the ground level is exceedingly subject to overcast cover inconstancy, environmental vaporized levels, and other climate parameters. The inalienable inconstancy of substantial scale sun based era acquaints huge difficulties with keen lattice vitality administration. Exact determining of sun powered power/irradiance is basic to secure financial operation of the shrewd framework. In this paper a noble TLBO-MPPT technique has been proposed to address the vitality of solar energy. A comparative analysis has been presented between conventional PO, IC and the proposed MPPT technique. The research has been done on Matlab Simulink software version 2013.

  8. Evaluation of bond strength of resin cements using different general-purpose statistical software packages for two-parameter Weibull statistics.

    PubMed

    Roos, Malgorzata; Stawarczyk, Bogna

    2012-07-01

    This study evaluated and compared Weibull parameters of resin bond strength values using six different general-purpose statistical software packages for two-parameter Weibull distribution. Two-hundred human teeth were randomly divided into 4 groups (n=50), prepared and bonded on dentin according to the manufacturers' instructions using the following resin cements: (i) Variolink (VAN, conventional resin cement), (ii) Panavia21 (PAN, conventional resin cement), (iii) RelyX Unicem (RXU, self-adhesive resin cement) and (iv) G-Cem (GCM, self-adhesive resin cement). Subsequently, all specimens were stored in water for 24h at 37°C. Shear bond strength was measured and the data were analyzed using Anderson-Darling goodness-of-fit (MINITAB 16) and two-parameter Weibull statistics with the following statistical software packages: Excel 2011, SPSS 19, MINITAB 16, R 2.12.1, SAS 9.1.3. and STATA 11.2 (p≤0.05). Additionally, the three-parameter Weibull was fitted using MNITAB 16. Two-parameter Weibull calculated with MINITAB and STATA can be compared using an omnibus test and using 95% CI. In SAS only 95% CI were directly obtained from the output. R provided no estimates of 95% CI. In both SAS and R the global comparison of the characteristic bond strength among groups is provided by means of the Weibull regression. EXCEL and SPSS provided no default information about 95% CI and no significance test for the comparison of Weibull parameters among the groups. In summary, conventional resin cement VAN showed the highest Weibull modulus and characteristic bond strength. There are discrepancies in the Weibull statistics depending on the software package and the estimation method. The information content in the default output provided by the software packages differs to very high extent. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Perk Station – Percutaneous Surgery Training and Performance Measurement Platform

    PubMed Central

    Vikal, Siddharth; U-Thainual, Paweena; Carrino, John A.; Iordachita, Iulian; Fischer, Gregory S.; Fichtinger, Gabor

    2009-01-01

    Motivation Image-guided percutaneous (through the skin) needle-based surgery has become part of routine clinical practice in performing procedures such as biopsies, injections and therapeutic implants. A novice physician typically performs needle interventions under the supervision of a senior physician; a slow and inherently subjective training process that lacks objective, quantitative assessment of the surgical skill and performance[S1]. Shortening the learning curve and increasing procedural consistency are important factors in assuring high-quality medical care. Methods This paper describes a laboratory validation system, called Perk Station, for standardized training and performance measurement under different assistance techniques for needle-based surgical guidance systems. The initial goal of the Perk Station is to assess and compare different techniques: 2D image overlay, biplane laser guide, laser protractor and conventional freehand. The main focus of this manuscript is the planning and guidance software system developed on the 3D Slicer platform, a free, open source software package designed for visualization and analysis of medical image data. Results The prototype Perk Station has been successfully developed, the associated needle insertion phantoms were built, and the graphical user interface was fully implemented. The system was inaugurated in undergraduate teaching and a wide array of outreach activities. Initial results, experiences, ongoing activities and future plans are reported. PMID:19539446

  10. Surveillance systems for intermodal transportation

    NASA Astrophysics Data System (ADS)

    Jakovlev, Sergej; Voznak, Miroslav; Andziulis, Arunas

    2015-05-01

    Intermodal container monitoring is considered a major security issue in many major logistic companies and countries worldwide. Current representation of the problem, we face today, originated in 2002, right after the 9/11 attacks. Then, a new worldwide Container Security Initiative (CSI, 2002) was considered that shaped the perception of the transportation operations. Now more than 80 larger ports all over the world contribute to its further development and integration into everyday transportation operations and improve the regulations for the developing regions. Although, these new improvements allow us to feel safer and secure, constant management of transportation operations has become a very difficult problem for conventional data analysis methods and information systems. The paper deals with a proposal of a whole new concept for the improvement of the Containers Security Initiative (CSI) by virtually connecting safety, security processes and systems. A conceptual middleware approach with deployable intelligent agent modules is proposed to be used with possible scenarios and a testbed is used to test the solution. Middleware examples are visually programmed using National Instruments LabView software packages and Wireless sensor network hardware modules. An experimental software is used to evaluate he solution. This research is a contribution to the intermodal transportation and is intended to be used as a means or the development of intelligent transport systems.

  11. A hybrid short read mapping accelerator

    PubMed Central

    2013-01-01

    Background The rapid growth of short read datasets poses a new challenge to the short read mapping problem in terms of sensitivity and execution speed. Existing methods often use a restrictive error model for computing the alignments to improve speed, whereas more flexible error models are generally too slow for large-scale applications. A number of short read mapping software tools have been proposed. However, designs based on hardware are relatively rare. Field programmable gate arrays (FPGAs) have been successfully used in a number of specific application areas, such as the DSP and communications domains due to their outstanding parallel data processing capabilities, making them a competitive platform to solve problems that are “inherently parallel”. Results We present a hybrid system for short read mapping utilizing both FPGA-based hardware and CPU-based software. The computation intensive alignment and the seed generation operations are mapped onto an FPGA. We present a computationally efficient, parallel block-wise alignment structure (Align Core) to approximate the conventional dynamic programming algorithm. The performance is compared to the multi-threaded CPU-based GASSST and BWA software implementations. For single-end alignment, our hybrid system achieves faster processing speed than GASSST (with a similar sensitivity) and BWA (with a higher sensitivity); for pair-end alignment, our design achieves a slightly worse sensitivity than that of BWA but has a higher processing speed. Conclusions This paper shows that our hybrid system can effectively accelerate the mapping of short reads to a reference genome based on the seed-and-extend approach. The performance comparison to the GASSST and BWA software implementations under different conditions shows that our hybrid design achieves a high degree of sensitivity and requires less overall execution time with only modest FPGA resource utilization. Our hybrid system design also shows that the performance bottleneck for the short read mapping problem can be changed from the alignment stage to the seed generation stage, which provides an additional requirement for the future development of short read aligners. PMID:23441908

  12. Needs of ergonomic design at control units in production industries.

    PubMed

    Levchuk, I; Schäfer, A; Lang, K-H; Gebhardt, Hj; Klussmann, A

    2012-01-01

    During the last decades, an increasing use of innovative technologies in manufacturing areas was monitored. A huge amount of physical workload was replaced by the change from conventional machine tools to computer-controlled units. CNC systems spread in current production processes. Because of this, machine operators today mostly have an observational function. This caused increasing of static work (e.g., standing, sitting) and cognitive demands (e.g., process observation). Machine operators have a high responsibility, because mistakes may lead to human injuries as well as to product losses - and in consequence may lead to high monetary losses (for the company) as well. Being usable often means for a CNC machine being efficient. An intuitive usability and an ergonomic organization of CNC workplaces can be an essential basis to reduce the risk of failures in operation as well as physical complaints (e.g. pain or diseases because of bad body posture during work). In contrast to conventional machines, CNC machines are equipped both with hardware and software. An intuitive and clear-sighted operating of CNC systems is a requirement for quick learning of new systems. Within this study, a survey was carried out among trainees learning the operation of CNC machines.

  13. Recording and assessment of evoked potentials with electrode arrays.

    PubMed

    Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B

    2015-09-01

    In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.

  14. Diagnostic accuracy of an iPhone DICOM viewer for the interpretation of magnetic resonance imaging of the knee.

    PubMed

    De Maio, Peter; White, Lawrence M; Bleakney, Robert; Menezes, Ravi J; Theodoropoulos, John

    2014-07-01

    To evaluate the diagnostic performance of viewing magnetic resonance (MR) images on a handheld mobile device compared with a conventional radiology workstation for the diagnosis of intra-articular knee pathology. Prospective comparison study. Tertiary care center. Fifty consecutive subjects who had MR imaging of the knee followed by knee arthroscopy were prospectively evaluated. Two musculoskeletal radiologists independently reviewed each MR study using 2 different viewers: the OsiriX DICOM viewer software on an Apple iPhone 3GS device and eFilm Workstation software on a conventional picture archiving and communications system workstation. Sensitivity and specificity of the iPhone and workstation interpretations was performed using knee arthroscopy as the reference standard. Intraobserver concordance and agreement between the iPhone and workstation interpretations were determined. There was no statistically significant difference between the 2 devices for each paired comparison of diagnostic performance. For the iPhone interpretations, sensitivity ranged from 77% (13 of 17) for the lateral meniscus to 100% (17 of 17) for the anterior cruciate ligament. Specificity ranged from 74% (14 of 19) for cartilage to 100% (50 of 50) for the posterior cruciate ligament. There was a very high level of interobserver and intraobserver agreement between devices and readers. The iPhone reads took longer than the corresponding workstation reads, with a significant mean difference between the iPhone and workstation reads of 3.98 minutes (P < 0.001). The diagnostic performance of interpreting MR images on a handheld mobile device for the assessment of intra-articular knee pathology is similar to that of a conventional radiology workstation, however, requires a longer viewing time. Timely and accurate interpretation of complex medical images using mobile device solutions could result in new workflow efficiencies and ultimately improve patient care.

  15. Reproducibility of the Carpet View system: a novel technical solution for display and off line analysis of OCT images.

    PubMed

    Gabriele, Alex; Marco, Valeria; Gatto, Laura; Paoletti, Giulia; Di Vito, Luca; Castriota, Fausto; Romagnoli, Enrico; Ricciardi, Andrea; Prati, Francesco

    2014-10-01

    The optical coherence tomography (OCT) evaluation of the stent anatomy requires the inspection of sequential cross section (CS). However stent coils cannot be appreciated in the conventional format as the OCT CS simply display stent struts, that are poorly representative of the stent architecture. The aim of the present study was to validate a new software (Carpet View), which unfolds the stented segment, reconstructing it as an open structure and displaying the stent meshwork. 21 patients were studied with frequency domain OCT after the deployment of different stents: seven bio-absorbable scaffolds (Dream), seven bare metal stent (Vision/Multilink8), seven drug eluting stent (Cre8). Conventional CS reconstructions were post-processed with the Carpet View software and analyzed by the same reader twice (intra-observer variability) and by two different readers (inter-observer variability). A small average difference in the number of all struts was obtained with the two methods (conventional vs carpet view reconstruction). Using the carpet view, high intra-observer and inter-observer correlations were found for the number of struts obtained in each coil. The Pearson correlation values were 0.98 (p = 0.0001) and 0.96 (p = 0.0001) respectively. The same number of coils was found when analyses were repeated by the same reader or by a different reader whilst mild differences in the count of stent junctions were reported. The Carpet View can be used to address the stent geometry with high reproducibility. This approach enables the matching of the same stent portion during serial time points and promises to improve the stent assessment.

  16. General-Purpose Front End for Real-Time Data Processing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    FRONTIER is a computer program that functions as a front end for any of a variety of other software of both the artificial intelligence (AI) and conventional data-processing types. As used here, front end signifies interface software needed for acquiring and preprocessing data and making the data available for analysis by the other software. FRONTIER is reusable in that it can be rapidly tailored to any such other software with minimum effort. Each component of FRONTIER is programmable and is executed in an embedded virtual machine. Each component can be reconfigured during execution. The virtual-machine implementation making FRONTIER independent of the type of computing hardware on which it is executed.

  17. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  18. Analysis of severe storm data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1983-01-01

    The Mesoscale Analysis and Space Sensor (MASS) Data Management and Analysis System developed by Atsuko Computing International (ACI) on the MASS HP-1000 Computer System within the Systems Dynamics Laboratory of the Marshall Space Flight Center is described. The MASS Data Management and Analysis System was successfully implemented and utilized daily by atmospheric scientists to graphically display and analyze large volumes of conventional and satellite derived meteorological data. The scientists can process interactively various atmospheric data (Sounding, Single Level, Gird, and Image) by utilizing the MASS (AVE80) share common data and user inputs, thereby reducing overhead, optimizing execution time, and thus enhancing user flexibility, useability, and understandability of the total system/software capabilities. In addition ACI installed eight APPLE III graphics/imaging computer terminals in individual scientist offices and integrated them into the MASS HP-1000 Computer System thus providing significant enhancement to the overall research environment.

  19. An intelligent data acquisition system for fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  20. Integrating CLIPS applications into heterogeneous distributed systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

  1. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects.

    PubMed

    Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo

    2015-06-01

    A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p < 0.05). The left ventricular ejection fraction from IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR. The results indicated that the IQ-SPECT system with AC is capable of correcting inferior artifacts with high image quality.

  2. A cross-platform solution for light field based 3D telemedicine.

    PubMed

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    PubMed Central

    Lomnitz, Jason G.; Savageau, Michael A.

    2016-01-01

    Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count, and a negative channel that decreases the count. This example shows the power of these new automated methods to rapidly identify behaviors of interest and efficiently predict parameter values for their realization. These tools may be applied to understand complex natural circuitry and to aid in the rational design of synthetic circuits. PMID:27462346

  4. Photometric Modeling of Simulated Surace-Resolved Bennu Images

    NASA Astrophysics Data System (ADS)

    Golish, D.; DellaGiustina, D. N.; Clark, B.; Li, J. Y.; Zou, X. D.; Bennett, C. A.; Lauretta, D. S.

