Sample records for conventional solid-state sintering

  1. A comparative study of conventionally sintered and microwave sintered nickel zinc ferrite

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Juneja, J. K.; Raina, K. K.; Kotnala, R. K.; Prakash, Chandra

    2014-04-01

    For the present work, nickel zinc ferrite having compositional formula Ni0.8Zn0.2Fe2O4 was synthesized by conventional solid state method and sintered in conventional and microwave furnaces. Pellets were sintered with very short soaking time of 10 min at 1150 °C in microwave furnace whereas 4 hrs of soaking time was selected for conventional sintering at 1200 °C. Phase formation was confirmed by X-ray diffraction analysis technique. Scanning electron micrographs were taken for microstructural study. Dielectric properties were studied as a function of temperature. To study magnetic behavior, M-H hysteresis loops were recorded for both samples. It is observed that microwave sintered sample could obtain comparable properties to the conventionally sintered one in lesser soaking time at lower sintering temperature.

  2. Effect of Process Parameter on Barium Titanate Stannate (BTS) Materials Sintered at Low Sintering

    NASA Astrophysics Data System (ADS)

    Shukla, Alok; Bajpai, P. K.

    2011-11-01

    Ba(Ti1-xSnx)O3 solid solutions with (x = 0.15, 0.20, 0.30 and 0.40) are synthesized using conventional solid state reaction method. Formation of solid solutions in the range 0 ≤ x ≤0.40 is confirmed using X-ray diffraction technique. Single phase solid solutions with homogeneous grain distribution are observed at relatively low sintering by controlling process parameters viz. sintering time. Composition at optimized temperature (1150 °C) sintered by varying the sintering time, stabilize in cubic perovskite phase. The % experimental density increase with increasing the time of sintering instead of increasing sintering temperature. The lattice parameter increases by increasing the tin composition in the material. This demonstrates that process parameter optimization can lead to single phase at relatively lower sintering-a major advantage for the materials used as capacitor element in MLCC.

  3. Effect of microwave-assisted sintering on dielectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Rani, Suman; Ahlawat, Neetu; Punia, R.; Kundu, R. S.; Ahlawat, N.

    2016-05-01

    In this present work, CaCu3Ti4O12 (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It was observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.

  4. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  5. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.

    PubMed

    Prakash, B Shri; Varma, K B R

    2008-11-01

    Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.

  6. Effect of microwave-assisted sintering on dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Suman, E-mail: sumanranigju@gmail.com; Ahlawat, Neetu; Punia, R.

    2016-05-23

    In this present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It wasmore » observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.« less

  7. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  8. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  9. Enhanced Multiferroic Properties of YMnO3 Ceramics Fabricated by Spark Plasma Sintering Along with Low-Temperature Solid-State Reaction

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832

  10. Process for making dense thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  11. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.

    PubMed

    Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff

    2013-10-25

    A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

  12. Innovative processing of dense LSGM electrolytes for IT-SOFC's

    NASA Astrophysics Data System (ADS)

    Rambabu, B.; Ghosh, Samrat; Zhao, Weichang; Jena, Hrudananda

    This paper reports for the first time the attempted synthesis of SrO- and MgO-doped LaGaO 3 (La 1- xSr xGa 1- yMg yO 3-0.5(x+ y), LSGM) perovskite by an aqueous 'regenerative' solution route. This novel technique enabled recycling of the undesired product and subsequently yielded product with much better phase purity and density than that obtained from the solid-state route. La 0.8Sr 0.2Ga 0.85Mg 0.15O 2.825 (LSGM-2015) and LaGaO 3 were prepared using both the regenerative sol-gel (RSG) and conventional solid-state route at 1400 °C. Series of La 0.8Sr 0.2Ga 0.83Mg 0.17O 2.815 (LSGM-2017) pellets were also prepared by the RSG method at different sintering temperature (1200-1500 °C) and time. The effect of conventional and microwave sintering of samples obtained from both solid-state and regenerative route was also investigated. Microwave heating was carried out using SiC as a microwave susceptor. The LSGM pellets prepared by using different synthetic methods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and pellet density was determined by pycnometry. The LSGM-2015 prepared by RSG route exhibited conductivity σ t = 0.066 and 0.029 S cm -1 at 800 and 700 °C, respectively, and activation energy of the bulk, grain-boundary, and total are E b = 0.97 eV, E gb = 1.03 eV and E t = 1.01 eV, respectively. The sintering temperature severely affected the grain size (<0.1-10 μm) and also the grain-boundary resistance (3-175 kΩ). The unique aspect of this RSG technique is that the final product can be recycled which makes the process cost effective and time saving compared to the solid-state ceramic technique and this technique would allow optimization of processing parameters in a cost effective and time saving manner for obtaining well sintered LSGM as an electrolyte for IT-SOFC's.

  13. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M = Ta, Nb) solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi

    2014-09-01

    Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.

  14. Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior

    NASA Astrophysics Data System (ADS)

    Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.

    2017-07-01

    Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.

  15. Influence of the sintering temperature on the electrical properties of Ce-doped WO3 ceramics prepared from nano-powders

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Chen, Han-Jun; Wang, Yu; Li, De-Zhu; Li, Tong-Ye; Zhao, Yong

    2007-04-01

    Using a nm-level powder fabricated by a wet chemical method as precursor, the CeO2-doped WO3 ceramics were prepared by the conventional solid state reaction at sintering temperatures from 600 to 1100 °C. The x-ray diffraction analysis reveals the coexistence of different WO3 phases in the samples sintered at temperatures below 900 °C, whereas a single phase appears in the samples sintered above 1000 °C. No new Ce-W compound appears. As the sintering temperature increases, the electrical properties of the samples display an interesting transformation from linear to nonlinear behaviour. The measurements of scanning electron microscope, complex impedance and electrical stability indicate that a lot of grain boundary regions in the samples sintered at low temperatures strongly influences the electrical transportation. Therefore, the electrical nonlinearity is due to a basic process controlled by the back-to-back Schottky barriers at grain boundaries with suitable thickness as well as the coexistence of phases.

  16. Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Pradhan, S. K.; Mishra, P.; Sekhar, B. R.; Behera, Debdhyan; Rout, P. P.; Das, S. K.; Sahu, D. R.; Roul, B. K.

    2013-08-01

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO3. Room temperature dielectric constant (ɛr) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO3 at room temperature as multifunctional materials.

  17. A new ferroelectric solid solution system of LaCrO 3-BiCrO 3

    NASA Astrophysics Data System (ADS)

    Chen, J. I. L.; Kumar, M. Mahesh; Ye, Z.-G.

    2004-04-01

    A new perovskite solid solution system of (1- x)LaCrO 3- xBiCrO 3 has been prepared by conventional solid-state reaction and sintering processes at 1200°C in a sealed Pt tube or a Bi 2O 3-rich environment. A clean orthorhombic phase of LaCrO 3-type structure is established at room temperature for compositions with 0⩽ x⩽0.35. The relative density, lattice parameters, sintering mechanism, microstructure and ferroelectricity of the compounds are investigated. The substitution of Bi 2O 3 for La 2O 3 is found to decrease the unit cell volume and increase the grain size of the ceramics. The relative density of the ceramics sintered at 1200°C is significantly improved from 40% for LaCrO 3 up to about 90% for La 0.65Bi 0.35CrO 3 through a liquid phase sintering mechanism. The ferroelectricity is revealed in La 1- xBi xCrO 3 with 0.1⩽ x⩽0.35 by dielectric hysteresis loops displayed at 77 K. The remnant polarization is found to increase with increasing Bi 3+ content. The origin of the ferroelectricity is attributed to the structural distortion induced by the stereochemically active Bi 3+ ion on the A site.

  18. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  19. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  20. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    PubMed Central

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  1. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    PubMed

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  2. Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods.

    PubMed

    Curran, Declan J; Fleming, Thomas J; Towler, Mark R; Hampshire, Stuart

    2011-11-01

    The effects of ion substitution in hydroxyapatite (HA) on crystal structure and lattice stability is investigated in the green state and post sintering. The effects of ion incorporation on the biaxial flexural strength and hardness are also investigated. Sintering is carried out at 1200 °C using comparative conventional and microwave regimes. Post sintering, the effects of ion incorporation manifest as an increase in the lattice d-spacings and a reduction of the crystallite size. Some HA decomposition occurs with β-TCP stabilisation in conventional sintering (CS), but this phase is destabilised during microwave sintering (MS), generating α-TCP. Conventional sintering (CS) allows higher densification in the undoped samples. Overall, for the Sr-doped compositions, the MS samples retain higher amounts of HA and experience higher density levels compared to the CS samples. Published by Elsevier Ltd.

  3. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Hallopeau, Leopold; Bregiroux, Damien; Rousse, Gwenaëlle; Portehault, David; Stevens, Philippe; Toussaint, Gwenaëlle; Laberty-Robert, Christel

    2018-02-01

    Li1.3Al0.3Ti1.7(PO4)3 (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (≥1000 °C) with long dwelling times (several hours) to achieve high relative density (∼90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 °C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 × 10-4 S cm-1) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion-conducting ceramics in a simple and fast way.

  4. Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO₃ Ceramics Fabricated by Spark Plasma Sintering.

    PubMed

    Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen

    2017-03-07

    Based on precursor powders with a size of 200-300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO₃ ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO₃ ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe 3+ to Fe 2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO₃ ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage.

  5. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  6. Understanding proton-conducting perovskite interfaces using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3 precursor powders with 1 wt. % NiO as a reactive sintering aid (SSRS-Ni). It is observed that oxygen depletion (oxygen-vacancy accumulation) occurs at all GBs. Segregation of the constituent cations, Ba, Zr, and Y, is found to be variable across all samples although zirconium depletion and yttrium accumulation are most prevalent. Additionally, impurities such as Al, Fe, Mg, Ni, Si, and Sr are shown to generally accumulate at the GBs. Finally, LAAPT-derived GB chemistry data is combined with electrostatic modeling to examine the electronic structure of a BZY10 GB, revealing significant non-uniformity in the space charge region at the GB with an average space-charge potential of approximately 580 mV, extending 5--7 nm in width from the GB core. This result demonstrates how LAAPT can not only be used to further understand the role of GB chemistry within oxide materials, but can also be used to examine the electronic structure, allowing for the possibility of engineering these interfaces to improve their electrochemical performance.

  7. Densification of LSGM electrolytes using activated microwave sintering

    NASA Astrophysics Data System (ADS)

    Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.

    Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).

  8. Physical properties of inorganic PMW-PNN-PZT ceramics

    NASA Astrophysics Data System (ADS)

    Sin, Sang-Hoon; Yoo, Ju-hyun; Kim, Yong-Jin; Baek, Sam-ki; Ha, Jun-Soo; No, Chung-Han; Song, Hyun-Seon; Shin, Dong-Chan

    2015-07-01

    In this work, inorganic Pb(Mg1/2W1/2)0.03(Ni1/3Nb2/3)x(Zr0.5Ti0.5)0.97-xO3 (x = 0.02 ∼ 0.12) composition ceramics were fabricated by the conventional solid state reaction method. And then their micro structure and ferroelectric properties were investigated according to the amount of PNN substitution. Small amounts of Li2CO3 and CaCO3 were used in order to decrease the sintering temperature of the ceramics. The 0.10 mol PNN-substituted PMW-PNN- PZT ceramics sintered at 920°C showed the excellent physical properties of piezoelectric constant (d33), electromechanical coupling factor (kp), mechanical quality coefficient (Qm), and dielectric constant of 566 pC/N, 0.61, 73, and 2183, respectively.

  9. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    NASA Astrophysics Data System (ADS)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  10. Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO3 Ceramics Fabricated by Spark Plasma Sintering

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO3 ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO3 ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe3+ to Fe2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO3 ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage. PMID:28772626

  11. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only 60% of theoretical density. Microwave sintering also led to improvement in terms of uniform structure and electrical properties. Ba_{0.65}Sr _{0.35}TiO_3 was sintered using the microwave power at 1300 ^circC for 10 minutes. A density of 99% was achieved with small and uniform grain size. Superconducting powders have been successfully prepared by the sol-gel process and sintered and annealed using microwave power. Sintering and densification was achieved in a shorter time with microwave heating than with conventional heating and microwave heating appears to result in refined microstructure.

  12. TOPICAL REVIEW: Sintering and microstructure of ice: a review

    NASA Astrophysics Data System (ADS)

    Blackford, Jane R.

    2007-11-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms—from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches.

  13. Flash sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  14. Effect of Dopants and Sintering Method on the Properties of Ceria-Based Electrolytes for IT-SOFCs Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Payal; Sharma, Chetan; Singh, Kanchan L.; Singh, Anirudh P.

    2018-05-01

    Doped and co-doped ceria ceramics are used as electrolyte materials in solid oxide fuel cells. In this work, ceria-based oxides, Ce0.90Gd0.06Y0.02M0.02O2-δ (M = Ca, Fe, La, and Sr) were prepared by conventional as well as microwave processing from the precursors prepared by the mixed oxide method. The consolidated calcined powders in pellet form were sintered in microwave energy at 1400°C for 20 min and in an electric furnace of IR radiation at 1400°C for 6 h. The x-ray diffraction analysis confirmed that all the compositions were crystallized into a cubic fluorite structure. Surface morphology of the sintered products was studied using scanning electron microscopy and the microhardness was investigated using the Vickers hardness test. The comparative results analysis shows that the microwave-sintered samples have uniform grain growth, higher density and higher microhardness than the corresponding conventionally sintered products. The microwave-sintered sample of composition Ce0.90Gd0.06Y0.02Sr0.02O2-δ was found to have the highest microhardness among the four compositions due to its high density and smallest grain size.

  15. Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Heimann, P. J.

    2004-01-01

    The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.

  16. Effects of PbO-B2O3 Glass Doping on the Sintering Temperature and Piezoelectric Properties of 0.35Pb (Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 Ceramics

    NASA Astrophysics Data System (ADS)

    Yi, Jinqiao; Shen, Meng; Liu, Sisi; Jiang, Shenglin

    2015-12-01

    0.35Pb(Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 (PNN-PZT) ceramics doped with 0.5PbO-0.5B2O3 glass have been synthesized by the conventional solid-state sintering technique. The effects of 0.5PbO-0.5B2O3 glass on the sintering temperature and piezoelectric properties of PNN-PZT ceramics were studied. The results indicated that the sintering temperature of PNN-PZT was significantly reduced due to the incorporation of 0.5PbO-0.5B2O3 glass dopant. When the content of 0.5PbO-0.5B2O3 glass was 0.5 wt.%, the sintering temperature of PNN-PZT was observed to reduce from above 1200°C to 920°C while the samples maintained high density (7.91 g/cm3), excellent piezoelectric constant ( d 33 = 479 pC/N), large electromechanical coupling coefficient ( K p = 0.55), and relatively low electromechanical quality factor ( Q m = 79). Moreover, large dielectric constant ( ɛ 33 T / ɛ 0 = 2904) and low dielectric loss (tan δ = 0.0166) were obtained in this work.

  17. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Advanced Ceramic Technology for Space Applications at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Alim, Mohammad A.

    2003-01-01

    The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.

  19. The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xialu; Rechtin, Jack; Olevsky, Eugene

    Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less

  20. The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering

    DOE PAGES

    Wei, Xialu; Rechtin, Jack; Olevsky, Eugene

    2017-09-14

    Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less

  1. Spark plasma sintering of highly dense fine-grained mineral aggregates

    NASA Astrophysics Data System (ADS)

    Koizumi, S.; Suzuki, T. S.; Sakka, Y.; Hiraga, T.

    2017-12-01

    To obtain highly dense and fine-grained mineral aggregates, which are suitable for laboratory measurements of their physical and chemical properties, we applied spark plasma sintering (SPS) to synthetic mineral powders and powders originated from naturally derived crystals. SPS is an emerging consolidation technique which has been applied to various metals and ceramics and rarely to geomaterials (e.g., Guignard et al., 2011). The technique uses spark plasma created by a pulse direct current during heat treatment of powders in a graphite die. It has been found that the technique provides better densification with little grain growth during sintering compared to a conventional sintering technique in many materials. To obtain ideal highly dense fine-grained materials, it is essential to prepare starting powders suitable for the sintering and also to find appropriate sintering conditions of applied uniaxial pressures, pulsed current patterns and heating rates. We prepared synthetic mineral powers through solid state reaction of source powders at high temperature well developed by our group (Koizumi et al. 2010). We also used jet milling at wet condition and subsequent elutriation to prepare olivine powders with sub-micron particle size and equiaxed particle shape. At heating rate of ≦10°C/min and an achievement of highest temperature of 1150°C, Fe-free olivine aggregate with average grain size of 200 nm with porosity of 0.003% was obtained. We also could obtain olivine aggregate, which was sintered from powders of Horoman peridotite, with average grain size of 500 nm and porosity of 0.2%. We will show results of other minerals including major rock forming minerals of the Earth's crust.

  2. Influence of sintering temperature on properties of BNKLLT-6 wt% BCTZ binary lead-free piezoelectric ceramic prepared through the solid-state combustion technique

    NASA Astrophysics Data System (ADS)

    Kornphom, Chittakorn; Laowanidwatana, Artid; Bongkarn, Theerachai

    2017-03-01

    In this work, a new binary 94 wt%[Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 + 0.10 wt% of La2O3]-6 wt% [(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3] [BNKLLT-6 wt% BCTZ] ceramic was fabricated by the solid-state combustion technique and glycine was used as the fuel. The effect of sintering temperature in the range of 1075-1175 °C for 2 h on phase evolution, microstructure and electrical properties was investigated. The phase formation exhibited a coexistence structure between rhombohedral and tetragonal at low sintering temperature. As the sintering temperature increased, the phase formation changed to pseudo-cubic phase. The average grain size of the ceramics was increased with the increasing sintering temperature. Density, ɛr, ɛSA and TFA of BNKLLT-6 wt% BCTZ ceramics increased while the TSA decreased when the sintering temperature increased up to 1125 °C, while after this temperature the opposite trends occurred. At a sintering temperature of 1125 °C, the BNKLLT-6 wt% BCTZ sample showed the highest theoretical density (95.8%), maximum dielectric constant ɛSA (5278), highest d33 (227 pC/N) and fair ferroelectric properties (Pr = 24.5 µC/cm2 and Ec = 15.45 kV/cm).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Siwei; Chen, Yan; Zhang, Lingling

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ(BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering wasmore » improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. In conclusion, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Siwei; Chen, Yan; Zhang, Lingling

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improvedmore » to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  5. Transport Properties of La- doped SrTiO3 Ceramics Prepared Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Tritt, Terry M.; Alshareef, Husam N.

    2012-02-01

    In this work, thermoelectric transport properties of La-doped SrTiO3 ceramics prepared using conventional solid state reaction and spark plasma sintering have been investigated. Room temperature power factor of single crystal strontium titanate (SrTiO3), comparable to that of Bi2Te3, has brought new attention to this perovskite-type transition metal-oxide as a potential n-type thermoelectric for high temperature applications. Electronic properties of this model complex oxide, SrTiO3 (ABO3), can be tuned in a wide range through different doping mechanisms. In addition to A site (La-doped) or B site (Nb-doped) substitutional doping, introducing oxygen vacancies plays an important role in electrical and thermal properties of these structures. Having multiple doping mechanisms makes the transport properties of these perovskites more dependent on preparation parameters. The effect of these synthesis parameters and consolidation conditions on the transport properties of these materials has been studied.

  6. Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3- δ Proton-Conducting Ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Siwei; Chen, Yan; Zhang, Lingling; Ren, Cong; Chen, Fanglin; Brinkman, Kyle S.

    2015-12-01

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr0.8Y0.2O3- δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO3 and B2O3-Li2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. The bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.

  7. Two-Step Reactive Aid Sintering of BaZr 0.8Y 0.2O 3-δ Proton-Conducting Ceramics

    DOE PAGES

    Wang, Siwei; Chen, Yan; Zhang, Lingling; ...

    2015-10-14

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improvedmore » to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  8. Synthesisofc-lifepo4 composite by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.

    2017-02-01

    In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.

  9. 2D all-solid state fabric supercapacitor fabricated via an all solution process for use in smart textiles

    NASA Astrophysics Data System (ADS)

    Jang, Yunseok; Jo, Jeongdai; Woo, Kyoohee; Lee, Seung-Hyun; Kwon, Sin; Kim, Kwang-Young; Kang, Dongwoo

    2017-05-01

    We propose a method to fabricate a supercapacitor for smart textiles using silver (Ag) nanoparticle (NP) ink, simple spray patterning systems, and intense pulsed light (IPL) sintering systems. The Ag NP current collectors provided as high conductivity as the metal current collectors. The spray patterning technique is useful for fabricating supercapacitors because it is simple, fast, and cheap. IPL systems reduced the sintering temperature of Ag NPs and prevented thermal damage to the textiles during the Ag NP sintering process. The two-dimensional (2D) all-solid state fabric supercapacitor with an interdigitated configuration, developed here, exhibited a specific capacitance of 25.7 F/g and an energy density of 1.5 Wh/kg at a power density of 64.3 W/kg. These results support the utility of our proposed method in the development of energy textiles.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajgalik, P.; Sedlacek, J.; Lences, Z.

    Densification of silicon carbide without any sintering aids by hot-pressing and rapid hot pressing was investigated. Full density (>99% t.d.) has been reached at 1850 °C, a temperature of at least 150-200 °C lower compared to the up to now known solid state sintered silicon carbide powders. Silicon carbide was freeze granulated and heat treated prior the densification. Furthermore, evolution of microstructure, mechanical properties and creep behavior were evaluated and compared to reference ceramics from as received silicon carbide powder as well as those of commercial one. Novel method results in dense ceramics with Vickers hardness and indentation fracture toughnessmore » of 29.0 GPa and 5.25 MPam 1/2, respectively. Moreover, the creep rate of 3.8 x 10 –9 s –1 at 1450 °C and the load of 100 MPa is comparable to the commercial α-SiC solid state sintered at 2150 °C.« less

  11. Lowering the synthesis temperature of Y3Fe5O12 by surfactant assisted solid state reaction

    NASA Astrophysics Data System (ADS)

    Xue, Fenghua; Huang, Ju; Li, Tianrui; Wang, Zifan; Zhou, Xiaochao; Wei, Lujun; Gao, Baizhi; Zhai, Ya; Li, Qi; Xu, Qingyu; Du, Jun

    2018-01-01

    There is an urgent technical requirement of lowering the sintering temperature of Y3Fe5O12 (YIG) for its practical applications. In this paper, a modified solid state reaction method is reported by adding the surfactant of cetyltrimethylammonium bromide (CTAB). A high sintering temperature of 1200 °C is required for the formation of YIG phase without adding CTAB, which is effectively decreased to 1050 °C by adding CTAB. The morphology studies show that the sintering temperature plays the main role in the crystal growth and excludes the possible contribution of CTAB. The prepared YIG ceramic samples show soft ferromagnetic properties, with coercivity of only 21.2 Oe for the sample prepared with CTAB at 1050 °C, which decreases with increasing sintering temperature. The main role of adding CTAB is preventing the agglomeration of ball milled ultrafine source particles, which may facilitate the interdiffusion among them and promote the reaction at lower temperatures. Furthermore, the Gilbert damping constant is significantly reduced for YIG prepared by adding CTAB, which is one order smaller than that without CTAB.

  12. Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties

    DTIC Science & Technology

    2014-10-31

    H. Gocmez, Hydrothermal synthesis and properties of Ce1-xGdxO2-δ solid solutions // Solid State Sciences. – 2002. – Vol. 4. – P. 585-590. 19. E...J. Kilner, Ionic conductivity in the CeO2-Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation // Solid State Ionics. - 2002. – Vol

  13. [Translucency of dental zirconia ceramics sintered in conventional and microwave ovens].

    PubMed

    Yuemei, Jiang; Ying, Yang; Wenhui, Zhan; Guoxin, Hu; Qiuxia, Yang

    2015-12-01

    To evaluate the effect of microwave sintering on the translucency of zirconia and to compare these effect with those of conventional sintering. The relationship between the microstructure of specimens and translucency was investigated. A total of 10 disc-shaped specimens were fabricated from 2 commercial brands of zirconia, namely, Zenostar and Lava. Each group included 5 discs. Conventional sintering was performed according to the manufacturers' specifications. The maximum temperature for Zenostar was 1,490 °C, whereas that for Lava was 1,500 °C. The dwelling time was 2 h. The sintering temperature for microwave sintering was 1,420 °C, heating rate was 15 °C · min⁻¹, and dwelling time was 30 min. After sintering, the translucency parameter (TP) of the specimens were measured with ShadeEye NCC. The sintered density of the specimens was determined by Archimedes' method. The grain size and microstructure of the specimens were investigated by scanning electron microscopy. Density and translucency slightly increased by microwave sintering, but no significant difference was found between microwave and conventional sintering (P > 0.05). Small and uniform microstructure were obtained from microwave sintering. The mean TP of Lava was significantly higher than that of Zenostar (P < 0.001). The translucency of zirconia sintered by microwave sintering is similar to that of the zirconia sintered by conventional sintering.

  14. Rapid Sintering of Li₂O-Nb₂O₅-TiO₂ Solid Solution by Air Pressure Control and Clarification of Its Mechanism.

    PubMed

    Nakano, Hiromi; Kamimoto, Konatsu; Yamamoto, Takahisa; Furuta, Yoshio

    2018-06-11

    We first successfully synthesized Li 1+ x − y Nb 1− x −3 y Ti x +4 y O₃ (LNT) solid solutions (0.13 ≤ x ≤ 0.18, 0 ≤ y ≤ 0.06) rapidly at 1373 K for one hour under 0.35 MPa by the controlling of air pressure using an air-pressure control atmosphere furnace. The composition is a formation area of a superstructure for LNT, in which the periodical intergrowth layer was formed in the matrix, and where it can be controlled by Ti content. Therefore, the sintering time depended on Ti content, and annealing was repeated for over 24 h until a homogeneous structure was formed using a conventional electric furnace. We clarified the mechanism of the rapid sintering using various microscale to nanoscale characterization techniques: X-ray diffraction, a scanning electron microscope, a transmission electron microscope (TEM), a Cs-corrected scanning TEM equipped with electron energy-loss spectroscopy, and X-ray absorption fine structure spectroscopy.

  15. Gravitational Role in Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  16. Oxide-Based Composite Electrolytes Using Na3Zr2Si2PO12/Na3PS4 Interfacial Ion Transfer.

    PubMed

    Noi, Kousuke; Nagata, Yuka; Hakari, Takashi; Suzuki, Kenji; Yubuchi, So; Ito, Yusuke; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-05-31

    All-solid-state sodium batteries using Na 3 Zr 2 Si 2 PO 12 (NASICON) solid electrolytes are promising candidates for safe and low-cost advanced rechargeable battery systems. Although NASICON electrolytes have intrinsically high sodium-ion conductivities, their high sintering temperatures interfere with the immediate development of high-performance batteries. In this work, sintering-free NASICON-based composites with Na 3 PS 4 (NPS) glass ceramics were prepared to combine the high grain-bulk conductivity of NASICON and the interfacial formation ability of NPS. Before the composite preparation, the NASICON/NPS interfacial resistance was investigated by modeling the interface between the NASICON sintered ceramic and the NPS glass thin film. The interfacial ion-transfer resistance was very small above room temperature; the area-specific resistances at 25 and 100 °C were 15.8 and 0.40 Ω cm 2 , respectively. On the basis of this smooth ion transfer, NASICON-rich (70-90 wt %) NASICON-NPS composite powders were prepared by ball-milling fine powders of each component. The composite powders were well-densified by pressing at room temperature. Scanning electron microscopy observation showed highly dispersed sub-micrometer NASICON grains in a dense NPS matrix to form closed interfaces between the oxide and sulfide solid electrolytes. The composite green (unfired) compacts with 70 and 80 wt % NASICON exhibited high total conductivities at 100 °C of 1.1 × 10 -3 and 6.8 × 10 -4 S cm -1 , respectively. An all-solid-state Na 15 Sn 4 /TiS 2 cell was constructed using the 70 wt % NASICON composite electrolyte by the uniaxial pressing of the powder materials, and its discharge properties were evaluated at 100 °C. The cell showed the reversible capacities of about 120 mAh g -1 under the current density of 640 μA cm -2 . The prepared oxide-based composite electrolytes were thus successfully applied in all-solid-state sodium rechargeable batteries without sintering.

  17. Microstructural optimization of solid-state sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These parts exhibited higher density and finer microstructure than a commercially-available sintered SiC from Saint-Gobain (Hexoloy Enhanced, 3.153 g/cm3 and d50 = 4.837 mum). Due to the optimized microstructure, Verco SiC parts exhibited the highest Vickers (2628.30 +/- 44.13 kg/mm 2) and Knoop (2098.50 +/- 24.8 kg/mm2) hardness values of any SiC ceramic, and values equal to those of the "gold standard" hot-pressed boron carbide (PAD-B4C). While the fracture toughness of hot-pressed SiC materials (˜4.5 MPa m ) are almost double that of Verco SiC (2.4 MPa m ), Verco SiC is a better performing ballistic product, implying that the higher hardness of the theoretically-dense, clean-grain boundary, fine-grained SiC is the defining mechanical property for optimization of ballistic behavior.

  18. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less

  19. The Effects of Bismuth Oxide on Microstructures and Magnetic Properties of Mn-Mg-Al Ferrites

    NASA Astrophysics Data System (ADS)

    Nekouee, Kh. A.; Rahimi, A. H.; Haghighi, M. Alineghad; Ehsani, N.

    2018-04-01

    In the present paper, the effects of bismuth oxide as an additive on microstructure and magnetic properties of Mg0.9Mn0.1Al0.4Fe1.6O4 were investigated. Mg-Mn-Al ferrite powders were prepared by the conventional solid state synthesis method. Two different amounts of bismuth oxide (2.5 wt.% and 5 wt.%) were utilized as the sintering aid and their microstructure and physical properties were compared to those of the sample without additives. X-ray diffraction (XRD) analysis indicated that crystal lattice distortion due to the microstructural constraints as the result from incorporation of bismuth oxide into the microstructure was developed by adding bismuth oxide. XRD Rietveld refinement was used to define the cation distribution and to refine the lattice parameter and oxygen parameter for the sample without bismuth oxide as (Mg0.16Mn0.02Al0.15Fe0.77)A(Mg0.74Mn0.08Al0.25Fe0.83)BO4 and 8.3308 Å and 0.2542, respectively. Microstructure studies show that a bismuth rich liquid phase forms during the sintering at 1250°C, which enhances the densification of sintered bodies up to 13% (a relative density of 93%). Magnetization of sintered samples were increased from 21.1 emu/g to 26.2 emu/g upon addition of 2.5 wt.% bismuth oxide and then decreased to 24.9 emu/g when 5 wt.% bismuth oxide was added.

  20. Pulsed Laser Deposition of High Temperature Protonic Films

    NASA Technical Reports Server (NTRS)

    Dynys, Fred W.; Berger, M. H.; Sayir, Ali

    2006-01-01

    Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied

  1. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  2. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  3. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.

    PubMed

    Sirugudu, Roopas Kiran; Vemuri, Rama Krishna Murthy; Venkatachalam, Subramanian; Gopalakrishnan, Anisha; Budaraju, Srinivasa Murty

    2011-01-01

    Microwave sintering of materials significantly depends on dielectric, magnetic and conductive Losses. Samples with high dielectric and magnetic loss such as ferrites could be sintered easily. But low dielectric loss material such as dielectric resonators (paraelectrics) finds difficulty in generation of heat during microwave interaction. Microwave sintering of materials of these two classes helps in understanding the variation in dielectric and magnetic characteristics with respect to the change in grain size. High-energy ball milled Ni0.6Cu0.2Zn0.2Fe1.98O4-delta and ZnTiO3 are sintered in conventional and microwave methods and characterized for respective dielectric and magnetic characteristics. The grain size variation with higher copper content is also observed with conventional and microwave sintering. The grain size in microwave sintered Ni0.6Cu0.2Zn0.2Fe1.98O4-delta is found to be much small and uniform in comparison with conventional sintered sample. However, the grain size of microwave sintered sample is almost equal to that of conventional sintered sample of Ni0.3Cu0.5Zn0.2Fe1.98O4-delta. In contrast to these high dielectric and magnetic loss ferrites, the paraelectric materials are observed to sinter in presence of microwaves. Although microwave sintered zinc titanate sample showed finer and uniform grains with respect to conventional samples, the dielectric characteristics of microwave sintered sample are found to be less than that of conventional sample. Low dielectric constant is attributed to the low density. Smaller grain size is found to be responsible for low quality factor and the presence of small percentage of TiO2 is observed to achieve the temperature stable resonant frequency.

  4. Effect of two-stage sintering on dielectric properties of BaTi0.9Zr0.1O3 ceramics

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Rani, Renu; Kumar, Parveen; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2011-09-01

    The effect of two-stage sintering on the dielectric properties of BaTi0.9Zr0.1O3 ceramics prepared by solid state route was investigated and is presented here. It has been found that under suitable two-stage sintering conditions, dense BaTi0.9Zr0.1O3 ceramics with improved electrical properties can be synthesized. The density was found to have a value of 5.49 g cc-1 for normally sintered samples, whereas in the case of the two-stage sintered sample it was 5.85 g cc-1. Dielectric measurements were done as a function of frequency and temperature. A small decrease in the Curie temperature was observed with modification in dielectric loss for two-stage sintered ceramic samples.

  5. The effect of temperature on ferroelectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Ahlawat, Neetu; Punia, Suman

    2014-04-01

    CaCu3Ti4O12 (CCTO) ceramic was synthesized by conventional solid-state reaction technique and sintered at 1353K for 10 hours. The dielectric properties of CCTO were analyzed in 1Hz-5 MHz frequency range, from room temperature to 413K. The ferroelectric properties of CCTO were analyzed at various frequencies viz. 50 Hz, 100 Hz and 200 Hz at temperatures (298K to 413K). Result of these investigation points that with increasing temperature the values of coercive field (Ec) and remnant polarization (Pr) decrease while maximum polarization (Pmax) increases non-linearly. P-E hysteresis loop of CCTO goes to slimed and a ferroelectric to Para-electric phase transition is observed at 403K.

  6. Direct observation of grain rotations during coarsening of a semisolid Al–Cu alloy

    PubMed Central

    Dake, Jules M.; Oddershede, Jette; Sørensen, Henning O.; Werz, Thomas; Shatto, J. Cole; Uesugi, Kentaro; Schmidt, Søren; Krill, Carl E.

    2016-01-01

    Sintering is a key technology for processing ceramic and metallic powders into solid objects of complex geometry, particularly in the burgeoning field of energy storage materials. The modeling of sintering processes, however, has not kept pace with applications. Conventional models, which assume ideal arrangements of constituent powders while ignoring their underlying crystallinity, achieve at best a qualitative description of the rearrangement, densification, and coarsening of powder compacts during thermal processing. Treating a semisolid Al–Cu alloy as a model system for late-stage sintering—during which densification plays a subordinate role to coarsening—we have used 3D X-ray diffraction microscopy to track the changes in sample microstructure induced by annealing. The results establish the occurrence of significant particle rotations, driven in part by the dependence of boundary energy on crystallographic misorientation. Evidently, a comprehensive model for sintering must incorporate crystallographic parameters into the thermodynamic driving forces governing microstructural evolution. PMID:27671639

  7. The strength of sintered and adhesively bonded zirconia/veneer-ceramic bilayers.

    PubMed

    Costa, Anna Karina F; Borges, Alexandre Luiz S; Fleming, Garry James P; Addison, Owen

    2014-10-01

    Recently all-ceramic restorative systems have been introduced that use CAD/CAM technology to fabricate both the Y-TZP core and veneer-ceramic layers. The aim was to identify whether the CAD/CAM approach resulted in more favourable stressing patterns in the veneer-ceramic when compared with a conventionally sintered Y-TZP core/veneer-ceramic. Nominally identical Vita VM9 veneer-ceramic disc-shaped specimens (0.7mm thickness, 12mm diameter) were fabricated. 20 specimens received a surface coating of resin-cement (Panavia 21); 20 specimens were bonded with the resin-cement to fully sintered Y-TZP (YZ Vita Inceram Vita) discs (0.27mm thickness, 12mm diameter). A final series of 20 Y-TZP core/veneer-ceramic specimens were manufactured using a conventional sintering route. Biaxial flexure strength was determined in a ball-on-ring configuration and stress at the fracture origin calculated using multilayer closed-form analytical solutions. Fractography was undertaken using scanning electron microscopy. The experimental test was simulated using Finite Element Analysis. Group mean BFS were compared using a one-way ANOVA and post hoc Tukey tests at a 95% significance level. Resin cement application resulted in significant strengthening of the veneer-ceramic and further significant strengthening of the veneer-ceramic (p<0.01) occurred following bonding to the Y-TZP core. The BFS calculated at the failure origin for conventionally sintered specimens was significantly reduced when compared with the adhesively bonded Y-TZP/veneer-ceramic. Under the test conditions employed adhesive cementation between CAD/CAM produced Y-TZP/veneer-ceramic layers appears to offer the potential to induce more favourable stress states within the veneer-ceramic when compared with conventional sintered manufacturing routes. The current investigation suggests that the stressing patterns that arise in all-ceramic restorations fabricated using CAD/CAM for both the core and veneer-ceramic layers differ from those that occur in conventionally sintered bilayer restorations. Further work is required to ascertain whether such differences will translate into improved clinical outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    DTIC Science & Technology

    2014-11-01

    Thangadurai V, Weppner W. Lithium lanthanum titanates: a review. Chemistry of Materials. 2003;15:3974–3990. 4. Knauth P. Inorganic solid Li ion conductors...an overview. Solid State Ionics. 2009;180:911–916. 5. Ban CW, Choi GM. The effect of sintering on the grain boundary conductivity of lithium ...lanthanum titanates. Solid State Ionics. 2001;140:285–292. 6. Inada R, Kimura K, Kusakabe K, Tojo T, Sakurai Y. Synthesis and lithium -ion conductivity

  9. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  10. Effects of Molar Ratios and Sintering Times on Crystal Structures and Surface Morphology of Nd1+xFeO3 Oxide Alloy Prepared by using Solid Reaction Method

    NASA Astrophysics Data System (ADS)

    Sujiono, E. H.; Agus, J.; Samnur, S.; Triyana, K.

    2018-05-01

    The effects of molar ratios and sintering times on crystal structures and surface morphology on NdFeO3 oxide alloy have been studied. NdFeO3 oxide alloy formed by chemical preparation with solid reaction method using raw oxide Fe2O3 (99.9 %) and Nd2O3 (99.9 %) powders. In this article we reported the effects of molar ratios x = (–0.1, –0.2 and –0.3) and sintering times for 15 h and 20 h on crystal structures and surface morphology of Nd1+xFeO3 synthesized by solid-state reaction method. The results indicate that variation of molar ratio and sintering time has influenced the FWHM, crystalline size and grain size. The Nd1+xFeO3 have a major phase is NdFeO3, and other minor phases are Fe2O3, Nd2O3 and Nd(OH)3. The dominant intensity of hkl (121) with a value in FWHM, crystallite size, and grain size an indication the results will be applied as a gas sensor material as the focus of the further study.

  11. Sintered Intermetallic Reinforced 434L Ferritic Stainless Steel Composites

    NASA Astrophysics Data System (ADS)

    Upadhyaya, A.; Balaji, S.

    2009-03-01

    The present study examines the effect of aluminide (Ni3Al, Fe3Al) additions on the sintering behavior of ferritic 434L stainless steels during solid-state sintering (SSS) and supersolidus liquid-phase sintering (SLPS). 434L stainless steel matrix composites containing 5 and 10 wt pct of each aluminide were consolidated at 1200 °C (SSS) and 1400 °C (SLPS). The effects of sintering and aluminide additions on the densification, microstructural evolution, mechanical, tribological, and corrosion behavior of sintered ferritic (434L) stainless steels were investigated. The performances of the 434L-aluminide composites were compared with the straight 434L stainless steels processed at similar conditions. Supersolidus sintering resulted in significant improvement in densification, mechanical, wear, and corrosion resistance in both straight 434L and 434L-aluminide composites. Fe3Al additions to 434L stainless steels result in improved wear resistance without significant degradation of corrosion resistance in 3.56 wt pct NaCl solution.

  12. Rapid Prototyping: State of the Art

    DTIC Science & Technology

    2003-10-23

    Rapid Prototyping SCS Solid Creation System SLM Selective Laser Melting SLP Solid Laser diode Plotter SLS Selective Laser Sintering SOAR State of the...121,000, respectively. SLP stands for Sold Laser Diode Plotter. The machines are relatively slow and parts are small, so, to date, the products have been...Gigerenzer, H., “Directed Laser Welding of Metal Matrix Composite Structures for Space Based Applications,“ Triton Systems Inc., Chelmsford, MA., 1

  13. [Influence on microstructure of dental zirconia ceramics prepared by two-step sintering].

    PubMed

    Jian, Chao; Li, Ning; Wu, Zhikai; Teng, Jing; Yan, Jiazhen

    2013-10-01

    To investigate the microstructure of dental zirconia ceramics prepared by two-step sintering. Nanostructured zirconia powder was dry compacted, cold isostatic pressed, and pre-sintered. The pre-sintered discs were cut processed into samples. Conventional sintering, single-step sintering, and two-step sintering were carried out, and density and grain size of the samples were measured. Afterward, T1 and/or T2 of two-step sintering ranges were measured. Effects on microstructure of different routes, which consisted of two-step sintering and conventional sintering were discussed. The influence of T1 and/or T2 on density and grain size were analyzed as well. The range of T1 was between 1450 degrees C and 1550 degrees C, and the range of T2 was between 1250 degrees C and 1350 degrees C. Compared with conventional sintering, finer microstructure of higher density and smaller grain could be obtained by two-step sintering. Grain growth was dependent on T1, whereas density was not much related with T1. However, density was dependent on T2, and grain size was minimally influenced. Two-step sintering could ensure a sintering body with high density and small grain, which is good for optimizing the microstructure of dental zirconia ceramics.

  14. Temperature-dependent ac conductivity and dielectric response of vanadium doped CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Sen, A.; Maiti, U. N.; Thapa, R.; Chattopadhyay, K. K.

    2011-09-01

    Successful incorporation of vanadium dopant within the giant dielectric material CaCu 3Ti 4O12 (CCTO) through a conventional solid-state sintering process is achieved and its influence on the dielectric as well as electrical properties as a function of temperature and frequency is reported here. Proper crystalline phase formation together with dopant induced lattice constant shrinkage was confirmed through X-ray diffraction. The temperature dependence of the dielectric constant at different constant frequencies was investigated. We infer that the correlated barrier hopping (CBH) model is dominant in the conduction mechanism of the ceramic as per the temperature-dependent ac conductivity measurements. The electronic parameters such as density of the states at the Fermi level, N( E f) and hopping distance, R ω of the ceramic were also calculated using this model.

  15. Effect of Starch on Sintering Behavior for Fabricating Porous Cordierite Ceramic

    NASA Astrophysics Data System (ADS)

    Li, Ye; Cao, Wei; Gong, Lunlun; Zhang, Ruifang; Cheng, Xudong

    2016-10-01

    Porous cordierite ceramics were prepared with starch as pore-forming agent by solid-state method. The green bodies were sintered at 1,100-1,400 °C for 2 h. The characterization was focused on thermal analysis, phase evolution, sintering behavior, porosity and micro-structural changes. The results show that cordierite becomes the main crystallization phase at 1,200 °C. The shrinkage behavior shows the most obvious dependence on the sintering temperature and starch content, and it can be divided into three stages. Moreover, the open porosity increases with the increase of starch content, but the pore-forming effectivity decreases. Nevertheless, compared with the open porosity curves, the bulk density curves are more in line with the linear rule. The microphotographs show the densification process with the sintering temperature and the variation of pore connectivity with the starch content.

  16. Flash sintering of stoichiometric and hyper-stoichiometric urania

    DOE PAGES

    Valdez, James Anthony; Byler, Darrin David; Kardoulaki, Erofili; ...

    2018-03-29

    Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO 2) pellets. Stoichiometric (UO 2.00) and hyper-stoichiometric (UO 2.16) pellets were flash sintered at 600 °C within a few (2–3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (T H) for both conditions shows that in the case of flash sintering at 600 °C, T H =more » 0.3 versus T H = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO 2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 184 s at a field of 188 V/cm and a current density of 442 mA/mm 2. For the UO 2.16 pellet, the highest achieved density was 92% TD when flash sintered at 600 °C for 140 s at a field of 188 V/cm and a current density of 632 mA/mm 2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. Lastly, in all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.« less

  17. Flash sintering of stoichiometric and hyper-stoichiometric urania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, James Anthony; Byler, Darrin David; Kardoulaki, Erofili

    Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO 2) pellets. Stoichiometric (UO 2.00) and hyper-stoichiometric (UO 2.16) pellets were flash sintered at 600 °C within a few (2–3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (T H) for both conditions shows that in the case of flash sintering at 600 °C, T H =more » 0.3 versus T H = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO 2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 184 s at a field of 188 V/cm and a current density of 442 mA/mm 2. For the UO 2.16 pellet, the highest achieved density was 92% TD when flash sintered at 600 °C for 140 s at a field of 188 V/cm and a current density of 632 mA/mm 2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. Lastly, in all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.« less

  18. Flash sintering of stoichiometric and hyper-stoichiometric urania

    NASA Astrophysics Data System (ADS)

    Valdez, J. A.; Byler, D. D.; Kardoulaki, E.; Francis, J. S. C.; McClellan, K. J.

    2018-07-01

    Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO2) pellets. Stoichiometric (UO2.00) and hyper-stoichiometric (UO2.16) pellets were flash sintered at 600 °C within a few (2-3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (TH) for both conditions shows that in the case of flash sintering at 600 °C, TH = 0.3 versus TH = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 185 s at a field of 188 V/cm and a current density of 442 mA/mm2. For the UO2.16 pellet, the highest achieved density was 91% TD when flash sintered at 600 °C for 123 s at a field of 188 V/cm and a current density of 632 mA/mm2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. In all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.

  19. A major advance in powder metallurgy

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Stiglich, Jacob J., Jr.; Kaplan, Richard B.; Tuffias, Robert H.

    1991-01-01

    Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed.

  20. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  1. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  2. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    NASA Astrophysics Data System (ADS)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  3. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation

    PubMed Central

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R.

    2014-01-01

    Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach. PMID:28788153

  4. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation.

    PubMed

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R

    2014-08-06

    Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  5. Fabrication and characterization of nano-Y2O3 and Al2O3 dispersed W-Ni alloys by mechanical alloying and pressureless conventional sintering

    NASA Astrophysics Data System (ADS)

    Talekar, V. R.; Patra, A.; Karak, S. K.

    2018-03-01

    Nano Y2O3 and Al2O3 dispersed W-Ni alloys with nominal composition of W89Ni10 (Y2O3)1 (alloy A), W89Ni10 (Al2O3)1 (alloy B) were mechanically alloyed for 10 h followed by compaction at 0.5 GPa pressure with 5 min of dwell time and conventional sintering at 1400°C with 2 h soaking time in Ar atmosphere with Ar flow rate of 100 ml/min. The microstructure of milled and sintered alloy was investigated using X-ray Diffraction (XRD), Scanning electron Microscopy (SEM), Energy dispersive spectroscopy (EDS) and Elemental mapping. Minimum crystallite size of 31.9 nm and maximum lattice strain, dislocation density of 0.23%, 9.12(1016/m2) respectively was found in alloy A at 10 h of milling. Uneven and coarse particles at 0 h of milling converted to elongated flake shape at 10 h of milling. Bimodal (fine and coarse) particle size distribution is revealed in both the alloys and minimum particle size of 0.69 μm is achieved in 10 h milled alloy A. Evidences of formation of intermetallic phases like Y2WO6, Y6WO12 and Y10W2O21 in sintered alloy A and Al2(WO4)3, NiAl10O16, NiAl2O4 and AlWO4 in sintered alloy B were revealed by XRD pattern and SEM micrograph. Minimum grain size of 1.50 μm was recorded in sintered alloy A. Both faceted and spherical W matrix is evident in both the alloys which suggests occurrence of both solid phase and liquid phase sintering. Maximum % relative sintered density and hardness of 85.29% and 5.13 GPa respectively was found in alloy A. Wear study at 20N force at 25 rpm for 15 min on ball on plate wear tester revealed that minimum wear depth (48.99 μm) and wear track width (272 μm) was found for alloy A as compared to alloy B.

  6. New materials through a variety of sintering methods

    NASA Astrophysics Data System (ADS)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  7. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.

  8. Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte

    NASA Astrophysics Data System (ADS)

    Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.

    2016-09-01

    A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.

  9. Electrical conductivity and molten salt corrosion behavior of spinel nickel ferrite

    NASA Astrophysics Data System (ADS)

    Liu, Baogang; Zhang, Lei; Zhou, Kechao; Li, Zhiyou; Wang, Hao

    2011-08-01

    Nickel ferrite was prepared by solid-state reaction at 1300 °C as inert anode for aluminum electrolysis. DC conductivities and molten salt corrosion behavior of the samples were investigated in detail regarding the effects of different sintering atmospheres. X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis were used to analyse the phase compositions and microstructures. The DC conductivities of the samples sintered in nitrogen showed a drastic increase compared to those sintered in air, and at 960 °C they increased from 1.94 S/cm to 22.65 S/cm. The samples sintered in nitrogen showed much better corrosion resistance than those sintered in air, attributing to the formation of the dense protective layers in the anode surfaces during the electrolysis at 960 °C. The conductive mechanism and molten salt corrosion behavior were also discussed.

  10. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, M.

    1996-10-01

    The chemistry of a fuel ash is important to consider when ash behavior in combustion or gasification is studied. Four different types of thermal behavior based bed agglomeration and deposit foliation mechanisms have been proposed to be important, (1) partial melting, (2) viscous flow, (3) chemical reaction sintering, and (4) solid state sintering. In this paper we present data from a broader study in which we have quantified the four mechanisms more in detail. The ashes from 10 different types of fuels have been tested for their sintering tendency by a compression strength sintering test. The ashes were also subjectmore » to quantitative wet chemical analyses and combined differential thermal, thermogravimetric (DT/TG) analyses. These thermal behavior predictions were compared with multi-component multi-phase thermodynamic phase equilibrium calculations and further with full scale combustion experience. The results and their relevance to full scale conversion systems are discussed in the paper.« less

  11. Fabrication and thermoelectric properties of n-type (Sr0.9Gd0.1)TiO3 oxides

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Qin, Xiaoying; Liu, Yongfei; Xin, Hongxing; Zhang, Jian; Li, Di; Song, Chunjun; Guo, Guanglei; Dou, Yunchen; Zou, Tianhua

    2014-02-01

    The n-type oxides (Sr0.9Gd0.1)TiO3 (SGTO) have been successfully prepared via a sol-gel process followed by solid-state sintering. The effects of sintering temperature on the thermoelectric (TE) properties of the SGTO samples have been investigated. The Seebeck coefficient showed no obvious difference, while the electrical conductivity increased with increasing sintering temperature, benefiting from an enhancement of densification. The maximum power factor (PF) value, 20.5μW/K2cm at 370 K in the metallic region, was observed for the sample sintered at 1748 K. As a result, the peak figure of merit (ZT) values for the samples sintered at higher than 1673 K were in the range of 0.28-0.30. All the results indicate that such synthetic method provides a simple and effective way to prepare TE oxides.

  12. Structure and Dielectric Properties of (Sr0.2Ca0.488Nd0.208) TiO3-Li3NbO4 Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Xia, C. C.; Chen, G. H.

    2017-12-01

    The new ceramic composites of (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208)TiO3 were prepared by the conventional solid state reaction method. The sintering behavior, phase composition, microstructure and microwave dielectric properties of the ceramics were investigated specially. The SEM and XRD results show that (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208) TiO3 (0.35≤x≤0.5) composites were composed of two phase, i.e. perovskite and Li3NbO4. With the increase of x, the ɛr increases from 27.1 to 38.7, Q×f decreases from 55000 GHz to 16770 GHz, and the τ f increases from -49 ppm/°C to 226.7 ppm/°C. The optimized dielectric properties with ɛr∼31.4, Q×f~16770GHz and τf~-8.1ppm/°C could be obtained as x=0.4 sintered at 1100°C for 4h. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.

  13. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, I-Wei

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully densemore » ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding of flash sintering, which is a rapid sintering process initiated by a large electrical loading.« less

  14. Microstructural development of cobalt ferrite ceramics and its influence on magnetic properties

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Yeop; Jeon, Jae-Ho; Kim, Myong-Ho; Suvorov, Danilo; Choi, Si-Young

    2013-11-01

    The microstructural evolution and its influence on magnetic properties in cobalt ferrite were investigated. The cobalt ferrite powders were prepared via a solid-state reaction route and then sintered at 1200 °C for 1, 2, and 16 h in air. The microstructures from sintered samples represented a bimodal distribution of grain size, which is associated with abnormal grain growth behavior. And thus, with increasing sintering time, the number and size of abnormal grains accordingly increased but the matrix grains were frozen with stagnant grain growth. In the sample sintered for 16 h, all of the matrix grains were consumed and the abnormal grains consequently impinged on each other. With the appearance of abnormal grains, the magnetic coercivity significantly decreased from 586.3 Oe (1 h sintered sample) to 168.3 Oe (16 h sintered sample). This is due to the magnetization in abnormal grains being easily flipped. In order to achieve high magnetic coercivity of cobalt ferrite, it is thus imperative to fabricate the fine and homogeneous microstructure.

  15. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    PubMed

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  16. Fabrication of Ce3+ doped Gd3Ga3Al2O12 ceramics by reactive sintering method

    NASA Astrophysics Data System (ADS)

    Ye, Yong; Liu, Peng; Yan, Dongyue; Xu, Xiaodong; Zhang, Jian

    2017-09-01

    Ce3+ doped Gd3Ga3Al2O12 (Ce:GGAG) ceramics were fabricated by solid state reactive sintering method in this study. The ceramics were pre-sintered in normal muffle furnace in air at various temperature range from 1410 °C to 1550 °C for 10 h and post-treated by hot isostatic press at 1400 °C/2 h in 200 MPa Ar. The phase and microstructure evolution of Ce: GGAG samples during the densification process were investigated by X-ray diffraction and scanning electron microscope. Pure GGAG phase appeared with the temperature increased to 1200 °C. The fully dense and translucent GGAG ceramics were fabricated by pre-sintering at 1450 °C and followed by HIP treatment.

  17. Improved Properties of Pb Based BLZT Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2011-11-01

    Present report is concerning with investigation of effect of different sintering profiles on Pb based BLZT ceramics. The material powder of selected composition (Ba0.795La0.005Pb0.20Ti0.90Zr0.10O3) was prepared by solid state reaction route and then powder was compacted in the form of circular discs. The discs were then sintered at different temperatures (1325 °C for 4h, 1325 °C for 15min+1200 °C for 4h). Improved dielectric and ferroelectric properties were observed for samples sintered at 1200 °C. Shifting in Tc to higher temperature could be related to enhanced tetragonality, which was further confirmed by X-ray diffraction analysis. All these improvements evidences that there is less Pb loss in case of modified sintering profile.

  18. A Fully Coupled Simulation and Optimization Scheme for the Design of 3D Powder Injection Molding Processes

    NASA Astrophysics Data System (ADS)

    Ayad, G.; Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.

    2007-05-01

    The paper is concerned with optimization and parametric identification of Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders parts by solid state diffusion. In the first part, one describes an original methodology to optimize the injection stage based on the combination of Design Of Experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometer curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization for manufacturing of a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  19. Dielectric, Piezoelectric, and Vibration Properties of the LiF-Doped (Ba0.95Ca0.05)(Ti0.93Sn0.07)O₃ Lead-Free Piezoceramic Sheets.

    PubMed

    Cheng, Chien-Min; Chen, Kai-Huang; Lee, Da-Huei; Jong, Fuh-Cheng; Chen, Mei-Li; Chang, Jhih-Kai

    2018-01-24

    By the conventional solid state reaction method, a small amount of lithium fluoride (LiF) was used as the sintering promoter to improve the sintering and piezoelectric characteristics of (Ba 0.95 Ca 0.05 )(Ti 0.93 Sn 0.07 )O₃ (BCTS) lead-free piezoceramic sheets. Using X-ray diffraction (XRD) and a scanning electron microscope (SEM), the inferences of the crystalline and surface microstructures were obtained and analyzed. Then, the impedance analyzer and d 33 -meter were used to measure the dielectric and piezoelectric characteristics. In this study, the optimum sintering temperature of the BCTS sheets decreased from 1450 °C to 1390 °C due to LiF doping. For the 0.07 wt % LiF-doped BCTS sheets sintered at 1390 °C, the piezoelectric constant (d 33 ) is 413 pC/N, the electric-mechanical coupling coefficient (k p ) is 47.5%, the dielectric loss (tan δ) is 3.9%, and the dielectric constant (ε r ) is 8100, which are all close to or even better than that of the pure undoped BCTS ceramics. The Curie temperature also improved, from 85 °C for pure BCTS to 140 °C for BCTS-0.07 LiF sheets. Furthermore, by using the vibration system and fixing 1.5 g tip mass at the end of the sheets, as the vibration frequency is 20 Hz, the proposed piezoelectric ceramic sheets also reveal a good energy harvesting performance at the maximum output peak voltage of 4.6 V, which is large enough and can be applied in modern low-power electronic products.

  20. Lead-free Bi(Mg0.5Ti0.5)O3-modified 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 ferroelectric ceramics with tetragonal structure and large field-induced strains

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhu, Mankang; Ren, Xiaowei; Wei, Qiumei; Zheng, Mupeng; Hou, Yudong

    2017-12-01

    A electrostrictive ceramics were designed by introducing Bi(Mg0.5Ti0.5)O3 into 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 with tetragonal structure. All the specimens prepared by a conventional solid sintering technique exhibit the excellent sintering ability with a high relative density over 97%. It is found that, as BMT added, the specimens undergo a structure crossover from ferroelectric P4mm to ergodic P4bm, and the coexistence of both tetragonal structures takes bridge between them. A large field-induced strain of 0.30% and field-independent strain coefficient of 0.0254 m4/C2 occur at 4 mol.% BMT added. This material with excellent sinterability is suitable for the application in actuators and microposition controllers.

  1. Synthesis cathode material LiNi0.80Co0.15Al0.05O2 with two step solid-state method under air stream

    NASA Astrophysics Data System (ADS)

    Xia, Shubiao; Zhang, Yingjie; Dong, Peng; Zhang, Yannan

    2014-01-01

    A facile generic strategy of solid-state reaction under air atmosphere is employed to prepare LiNi0.8Co0.15Al0.05O2 layer structure micro-sphere as cathodes for Li-ion batteries. The impurity phase has been eliminated wholly without changing the R-3m space group of LiNi0.8Co0.15Al0.05O2. The electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathodes depend on the sintering step, temperature, particle size and uniformity. The sample pre-sintered at 540 °C for 12 h and then sintered at 720 °C for 28 h exhibits the best electrochemical performance, which delivers a reversible capacity of 180.4, 165.8, 154.7 and 135.6 mAhg-1 at 0.2 C, 1 C, 2 C and 5 C, respectively. The capacity retention keeps over 87% after 76 cycles at 1 C. This method is simple, cheap and mass-productive, and thus suitable to large scale production of NCA cathodes directly used for lithium ion batteries.

  2. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  3. Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods

    PubMed Central

    Ghasali, Ehsan; Fazili, Ali; Alizadeh, Masoud; Shirvanimoghaddam, Kamyar; Ebadzadeh, Touradj

    2017-01-01

    In this research, the mechanical properties and microstructure of Al-15 wt % TiC composite samples prepared by spark plasma, microwave, and conventional sintering were investigated. The sintering process was performed by the speak plasma sintering (SPS) technique, microwave and conventional furnaces at 400 °C, 600 °C, and 700 °C, respectively. The results showed that sintered samples by SPS have the highest relative density (99% of theoretical density), bending strength (291 ± 12 MPa), and hardness (253 ± 23 HV). The X-ray diffraction (XRD) investigations showed the formation of TiO2 from the surface layer decomposition of TiC particles. Scanning electron microscopy (SEM) micrographs demonstrated uniform distribution of reinforcement particles in all sintered samples. The SEM/EDS analysis revealed the formation of TiO2 around the porous TiC particles. PMID:29088114

  4. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.

    PubMed

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-25

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  5. Pressureless sintered beta prime-Si3N4 solid solution: Fabrication, microstructure, and strength

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1977-01-01

    Si3N4, AlN, and Al2O3 were used as basic constituents in a study of the pressureless sintering of beta prime-Si3N4 solid solution as a function of temperature. Y2O3-SiO2 additions were used to promote liquid-phase sintering. The sintered specimens were characterized with respect to density, microstructure, strength, oxidation, and thermal shock resistance. Density greater than 98 percent of theoretical was achieved by pressureless sintering at 1750 C. The microstructure consisted essentially of fine-grained beta prime-Si3N4 solid solution as the major phase. Modulus of rupture strengths up to 483 MPa were achieved at moderate temperature (1000 C), but decreased to 228 MPa at 1380 C. This substantial strength loss was attributed to a glassy grain boundary phase formed during cooling from the sintering temperature. The best oxidation resistance was exhibited by a composition containing 3 mol % Y2O3-SiO2 additives. Water quench thermal shock resistance was equivalent to that of reaction sintered silicon nitride but lower than hot-pressed silicon nitride.

  6. Optimal Design of Material and Process Parameters in Powder Injection Molding

    NASA Astrophysics Data System (ADS)

    Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.

    2007-04-01

    The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  7. Irradiation resistance of silicon carbide joint at light water reactor–relevant temperature

    DOE PAGES

    Koyanagi, T.; Katoh, Y.; Kiggans, J. O.; ...

    2017-03-10

    We fabricated and irradiated monolithic silicon carbide (SiC) to SiC plate joints with neutrons at 270–310 °C to 8.7 dpa for SiC. The joining methods included solid state diffusion bonding using titanium and molybdenum interlayers, SiC nanopowder sintering, reaction sintering with a Ti-Si-C system, and hybrid processing of polymer pyrolysis and chemical vapor infiltration (CVI). All the irradiated joints exhibited apparent shear strength of more than 84 MPa on average. Significant irradiation-induced cracking was found in the bonding layers of the Ti and Mo diffusion bonds and Ti-Si-C reaction sintered bond. Furthermore, the SiC-based bonding layers of the SiC nanopowdermore » sintered and hybrid polymer pyrolysis and CVI joints all showed stable microstructure following the irradiation.« less

  8. Solid state recycling of aluminium alloys via a porthole die hot extrusion process: Scaling up to production

    NASA Astrophysics Data System (ADS)

    Paraskevas, Dimos; Kellens, Karel; Deng, Yelin; Dewulf, Wim; Kampen, Carlos; Duflou, Joost R.

    2017-10-01

    Whereas industrial symbiosis has led to increased energy and resource efficiency in process industries, this concept has not yet been applied in discrete product manufacturing. Metal scrap is first conventionally recycled, for which substantial energy and resource efficiency losses have been reported. Recent research has however proven the feasibility of `meltless' recycling of light metal scrap, yielding a first glimpse of potential industrial symbiosis. Various solid state recycling techniques (such as recycling via hot extrusion or Spark Plasma Sintering) have been proposed for scrap consolidation directly into bulk products or semis by physical disruption and dispersion of the oxide surface film by imposing significant plastic and shear strain. Solid State Recycling (SSR) methods can omit substantial material losses as they bypass the metallurgical recycling step. In this context the case of direct production of bulk aluminium profiles via hot extrusion at industrial scale is demonstrated within this paper. The extrusion tests were performed directly into the production line, highlighting the scaling up potentials and the industrial relevance of this research. A significant amount of machining chips were collected, chemically cleaned and cold compacted into chip based billets with ˜80% relative density. Afterwards the scrap consolidation was achieved by imposing significant plastic and shear deformation into the material during hot extrusion through a modified 2-porthole extrusion die-set. The production process sequence along with microstructural investigations and mechanical properties comparison of the cast based profile used as reference versus the chip based profile are presented.

  9. Pulsed Laser Deposition of BaCe(sub 0.85)Y(sub 0.15)0(sub 3) FILMS

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.; Sayir, A.

    2006-01-01

    Pulsed laser deposition has been used to grow nanostructured BaCe(sub 0.85)Y(sub 0.15)0(sub 3) films. The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered samples and laser targets were prepared by sintering BaCe(sub 0.85)Y(sub 0.15)O(sub 3) powders derived by solid state synthesis. Films 2 to 6 m thick were deposited by KrF excimer laser on Si and porous Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 C deg at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm square. Films were characterized by x-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single phase BaCe(sub 0.85)Y((sub 0.15) 0(sub 3) films with a columnar growth morphology is observed, preferred crystal growth was found to be dependent upon deposition temperature and substrate type. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C deg to 900 C deg in moist argon. Electrical conduction of the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With respect to the film growth direction, activation energy for electrical conduction is 3 times higher in the perpendicular direction than the parallel direction.

  10. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  11. Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La{sub 0.67}Ba{sub 0.33}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.

    2016-04-19

    A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown atmore » a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.« less

  12. Fabrication and study of double sintered TiNi-based porous alloys

    NASA Astrophysics Data System (ADS)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  13. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the chromium site, we could sinter the materials below 1400 C. The doping concentrations were adjusted so that the thermal expansion coefficient matched that of the zirconia electrolyte. Also, the investigation was focused on stoichiometric compositions so that the materials would have better stability. Co-sintering and chemical compatibility with zirconia electrolyte were examined by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy (line scanning and dot map). The results showed that the materials bond well, but do not react, with zirconia electrolyte. The electric conductivity of the materials measured at 900 C in air was about 20 S/cm.