    2017-12-01

    The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is a NASA mission to study and return a sample of asteroid (101955) Bennu. Imaging data from the mission will be used to develop empirical surface-resolved photometric models of Bennu at a series of wavelengths. These models will be used to photometrically correct panchromatic and color base maps of Bennu, compensating for variations due to shadows and photometric angle differences, thereby minimizing seams in mosaicked images. Well-corrected mosaics are critical to the generation of a global hazard map and a global 1064-nm reflectance map which predicts LIDAR response. These data products directly feed into the selection of a site from which to safely acquire a sample. We also require photometric correction for the creation of color ratio maps of Bennu. Color ratios maps provide insight into the composition and geological history of the surface and allow for comparison to other Solar System small bodies. In advance of OSIRIS-REx's arrival at Bennu, we use simulated images to judge the efficacy of both the photometric modeling software and the mission observation plan. Our simulation software is based on USGS's Integrated Software for Imagers and Spectrometers (ISIS) and uses a synthetic shape model, a camera model, and an empirical photometric model to generate simulated images. This approach gives us the flexibility to create simulated images of Bennu based on analog surfaces from other small Solar System bodies and to test our modeling software under those conditions. Our photometric modeling software fits image data to several conventional empirical photometric models and produces the best fit model parameters. The process is largely automated, which is crucial to the efficient production of data products during proximity operations. The software also produces several metrics on the quality of the observations themselves, such as surface coverage and the completeness of the data set for evaluating the phase and disk functions of the surface. Application of this software to simulated mission data has revealed limitations in the initial mission design, which has fed back into the planning process. The entire photometric pipeline further serves as an exercise of planned activities for proximity operations.

  5. Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2014-04-01

    The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  6. Image data-processing system for solar astronomy

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Teuber, D. L.; Watkins, J. R.; Thomas, D. T.; Cooper, C. M.

    1977-01-01

    The paper describes an image data processing system (IDAPS), its hardware/software configuration, and interactive and batch modes of operation for the analysis of the Skylab/Apollo Telescope Mount S056 X-Ray Telescope experiment data. Interactive IDAPS is primarily designed to provide on-line interactive user control of image processing operations for image familiarization, sequence and parameter optimization, and selective feature extraction and analysis. Batch IDAPS follows the normal conventions of card control and data input and output, and is best suited where the desired parameters and sequence of operations are known and when long image-processing times are required. Particular attention is given to the way in which this system has been used in solar astronomy and other investigations. Some recent results obtained by means of IDAPS are presented.

  7. Development of a time-variable nuclear pulser for half life measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahn, Guilherme S.; Domienikan, Claudio; Carvalhaes, Roberto P. M.

    2013-05-06

    In this work a time-variable pulser system with an exponentially-decaying pulse frequency is presented, which was developed using the low-cost, open-source Arduino microcontroler plataform. In this system, the microcontroller produces a TTL signal in the selected rate and a pulse shaper board adjusts it to be entered in an amplifier as a conventional pulser signal; both the decay constant and the initial pulse rate can be adjusted using a user-friendly control software, and the pulse amplitude can be adjusted using a potentiometer in the pulse shaper board. The pulser was tested using several combinations of initial pulse rate and decaymore » constant, and the results show that the system is stable and reliable, and is suitable to be used in half-life measurements.« less

  8. EpHLA software: a timesaving and accurate tool for improving identification of acceptable mismatches for clinical purposes.

    PubMed

    Filho, Herton Luiz Alves Sales; da Mata Sousa, Luiz Claudio Demes; von Glehn, Cristina de Queiroz Carrascosa; da Silva, Adalberto Socorro; dos Santos Neto, Pedro de Alcântara; do Nascimento, Ferraz; de Castro, Adail Fonseca; do Nascimento, Liliane Machado; Kneib, Carolina; Bianchi Cazarote, Helena; Mayumi Kitamura, Daniele; Torres, Juliane Roberta Dias; da Cruz Lopes, Laiane; Barros, Aryela Loureiro; da Silva Edlin, Evelin Nildiane; de Moura, Fernanda Sá Leal; Watanabe, Janine Midori Figueiredo; do Monte, Semiramis Jamil Hadad

    2012-06-01

    The HLAMatchmaker algorithm, which allows the identification of “safe” acceptable mismatches (AMMs) for recipients of solid organ and cell allografts, is rarely used in part due to the difficulty in using it in the current Excel format. The automation of this algorithm may universalize its use to benefit the allocation of allografts. Recently, we have developed a new software called EpHLA, which is the first computer program automating the use of the HLAMatchmaker algorithm. Herein, we present the experimental validation of the EpHLA program by showing the time efficiency and the quality of operation. The same results, obtained by a single antigen bead assay with sera from 10 sensitized patients waiting for kidney transplants, were analyzed either by conventional HLAMatchmaker or by automated EpHLA method. Users testing these two methods were asked to record: (i) time required for completion of the analysis (in minutes); (ii) number of eplets obtained for class I and class II HLA molecules; (iii) categorization of eplets as reactive or non-reactive based on the MFI cutoff value; and (iv) determination of AMMs based on eplets' reactivities. We showed that although both methods had similar accuracy, the automated EpHLA method was over 8 times faster in comparison to the conventional HLAMatchmaker method. In particular the EpHLA software was faster and more reliable but equally accurate as the conventional method to define AMMs for allografts. The EpHLA software is an accurate and quick method for the identification of AMMs and thus it may be a very useful tool in the decision-making process of organ allocation for highly sensitized patients as well as in many other applications.

  9. Finding Multiple Internal Rates of Return for a Project with Non-Conventional Cash Flows: Utilizing Popular Financial/Graphing Calculators and Spreadsheet Software

    ERIC Educational Resources Information Center

    Chen, Jeng-Hong

    2008-01-01

    This study demonstrates that a popular graphing calculator among students, TI-83 Plus, has a powerful function to draw the NPV profile and find the accurate multiple IRRs for a project with non-conventional cash flows. However, finance textbooks or related supplementary materials do not provide students instructions for this part. The detailed…

  10. OntoCheck: verifying ontology naming conventions and metadata completeness in Protégé 4.

    PubMed

    Schober, Daniel; Tudose, Ilinca; Svatek, Vojtech; Boeker, Martin

    2012-09-21

    Although policy providers have outlined minimal metadata guidelines and naming conventions, ontologies of today still display inter- and intra-ontology heterogeneities in class labelling schemes and metadata completeness. This fact is at least partially due to missing or inappropriate tools. Software support can ease this situation and contribute to overall ontology consistency and quality by helping to enforce such conventions. We provide a plugin for the Protégé Ontology editor to allow for easy checks on compliance towards ontology naming conventions and metadata completeness, as well as curation in case of found violations. In a requirement analysis, derived from a prior standardization approach carried out within the OBO Foundry, we investigate the needed capabilities for software tools to check, curate and maintain class naming conventions. A Protégé tab plugin was implemented accordingly using the Protégé 4.1 libraries. The plugin was tested on six different ontologies. Based on these test results, the plugin could be refined, also by the integration of new functionalities. The new Protégé plugin, OntoCheck, allows for ontology tests to be carried out on OWL ontologies. In particular the OntoCheck plugin helps to clean up an ontology with regard to lexical heterogeneity, i.e. enforcing naming conventions and metadata completeness, meeting most of the requirements outlined for such a tool. Found test violations can be corrected to foster consistency in entity naming and meta-annotation within an artefact. Once specified, check constraints like name patterns can be stored and exchanged for later re-use. Here we describe a first version of the software, illustrate its capabilities and use within running ontology development efforts and briefly outline improvements resulting from its application. Further, we discuss OntoChecks capabilities in the context of related tools and highlight potential future expansions. The OntoCheck plugin facilitates labelling error detection and curation, contributing to lexical quality assurance in OWL ontologies. Ultimately, we hope this Protégé extension will ease ontology alignments as well as lexical post-processing of annotated data and hence can increase overall secondary data usage by humans and computers.

  11. Project WISH: The Emerald City

    NASA Technical Reports Server (NTRS)

    Oz, Hayrani; Slonksnes, Linda (Editor); Rogers, James W. (Editor); Sherer, Scott E. (Editor); Strosky, Michelle A. (Editor); Szmerekovsky, Andrew G. (Editor); Klupar, G. Joseph (Editor)

    1990-01-01

    The preliminary design of a permanently manned autonomous space oasis (PEMASO), including its pertinent subsystems, was performed during the 1990 Winter and Spring quarters. The purpose for the space oasis was defined and the preliminary design work was started with emphasis placed on the study of orbital mechanics, power systems and propulsion systems. A rotating torus was selected as the preliminary configuration, and overall size, mass and location of some subsystems within the station were addressed. Computer software packages were utilized to determine station transfer parameters and thus the preliminary propulsion requirements. Power and propulsion systems were researched to determine feasible configurations and many conventional schemes were ruled out. Vehicle dynamics and control, mechanical and life support systems were also studied. For each subsystem studied, the next step in the design process to be performed during the continuation of the project was also addressed.

  12. A practical implementation for a data dictionary in an environment of diverse data sets

    USGS Publications Warehouse

    Sprenger, Karla K.; Larsen, Dana M.

    1993-01-01

    The need for a data dictionary database at the U.S. Geological Survey's EROS Data Center (EDC) was reinforced with the Earth Observing System Data and Information System (EOSDIS) requirement for consistent field definitions of data sets residing at more than one archive center. The EDC requirement addresses the existence of multiple sets with identical field definitions using various naming conventions. The EDC is developing a data dictionary database to accomplish the following foals: to standardize field names for ease in software development; to facilitate querying and updating of the date; and to generate ad hoc reports. The structure of the EDC electronic data dictionary database supports different metadata systems as well as many different data sets. A series of reports is used to keep consistency among data sets and various metadata systems.

  13. Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis.

    PubMed

    Isse, K; Lesniak, A; Grama, K; Roysam, B; Minervini, M I; Demetris, A J

    2012-01-01

    Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. "-Omics" analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: (a) spatial-temporal relationships; (b) rare events/cells; (c) complex structural context; and (d) integration into a "systems" model. Nevertheless, except for immunostaining, no transformative advancements have "modernized" routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology-global "-omic" analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. ©Copyright 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

  14. How to optimize radiological images captured from digital cameras, using the Adobe Photoshop 6.0 program.

    PubMed

    Chalazonitis, A N; Koumarianos, D; Tzovara, J; Chronopoulos, P

    2003-06-01

    Over the past decade, the technology that permits images to be digitized and the reduction in the cost of digital equipment allows quick digital transfer of any conventional radiological film. Images then can be transferred to a personal computer, and several software programs are available that can manipulate their digital appearance. In this article, the fundamentals of digital imaging are discussed, as well as the wide variety of optional adjustments that the Adobe Photoshop 6.0 (Adobe Systems, San Jose, CA) program can offer to present radiological images with satisfactory digital imaging quality.

  15. Program Helps Simulate Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  16. Developing open-source codes for electromagnetic geophysics using industry support

    NASA Astrophysics Data System (ADS)

    Key, K.

    2017-12-01

    Funding for open-source software development in academia often takes the form of grants and fellowships awarded by government bodies and foundations where there is no conflict-of-interest between the funding entity and the free dissemination of the open-source software products. Conversely, funding for open-source projects in the geophysics industry presents challenges to conventional business models where proprietary licensing offers value that is not present in open-source software. Such proprietary constraints make it easier to convince companies to fund academic software development under exclusive software distribution agreements. A major challenge for obtaining commercial funding for open-source projects is to offer a value proposition that overcomes the criticism that such funding is a give-away to the competition. This work draws upon a decade of experience developing open-source electromagnetic geophysics software for the oil, gas and minerals exploration industry, and examines various approaches that have been effective for sustaining industry sponsorship.

  17. Ex Vivo Comparison of Mtwo and RaCe Rotary File Systems in Root Canal Deviation: One File Only versus the Conventional Method

    PubMed Central

    Aminsobhani, Mohsen; Nozari, Solmaz

    2015-01-01

    Objectives: Cleaning and shaping of the root canal system is an important step in endodontic therapy. New instruments incorporate new preparation techniques that can improve the efficacy of cleaning and shaping. The aim of this study was to compare the efficacy of Mtwo and RaCe rotary file systems in straightening the canal curvature using only one file or the conventional method. Materials and Methods: Sixty mesial roots of extracted human mandibular molars were prepared by RaCe and Mtwo nickel-titanium (NiTi) rotary files using the conventional and only one rotary file methods. The working length was 18 mm and the curvatures of the root canals were between 15–45°. By superimposing x-ray images before and after the instrumentation, deviation of the canals was assessed using Adobe Photoshop CS3 software. Preparation time was recorded. Data were analyzed using three-way ANOVA and Tukey’s post hoc test. Results: There were no significant differences between RaCe and Mtwo or between the two root canal preparation methods in root canal deviation in buccolingual and mesiodistal radiographs (P>0.05). Changes of root canal curvature in >35° subgroups were significantly more than in other subgroups with smaller canal curvatures. Preparation time was shorter in one file only technique. Conclusion: According to the results, the two rotary systems and the two root canal preparation methods had equal efficacy in straightening the canals; but the preparation time was shorter in one file only group. PMID:26877736

  18. Enhancing the stabilization of aircraft pitch motion control via intelligent and classical method

    NASA Astrophysics Data System (ADS)

    Lukman, H.; Munawwarah, S.; Azizan, A.; Yakub, F.; Zaki, S. A.; Rasid, Z. A.

    2017-12-01

    The pitching movement of an aircraft is very important to ensure passengers are intrinsically safe and the aircraft achieve its maximum stability. The equations governing the motion of an aircraft are a complex set of six nonlinear coupled differential equations. Under certain assumptions, it can be decoupled and linearized into longitudinal and lateral equations. Pitch control is a longitudinal problem and thus, only the longitudinal dynamics equations are involved in this system. It is a third order nonlinear system, which is linearized about the operating point. The system is also inherently unstable due to the presence of a free integrator. Because of this, a feedback controller is added in order to solve this problem and enhance the system performance. This study uses two approaches in designing controller: a conventional controller and an intelligent controller. The pitch control scheme consists of proportional, integral and derivatives (PID) for conventional controller and fuzzy logic control (FLC) for intelligent controller. Throughout the paper, the performance of the presented controllers are investigated and compared based on the common criteria of step response. Simulation results have been obtained and analysed by using Matlab and Simulink software. The study shows that FLC controller has higher ability to control and stabilize the aircraft's pitch angle as compared to PID controller.

  19. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    NASA Astrophysics Data System (ADS)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  20. Integrated Assessment of Palm Oil Mill Residues to Sustainable Electricity System (POMR-SES): A Case Study from Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jaye, I. F. Md; Sadhukhan, J.; Murphy, R. J.

    2018-05-01

    Generating electricity from biomass are undeniably gives huge advantages to the energy security, environmental protection and the social development. Nevertheless, it always been negatively claimed as not economically competitive as compared to the conventional electricity generation system using fossil fuel. Due to the unfair subsidies given to renewable energy based fuel and the maturity of conventional electricity generation system, the commercialization of this system is rather discouraging. The uniqueness of the chemical and physical properties of the biomass and the functionality of the system are fully depending on the availability of the biomass resources, the capital expenditure of the system is relatively expensive. To remain competitive, biomass based system must be developed in their most economical form. Therefore the justification of the economies of scale of such system is become essential. This study will provide a comprehensive review of process to select an appropriate size for electricity generation plant from palm oil mill (POM) residues through the combustion of an empty fruit bunch (EFB) and biogas from the anaerobic digestion of palm oil mill effluent (POME) in Peninsular Malaysia using a mathematical model and simulation using ASPEN Plus software package. The system operated at 4 MW capacity is expected to provide a return on investment (ROI) of 20% with a payback period of 6.5 years. It is notably agreed that the correct selection of generation plant size will have a significant impact on overall economic and environmental feasibility of the system.

  1. Software engineering with application-specific languages

    NASA Technical Reports Server (NTRS)

    Campbell, David J.; Barker, Linda; Mitchell, Deborah; Pollack, Robert H.

    1993-01-01

    Application-Specific Languages (ASL's) are small, special-purpose languages that are targeted to solve a specific class of problems. Using ASL's on software development projects can provide considerable cost savings, reduce risk, and enhance quality and reliability. ASL's provide a platform for reuse within a project or across many projects and enable less-experienced programmers to tap into the expertise of application-area experts. ASL's have been used on several software development projects for the Space Shuttle Program. On these projects, the use of ASL's resulted in considerable cost savings over conventional development techniques. Two of these projects are described.

  2. Motions of Celestial Bodies; Computer simulations

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene

    2014-10-01

    This book is written for a wide range of graduate and undergraduate students studying various courses in physics and astronomy. It is accompanied by the award winning educational software package 'Planets and Satellites' developed by the author. This text, together with the interactive software, is intended to help students learn and understand the fundamental concepts and the laws of physics as they apply to the fascinating world of the motions of natural and artificial celestial bodies. The primary aim of the book is the understanding of the foundations of classical and modern physics, while their application to celestial mechanics is used to illustrate these concepts. The simulation programs create vivid and lasting impressions of the investigated phenomena, and provide students and their instructors with a powerful tool which enables them to explore basic concepts that are difficult to study and teach in an abstract conventional manner. Students can work with the text and software at a pace they can enjoy, varying parameters of the simulated systems. Each section of the textbook is supplied with questions, exercises, and problems. Using some of the suggested simulation programs, students have an opportunity to perform interesting mini-research projects in physics and astronomy.

  3. Demonstrating artificial intelligence for space systems - Integration and project management issues

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Difilippo, Denise M.

    1990-01-01

    As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.

  4. High pressure common rail injection system modeling and control.

    PubMed

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. A DICOM based radiotherapy plan database for research collaboration and reporting

    NASA Astrophysics Data System (ADS)

    Westberg, J.; Krogh, S.; Brink, C.; Vogelius, I. R.

    2014-03-01

    Purpose: To create a central radiotherapy (RT) plan database for dose analysis and reporting, capable of calculating and presenting statistics on user defined patient groups. The goal is to facilitate multi-center research studies with easy and secure access to RT plans and statistics on protocol compliance. Methods: RT institutions are able to send data to the central database using DICOM communications on a secure computer network. The central system is composed of a number of DICOM servers, an SQL database and in-house developed software services to process the incoming data. A web site within the secure network allows the user to manage their submitted data. Results: The RT plan database has been developed in Microsoft .NET and users are able to send DICOM data between RT centers in Denmark. Dose-volume histogram (DVH) calculations performed by the system are comparable to those of conventional RT software. A permission system was implemented to ensure access control and easy, yet secure, data sharing across centers. The reports contain DVH statistics for structures in user defined patient groups. The system currently contains over 2200 patients in 14 collaborations. Conclusions: A central RT plan repository for use in multi-center trials and quality assurance was created. The system provides an attractive alternative to dummy runs by enabling continuous monitoring of protocol conformity and plan metrics in a trial.

  6. Compact Video Microscope Imaging System Implemented in Colloid Studies

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2002-01-01

    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  7. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    NASA Astrophysics Data System (ADS)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  8. NSTX-U Advances in Real-Time C++11 on Linux

    NASA Astrophysics Data System (ADS)

    Erickson, Keith G.

    2015-08-01

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11 standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.

  9. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE PAGES

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; ...

    2016-08-22

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  10. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  11. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  12. Use of a secure Internet Web site for collaborative medical research.

    PubMed

    Marshall, W W; Haley, R W

    2000-10-11

    Researchers who collaborate on clinical research studies from diffuse locations need a convenient, inexpensive, secure way to record and manage data. The Internet, with its World Wide Web, provides a vast network that enables researchers with diverse types of computers and operating systems anywhere in the world to log data through a common interface. Development of a Web site for scientific data collection can be organized into 10 steps, including planning the scientific database, choosing a database management software system, setting up database tables for each collaborator's variables, developing the Web site's screen layout, choosing a middleware software system to tie the database software to the Web site interface, embedding data editing and calculation routines, setting up the database on the central server computer, obtaining a unique Internet address and name for the Web site, applying security measures to the site, and training staff who enter data. Ensuring the security of an Internet database requires limiting the number of people who have access to the server, setting up the server on a stand-alone computer, requiring user-name and password authentication for server and Web site access, installing a firewall computer to prevent break-ins and block bogus information from reaching the server, verifying the identity of the server and client computers with certification from a certificate authority, encrypting information sent between server and client computers to avoid eavesdropping, establishing audit trails to record all accesses into the Web site, and educating Web site users about security techniques. When these measures are carefully undertaken, in our experience, information for scientific studies can be collected and maintained on Internet databases more efficiently and securely than through conventional systems of paper records protected by filing cabinets and locked doors. JAMA. 2000;284:1843-1849.

  13. Fpack and Funpack Utilities for FITS Image Compression and Uncompression

    NASA Technical Reports Server (NTRS)

    Pence, W.

    2008-01-01

    Fpack is a utility program for optimally compressing images in the FITS (Flexible Image Transport System) data format (see http://fits.gsfc.nasa.gov). The associated funpack program restores the compressed image file back to its original state (as long as a lossless compression algorithm is used). These programs may be run from the host operating system command line and are analogous to the gzip and gunzip utility programs except that they are optimized for FITS format images and offer a wider choice of compression algorithms. Fpack stores the compressed image using the FITS tiled image compression convention (see http://fits.gsfc.nasa.gov/fits_registry.html). Under this convention, the image is first divided into a user-configurable grid of rectangular tiles, and then each tile is individually compressed and stored in a variable-length array column in a FITS binary table. By default, fpack usually adopts a row-by-row tiling pattern. The FITS image header keywords remain uncompressed for fast access by FITS reading and writing software. The tiled image compression convention can in principle support any number of different compression algorithms. The fpack and funpack utilities call on routines in the CFITSIO library (http://hesarc.gsfc.nasa.gov/fitsio) to perform the actual compression and uncompression of the FITS images, which currently supports the GZIP, Rice, H-compress, and PLIO IRAF pixel list compression algorithms.

  14. Examining Authenticity: An Initial Exploration of the Suitability of Handwritten Electronic Signatures.

    PubMed

    Heckeroth, J; Boywitt, C D

    2017-06-01

    Considering the increasing relevance of handwritten electronically captured signatures, we evaluated the ability of forensic handwriting examiners (FHEs) to distinguish between authentic and simulated electronic signatures. Sixty-six professional FHEs examined the authenticity of electronic signatures captured with software by signotec on a smartphone Galaxy Note 4 by Samsung and signatures made with a ballpoint pen on paper (conventional signatures). In addition, we experimentally varied the name ("J. König" vs. "A. Zaiser") and the status (authentic vs. simulated) of the signatures in question. FHEs' conclusions about the authenticity did not show a statistically significant general difference between electronic and conventional signatures. Furthermore, no significant discrepancies between electronic and conventional signatures were found with regard to other important aspects of the authenticity examination such as questioned signatures' graphic information content, the suitability of the provided sample signatures, the necessity of further examinations and the levels of difficulty of the cases under examination. Thus, this study did not reveal any indications that electronic signatures captured with software by signotec on a Galaxy Note 4 are less well suited than conventional signatures for the examination of authenticity, precluding potential technical problems concerning the integrity of electronic signatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A novel navigation system for maxillary positioning in orthognathic surgery: Preclinical evaluation.

    PubMed

    Lutz, Jean-Christophe; Nicolau, Stéphane; Agnus, Vincent; Bodin, Frédéric; Wilk, Astrid; Bruant-Rodier, Catherine; Rémond, Yves; Soler, Luc

    2015-11-01

    Appropriate positioning of the maxilla is critical in orthognathic surgery. As opposed to splint-based positioning, navigation systems are versatile and appropriate in assessing the vertical dimension. Bulk and disruption to the line of sight are drawbacks of optical navigation systems. Our aim was to develop and assess a novel navigation system based on electromagnetic tracking of the maxilla, including real-time registration of head movements. Since the software interface has proved to greatly influence the accuracy of the procedure, we purposely designed and evaluated an original, user-friendly interface. A sample of 12 surgeons had to navigate the phantom osteotomized maxilla to eight given target positions using the software we have developed. Time and accuracy (translational error and angular error) were compared between a conventional and a navigated session. A questionnaire provided qualitative evaluation. Our system definitely allows a reduction in variability of time and accuracy among different operators. Accuracy was improved in all surgeons (mean terror difference = 1.11 mm, mean aerror difference = 1.32°). Operative time was decreased in trainees. Therefore, they would benefit from such a system that could also serve for educational purposes. The majority of surgeons who strongly agreed that such a navigation system would prove very helpful in complex deformities, also stated that it would be helpful in everyday orthognathic procedures. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. System for real-time generation of georeferenced terrain models

    NASA Astrophysics Data System (ADS)

    Schultz, Howard J.; Hanson, Allen R.; Riseman, Edward M.; Stolle, Frank; Zhu, Zhigang; Hayward, Christopher D.; Slaymaker, Dana

    2001-02-01

    A growing number of law enforcement applications, especially in the areas of border security, drug enforcement and anti- terrorism require high-resolution wide area surveillance from unmanned air vehicles. At the University of Massachusetts we are developing an aerial reconnaissance system capable of generating high resolution, geographically registered terrain models (in the form of a seamless mosaic) in real-time from a single down-looking digital video camera. The efficiency of the processing algorithms, as well as the simplicity of the hardware, will provide the user with the ability to produce and roam through stereoscopic geo-referenced mosaic images in real-time, and to automatically generate highly accurate 3D terrain models offline in a fraction of the time currently required by softcopy conventional photogrammetry systems. The system is organized around a set of integrated sensor and software components. The instrumentation package is comprised of several inexpensive commercial-off-the-shelf components, including a digital video camera, a differential GPS, and a 3-axis heading and reference system. At the heart of the system is a set of software tools for image registration, mosaic generation, geo-location and aircraft state vector recovery. Each process is designed to efficiently handle the data collected by the instrument package. Particular attention is given to minimizing geospatial errors at each stage, as well as modeling propagation of errors through the system. Preliminary results for an urban and forested scene are discussed in detail.

  17. [The reduction of the radiation dosage by means of storage phosphor-film radiography compared to a conventional film-screen system with a grid cassette on a skull phantom].

    PubMed

    Heyne, J P; Merbold, H; Sehner, J; Neumann, R; Freesmeyer, M; Jonetz-Mentzel, L; Kaiser, W A

    1999-07-01

    How much can the radiation dose be reduced for skull radiography by using digital luminescence radiography (DLR) compared to a conventional screen film system with a grid cassette? A skull phantom (3M) was x-rayed in anterior-posterior orientation using both a conventional screen film system with grid cassette and DLR (ADC-70, Agfa). The tube current time product (mAs) was diminished gradually while keeping the voltage constant. The surface entrance dose was measured by a sensor of Dosimax (Wellhöfer). Five investigators evaluated the images by characteristic and critical features, spatial resolution and contrast. The surface entrance dose at 73 kV/22 mAs was 0.432 mGy in conventional screen film system and 0.435 mGy in DLR. The images could be evaluated very well down to an average dose of 71% (0.308 mGy; SD 0.050); sufficient images were obtained down to an average dose of 31% (0.136 mGy; SD 0.065). The resolution of the line pairs were reduced down to 2 levels depending on the investigator. Contrast was assessed as being very good to sufficient. The acceptance of the postprocessed images (MUSICA-software) was individually different and resulted in an improvement of the assessment of bone structures and contrast in higher dose ranges only. For the sufficient assessment of a possible fracture/of paranasal sinuses/of measurement of the skull the dose can be reduced to at least 56% (phi 31%; SD 14.9%)/40% (phi 27%; SD 9.3%)/18% (phi 14%; SD 4.4%). Digital radiography allows question-referred exposure parameters with clearly reduced dose, so e.g. for fracture exclusion 73 kV/12.5 mAs and to skull measurement 73 kV/4 mAs.