  14. Fabrication of Fe1.1Se0.5Te0.5 bulk by a high energy ball milling technique

    NASA Astrophysics Data System (ADS)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2017-11-01

    Fe1.1Se0.5Te0.5 superconducting bulks were successfully synthesized by a high energy ball milling (HEBM) aided sintering technique. Two advantages of this new technique have been revealed compared with traditional solid state sintering method. One is greatly increased the density of sintered bulks. It is because the precursor powders with β-Fe(Se, Te) and δ-Fe(Se, Te) were obtained directly by the HEBM process and without formation of liquid Se (and Te), which could avoid the huge volume expansion. The other is the obvious decrease of sintering temperature and dwell time due to the effective shortened length of diffusion paths. The superconducting critical temperature Tc of 14.2 K in our sample is comparable with those in previous reports, and further optimization of chemical composition is on the way.

  15. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.

    PubMed

    Nilen, R W N; Richter, P W

    2008-04-01

    Biphasic calcium phosphate ceramics (BCP) comprising a mix of non-resorbable hydroxyapatite (HA) and resorbable beta-tricalcium phosphate (beta-TCP) are particularly suitable materials for synthetic bone substitute applications. In this study, HA synthesised by solid state reaction was mechanically mixed with beta-TCP, then sintered to form a suite of BCP materials with a wide range of HA/beta-TCP phase content ratios. The influence of sintering temperature and composition on the HA thermal stability was quantified by X-ray diffraction (XRD). The pre-sinter beta-TCP content was found to strongly affect the post-sinter HA/beta-TCP ratio by promoting the thermal decomposition of HA to beta-TCP, even at sintering temperatures as low as 850 degrees C. For BCP material with pre-sinter HA/beta-TCP = 40/60 wt%, approximately 80% of the HA decomposed to beta-TCP during sintering at 1000 degrees C. Furthermore, the HA content appeared to influence the reverse transformation of alpha-TCP to beta-TCP expected upon gradual cooling from sintering temperatures greater than 1125 degrees C. Because the HA/beta-TCP ratio dominantly determines the rate and extent of BCP resorption in vivo, the possible thermal decomposition of HA during BCP synthesis must be considered, particularly if high temperature treatments are involved.

  16. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Azrin Shah, Nabila Farhana; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E′: 0.225) and glass transition temperature (Tg: −58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials. PMID:26927116

  17. The phase compositions and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Xuepeng; Hu, Jie; Chen, Haoyuan; Xu, Wensheng; Li, Shuai

    2017-08-01

    The Li2Zn(Ti1-xSnx)3O8 (0.02≤x≤0.20) ceramics were prepared by the conventional solid-state ceramic route. The sintering behavior, phase compositions, microstructures and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics were thoroughly investigated. The XRD patterns of Li2Zn(Ti1-xSnx)3O8 ceramics exhibited a single spinel as the main phase in the x value range of 0.02-0.08. The dielectric constants decreased linearly with increasing the substitution of Sn, which was mainly controlled by dielectric polarizabilities and secondary phase. The variation of Q×f values was dependent on average grain sizes and secondary phase. The τf values of Li2Zn(Ti1-xSnx)3O8 ceramics became more negative with higher substitution of Sn, which was related to the variations of their cell volumes. Typically, the Li2Zn(Ti0.92Sn0.08)3O8 ceramic sintered at 1075 °C for 4h exhibited good microwave dielectric properties: ɛr= 24.4, Q×f=89300 GHz, τf= -16.0 ppm/°C.

  18. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shah, Nabila Farhana Azrin; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-02-27

    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E': 0.225) and glass transition temperature (Tg: -58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials.

  19. Development of Dielectric Material with Ceramic Matrix Composite (CMC) Produced from Kaolinite and CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Wong Swee; Hassan, Jumiah; Hashim, Mansor

    Ceramic matrix composites (CMC) combine reinforcing ceramic phases, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) with a ceramic matrix, kaolinite to create materials with new and superior properties. 10% and 20% CCTO were prepared by using a conventional solid state reaction method. CMC samples were pre-sintered at 800 deg. C and sintered at 1000 deg. C. The dielectric properties of samples were measured using HP 4192A LF Impedance Analyzer. Microstructures of the samples were observed using an optical microscope. XRD was used to determine the crystalline structure of the samples. The AFM showed the morphology of the samples. The results showed thatmore » the dielectric constant and dielectric loss factor of both samples are frequency dependent. At 10 Hz, the dielectric constant is 10{sup 11} for both samples. The CMC samples were independent with temperature with low dielectric constant in the frequency range of 10{sup 4}-10{sup 6} Hz. Since the CMC samples consist of different amount of kaolinite, so each sample exhibit different defect mechanism. Different reaction may occur for different composition of material. The effects of processing conditions on the microstructure and electrical properties of CMC are also discussed.« less

  20. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan

    2016-05-11

    Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.

  1. The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO3/3Y-TZP Composites

    PubMed Central

    Li, Jing; Cui, Bencang; Wang, Huining; Lin, Yuanhua; Deng, Xuliang; Li, Ming; Nan, Cewen

    2016-01-01

    Composite ceramics BaTiO3/3Y-TZP containing 0 mol %, 3 mol %, 5 mol %, 7 mol %, and 10 mol % BaTiO3 have been prepared by conventional sintering and spark-plasma sintering (SPS), respectively. Analysis of the XRD patterns and Raman spectra reveal that the phase composition of t-ZrO2, m-ZrO2, and BaTiO3 has been obtained. Our results indicate that SPS can be effective for the decrease in grain size and porosity compared with conventional sintering, which results in a lower concentration of m-ZrO2 and residual stress. Therefore, the fracture toughness is enhanced by the BaTiO3 phase through the SPS technique, while the behavior was impaired by the piezoelectric second phase through conventional sintering. PMID:28773445

  2. Experimental and simulation studies on grain growth in TiC and WC-based cermets during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2000-06-01

    The grain growth behaviors of TiC and WC particles in TiC-Ni, TiC-Mo2C-Ni, WC-Co and WC-VC-Co alloys during liquid phase sintering were investigated for different Ni or Co contents and compared with the results of Monte Carlo simulations. In the experimental study, TiC-Ni and WC-Co alloys had a maximum grain size at a certain liquid volume fraction, while the grain size in TiC-Mo2C-Ni and WC-VC-Co alloys increased monotonically with an increasing liquid volume fraction. These results mean that the grain growth of these alloys cannot be explained by the conventional mechanisms for Ostwald ripening, namely diffusion or reaction controlled processes. Monte Carlo simulations with different energy relationships between solidliquid interfaces predicted the effect of the liquid volume fraction on grain size similar to the experimental results. The contiguous boundaries between solid (carbide) particles appear to influence the grain growth behavior in TiC- and WC-based alloys during liquid phase sintering.

  3. A Novel Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.

    2017-01-01

    Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.

  4. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOEpatents

    Ruka, Roswell J.; Vora, Shailesh D.

    2001-01-01

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  5. Si-Ca species modification and microwave sintering for NiZn ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yin-Ju; Sheu, Ching-Iuan; Cheng, Syh-Yuh; Chang, Horng-Yi

    2004-12-01

    NiZn ferrite particles were precoated with Si-Ca precursor by sol-gel method. Thus convention-sintered particles exhibited small grain size about 2 μm and lowered magnetic permeability as well as increased coercive magnetic field effectively. Microwave sintering could suppress grain growth as the same result of conventional sintering specimens with SiO2-CaO precoating. In microwave process, the grain growth inhibition expressed more obviously for the SiO2-CaO precoated specimens. The magnetic permeability (∼300) after SiO2-CaO precoating became lower than original ferrite (∼800) without SiO2-CaO precoating in conventional sintering. However, the magnetic permeability was lowered no matter whether SiO2-CaO precoating in microwave process. On the other hand, microwave sintering possessed short processing time, for example, 1250 °C/5 min, to prohibit ZnO volatilization in accompanied with grain size reduction. Therefore, such contribution increased resistivity to about 12×106 Ω cm compared to 3×106 Ω cm of original NiZn ferrite. The large coercive magnetic field (Hc) was ascribed to the superposition of small grain size and stress induced by microwave sintering.

  6. Phase transformations in the reaction cell of TiNi-based sintered systems

    NASA Astrophysics Data System (ADS)

    Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon

    2018-05-01

    The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.

  7. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  8. Microwave processing of a dental ceramic used in computer-aided design/computer-aided manufacturing.

    PubMed

    Pendola, Martin; Saha, Subrata

    2015-01-01

    Because of their favorable mechanical properties and natural esthetics, ceramics are widely used in restorative dentistry. The conventional ceramic sintering process required for their use is usually slow, however, and the equipment has an elevated energy consumption. Sintering processes that use microwaves have several advantages compared to regular sintering: shorter processing times, lower energy consumption, and the capacity for volumetric heating. The objective of this study was to test the mechanical properties of a dental ceramic used in computer-aided design/computer-aided manufacturing (CAD/CAM) after the specimens were processed with microwave hybrid sintering. Density, hardness, and bending strength were measured. When ceramic specimens were sintered with microwaves, the processing times were reduced and protocols were simplified. Hardness was improved almost 20% compared to regular sintering, and flexural strength measurements suggested that specimens were approximately 50% stronger than specimens sintered in a conventional system. Microwave hybrid sintering may preserve or improve the mechanical properties of dental ceramics designed for CAD/CAM processing systems, reducing processing and waiting times.

  9. EFFECT OF MICROWAVE SINTERING ON THE STRUCTURAL AND ELECTRICAL PROPERTIES OF Li0.51Zn0.2Ti0.2V0.01Fe2.08O4 FERRITE

    NASA Astrophysics Data System (ADS)

    Maisnam, Mamata; Phanjoubam, Sumitra

    2013-07-01

    Effect of microwave sintering on the structural and electrical properties of Li+0.51Zn2+0.2Ti4+0.2V5+0.01Fe3+2.08O2-4 is studied in comparison with that of conventionally sintered one. The technique is advantageous in terms of significantly reduced size of microwave kilns and rapid heating compared to the cumbersome and slow heating of conventional sintering technology. Microwave sintering produced enhanced densification and much finer microstructures. The DC resistivity is markedly increased. Microwave sintering reduces chances of evaporation of lithium and oxygen during sintering of lithium based ferrites resulting in formation of lesser ferrous ions. This has profound effect on the electrical properties of microwave sintered ferrites. The dielectric constant is significantly reduced possibly due to reduced space charge polarization and the temperature dependence of the dielectric properties are also studied.

  10. Mechanochemical stabilization and sintering of nanocrystalline the (ZrO2)0.97 (Y2O3)0.03 solid solution from pure oxides

    NASA Astrophysics Data System (ADS)

    Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.

    2011-10-01

    The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.

  11. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl

    2017-12-01

    For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.

  12. A novel method for preparation of high dense tetragonal Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Wen, Yuehua; Cheng, Jie; Cao, Gaoping; Jin, Zhaoqing; Ming, Hai; Xu, Yan; Zhu, Xiayu

    2017-03-01

    For conventional preparation methods of Li7La3Zr2O12 (LLZO) solid state electrolytes, there is a stereotype that higher density always comes from higher pressure enforced upon the LLZO pellets. In this paper, a different way with an auto-consolidation mechanism is provided and discussed. No pressing operations are employed during the whole preparation process. Due to the surface tension of liquid melted Li2O at sintering temperature, LLZO particles could aggregate together freely and automatically. The preparation process for dense LLZO is greatly simplified. A dense tetragonal LLZO with high relative density about 93% has been prepared successfully by this auto-consolidation method. And there are no voids observed in the SEM images. At 30 °C, the total conductivity is about 5.67 × 10-5 S cm-1, which is the highest one for tetragonal LLZO in the reported issues, even two times higher than that prepared by hot-pressing method. The activation energy for total conductivity is ∼0.35 eV atom-1 at 30-120 °C, slightly lower than the previous reported values. This work sheds light on the understanding of the consolidation mechanism for solid electrolytes and suggests a reliable route to syhthesize cemanic solid electrolytes.

  13. A mechanistic study on the synthesis of β-Sialon whiskers from coal fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H.; Wang, P.Y.; Yu, J.L., E-mail: jianglong.yu@newcastle.edu.au

    2015-05-15

    Graphical abstract: The appearance of bead-like whiskers indicated that the growth mechanism of the β-Sialon whiskers was different from the conventional one, in which a chain of droplets were formed and then consumed to participate in the formation of the whiskers. - Highlights: • β-Sialon whiskers were synthesized using waste fly ash by carbothemal reduction reaction under nitrogen atmosphere. • Rod-like β-Sialon whiskers with a diameter of 100–500 nm were formed. • Bead-like whiskers as intermediate morphology of the growing β-Sialon whiskers were found with increasing sintering time. • The growth mechanism of β-Sialon whiskers was different from the conventionalmore » VLS mechanism. • A chain of droplets were formed and participated in the formation of the whiskers. - Abstract: β-Sialon whiskers were produced at 1420 °C through carbothemal reduction reaction under nitrogen atmosphere using fly ash from coal-fired power plants. The effects of sintering time on the phase formation and morphology of the products were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) techniques. Rod-like β-Sialon whiskers with the diameter of 100–500 nm were successfully formed. With increasing sintering time, bead-like morphology during the growth process of the whiskers was found, and growth mechanism of β-Sialon whiskers was also discussed in detail. The growth mechanism proposed in this study was different from the conventional vapor–liquid–solid (VLS) mechanism.« less

  14. Conventional and two step sintering of PZT-PCN ceramics

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Mostafa; Rahmani, Hooman; Nemati, Ali; Hashemi, Mahdieh

    2018-02-01

    In this study, PZT-PCN ceramic was made via sol-gel seeding method and effects of conventional sintering (CS) as well as two-step sintering (TSS) were investigated on microstructure, phase formation, density, dielectric and piezoelectric properties. First, high quality powder was achieved by seeding method in which the mixture of Co3O4 and Nb2O5 powder was added to the prepared PZT sol to form PZT-PCN gel. After drying and calcination, pyrochlore free PZT-PCN powder was synthesized. Second, CS and TSS were applied to achieve dense ceramic. The optimum temperature used for 2 h of conventional sintering was obtained at 1150 °C; finally, undesired ZrO2 phase formed in CS procedure was removed successfully with TSS procedure and dielectric and piezoelectric properties were improved compared to the CS procedure. The best electrical properties obtained for the sample sintered by TSS in the initial temperature of T 1 = 1200 °C and secondary temperature of T 2 = 1000 °C for 12 h.

  15. 3D-Printed Transparent Glass

    DOE PAGES

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.; ...

    2017-04-28

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  16. 3D-Printed Transparent Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  17. 3D-Printing Electrolytes for Solid-State Batteries.

    PubMed

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of the addition of municipal solid waste incineration fly ash on the behavior of polychlorinated dibenzo-p-dioxins and furans in the iron ore sintering process.

    PubMed

    Min, Yi; Liu, Chengjun; Shi, Peiyang; Qin, Chongda; Feng, Yutao; Liu, Baichen

    2018-04-11

    Raw materials were co-sintered with municipal solid waste incineration (MSWI) fly ash through iron ore sintering to promote the safe treatment and utilization of MSWI fly ash. To assess the feasibility of this co-sintering method, in this study, the effects of the addition of MSWI fly ash on the formation and emission of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) were estimated via iron ore sintering pot experiments. During co-sintering, most of the PCDD/Fs in the added MSWI fly ash were decomposed and transformed into PCDD/Fs associated with iron sintering, and the concentrations of lower- and mid-chlorinated congeners increased. As there was a sufficient chlorine source and the sintering bed permeability was decreased by the addition of MSWI fly ash, the PCDD/F concentration in the exhaust gas increased. The mass emission of PCDD/Fs decreased; however, the emission of toxic PCDD/Fs increased beyond the total emissions from the independent MSW incineration and iron ore sintering processes due to the transformation of PCDD/F congeners. The co-sintering may be an important solution after technological improvements in the flue gas cleaning system and PCDD/F formation inhibition procedures. Copyright © 2018. Published by Elsevier Ltd.

  19. Density, Microstructure, Strength and Fractography of Spark Plasma and Conventionally Sintered Mn Steels

    NASA Astrophysics Data System (ADS)

    Tenerowicz-Zaba, M.; Kupkova, M.; Kabatova, M.; Dudrova, E.; Dzupon, M.; Sulowski, M.

    2017-12-01

    The aim of the study was to investigate Spark Plasma Sintering (SPS) of 1-3%Mn steels and compare the resultant microstructures, strengths and failure mechanisms with those of conventionally sintered materials. SPS was performed in a vacuum of 5 Pa at 1000°C for 15min under a uniaxial pressure of 20 MPa. The heating rate of 100°C/min was applied. For conventional processing, mixtures of powders were prepared in a Turbula mixer for 30 minutes. Samples were single pressed at 660 MPa, according to PN-EN ISO 2740 standard. Sintering of compacts was carried out in a laboratory tube furnace at 1120°C and 1250°C for 60 minutes in a mixture of 95%N2-5%H2. Heating and cooling rates were 75C°/min and 60°C/min, respectively. The density of SPS samples was higher (up to 7.37 g/cm3) than those after conventional sintering (up to 6.7 g/cm3). Yield strengths of SPS samples were in the range 920-1220 MPa, compared to the maximum of 602 MPa for conventionally sintered Fe-3%Mn-0.8%C. Transverse rupture strengths were the same for this alloy, 1234 MPa, but reached 1473 MPa for SPS 2Mn variant. Interfaces in SPS samples were significantly less contaminated with oxides, which is the result of a more favorable microclimate and pressure acting during SPS. These preliminary results indicate that further research on the SPS of Mn steels is warranted.

  20. Optimum Conditions for Preparation of High-Performance (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 Ceramics by Solid-State Combustion

    NASA Astrophysics Data System (ADS)

    Chootin, Suphornphun; Bongkarn, Theerachai

    2017-08-01

    The effects of calcination conditions (950°C to 1200°C for 2 h to 6 h) and sintering temperature (1300°C to 1500°C for 2 h) on phase formation, microstructure, and electrical behavior of lead-free piezoelectric (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 (BCTS) ceramics produced by solid-state combustion using glycine as fuel have been investigated. BCTS powder with pure perovskite structure was obtained by calcination at 1100°C for 4 h. The microstructure of the BCTS powders showed almost spherical shape with average particle size increasing from 184 nm to 320 nm as the calcination temperature and soaking time were increased. The XRD patterns of all ceramics exhibited single perovskite structure. Rietveld refinement analysis indicated that the BCTS ceramics exhibited coexistence of orthorhombic and tetragonal phase in all samples with increased tetragonal phase content with increasing sintering temperature. The average grain size, density, dielectric constants at room ( ɛ r) and Curie temperature ( ɛ C), remanent polarization ( P r), and piezoelectric constant ( d 33) increased as the sintering temperature was increased up to 1400°C, then decreased. BCTS ceramic sintered at 1400°C exhibited the highest relative density (98%), highest dielectric response ( ɛ r = 4951, ɛ C = 19,185), good ferroelectric behavior ( P r = 12.74 μC/cm2 and coercive field E c = 1.60 kV/cm), and highest d 33 value (528 pC/N). The large piezoelectricity of BCTS ceramics makes them good candidates for use in lead-free applications to replace Pb-based ceramics.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Hongliang; Zhou Wancheng; Luo Fa

    The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less

  2. Sintering Theory and Practice

    NASA Astrophysics Data System (ADS)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal process all around us--in manufactured objects from metals, ceramics, polymers, and many compounds. From a vast professional literature, Sintering Theory and Practice emerges as the only comprehensive, systematic, and self-contained volume on the subject. Covering all aspects of sintering as a processing topic, including materials, processes, theories, and the overall state of the art, the book Offers numerous examples, illustrations, and tables that detail actual processing cycles, and that stress existing knowledge in the field Uses the specifics of various consolidation cycles to illustrate the basics Leads the reader from the fundamentals to advanced topics, without getting bogged down in various mathematical disputes over treatments and measurements Supports the discussion with critically selected references from thousands of sources Examines the sintering behavior of a wide variety of engineered materials--metals, alloys, oxide ceramics, composites, carbides, intermetallics, glasses, and polymers Guides the reader through the sintering processes for several important industrial materials and demonstrates how to control these processes effectively and improve present techniques Provides a helpful reference for specific information on materials, processing problems, and concepts For practitioners and researchers in ceramics, powder metallurgy, and other areas, and for students and faculty in materials science and engineering, this book provides the know-how and understanding crucial to many industrial operations, offers many ideas for further research, and suggests future applications of this important technology. This book offers an unprecedented opportunity to explore sintering in both practical and theoretical terms, whether at the lab or in real-world applications, and to acquire a broad, yet thorough, understanding of this important technology.

  3. Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.

    2018-06-01

    A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.

  4. Composite ceramic superconducting wires for electric motor applications

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    1988-12-01

    This is the Second Quarterly report on a project to develop HTSC wire for an HTSC motor. The raw material for fiber production is an improved YBa2Cu3O(7-x) powder. Continuous spools of green YBa2Cu3O(7-x) fiber are being produced. The major effort in fiber spinning is aimed at improving fiber quality and reducing fiber. Binder burnout and sintering has been intensively investigated. Fiber sintering fibers is done by the rapid zone sintering method. A continuous furnace received near the end of this Quarter will be used for continuous sintering. Continuous silver coated green fiber are produced. We have made progress toward continuous cladding using the mechanical cladding concept. The melt spinning process was successfully applied to YBa2Cu3O(7-x) powders at 50 vol percent solids loadings. The cladding work centered on mechanical cladding of silver treated filaments by solder bonding to copper strips. Aluminum deposits on YBa2Cu3O(7-x) filament surfaces were produced by MOCVD at ATM, but the superconductivity was degraded. Electrical characterization work focused on methods of making low resistance contacts on YBa2Cu3O(7-x) filaments. Emerson Motor Division has begun work on DC heteropolar and homopolar motor designs. The mechanical stresses on conventional copper wires during winding have been characterized to determine the mechanical parameters of motor building.

  5. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics.

    PubMed

    García-Páez, Ismael H; Carrodeguas, Raúl García; De Aza, Antonio H; Baudín, Carmen; Pena, Pilar

    2014-02-01

    Magnesium and silicon co-doped tricalcium phosphate (TCP) ceramics with compositions corresponding to 0, 5 and 10wt% CaMg(SiO3)2 in the system Ca3(PO4)2-CaMg(SiO3)2 were obtained by conventional sintering of compacted mixtures of Ca3(PO4)2, MgO, SiO2 and CaCO3 powders at temperatures between 1100 and 1450°C. Microstructural analyses were performed by X-ray diffraction and field emission scanning electron microscopy with energy dispersive spectroscopy. Major phases in the obtained ceramics were β- or α+β-tricalcium phosphate containing Mg and Si in solid solution. Certain amounts of liquid were formed during sintering depending on composition and temperature. There were found significant differences in distributions of strength determined by the diametral compression of disc tests (DCDT). Failure strengths were controlled by microstructural defects associated with phase development. Mg and Si additions were found to be effective to improve densification and associated strength of TCP bioceramics due to the enhancement of sintering by the low viscosity liquids formed. The highest density and strength were obtained for the TCP ceramic containing 5wt% CaMg(SiO3)2 sintered at 1300°C. Cracking and porosity increased at higher temperatures due to grain growth and swelling. © 2013 Published by Elsevier Ltd.

  6. Synthesis of transparent Lu3Al5O12 ceramic by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Basyrova, L. R.; Maksimov, R. N.; Shitov, V. A.; Aleksandrov, E. O.

    2017-09-01

    Transparent polycrystalline Lu3Al5O12 (LuAG) ceramic was fabricated by solid-state reactive sintering a mixture of Lu2O3 nanoparticles synthesized by laser ablation and commercial Al2O3 powder. The obtained Lu2O3 nanoparticles exhibited a metastable monoclinic phase and were fully converted into a main cubic phase after calcination at 1100 °C for 1 h in air. The powders were mixed in ethanol with the addition of 0.5 wt% tetraethoxysilane (TEOS), dried in a rotary evaporator, and uniaxially pressed into pellet at 200 MPa. Transparent 2 mm thick LuAG ceramic sample with an average grain size of 9.6 µm and an optical transmittance of 30 % at a wavelength of 1080 nm was obtained after sintering at 1780 °C for 20 h under vacuum. The average volume of the scattering centers (380 ppm) in the obtained LuAG ceramic and their distribution along the sample depth was evaluated by the direct count method using an optical microscope.

  7. Synthesis and photocatalytic activity of sepiolite supportednano-TiO2 composites prepared by a mild solid-state sintering process

    NASA Astrophysics Data System (ADS)

    Liao, L. M.; Wang, Z. Q.; Liang, H.; Feng, J.; Zhang, D.

    2016-08-01

    Supported nano-TiO2photocatalysts play an important role in water environment restoration because of their potential application to photocatalytic degradation of organic contaminants in waste water. With sepiolite as the support, the nano-TiO2/sepiolite composite photocatalysts were synthesized by an easily operated and mild solid-state sintering process.The microstructureand photocatalytic property of the sepiolite supportednano-TiO2 composites were characterized and analyzed by X-ray diffraction spectroscopy, UV-Visible spectroscopy and fluorescence spectroscopy. In addition, the influences of calcination temperature and load ratios on the photocatalytic activity of sepiolite supported nano-TiO2 composites were studied.The results indicated that appropriate ratios of sepiolite supports to nano-TiO2contributed to uniform dispersion of nanoparticles, and enhanced the absorption ability within the UV-Vis range, and consequently increased the photocatalytic activity of the composites.Under the preparation conditions of 90 wt. % TiO2 loading and calcinated at 400 °C, a maximum in photocatalytic activity ofnano-TiO2 sepiolite composite was obtained.

  8. Symmetrical, bi-electrode supported solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W. (Inventor); Cable, Thomas L. (Inventor)

    2009-01-01

    The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.

  9. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    PubMed Central

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I–V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I–V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I–V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I–V behavior of (Nb + In) co-doped TiO2 ceramics. PMID:25656713

  10. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  11. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics.

    PubMed

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-06

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  12. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  13. SINTERING AND SULFATION OF CALCIUM SILICATE-ALUMINATE

    EPA Science Inventory

    The effect of sintering on the reactivity of solids at high temperature was studied. The nature of the interaction was studied with calcium silicate-aluminate reacting with SO2 between 665 and 800 C. The kinetics of the sintering and sulfation processes were measured independentl...

  14. Effect of sintering temperature on the microstructure, electrical and magnetic properties of Zn0.98 Mn0.02O material

    NASA Astrophysics Data System (ADS)

    Sebayang, K.; Aryanto, D.; Simbolon, S.; Kurniawan, C.; Hulu, S. F.; Sudiro, T.; Ginting, M.; Sebayang, P.

    2018-02-01

    Zn0.98Mn0.02O material was synthesized from ZnO and MnO2 powders using solid state reaction method. The microstructure, electrical and magnetic properties of Zn0.98Mn0.02O were studied as a function of sintering temperature. The X-ray diffraction analysis indicates that the main phase of synthesized sample is composed of hexagonal wurtzite ZnO phase. While the secondary phase of ZnMnO3 were found at the sintering temperature of 700°C and 900°C. The electrical properties measurement of Zn0.98Mn0.02O sample revealed that the resistivity and the dielectric constant of samples increase with the increase of sintering temperature. The ferromagnetic properties at room temperature were observed in the Zn0.98Mn0.02O samples sintered at 500°C and 700°C. It also found that the increase in sintering temperature leads to a tendency toward the changes in the magnetic properties into paramagnetic. The presence of ZnMnO3 secondary phases in Zn0.98Mn0.02O system is believed to be a factor that affects the decrease of the electrical and magnetic properties of the sample.

  15. Mechanical Properties of β-Ti-35Nb-2.5Sn Alloy Synthesized by Mechanical Alloying and Pulsed Current Activated Sintering

    NASA Astrophysics Data System (ADS)

    Omran, Abdel-Nasser; Woo, Kee-Do; Lee, Hyun Bom

    2012-12-01

    A developed Ti-35 pct Nb-2.5 pct Sn (wt pct) alloy was synthesized by mechanical alloying using high-energy ball-milled powders, and the powder consolidation was done by pulsed current activated sintering (PCAS). The starting powder materials were mixed for 24 hours and then milled by high-energy ball milling (HEBM) for 1, 4, and 12 hours. The bulk solid samples were fabricated by PCAS at 1073 K to 1373 K (800 °C to 1100 °C) for a short time, followed by rapid cooling to 773 K (500 °C). The relative density of the sintered samples was about 93 pct. The Ti was completely transformed from α to β-Ti phase after milling for 12 hours in powder state, and the specimen sintered at 1546 K (1273 °C) was almost transformed to β-Ti phase. The homogeneity of the sintered specimen increased with increasing milling time and sintering temperature, as did its hardness, reaching 400 HV after 12 hours of milling. The Young's modulus was almost constant for all sintered Ti-35 pct Nb-2.5 pct Sn specimens at different milling times. The Young's modulus was low (63.55 to 65.3 GPa) compared to that of the standard alloy of Ti-6Al-4V (100 GPa). The wear resistance of the sintered specimen increased with increasing milling time. The 12-hour milled powder exhibited the best wear resistance.

  16. Effects of different compositions from magnetic and nonmagnetic dopants on structural and electrical properties of ZnO nanoparticles-based varistor ceramics

    NASA Astrophysics Data System (ADS)

    Sendi, Rabab Khalid

    2018-03-01

    In the current study, 20 nm zinc oxide (ZnO) nanoparticles were used to manufacture high-density ZnO discs doped with Mn and Sn via the conventional ceramic processing method, and their properties were characterized. Results show that the dopants were found to have significant effects on the ZnO varistors, especially on the shape and size of grains, which are significantly different for both dopants. The strong solid-state reaction in the varistor from the 20 nm ZnO powder during the sintering process may be attributed to the high surface area of the 20 nm ZnO nanoparticles. Although Mn and Sn do not affect the well-known peaks related to the wurtzite structure of ZnO ceramics, a few of the additional peaks could be formed at high doping content (≥2.0) due to the formation of other unknown phases during the sintering process. Both additives also significantly affect the electrical properties of the varistor, with a marked changed in the breakdown voltage from 415 V to 460 V for Sn and from 400 V to 950 V for Mn. Interestingly, the electrical behaviors of the varistors, such as breakdown voltage, nonlinear coefficient, and barrier height, are higher for Mn- than Sn-doping samples, and the opposite behaviors hold for hardness, leakage currents, and electrical conductivities. Results show that the magnetic moment and valence state of the two additive dopants are responsible for all demonstrated differences in the electrical characteristics between the two dopants.

  17. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2015-01-01

    Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121

  18. On the microstructure analysis of FSW joints of aluminium components made via direct metal laser sintering

    NASA Astrophysics Data System (ADS)

    Scherillo, Fabio; Astarita, Antonello; di Martino, Daniela; Contaldi, Vincenzo; di Matteo, Luca; di Petta, Paolo; Casarin, Renzo; Squillace, Antonino; Langella, Antonio

    2017-10-01

    Additive Manufacturing (AM), applied to metal industry, is a family of processes that allow complex shape components to be realized from raw materials in the form of powders. The compaction of the powders can be achieved by local melting of the powder bed or by solid state sintering. Direct Metal Laser Sintering (DMLS) is an additive manufacturing process in which a focalized laser beam is the heat source that allows the powders to be compacted. By DMLS it is possible to realize complex shape components. One of the limits of DMLS, as for every additive layer manufacturing techniques, is the unfeasibility to realize large dimension parts. Due to this limit the study of joining process of parts made via ALM is of great interest. One of the most promising options is the Friction Stir Welding (FSW), a solid state welding technique that has been proven to be very effective in the welding of metals difficult to weld, above all aluminium alloys. Since FSW is a solid-state technique, the microstructure of the various zone of the weld bead depends not only by the process itself but also by the parent microstruct ure of the parts to be welded. Furthermore, parts made of aluminium alloy via DMLS have a particular microstructure that is the result of repeated severe thermal cycles. In the present work the authors, starting from the description of the parent microstructure of parts made of AlSi10Mg aluminium alloy, study the microstructure evolution occurred within the joint made by Friction Stir Welding, analysing in details the microstructure of the main well recognized zone of the weld bead. The structure of the parent material is characterized by the presence of melting pools with a very fine microstructure. In the joint the recrystallization, the grain refinement and, above all, the redistribution of intermetallic phases occurs, resulting in an homogenization of the microstructure and in an increase of micro hardness.

  19. Carbon black as an alternative cathode material for electrical energy recovery and transfer in a microbial battery.

    PubMed

    Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao

    2017-08-01

    Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.

  20. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.

    2017-09-01

    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.

  1. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. II. La(Sr)CoO 3 cathode

    NASA Astrophysics Data System (ADS)

    Inagaki, Toru; Miura, Kazuhiro; Yoshida, Hiroyuki; Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- α (LSGM) electrolyte, La 0.6Sr 0.4CoO 3- δ (LSCo) cathode, and Ni-(CeO 2) 0.8(SmO 1.5) 0.2 (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm 2, at 800°C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO 3-YSZ cathode and Ni-YSZ cermet anode at 1000°C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm 2 was measured for a cathode prepared by sintering at 1000°C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Chen, Yan; Hood, Zachary D.

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  3. Dielectric and ferroelectric properties of Ba0.87Ca0.10La0.03Ti1-xSnxO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-hui; Li, Zhi-wei; Fang, Chang; Qiu, Jian-hua; Ding, Jian-ning; Zhu, Wei-qin; Xu, Jiu-jun

    2017-12-01

    Ba0.87Ca0.10La0.03Ti1-xSnxO3 (BCLTS) piezoelectric lead-free ceramics were fabricated by conventional solid-state sintering process at 1480 °C. The effects of Sn4+ substitution on microstructure and electrical properties of the ceramics were researched. All samples show a pure perovskite structure with no secondary phase, and the coexistence of orthorhombic phase and tetragonal phase in the composition range of x = 0.06-0.10 is identified in the XRD pattern. Average grain size decreases with the increase of Sn content in the BCLTS samples. The BCLTS ceramics exhibit excellent piezoelectric properties and ferroelectric properties with d33 = 501pC/N and kp = 45.6% at x = 0.10, and Pr = 9.87 μC/cm2 at x = 0.06. The analysis on the temperature dependence of dielectric permittivity approved the diffuse relaxor ferroelectric feature for all the BCLTS samples.

  4. Physical and electrical properties of SrTiO3 and SrZrO3

    NASA Astrophysics Data System (ADS)

    Fashren Muhamad, Norhizatol; Aina Maulat Osman, Rozana; Sobri Idris, Mohd; Yasin, Mohd Najib Mohd

    2017-11-01

    Perovskite type oxide strontium titanate (SrTiO3) and strontium zirconate (SrZrO3) ceramic powder has been synthesized using conventional solid state reaction method. The powders were mixed and ground undergone calcinations at 1400°C for 12 h and sintered at 1550°C for 5h. X-ray Diffraction exposes physical properties SrTiO3 which exhibit cubic phase (space group: pm-3m) at room temperature meanwhile SrZrO3 has Orthorhombic phase (space group: pnma). The electrical properties such as dielectric constant (ɛr), dielectric loss (tan δ), and conductivity (σ) were studied in variation temperature and frequency. High dielectric constant of SrTiO3 and SrZrO3 were observed at 10 kHz for both samples about 240 and 21 respectively at room temperature. The dielectric loss of SrTiO3 and SrZrO3 is very low loss value approximately 0.00076 and 0.67512 indicates very good dielectric.

  5. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    NASA Astrophysics Data System (ADS)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  6. Optimization of sintering conditions for cerium-doped yttrium aluminum garnet

    NASA Astrophysics Data System (ADS)

    Cranston, Robert Wesley McEachern

    YAG:Ce phosphors have become widely used as blue/yellow light converters in camera projectors, white light emitting diodes (WLEDs) and general lighting applications. Many studies have been published on the production, characterization, and analysis of this optical ceramic but few have been done on determining optimal synthesis conditions. In this work, YAG:Ce phosphors were synthesized through solid state mixing and sintering. The synthesized powders and the highest quality commercially available powders were pressed and sintered to high densities and their photoluminescence (PL) intensity measured. The optimization process involved the sintering temperature, sintering time, annealing temperature and the level of Ce concentration. In addition to the PL intensity, samples were also characterized using particle size analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PL data was compared with data produced from a YAG:Ce phosphor sample provided by Christie Digital. The peak intensities of the samples were converted to a relative percentage of this industry product. The highest value for the intensity of the commercial powder was measured for a Ce concentration of 0.3 mole% with a sintering temperature of 1540°C and a sintering dwell time of 7 hours. The optimal processing parameters for the in-house synthesized powder were slightly different from those of commercial powders. The optimal Ce concentration was 0.4 mole% Ce, sintering temperature was 1560°C and sintering dwell time was 10 hours. These optimal conditions produced a relative intensity of 94.20% and 95.28% for the in-house and commercial powders respectively. Polishing of these samples resulted in an increase of 5% in the PL intensity.

  7. Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%. Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore, the high performance sensing behavior of the present electro-ceramic nanocomposites would be suitable for a potential use in advanced humidity sensors. PMID:27916913

  8. Is laser conditioning a valid alternative to conventional etching for aesthetic brackets?

    PubMed

    Sfondrini, M F; Calderoni, G; Vitale, M C; Gandini, P; Scribante, A

    2018-03-01

    ER:Yag lasers have been described as a more conservative alternative to conventional acid-etching enamel conditioning technique, when bonding conventional metallic orthodontic brackets. Since the use of aesthetic orthodontic brackets is constantly increasing, the purpose of the present report has been to test laser conditioning with different aesthetic brackets. Study Design: Five different aesthetic brackets (microfilled copolymer, glass fiber, sapphire, polyoxymethylene and sintered ceramic) were tested for shear bond strength and Adhesive Remnant Index scores using two different enamel conditioning techniques (acid etching and ER:Yag laser application). Two hundred bovine incisors were extracted, cleaned and embedded in resin. Specimens were then divided into 10 groups with random tables. Half of the specimens were conditioned with conventional orthophosphoric acid gel, the other half with ER:Yag laser. Different aesthetic brackets (microfilled copolymer, glass fiber, sapphire, polyoxymethylene and sintered ceramic) were then bonded to the teeth. Subsequently all groups were tested in shear mode with a Universal Testing Machine. Shear bond strength values and adhesive remnant index scores were recorded. Statistical analysis was performed. When considering conventional acid etching technique, sapphire, polyoxymethylene and sintered ceramic brackets exhibited the highest SBS values. Lowest values were reported for microfilled copolymer and glass fiber appliances. A significant decrease in SBS values after laser conditioning was reported for sapphire, polyoxymethylene and sintered ceramic brackets, whereas no significant difference was reported for microfilled copolymer and glass fiber brackets. Significant differences in ARI scores were also reported. Laser etching can significantly reduce bonding efficacy of sapphire, polyoxymethylene and sintered ceramic brackets.

  9. Methods of flash sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Rishi; Cologna, Marco; Francis, John S.

    2016-05-10

    This disclosure provides methods of flash sintering and compositions created by these methods. Methods for sintering multilayered bodies are provided in which a sintered body is produced in less than one minute. In one aspect, each layer is of a different composition, and may be constituted wholly from a ceramic or from a combination of ceramic and metallic particles. When the body includes a layer of an anode composition, a layer of an electrolyte composition and a layer of a cathode composition, the sintered body can be used to produce a solid oxide fuel cell.

  10. Thermoelectric Properties of Hot-Pressed and PECS-Sintered Magnesium-Doped Copper Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Morelli, Donald T.

    2011-05-01

    Copper aluminum oxide (CuAlO2) is considered as a potential candidate for thermoelectric applications. Partially magnesium-doped CuAlO2 bulk pellets were fabricated using solid-state reactions, hot-pressing, and pulsed electric current sintering (PECS) techniques. X-ray diffraction and scanning electron microscopy were adopted for structural analysis. High-temperature transport property measurements were performed on hot-pressed samples. Electrical conductivity increased with Mg doping before secondary phases became significant, while the Seebeck coefficient displayed the opposite trend. Thermal conductivity was consistently reduced as the Mg concentration increased. Effects of Mg doping, preparation conditions, and future modification on this material's properties are discussed.

  11. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  12. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve; Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo; Zambrano, J.C.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock.more » High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and poor solid-state diffusion. - Graphical abstract: Display Omitted - Highlights: • We made NiCoCrAlYTa alloy by a conventional powder metallurgy route. • High densification and adequate strength were observed. • The presence of unexpected carbides found along γ/γ and γ/β grain boundaries was detected. • The effect of cold press and sintering processing parameters on the microstructure and mechanical properties were studied.« less

  13. Peridynamic Theory as a New Paradigm for Multiscale Modeling of Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silling, Stewart A.; Abdeljawad, Fadi; Ford, Kurtis Ross

    2017-09-01

    Sintering is a component fabrication process in which powder is compacted by pressing or some other means and then held at elevated temperature for a period of hours. The powder grains bond with each other, leading to the formation of a solid component with much lower porosity, and therefore higher density and higher strength, than the original powder compact. In this project, we investigated a new way of computationally modeling sintering at the length scale of grains. The model uses a high-fidelity, three-dimensional representation with a few hundred nodes per grain. The numerical model solves the peridynamic equations, in whichmore » nonlocal forces allow representation of the attraction, adhesion, and mass diffusion between grains. The deformation of the grains is represented through a viscoelastic material model. The project successfully demonstrated the use of this method to reproduce experimentally observed features of material behavior in sintering, including densification, the evolution of microstructure, and the occurrence of random defects in the sintered solid.« less

  14. Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy.

    PubMed

    Krug, Klaus-Peter; Knauber, Andreas W; Nothdurft, Frank P

    2015-03-01

    The aim of this study was to investigate the fracture behavior of metal-ceramic bridges with frameworks from cobalt-chromium-molybdenum (CoCrMo), which are manufactured using conventional casting or a new computer-aided design/computer-aided manufacturing (CAD/CAM) milling and sintering technique. A total of 32 metal-ceramic fixed dental prostheses (FDPs), which are based on a nonprecious metal framework, was produced using a conventional casting process (n = 16) or a new CAD/CAM milling and sintering process (n = 16). Eight unveneered frameworks were manufactured using each of the techniques. After thermal and mechanical aging of half of the restorations, all samples were subjected to a static loading test in a universal testing machine, in which acoustic emission monitoring was performed. Three different critical forces were revealed: the fracture force (F max), the force at the first reduction in force (F decr1), and the force at the critical acoustic event (F acoust1). With the exception of the veneered restorations with cast or sintered metal frameworks without artificial aging, which presented a statistically significant but slightly different F max, no statistically significant differences between cast and CAD/CAM sintered and milled FDPs were detected. Thermal and mechanical loading did not significantly affect the resulting forces. Cast and CAD/CAM milled and sintered metal-ceramic bridges were determined to be comparable with respect to the fracture behavior. FDPs based on CAD/CAM milled and sintered frameworks may be an applicable and less technique-sensitive alternative to frameworks that are based on conventionally cast frameworks.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materialsmore » by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.« less

  16. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?

    NASA Astrophysics Data System (ADS)

    de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano

    2018-04-01

    Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.

  17. Energy-Saving Sintering of Electrically Conductive Powders by Modified Pulsed Electric Current Heating Using an Electrically Nonconductive Die

    NASA Astrophysics Data System (ADS)

    Ito, Mikio; Kawahara, Kenta; Araki, Keita

    2014-04-01

    Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.

  18. Mechanically strong nanocrystalline Fe-Si-B-P-Cu soft magnetic powder cores utilizing magnetic metallic glass as a binder

    NASA Astrophysics Data System (ADS)

    Luan, Jian; Sharma, Parmanand; Yodoshi, Noriharu; Zhang, Yan; Makino, Akihiro

    2016-05-01

    We report on the fabrication and properties of soft magnetic powder cores with superior mechanical strength as well as low core loss (W). Development of such cores is important for applications in automobiles/devices operating in motion. High saturation magnetic flux density (Bs) Fe-Si-B-P-Cu powder was sintered with Fe55C10B5P10Ni15Mo5 metallic glass (MG) powder in its supercooled liquid state by spark plasma sintering. The sintered cores are made from the nanocrystalline powder particles of Fe-Si-B-P-Cu alloy, which are separated through a magnetic Fe55C10B5P10Ni15Mo5 MG alloy. Low W of ˜ 2.2 W/kg (at 1T and 50 Hz), and high fracture strength (yielding stress ˜500 MPa), which is an order of magnitude higher than the conventional powder cores, were obtained. Stronger metal-metal bonding and magnetic nature of MG binder (which is very different than the conventional polymer based binders) are responsible for the superior mechanical and magnetic properties. The MG binder not only helps in improving the mechanical properties but it also enhances the overall Bs of the core.

  19. Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions.

    PubMed

    Kovalevsky, A V; Yaremchenko, A A; Populoh, S; Thiel, P; Fagg, D P; Weidenkaff, A; Frade, J R

    2014-12-28

    Donor-substituted strontium titanate ceramics demonstrate one of the most promising performances among n-type oxide thermoelectrics. Here we report a marked improvement of the thermoelectric properties in rare-earth substituted titanates Sr0.9R0.1TiO3±δ (R = La, Ce, Pr, Nd, Sm, Gd, Dy, Y) to achieve maximal ZT values of as high as 0.42 at 1190 K < T < 1225 K, prepared via a conventional solid state route followed by sintering under strongly reducing conditions (10%H2-90%N2, 1773 K). As a result of complex defect chemistry, both electrical and thermal properties were found to be dependent on the nature of the rare-earth cation and exhibit an apparent correlation with the unit cell size. High power factors of 1350-1550 μW m(-1) K(-2) at 400-550 K were observed for R = Nd, Sm, Pr and Y, being among the largest reported so far for n-type conducting bulk-ceramic SrTiO3-based materials. Attractive ZT values at high temperatures arise primarily from low thermal conductivity, which, in turn, stem from effective phonon scattering in oxygen-deficient perovskite layers formed upon reduction. The results suggest that highly-reducing conditions are essential and should be employed, whenever possible, in other related micro/nanostructural engineering approaches to suppress the thermal conductivity in target titanate-based ceramics.

  20. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors

    NASA Astrophysics Data System (ADS)

    Yi, Eongyu; Wang, Weimin; Kieffer, John; Laine, Richard M.

    2017-06-01

    Cubic-Li7La3Zr2O12 (LLZO) is regarded as one of the most promising solid electrolytes for the construction of inherently safe, next generation all-solid-state Li batteries. Unfortunately, sintering these materials to full density with controlled grain sizes, mechanical and electrochemical properties relies on energy and equipment intensive processes. In this work, we elucidate key parameters dictating LLZO densification by tracing the compositional and structural changes during processing calcined and ball-milled Al3+ doped LLZO powders. We find that the powders undergo ion (Li+/H+) exchange during room temperature processing, such that on heating, the protonated LLZO lattice collapses and crystallizes to its constituent oxides, leading to reaction driven densification at < 1000 °C, prior to sintering of LLZO grains at higher temperatures. It is shown that small particle sizes and protonation cannot be decoupled, and actually aid densification. We conclude that using fully decomposed nanoparticle mixtures, as obtained by liquid-feed flame spray pyrolysis, provides an ideal approach to use high surface and reaction energy to drive densification, resulting in pressureless sintering of Ga3+ doped LLZO thin films (25 μm) at 1130 °C/0.3 h to ideal microstructures (95 ± 1% density, 1.2 ± 0.2 μm average grain size) normally accessible only by pressure-assisted sintering. Such films offer both high ionic conductivity (1.3 ± 0.1 mS cm-1) and record low ionic area specific resistance (2 Ω cm2).

  1. Preparation and properties of a MnCo2O4 for ceramic interconnect of solid oxide fuel cell via glycine nitrate process

    NASA Astrophysics Data System (ADS)

    Yoon, Mi Young; Lee, Eun Jung; Song, Rak Hyun; Hwang, Hae Jin

    2011-12-01

    MnCo2O4 powder was prepared by a wet chemistry method using metal nitrates and glycine in an aqueous solution. The phase stability, sintering behavior, thermal expansion and electrical conductivity were examined to characterize powder suitability as an interconnect material in solid oxide fuel cells (SOFCs). X-ray diffraction indicated that the MnCo2O4 spinel synthesized by the glycine nitrate process was stable until 1100 °C and it was possible to obtain a fully densified single phase spinel. On the other hand, the MnCo2O4 synthesized by a solid state reaction decomposed into a cubic spinel and CoO after being sintered at 1100 °C. This might be associated with the reduction of Co3+ in the octahedral site of the cubic spinel phase. MnCo2O4 showed a thermal expansion coefficient comparable to that of other SOFCs components, as well as good electrical conductivity. Therefore, MnCo2O4 is a potential candidate for the ceramic interconnects in SOFCs, provided the phase instability under reducing environments can be improved.

  2. Rapid sintering of anisotropic, nanograined Nd-Fe-B by flash-spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Castle, Elinor; Sheridan, Richard; Grasso, Salvatore; Walton, Allan; Reece, Mike

    2016-11-01

    A Spark Plasma Sintering (SPS) furnace was used to Flash-Sinter (FS) Nd-Fe-Dy-Co-B-Ga melt spun permanent magnetic material. During the 10 s "Flash" process (heating rate 2660 K min-1), sample sintering (to theoretical density) and deformation (54% height reduction) occurred. This produced texturing and significant magnetic anisotropy, comparable to conventional die-upset magnets; yet with much greater coercivities (>1600 kA m-1) due to the nanoscale characteristics of the plate-like sintered grains. These preliminary results suggest that Flash-SPS could provide a new processing route for the mass production of highly anisotropic, nanocrystalline magnetic materials with high coercivity.

  3. Vitrification of radioactive contaminated soil by means of microwave energy

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Qing, Qi; Zhang, Shuai; Lu, Xirui

    2017-03-01

    Simulated radioactive contaminated soil was successfully vitrified by microwave sintering technology and the solidified body were systematically studied by Raman, XRD and SEM-EDX. The Raman results show that the solidified body transformed to amorphous structure better at higher temperature (1200 °C). The XRD results show that the metamictization has been significantly enhanced by the prolonged holding time at 1200 °C by microwave sintering, while by conventional sintering technology other crystal diffraction peaks, besides of silica at 2θ = 27.830°, still exist after being treated at 1200 °C for much longer time. The SEM-EDX discloses the micro-morphology of the sample and the uniform distribution of Nd element. All the results show that microwave technology performs vitrification better than the conventional sintering method in solidifying radioactive contaminated soil.

  4. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC showed signs of liquid phase sintering and were shown to be largely solid solutions. Pre-compaction of mixed carbide powders prior to sintering was shown to be necessary to achieve high densities. Hypostoichiometric, samples processed at 2500 K exhibited only the initial stage of sintering and solid solution formation. Based on these findings, a suggested processing methodology is proposed for producing high density, solid solution, mixed carbide fuels. Pseudo-binary, refractory carbide samples hot pressed at 3100 K and 6 MPa showed comparable densities (approximately 85% of the theoretical value) to samples processed by cold pressing and sintering at temperatures of 2800 K.

  5. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yuichi, E-mail: yuichi.watanabe@aist.go.jp; Suemori, Kouji; Hoshino, Satoshi

    2016-06-15

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO{sub 2} porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO{sub 2} porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode aremore » attributed to its lower resistivity than that of the TiO{sub 2} porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.« less

  6. Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Sanders, W. A.; Fiyalko, J. L.

    1975-01-01

    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior.

  7. Infiltration sintering properties of Ni-4B-4Si(wt.%) alloy powders

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Zhang, X. C.; Wang, F. L.; Zou, J. T.

    2018-01-01

    The Ni-4B-4Si(wt.%) alloy powders were infiltrated into the nickel skeletons, the effects of sintering temperatures (1050-1150 °C) and skeletons (loose and compact nickel powders) on the microstructures and hardness of the sintered alloys were investigated. The Ni-B-Si alloy sintered at 1100 °C consisted of γ-Ni and Ni3B, and Si mainly solid soluted in the γ-Ni. The loose nickel powders favored to the infiltration of Ni-B-Si liquid alloy into the nickel skeletons, the sintered alloys exhibited dense microstructures and good interfacial bonding with Ni substrates. The interfacial hardness was equal to that of the sintered alloys and Ni substrates. Loose nickel powders ensured the density and interfacial bonding of the sintered alloys, the infiltration sintering process can be simplified and easily applied to practice.

  8. Synthesis of Y1BaCu3O(x) superconducting powders by intermediate phase reactions

    NASA Technical Reports Server (NTRS)

    Moure, C.; Fernandez, J. F.; Tartaj, J.; Recio, P.; Duran, P.

    1991-01-01

    A procedure for synthesizing Y1Ba2Cu3O(x) by solid state reactions was developed. The method is based on the use of barium compounds, previously synthesized, as intermediate phases for the process. The reaction kinetics of this procedure were established between 860 C and 920 C. The crystal structure and the presence of second phases were studied by means of XRD. The sintering behavior and ceramic parameters were also determined. The orthorhombic type-I structure was obtained on the synthesized bodies after a cooling cycle in an air atmosphere. Superconducting transition took place at 91 K. Sintering densities higher than 95 percent D sub th were attained at temperatures below 940 C.

  9. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    DOE PAGES

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; ...

    2017-07-14

    We present economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like “alnico,” an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn-out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm 3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoidingmore » directional solidification that provides alignment in alnico 9. Lastly, successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.« less

  10. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  11. Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batra, Uma; Kapoor, Seema; Sharma, J. D.

    2011-12-12

    Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}-CaF{sub 2}) and unfluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm,more » respectively. The pellets were sintered at four different temperatures i.e. 1000 deg. C, 1150 deg. C, 1250 deg. C and 1350 deg. C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with {alpha}-TCP (tricalcium phosphate) and {beta}-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 deg. C and 1150 deg. C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 deg. C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 deg. C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 deg. C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the green pellets.« less

  12. Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.

    Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact,more » adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.« less

  13. An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure

    DOE PAGES

    Wang, Hui; Chen, Yan; Hood, Zachary D.; ...

    2016-01-01

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  14. Densification kinetics of nanocrystalline zirconia powder using microwave and spark plasma sintering--a comparative study.

    PubMed

    Vasylkiv, Oleg; Demirskyi, Dmytro; Sakka, Yoshio; Ragulya, Andrey; Borodianska, Hanna

    2012-06-01

    Two-stage densification process of nanosized 3 mol% yttria-stabilized zirconia (3Y-SZ) polycrystalline compacts during consolidation via microwave and spark-plasma sintering have been observed. The values of activation energies obtained for microwave and spark-plasma sintering 260-275 kJ x mol(-1) are quite similar to that of conventional sintering of zirconia, suggesting that densification during initial stage is controlled by the grain-boundary diffusion mechanism. The sintering behavior during microwave sintering was significantly affected by preliminary pressing conditions, as the surface diffusion mechanism (230 kJ x mol(-1)) is active in case of cold-isostatic pressing procedure was applied.

  15. High-temperature mechanical properties of a solid oxide fuel cell glass sealant in sintered forms

    NASA Astrophysics Data System (ADS)

    Chang, Hsiu-Tao; Lin, Chih-Kuang; Liu, Chien-Kuo; Wu, Szu-Han

    High-temperature mechanical properties of a silicate-based glass sealant (GC-9) for planar solid oxide fuel cell have been studied in sintered forms. Ring-on-ring biaxial flexural tests are carried out at room temperature to 800 °C for the sintered GC-9 glass. The results are also compared with those in cast bulk forms. From the force-displacement curves, the glass transition temperature (T g) of the non-aged, sintered GC-9 glass is estimated to be between 700 °C and 750 °C, while that of the aged one is between 750 °C and 800 °C. Due to a crack healing effect of the residual glass at high temperature, the flexural strength of the sintered GC-9 glass at temperature of 650 °C to T g point is greater than that at room temperature. At temperature above T g, the flexural strength and stiffness are considerably reduced to a level lower than the room-temperature one. The sintered GC-9 glass with pores and crystalline phases has a flexural strength lower than the cast bulk one at temperature of 650 °C and below. Due to a greater extent of crystallization, the flexural strength and stiffness of the sintered GC-9 glass are greater than those of the cast bulk one at 700-800 °C.

  16. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment temperature is discussed in detail.

  17. Early human bone response to laser metal sintering surface topography: a histologic report.

    PubMed

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  18. Fabrication and spectroscopic properties of Co:MgAl2O4 transparent ceramics by the HIP post-treatment

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Ma, Peng; Xie, Tengfei; Dai, Jiawei; Pan, Yubai; Kou, Huamin; Li, Jiang

    2017-07-01

    Cobalt-doped magnesium aluminate spinel (Co:MgAl2O4) is one of the most important saturable absorbers for the passive Q-switching of solid-state lasers operating at eye-safe wavelength of 1.5 μm. In this work, highly transparent Co:MgAl2O4 ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment, using the mixture of the commercial spinel and the lab-made Co:MgAl2O4 powder as the raw materials. The densification mechanism of Co:MgAl2O4 transparent ceramics was discussed. The microstructure and optical properties of the samples were investigated. The ground state absorption cross section (σGSA) was calculated from the fitted curve of the absorption coefficient spectrum. The results show that Co:MgAl2O4 ceramics fabricated by vacuum sintering at 1500 °C for 5 h and then HIP post-treatment at 1650 °C for 3 h perform good transparency, whose in-line transmittance exceeds 80% at 2500 nm. Moreover, the ground state absorption cross section of 0.02 at.% Co:MgAl2O4 ceramics is calculated to be 3.35 × 10-19 cm2 at the wavelength of 1540 nm, which is promising for the application to the passive Q-switching of solid-state laser operating in the near infrared region (NIR).

  19. Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination

    NASA Astrophysics Data System (ADS)

    Mudra, E.; Streckova, M.; Pavlinak, D.; Medvecka, V.; Kovacik, D.; Kovalcikova, A.; Zubko, P.; Girman, V.; Dankova, Z.; Koval, V.; Duzsa, J.

    2017-09-01

    In this paper, the electrospinning method was used for preparation of α-Al2O3 microfibers from PAN/Al(NO3)3 precursor solution. The precursor fibers were thermally treated by conventional method in furnace or low-temperature plasma induced surface sintering method in ambient air. The four different temperatures of PAN/Al(NO3)3 precursors were chosen for formation of α-Al2O3 phase by conventional sintering way according to the transition features observed in the TG/DSC analysis. In comparison, the low-temperature plasma treatment at atmospheric pressure was used as an alternative sintering method at the exposure times of 5, 10 and 30 min. FTIR analysis was used for evaluation of residual polymer after plasma induced calcination and for studying the mechanism of polymer degradation. The polycrystalline alumina fibers arranged with the nanoparticles was created continuously throughout the whole volume of the sample. On the other side the low temperature approach, high density of reactive species and high power density of plasma generated at atmospheric pressure by used plasma source allowed rapid removal of polymer in preference from the surface of fibers leading to the formation of composite ceramic/polymer fibers. This plasma induced sintering of PAN/Al(NO3)3 can have obvious importance in industrial applications where the ceramic character of surface with higher toughness of the fibers are required.

  20. Microstructure, Hardness, and Corrosion Behavior of TiC-Duplex Stainless Steel Composites Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Han, Ying; Zhang, Wei; Sun, Shicheng; Chen, Hua; Ran, Xu

    2017-08-01

    Duplex stainless steel composites with various weight fractions of TiC particles are prepared by spark plasma sintering. Ferritic 434L and austenitic 316L stainless steel powders are premixed in a 50:50 weight ratio and added with 3-9 wt.% TiC. The compacts are sintered in the solid state under vacuum conditions at 1223 K for 5 min. The effects of TiC content on the microstructure, hardness, and corrosion resistance of duplex stainless steel composites fabricated by powder metallurgy are evaluated. The results indicate that the TiC particulates as reinforcements can be distributed homogeneously in the steel matrix. Densification of sintered composites decreases with increasing TiC content. M23C6 carbide precipitates along grain boundary, and its neighboring Cr-Mo-depleted region is formed in the sintered microstructure, which can be eliminated subsequently with appropriate heat treatment. With the addition of TiC, the hardness of duplex stainless steel fabricated by powder metallurgy can be markedly enhanced despite increased porosity in the composites. However, TiC particles increase the corrosion rate and degrade the passivation capability, particularly for the composite with TiC content higher than 6 wt.%. Weakened metallurgical bonding in the composite with high TiC content provides the preferred sites for pitting nucleation and/or dissolution.

  1. Relation between the microstructure and the electromagnetic properties of BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Tang, Yu; Ma, Guodong; Ma, Ning; Du, Piyi

    2015-06-01

    The microstructure-property relation in ferroelectric/ferromagnetic composite is investigated in detail, exemplified by typical sol-gel-derived 0.3BTO/0.7NZFO ceramic composite. The effect of microstructural factors including intergrain connectivity, grain size and interfaces on the dielectric and magnetic properties of the composite prepared by conventional ceramic method and three-step sintering method is discussed both experimentally and theoretically. It reveals that the dielectric behavior of the composite is controlled by a hybrid dielectric process that combines the contribution of Debye-like dipoles and Maxwell-Wagner (M-W or interfacial) polarization. Enhanced dielectric, magnetic and conductive behaviors appear in the composite with better intergrain connectivity and larger grain size derived by sol-gel route and three-step sintering method. The effective permittivity contributed by Debye-like dipoles exhibits a value of ~130,000 in three-step sintered composite, which is almost the same as that in conventionally sintered one, but that contributed by M-W response is much smaller in the former. Compared with conventionally prepared samples, the relaxation time ( τ) is 3.476 × 10-6 s, about one order of magnitude smaller, and the dc electrical conductivity is 3.890 × 10-3 S/m, one order of magnitude higher in three-step sintered composite. The minimum dielectric loss reveals almost the same (~0.2) for all samples, but shows distinguishable difference in low-frequency region. Meanwhile, an initial permeability of 84, twice as large as that of conventionally prepared composite and 56 % the value of single-phased NZFO ferrite (~150), and a saturation magnetization of 63.5 emu/g, 32 % higher than that of conventional one and approximately 84 % the value of single-phased NZFO ferrite (~76 emu/g), appear simultaneously in three-step sintered composite with larger grain size and better intergrain connectivity. It is clear that the discovery is helpful for establishing a more explicit view on the physics of multi-functional composite materials, while the composite with optimized microstructure is beneficial to be used as a high-performance material.

  2. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    NASA Astrophysics Data System (ADS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo1.5Ti1.5Fe9O19) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δμ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route.

  3. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  4. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1977-01-01

    Cold pressing and sintering techniques were used to produce ceramic bodies in which the major phase was beta prime Si3-Al-O-N4 solid solution. A variety of foreign oxides were used to promote liquid phase sintering, and this resulted in the incorporation of additional solid phases in the ceramic bodies which controlled elevated temperature properties. None of the bodies studied to date exhibited both adequate high temperature mechanical properties and oxidation resistance. Criteria are suggested to guide the formulation of bodies with improved high temperature properties.

  5. Reactive sintering of ceramic lithium ion electrolyte membranes

    DOEpatents

    Badding, Michael Edward; Dutta, Indrajit; Iyer, Sriram Rangarajan; Kent, Brian Alan; Lonnroth, Nadja Teresia

    2017-06-06

    Disclosed herein are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed herein.

  6. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  7. NiFe2O4 Spinel Protection Coating for High-Temperature Solid Oxide Fuel Cell Interconnect Application

    NASA Astrophysics Data System (ADS)

    Irankhah, Reza; Raissi, Babak; Maghsoudipour, Amir; Irankhah, Abdullah; Ghashghai, Sasan

    2016-04-01

    In the present study, Ni-Fe spinel powder was synthesized via a solid state reaction. In the next step, the electrophoretic deposition (EPD) method was used to apply the NiFe2O4 spinel, as an oxidation-resistant layer, on a commercially available stainless steel (SUS 430) in a potential range of 100 to 300 V. Microscopic studies of the deposited layers showed that crack-free NiFe2O4 films were obtained at 100 V. The coated and uncoated samples were then pre-sintered in air and 5% H2 bal Ar atmospheres at 900 °C for 3 h followed by cyclic oxidation at 800 °C for 500 h. The investigation of the oxidation resistance of the samples using Energy Dispersive Spectroscopy (EDS) revealed that the NiFe2O4 coating acted as an effective barrier against chromium migration into the coating. The oxidation resistance of 5% H2 bal Ar pre-sintered sample was enhanced with an oxidation rate constant ( K P) of 8.9 × 10-15 g2 cm-4 s-1.