  18. Formalizing Space Shuttle Software Requirements

    NASA Technical Reports Server (NTRS)

    Crow, Judith; DiVito, Ben L.

    1996-01-01

    This paper describes two case studies in which requirements for new flight-software subsystems on NASA's Space Shuttle were analyzed, one using standard formal specification techniques, the other using state exploration. These applications serve to illustrate three main theses: (1) formal methods can complement conventional requirements analysis processes effectively, (2) formal methods confer benefits regardless of how extensively they are adopted and applied, and (3) formal methods are most effective when they are judiciously tailored to the application.

  19. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  20. Development of system decision support tools for behavioral trends monitoring of machinery maintenance in a competitive environment

    NASA Astrophysics Data System (ADS)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani

    2017-06-01

    The article is centred on software system development for manufacturing company that produces polyethylene bags using mostly conventional machines in a competitive world where each business enterprise desires to stand tall. This is meant to assist in gaining market shares, taking maintenance and production decisions by the dynamism and flexibilities embedded in the package as customers' demand varies under the duress of meeting the set goals. The production and machine condition monitoring software (PMCMS) is programmed in C# and designed in such a way to support hardware integration, real-time machine conditions monitoring, which is based on condition maintenance approach, maintenance decision suggestions and suitable production strategies as the demand for products keeps changing in a highly competitive environment. PMCMS works with an embedded device which feeds it with data from the various machines being monitored at the workstation, and the data are read at the base station through transmission via a wireless transceiver and stored in a database. A case study was used in the implementation of the developed system, and the results show that it can monitor the machine's health condition effectively by displaying machines' health status, gives repair suggestions to probable faults, decides strategy for both production methods and maintenance, and, thus, can enhance maintenance performance obviously.

  1. Multipurpose Educational Modules to Teach Hydraulic Hybrid Vehicle Technologies

    DOT National Transportation Integrated Search

    2007-09-01

    The goal of the overall project is to develop a software simulation for a hydraulic hybrid vehicle. The simulation will enable students to compare various hybrid configurations with conventional IC engine performance.

  2. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  3. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    NASA Astrophysics Data System (ADS)

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  4. C-Language Integrated Production System, Version 6.0

    NASA Technical Reports Server (NTRS)

    Riley, Gary; Donnell, Brian; Ly, Huyen-Anh Bebe; Ortiz, Chris

    1995-01-01

    C Language Integrated Production System (CLIPS) computer programs are specifically intended to model human expertise or other knowledge. CLIPS is designed to enable research on, and development and delivery of, artificial intelligence on conventional computers. CLIPS 6.0 provides cohesive software tool for handling wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming: representation of knowledge as heuristics - essentially, rules of thumb that specify set of actions performed in given situation. Object-oriented programming: modeling of complex systems comprised of modular components easily reused to model other systems or create new components. Procedural-programming: representation of knowledge in ways similar to those of such languages as C, Pascal, Ada, and LISP. Version of CLIPS 6.0 for IBM PC-compatible computers requires DOS v3.3 or later and/or Windows 3.1 or later.

  5. Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing

    NASA Astrophysics Data System (ADS)

    Lin, Psang Dain; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat's eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  6. Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing

    NASA Astrophysics Data System (ADS)

    Dain Lin, Psang; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat ?s eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  7. A Fortran-90 Based Multiprecision System

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The author has developed a new version of his Fortran multiprecision computation system that is based on the Fortran-90 language. With this new approach, a translator program is not required - translation of Fortran code for multiprecision is accomplished by merely utilizing advanced features of Fortran-90, such as derived data types and operator extensions. This approach results in more reliable translation and also permits programmers of multiprecision applications to utilize the full power of the Fortran-90 language. Three multiprecision datatypes are supported in this system: multiprecision integer. real and complex. All the usual Fortran conventions for mixed mode operations are supported, and many of the Fortran intrinsics, such as SIN, EXP and MOD, are supported with multiprecision arguments. This paper also briefly describes an interesting application of this software, wherein new number-theoretic identities have been discovered by means of multiprecision computations.

  8. Common Data Models and Efficient Reproducible Workflows for Distributed Ocean Model Skill Assessment

    NASA Astrophysics Data System (ADS)

    Signell, R. P.; Snowden, D. P.; Howlett, E.; Fernandes, F. A.

    2014-12-01

    Model skill assessment requires discovery, access, analysis, and visualization of information from both sensors and models, and traditionally has been possible only by a few experts. The US Integrated Ocean Observing System (US-IOOS) consists of 17 Federal Agencies and 11 Regional Associations that produce data from various sensors and numerical models; exactly the information required for model skill assessment. US-IOOS is seeking to develop documented skill assessment workflows that are standardized, efficient, and reproducible so that a much wider community can participate in the use and assessment of model results. Standardization requires common data models for observational and model data. US-IOOS relies on the CF Conventions for observations and structured grid data, and on the UGRID Conventions for unstructured (e.g. triangular) grid data. This allows applications to obtain only the data they require in a uniform and parsimonious way using web services: OPeNDAP for model output and OGC Sensor Observation Service (SOS) for observed data. Reproducibility is enabled with IPython Notebooks shared on GitHub (http://github.com/ioos). These capture the entire skill assessment workflow, including user input, search, access, analysis, and visualization, ensuring that workflows are self-documenting and reproducible by anyone, using free software. Python packages for common data models are Pyugrid and the British Met Office Iris package. Python packages required to run the workflows (pyugrid, pyoos, and the British Met Office Iris package) are also available on GitHub and on Binstar.org so that users can run scenarios using the free Anaconda Python distribution. Hosted services such as Wakari enable anyone to reproduce these workflows for free, without installing any software locally, using just their web browser. We are also experimenting with Wakari Enterprise, which allows multi-user access from a web browser to an IPython Server running where large quantities of model output reside, increasing the efficiency. The open development and distribution of these workflows, and the software on which they depend, is an educational resource for those new to the field and a center of focus where practitioners can contribute new software and ideas.

  9. Investigation for improving Global Positioning System (GPS) orbits using a discrete sequential estimator and stochastic models of selected physical processes

    NASA Technical Reports Server (NTRS)

    Goad, Clyde C.; Chadwell, C. David

    1993-01-01

    GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.

  10. Coding conventions and principles for a National Land-Change Modeling Framework

    USGS Publications Warehouse

    Donato, David I.

    2017-07-14

    This report establishes specific rules for writing computer source code for use with the National Land-Change Modeling Framework (NLCMF). These specific rules consist of conventions and principles for writing code primarily in the C and C++ programming languages. Collectively, these coding conventions and coding principles create an NLCMF programming style. In addition to detailed naming conventions, this report provides general coding conventions and principles intended to facilitate the development of high-performance software implemented with code that is extensible, flexible, and interoperable. Conventions for developing modular code are explained in general terms and also enabled and demonstrated through the appended templates for C++ base source-code and header files. The NLCMF limited-extern approach to module structure, code inclusion, and cross-module access to data is both explained in the text and then illustrated through the module templates. Advice on the use of global variables is provided.

  11. Anchorage in Orthodontics: Three-dimensional Scanner Input

    PubMed Central

    Nabbout, Fidele; Baron, Pascal

    2018-01-01

    Aims and Objectives: The aim of this article is to re-evaluate anchorage coefficient values in orthodontics and their influence in the treatment decision through the usage of three-dimensional (3D) scanner. Materials and Methods: A sample of 80 patients was analyzed with the 3D scanner using the C2000 and Cepha 3DT softwares (CIRAD Montpellier, France). Tooth anatomy parameters (linear measurements, root, and crown volumes) were then calculated to determine new anchorage coefficients based on root volume. Data were collected and statistically evaluated with the StatView software (version 5.0). Results: The anchorage coefficient values found in this study are compared to those established in previous studies. These new values affect and modify our approach in orthodontic treatment from the standpoint of anchorage. Conclusion: The use of new anchorage coefficient values has significant clinical implications in conventional and in microimplants-assisted orthodontic mechanics through the selection and delivery of the optimal force system (magnitude and moment) for an adequate biological response. PMID:29629323

  12. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikulski, M., E-mail: marekp@ethz.ch; Shiroka, T.; Ott, H.-R.

    2014-09-15

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHzmore » passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.« less

  13. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics.

    PubMed

    Pikulski, M; Shiroka, T; Ott, H-R; Mesot, J

    2014-09-01

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.

  14. A flexible tool for diagnosing water, energy, and entropy budgets in climate models

    NASA Astrophysics Data System (ADS)

    Lembo, Valerio; Lucarini, Valerio

    2017-04-01

    We have developed a new flexible software for studying the global energy budget, the hydrological cycle, and the material entropy production of global climate models. The program receives as input radiative, latent and sensible energy fluxes, with the requirement that the variable names are in agreement with the Climate and Forecast (CF) conventions for the production of NetCDF datasets. Annual mean maps, meridional sections and time series are computed by means of Climate Data Operators (CDO) collection of command line operators developed at Max-Planck Institute for Meteorology (MPI-M). If a land-sea mask is provided, the program also computes the required quantities separately on the continents and oceans. Depending on the user's choice, the program also calls the MATLAB software to compute meridional heat transports and location and intensities of the peaks in the two hemispheres. We are currently planning to adapt the program in order to be included in the Earth System Model eValuation Tool (ESMValTool) community diagnostics.

  15. A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter

    NASA Technical Reports Server (NTRS)

    Martin, R. G. (Editor); Atkinson, D. J.; James, M. L.; Lawson, D. L.; Porta, H. J.

    1990-01-01

    The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations.

  16. Technical aspects of telepathology with emphasis on future development.

    PubMed

    Schwarzmann, P; Binder, B; Klose, R

    2000-01-01

    Pathology undergoes presently changes due to new developments in diagnostic opportunities and cost saving efforts in health care. Out of the wide field of telepathology the paper selects three prototype applications: telepathology in teleeducation, expert advice for preselected details of a slide and finally telepathology for remote diagnosis. The most challenging field for remote diagnosis is the application in the frozen section scenario. The paper starts with the mental experiment to map conventional procedures to counterparts in telepathology. Technical opportunities and economical restrictions of telepathology equipment are discussed with respect to the components: electronic camera, display devices, haptic sensors and displays, available telecommunication channels and telepathology software. As an example and for illustration of the state of the art for an advanced telemicroscopy system able to perform remote frozen section diagnosis, the HISTKOM equipment is presented in more details. The section concerning future developments regards the aspects of the acceptance by tentative users, legal aspects, costs and affordability of equipment, the market for equipment components and the adequate telecommunication services. Further is regarded the mutual influence of properties of existing systems and application experiences gained with them on the next generation of equipment and application software. Conclusions and references close the paper.

  17. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    NASA Astrophysics Data System (ADS)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  18. A Coupled Simulation Architecture for Agent-Based/Geohydrological Modelling

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, M.

    2016-12-01

    The quantitative modelling of social-ecological systems can provide useful insights into the interplay between social and environmental processes, and their impact on emergent system dynamics. However, such models should acknowledge the complexity and uncertainty of both of the underlying subsystems. For instance, the agent-based models which are increasingly popular for groundwater management studies can be made more useful by directly accounting for the hydrological processes which drive environmental outcomes. Conversely, conventional environmental models can benefit from an agent-based depiction of the feedbacks and heuristics which influence the decisions of groundwater users. From this perspective, this work describes a Python-based software architecture which couples the popular NetLogo agent-based platform with the MODFLOW/SEAWAT geohydrological modelling environment. This approach enables users to implement agent-based models in NetLogo's user-friendly platform, while benefiting from the full capabilities of MODFLOW/SEAWAT packages or reusing existing geohydrological models. The software architecture is based on the pyNetLogo connector, which provides an interface between the NetLogo agent-based modelling software and the Python programming language. This functionality is then extended and combined with Python's object-oriented features, to design a simulation architecture which couples NetLogo with MODFLOW/SEAWAT through the FloPy library (Bakker et al., 2016). The Python programming language also provides access to a range of external packages which can be used for testing and analysing the coupled models, which is illustrated for an application of Aquifer Thermal Energy Storage (ATES).

  19. A Re-programmable Platform for Dynamic Burn-in Test of Xilinx Virtexll 3000 FPGA for Military and Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Roosta, Ramin; Wang, Xinchen; Sadigursky, Michael; Tracton, Phil

    2004-01-01

    Field Programmable Gate Arrays (FPGA) have played increasingly important roles in military and aerospace applications. Xilinx SRAM-based FPGAs have been extensively used in commercial applications. They have been used less frequently in space flight applications due to their susceptibility to single-event upsets. Reliability of these devices in space applications is a concern that has not been addressed. The objective of this project is to design a fully programmable hardware/software platform that allows (but is not limited to) comprehensive static/dynamic burn-in test of Virtex-II 3000 FPGAs, at speed test and SEU test. Conventional methods test very few discrete AC parameters (primarily switching) of a given integrated circuit. This approach will test any possible configuration of the FPGA and any associated performance parameters. It allows complete or partial re-programming of the FPGA and verification of the program by using read back followed by dynamic test. Designers have full control over which functional elements of the FPGA to stress. They can completely simulate all possible types of configurations/functions. Another benefit of this platform is that it allows collecting information on elevation of the junction temperature as a function of gate utilization, operating frequency and functionality. A software tool has been implemented to demonstrate the various features of the system. The software consists of three major parts: the parallel interface driver, main system procedure and a graphical user interface (GUI).