  8. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  9. A study on flash sintering and related phenomena in titania and its composite with alumina

    NASA Astrophysics Data System (ADS)

    Shikhar

    In 2010, Cologna et. al. [1] reported that with a help of small electric field 120 Vcm-1, the sintering temperature of 3 mol % yittria stabilized zirconia could be brought down to 850°C from 1450°C. On top of reducing the temperature requirements, the green sample could be sintered from starting density of 50% to near full density in mere 5 seconds, a sintering rate three orders of magnitude higher than conventional methods. This discovery led to the emergence of a new field of enhanced sintering with electric field, named "Flash Sintering". The objective of this thesis is to understand the phenomenological behavior of flash-sintering and related phenomena on titania and its composites with alumina at elevated temperature. The possible mechanisms to explain flash sintering are discussed: Joule heating and the avalanche of defect generation [2], both induced by the rapid rise in conductivity just before the onset of the flash. Apparently, both mechanisms play a role. The thesis covers the response of pure titania and composites of titania-alumina under flash and compared with conventional sintering. We start with the sintering behavior of pure titania and observe lowering of sintering temperature requirements with higher applied electric field. The conductivity of titania during flash is also measured, and compared with the nominal conductivity of titania at equivalent temperatures. The conductivity during flash is determined to be have a different activation energy. For the composites of titania-alumina, effect of flash on the constrained sintering was studied. It is a known fact that sintering of one component of composite slows down when the other component of a different densification rate is added to it, called constrained sintering. In our case, large inclusions of alumina particles were added to nano-grained titania green compact that hindered its densification. Flash sintering was found to be overcoming this problem and near full densification was achieved. In another experiment, effect of high current density and hold time under flash on the chemical reaction (phase transformation) of titania and alumina to form Al2TiO5 is studied. It was found that not only flash enhances the kinetics of reaction when compared with conventional heating at equivalent temperatures, but also brought down the phase transformation temperature for this spinel formation, as reported by the phase diagram. In-situ X-ray diffraction experiments were performed at the synchrotron facility in Argonne National Laboratory. The specimen temperature were measured during the experiment on the basis of peak shift with temperature and were found to be matching with our predicted values by Black-Body-Radiation model. We also observed the instant evolution of texture in grain orientation of pure titania under flash and their disappearance as the fields were switched off. Study on chemical kinetics between titania and alumina were also performed which supported our findings of in-house experiments.

  10. High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites

    PubMed Central

    Yang, Haibo; Zhang, Jintao; Lin, Ying; Wang, Tong

    2017-01-01

    Laminated magnetoelectric composites of Li0.058(Na0.535K0.48)0.942NbO3 (LKNN)/Co0.6Zn0.4Fe1.7Mn0.3O4 (CZFM) prepared by the conventional solid-state sintering method were investigated for their dielectric, magnetic, and magnetoelectric properties. The microstructure of the laminated composites indicates that the LKNN phase and CZFM phase can coexist in the composites. Compared with the particulate magnetoelectric composites, the laminated composites have better piezoelectric and magnetoelectric properties due to their higher resistances and lower leakage currents. The magnetoelectric behaviors lie on the relative mass ratio of LKNN phase and CZFM phase. The laminated composites possess a high Curie temperature (TC) of 463 °C, and the largest ME coefficient of 285 mV/cm Oe, which is the highest value for the lead-free bulk ceramic magnetoelectric composites so far. PMID:28338006

  11. Mechanically activated synthesis of PZT and its electromechanical properties

    NASA Astrophysics Data System (ADS)

    Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.

  12. Rietveld refinement and dielectric properties of (Na{sub 0.5}Bi{sub 0.5}TiO{sub 3})-(Bi{sub 0.8}Ba{sub 0.2}FeO{sub 3}) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaswan, Kavita, E-mail: kaswan.kavita@gmail.com; Agarwal, Ashish; Sanghi, Sujata

    2015-06-24

    (1-x)(Na{sub 0.5}Bi{sub 0.5}TiO{sub 3})-x(Bi{sub 0.8}Ba{sub 0.2}FeO{sub 3}) lead free ceramics (NBT, NBT-BBFO; x = 0.0, 0.1 respectively) have been synthesized by conventional solid state reaction method. Crystalline phase of sintered ceramics was investigated at room temperature using X-ray diffraction. Rietveld refinement of XRD data performed by FullProf revealed that both the samples exhibited rhombohedral structure with R3c space group. Dielectric properties of these ceramics were studied at different temperatures in a wide frequency range using impedance analyzer. Dielectric constant and dielectric loss were found to be increase with increase of BBFO content. The prepared ceramics exhibit a broad maximum inmore » dielectric permittivity at 593K and dispersive permittivity at high temperatures. The NBT-BBFO sample shows a relaxor ferroelectric behavior at different frequencies.« less

  13. Reflow-oven-processing of pressureless sintered-silver interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A.; Chen, Branndon R.; Oistad, Brian A.

    Here, a method was developed to pressurelessly fabricate strong and consistent sinterable-silver joints or interconnects using reflow oven heating. Circular sinterable-silver interconnects, having nominal diameter of 5 mm and 0.1 mm thickness were stencil printed, contact-dried, and then pressurelessly sinter-bonded to Au-plated direct copper bonded ceramic substrates at 250 °C in ambient air. That sintering was done in either a reflow oven or a convective oven (latter being a conventional heating source for processing sinterable-silver). Consistently strong (>40 MPa) interconnects were produced with reflow oven heating and were as strong as those produced with convective oven heating. This is significantmore » because reflow oven technology affords better potential for continuous mass production and it was shown that strong sintered-silver bonds can indeed be achieved with its use.« less

  14. Reflow-oven-processing of pressureless sintered-silver interconnects

    DOE PAGES

    Wereszczak, Andrew A.; Chen, Branndon R.; Oistad, Brian A.

    2018-01-04

    Here, a method was developed to pressurelessly fabricate strong and consistent sinterable-silver joints or interconnects using reflow oven heating. Circular sinterable-silver interconnects, having nominal diameter of 5 mm and 0.1 mm thickness were stencil printed, contact-dried, and then pressurelessly sinter-bonded to Au-plated direct copper bonded ceramic substrates at 250 °C in ambient air. That sintering was done in either a reflow oven or a convective oven (latter being a conventional heating source for processing sinterable-silver). Consistently strong (>40 MPa) interconnects were produced with reflow oven heating and were as strong as those produced with convective oven heating. This is significantmore » because reflow oven technology affords better potential for continuous mass production and it was shown that strong sintered-silver bonds can indeed be achieved with its use.« less

  15. Structural and low temperature dielectric studies on Pb0.8Bi0.2Fe0.6Nb0.4O3 multiferroic solid solution

    NASA Astrophysics Data System (ADS)

    Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshapande, S. K.; Angadi, Basavaraj

    2018-05-01

    In this paper the structural and low temperature dielectric properties of Pb0.8Bi0.2Fe0.6Nb0.4O3 (PBFNO) multiferroic solid solution were reported. PBFNO multiferroic was synthesized by single step solid state reaction method. Calcination was carried out at 700 °/2hr with different sintering temperature (800 °C, 850 °C, 900 °C, 950 °C, 1000 °C and 1050 °C for 1 hr) and time duration (800 °C for 1 to 5 hr). Single phase was confirmed through room temperature (RT) X-ray Diffraction (XRD). It was found that sintering carried out at 800°C/3 hr gives single phase. Rietveld refined lattice parameters using monoclinic structure are: a = 5.6663(1) Å, b = 5.6694(1) Å, c = 4.0112(1) Å and β = 90.038(1)° with the average grain size as 2.987 µm. The dielectric properties studied over a wide range of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K). Dielectric constant and loss tangent exhibits frequency dispersion nature at low frequency region. AC conductivity increases with increase in temperature corresponds to negative temperature coefficient of resistance (NTCR) behaviour.

  16. Effect of ca+2 addition on the properties of ce0.8gd0.2o2-δ for it-sofc

    NASA Astrophysics Data System (ADS)

    Koteswararao, P.; Buchi Suresh, M.; Wani, B. N.; Bhaskara Rao, P. V.; Varalaxmi, P.

    2018-03-01

    This paper reports the effect of Ca2+ addition on the structural and electrical properties of Ce0.8Gd0.2O2-δ(GDC) electrolyte for low temperature solid oxide fuel cell application. The Ca (0, 0.5, 1 and 2 mol %) doped GDC solid electrolytes have been prepared by solid state method. The sintered densities of the samples are greater than 95%. XRD study reveals the cubic fluorite structure. The microstructure of the samples sintered at 1400°C resulted into grain sizes in the range of 1.72 to 10.20 μm. Raman spectra show the presence of GDC single phase. AC impedance analysis is used to measure the ionic conductivity of the electrolyte. Among all the compositions, the highest conductivity is observed in the GDC sample with 0.5 mol% Ca addition. Nyquist plots resulted in multiple redoxation process such as grain and grain boundary conductions to final conductivity. Estimated blocking factor is lower for the GDC electrolyte with 0.5mol% Ca, indicating that Ca addition was promoted grain boundary conduction. Activation energies were calculated from Arrhenius plot and are found in the range of 1eV.

  17. The Effect of Sintering Time on the Marginal Fit of Zirconia Copings.

    PubMed

    Khaledi, Amir Ali Reza; Vojdani, Mahroo; Farzin, Mitra; Pirouzi, Sudabeh; Orandi, Sepideh

    2018-01-03

    This study analyzed the effect of different sintering times on the marginal adaptation of zirconia ceramic copings. Thirty copings of pre-sintered 3Y-TZP blanks were milled and subsequently sintered in a special furnace for three different durations (n = 10 per group). The sintering time was 1 hour, 15 minutes for IPS e.max ZirCAD, 4 hours 20 minutes for Speed ZrO 2, and 7 hours 20 minutes for the conventional ZrO 2 group. The marginal gaps of specimens were measured at 18 spots on the master die by employing a digital microscope. One-way ANOVA test compared the mean differences among the 3 groups (α = 0.05). The mean values for the marginal gap of the IPS e.max ZirCAD, Speed ZrO 2 , and conventional ZrO 2 groups were 41.06 ± 14.03, 43.03 ± 11.67, and 39.88 ± 15.23 μm, respectively. There was no statistically significant difference among the groups regarding the marginal gap. Different sintering times did not alter the marginal fit of the zirconia copings. The mean values of the marginal gap were within the clinically acceptable level for all three groups. © 2018 by the American College of Prosthodontists.

  18. Behavior of oxide film at the interface between particles in sintered Al powders by pulse electric-current sintering

    NASA Astrophysics Data System (ADS)

    Xie, Guoqiang; Ohashi, Osamu; Song, Minghui; Furuya, Kazuo; Noda, Tetsuji

    2003-03-01

    The microstructure of the bonding interfaces between particles in aluminum (Al) powder sintered specimens by the pulse electric-current sintering (PECS) process was observed, using conventional transmission electron microscopy (CTEM) and high-resolution transmission electron microscopy (HRTEM). The behavior of oxide film at the interface between Al particles and its effect on properties of the sintered specimens were investigated. The results showed there were two kinds of bonding interfaces in the sintered specimens, namely, the direct metal/metal bonding and the metal/oxide film layer/metal bonding interface. By increasing the fraction of the direct metal/metal bonding interfaces, the tensile strength of the sintered specimens increased, and the electrical resistivity decreased. By increasing the loading pressure at higher sintering temperatures or increasing the sintering temperature under loading pressure, the breakdown of oxide film was promoted. The broken oxide film debris was dispersed in aluminum metal near the bonding interfaces between particles.

  19. Mathematical model of the stack region of a commercial lead blast furnace

    NASA Astrophysics Data System (ADS)

    Hussain, Mansoor M.; Morris, David R.

    1989-02-01

    A mathematical model of the stack region of a commercial lead blast furnace is presented. The mass and heat balance equations were solved in conjunction with the kinetic expression for the rate of re-duction of the solids based upon the grain model, utilizing the measured structural parameters of the sinter feed and the measured kinetic parameters. Satisfactory agreement has been achieved between the computed and experimental axial profiles of gas and solids temperature, pressure, gas composi-tion, and condensed phases composition. The model is used to predict the effects of changes of bed voidage, physical properties, and chemical constitution of the sinter and the effects of gas and solids flow maldistribution on the operation of the furnace. In particular, it is noted that for a sinter with the typical physical properties of a commercial sinter, improved conversion in the upper reaches of the furnace is predicted when lead is in the form of lead oxide rather than as the relatively unreac-tive lead calcium silicates. The improved conversion is accompanied by better utilization of carbon monoxide. Further, the model suggests that the formation of scaffolds in the furnace may be due to flow maldistribution causing high temperatures in the vicinity of the furnace wall.

  20. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.« less

  1. Ab initio thermodynamics and kinetics for coalescence on nanoislands and nanopits on metal(100) surfaces

    NASA Astrophysics Data System (ADS)

    Evans, Jim; Han, Yong; Stoldt, Conrad; Thiel, Patricia

    Coalescence or sintering of nanoscale features on metal(100) surfaces is mediated by periphery or edge diffusion. These processes are highly sensitive to the multiple diffusion barriers for various local edge environments. We provide an optimal strategy to determine both thermodynamics and kinetics for these systems at the ab initio level. The former requires assessing conventional interactions between adatoms at adsorption sites. The latter requires assessing unconventional interactions between the hopping atom at a bridge site transition state and other nearby atoms. KMC simulation reveals that this formulation recovers observed sintering times for Ag nanoislands on Ag(100), including a novel size dependence. The formulation also applies for nanopits where there are additional challenges to capture kinetics. Work supported by NSF Grant CHE-1507223.

  2. The Development of a Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace and Defense Applications

    DTIC Science & Technology

    2013-03-01

    latter strategy. Mixtures of titanium powders and TiO2 particles were employed as starting materials and consolidated by spark - plasma sintering and...were consolidated in a carbon container installed in the spark - plasma sintering (SPS) equipment under vacuum condition (ɞ Pa) at a temperature of...evaluation of tensile properties of the wrought pure titanium materials consolidated by sintering and hot extrusion process, a theoretical approach using

  3. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model.

    PubMed

    Gagg, Graham; Ghassemieh, Elaheh; Wiria, Florencia E

    2013-09-01

    A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

  4. Degradation resistance of 3Y-TZP ceramics sintered using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Chintapalli, R.; Marro, F. G.; Valle, J. A.; Yan, H.; Reece, M. J.; Anglada, M.

    2009-09-01

    Commercially available tetragonal zirconia powder doped with 3 mol% of yttria has been sintered using spark plasma sintering (SPS) and has been investigated for its resistance to hydrothermal degradation. Samples were sintered at 1100, 1150, 1175 and 1600 °C at constant pressure of 100 MPa and soaking for 5 minutes, and the grain sizes obtained were 65, 90, 120 and 800 nm, respectively. Samples sintered conventionally with a grain size of 300 nm were also compared with samples sintered using SPS. Finely polished samples were subjected to artificial degradation at 131 °C for 60 hours in vapour in auto clave under a pressure of 2 bars. The XRD studies show no phase transformation in samples with low density and small grain size (<200 nm), but significant phase transformation is seen in dense samples with larger grain size (>300 nm). Results are discussed in terms of present theories of hydrothermal degradation.

  5. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling

    PubMed Central

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-01-01

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30–40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures. PMID:28387324

  6. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, Theodore R.; Kuo, Lewis J. H.; Ruka, Roswell J.

    1994-01-01

    A tubular, porous ceramic electrode structure (3) is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte (4), substantially surrounds the air electrode, and a porous outer fuel electrode (7) substantially surrounds the electrolyte, to form a fuel cell (1).

  7. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, T.R.; Kuo, L.J.H.; Ruka, R.J.

    1994-08-30

    A tubular, porous ceramic electrode structure is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte, substantially surrounds the air electrode, and a porous outer fuel electrode substantially surrounds the electrolyte, to form a fuel cell. 2 figs.

  8. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  9. Multiple parent bodies of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Yomogida, K.; Matsui, T.

    1984-01-01

    Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional 'onion-shell' model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a 'multiple-parent bodies' model, according to which each petrologic type of chondrite comes from a different parent body.

  10. Silicon carbide sintered products and a method for their manufacturing

    NASA Technical Reports Server (NTRS)

    Suzuki, K.

    1986-01-01

    SiC based sinters are produced by pressureless sintering from a SiC-AlN solid solution containing Al2 to 20, N 0.2 to 10, O 0.2 to 5, a Group IIIB element 0 to 15 percent, the remainder being Si and C. Thus, a 90:10 mixture of SiC and AlN powders were cold pressed at 2000 kg/sq cm and sintered for 5 hours at 2100 C in a nitrogen atmosphere. The resulting product had density of 3.11 g/cu cm and bending strength at ambient and 1400 C at 68.5 and 66.3 kg/sq mm.

  11. Tailored Net-Shape Powder Composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Khaleghi, Evan Aryan

    This dissertation investigates the ability to produce net-shape and tailored composites in spark plasma sintering (SPS), with an analysis of how grain growth, densification, and mechanical properties are affected. Using alumina and four progressively anisotropic dies, we studied the impact of specimen shape on densification. We found specimen shape had an impact on overall densification, but no impact on localized properties. We expected areas of the specimen to densify differently, or have higher grain growth, based on current anisotropy in the specimen during sintering, and preliminary results indicated this, but further investigation showed this did not occur. Overall average grain size and porosity decreased as shape complexity increased. In Fe-V-C steel, we mechanical alloyed two rapidly solidified powders, and used spark sintering to retain the properties imparted during the rapid solidification. We noticed VC grains being produced during densification, which improved the final properties. We conducted spark plasma extrusion (SPE) of aluminum to understand the effect on microstructure. We found, through an analysis of the grain structure, that SPE did have a grain deformation potential, and grain size was severely decreased compared to conventional sintering. Dynamic recrystallization did not occur, due to the reduced temperatures we were able to extrude with SPS. Finally, we examined whether there were particular sintering conditions for SPS that reduced the complexity of the grain growth and porosity relationship to one similar to conventional sintering, of the form G = k G0 ε -1/. We found that although a reasonable case could be made for free sintering, as found in the literature, for hot-pressing and SPS the conditions required go against the common knowledge in grain growth and densification kinetics. We were able to fit our data very well to the model, but the correlated results do not make physical sense.

  12. Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer

    NASA Astrophysics Data System (ADS)

    Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.

    2018-02-01

    The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ < 0.06 is optimal for obtaining a high-quality joint has been formed under a compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei

    We present economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like “alnico,” an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn-out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm 3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoidingmore » directional solidification that provides alignment in alnico 9. Lastly, successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.« less

  14. Feasibility study of the welding of SiC

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1985-01-01

    In a brief study of the feasibility of welding sintered alpha-SiC, solid-state welding and brazing were investigated. Joint quality was determined solely by microstructural examination. Hot-pressure welding was shown to be feasible at 1950 C. Diffusion welding and brazing were also successful under hot isostatic pressure at 1950 C when boride, carbide, and silicide interlayers were used. Furnace brazing was accomplished at 1750 C when a TiSi2 interlayer was introduced.

  15. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    PubMed Central

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  16. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash.

    PubMed

    Wei, Na

    2015-05-07

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.

  17. Liquid phase sintered compacts in space

    NASA Technical Reports Server (NTRS)

    Mookherji, T. K.; Mcanelly, W. B.

    1974-01-01

    A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.

  18. An extrapolation scheme for solid-state NMR chemical shift calculations

    NASA Astrophysics Data System (ADS)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  19. Study on the mechanism of liquid phase sintering (M-12)

    NASA Technical Reports Server (NTRS)

    Kohara, S.

    1993-01-01

    The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.

  20. On the self-damping nature of densification in photonic sintering of nanoparticles

    PubMed Central

    MacNeill, William; Choi, Chang-Ho; Chang, Chih-Hung; Malhotra, Rajiv

    2015-01-01

    Sintering of nanoparticle inks over large area-substrates is a key enabler for scalable fabrication of patterned and continuous films, with multiple emerging applications. The high speed and ambient condition operation of photonic sintering has elicited significant interest for this purpose. In this work, we experimentally characterize the temperature evolution and densification in photonic sintering of silver nanoparticle inks, as a function of nanoparticle size. It is shown that smaller nanoparticles result in faster densification, with lower temperatures during sintering, as compared to larger nanoparticles. Further, high densification can be achieved even without nanoparticle melting. Electromagnetic Finite Element Analysis of photonic heating is coupled to an analytical sintering model, to examine the role of interparticle neck growth in photonic sintering. It is shown that photonic sintering is an inherently self-damping process, i.e., the progress of densification reduces the magnitude of subsequent photonic heating even before full density is reached. By accounting for this phenomenon, the developed coupled model better captures the experimentally observed sintering temperature and densification as compared to conventional photonic sintering models. Further, this model is used to uncover the reason behind the experimentally observed increase in densification with increasing weight ratio of smaller to larger nanoparticles. PMID:26443492

  1. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  2. High strength porous support tubes for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Rossing, Barry R.; Zymboly, Gregory E.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.

  3. A promising red-emitting phosphor for white-light-emitting diodes prepared by a modified solid-state reaction

    NASA Astrophysics Data System (ADS)

    Ren, Fuqiang; Chen, Donghua

    2010-02-01

    Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red-emitting phosphors Ca 19Zn 2 (PO 4) 14:Eu 3+ have been successfully synthesized by a modified solid-state reaction. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The dependence of the photoluminescence properties of Ca 19Zn 2 (PO 4) 14:Eu 3+ phosphors upon urea, boric acid and PEG concentration and the quadric-sintered temperature were investigated. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs).

  4. Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing

    NASA Astrophysics Data System (ADS)

    Li, Chao; Chen, Huili; Shi, Huangang; Tade, Moses O.; Shao, Zongping

    2015-01-01

    The inkjet printing technique has numerous advantages and is attractive in solid oxide fuel cell (SOFC) fabrication, especially for the dense thin electrolyte layer because of its ultrafine powder size. In this study, we exploited the technique for the fabrication of a porous SDC/SSC composite cathode layer using environmentally friendly water-based ink. An optimized powder synthesis method was applied to the preparation of the well-dispersed suspension. In view of the easy sintering of the thin film layer prepared by inkjet printing, 10 wt.% pore former was introduced to the ink. The results indicate that the cell with the inkjet printing cathode layer exhibits a fantastic electrochemical performance, with a PPD as high as 940 mW cm-2 at 750 °C, which is comparable to that of a cell prepared using the conventional wet powder spraying method, suggesting a promising application of inkjet printing on electrode layer fabrication.

  5. In situ fabrication of high-performance Ni-GDC-nanocube core-shell anode for low-temperature solid-oxide fuel cells

    PubMed Central

    Yamamoto, Kazuhiro; Qiu, Nan; Ohara, Satoshi

    2015-01-01

    A core–shell anode consisting of nickel–gadolinium-doped-ceria (Ni–GDC) nanocubes was directly fabricated by a chemical process in a solution containing a nickel source and GDC nanocubes covered with highly reactive {001} facets. The cermet anode effectively generated a Ni metal framework even at 500 °C with the growth of the Ni spheres. Anode fabrication at such a low temperature without any sintering could insert a finely nanostructured layer close to the interface between the electrolyte and the anode. The maximum power density of the attractive anode was 97 mW cm–2, which is higher than that of a conventional NiO–GDC anode prepared by an aerosol process at 55 mW cm–2 and 600 °C, followed by sintering at 1300 °C. Furthermore, the macro- and microstructure of the Ni–GDC-nanocube anode were preserved before and after the power-generation test at 700 °C. Especially, the reactive {001} facets were stabled even after generation test, which served to reduce the activation energy for fuel oxidation successfully. PMID:26615816

  6. Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering

    NASA Astrophysics Data System (ADS)

    Mahfoz Kotb, H.; Ahmad, Mohamad M.

    2016-12-01

    We report on the measurements of the electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramics prepared by high energy ball-milling and conventional sintering without any calcination steps. The x-ray powder diffraction analysis shows that pure perovskite-like CCTO phase is obtained after sintering at 1025 °C-1075 °C. Higher sintering temperatures result in multi-phase ceramics due to thermal decomposition. Scanning electron microscope observations reveal that the grain size is in a range of ˜3 μm-5μm for these ceramics. Impedance spectroscopy measurements performed in a wide frequency range (1 Hz-10 MHz) and at various temperatures (120 K-470 K) are used to study the dielectric and electrical properties of NLCTO ceramics. A good compromise between high ɛ‧ (5.7 × 103 and 4.1 × 103 at 1.1 kHz and 96 kHz, respectively) and low tan δ (0.161 and 0.126 at 1.1 kHz and 96 kHz, respectively) is obtained for the ceramic sintered at 1050 °C. The observed high dielectric constant behavior is explained in terms of the internal barrier layer capacitance effect.

  7. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur

    PubMed Central

    Cohen, David J.; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M.; Hopkins, Louis B.; Boyan, Barbara D.; Schwartz, Zvi

    2018-01-01

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, microCT and histomorphometry were conducted 10 weeks postoperatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants. PMID:28452335

  8. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    PubMed

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  9. Microwave-Assisted Synthesis of High Dielectric Constant CaCu3Ti4O12 from Sol-Gel Precursor

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Cao, Peng; Huang, Saifang; Zhang, Weijun; Huang, Zhaohui; Gao, Wei

    2015-07-01

    CaCu3Ti4O12 (CCTO) powders derived from sol-gel precursors were calcined and sintered via microwave radiation. The obtained CCTO powders were compared with that obtained via a conventional heating method. For microwave heating, 89.1 wt.% CCTO was achieved from the sol-gel precursor, after only 17 min at 950°C. In contrast, the conventional calcination method required 3 h to generate 87.6 wt.% CCTO content at 1100°C. In addition, the CCTO powders prepared through 17 min of microwave calcination exhibited a small particle size distribution of D50 = 3.826 μm. It was found that a lengthy hold time of 1 h by microwave sintering is required to obtain a high dielectric constant (3.14 × 103 at 102 Hz) and a reasonably low dielectric loss (0.161) in the sintered CCTO ceramic. Based upon the distinct microstructures, the dielectric responses of the CCTO samples sintered by different methods are attributed to space charge polarization and internal barrier layer capacitor mechanism.

  10. Microwave dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12}-Al{sub 2}O{sub 3} composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Zaman, Rosyaini Afindi

    2016-07-19

    (1-x)CaCu{sub 3}Ti{sub 4}O{sub 12} + (x)Al{sub 2}O{sub 3} composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO{sub 3}, CuO and TiO{sub 2} powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al{sub 2}O{sub 3} were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sinteredmore » samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl{sub 2}O{sub 4} and Corundum (Al{sub 2}O{sub 3}) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al{sub 2}O{sub 3} (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al{sub 2}O{sub 3} (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al{sub 2}O{sub 3} was reduced both dielectric loss and permittivity at least for an order of magnitude.« less

  11. Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.

    2017-04-01

    The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.

  12. Al{sub 2}O{sub 3} - TiO{sub 2}-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and themore » observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 {mu}m. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route.« less

  13. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials

    PubMed Central

    Orrù, Roberto; Cao, Giacomo

    2013-01-01

    A wider utilization of ultra high temperature ceramics (UHTC) materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS) technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS), consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS) and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step. PMID:28809229

  14. Sintering of MSW fly ash for reuse as a concrete aggregate.

    PubMed

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  15. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  16. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  17. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    PubMed

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  18. Solvent/Non-Solvent Sintering: A Novel Route to Create Porous Microsphere Scaffolds For Tissue Regeneration

    PubMed Central

    Brown, Justin L.; Nair, Lakshmi S.; Laurencin, Cato T.

    2009-01-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from −8°C to 41oC and poly(lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1µm respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. PMID:18161819

  19. Influence of Hydrogen on Atomized Titanium Powders Sintering

    NASA Astrophysics Data System (ADS)

    Senkevich, K. S.

    2018-07-01

    The aim of this work is to study the effect of hydrogen reversible alloying (thermohydrogen processing, THP) on low-temperature sintering of atomized titanium powders. It is stated that alloying with 0.2 to 0.8 wt pct of hydrogen beneficially affects titanium powders sintering. The effect is caused by phase transformations occurring upon hydrogen saturation of powders and dehydrogenation, which substantially intensifies sintering at temperatures from 800 °C to 900 °C. The role of certain THP stages (sintering in hydrogenated state and upon dehydrogenation) on formation of sintered contacts in porous materials is shown.

  20. Influence of Hydrogen on Atomized Titanium Powders Sintering

    NASA Astrophysics Data System (ADS)

    Senkevich, K. S.

    2018-05-01

    The aim of this work is to study the effect of hydrogen reversible alloying (thermohydrogen processing, THP) on low-temperature sintering of atomized titanium powders. It is stated that alloying with 0.2 to 0.8 wt pct of hydrogen beneficially affects titanium powders sintering. The effect is caused by phase transformations occurring upon hydrogen saturation of powders and dehydrogenation, which substantially intensifies sintering at temperatures from 800 °C to 900 °C. The role of certain THP stages (sintering in hydrogenated state and upon dehydrogenation) on formation of sintered contacts in porous materials is shown.

  1. PHASE EVOLUTION AND MICROWAVE DIELECTRIC PROPERTIES OF (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Guo, Jing; Yao, Xi; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao

    2012-11-01

    The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics were prepared via the solid state reaction method. The sintering temperature decreased almost linearly from 755°C for (Li0.5Bi0.5)WO4 to 560°C for (Li0.5Bi0.5)MoO4. When the x≤0.3, a wolframite solid solution can be formed. For x = 0.4 and x = 0.6 compositions, both the wolframite and scheelite phases can be formed from the X-ray diffraction analysis, while two different kinds of grains can be revealed from the scanning electron microscopy and energy-dispersive X-ray spectrometer results. High performance of microwave dielectric properties were obtained in the (Li0.5Bi0.5)(W0.6Mo0.4)O4 ceramic sintered at 620°C with a relative permittivity of 31.5, a Qf value of 8500 GHz (at 8.2 GHz), and a temperature coefficient value of +20 ppm/°C. Complex dielectric spectra of pure (Li0.5Bi0.5)WO4 ceramic gained from the infrared spectra were extrapolated down to microwave range, and they were in good agreement with the measured values. The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics might be promising for low temperature co-fired ceramic technology.

  2. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  3. The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jinqiao; Zhang, Ling; Xie, Bing

    2015-09-28

    Anti-ferroelectric (AFE) composite ceramics of (Pb{sub 0.858}Ba{sub 0.1}La{sub 0.02}Y{sub 0.008})(Zr{sub 0.65}Sn{sub 0.3}Ti{sub 0.05})O{sub 3}-(Pb{sub 0.97}La{sub 0.02})(Zr{sub 0.9}Sn{sub 0.05} Ti{sub 0.05})O{sub 3} (PBLYZST-PLZST) were fabricated by the conventional solid-state sintering process (CS), the glass-aided sintering (GAS), and the spark plasma sintering (SPS), respectively. The influence of the temperature induced phase transition on the phase structure, hysteresis loops, and energy storage properties of the composite ceramics were investigated in detail. The measured results of X-ray diffraction demonstrate that the composite ceramics exhibit the perovskite phases and small amounts of non-functional pyrochlore phases. Compared with the CS process, the GAS and SPS processesmore » are proven more helpful to suppress the diffusion behaviors between the PBLYZST and PLZST phases according to the field emission scanning electron microscopy, thereby being able to improve the contribution of PBLYZST phase to the temperature stability of the orthogonal AFE phase. When the ambient temperature rises from 25 °C to 125 °C, CS and GAS samples have undergone a phase transition from orthorhombic AFE phase to tetragonal AFE phase, which results in a sharp decline in the energy storage density. However, the phase transition temperature of SPS samples is higher than 125 °C, and the energy storage density only slightly decreases due to the disorder of material microstructure caused by the high temperature. As a result, the SPS composite ceramics obtain a recoverable high energy storage density of 6.46 J/cm{sup 3} and the excellent temperature stability of the energy storage density of 1.16 × 10{sup −2} J/°C·cm{sup 3}, which is 1.29 × 10{sup −2} J/°C·cm{sup 3} lower than that of CS samples and about 0.43 times as that of GAS samples.« less

  4. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

    PubMed

    Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A

    2018-06-22

    High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

  5. Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries

    DOE PAGES

    Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian; ...

    2017-06-09

    Solid state electrolyte systems boasting Li+ conductivity of >10 mS cm -1 at room temperature have opened the potential for developing a solid state battery with power and energy densities that are competitive with conventional liquid electrolyte systems. The primary focus of this review is twofold. First, differences in Li penetration resistance in solid state systems are discussed, and kinetic limitations of the solid state interface are highlighted. Second, technological challenges associated with processing such systems in relevant form factors are elucidated, and architectures needed for cell level devices in the context of product development are reviewed. Specific research vectorsmore » that provide high value to advancing solid state batteries are outlined and discussed.« less

  6. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando [Santa Fe, NM

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  7. Electrodes for solid state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Rangachary; Brosha, Eric L; Garzon, Fernando

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within themore » die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.« less

  8. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-08-12

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  9. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter partsmore » have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.« less

  10. Mechanical properties of thermoelectric n-type magnesium silicide synthesized employing in situ spark plasma reaction sintering

    NASA Astrophysics Data System (ADS)

    Muthiah, Saravanan; Singh, R. C.; Pathak, B. D.; Dhar, Ajay

    2017-07-01

    Thermoelectric devices employing magnesium silicide (Mg2Si) offer an inexpensive and non-toxic solution for green energy generation compared to other existing conventional thermoelectric materials in the mid-temperature range. However, apart from the thermoelectric performance, their mechanical properties are equally important in order to avoid the catastrophic failure of their modules during actual operation. In the present study, we report the synthesis of Mg2Si co-doped with Bi and Sb employing in situ spark plasma reaction sintering and investigate its broad range of mechanical properties. The mechanical properties of the sintered co-doped Mg2Si suggest a significantly enhanced value of hardness ~5.4  ±  0.2 GPa and an elastic modulus ~142.5  ±  6 GPa with a fracture toughness of ~1.71  ±  0.1 MPa  √m. The thermal shock resistance, which is one of the most vital parameter for designing thermoelectric devices, was found to be ~300 W m-1, which is higher than most of the other existing state-of-the-art mid-temperature thermoelectric materials. The friction and wear characteristics of sintered co-doped Mg2Si have been reported for the first time, in order to realize the sustainability of their thermoelectric modules under actual hostile environmental conditions.