  20. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation.

    PubMed

    Johnson, Michelle J; Feng, Xin; Johnson, Laura M; Winters, Jack M

    2007-03-01

    There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home.

  1. An evaluation of a geographic information system software and its utility in promoting the use of integrated process skills in secondary students

    NASA Astrophysics Data System (ADS)

    Abbott, Thomas Diamond

    2001-07-01

    As technology continues to become an integral part of our educational system, research that clarifies how various technologies affect learning should be available to educators prior to the large scale introduction of any new technology into the classroom. This study will assess the degree to which a relatively new Geographic Information System Software (ArcView 3.1), when utilized by high school freshman in earth science and geography courses, can be used to (a) promote and develop integrated process skills in these students, and (b) improve their awareness and appraisal of their problem solving abilities. Two research questions will be addressed in this research: (1) Will the use of a GIS to solve problems with authentic contexts enhance the learning and refinement of integrated process skills over more conventional means of classroom instruction? and (2) Will students' perceptions of competence to solve problems within authentic contexts be greater for those who learned to use and implement a GIS when compared to those who have learned by more conventional means of classroom instruction? Research Question 1 will be assessed by using the Test of Integrated Process Skills II (or TIPS II) and Research Question 2 will be addressed by using the Problem Solving Inventory (PSI). The research will last thirteen weeks. The TIPS II and the PSI will be administered after the intervention of GIS to the experimental group, at which point an Analysis of Covariance and the Mann-Whitney U-test will be utilized to measure the affects of intervention by the independent variable. Teacher/researcher journals and teacher/student questionnaires will be used to compliment the statistical analysis. It is hoped that this study will help in the creation of future instructional models that enable educators to utilize modern technologies appropriately in their classrooms.

  2. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.

    PubMed

    Kajihata, Shuichi; Furusawa, Chikara; Matsuda, Fumio; Shimizu, Hiroshi

    2014-01-01

    The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas (13)C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary (13)C metabolic flux analysis (INST-(13)C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-(13)C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-(13)C-MFA. Confidence intervals determined by INST-(13)C-MFA were less than those determined by conventional methods, indicating the potential of INST-(13)C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-(13)C-MFA.

  3. Space Station power system autonomy demonstration

    NASA Technical Reports Server (NTRS)

    Kish, James A.; Dolce, James L.; Weeks, David J.

    1988-01-01

    The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.

  4. Guidelines for development structured FORTRAN programs

    NASA Technical Reports Server (NTRS)

    Earnest, B. M.

    1984-01-01

    Computer programming and coding standards were compiled to serve as guidelines for the uniform writing of FORTRAN 77 programs at NASA Langley. Software development philosophy, documentation, general coding conventions, and specific FORTRAN coding constraints are discussed.

  5. Explain the CERES file naming convention

    Atmospheric Science Data Center

    2014-12-08

    ... using the dataset name, configuration code and date information which make each file name unique. A Dataset name consists ... 6-digit file and software version management code number - 120145 Date in the form YYYYMMDDHH ...

  6. Accuracy of computer-assisted navigation: significant augmentation by facial recognition software.

    PubMed

    Glicksman, Jordan T; Reger, Christine; Parasher, Arjun K; Kennedy, David W

    2017-09-01

    Over the past 20 years, image guidance navigation has been used with increasing frequency as an adjunct during sinus and skull base surgery. These devices commonly utilize surface registration, where varying pressure of the registration probe and loss of contact with the face during the skin tracing process can lead to registration inaccuracies, and the number of registration points incorporated is necessarily limited. The aim of this study was to evaluate the use of novel facial recognition software for image guidance registration. Consecutive adults undergoing endoscopic sinus surgery (ESS) were prospectively studied. Patients underwent image guidance registration via both conventional surface registration and facial recognition software. The accuracy of both registration processes were measured at the head of the middle turbinate (MTH), middle turbinate axilla (MTA), anterior wall of sphenoid sinus (SS), and nasal tip (NT). Forty-five patients were included in this investigation. Facial recognition was accurate to within a mean of 0.47 mm at the MTH, 0.33 mm at the MTA, 0.39 mm at the SS, and 0.36 mm at the NT. Facial recognition was more accurate than surface registration at the MTH by an average of 0.43 mm (p = 0.002), at the MTA by an average of 0.44 mm (p < 0.001), and at the SS by an average of 0.40 mm (p < 0.001). The integration of facial recognition software did not adversely affect registration time. In this prospective study, automated facial recognition software significantly improved the accuracy of image guidance registration when compared to conventional surface registration. © 2017 ARS-AAOA, LLC.

  7. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  8. Reducing Threshold of Multi Quantum Wells InGaN Laser Diode by Using InGaN/GaN Waveguide

    NASA Astrophysics Data System (ADS)

    Abdullah, Rafid A.; Ibrahim, Kamarulazizi

    2010-07-01

    ISE TCAD (Integrated System Engineering Technology Computer Aided Design) software simulation program has been utilized to help study the effect of using InGaN/GaN as a waveguide instead of conventional GaN waveguide for multi quantum wells violet InGaN laser diode (LD). Simulation results indicate that the threshold of the LD has been reduced by using InGaN/GaN waveguide where InGaN/GaN waveguide increases the optical confinement factor which leads to increase the confinement carriers at the active region of the LD.

  9. GFEChutes Lo-Fi

    NASA Technical Reports Server (NTRS)

    Gist, Emily; Turner, Gary; Shelton, Robert; Vautier, Mana; Shaikh, Ashraf

    2013-01-01

    NASA needed to provide a software model of a parachute system for a manned re-entry vehicle. NASA has parachute codes, e.g., the Descent Simulation System (DSS), that date back to the Apollo Program. Since the space shuttle did not rely on parachutes as its primary descent control mechanism, DSS has not been maintained or incorporated into modern simulation architectures such as Osiris and Antares, which are used for new mission simulations. GFEChutes Lo-Fi is an object-oriented implementation of conventional parachute codes designed for use in modern simulation environments. The GFE (Government Furnished Equipment), low-fidelity (Lo-Fi) parachute model (GFEChutes Lo-Fi) is a software package capable of modeling the effects of multiple parachutes, deployed concurrently and/or sequentially, on a vehicle during the subsonic phase of reentry into planetary atmosphere. The term "low-fidelity" distinguishes models that represent the parachutes as simple forces acting on the vehicle, as opposed to independent aerodynamic bodies. GFEChutes Lo-Fi was created from these existing models to be clean, modular, certified as NASA Class C software, and portable, or "plug and play." The GFE Lo-Fi Chutes Model provides basic modeling capability of a sequential series of parachute activities. Actions include deploying the parachute, changing the reefing on the parachute, and cutting away the parachute. Multiple chutes can be deployed at any given time, but all chutes in that case are assumed to behave as individually isolated chutes; there is no modeling of any interactions between deployed chutes. Drag characteristics of a deployed chute are based on a coefficient of drag, the face area of the chute, and the local dynamic pressure only. The orientation of the chute is approximately modeled for purposes of obtaining torques on the vehicle, but the dynamic state of the chute as a separate entity is not integrated - the treatment is simply an approximation. The innovation in GFEChutes Lo-Fi is to use an object design that closely followed the mechanical characteristics and structure of a physical system of parachutes and their deployment mechanisms. Software objects represent the components of the system, and use of an object hierarchy allows a progression from general component outlines to specific implementations. These extra chutes were not part of the baseline deceleration sequence of drogues and mains, but still had to be simulated. The major innovation in GFEChutes Lo-Fi is the software design and architecture.

  10. Influence of ocean tides on the diurnal and semidiurnal earth rotation variations from VLBI observations

    NASA Astrophysics Data System (ADS)

    Gubanov, V. S.; Kurdubov, S. L.

    2015-05-01

    The International astrogeodetic standard IERS Conventions (2010) contains a model of the diurnal and semidiurnal variations in Earth rotation parameters (ERPs), the pole coordinates and the Universal Time, arising from lunisolar tides in the world ocean. This model was constructed in the mid-1990s through a global analysis of Topex/Poseidon altimetry. The goal of this study is to try to estimate the parameters of this model by processing all the available VLBI observations on a global network of stations over the last 35 years performed within the framework of IVS (International VLBI Service) geodetic programs. The complexity of the problemlies in the fact that the sought-for corrections to the parameters of this model lie within 1 mm and, thus, are at the limit of their detectability by all currently available methods of ground-based positional measurements. This requires applying universal software packages with a high accuracy of reduction calculations and a well-developed system of controlling the simultaneous adjustment of observational data to analyze long series of VLBI observations. This study has been performed with the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences. Although the results obtained, on the whole, confirm a high accuracy of the basic model in the IERS Conventions (2010), statistically significant corrections that allow this model to be refined have been detected for some harmonics of the ERP variations.

  11. OntoCheck: verifying ontology naming conventions and metadata completeness in Protégé 4

    PubMed Central

    2012-01-01

    Background Although policy providers have outlined minimal metadata guidelines and naming conventions, ontologies of today still display inter- and intra-ontology heterogeneities in class labelling schemes and metadata completeness. This fact is at least partially due to missing or inappropriate tools. Software support can ease this situation and contribute to overall ontology consistency and quality by helping to enforce such conventions. Objective We provide a plugin for the Protégé Ontology editor to allow for easy checks on compliance towards ontology naming conventions and metadata completeness, as well as curation in case of found violations. Implementation In a requirement analysis, derived from a prior standardization approach carried out within the OBO Foundry, we investigate the needed capabilities for software tools to check, curate and maintain class naming conventions. A Protégé tab plugin was implemented accordingly using the Protégé 4.1 libraries. The plugin was tested on six different ontologies. Based on these test results, the plugin could be refined, also by the integration of new functionalities. Results The new Protégé plugin, OntoCheck, allows for ontology tests to be carried out on OWL ontologies. In particular the OntoCheck plugin helps to clean up an ontology with regard to lexical heterogeneity, i.e. enforcing naming conventions and metadata completeness, meeting most of the requirements outlined for such a tool. Found test violations can be corrected to foster consistency in entity naming and meta-annotation within an artefact. Once specified, check constraints like name patterns can be stored and exchanged for later re-use. Here we describe a first version of the software, illustrate its capabilities and use within running ontology development efforts and briefly outline improvements resulting from its application. Further, we discuss OntoChecks capabilities in the context of related tools and highlight potential future expansions. Conclusions The OntoCheck plugin facilitates labelling error detection and curation, contributing to lexical quality assurance in OWL ontologies. Ultimately, we hope this Protégé extension will ease ontology alignments as well as lexical post-processing of annotated data and hence can increase overall secondary data usage by humans and computers. PMID:23046606

  12. Magnetic navigation in patients with coronary artery bypass grafting.

    PubMed

    Ramcharitar, Steve; van Geuns, Robert-Jan

    2009-05-01

    Magnetic navigation (MN) can precisely control a percutaneous coronary interventions (PCI) guidewire or a device in three-dimensional space within the body without requiring reshaping of the tip to access vessels or areas of the heart that are often challenging using conventional wires. In this article we review and report on the use of magnetic navigation system in secondary revascularisation of coronary arterial bypass grafts (CABG). MN was successfully used in the secondary revascularisation of failed conventional CABG cases. Retrograde PCI through a LIMA is not only feasible but the wires can manage complex stenoses involving a bifurcation by using 3D reconstruction software. Difficult anatomies such as a hairpin bend as highlighted in this paper found at a saphenous vein graft (SVG) anastomosis can be overcome by co-integrating a CTCA 3D dataset for navigation. Preliminary data supports potential advantages in reduction of contrast media usage, crossing and fluoroscopy times and suggest that larger randomised studies are warranted.

  13. Neural networks: Alternatives to conventional techniques for automatic docking

    NASA Technical Reports Server (NTRS)

    Vinz, Bradley L.

    1994-01-01

    Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.

  14. Investigating social cognition in infants and adults using dense array electroencephalography ((d)EEG).

    PubMed

    Akano, Adekemi J; Haley, David W; Dudek, Joanna

    2011-06-27

    Dense array electroencephalography ((d)EEG), which provides a non-invasive window for measuring brain activity and a temporal resolution unsurpassed by any other current brain imaging technology¹, ² is being used increasingly in the study of social cognitive functioning in infants and adults. While (d)EEG is enabling researchers to examine brain activity patterns with unprecedented levels of sensitivity, conventional EEG recording systems continue to face certain limitations, including 1) poor spatial resolution and source localization³,⁴2) the physical discomfort for test subjects of enduring the individual application of numerous electrodes to the surface of the scalp, and 3) the complexity for researchers of learning to use multiple software packages to collect and process data. Here we present an overview of an established methodology that represents a significant improvement on conventional methodologies for studying EEG in infants and adults. Although several analytical software techniques can be used to establish indirect indices of source localization to improve the spatial resolution of (d)EEG, the HydroCel Geodesic Sensor Net (HCGSN) by Electrical Geodesics, Inc. (EGI), a dense sensory array that maintains equal distances among adjacent recording electrodes on all surfaces of the scalp, further enhances spatial resolution⁴,⁵(,)⁶ compared to standard (d)EEG systems. The sponge-based HCGSN can be applied rapidly and without scalp abrasion, making it ideal for use with adults⁷,⁸ children⁹,¹⁰, ¹¹,¹² and infants¹², in both research and clinical ⁴,⁵,⁶,¹³,¹⁴,¹⁵settings. This feature allows for considerable cost and time savings by decreasing the average net application time compared to other (d)EEG systems. Moreover, the HCGSN includes unified, seamless software applications for all phases of data, greatly simplifying the collection, processing, and analysis of (d)EEG data. The HCGSN features a low-profile electrode pedestal, which, when filled with electrolyte solution, creates a sealed microenvironment and an electrode-scalp interface. In all Geodesic (d;)EEG systems, EEG sensors detect changes in voltage originating from the participant's scalp, along with a small amount of electrical noise originating from the room environment. Electrical signals from all sensors of the Geodesic sensor net are received simultaneously by the amplifier, where they are automatically processed, packaged, and sent to the data-acquisition computer (DAC). Once received by the DAC, scalp electrical activity can be isolated from artifacts for analysis using the filtering and artifact detection tools included in the EGI software. Typically, the HCGSN can be used continuously for only up to two hours because the electrolyte solution dries out over time, gradually decreasing the quality of the scalp-electrode interface. In the Parent-Infant Research Lab at the University of Toronto, we are using (d)EEG to study social cognitive processes including memory, emotion, goals, intentionality, anticipation, and executive functioning in both adult and infant participants.

  15. System dynamic modeling: an alternative method for budgeting.

    PubMed

    Srijariya, Witsanuchai; Riewpaiboon, Arthorn; Chaikledkaew, Usa

    2008-03-01

    To construct, validate, and simulate a system dynamic financial model and compare it against the conventional method. The study was a cross-sectional analysis of secondary data retrieved from the National Health Security Office (NHSO) in the fiscal year 2004. The sample consisted of all emergency patients who received emergency services outside their registered hospital-catchments area. The dependent variable used was the amount of reimbursed money. Two types of model were constructed, namely, the system dynamic model using the STELLA software and the multiple linear regression model. The outputs of both methods were compared. The study covered 284,716 patients from various levels of providers. The system dynamic model had the capability of producing various types of outputs, for example, financial and graphical analyses. For the regression analysis, statistically significant predictors were composed of service types (outpatient or inpatient), operating procedures, length of stay, illness types (accident or not), hospital characteristics, age, and hospital location (adjusted R(2) = 0.74). The total budget arrived at from using the system dynamic model and regression model was US$12,159,614.38 and US$7,301,217.18, respectively, whereas the actual NHSO reimbursement cost was US$12,840,805.69. The study illustrated that the system dynamic model is a useful financial management tool, although it is not easy to construct. The model is not only more accurate in prediction but is also more capable of analyzing large and complex real-world situations than the conventional method.

  16. The Modern Integrated Anaesthesia Workstation

    PubMed Central

    Patil, Vijaya P; Shetmahajan, Madhavi G; Divatia, Jigeeshu V

    2013-01-01

    Over the years, the conventional anaesthesia machine has evolved into an advanced carestation. The new machines use advanced electronics, software and technology to offer extensive capabilities for ventilation, monitoring, inhaled agent delivery, low-flow anaesthesia and closed-loop anaesthesia. They offer integrated monitoring and recording facilities and seamless integration with anaesthesia information systems. It is possible to deliver tidal volumes accurately and eliminate several hazards associated with the low pressure system and oxygen flush. Appropriate use can result in enhanced safety and ergonomy of anaesthetic delivery and monitoring. However, these workstations have brought in a new set of limitations and potential drawbacks. There are differences in technology and operational principles amongst the new workstations. Understand the principles of operation of these workstations and have a thorough knowledge of the operating manual of the individual machines. PMID:24249877

  17. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  18. On the fusion of tuning parameters of fuzzy rules and neural network

    NASA Astrophysics Data System (ADS)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  19. Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V., Dr.; Burley, Casey L.

    2011-01-01

    The requirements, constraints, and design of NASA's next generation Aircraft NOise Prediction Program (ANOPP2) are introduced. Similar to its predecessor (ANOPP), ANOPP2 provides the U.S. Government with an independent aircraft system noise prediction capability that can be used as a stand-alone program or within larger trade studies that include performance, emissions, and fuel burn. The ANOPP2 framework is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. ANOPP2 integrates noise prediction and propagation methods, including those found in ANOPP, into a unified system that is compatible for use within general aircraft analysis software. The design of the system is described in terms of its functionality and capability to perform predictions accounting for distributed sources, installation effects, and propagation through a non-uniform atmosphere including refraction and the influence of terrain. The philosophy of mixed fidelity noise prediction through the use of nested Ffowcs Williams and Hawkings surfaces is presented and specific issues associated with its implementation are identified. Demonstrations for a conventional twin-aisle and an unconventional hybrid wing body aircraft configuration are presented to show the feasibility and capabilities of the system. Isolated model-scale jet noise predictions are also presented using high-fidelity and reduced order models, further demonstrating ANOPP2's ability to provide predictions for model-scale test configurations.

  20. Factors influencing the results of faculty evaluation in Isfahan University of Medical Sciences.

    PubMed

    Kamali, Farahnaz; Yamani, Nikoo; Changiz, Tahereh; Zoubin, Fatemeh

    2018-01-01

    This study aimed to explore factors influencing the results of faculty member evaluation from the viewpoints of faculty members affiliated with Isfahan University of Medical Sciences, Isfahan, Iran. This qualitative study was done using a conventional content analysis method. Participants were faculty members of Isfahan University of Medical Sciences who, considering maximum variation in sampling, were chosen with a purposive sampling method. Semi-structured interviews were held with 11 faculty members until data saturation was reached. The interviews were transcribed verbatim and analyzed with conventional content analysis method for theme development. Further, the MAXQDA software was used for data management. The data analysis led to the development of two main themes, namely, "characteristics of the educational system" and "characteristics of the faculty member evaluation system." The first main theme consists of three categories, i.e. "characteristics of influential people in evaluation," "features of the courses," and "background characteristics." The other theme has the following as its categories: "evaluation methods," "evaluation tools," "evaluation process," and "application of evaluation results." Each category will have its subcategories. Many factors affect the evaluation of faculty members that should be taken into account by educational policymakers for improving the quality of the educational process. In addition to the factors that directly influence the educational system, methodological problems in the evaluation system need special attention.

  1. Visible and infrared spin scanning radiometer /VISSR/ atmospheric sounder /VAS/ ground data system

    NASA Astrophysics Data System (ADS)

    Dalton, J. T.; Jamros, R. K.; Helfer, D. P.; Howell, D. R.

    1981-01-01

    The interactive system developed at NASA/Goddard Space Flight Center to receive data from the infrared radiometer on GOES-4 in near real time and to perform interactive display and analysis of the 12-channel infrared imagery is described. The system is minicomputer based and uses a menu approach in guiding the analyst through spacecraft instrument programming, area and band selection, image acquisition, enhancement, analysis, and presentation of results. The system is linked by dual port disks to Goddard's Atmospheric and Oceanographic Information Processing System for comparing the sounding results with parameters derived from conventional data and from time lapse analysis of visible and IR imagery from other geostationary satellites. It is pointed out that the system hardware and software are being expanded to add capabilities for the integration and assimilation of VAS data with data from other sources, the comparison of severe storm observations from space with special ground network data, and the development of diagnostic models.

  2. Simple and versatile modifications allowing time gated spectral acquisition, imaging and lifetime profiling on conventional wide-field microscopes

    NASA Astrophysics Data System (ADS)

    Pal, Robert; Beeby, Andrew

    2014-09-01

    An inverted microscope has been adapted to allow time-gated imaging and spectroscopy to be carried out on samples containing responsive lanthanide probes. The adaptation employs readily available components, including a pulsed light source, time-gated camera, spectrometer and photon counting detector, allowing imaging, emission spectroscopy and lifetime measurements. Each component is controlled by a suite of software written in LabVIEW and is powered via conventional USB ports.

  3. Three-dimensional modeling of light rays on the surface of a slanted lenticular array for autostereoscopic displays.

    PubMed

    Jung, Sung-Min; Kang, In-Byeong

    2013-08-10

    In this paper, we developed an optical model describing the behavior of light at the surface of a slanted lenticular array for autostereoscopic displays in three dimensions and simulated the optical characteristics of autostereoscopic displays using the Monte Carlo method under actual design conditions. The behavior of light is analyzed by light rays for selected inclination and azimuthal angles; numerical aberrations and conditions of total internal reflection for the lenticular array were found. The intensity and the three-dimensional crosstalk distributions calculated from our model coincide very well with those from conventional design software, and our model shows highly enhanced calculation speed that is 67 times faster than that of the conventional software. From the results, we think that the optical model is very useful for predicting the optical characteristics of autostereoscopic displays with enhanced calculation speed.

  4. Patient dose, gray level and exposure index with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Silva, T. R.; Yoshimura, E. M.

    2014-02-01

    Computed radiography (CR) is gradually replacing conventional screen-film system in Brazil. To assess image quality, manufactures provide the calculation of an exposure index through the acquisition software of the CR system. The objective of this study is to verify if the CR image can be used as an evaluator of patient absorbed dose too, through a relationship between the entrance skin dose and the exposure index or the gray level values obtained in the image. The CR system used for this study (Agfa model 30-X with NX acquisition software) calculates an exposure index called Log of the Median (lgM), related to the absorbed dose to the IP. The lgM value depends on the average gray level (called Scan Average Level (SAL)) of the segmented pixel value histogram of the whole image. A Rando male phantom was used to simulate a human body (chest and head), and was irradiated with an X-ray equipment, using usual radiologic techniques for chest exams. Thermoluminescent dosimeters (LiF, TLD100) were used to evaluate entrance skin dose and exit dose. The results showed a logarithm relation between entrance dose and SAL in the image center, regardless of the beam filtration. The exposure index varies linearly with the entrance dose, but the angular coefficient is beam quality dependent. We conclude that, with an adequate calibration, the CR system can be used to evaluate the patient absorbed dose.

  5. NSTX-U Advances in Real-Time C++11 on Linux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Keith G.

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore » serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

  6. NSTX-U Advances in Real-Time C++11 on Linux

    DOE PAGES

    Erickson, Keith G.

    2015-08-14

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore » serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

  7. Using a graphical programming language to write CAMAC/GPIB instrument drivers

    NASA Technical Reports Server (NTRS)

    Zambrana, Horacio; Johanson, William

    1991-01-01

    To reduce the complexities of conventional programming, graphical software was used in the development of instrumentation drivers. The graphical software provides a standard set of tools (graphical subroutines) which are sufficient to program the most sophisticated CAMAC/GPIB drivers. These tools were used and instrumentation drivers were successfully developed for operating CAMAC/GPIB hardware from two different manufacturers: LeCroy and DSP. The use of these tools is presented for programming a LeCroy A/D Waveform Analyzer.

  8. A pilot study comparing the effectiveness of conventional training and virtual reality simulation in the skills acquisition of junior dental students.

    PubMed

    Quinn, Frank; Keogh, Paul; McDonald, Ailbhe; Hussey, David

    2003-02-01

    The use of virtual reality (VR) in the training of operative dentistry is a recent innovation and little research has been published on its efficacy compared to conventional training methods. To evaluate possible benefits, junior undergraduate dental students were randomly assigned to one of three groups: group 1 as taught by conventional means only; group 2 as trained by conventional means combined with VR repetition and reinforcement (with access to a human instructor for operative advice); and group 3 as trained by conventional means combined with VR repetition and reinforcement, but without instructor evaluation/advice, which was only supplied via the VR-associated software. At the end of the research period, all groups executed two class 1 preparations that were evaluated blindly by 'expert' trainers, under traditional criteria (outline, retention, smoothness, depth, wall angulation and cavity margin index). Analyses of resulting scores indicated a lack of significant differences between the three groups except for scores for the category of 'outline form', for group 2, which produced significantly lower (i.e. better) scores than the conventionally trained group. A statistical comparison between scores from two 'expert' examiners indicated lack of agreement, despite identical written and visual criteria being used for evaluation by both. Both examiners, however, generally showed similar trends in evaluation. An anonymous questionnaire suggested that students recognized the benefits of VR training (e.g. ready access to assessment, error identification and how they can be corrected), but the majority felt that it would not replace conventional training methods (95%), although participants recognized the potential for development of VR systems in dentistry. The most common reasons cited for the preference of conventional training were excessive critical feedback (55%), lack of personal contact (50%) and technical hardware difficulties (20%) associated with VR-based training.

  9. Preliminary Studies for a CBCT Imaging Protocol for Offline Organ Motion Analysis: Registration Software Validation and CTDI Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falco, Maria Daniela, E-mail: mdanielafalco@hotmail.co; Fontanarosa, Davide; Miceli, Roberto

    2011-04-01

    Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index hasmore » been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4{sup o}. For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22{sup o}). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software was found to be accurate, and its registration matrix can be easily translated into the TPS and a low dose is delivered to the patient during image acquisition. These results can help in designing imaging protocols for offline evaluations.« less

  10. Fluctuating Finite Element Analysis (FFEA): A continuum mechanics software tool for mesoscale simulation of biomolecules.

    PubMed

    Solernou, Albert; Hanson, Benjamin S; Richardson, Robin A; Welch, Robert; Read, Daniel J; Harlen, Oliver G; Harris, Sarah A

    2018-03-01

    Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.

  11. Leveraging Modeling Approaches: Reaction Networks and Rules

    PubMed Central

    Blinov, Michael L.; Moraru, Ion I.

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349

  12. Leveraging modeling approaches: reaction networks and rules.

    PubMed

    Blinov, Michael L; Moraru, Ion I

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.

  13. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  14. ISLE (Image and Signal LISP Environment): A functional language interface for signal and image processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azevedo, S.G.; Fitch, J.P.

    1987-10-21

    Conventional software interfaces that use imperative computer commands or menu interactions are often restrictive environments when used for researching new algorithms or analyzing processed experimental data. We found this to be true with current signal-processing software (SIG). As an alternative, ''functional language'' interfaces provide features such as command nesting for a more natural interaction with the data. The Image and Signal LISP Environment (ISLE) is an example of an interpreted functional language interface based on common LISP. Advantages of ISLE include multidimensional and multiple data-type independence through dispatching functions, dynamic loading of new functions, and connections to artificial intelligence (AI)more » software. 10 refs.« less

  15. ISLE (Image and Signal Lisp Environment): A functional language interface for signal and image processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azevedo, S.G.; Fitch, J.P.