  11. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  12. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells

    PubMed Central

    Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook

    2016-01-01

    Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs. PMID:28773795

  13. The Preparation and Characterization of Materials.

    ERIC Educational Resources Information Center

    Wold, Aaron

    1980-01-01

    Presents several examples illustrating different aspects of materials problems, including problems associated with solid-solid reactions, sintering and crystal growth, characterization of materials, preparation and characterization of stoichiometric ferrites and chromites, copper-sulfur systems, growth of single crystals by chemical vapor…

  14. The effect of B{sub 2}O{sub 3} flux on growth NLBCO superconductor by solid state reaction and wet-mixing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharta, W. G., E-mail: wgsuharta@gmail.com; Wendri, N.; Ratini, N.

    The synthesis of B{sub 2}O{sub 3} flux substituted NLBCO superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂}. Therefore, in this research NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmedmore » using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B{sub 2}O{sub 3} flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.« less

  15. Enhanced dielectric response of GeO{sub 2}-doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaral, F.; School of Technology and Management of Oliveira do Hospital, Oliveira do Hospital, 3400-124 Oliveira; Rubinger, C. P. L.

    2009-02-01

    CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic samples were prepared by solid state conventional route using stoichiometric amounts of CuO, TiO{sub 2}, and CaCO{sub 3}. Afterward the material was doped with GeO{sub 2} with concentrations up to 6% by weight and sintered at 1050 deg. C for 12 h. The influence of doping on the microstructure, vibrational modes, and dielectric properties of the material was investigated by x-ray diffraction, scanning electron microscopy coupled with an energy dispersive spectrometer, and infrared and dielectric measurements between 100 Hz and 30 MHz. The materials presented huge dielectric response, which increases with doping level relative tomore » undoped CaCu{sub 3}Ti{sub 4}O{sub 12}. The main effect of doping on the microstructure is the segregation of Cu-rich phase in the ceramic grain boundaries. Cole-Cole modeling correlates well the effects of this segregation with the relaxation parameters obtained. The intrinsic phonon contributions for the dielectric response were obtained and discussed together with the structural evolution of the system.« less

  16. Enhanced piezoelectricity and high temperature poling effect in (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 ceramics via an ethylene glycol route

    NASA Astrophysics Data System (ADS)

    Tailor, H. N.; Ye, Z.-G.

    2010-05-01

    A solution chemical method utilizing ethylene glycol as solvent has been developed to prepare the ceramics of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3[(1-x)PMN-xPT] from a precursor powder that can be pressed and fired in one step to produce high quality ceramics with excellent piezoelectric properties. The ceramics reach a relative density of up to 97% of the theoretical value after direct calcinations. This high density is achieved without the need of additional sintering after calcination which is usually required in conventional solid state syntheses to produce ceramics. The ceramics exhibit a unipolar piezoelectric coefficient d33 of 848 pC/N, which is one of the highest values for any unmodified/untextured binary systems reported to date. Since the piezoelectric properties depend on composition and electric field, the effect of poling conditions was investigated. A critical temperature limit has been found, above which poling can dramatically impair the piezoelectric properties due to a field-induced increase in the monoclinic phase component around the morphotropic phase boundary.

  17. Thermoelectric properties of p-type sb-doped Cu2SnSe3 near room and mid temperature applications

    NASA Astrophysics Data System (ADS)

    Prasad, K. Shyam; Rao, Ashok; Chauhan, Nagendra S.; Bhardwaj, Ruchi; Vishwakarma, Avinash; Tyagi, Kriti

    2018-02-01

    In this study, we report low and mid temperature range thermoelectric properties of Sb-substituted Cu2SnSe3 compounds. The Cu2Sn1- x Sb x Se3 (0 ≤ x ≤ 0.04) alloys were prepared using conventional solid-state reaction followed by spark plasma sintering. The crystal structure was characterized using XRD and it reveals that all the samples exhibit cubic structure with space group -4/3m. The electrical transport characteristics indicate degenerate semiconducting behavior. Electrical resistivity was found to follow small polaron hopping (SPH) model in the entire temperature range of investigation. The Seebeck coefficient data reveals that the majority of charge carriers are holes and the analysis of Seebeck coefficient data gives negative values of Fermi energy indicating that the Fermi energy is below the edge of valence band. The electronic contribution ( κ e) for total thermal conductivity is found to be less than 1%. The maximum ZT value of 0.64 is observed for the sample with x = 0.03 (at 700 K) which is approximately 2.3 times that of the pristine sample.

  18. Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong

    2017-12-01

    In this study, (1-x)SrTiO3-x(Bi0.48La0.02Na0.48Li0.02Ti0.98Zr0.02O3) [(1-x)ST-xBLNLTZ] lead-free ceramics with x = 0-0.4 were designed and fabricated using the tape casting process and the subsequent conventional solid-state sintering method. The (1-x)ST-xBLNLTZ ceramics are characterized by the excellent frequency stability of the dielectric constant, large maximum polarization (Pmax), low remnant polarization (Pr), and slim polarization-electric field (P-E) loops. For the composition of x = 0.4, Pmax is increased to 30.35 μC/cm2, 3.82 times higher than that of pure SrTiO3 (7.95 μC/cm2). The breakdown strength is larger than 200 kV/cm for all the samples. The sample with x = 0.1 exhibits a high recoverable energy storage density (Wrec) of 2.59 J/cm3 and a high energy storage efficiency (η) of 85% simultaneously. The results demonstrate that the (1-x)ST-xBLNLTZ ceramics are promising lead-free materials for high energy storage applications.

  19. Structural and electrical properties of Zn1.10CuxMn1.90-xO4 (0 ≤ x ≤ 0.15) for application in IR detectors

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong-Min; Lee, Sung-Gap; Lee, Dong-Jin; Kwon, Min-Su

    2017-05-01

    In this study, Zn1.10CuxMn1.90-xO4 (0 ≤ x ≤ 0.15) systems were prepared through the conventional solid state reaction method. All specimens were sintered in air at 1200 °C for 12 h and cooled at a rate of 2 °C/min to 800 °C, subsequently quenching to room temperature. Structural investigations were carried out using X-ray diffraction patterns and energy dispersive spectrometry. For x ≥ 0.10, formation of a tetragonal phase with a Zn-rich Zn-Cu-Mn-O segregated second phase was observed. In the microstructure, the grain size increased from 5.10 μm to 9.68 μm with an increase in Cu content. The resistivity at room temperature, B-value, responsivity and detectivity of the Zn1.10Cu0.05Mn1.85O4 specimen were found to be 300.2 kΩ·cm, 4665, 0.025 V/W, and 2.12 ×104 cmHz1/2/W, respectively. [Figure not available: see fulltext.

  20. Structure and electrical properties of 0.80 Na{sub 0.5} Bi{sub 0.5} TiO{sub 3}-0.16 K{sub 0.5} Bi{sub 0.5} TiO{sub 3}-0.04 BaTiO{sub 3} lead-free piezoelectric ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravinth, K., E-mail: aravinth.nmg@gmail.com; Babu, G. Anandha; Giridharan, N. V.

    2016-05-23

    Lead free pervoskite 0.80 Na{sub 0.5} Bi{sub 0.5} TiO{sub 3}-0.16 K{sub 0.5} Bi{sub 0.5} TiO{sub 3}-0.04 BaTiO{sub 3} (NKBBT) ceramics were fabricated via conventional solid state processing technique sintered at 1200 °C and their crystal structures and electrical properties were systematically studied. Structure of the prepared NKBBT ceramics was confirmed by Powder X-ray diffraction analysis. The dependence of dielectric constant on temperature for various frequencies (100 Hz-100 KHz) has been determined. The diffuse transition is observed in the variation of dielectric constant and it provides evidence for the relaxor characteristics. The ferroelectric response of the NKBBT ceramics with different frequencymore » was studied. Polarisation electric field hysteresis loops revealed that the remnant polarization is 6.88 µC/cm{sup 2} and coercive electric field is 66.42 kV/cm.« less

  1. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  2. A Study of Photoluminiscence and UV-Vis in Enhanced GaN Nanofibers

    NASA Astrophysics Data System (ADS)

    Robles-Garcia, Joshua; Melendez-Zambrana, Anamaris; Ramos, Idalia

    2014-03-01

    The photoluminiscence (PL) and UV-Vis properties of Gallium Nitride (GaN) nanofibers were investigated for samples fabricated with a precursor solution containing Gallium Nitrate Hydrate, Cellulose Acetate, and Urea in the solvents Dimethylacetamide (DMA) and Acetone. GaN is a wide bandgap (3.4 eV) semiconductor that can be used in a variety of applications including solid-state lighting, high power, and high frequency devices. In previous work, we produced polycrystalline GaN nanofibers with wurtzite structure, using the electrospinning method and a thermal treatment in nitrogen and ammonia at 1000C. In this research we study the addition of urea to the precursor solution to enhance the crystallinity of the fibers at lower sintering temperatures. The molar ratios of urea added to the precursor range from 0 to 1.7 M. After electrospinning the fibers were sintered in Nitrogen at 450C for 3 hours and then, under ammonia gas flow at 900C for 5 hours. X-Ray Diffraction (XRD), UV-Vis spectroscopy, and PL measurements at room temperature were used to study the structural and optical properties of the fibers during the sintering process. This work was sponsored by UPRH PREM (NSF-DMR-0934195).

  3. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  4. Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

    PubMed

    Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji

    2017-09-20

    Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

  5. Thermoelectric and mechanical properties of spark plasma sintered Cu3SbSe3 and Cu3SbSe4: Promising thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Toutam, Vijaykumar; Sharma, Sakshi; Singh, Niraj Kumar; Dhar, Ajay

    2014-12-01

    We report the synthesis of thermoelectric compounds, Cu3SbSe3 and Cu3SbSe4, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu3SbSe4 exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu3SbSe3, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu3SbSe4 was found to be ˜1.2 as compared to 0.2 V-1 for Cu3SbSe3 at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.

  6. Sandblasting nozzle

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)

    1981-01-01

    A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.

  7. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  8. Magnetic loss, permeability, and anisotropy compensation in CoO-doped Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Beatrice, Cinzia; Dobák, Samuel; Tsakaloudi, Vasiliki; Ragusa, Carlo; Fiorillo, Fausto; Martino, Luca; Zaspalis, Vassilis

    2018-04-01

    Mn-Zn ferrite samples prepared by conventional solid state reaction method and sintering at 1325 °C were Co-enriched by addition of CoO up to 6000 ppm and characterized versus frequency (DC - 1GHz), peak polarization (2 mT - 200 mT), and temperature (23 °C - 120 °C). The magnetic losses at room temperature are observed to pass through a deep minimum value around 4000 ppm CoO at all polarizations values. This trend is smoothed out either by approaching the MHz range or by increasing the temperature. Conversely, the initial permeability attains its maximum value around the same CoO content, while showing moderate monotonical decrease with increasing CoO at the typical working temperatures of 80 - 100 °C. The energy losses, measured by a combination of fluxmetric and transmission line methods, are affected by the eddy currents, on the conventional 5 mm thick ring samples, only beyond a few MHz. Their assessment relies on the separation of rotational and domain wall processes, which can be done by analysis of the complex permeability and its frequency behavior. This permits one, in particular, to calculate the magnetic anisotropy and its dependence on CoO content and temperature and bring to light its decomposition into the host lattice and Co2+ temperature dependent contributions. The temperature and doping dependence of initial permeability and magnetic losses can in this way be qualitatively justified, without invoking the passage through zero value of the effective anisotropy constant upon doping.

  9. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  10. Sintering activation energy MoSi2-WSi2-Si3N4 ceramic

    NASA Astrophysics Data System (ADS)

    Titov, D. D.; Lysenkov, A. S.; Kargin, Yu F.; Frolova, M. G.; Gorshkov, V. A.; Perevislov, S. N.

    2018-04-01

    The activation energy of sintering process was calculated based on dilatometric studies of shrinkage processes (Mo,W)Si2 + Si3N4 composite ceramic. (Mo,W)Si2 powders was obtained by solid-phase solutions of 70 wt% MoSi2 and 30 wt% WSi2 by SHS in the ISMAN RAS. The concentration rate Si3N4 was from 1 to 15 wt.%. The sintering was carried out to 1850°C in Ar atmosphere the heating rate of 5, 10, 12 and 15°C/min by the way of dilatometer tests. Based on the differential kinetic analysis method (Friedman’s method), the sintering process activation energy of (Mo,W)Si2 + Si3N4 were calculated. The two-stage sintering process and the dependence of the activation energy on the Si3N4 content was shown. Average value of 370 kJ/mol for Q was obtained.

  11. Method and apparatus for semi-solid material processing

    DOEpatents

    Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN

    2009-02-24

    A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.

  12. Method and apparatus for semi-solid material processing

    DOEpatents

    Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN

    2009-11-24

    A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.

  13. Method and apparatus for semi-solid material processing

    DOEpatents

    Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN

    2007-05-15

    A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.

  14. Influence of Sintering Temperature on Hardness and Wear Properties of TiN Nano Reinforced SAF 2205

    NASA Astrophysics Data System (ADS)

    Oke, S. R.; Ige, O. O.; E Falodun, O.; Obadele, B. A.; Mphalele, M. R.; Olubambi, P. A.

    2017-12-01

    Conventional duplex stainless steel degrade in wear and mechanical properties at high temperature. Attempts have been made by researchers to solve this problems leading to the dispersion of second phase particles into duplex matrix. Powder metallurgy methods have been used to fabricate dispersion strengthened steels with a challenge of obtaining fully dense composite and grain growth. This could be resolved by appropriate selection of sintering parameters especially temperature. In this research, spark plasma sintering was utilized to fabricate nanostructured duplex stainless steel grade SAF 2205 with 5 wt.% nano TiN addition at different temperatures ranging from 1000 °C to 1200 °C. The effect of sintering temperature on the microstructure, density, hardness and wear of the samples was investigated. The results showed that the densities and grain sizes of the sintered nanocomposites increased with increasing the sintering temperature. The microstructures reveal ferrite and austenite grains with fine precipitates within the ferrite grains. The study of the hardness and wear behaviors, of the samples indicated that the optimum properties were obtained for the sintering temperature of 1150 °C.

  15. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  16. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul; ...

    2015-11-17

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  17. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. Themore » facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.« less

  18. Structure and properties of sintered MM-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Shang, R. X.; Xiong, J. F.; Li, R.; Zuo, W. L.; Zhang, J.; Zhao, T. Y.; Chen, R. J.; Sun, J. R.; Shen, B. G.

    2017-05-01

    MM14Fe79.9B6.1 magnets were prepared by conventional sintering method. The Curie temperature of the sintered MM2Fe14B magnet was about 210 °C. When the sintering temperature increased from 1010 °C to 1030 °C, the density of the magnet increased from 6.85 g/cm3 to 7.52 g/cm3. After the first stage tempering at 900 °C, the (BH)max and Hcj had a slight increase. The maximum value of (BH)max = 7.6 MGOe and Hcj = 1080 Oe was obtained when sintered at 1010 °C and tempering at 900 °C, respectively. The grain size grew very large when the sintering temperature increased to 1050 °C, and the magnetic properties deteriorated rapidly. La reduced by ˜ 7.5 at. % in grains, which is almost equal to the increased percentage of Nd. That is mainly because La-Fe-B is very difficult to form the 2: 14: 1 phase.

  19. Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ce; Lu, Boxin; Wang, Haiying; Guo, Zhimeng; Paley, Vladislav; Volinsky, Alex A.

    2018-01-01

    Ti-6Al-4V ingots with a nearly 100% density, fine and homogeneous basket-weave microstructure, and better comprehensive mechanical properties (UTS = 935 MPa, Y.S. = 865 MPa, El. = 15.8%), have been manufactured by vacuum pressureless sintering of blended elemental powders. Coarse TiH2 powder, Al powder (2, 20 μm), V powder, and Al-V master alloy powder were used as raw materials to produce different powder mixtures ( D 50 = 10 μm). Then, the compacts made by cold isostatic pressing were consolidated by different sintering curves. A detailed investigation of different as-sintered samples revealed that a higher density can be obtained by generating transient molten Al in the sintering process. Coarse Al powder and a rapid heating rate under the melting point of Al contribute to molten Al formation. The presence of temporary liquid phase changes the sintering mechanism, accelerating the sintering neck formation, improving sinterability of the powder mixtures. Density of 99.5% was achieved at 1150 °C, which is markedly lower than the sintering temperatures reported for conventional blended elemental powder metallurgy routes. In addition, low interstitial content, especially for oxygen (0.17 wt.%), is obtained by strict process control.

  20. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide

    PubMed Central

    Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.

    2016-01-01

    A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidation of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique. PMID:27624641

  1. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide

    DOE PAGES

    Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.

    2016-09-14

    A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidationmore » of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique.« less

  2. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.

    PubMed

    Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji

    2012-02-13

    A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

  3. The study of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Yu, Peng

    Aluminum-based metal matrix composites (MMCs) have been widely used as structural materials in the automobile and aerospace industry due to their specific properties. In this thesis, we report the fabrication of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites by the displacement reactions between Al and selected metal oxides (NiO, CuO and ZnO). These MMCs were produced when the Al-20wt% NiO, Al-20wt% CuO and Al-10wt% ZnO green compacts were reaction sintered in the tube furnaces. In this work, differential thermal analysis (DTA) was performed on the green samples. The green samples were then sintered separately in different tube furnaces for 30 minutes. In order to study the reaction mechanisms, the x-ray diffractometry (XRD) was used to obtain diffraction patterns of these sintered samples, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the microstructures of these samples. The elemental quantitative compositions of samples were determined by the energy dispersive x-ray spectrometry (EDX). In order to study the effect of cooling rate on the samples, the green samples were further sintered to 1000°C and cooled down to room temperature in different conditions: by furnace-cooling, air-quenching, oil-quenching or NaCl-solution-quenching. The SEM, TEM and atomic force microscopy (AFM) were conducted to investigate their microstructures. A microhardness tester was used to measure the hardness values of these samples. It was found that during sintering of the Al-20wt% NiO green sample, displacement reaction between Al and NiO initially occurred in solid-solid form and was soon halted by its products that separated the NiO particles from the Al matrix. The reaction then resumed in solid-liquid form as the temperature increased to the eutectic temperature of Al3Ni-Al when liquid (Al, Ni) phase appeared in the sample. After cooling, Al2O 3 particles, Al3Ni proeutectic phase and fiber-like Al 3Ni-Al eutectic were found in the sintered Al-MMC sample. (Abstract shortened by UMI.)

  4. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  5. Surface structure and electrochemical characteristics of Ti-V-Cr bcc-type solid solution alloys sintered with Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Yoichiro; Yamamoto, Osamu; Matsuda, Hiromu

    2000-07-01

    Ti-V-Cr bcc-type solid solution alloys can absorb a large amount of hydrogen and be applied to active materials of the negative electrode in Ni-MH batteries. However, because of the insolubility of Ni into these alloys, the electrochemical characteristics like discharge capacity and cycle life were poor. In order to increase the discharge capacity of hydrogen absorbing alloy electrodes, Ti-V-Cr bcc-type alloy powders were sintered with Ni in order to form Ni contained surface layer on the alloy surface. As sintering temperature rose up, the surface composition changed from TiNi to Ti{sub 2}Ni. TiNi surface layer showed better electrochemical characteristics. Formore » the Ni adding method, Ni electroless plating was preferred because of good adhesion. As a result of optimized conditions, a discharge capacity of 570 mAh/g and an improvement of cycle life were achieved.« less

  6. Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering

    NASA Astrophysics Data System (ADS)

    Knight, Travis W.; Anghaie, Samim

    2002-11-01

    Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.

  7. Synthesis of One-Dimensional and Hyperbranched Nanomaterials for Lithium-Ion Battery Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Ting

    Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.

  8. Heterotopic bone formation around sintered porous-surfaced Ti-6Al-4V implants coated with native bone morphogenetic proteins.

    PubMed

    Simon, Ziv; Deporter, Douglas A; Pilliar, Robert M; Clokie, Cameron M

    2006-09-01

    Coating endosseous dental implants with growth factors such as bone morphogenetic proteins (BMPs) may be one way to accelerate and/or enhance the quality of osseointegration. The purpose of this study was to investigate in the murine muscle pouch model whether sintered porous-surfaced titanium alloy implants coated with BMPs would lead to heterotopic bone formation around and within the implant surface geometry. Porous-surfaced dental implants were coated with partially purified native human BMPs, with or without a carrier of Poloxamer 407 (BASF Corp., Parsippany, NJ), placed in gelatin capsules and implanted into the hindquarter muscles of mice. Mice were euthanized after 28 days. Sections of retrieved specimens were subsequently prepared for morphometric analysis of bone formation using backscatter electron microscopic images. Human BMPs, either with or without the carrier of Poloxamer 407, led to bone formation within and outside of the sintered porous implant surface. When the sintered implant surface region was subdivided into inner and outer halves, similar levels of bone ingrowth and contact were seen in the 2 halves. Evidence of bone formation to the depth of the solid implant core (i.e., the deepest level possible) also was seen. Sintered porous-surfaced dental implants can be used as substrate for partially purified BMPs in the murine muscle pouch model. With the addition of these osteoinductive factors, the porous implant surface supported bone formation within the surface porosity provided, in some instances, all the way to the solid implant core. The addition of growth factors to a sintered porous surface may be an efficient method for altering locally the healing sequence and quality of bone associated with osseointegration of bone-interfacing implants.

  9. Preparation and Properties of (YCa)(TiMn)O3−δ Ceramics Interconnect of Solid Oxide Fuel Cells

    PubMed Central

    Liou, Yi-Cheng; Tsai, Wen-Chou; Yen, Hao-Hsuan; Chang, Yung-Chia

    2015-01-01

    (YCa)(TiMn)O3–δ ceramics prepared using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. Y2Ti2O7 instead of YTiO3 formed when a mixture of Y2O3 and TiO2 with Y/Ti ratio 1/1 were sintered in air. Y2Ti2O7, YTiO2.085 and some unknown phases were detected in Y0.6Ca0.4Ti0.6Mn0.4O3–δ. Monophasic Y0.6Ca0.4Ti0.4Mn0.6O3–δ ceramics were obtained after 1400–1500 °C sintering. Dense Y0.6Ca0.4Ti0.4Mn0.6O3–δ with a density 4.69 g/cm3 was observed after 1500 °C/4 h sintering. Log σ for Y0.6Ca0.4Ti0.6Mn0.4O3–δ increased from –3.73 Scm–1 at 350 °C to –2.14 Scm–1 at 700 °C. Log σ for Y0.6Ca0.4Ti0.4Mn0.6O3–δ increased from –2.1 Scm–1 at 350 °C to –1.36 Scm–1 at 700 °C. Increasing Mn content decreased activation energy Ea and increased electrical conductivity. Reaction-sintering process is proved to be a simple and effective method to obtain (YCa)(TiMn)O3–δ ceramics for interconnects in solid oxide fuel cells. PMID:28793436

  10. Selective Laser Sintering of Nano Al2O3 Infused Polyamide

    PubMed Central

    Warnakula, Anthony; Singamneni, Sarat

    2017-01-01

    Nano Al2O3 polyamide composites are evaluated for processing by selective laser sintering. A thermal characterization of the polymer composite powders allowed us to establish the possible initial settings. Initial experiments are conducted to identify the most suitable combinations of process parameters. Based on the results of the initial trials, more promising ranges of different process parameters could be identified. The post sintering characterization showed evidence of sufficient inter-particle sintering and intra-layer coalescence. While the inter-particle coalescence gradually improved, the porosity levels slightly decreased with increasing laser power. The nano-filler particles tend to agglomerate around the beads along the solid tracks, possibly due to Van der Walls forces. The tensile stress results showed an almost linear increase with increasing nano-filler content. PMID:28773220

  11. A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering

    PubMed Central

    Liu, L. H.; Yang, C.; Kang, L. M.; Qu, S. G.; Li, X. Q.; Zhang, W. W.; Chen, W. P.; Li, Y. Y.; Li, P. J.; Zhang, L. C.

    2016-01-01

    It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications. PMID:27029858

  12. Average current per vacuum-arc cathode spot and spot velocity in a magnetic field on a CuCr50/50 nanocomposite

    NASA Astrophysics Data System (ADS)

    Zabello, K. K.; Poluyanova, I. N.; Yakovlev, V. V.; Shkol'nik, S. M.

    2017-11-01

    It has been shown that such cathode spot characteristics as the average current per spot and its dependence on tangential magnetic-field induction B t and the spot velocity and its dependence on B t for two CuCr50/50 specimens with very different structures (nanocomposite and "solid-state sintered" composite) almost coincide if the surface of contacts has been totally remelted before measurements with the use of moderate arc currents in the process of conditioning.

  13. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  14. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  15. The properties of LaSrМnO3 powders synthesized at various regimes

    NASA Astrophysics Data System (ADS)

    Mikhailov, M.; Sokolovskiy, A.; Vlasov, V.; Smolin, A.

    2017-09-01

    For the first time the concentration of ferromagnetic and paramagnetic phases in LaSrMnO3 compounds has been defined using diffuse reflection and absorption spectra in the visible and near-infrared regions. The compounds as powders were synthesized by heating La2O3/SrCO3/МnСO3 mixtures at 1200 °C which is less than their sintering temperature. The possibility to obtain LaSrMnO3 powders by solid state synthesis for smart coatings was shown.

  16. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-01-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874

  17. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Kun; Gong, Yunhui; Liu, Boyang

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

  18. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    DOE PAGES

    Fu, Kun; Gong, Yunhui; Liu, Boyang; ...

    2017-04-07

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

  19. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tran, Tien Bich

    As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was consistent during varied heating rate (50--400ºC/min) and varied pressure application (25--90 MPa) studies. While in vitro cytocompatibility studies using MG63 osteoblast-like cells demonstrated the biocompatibility of the FAST-processed specimens, bioactivity was sensitive to processing parameters. Since extensive dehydroxylation reduces the surface charge of the sintered materials, apatite deposition during simulated body fluid immersion only occurred when dehydroxylation was mild---i.e., on specimens sintered at low temperatures (800--900ºC) or for short periods. Microstructural investigations revealed that HA sintered at temperatures above 900ºC under an applied electric field contained nanometric residual pores in grain interiors, as well as micron-sized dehydroxylation-related pores at grain boundaries and grain boundary junctions. These larger pores were responsible for the increasing embrittlement of specimens sintered at higher temperatures. Although grain size dependence could not be found in the 60--100 nm grain size range, fracture toughness (KIC = 1.92 MPa√m, maximum) increased with decreasing sintering temperature. Results from the suite of investigations conducted demonstrate that biocompatible and bioactive nanocrystalline hydroxyapatite with enhanced mechanical properties can be efficiently manufactured by field-assisted sintering under controlled processing conditions.

  20. Development and kinetic analysis of cobalt gradient formation in WC-Co composites

    NASA Astrophysics Data System (ADS)

    Guo, Jun

    2011-12-01

    Functionally graded cemented tungsten carbide (FG WC-Co) is one of the main research directions in the field of WC-Co over decades. Although it has long been recognized that FG WC-Co could outperform conventional homogeneous WC-Co owing to its potentially superior combinations of mechanical properties, until recently there has been a lack of effective and economical methods to make such materials. The lack of the technology has prevented the manufacturing and industrial applications of FG WC-Co from becoming a reality. This dissertation is a comprehensive study of an innovative atmosphere heat treatment process for producing FG WC-Co with a surface cobalt compositional gradient. The process exploited a triple phase field in W-C-Co phase diagram among three phases (solid WC, solid Co, and liquid Co) and the dependence of the migration of liquid Co on temperature and carbon content. WC-Co with a graded surface cobalt composition can be achieved by controlling the diffusion of carbon transported from atmosphere during sintering or during postsintering heat treatment. The feasibility of the process was validated by the successful preparations of FG WC-Co via both carburization and decarburization process following conventional liquid phase sintering. A study of the carburization process was undertaken to further understand and quantitatively modeled this process. The effects of key processing parameters (including heat treating temperature, atmosphere, and time) and key materials variables (involving Co content, WC grain size, and addition of grain growth inhibitors) on the formation of Co gradients were examined. Moreover, a carbon-diffusion controlled kinetic model was developed for simulating the formation of the gradient during the process. The parameters involved in this model were determined by thermodynamic calculations and regression-fit of simulation results with experimental data. In summary, this research first demonstrated the principle of the approach. Second, a model was developed to predict the gradients produced by the carbon-controlled atmosphere heat treatment process, which is useful for manufacturing WC-Co with designed gradients. FG WC-Co materials produced using this method are expected to exhibit superior performance in many applications and to have a profound impact on the manufacturing industries that use tungsten carbide tools.

  1. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  2. Densification of Zirconia with Borates.

    DTIC Science & Technology

    1980-01-24

    solid electrolytes for fuel cell and oxygen sensor applications.1 ’ 2 The sintering temperatures for commercial quality stabilized zirconia powders are...in the temperature range 1450-1500C). A few studies were also made using a much coarser particle size (- 1-2 pm ave.) cubic stabilized zirconia ... powder , "Zircoa B" [Zirconia Corp. of America]. The additives used as sintering aids were reagent grade horic anhydride, calcium metaborate and calcium

  3. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  4. Sintering in Ceramics and Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hunt, Clay Dale

    Nature's propensity to minimize energy, and the change in energy with respect to position, drives diffusion. Diffusion is a means by which mass transport resulting in the bonding of the particles of a powder compact can be achieved without melting. This phenomenon occurs in powdered materials near their melting temperature, and is referred to as "sintering". Because of the extreme melting temperature of some materials, sintering might be the only practical means of processing. The complexity and subtlety of sintering ceramics motivated the evaluation of empirical data and existing sintering models. This project examined polycrystalline cubic-zirconia sintering with and without transition-metal oxide additions that change sintering behavior. This study was undertaken to determine how sintering aids affect the driving force, and activation energy, the energy barrier that must be overcome in order for an atom or ion to diffuse, of the densification occurring during sintering. Examination of commercially-available cubic-zirconia powder sintering behavior was undertaken with dilatometry, which allows monitoring of the length change a material undergoes as it sinters, and with scanning electron microscopy, which facilitates the study of sintered-sample microstructure. MATLAB algorithms quantifying sintering results were developed. Results from this work include proposed definitions of a 26-year-old undefined function of density factor in a well-accepted mathematical model of sintering. These findings suggest activation energy is not changing with density, as is suggested by recent published results. The first numerical integration of the studied sintering model has been performed. With these tools, a measure of the activation energy of densification of cubic-zirconia with and without the addition of cobalt-oxide as a sintering aid has been performed. The resulting MATLAB algorithms can be used in future sintering studies. It is concluded that sintering enhancement achieved with cobalt-oxide addition comes from reduction in activation energy of densification of cubic-zirconia. Further, it is suggested that the activation energy of densification does not change with material density. This conclusion is supported by the sensitivity of the numerical integration of the aforementioned sintering model to changes in activation energy.

  5. Techno-Economic Assessment of Recycling BOF Offgas Cleaning System Solid Wastes by Using Zinc-Free Scrap

    NASA Astrophysics Data System (ADS)

    Ma, Naiyang

    High zinc concentration in basic oxygen furnace (BOF) steelmaking offgas (OG) cleaning system solid wastes is one of the main barriers for recycling of the solid wastes in sintering — blast furnace ironmaking process. One of the possible solutions is to utilize zinc-free scrap in BOF steelmaking so that the BOF OG solid wastes will not be contaminated with zinc and can be recycled through sintering — blast furnace ironmaking. This paper describes a model for helping to decide whether to use zinc-free scrap in a BOF process. A model computing marginal price increment of zinc-free scrap is developed. The marginal price increment is proportional to value change of the BOF OG solid wastes after and before using zinc-free scrap, to ratio of BOF solid waste rate to purchased galvanized scrap rate, and to price of galvanized scrap. Due to the variations of consumption rate of purchased galvanized scrap and home galvanized scrap, iron ore price, landfill cost, and price of purchased galvanized scrap, using zinc-free scrap in a BOF process might be economically feasible for some ironmaking and steelmaking plants or in some particular market circumstances.

  6. The Influence of Sintering Method on Kaolin-Based Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene as Binder

    NASA Astrophysics Data System (ADS)

    Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.

    2017-11-01

    The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.

  7. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    PubMed

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.

  8. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Shashanka, E-mail: shashankaic@gmail.com; Chaira, D., E-mail: chaira.debasis@gmail.com

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argonmore » atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.« less

  9. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOEpatents

    McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.

    1999-01-01

    A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

  10. The Operating Principle of a Fully Solid State Active Magnetic Regenerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar

    As an alternative refrigeration technology, magnetocaloric refrigeration has the potential to be safer, quieter, more efficient, and more environmentally friendly than the conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. This paper presents an operating principle of a fully solid state AMR, in which an alternative mechanism for heat transfer between the AMR and the heat source/sink is proposed. The operating principle of the fullymore » solid state AMR is based on moving rods/sheets (e.g. copper, brass, iron or aluminum), which are employed to replace the heat transfer fluid. Such fully solid state AMR would provide a significantly higher heat transfer rate than a conventional AMR because the conductivity of moving solid rods/plates is high and it enables the increase in the machine operating frequency hence the cooling capacity. The details of operating principle are presented and discussed here. One of the key enabling features for this technology is the contact between the moving rods/sheets and magnetocaloric material, and heat exchange mechanism at the heat source/sink. This paper provides an overview of the design for a fully solid state magnetocaloric refrigeration system along with guidelines for their optimal design.« less

  11. Solid-state NMR imaging system

    DOEpatents

    Gopalsami, Nachappa; Dieckman, Stephen L.; Ellingson, William A.

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  12. United States - Japan Workshop on Dielectric and Piezoelectric Ceramics (3rd) Held in Toyama, Japan on November 9-12, 1986.

    DTIC Science & Technology

    1987-07-30

    produced by the hydrothern-al syn- thesis method is the most easily sinterable independent of whether or not an additive is added. Based on this...combination properties of a stacked ceramic formed of (E) and a conventional ceramic. Aml (I ,, __________ ,__ (Cl 0D) Er " -120 70 20 , Er- 0 - ’ 80 I so...such an additive for low firing temperature to easily sin- terable Barium Titanate obtained by the hydrothermal syn- thesis method. It is also

  13. Production technology of an electrolyte for Na/S batteries

    NASA Astrophysics Data System (ADS)

    Heimke, G.; Mayer, H.; Reckziegel, A.

    1982-05-01

    The trend to develop a cheap electrochemical electric battery and the development of the Na/S system are discussed. The main element in this type of battery is the beta Al2O3 solid electrolyte. Characteristics for this material of first importance are: specific surface, density of green and of sintered material, absence of cracks, gas permeability, resistance to flexion, purity, electrical conductivity, crystal structure and dimensions. Influence of production method on all these characteristics were investigated, e.g., method of compacting powder, tunnel kiln sintering versus static chamber furnace sintering, sintering inside a container or not, and type of kiln material when sintering in a container. In the stationary chamber furnace, beta alumina ceramics were produced with a density of 3.2 g/cm3, a mechanical strength higher than 160 MPa, and an electrical conductivity of about 0.125 Ohm-1cm-1 at 300 C. The best kiln material proved to be MgO and MgAl2O3.MgO ceramics.

  14. Metal-Intermetallic Laminate Ti-Al3Ti Composites Produced by Spark Plasma Sintering of Titanium and Aluminum Foils Enclosed in Titanium Shells

    NASA Astrophysics Data System (ADS)

    Lazurenko, Daria V.; Mali, Vyacheslav I.; Bataev, Ivan A.; Thoemmes, Alexander; Bataev, Anatoly A.; Popelukh, Albert I.; Anisimov, Alexander G.; Belousova, Natalia S.

    2015-09-01

    Metal-intermetallic laminate composites are considered as promising materials for application in the aerospace industry. In this study, Ti-Al3Ti composites enclosed in titanium cases were produced by reactive spark plasma sintering. Sintering was carried out at 1103 K and 1323 K (830 °C and 1050 °C) for 10 minutes. In both cases, high-quality Ti-Al3Ti composites containing thin transition layers at the interfaces were obtained. Al2Ti, AlTi, and AlTi3 intermetallic phases and a solid solution of aluminum in titanium were observed in the transition layers by scanning and transmission electron microscopy. The material sintered at 1323 K (1050 °C) had higher strength in comparison with the composite obtained at 1103 K (830 °C). However, the hardness of the intermetallic component in the sample sintered at higher temperature decreased due to the grain growth. The impact toughness values of both materials were approximately identical.

  15. Processing of uranium dioxide nuclear fuel pellets using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ge, Lihao

    Uranium dioxide (UO2), one of the most common nuclear fuels, has been applied in most of the nuclear plant these days for electricity generation. The main objective of this research is to introduce a novel method for UO 2 processing using spark plasma sintering technique (SPS). Firstly, an investigation into the influence of processing parameters on densification of UO2 powder during SPS is presented. A broad range of sintering temperatures, hold time and heating rates have been systematically varied to investigate their influence on the sintered pellet densification process. The results revealed that up to 96% theoretical density (TD) pellets can be obtained at a sintering temperature of 1050 °C for 30s hold time and a total run time of only 10 minutes. A systematic study is performed by varying the sintering temperature between 750°C to 1450°C and hold time between 0.5 min to 20 min to obtain UO2 pellets with a range of densities and grain sizes. The microstructure development in terms of grain size, density and porosity distribution is investigated. The Oxygen/Uranium (O/U) ratio of the resulting pellets is found to decrease after SPS. The mechanical and thermal properties of UO2 are evaluated. For comparable density and grain size, Vickers hardness and Young's modulus are in agreement with the literature value. The thermal conductivity of UO2 increases with the density but the grain size in the investigated range has no significant influence. Overall, the mechanical and thermal properties of UO2 are comparable with the one made using conventional sintering methods. Lastly, the influence of chromium dioxide (Cr2O3) and zirconium diboride (ZrB2) on the grain size of doped UO 2 fuel pellet is performed to investigate the feasibility of producing large-grain-size nuclear fuel using SPS. The benefits of using SPS over the conventional sintering of UO2 are summarized. The future work of designing macro-porous UO2 pellet and thorium dioxide (ThO 2) cored UO2 pellet is also proposed.

  16. Summary of Liquid Oxygen/Hydrogen, Direct Metal Laser Sintering Injector Testing and Evaluation Effort at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barnett, Gregory; Bullard, David B.

    2015-01-01

    The last several years have witnessed a significant advancement in the area of additive manufacturing technology. One area that has seen substantial expansion in application has been laser sintering (or melting) in a powder bed. This technology is often termed 3D printing or various acronyms that may be industry, process, or company specific. Components manufactured via 3D printing have the potential to significantly reduce development and fabrication time and cost. The usefulness of 3D printed components is influenced by several factors such as material properties and surface roughness. This paper details three injectors that were designed, fabricated, and tested in order to evaluate the utility of 3D printed components for rocket engine applications. The three injectors were tested in a hot-fire environment with chamber pressures of approximately 1400 psia. One injector was a 28 element design printed by Directed Manufacturing. The other two injectors were identical 40 element designs printed by Directed Manufacturing and Solid Concepts. All the injectors were swirl-coaxial designs and were subscale versions of a full-scale injector currently in fabrication. The test and evaluation programs for the 28 element and 40 element injectors provided a substantial amount of data that confirms the feasibility of 3D printed parts for future applications. The operating conditions of previously tested, conventionally manufactured injectors were reproduced in the 28 and 40 element programs in order to contrast the performance of each. Overall, the 3D printed injectors demonstrated comparable performance to the conventionally manufactured units. The design features of the aforementioned injectors can readily be implemented in future applications with a high degree of confidence.

  17. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    NASA Astrophysics Data System (ADS)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  18. Effects of Sintering Holding Time on the Structural, Electrical and Magnetic Properties of Zn0.95Ni0.05O

    NASA Astrophysics Data System (ADS)

    Ginting, M.; Aryanto, D.; Kurniawan, C.; Sari, A. Y.; Subhan, A.; Sudiro, T.; Sebayang, P.; Tarigan, E. R.; Nasruddin, M. N.; Sebayang, K.

    2017-05-01

    Zn0.95Ni0.05O has been synthesized by mixing 5% mol of NiO into ZnO using solid state reaction and high-speed shaker mill method. The samples were sintered at 900 °C with holding time for 2, 4 and 8 hours. Crystal structure, electrical and magnetic properties of Zn0.95Ni0.05O were characterized by using XRD, I-V, C-V and VSM. XRD results showed that variation of holding time does not change the structure of ZnO and no other secondary phase observed. The value of lattice parameters (a and c) tends to decrease proportionally to the holding time. The Intensity value changes and the peak shifted to a higher 2θ angle due to holding time variation. In general, the conductance of Zn0.95Ni0.05O decreases and the magnetic properties decrease also as the holding time is increased.

  19. Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum

    NASA Astrophysics Data System (ADS)

    Wen, Wangxi; Li, Chunchun; Sun, Yihua; Tang, Ying; Fang, Liang

    2018-02-01

    An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (˜ 97.2%) and best microwave dielectric properties with ɛ r = 7.2, Q × f = 19,300 GHz, and τ f = - 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.

  20. Effect of structural phase transformation in FeGaO{sub 3} on its magnetic and ferroelectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lone, A. G., E-mail: agl221986@gmail.com; Bhowmik, R. N.

    2015-06-24

    We investigate the structural phase transformation from orthorhombic to rhombohedral structure in FeGaO{sub 3} by adopting a combined effect of mechanical alloying/milling and solid state sintering techniques. The structural phase formation of the FeGaO{sub 3} compound has been characterized by X-ray diffraction pattern. Mechanical milling played a significant role on the stabilization of rhombohedral phase in FeGaO{sub 3}, where as high temperature sintering stabilized the system in orthorhombic phase. A considerable difference has been observed in magnetic and ferroelectric properties of the system in two phases. The system in rhombohedral (R-3c) phase exhibited better ferromagnetic and of ferroelectric properties atmore » room temperature in comparison to orthorhombic (Pc2{sub 1}n) phase. The rhombohedral phase appears to be good for developing metal doped hematite system for spintronics applications and in that process mechanical milling played an important role.« less

  1. Relationship between fabrication method and chemical stability of Ni-BaZr0.8Y0.2O3-δ membrane

    NASA Astrophysics Data System (ADS)

    Fang, Shumin; Wang, Siwei; Brinkman, Kyle S.; Su, Qing; Wang, Haiyan; Chen, Fanglin

    2015-03-01

    NiO effectively promotes the sintering of highly refractory Y-doped BaZrO3 (BZY) through the formation of BaY2NiO5, providing a simple and cost-effective method for the fabrication of dense BZY electrolyte and Ni-BZY hydrogen separation membrane at ∼1400 °C. Unfortunately, insulating BaCO3 and Y2O3 phases formed on the surface of BZY and Ni-BZY prepared by solid state reaction method with NiO after annealing in wet CO2. Ni-BZY membranes prepared from different methods suffered different degree of performance loss in wet H2 at 900 °C. The chemical instability of Ni-BZY is attributed to the formation of a secondary phase (BaY2O4) generated from the reduction of BaY2NiO5 in H2 during the sintering process. Both BaY2O4 and BaY2NiO5 react with H2O, and CO2 at elevated temperatures, generating insulating Ba(OH)2 and BaCO3 phases, respectively. The less BaY2O4 is formed in the fabrication process, the better chemical stability the Ni-BZY membranes possess. Therefore, a new Ni-BZY membrane is prepared through a judicial combination of BZY powders prepared from combined EDTA-citric and solid state reaction methods, and demonstrates exceptional chemical stability in H2O and CO2, enabling stable and even improved hydrogen flux in wet 50% CO2 at 900 °C.

  2. Solar power satellite system definition study. Volume 4: Solid State SPS Analysis, Phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A 2500 megawatt solid ground output Solar Power Satellite (SPS) of conventional configuration was designed and analyzed. Because the power per receiving antenna is halved, as compared with the klystron reference, twice the number of receiving antennas are needed to deliver the same total power. The solid state approach appears feasible with a slightly greater specific mass and slightly higher cost than the klystron SPS design.

  3. Emulating short-term synaptic dynamics with memristive devices

    NASA Astrophysics Data System (ADS)

    Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis

    2016-01-01

    Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems.

  4. Processing and properties of SiC whisker reinforced Si sub 3 N sub 4 ceramic matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, S.D.

    1991-01-01

    Silicon carbide whiskers reinforced silicon nitride ceramic matrix composites were pressureless sintered to high density by liquid phase sintering. Important processing parameters included: whisker dispersion by ultrasonic shear homogenization, particle refinement by attrition milling, pressure slip casting to obtain high greed densities, and sintering in a protective powder bed to limit decomposition. Composites with a {beta}20-Si{sub 3}N{sub 4} solid solution matrix containing 20 vol.% SiC whiskers were sintered to 98-100% theoretical density; composites having a Si{sub 3}N{sub 4} matrix containing YAG sintering aid were sintered to 98% of the theoretical density with 20 vol.% SiC whiskers, and 94% density withmore » 30 vol.% SiC whiskers. Analysis of the pressureless sintered composites revealed orientation of the SiC whiskers and the Si{sub 3}N{sub 4} matrix grains. The mechanical properties of hot pressed Si{sub 3}N{sub 4} composites reinforced with 20 vol.% SiC whiskers were shown to depend on the characteristics of the intergranular phase. Variations in the properties of the composites were analyzed in terms of the amount and morphology of the secondary phase, and the development of internal residual stresses due to the thermal expansion mismatch between the sintering aid phase at the grain boundaries.« less

  5. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  6. Combinatorial synthesis of phosphors using arc-imaging furnace

    PubMed Central

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-01-01

    We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432

  7. Combinatorial synthesis of phosphors using arc-imaging furnace

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-10-01

    We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  8. Extremely dense microstructure and enhanced ionic conductivity in hot-isostatic pressing treated cubic garnet-type solid electrolyte of Ga2O3-doped Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming’En; Hu, Zhiwei; Zhu, Jiliang

    A large number of pores and a low relative density that are frequently observed in solid electrolytes reduce severely their ionic conductivity and thus limit their applicability. Here, we report on the use of hot isostatic pressing (HIP) for ameliorating the garnet-type lithium-ion conducting solid electrolyte of Ga2O3-doped Li7La3Zr2O12 (Ga-LLZO) with nominal composition of Li6.55Ga0.15La3Zr2O12. The Ga-LLZO pellets were conventionally sintered at 1075∘C for 12h, and then were followed by HIP treatment at 120MPa and 1160∘C under an Ar atmosphere. It is found that the HIP-treated Ga-LLZO shows an extremely dense microstructure and a significantly enhanced ionic conductivity. Coherent with the increase in relative density from 90.5% (untreated) to 97.5% (HIP-treated), the ionic conductivity of the HIP-treated Ga-LLZO reaches as high as 1.13×10‑3S/cm at room temperature (25∘C), being two times higher than that of 4.58×10‑4S/cm for the untreated one.

  9. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  10. Ash formation, deposition, corrosion, and erosion in conventional boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, S.A.; Jones, M.L.

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustionmore » and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.« less

  11. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less

  12. 77 FR 51046 - Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2908] Certain Sintered Rare Earth Magnets, Methods of... Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same, DN 2908; the... importation, and the sale within the United States after importation of certain sintered rare earth magnets...

  13. Thermoelectric and mechanical properties of spark plasma sintered Cu{sub 3}SbSe{sub 3} and Cu{sub 3}SbSe{sub 4}: Promising thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah

    2014-12-29

    We report the synthesis of thermoelectric compounds, Cu{sub 3}SbSe{sub 3} and Cu{sub 3}SbSe{sub 4}, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu{sub 3}SbSe{sub 4} exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu{sub 3}SbSe{sub 3}, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu{sub 3}SbSe{sub 4} was found to be ∼1.2 as compared to 0.2 V{sup −1} for Cu{sub 3}SbSe{sub 3} at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracturemore » toughness values were far superior to the other competing state-of-the-art thermoelectric materials.« less

  14. Phase formation and microstructure of gamma irradiated Bi-2223 Superconductor

    NASA Astrophysics Data System (ADS)

    ‘Atiqah Mohiju, Zaahidah; Alieya Adnan, Natasha; Hamid, Nasri A.; Abdullah, Yusof

    2018-01-01

    The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.

  15. Ferroelectric and dielectric properties of BaTi0.9Zr0.1O3 doped with Li0.5Fe2.5O4 ceramics

    NASA Astrophysics Data System (ADS)

    Gajula, Ganapathi Rao; Buddiga, Lakshmi Rekha; Chidambara Kumar, K. N.; Ch, Arun Kumar; Samatha, K.; Kokkiragadda, Sreeramachandra Murthy; Dasari, Madhava Prasad

    2018-06-01

    We have prepared a composite BaTi0.9Zr0.1O3 (BTZr) doped with Li0.5Fe2.5O4 (LF) having chemical formulae (1- x) BTZr + (x) LF (x=0, 0.05, 0.1 and 0.15) conventional solid state reaction technique. We have sintered the grown composites at 1150 °C for 3 h. We have characterized the grown composites using XRD, FESEM, P-E loop tracer and LCR meter. The XRD measurements reveal the tetragonal nature of the composites. The morphological studies reveal that the composite exhibits dense microstructure with small pores. The P-E loops confirm that the composites exhibit remnant polarization and the coercive field increases with increasing concentration of Lithium Ferrite (LF). We have studied dielectric property of the composites by varying the temperature of the sample from 30 °C to 500 °C at 1 kHz, 10 kHz and also by varying the frequency from 1 Hz to 10 MHz at 30 °C. The dielectric property of BTZr has increased after doping LF in BTZr which reveals the enhancement of electrical properties of the grown composite.

  16. Application of the Zero-Order Reaction Rate Model and Transition State Theory to predict porous Ti6Al4V bending strength.

    PubMed

    Reig, L; Amigó, V; Busquets, D; Calero, J A; Ortiz, J L

    2012-08-01

    Porous Ti6Al4V samples were produced by microsphere sintering. The Zero-Order Reaction Rate Model and Transition State Theory were used to model the sintering process and to estimate the bending strength of the porous samples developed. The evolution of the surface area during the sintering process was used to obtain sintering parameters (sintering constant, activation energy, frequency factor, constant of activation and Gibbs energy of activation). These were then correlated with the bending strength in order to obtain a simple model with which to estimate the evolution of the bending strength of the samples when the sintering temperature and time are modified: σY=P+B·[lnT·t-ΔGa/R·T]. Although the sintering parameters were obtained only for the microsphere sizes analysed here, the strength of intermediate sizes could easily be estimated following this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Effect of fiber addition on slow crack growth of a dental porcelain.

    PubMed

    de Araújo, Maico Dutra; Miranda, Ranulfo Benedito de Paula; Fredericci, Catia; Yoshimura, Humberto Naoyuki; Cesar, Paulo Francisco

    2015-04-01

    To evaluate the effect of the processing method (conventional sintering, S, and heat-pressing, HP) and addition of potassium titanate fibers, PTF, on the microstructure, mechanical properties (flexural strength, σf, and Weibull parameters, m and σ5%), slow crack growth parameters n (stress corrosion susceptibility coefficient), and optical properties (translucency parameter, TP, and opalescence index, OI) of a feldsphatic dental porcelain. Disks (n = 240, Ø12 × 1 mm) of porcelain (Vintage-Halo, Shofu) were produced using S and HP methods with and without addition of 10 wt% (conventional sintering) or 5 wt% (heat-pressing) of PTF. For the S method, porcelain was sintered in a conventional furnace. In the HP technique, refractory molds were produced by lost wax technique. The porcelain slurry was dry-pressed (3t/30s) to form a cylinder with 12 mm (diameter) and 20mm (height), which was heat-pressed for 5 min/3.5 bar into the mold. Specimens were tested for biaxial flexural strength in artificial saliva at 37°C. Weibull analysis was used to determine m and σ5%. Slow crack growth (SCG) parameters were determined by the dynamic fatigue test, and specimens were tested in biaxial flexure at five stress rates: 10(-2), 10(-1), 10(0), 10(1) and 10(2)MPa/s (n=10), immersed in artificial saliva at 37°C. Parameter n was calculated and statistically analyzed according to ASTM F394-78. Optical properties were determined in a spectrophotometer in the diffuse reflectance mode. The highest n value was obtained by the combination of heat-pressing with fiber addition (37.1) and this value was significantly higher than those obtained by both sintered groups (26.2 for control group and 27.7 for sintered with fiber). Although heat-pressing alone also resulted in higher n values compared to the sintered groups, there were no significant differences among them. Fiber addition had no effect on mechanical strength, but it resulted in decreased TP values and increased OI values for both processing methods. Heat-pressing alone was able to reduce the porosity level of the porcelain. Addition of PTF combined with heat-pressing can reduce strength degradation of a dental porcelain compared to sintered materials with or without fibers. Heat-pressing (HP) alone should be considered as a good alternative for clinical cases where high translucency is required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Long-Term Cr Poisoning Effect on LSCF-GDC Composite Cathodes Sintered at Different Temperatures

    DOE PAGES

    Xiong, Chunyan; Taillon, Joshua A.; Pellegrinelli, Christopher; ...

    2016-07-19

    Here, the impact of sintering temperature on Cr-poisoning of solid oxide fuel cell (SOFC) cathodes was systematically studied. La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ - Ce 0.9Gd 0.1O 2-δ symmetric cells were aged at 750°C in synthetic air with the presence of Crofer 22 APU, a common high temperature interconnect, over 200 hours and electrochemical impedance spectroscopy (EIS) was used to determine the degradation process. Both the ohmic resistance (R Ω) and polarization resistance (R P) of LSCF-GDC cells, extracted from EIS spectra, for different sintering temperatures increase as a function of aging time. Furthermore, the Cr-related degradation rate increasesmore » with decreased cathode sintering temperature. The polarization resistance of cathode sintered at lower temperature (950°C) increases dramatically while aging with the presence of Cr and also significantly decreases the oxygen partial pressure dependence after aging. The degradation rate shows a positive correlation to the concentration of Cr. The results indicate that decreased sintering temperature increases the total surface area, leading to more available sites for Sr-Cr-O nucleation and thus greater Cr degradation.« less

  19. Low-temperature sintering and electrical properties of strontium- and magnesium-doped lanthanum gallate with V2O5 additive

    NASA Astrophysics Data System (ADS)

    Ha, Sang Bu; Cho, Yoon Ho; Ji, Ho-Il; Lee, Jong-Ho; Kang, Yun Chan; Lee, Jong-Heun

    2011-03-01

    The effects of a V2O5 additive on the low-temperature sintering and ionic conductivity of strontium- and magnesium-doped lanthanum gallate (LSGM: La0.8Sr0.2Ga0.8Mg0.2O2.8) are studied. The LSGM powders prepared by the glycine nitrate method are mixed with 0.5-2 at.% of VO5/2 and then sintered at 1100-1400 °C in air for 4 h. The apparent density and phase purity of the LSGM specimens are increased with increasing sintering temperature and VO5/2 concentration due to the enhanced sintering and mass transfer via the intergranular liquid phase. The 1 at.% VO5/2-doped LSGM specimen sintered at 1300 °C exhibits a high oxide ion conductivity of ∼0.027 S cm-1 at 700 °C over a wide range of oxygen partial pressure (PO2 =10-27 - 1 atm), thereby demonstrating its potential as a useful electrolyte for anode-supported solid oxide fuel cells (SOFCs) without the requirement for any buffer layer between the electrolyte and anode.

  20. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity.

    PubMed

    Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F

    2012-04-07

    Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.

  1. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered materials. While FAST sintered materials showed higher average values, in general they also showed consistently larger variation in the scattered data and consequently larger standard deviation for the resulting material properties. In addition, dynamic impact testing (V50 test) was conducted on the resulting materials and it was determined that there was no discernable correlation between observed mechanical properties of the ceramic materials and the resulting dynamic testing. Another study was conducted on the sintering of SiC and carbon fiber reinforced SiC ceramic matrix composites (CMC) using FAST. There has been much interest recently in fabricating high strength, low porosity SiC CMC.s for high temperature structural applications, but the current methods of production, namely chemical vapor infiltration (CVI), melt infiltration (MI), and polymer infiltration and pyrolysis (PIP), are considered time consuming and involve material related shortcomings associated with their respective methodologies. In this study, SiC CMC.s were produced using the 25 ton laboratory unit with a target sample size of 40 mm diameter and 3 mm thickness, as well as on the larger 250 ton industrial FAST system targeting a sample size of 101.6 x 101.6 x 3 mm3 to investigate issues associated with scaling. Several sintering conditions were explored including: pressure of 35-65 MPa, temperature of 1700-1900°C, and heating rates between 50-400°C/min. The SiC fibers used in this study were coated using chemical vapor deposition (CVD) with boron nitride (BN) and pyrolytic carbon to act as a barrier layer and preserve the integrity of the fibers during sintering. Then the barrier coating was coated by an outer layer of SiC to enhance the bonding between the fibers and the SiC matrix. Microstructures of the sintered samples were examined by FE-SEM. Mechanical properties including flexural strength-deflection and stress-strain were characterized using 4-point bend testing. Tensile testing was performed on the larger 101.6 x 101.6 x 3 mm samples. The microstructures of samples sintered using the 25 ton laboratory FAST system showed a reduction in porosity and good adhesion between the fiber-fiber and fiber-matrix interface. The microstructures of samples sintered on the 250 ton industrial FAST system showed a reduction in porosity, but there was visible reaction of the fiber and fiber coatings with the surrounding matrix. Additionally, there was significant radial cracking of the fibers visible in the microstructures. There is gap in the understanding of sintering behavior between laboratory and industrial scale FAST systems. The vast majority of publications on FAST sintering have been primarily focused on small sample geometries (20 mm diameter, less than 3 mm thick). A study was coordinated to investigate the thermal properties during heating and cooling using a 250 ton industrial FAST system at 900°C using B4C and SiC materials inside the graphite die assembly. The thermal properties were then compared to the resulting material properties of the identically sintered B4C and SiC to approximately 94% relative density, at a temperature of 1950°C, pressure of 45 MPa, 10 minute hold, and heated at a rate of 100°C/min. The study determined that at 900°C there were significant thermal gradients within the system for the examined materials, and that these gradients correlated well with the material property difference of the samples sintered at higher temperatures where the gradients are presumably larger due to an increase in radiative heat loss. The observed temperatures throughout the graphite were significantly different between B4C and SiC. These temperatures also correlated well with the material properties of the sintered products which showed more substantial variation for B4C when compared to SiC which was overall less affected by thermal gradients. This was attributed to the intrinsic thermal conductivity difference between the two subject materials which was manifested as thermal gradients throughout the material and graphite die assembly. Additionally, both the observed temperature gradients throughout the graphite die assembly and the difference in temperature reading between the optical pyrometer and thermocouples were significantly larger for the 250 ton FAST system than previous publications have demonstrated experimentally or via modeling of smaller laboratory scale systems. The findings from this work showed that relative to conventional sintering methods, the FAST process demonstrated comparable or improved material and mechanical properties with a significantly shorter processing cycle. However, the results demonstrated on the 25 ton laboratory scale unit were significantly different compared to results for the same materials sintered using the 250 ton industrial scale unit. The temperature gradients observed on the 250 ton FAST unit were significantly larger than previous reports on smaller FAST units. This result showed future efforts to scale up the FAST sintering process while maintaining similar results will require careful attention to minimizing temperature gradients. This could potentially be achieved by reducing radiative heat loss during processing and/or optimizing the graphite die design and implementing heat spreaders in specific locations dependent on the host material.s thermal and electrical properties as well as the sample geometry.

  2. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Kai; Jia, Lichao; Zhang, Qian; Jiang, San Ping; Chi, Bo; Pu, Jian; Jian, Li; Yan, Dong

    2015-03-01

    Porous Ni-Fe anode supports for intermediate solid oxide fuel cells are prepared by reducing the sintered NiO-(0-50 wt. %) Fe2O3 composites in H2, their microstructure, redox and thermal expansion/cycling characteristics are systematically investigated. The sintered NiO-Fe2O3 composites are consisted of NiO and NiFe2O4, and are fully reducible to porous metallic Ni-Fe alloys in H2 at temperatures between 600 and 750 °C. The porous structure contains pores in bimodal distribution with larger pores between the sintered particles and smaller ones inside the particles. The oxidation resistance of the Ni-Fe alloy anode supports at 600 and 750 °C is increased by the addition of Fe, their oxidation kinetics obeys a multistage parabolic law in the form of (Percentageweightgain /Specificsurfacearea) 2 =kp · t , where kp is the rate constant and t the oxidation time. The dimension of the Ni-Fe anode supports is slightly changed without disintegrating their structure, and Fe addition is beneficial to the redox stability. The TEC of the Ni-Fe alloy anode supports decreases with the increase of Fe content. The anode supports containing Fe is less stable in dimension during thermal cycles due to the continuous sintering, but the dimension change after thermal cycles is within 1%.

  3. Structural and magnetic properties of spark plasma sintered Co-Mg-Zn substituted Ba-Sr hexagonal ferrite magnets

    NASA Astrophysics Data System (ADS)

    Harikrishnan, V.; Vizhi, R. Ezhil; Rajan Babu, D.; Saravanan, P.

    2018-02-01

    The effect of conventional and spark plasma sintering processes on the structural and magnetic properties of Ba0.5Sr0.5Fe12-2xCox(MgZn)x/2O19 (x = 0.2, 0.4 and 0.6) was investigated in this study. XRD patterns of both conventionally sintered (CS) and spark plasma sintered (SPS) samples with x = 0.2 and 0.4 showed the crystallization of Ba0.5Sr0.5Fe12O19-phase with space group of P63/mmc. However, in the case of SPS sample with x = 0.4, a secondary peak of α-Fe2O3 was observed. SEM analysis on the SPS samples revealed dense morphology with low porosity; while the CS samples showed the presence of aggregated particles with spherical shapes. Maximum values of saturation magnetization, MS (58 emu/g) and coercivity, HC (3.5 kOe) were obtained for the CS samples with x = 0.4; while their SPS counterparts revealed increased MS (65 emu/g) and HC (3.9 kOe) values. The observed magnetization reversal behaviour for both sintering conditions were not smooth in the case of x = 0.2, which indicated the existence of two-phase behavior. The temperature dependent magnetization studies for x = 0.2 and 0.4 were performed in order to analyze the variation in Curie temperature against Co-Mg-Zn substitution and the obtained results are discussed on the basis of crystallization of hexaferrite-phase.

  4. Porous-electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1981-09-17

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  5. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  6. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  7. Thermoelectric properties of a doped LaNiO3 perovskite system prepared using a spark-plasma sintering process

    NASA Astrophysics Data System (ADS)

    Tak, Jang-Yeul; Choi, Soon-Mok; Seo, Won-Seon; Cho, Hyung Koun

    2013-07-01

    Both perovskites LaNiO3 and LaCuO3 have a limitation associated with phase transitions for high-temperature thermoelectric applications. The optimized conditions were investigated to obtain the LaNi1- x Cu x O3- δ perovskite single phase showing a Cu-doping effect into Ni sites against unintended deoxidized phases. Three advantages of synergetic effects due to the simultaneous presence of nickel and copper were investigated: a low melting temperature of CuO as compared to that of NiO, the absence of intermediated deoxidized phases in the LaCuO3 system, and the Cu doping effect, which suppresses the formation of intermediate secondary phases. A solid solution was also fabricated using a spark-plasma sintering (SPS) process for the purpose of sintering LaNi1- x Cu x O3- δ compositions at a low sintering temperature.

  8. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.

    PubMed

    Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen

    2016-06-23

    Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  9. Phase transformation in the alumina-titania system during flash sintering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, S. K.; Lebrun, J. M.; Raj, R.

    2016-02-01

    We show that phase transformation in the alumina–titania system, which produces aluminum-titanate, follows an unusual trajectory during flash sintering. The experiments begin with mixed powders of alumina–titania and end in dense microstructures that are transformed into aluminum-titanate. The sintering and the phase transformation are separated in time, with the sintering occurs during Stage II, and phase transformation during Stage III of the flash sintering experiment. Stage III is the steady-state condition of flash activated state that is established under current control, while Stage II is the period of transition from voltage to current control. The extent of phase transformation increasesmore » with the current density and the hold time in Stage III.« less

  10. Solid state neutron detector and method for use

    DOEpatents

    Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren

    2002-01-01

    Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.

  11. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.