    1987-05-01

    Conventional software interfaces which utilize imperative computer commands or menu interactions are often restrictive environments when used for researching new algorithms or analyzing processed experimental data. We found this to be true with current signal processing software (SIG). Existing ''functional language'' interfaces provide features such as command nesting for a more natural interaction with the data. The Image and Signal Lisp Environment (ISLE) will be discussed as an example of an interpreted functional language interface based on Common LISP. Additional benefits include multidimensional and multiple data-type independence through dispatching functions, dynamic loading of new functions, and connections to artificial intelligencemore » software.« less

  16. HEPLIB `91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  17. HEPLIB 91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  18. Technical Requirements Analysis and Control Systems (TRACS) Initial Operating Capability (IOC) documentation

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.

    1991-01-01

    The Technical Requirements Analysis and Control Systems (TRACS) software package is described. TRACS offers supplemental tools for the analysis, control, and interchange of project requirements. This package provides the fundamental capability to analyze and control requirements, serves a focal point for project requirements, and integrates a system that supports efficient and consistent operations. TRACS uses relational data base technology (ORACLE) in a stand alone or in a distributed environment that can be used to coordinate the activities required to support a project through its entire life cycle. TRACS uses a set of keyword and mouse driven screens (HyperCard) which imposes adherence through a controlled user interface. The user interface provides an interactive capability to interrogate the data base and to display or print project requirement information. TRACS has a limited report capability, but can be extended with PostScript conventions.

  19. Automated Vectorization of Decision-Based Algorithms

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.

  20. Energy, Vacuum, Gas Fueling, and Security Systems for the Spherical Tokamak MEDUSA-CR

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jeferson; Soto, Christian; Carvajal, Johan; Ribeiro, Celso

    2013-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5 T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We present here the energy, vacuum, gas fueling, and security systems for MEDUSA-CR device. The interface with the control and data acquisition systems based on National Instruments (NI) software (LabView) and hardware (on loan to our laboratory via NI-Costa Rica) are also presented. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.

  1. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  2. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    NASA Astrophysics Data System (ADS)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  3. IVAN: Intelligent Van for the Distribution of Pharmaceutical Drugs

    PubMed Central

    Moreno, Asier; Angulo, Ignacio; Perallos, Asier; Landaluce, Hugo; Zuazola, Ignacio Julio García; Azpilicueta, Leire; Astrain, José Javier; Falcone, Francisco; Villadangos, Jesús

    2012-01-01

    This paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution. PMID:22778659

  4. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Baggs, Rhoda

    2007-01-01

    Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.

  5. Modernizing Systems and Software: How Evolving Trends in Future Trends in Systems and Software Technology Bode Well for Advancing the Precision of Technology

    DTIC Science & Technology

    2009-04-23

    of Code Need for increased functionality will be a forcing function to bring the fields of software and systems engineering... of Software-Intensive Systems is Increasing 3 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the Precision of ...Engineering in Continued Partnership 4 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the

  6. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    NASA Astrophysics Data System (ADS)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.

  7. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction

    PubMed Central

    Venkatesan, R.

    2016-01-01

    Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets. PMID:27738649

  8. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction.

    PubMed

    Kumudha, P; Venkatesan, R

    Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.

  9. Knowledge-based decision support for Space Station assembly sequence planning

    NASA Astrophysics Data System (ADS)

    1991-04-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  10. Expert system decision support for low-cost launch vehicle operations

    NASA Technical Reports Server (NTRS)

    Szatkowski, G. P.; Levin, Barry E.

    1991-01-01

    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.

  11. Knowledge-based decision support for Space Station assembly sequence planning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  12. Implementation of a High-Speed FPGA and DSP Based FFT Processor for Improving Strain Demodulation Performance in a Fiber-Optic-Based Sensing System

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2005-01-01

    NASA's Aviation Safety and Security Program is pursuing research in on-board Structural Health Management (SHM) technologies for purposes of reducing or eliminating aircraft accidents due to system and component failures. Under this program, NASA Langley Research Center (LaRC) is developing a strain-based structural health-monitoring concept that incorporates a fiber optic-based measuring system for acquiring strain values. This fiber optic-based measuring system provides for the distribution of thousands of strain sensors embedded in a network of fiber optic cables. The resolution of strain value at each discrete sensor point requires a computationally demanding data reduction software process that, when hosted on a conventional processor, is not suitable for near real-time measurement. This report describes the development and integration of an alternative computing environment using dedicated computing hardware for performing the data reduction. Performance comparison between the existing and the hardware-based system is presented.

  13. Analysis of a solar PV/battery/DG set-based hybrid system for a typical telecom load: a case study

    NASA Astrophysics Data System (ADS)

    Iqbal, A.; Arif, M. Saad Bin; Ayob, Shahrin Md; Siddiqui, Khursheed

    2017-03-01

    This paper analyses the technical and economic feasibility of using a hybrid renewable energy source for a typical telecom load in the state of Qatar. The hybrid system considered in this work consists of a solar photovoltaic with storage battery and diesel generator set. For this particular hybrid system, the meteorological data of solar irradiance in Doha city (latitude 25.15 ° North and longitude 51.33 ° East) are taken from NASA surface meteorology and solar energy websites. The solar irradiance in Doha is 5.33 kWh/m2/day on an annual average scale. The data are also taken through the study of load consumption of Qatar telecommunication hybrid power system. The system is designed and its techno-economic analysis is carried out using the Hybrid Optimization Model for Electrical Renewable software. The results show both technical and economic viability of replacing the conventional DG sets with the proposed renewable energy source.

  14. Three-dimensional body scanning system for apparel mass-customization

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Huang, Yaxiong; Yu, Weiping; Chen, Tong

    2002-07-01

    Mass customization is a new manufacturing trend in which mass-market products (e.g., apparel) are quickly modified one at a time based on customers' needs. It is an effective competing strategy for maximizing customers' satisfaction and minimizing inventory costs. An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body scanning system, body size extraction methods, and body modeling algorithms. The scanning system utilizes the multiline triangulation technique to rapidly acquire surface data on a body, and provides accurate body measurements, many of which are not available with conventional methods. Cubic B-spline curves are used to connect and smooth body curves. From the scanned data, a body form can be constructed using linear Coons surfaces. The body form can be used as a digital model of the body for 3-D garment design and for virtual try-on of a designed garment. This scanning system and its application software enable apparel manufacturers to provide custom design services to consumers seeking personal-fit garments.

  15. Real-time control for manufacturing space shuttle main engines: Work in progress

    NASA Technical Reports Server (NTRS)

    Ruokangas, Corinne C.

    1988-01-01

    During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.

  16. Expert System Development Methodology (ESDM)

    NASA Technical Reports Server (NTRS)

    Sary, Charisse; Gilstrap, Lewey; Hull, Larry G.

    1990-01-01

    The Expert System Development Methodology (ESDM) provides an approach to developing expert system software. Because of the uncertainty associated with this process, an element of risk is involved. ESDM is designed to address the issue of risk and to acquire the information needed for this purpose in an evolutionary manner. ESDM presents a life cycle in which a prototype evolves through five stages of development. Each stage consists of five steps, leading to a prototype for that stage. Development may proceed to a conventional development methodology (CDM) at any time if enough has been learned about the problem to write requirements. ESDM produces requirements so that a product may be built with a CDM. ESDM is considered preliminary because is has not yet been applied to actual projects. It has been retrospectively evaluated by comparing the methods used in two ongoing expert system development projects that did not explicitly choose to use this methodology but which provided useful insights into actual expert system development practices and problems.

  17. More flexibility in representing geometric distortion in astronomical images

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir

    2012-09-01

    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  18. Study of fault tolerant software technology for dynamic systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Zacharias, G. L.

    1985-01-01

    The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.

  19. Video-Camera-Based Position-Measuring System

    NASA Technical Reports Server (NTRS)

    Lane, John; Immer, Christopher; Brink, Jeffrey; Youngquist, Robert

    2005-01-01

    A prototype optoelectronic system measures the three-dimensional relative coordinates of objects of interest or of targets affixed to objects of interest in a workspace. The system includes a charge-coupled-device video camera mounted in a known position and orientation in the workspace, a frame grabber, and a personal computer running image-data-processing software. Relative to conventional optical surveying equipment, this system can be built and operated at much lower cost; however, it is less accurate. It is also much easier to operate than are conventional instrumentation systems. In addition, there is no need to establish a coordinate system through cooperative action by a team of surveyors. The system operates in real time at around 30 frames per second (limited mostly by the frame rate of the camera). It continuously tracks targets as long as they remain in the field of the camera. In this respect, it emulates more expensive, elaborate laser tracking equipment that costs of the order of 100 times as much. Unlike laser tracking equipment, this system does not pose a hazard of laser exposure. Images acquired by the camera are digitized and processed to extract all valid targets in the field of view. The three-dimensional coordinates (x, y, and z) of each target are computed from the pixel coordinates of the targets in the images to accuracy of the order of millimeters over distances of the orders of meters. The system was originally intended specifically for real-time position measurement of payload transfers from payload canisters into the payload bay of the Space Shuttle Orbiters (see Figure 1). The system may be easily adapted to other applications that involve similar coordinate-measuring requirements. Examples of such applications include manufacturing, construction, preliminary approximate land surveying, and aerial surveying. For some applications with rectangular symmetry, it is feasible and desirable to attach a target composed of black and white squares to an object of interest (see Figure 2). For other situations, where circular symmetry is more desirable, circular targets also can be created. Such a target can readily be generated and modified by use of commercially available software and printed by use of a standard office printer. All three relative coordinates (x, y, and z) of each target can be determined by processing the video image of the target. Because of the unique design of corresponding image-processing filters and targets, the vision-based position- measurement system is extremely robust and tolerant of widely varying fields of view, lighting conditions, and varying background imagery.

  20. Computer aided system engineering for space construction

    NASA Technical Reports Server (NTRS)

    Racheli, Ugo

    1989-01-01

    This viewgraph presentation covers the following topics. Construction activities envisioned for the assembly of large platforms in space (as well as interplanetary spacecraft and bases on extraterrestrial surfaces) require computational tools that exceed the capability of conventional construction management programs. The Center for Space Construction is investigating the requirements for new computational tools and, at the same time, suggesting the expansion of graduate and undergraduate curricula to include proficiency in Computer Aided Engineering (CAE) though design courses and individual or team projects in advanced space systems design. In the center's research, special emphasis is placed on problems of constructability and of the interruptability of planned activity sequences to be carried out by crews operating under hostile environmental conditions. The departure point for the planned work is the acquisition of the MCAE I-DEAS software, developed by the Structural Dynamics Research Corporation (SDRC), and its expansion to the level of capability denoted by the acronym IDEAS**2 currently used for configuration maintenance on Space Station Freedom. In addition to improving proficiency in the use of I-DEAS and IDEAS**2, it is contemplated that new software modules will be developed to expand the architecture of IDEAS**2. Such modules will deal with those analyses that require the integration of a space platform's configuration with a breakdown of planned construction activities and with a failure modes analysis to support computer aided system engineering (CASE) applied to space construction.

  1. Automated Processing and Evaluation of Anti-Nuclear Antibody Indirect Immunofluorescence Testing.

    PubMed

    Ricchiuti, Vincent; Adams, Joseph; Hardy, Donna J; Katayev, Alexander; Fleming, James K

    2018-01-01

    Indirect immunofluorescence (IIF) is considered by the American College of Rheumatology (ACR) and the international consensus on ANA patterns (ICAP) the gold standard for the screening of anti-nuclear antibodies (ANA). As conventional IIF is labor intensive, time-consuming, subjective, and poorly standardized, there have been ongoing efforts to improve the standardization of reagents and to develop automated platforms for assay incubation, microscopy, and evaluation. In this study, the workflow and performance characteristics of a fully automated ANA IIF system (Sprinter XL, EUROPattern Suite, IFA 40: HEp-20-10 cells) were compared to a manual approach using visual microscopy with a filter device for single-well titration and to technologist reading. The Sprinter/EUROPattern system enabled the processing of large daily workload cohorts in less than 8 h and the reduction of labor hands-on time by more than 4 h. Regarding the discrimination of positive from negative samples, the overall agreement of the EUROPattern software with technologist reading was higher (95.6%) than when compared to the current method (89.4%). Moreover, the software was consistent with technologist reading in 80.6-97.5% of patterns and 71.0-93.8% of titers. In conclusion, the Sprinter/EUROPattern system provides substantial labor savings and good concordance with technologist ANA IIF microscopy, thus increasing standardization, laboratory efficiency, and removing subjectivity.

  2. Automated Processing and Evaluation of Anti-Nuclear Antibody Indirect Immunofluorescence Testing

    PubMed Central

    Ricchiuti, Vincent; Adams, Joseph; Hardy, Donna J.; Katayev, Alexander; Fleming, James K.

    2018-01-01

    Indirect immunofluorescence (IIF) is considered by the American College of Rheumatology (ACR) and the international consensus on ANA patterns (ICAP) the gold standard for the screening of anti-nuclear antibodies (ANA). As conventional IIF is labor intensive, time-consuming, subjective, and poorly standardized, there have been ongoing efforts to improve the standardization of reagents and to develop automated platforms for assay incubation, microscopy, and evaluation. In this study, the workflow and performance characteristics of a fully automated ANA IIF system (Sprinter XL, EUROPattern Suite, IFA 40: HEp-20-10 cells) were compared to a manual approach using visual microscopy with a filter device for single-well titration and to technologist reading. The Sprinter/EUROPattern system enabled the processing of large daily workload cohorts in less than 8 h and the reduction of labor hands-on time by more than 4 h. Regarding the discrimination of positive from negative samples, the overall agreement of the EUROPattern software with technologist reading was higher (95.6%) than when compared to the current method (89.4%). Moreover, the software was consistent with technologist reading in 80.6–97.5% of patterns and 71.0–93.8% of titers. In conclusion, the Sprinter/EUROPattern system provides substantial labor savings and good concordance with technologist ANA IIF microscopy, thus increasing standardization, laboratory efficiency, and removing subjectivity. PMID:29780386

  3. Particle-based simulations of self-motile suspensions

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  4. TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD.

    PubMed

    Vermaas, Josh V; Hardy, David J; Stone, John E; Tajkhorshid, Emad; Kohlmeyer, Axel

    2016-06-27

    Molecular dynamics (MD) simulation engines use a variety of different approaches for modeling molecular systems with force fields that govern their dynamics and describe their topology. These different approaches introduce incompatibilities between engines, and previously published software bridges the gaps between many popular MD packages, such as between CHARMM and AMBER or GROMACS and LAMMPS. While there are many structure building tools available that generate topologies and structures in CHARMM format, only recently have mechanisms been developed to convert their results into GROMACS input. We present an approach to convert CHARMM-formatted topology and parameters into a format suitable for simulation with GROMACS by expanding the functionality of TopoTools, a plugin integrated within the widely used molecular visualization and analysis software VMD. The conversion process was diligently tested on a comprehensive set of biological molecules in vacuo. The resulting comparison between energy terms shows that the translation performed was lossless as the energies were unchanged for identical starting configurations. By applying the conversion process to conventional benchmark systems that mimic typical modestly sized MD systems, we explore the effect of the implementation choices made in CHARMM, NAMD, and GROMACS. The newly available automatic conversion capability breaks down barriers between simulation tools and user communities and allows users to easily compare simulation programs and leverage their unique features without the tedium of constructing a topology twice.

  5. Magnetic navigation system assisted percutaneous coronary intervention: a comparison to the conventional approach in daily practice.

    PubMed

    Li, Chun-Jian; Wang, Hui; Yang, Zhi-Jian; Cao, Ke-Jiang

    2011-01-01

    The benefits of the magnetic navigation system (MNS) for percutaneous coronary intervention (PCI) remain unclear, and a comparison of the MNS assisted approach to the conventional approach for PCI, when used in daily practice, is little studied. This study aimed to investigate the benefits of an MNS assisted technique as compared to the conventional technique for PCI. Forty-eight consecutive patients scheduled for PCI were recruited between December 2009 and April 2010. MNS assisted PCIs were performed on 54 target vessels. Another 45 patients with 54 target vessels undergoing conventional PCIs were selected from a historical population of patients to match the MNS group according to the coronary lesion type (ACC/AHA classification). Emergency PCIs and chronic total occlusions were excluded from both groups. Analyses were performed using Stata 9.2 statistical software. There were no significant differences between the baseline characteristics of the MNS group and the control group. The success rates were 100.0% for the MNS assisted PCI and 98.1% for the conventional PCI, which did not reach a significant difference (P = 1.000); there were also no significant differences in terms of guide wire crossing time ((51.7 ± 30.5) seconds vs. (57.5 ± 49.4) seconds, P = 0.448), operation time ((28.4 ± 15.9) minutes vs. (28.0 ± 24.7) minutes, P = 0.935), X-ray exposure ((458.1 ± 350.1) µGym(2) vs. (558.7 ± 451.7) µGym(2), P = 0.197; and (94.2 ± 80.9) mGy vs. (96.2 ± 77.3) mGy, P = 0.895) or contrast usage ((7.3 ± 4.0) ml vs. (6.1 ± 3.7) ml, P = 0.121) between the two groups. However, a trend toward shorter guide wire crossing time and less X-ray exposure were observed for the magnetic group. In daily practice, MNS assisted PCI resulted in a similar procedural success rate, operation time, and contrast usage, with a trend toward shorter guide wire crossing time and less X-ray exposure when compared to the conventional PCI.

  6. Utility of optical facial feature and arm movement tracking systems to enable text communication in critically ill patients who cannot otherwise communicate.

    PubMed

    Muthuswamy, M B; Thomas, B N; Williams, D; Dingley, J

    2014-09-01

    Patients recovering from critical illness especially those with critical illness related neuropathy, myopathy, or burns to face, arms and hands are often unable to communicate by writing, speech (due to tracheostomy) or lip reading. This may frustrate both patient and staff. Two low cost movement tracking systems based around a laptop webcam and a laser/optical gaming system sensor were utilised as control inputs for on-screen text creation software and both were evaluated as communication tools in volunteers. Two methods were used to control an on-screen cursor to create short sentences via an on-screen keyboard: (i) webcam-based facial feature tracking, (ii) arm movement tracking by laser/camera gaming sensor and modified software. 16 volunteers with simulated tracheostomy and bandaged arms to simulate communication via gross movements of a burned limb, communicated 3 standard messages using each system (total 48 per system) in random sequence. Ten and 13 minor typographical errors occurred with each system respectively, however all messages were comprehensible. Speed of sentence formation ranged from 58 to 120s with the facial feature tracking system, and 60-160s with the arm movement tracking system. The average speed of sentence formation was 81s (range 58-120) and 104s (range 60-160) for facial feature and arm tracking systems respectively, (P<0.001, 2-tailed independent sample t-test). Both devices may be potentially useful communication aids in patients in general and burns critical care units who cannot communicate by conventional means, due to the nature of their injuries. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  7. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  8. GEMPAK5 user's guide, version 5.0

    NASA Technical Reports Server (NTRS)

    Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.

    1991-01-01

    GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The User's Guide describes the GEMPAK5 programs and input parameters and details the algorithms used for the meteorological computations.

  9. Innovative Technology in Engineering Education.

    ERIC Educational Resources Information Center

    Fishwick, Wilfred

    1991-01-01

    Discusses the impact that computer-assisted technologies, including applications to software, video recordings, and satellite broadcasts, have had upon the conventions and procedures within engineering education. Calls for the complete utilization of such devices through their appropriate integration into updated education activities effectively…

  10. Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Manikandan, J.; Jayaraman, M.; Jayachandran, M.

    2011-02-01

    This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.

  11. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.

  12. Development and preliminary evaluation of an ultrasonic motor actuated needle guide for 3T MRI-guided transperineal prostate interventions

    NASA Astrophysics Data System (ADS)

    Song, Sang-Eun; Tokuda, Junichi; Tuncali, Kemal; Tempany, Clare; Hata, Nobuhiko

    2012-02-01

    Image guided prostate interventions have been accelerated by Magnetic Resonance Imaging (MRI) and robotic technologies in the past few years. However, transrectal ultrasound (TRUS) guided procedure still remains as vast majority in clinical practice due to engineering and clinical complexity of the MRI-guided robotic interventions. Subsequently, great advantages and increasing availability of MRI have not been utilized at its maximum capacity in clinic. To benefit patients from the advantages of MRI, we developed an MRI-compatible motorized needle guide device "Smart Template" that resembles a conventional prostate template to perform MRI-guided prostate interventions with minimal changes in the clinical procedure. The requirements and specifications of the Smart Template were identified from our latest MRI-guided intervention system that has been clinically used in manual mode for prostate biopsy. Smart Template consists of vertical and horizontal crossbars that are driven by two ultrasonic motors via timing-belt and mitergear transmissions. Navigation software that controls the crossbar position to provide needle insertion positions was also developed. The software can be operated independently or interactively with an open-source navigation software, 3D Slicer, that has been developed for prostate intervention. As preliminary evaluation, MRI distortion and SNR test were conducted. Significant MRI distortion was found close to the threaded brass alloy components of the template. However, the affected volume was limited outside the clinical region of interest. SNR values over routine MRI scan sequences for prostate biopsy indicated insignificant image degradation during the presence of the robotic system and actuation of the ultrasonic motors.

  13. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation

    PubMed Central

    Johnson, Michelle J; Feng, Xin; Johnson, Laura M; Winters, Jack M

    2007-01-01

    Background There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Methods Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Results Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. Conclusion The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home. PMID:17331243

  14. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    PubMed

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (<2 %) and human errors (<1 %) suggested that the system was sufficiently robust to be implemented in a network. With a median time-to-identification of 5 h and 11 min (78 min, min-max: 154-547), MALDI-TOF MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p < 0.0001). However, the limited clinical benefits of the chromogenic culture media do not support their extra cost. Our financial analysis also suggested that MALDI-TOF MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.

  15. Digital versus conventional implant impressions for partially edentulous arches: An evaluation of accuracy.

    PubMed

    Marghalani, Amin; Weber, Hans-Peter; Finkelman, Matthew; Kudara, Yukio; El Rafie, Khaled; Papaspyridakos, Panos

    2018-04-01

    To the authors' knowledge, while accuracy outcomes of the TRIOS scanner have been compared with conventional impressions, no available data are available regarding the accuracy of digital scans with the Omnicam and True Definition scanners versus conventional impressions for partially edentulous arches. The purpose of this in vitro study was to compare the accuracy of digital implant scans using 2 different intraoral scanners (IOSs) with that of conventional impressions for partially edentulous arches. Two partially edentulous mandibular casts with 2 implant analogs with a 30-degree angulation from 2 different implant systems (Replace Select RP; Nobel Biocare and Tissue level RN; Straumann) were used as controls. Sixty digital models were made from these 2 definitive casts in 6 different groups (n=10). Splinted implant-level impression procedures followed by digitization were used to produce the first 2 groups. The next 2 groups were produced by digital scanning with Omnicam. The last 2 groups were produced by digital scanning with the True Definition scanner. Accuracy was evaluated by superimposing the digital files of each test group onto the digital file of the controls with inspection software. The difference in 3-dimensional (3D) deviations (median ±interquartile range) among the 3 impression groups for Nobel Biocare was statistically significant among all groups (P<.001), except for the Omnicam (20 ±4 μm) and True Definition (15 ±6 μm) groups; the median ±interquartile range for the conventional group was 39 ±18 μm. The difference in 3D deviations among the 3 impression groups for Straumann was statistically significant among all groups (P=.003), except for the conventional impression (22 ±5 μm) and True Definition (17 ±5 μm) groups; the median ±interquartile range for the Omnicam group was 26 ±15 μm. The difference in 3D deviations between the 2 implant systems was significant for the Omnicam (P=.011) and conventional (P<.001) impression techniques but not for the True Definition technique (P=.247). Within the limitations of this study, both the impression technique and the implant system affected accuracy. The True Definition technique had the fewest 3D deviations compared with the other 2 techniques; however, the accuracy of all impression techniques was within clinically acceptable levels, and not all differences were statistically significant. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Robust backstepping control of an interlink converter in a hybrid AC/DC microgrid based on feedback linearisation method

    NASA Astrophysics Data System (ADS)

    Dehkordi, N. Mahdian; Sadati, N.; Hamzeh, M.

    2017-09-01

    This paper presents a robust dc-link voltage as well as a current control strategy for a bidirectional interlink converter (BIC) in a hybrid ac/dc microgrid. To enhance the dc-bus voltage control, conventional methods strive to measure and feedforward the load or source power in the dc-bus control scheme. However, the conventional feedforward-based approaches require remote measurement with communications. Moreover, conventional methods suffer from stability and performance issues, mainly due to the use of the small-signal-based control design method. To overcome these issues, in this paper, the power from DG units of the dc subgrid imposed on the BIC is considered an unmeasurable disturbance signal. In the proposed method, in contrast to existing methods, using the nonlinear model of BIC, a robust controller that does not need the remote measurement with communications effectively rejects the impact of the disturbance signal imposed on the BIC's dc-link voltage. To avoid communication links, the robust controller has a plug-and-play feature that makes it possible to add a DG/load to or remove it from the dc subgrid without distorting the hybrid microgrid stability. Finally, Monte Carlo simulations are conducted to confirm the effectiveness of the proposed control strategy in MATLAB/SimPowerSystems software environment.

  17. An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research

    PubMed Central

    2011-01-01

    Background Labeling whole Arabidopsis (Arabidopsis thaliana) plants to high enrichment with 13C for proteomics and metabolomics applications would facilitate experimental approaches not possible by conventional methods. Such a system would use the plant's native capacity for carbon fixation to ubiquitously incorporate 13C from 13CO2 gas. Because of the high cost of 13CO2 it is critical that the design conserve the labeled gas. Results A fully enclosed automated plant growth enclosure has been designed and assembled where the system simultaneously monitors humidity, temperature, pressure and 13CO2 concentration with continuous adjustment of humidity, pressure and 13CO2 levels controlled by a computer running LabView software. The enclosure is mounted on a movable cart for mobility among growth environments. Arabidopsis was grown in the enclosure for up to 8 weeks and obtained on average >95 atom% enrichment for small metabolites, such as amino acids and >91 atom% for large metabolites, including proteins and peptides. Conclusion The capability of this labeling system for isotope dilution experiments was demonstrated by evaluation of amino acid turnover using GC-MS as well as protein turnover using LC-MS/MS. Because this 'open source' Arabidopsis 13C-labeling growth environment was built using readily available materials and software, it can be adapted easily to accommodate many different experimental designs. PMID:21310072

  18. The SSM/PMAD automated test bed project

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).

  19. Software Design Improvements. Part 2; Software Quality and the Design and Inspection Process

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom

    1997-01-01

    The application of assurance engineering techniques improves the duration of failure-free performance of software. The totality of features and characteristics of a software product are what determine its ability to satisfy customer needs. Software in safety-critical systems is very important to NASA. We follow the System Safety Working Groups definition for system safety software as: 'The optimization of system safety in the design, development, use and maintenance of software and its integration with safety-critical systems in an operational environment. 'If it is not safe, say so' has become our motto. This paper goes over methods that have been used by NASA to make software design improvements by focusing on software quality and the design and inspection process.

  20. Design Criteria For Networked Image Analysis System

    NASA Astrophysics Data System (ADS)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

Top