    2001-01-01

    A gelcasting method of making an internally graded article includes the steps of: preparing at least two slurries, each of the slurries including a different gelcastable powder suspended in a gelcasting solution, the slurries characterized by having comparable shrinkage upon drying and sintering thereof; casting the slurries into a mold having a selected shape, wherein relative proportions of the slurries is varied in at least one direction within the selected shape; gelling the slurries to form a solid gel while preserving the variation in relative proportions of the slurries; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying because of the variation in relative proportions of the starting slurries. A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  12. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    PubMed

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (P<.05). With regard to ions released, a statistically significant difference was found among the material groups (P<.05); however, no difference was found among the methods. Scanning electron microscopic imaging revealed that the specimens produced by conventional casting were affected to a greater extent by etching and electrochemical corrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Comparative investigation of smooth polycrystalline diamond films on dental burs by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Sein, Htet; Ahmed, Waqar; Rego, Christopher; Jackson, Mark; Polini, Riccardo

    2006-04-01

    Depositions of hot filament chemical vapor-deposited diamond on cobalt-cemented tungsten carbide (WC-Co) rotary cutting dental burs are presented. Conventional dental tools made of sintered polycrystalline diamond have a number of problems associated with the heterogeneity of the crystallite, decreased cutting efficiency, and short life. A preferential (111) faceted diamond was obtained after 15 h of deposition at a growth rate of 1.1 µm/h. Diamond-coated WC-Co dental burs and conventional sintered burs are mainly used in turning, milling, and drilling operations for machining metal ceramic hard alloys such as CoCr, composite teeth, and aluminum alloy in the dental laboratory. The influence of structure, the mechanical characteristics of both diamond grains and hard alloys on the wear behavior, as well as the regimen of grinding on diamond wear are considered. Erosion wear properties are also investigated under air-sand erosion testing. After machining with excessive cutting performance, calculations can be made on flank and crater wear areas. Diamond-coated WC-Co dental burs offered significantly better erosion and wear resistance compared with uncoated WC-Co tools and sintered burs.

  14. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.

    PubMed

    Bolzoni, L; Weissgaerber, T; Kieback, B; Ruiz-Navas, E M; Gordo, E

    2013-04-01

    The Ti-6Al-7Nb alloy was obtained using the blending elemental approach with a master alloy and elemental titanium powders. Both the elemental titanium and the Ti-6Al-7Nb powders were characterised using X-ray diffraction, differential thermal analysis and dilatometry. The powders were processed using the conventional powder metallurgy route that includes uniaxial pressing and sintering. The trend of the relative density with the sintering temperature and the microstructural evolution of the materials sintered at different temperatures were analysed using scanning electron microscopy and X-ray diffraction. A minimum sintering temperature of 1200°C has to be used to ensure the homogenisation of the alloying elements and to obtain a pore structure composed of spherical pores. The sintered samples achieve relative density values that are typical for powder metallurgy titanium and no intermetallic phases were detected. Mechanical properties comparable to those specified for wrought Ti-6Al-7Nb medical devices are normally obtained. Therefore, the produced materials are promising candidates for load bearing applications as implant materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, T., E-mail: ta-matsuoka@mg.ngkntk.co.jp; Kozuka, H.; Kitamura, K.

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patternsmore » confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.« less

  16. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    NASA Astrophysics Data System (ADS)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  17. Investigation of Super Tube Structure and Performance (Postprint)

    DTIC Science & Technology

    2010-04-01

    thermosyphon is claimed as thermally superconductive and offers solid state mode of heat transport. A host of speculations about this claim was emerging...sealed structure and design of a conventional heat pipe or thermosyphon is claimed as thermally superconductive and offers solid state mode of heat...matrix. The tilt angle was varied to check for gravity dependence. Tests were run as step functions allowing the tube to reach steady state at a new

  18. Microwave sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  19. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOEpatents

    McPheeters, C.C.; Dees, D.W.; Myles, K.M.

    1999-03-16

    A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

  20. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  1. Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques.

    PubMed

    Koptyug, Igor V; Sagdeev, Dmitry R; Gerkema, Edo; Van As, Henk; Sagdeev, Renad Z

    2005-07-01

    Multidimensional images of Al2O3 pellets, cordierite monolith, glass tube, polycrystalline V2O5 and other materials have been detected by 27Al, 51V, and 23Na NMR imaging using techniques and instrumentation conventionally employed for imaging of liquids. These results demonstrate that, contrary to the widely accepted opinion, imaging of "rigid" solids does not necessarily require utilization of solid state NMR imaging approaches, pulse sequences and hardware even for quadrupolar nuclei which exhibit line widths in excess of 100 kHz, such as 51V in polycrystalline V2O5. It is further demonstrated that both 27Al NMR signal intensity and spin-lattice relaxation time decrease with increasing temperature and thus can potentially serve as temperature sensitive parameters for spatially resolved NMR thermometry.

  2. Numerical study of the process parameters in spark plasma sintering (sps)

    NASA Astrophysics Data System (ADS)

    Chowdhury, Redwan Jahid

    Spark plasma sintering (SPS) is one of the most widely used sintering techniques that utilizes pulsed direct current together with uniaxial pressure to consolidate a wide variety of materials. The unique mechanisms of SPS enable it to sinter powder compacts at a lower temperature and in a shorter time than the conventional hot pressing, hot isostatic pressing and vacuum sintering process. One of the limitations of SPS is the presence of temperature gradients inside the sample, which could result in non-uniform physical and microstructural properties. Detailed study of the temperature and current distributions inside the sintered sample is necessary to minimize the temperature gradients and achieve desired properties. In the present study, a coupled thermal-electric model was developed using finite element codes in ABAQUS software to investigate the temperature and current distributions inside the conductive and non-conductive samples. An integrated experimental-numerical methodology was implemented to determine the system contact resistances accurately. The developed sintering model was validated by a series of experiments, which showed good agreements with simulation results. The temperature distribution inside the sample depends on some process parameters such as sample and tool geometry, punch and die position, applied current and thermal insulation around the die. The role of these parameters on sample temperature distribution was systematically analyzed. The findings of this research could prove very useful for the reliable production of large size sintered samples with controlled and tailored properties.

  3. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    NASA Astrophysics Data System (ADS)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  4. Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate.

    PubMed

    Fuh, Lih-Jyh; Huang, Ya-Jing; Chen, Wen-Cheng; Lin, Dan-Jae

    2017-06-01

    Dimensional instability caused by sintering shrinkage is an inevitable drawback for conventional processing of hydroxyapatite (HA). A new preparation method for biphasic calcium phosphates was developed to increase micro pores and biodegradation without significant dimensional change. Powder pressed HA discs, under 100MPa, were immersed in a colloidal mixture of tetraethoxysilane (TEOS) and ammonium hydroxide for 10min, followed by drying, and then were sintered at 900°C, 1050°C, and 1200°C, respectively. Comparing with pure HA discs, the newly prepared product sintered up to 1200°C contained silicon substituted HA, beta-tricalcium phosphate, and calcium silicate with better micro-porosity, high specific surface area, less sintering shrinkage and the strength maintained. The cytocompatibility test demonstrated a better viability for D1 mice stem cells cultured on TEOS treated HA for 14days compared to the pure HA. This simple TEOS sol-gel pretreatment has the potential to be applied to any existing manufacturing process of HA scaffold for better control of sintering shrinkage, create micropores, and increase biodegradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life

    DOE PAGES

    Zhang, Zhizhen; Yang, Xiao -Qing; Zhang, Qinghua; ...

    2016-10-31

    Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. Furthermore, all-solid-state batteries have been plagues by the relatively low ionic conductivity of solid electrolytes and large charge-transfer resistance resulted from solid-solid interfaces between electrode materials and solid electrolytes. Here we report a new design strategy for improving the ionic conductivity of solid electrolyte by self-forming a composite material. An optimized Na + ion conducting composite electrolyte derived from the NASICON structure was successfully synthesized, yielding ultra-high ionic conductivity of 3.4 mS cm –1 at 25°C and 14 ms cmmore » –1 at 80°C.« less

  6. Oxide-dispersion strengthening of porous powder metalurgy parts

    DOEpatents

    Judkins, Roddie R.

    2002-01-01

    Oxide dispersion strengthening of porous metal articles includes the incorporation of dispersoids of metallic oxides in elemental metal powder particles. Porous metal articles, such as filters, are fabricated using conventional techniques (extrusion, casting, isostatic pressing, etc.) of forming followed by sintering and heat treatments that induce recrystallization and grain growth within powder grains and across the sintered grain contact points. The result is so-called "oxide dispersion strengthening" which imparts, especially, large increases in creep (deformation under constant load) strength to the metal articles.

  7. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less

  8. Effect of heating parameters on sintering behaviors and properties of mullite whisker frameworks

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Zeng, D. J.; Wang, B.; Yang, J. F.

    2018-04-01

    Mullite whisker frameworks were fabricated by vapor-solid reaction with SiO2, Al2O3 and AlF3 powders as the whisker forming agent at high temperatures. The effects of heating temperature and soaking time on the weight loss, liner shrinkage, porosity, microstructure and compressive strength were investigated. The results showed that with the increasing of the sintering temperature and soaking time, the weight loss and liner shrinkage of the samples increased and the porosities decreased due to the accelerated vapor-solid reaction, resulting in strong bonding and grain growth of the mullite frameworks. The compressive strength of the samples increased with increasing the sintering temperature from 1500 to 1650 °C, and decreased with the soaking time extended to more than 5 h for 1500 °C and 2 h for 1650 °C. A maximum compressive strength of 142 MPa at a porosity of 62.3% was obtained for the mullite whisker framework heated at 1500 °C for 5 h. The enhanced strength was attributed to the strong bonding strength and fine mullite grains resulting from a relative lower heating temperature and a modest soaking time.

  9. Development of Bulk Nanocrystalline Tungsten Alloys for Fusion Reactor Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhigang Zak

    This project developed a technology for manufacturing bulk ultrafine tungsten materials that are at or near full density for fusion reactor structural applications, aiming to improve ductility and toughness of tungsten before and after irradiation. The project involved the development of fabrication processes for making bulk ultrafine grained W, the development of new alloys of ultrafine grained W and evaluations of properties of these specific materials. The goal of this fabrication process is to produce fully dense bulk W with ultrafine grain sizes, with uniform distributions of grain size and additives. To date there is no known process that couldmore » be used to make ultrafine grained tungsten in a fully dense state and in a cost-acceptable fashion. The specific technology described in this proposal for making ultrafine grained tungsten involves a suite of nano-particle processing and sintering techniques. The program also developed new alloys of ultrafine grained W, e.g. W-(Ta,V,Ti)-TiC alloys to improve ductility and toughness before and after irradiation. By completing this project, we achieved the following objectives: • Demonstrated experimentally the feasibility of producing bulk ultrafine grained tungsten alloys (at or near 100% dense, <1000 nm grain size) using the proposed process • Demonstrated the proposed ultrafine grained W alloys, namely, W-(Ta, V, Ti)-TiC, can indeed be made using the proposed process • Demonstrated that the properties of nano tungsten alloys meet the requirements for fusion reactor applications. The overall goal was to harness the potential of ultrafine grained W produced using the proposed processes as the core structural materials for future fusion reactors. The project was very successful overall, meeting all milestones and surpassing project goals in terms of process development and material’s blistering resistance properties. A novel process similar to the conventional press-and-sinter powder metallurgy method was developed for producing ultrafine grain tungsten from nanosize tungsten powders. Grain growth was significantly controlled during sintering by certain alloy compositions, particularly Ti, and most compositions sintered to maximum densification. To optimize this process, the effect of processing parameters on the densification and grain growth of nano-W powders was investigated. Near-fully densified tungsten was obtained at sintering temperatures between 1100 and 1300 °C, and both Ar and H2 sintering atmospheres were investigated. The Ar sintering atmosphere was determined to more favorably promote densification and minimize grain growth. The nanosized tungsten powder compacts were subjected to reduction in H2 as a part of the sintering cycle. The reduction temperature was found to have significant effects on the sintering of nano-W powder, primarily as a result of grain coarsening, which was seen at temperatures as low as 700 °C. In an effort to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this project. The addition of 1 wt.% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. Compared to conventional high temperature sintering, a lower temperature sintering cycle for a longer hold time resulted in both near-full density and fine grain size. The roles of the Ti additives include not only the inhibition of grain growth, but also the potential absorption of oxygen from W particles. The project has resulted in the publication; thus far, of six peer reviewed journal articles and seven conference presentations, as well as a master’s thesis. Two additional journal articles are currently in preparation. Presentations and articles were a particular focus of the second half of the project, once significant experimentation had been performed and analyzed. As part of our efforts to disseminate information of our results, the W research teams with Prof. Fang had a strong presence at multiple international conferences during 2015 and 2016. Several research groups in the US are now performing experiments using the ultrafine grained W materials.« less

  10. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  11. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties

    PubMed Central

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-01-01

    P–type SnS compound and SnS1−xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS–pressurizing direction in the temperature range 323–823 Κ. SnS compound and SnS1−xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m−1 K−1 at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction. PMID:28240324

  12. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties.

    PubMed

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-27

    P-type SnS compound and SnS 1-x Se x solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS 1-x Se x solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m -1  K -1 at 823 K for the composition SnS 0.5 Se 0.5 . With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS 0.2 Se 0.8 along the parallel direction.

  13. Compositional inhomogeneityand segregation in (K 0.5Na 0.5)NbO 3 ceramics

    DOE PAGES

    Chen, Kepi; Tang, Jing; Chen, Yan

    2016-03-11

    The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less

  14. Formation of nickel and copper ferrites in ceramics: a potential reaction in the reuse of iron-rich sludge incineration ash.

    PubMed

    Shih, Kaimin

    2012-12-01

    This study investigates potential solid-state reactions for the stabilization of hazardous metals when reusing the incineration ash from chemically enhanced primary treatment (CEPT) sludge to fabricate ceramic products. Nickel and copper were used as examples of hazardous metals, and the iron content in the reaction system was found to play a major role in incorporating these hazardous metals into their ferrite phases (NiFe2O4 and CuFe2O4). The results from three-hour sintering experiments on NiO + Fe2O3 and CuO + Fe2O3 systems clearly demonstrate the potential for initiating metal incorporation mechanisms using an iron-containing precursor at attainable ceramic sintering temperatures (above 750 degrees C). Both ferrite phases were examined using a prolonged leaching experiment modified from the widely used toxicity characteristic leaching procedure (TCLP) to evaluate their long-term metal leachability. The leaching results indicate that both the NiFe2O4 and the CuFe2O4 products were significantly superior to their oxide forms in immobilizing hazardous metals.

  15. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    NASA Astrophysics Data System (ADS)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-04-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  16. Design and characterization of Yb and Nd doped transparent ceramics for high power laser applications: recent advancements

    NASA Astrophysics Data System (ADS)

    Lapucci, A.; Vannini, M.; Ciofini, M.; Pirri, A.; Nikl, M.; Li, J.; Esposito, L.; Biasini, V.; Hostasa, J.; Goto, T.; Boulon, G.; Maksimov, R.; Gizzi, L.; Labate, L.; Toci, G.

    2017-01-01

    We report a review on our recent developments in Yttebium and Neodymium doped laser ceramics, along two main research lines. The first is the design and development of Yb:YAG ceramics with non uniform doping distribution, for the management of thermo-mechanical stresses and for the mitigation of ASE: layered structures have been produced by solid state reactive sintering, using different forming processes (spray drying and cold press of the homogenized powders, tape cast of the slurry); samples have been characterized and compared to FEM analysis. The second is the investigation of Lutetium based ceramics (such as mixed garnets LuYAG and Lu2O3); this interest is mainly motivated by the favorable thermal properties of these hosts under high doping. We recently obtained for the first time high efficiency laser emission from Yb doped LuYAG ceramics. The investigation on sesquioxides has been focused on Nddoped Lu2O3 ceramics, fabricated with the Spark Plasma Sintering method (SPS). We recently achieved the first laser emission above 1 W from Nd doped Lu2O3 ceramics fabricated by SPS.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kepi; Tang, Jing; Chen, Yan

    The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less

  18. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    NASA Astrophysics Data System (ADS)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing without surface machining.

  19. Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4:Tm3+ Phosphor through Microwave Sintering Method

    PubMed Central

    Lai, Hsuan-Lin; Weng, Min-Hang; Yang, Ru-Yuan; Chang, Shoou-Jinn

    2016-01-01

    An investigation of the photoluminescent properties and crystalline morphology of blue emitting LiBa1−xPO4:xTm3+ phosphors with various concentrations (x = 0.005–0.030) of Tm3+ ions were synthesized by microwave sintering. For comparison, the LiBa1−xPO4:xTm3+ powders sintered at the same sintering condition but in a conventional furnace were also investigated. LiBaPO4 without second phase was formed no matter which furnace was used. More uniform grain size distributions are obtained by microwave sintering. When the concentration of Tm3+ ion was x = 0.015, the luminescence intensity reached a maximum value, and then decreased with the increases of the Tm3+ concentration due to concentration quenching effect. The microwave sintering significantly enhanced the emission intensity of LiBa1−xPO4:xTm3+ phosphors. Additionally, the d-d interaction is the key mechanism of concentration quenching for LiBaPO4:Tm3+. The chromaticity (x, y) for all LiBa1−xPO4:xTm3+ phosphors are located at (0.16, 0.05), which will be classified as a blue region. PMID:28773483

  20. Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT).

    PubMed

    McDonald, S A; Holzner, C; Lauridsen, E M; Reischig, P; Merkle, A P; Withers, P J

    2017-07-12

    Pressureless sintering of loose or compacted granular bodies at elevated temperature occurs by a combination of particle rearrangement, rotation, local deformation and diffusion, and grain growth. Understanding of how each of these processes contributes to the densification of a powder body is still immature. Here we report a fundamental study coupling the crystallographic imaging capability of laboratory diffraction contrast tomography (LabDCT) with conventional computed tomography (CT) in a time-lapse study. We are able to follow and differentiate these processes non-destructively and in three-dimensions during the sintering of a simple copper powder sample at 1050 °C. LabDCT quantifies particle rotation (to <0.05° accuracy) and grain growth while absorption CT simultaneously records the diffusion and deformation-related morphological changes of the sintering particles. We find that the rate of particle rotation is lowest for the more highly coordinated particles and decreases during sintering. Consequently, rotations are greater for surface breaking particles than for more highly coordinated interior ones. Both rolling (cooperative) and sliding particle rotations are observed. By tracking individual grains the grain growth/shrinkage kinetics during sintering are quantified grain by grain for the first time. Rapid, abnormal grain growth is observed for one grain while others either grow or are consumed more gradually.

  1. Solid-state synthesis of nano-sized Ba(Ti1- x Sn x )O3 powders and dielectric properties of corresponding ceramics

    NASA Astrophysics Data System (ADS)

    Ansaree, Md. Jawed; Kumar, Upendra; Upadhyay, Shail

    2017-06-01

    Powders of a few compositions of solid solution BaTi1- x Sn x O3 ( x = 0.0, 0.1, 0.2, 0.3 and 0.40) have been synthesized at 800 °C for 8 h using Ba(NO3)2, TiO2 and SnCl4·5H2O as starting materials. The thermogravimetric (TG) and differential scanning calorimetric (DSC) analysis of mixture in the stoichiometric proportion for sample BaTi0.80Sn0.20O3 have been carried out to understand the formation of solid solutions. Single-phase pure compounds (except x = 0.40) of the samples have been obtained at a lower calcination temperature (800 °C) than that of those reported in the literature for traditional solid-state synthesis making use of oxides and or carbonates as starting material (≥1200 °C). Tetragonal symmetry for compositions x = 0.0 and 0.10, cubic for x = 0.2 and 0.30 were found by X-ray diffraction (XRD) analysis. The transmission electron microscopic (TEM) analysis confirmed that calcined powders have a particle size between 30 and 50 nm. Ceramics of these powders were prepared by sintering at 1350 °C for 4 h. Properties of ceramics obtained in this work have been compared with properties reported in the literature.

  2. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  3. Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young

    2014-12-01

    Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  4. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.

    PubMed

    Chekmenev, Eduard Y; Hu, Jun; Gor'kov, Peter L; Brey, William W; Cross, Timothy A; Ruuge, Andres; Smirnov, Alex I

    2005-04-01

    This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.

  5. Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology

    NASA Astrophysics Data System (ADS)

    Davis, Ryan Scott

    The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.

  6. Monolithic translucent BaMgAl 10O 17:Eu 2+ phosphors for laser-driven solid state lighting

    DOE PAGES

    Cozzan, Clayton; Brady, Michael J.; O’Dea, Nicholas; ...

    2016-10-11

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl 10O 17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). Lastly, the resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  7. Method for preparing boron-carbide articles

    DOEpatents

    Benton, S.T.; Masters, D.R.

    1975-10-21

    The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.

  8. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the "external gelation" sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  9. Grain boundary premelting and activated sintering in binary refractory alloys

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng

    Quasi-liquid intergranular film (IGF) which has been widely observed in ceramic systems can persist into sub-solidus region whereby an analogy to Grain boundary (GB) premelting can be made. In this work, a grain boundary (GB) premelting/prewetting model in a metallic system was firstly built based on the Benedictus' model and computational thermodynamics, predicting that GB disordering can start at 60-85% of the bulk solidus temperatures in selected systems. This model quantitatively explains the long-standing mystery of subsolidus activated sintering in W-Pd, W-Ni, W-Co, W-Fe and W-Cu, and it has broad applications for understanding GB-controlled transport kinetics and physical properties. Furthermore, this study demonstrates the necessity of developing GB phase diagrams as a tool for materials design. Subsequently, Grain boundary (GB) wetting and prewetting in Ni-doped Mo are systematically evaluated via characterizing well-quenched specimens and thermodynamic modeling. In contrast to prior reports, the delta-NiMo phase does not wet Mo GBs in the solid state. In the solid-liquid two-phase region, the Ni-rich liquid wets Mo GBs completely. Furthermore, high-resolution transmission electron microscopy demonstrates that nanometer-thick quasi-liquid IGFs persist at GBs into the single-phase region where the bulk liquid phase is no longer stable; this is interpreted as a case of GB prewetting. An analytical thermodynamic model is developed and validated, and this model can be extended to other systems. Furthermore, the analytical model was refined based upon Beneditus' model with correction in determining interaction contribution of interfacial energy. A calculation-based GB phase diagram for Ni-Mo binary system was created and validated by comparing with GB diffusivities determined through a series of controlled sintering experiments. The dependence of GB diffusivity on doping level and temperature was examined and compared with model-predicted GB phase diagram. The consistency between GB phase diagram and GB diffusivity was evidently observed. This study revealed the existence of quasi-liquid IGF in Ni-Mo and re-confirmed our prior hypothesis proposed through work in Ni-W system. It also demonstrated further the necessity of a GB phase diagram as a new tool to guide the materials processing or design, such as selection of sintering aid and heat-treatment.

  10. Role of carbon nanotube dispersion in fracture toughening of plasma sprayed aluminum oxide-carbon nanotube nanocomposite coating

    NASA Astrophysics Data System (ADS)

    Balani, Kantesh

    Aluminum oxide (Al2O3, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of Al 2O3 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for Al2O3 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed Al2O3-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried Al2O 3 (A-SD), Al2O3 blended with 4wt.% CNT (A4C-B), composite spray dried Al2O3-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8C-SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20% (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43% (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The Al2O3/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the Al2O 3/CNT interface. Contrasting storage modulus was obtained by nanoindentation (˜210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.

  11. Flexible solid-state symmetric supercapacitors based on MnO2 nanofilms with high rate capability and long cyclability

    NASA Astrophysics Data System (ADS)

    Wu, Lingxia; Li, Ruizhi; Guo, Junling; Zhou, Cheng; Zhang, Wenpei; Wang, Chong; Huang, Yu; Li, Yuanyuan; Liu, Jinping

    2013-08-01

    Flexible solid-state symmetric supercapacitor was fabricated using MnO2 nanofilms growing directly on carbon cloth as the electrodes and PVA/H3PO4 gel as the electrolyte/separator. The device can be operated at a stable cell-voltage up to 1.4 V, obviously larger than that of conventional solid-state symmetric supercapacitors (≤1 V). It exhibited excellent rate capability with a scan rate as high as 20 V s-1 and a long cyclability (˜60000 cycles) even under severe mechanical deformation. The charge storage mechanism at different scan rates was also quantitatively analyzed.

  12. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    NASA Astrophysics Data System (ADS)

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-08-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.

  13. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    PubMed Central

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-01-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications. PMID:27546059

  14. Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García, C.

    Mixtures of AISI M2 high speed steel and vanadium carbide (3, 6 or 10 wt.%) were prepared by powder metallurgy and sintered by concentrated solar energy (CSE). Two different powerful solar furnaces were employed to sinter the parts and the results were compared with those obtained by conventional powder metallurgy using a tubular electric furnace. CSE allowed significant reduction of processing times and high heating rates. The wear resistance of compacts was studied by using rotating pin-on-disk and linearly reciprocating ball-on-flat methods. Wear mechanisms were investigated by means of scanning electron microscopy (SEM) observations and chemical inspections of the microstructuresmore » of the samples. Better wear properties than those obtained by conventional powder metallurgy were achieved. The refinement of the microstructure and the formation of carbonitrides were the reasons for this. - Highlights: •Powder metallurgy of mixtures of M2 high speed steel and VC are studied. •Some sintering is done by concentrated solar energy. •Rotating pin-on-disk and linearly reciprocating ball-on-flat methods are used. •The tribological properties and wear mechanisms, under dry sliding, are studied.« less

  15. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  16. Fabrication of lanthanum-doped thorium dioxide by high-energy ball milling and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Scott, Spencer M.; Yao, Tiankai; Lu, Fengyuan; Xin, Guoqing; Zhu, Weiguang; Lian, Jie

    2017-03-01

    High-energy ball milling was used to synthesize Th1-xLaxO2-0.5x (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO2 powders. Dense La-doped ThO2 pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO2 pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C.

  17. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOEpatents

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  18. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOEpatents

    Brown, J.; Hirschfeld, D.; Liu, D.M.; Yang, Y.; Li, T.; Swanson, R.E.; Van Aken, S.; Kim, J.M.

    1992-04-07

    Compositions, having the general formula (Ca[sub x]Mg[sub 1[minus]x])Zr[sub 4](PO[sub 4])[sub 6] where x is between 0.5 and 0.99, are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850 C for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200 C to 1350 C to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used. 7 figs.

  19. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  20. Microstructure and microchemistry of flash sintered K 0.5Na 0.5NbO 3

    DOE PAGES

    Corapcioglu, Gulcan; Gulgun, Mehmet Ali; Kisslinger, Kim; ...

    2016-04-30

    In this paper, flash sintering experiments were performed, for the first time, on sodium potassium niobate (KNN) ceramics. A theoretical density of 94% was achieved in 30 s under 250 V/cm electric-field at 990°C. These conditions are ~100°C lower and faster than the conventional sintering conditions. Grains tended to grow after 30 s. flash sintering duration under constant electric-field. Detailed microstructural and chemical investigations of the sample showed that there was inhomogenous Na, K distribution and it resembles a core–shell structure where K is more in the shell and Na is more in the core region. The inhomogenous distribution ofmore » Na and K was correlated with the doubling of the unit cell within the grain along 002 direction. Compositional equilibrium is achieved after a heat treatment at 1000°C for 4 h. Finally, the compositional variations appeared to have been linked to grain boundary melting during flash and consequent recrystallization as the sample cooled.« less

  1. Enhancement in superconducting properties of Bi2Sr2Ca1Cu2O8+θ (Bi-2212) by means of boron oxide additive

    NASA Astrophysics Data System (ADS)

    Fallah-Arani, Hesam; Baghshahi, Saeid; Sedghi, Arman; Stornaiuolo, Daniela; Tafuri, Francesco; Riahi-Noori, Nastaran

    2018-05-01

    By using a solid state method, Bi2Sr2Ca1Cu2O8+θ (Bi-2212) polycrystalline samples were synthesized with the addition of boron oxide additive, with the aim of improving the performance of this compound for large scale applications. As the first step, the parameters for the solid state method, in particular sintering temperature, were optimized in order to obtain pure Bi-2212 samples with an optimal microstructure. Then, based on this optimization, the properties of the Bi2Sr2Ca1Cu2BxOy samples with x = 0.05, 0.1, and 0.2 were studied using several characterization techniques. It was found that the sample having x = 0.05 showed a magnetic hysteresis loop larger than that of the pure Bi-2212 sample and a critical current density value of 3.71 × 105 A/cm2, comparable to the best results found in the literature for Bi-2212, while preserving well-stacked and oriented grains.

  2. Separation of uranium from (U, Th)O 2 and (U, Pu)O 2 by solid state reactions route

    NASA Astrophysics Data System (ADS)

    Keskar, Meera; Mudher, K. D. Singh; Venugopal, V.

    2005-01-01

    Solid state reactions of UO 2, ThO 2, PuO 2 and their mixed oxides (U, Th)O 2 and (U, Pu)O 2 were carried out with sodium nitrate upto 900 °C, to study the formation of various phases at different temperatures, which are amenable for easy dissolution and separation of the actinide elements in dilute acid. Products formed by reacting unsintered as well as sintered UO 2 with NaNO 3 above 500 °C were readily soluble in 2 M HNO 3, whereas ThO 2 and PuO 2 did not react with NaNO 3 to form any soluble products. Thus reactions of mixed oxides (U, Th)O 2 and (U, Pu)O 2 with NaNO 3 were carried out to study the quantitative separation of U from (U, Th)O 2 and (U, Pu)O 2. X-ray diffraction, X-ray fluorescence, thermal analysis and chemical analysis techniques were used for the characterization of the products formed during the reactions.

  3. Flicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-03-01

    Solid-state lighting program technology fact sheet that discusses flicker metrics, contributing factors, and consequences in addition to comparing the flicker attributes of a sample of conventional and LED sources.

  4. A comparison of ultrasound-augmented and conventional leaching of silver from sintering dust using acidic thiourea.

    PubMed

    Chang, Jun; Zhang, Er-Dong; Zhang, Li-Bo; Peng, Jin-Hui; Zhou, Jun-Wen; Srinivasakannan, C; Yang, Chang-Jiang

    2017-01-01

    In the process of steel manufacture, up to ten millions of tons of sintering dust (SD) are produced annually in China, which contain noble metals such as Ag. Therefore, recovery of silver (Ag) from SD could be a potential economic and environmental activity. The purpose of this article is to generate information about reaction kinetics of silver leaching with thiourea from SD, comparing the conventional and ultrasonic-augment leaching. The effects of various control parameters such as the ultrasound power, particle size, leaching temperature and thiourea concentration on leaching rate of silver were studied. The results showed 89% silver recovery for conventional process against 95% for ultrasound assisted leaching. The ultrasonic wave increased the leaching rate and shorten the reaction time. The rate controlling step was analyzed using shrinking core model and the rate controlling step is identified to be the diffusion through the product layer in both conventional and ultrasonic-augment leaching processes. The activation energies were estimated to be 28.01kJ/mol and 18.19kJ/mol, and the reaction order were 0.89 and 0.71, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  6. Expansion during the formation of the magnesium aluminate spinel (MgAl(2)O(4)) from its basic oxide (MgO and Al(2)O(3)) powders

    NASA Astrophysics Data System (ADS)

    Duncan, Flavia Cunha

    The extraordinary expansion during the reaction sintering of the magnesium aluminate spinel (MgAl2O4) from its basic oxide (MgO and Al2O3) powders was studied. Experimental series of different size fractions of the reacting materials were formulated to produce the Mg-Al spinel. After batches were prepared, specimens were compacted and fired in air from 1200° to 1700°C for a fixed firing time. A separate set of specimens was fired as a function of time to determine the reaction kinetic parameters. Dimensional changes confirmed that extraordinary expansions of three to four times greater than the prediction from the reaction of solids occur. The solid-state reactions were monitored by X-ray diffraction. The activation energy of the spinel reaction formation was determined to be 280 +/- 20 kJ/mol. It is believed to be associated with the diffusivity of Mg 2+ in either magnesia or spinel during the development of the final spinel structure. New porosity developed in the compacts during the reaction formation of spinel. Scanning electron microscopy confirmed that the magnesia evaporated leaving behind porous magnesia grains, condensed on the alumina particles and reacted to form a shell of spinel. Hollow spinel particles resulted from the original particles of alumina. These porosities generated within the reacting materials influenced the expansions. Final volumetric expansion could potentially reach 56% as a result of the reaction of solids and the porosity generation within MgO and Al2O3. Models of a single alumina particle with and without development of internal porosity were developed. 3-D arrangements of particles showed additional porosity, influencing on the expansions. The decrease in porosity of some specimens fired at higher temperatures indicated that sintering and densification occur simultaneously with the reaction formation of spinel. The decrease in the interparticle porosity limits the full expansion of the particulates to levels lower than the predictions of the model. A term that accounts for this shrinkage should be a significant addition to the model of expansion. Although the spinel forming reaction for most of the particle systems reached near completion, the resulting porous specimens could be viewed as powder compacts in the early stages of sintering and densification.

  7. Comparative study of phase transition and textural changes upon calcination of two commercial titania samples: A pure anatase and a mixed anatase-rutile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordouli, Eleana; Dracopoulos, Vassileios; Vaimakis, Tiverios

    2015-12-15

    The effect of calcination temperature and time on structural and textural changes of two commercial TiO{sub 2} samples (pure anatase and a mixture of anatase and rutile) has been investigated using N{sub 2} physisorption, ex-situ and in-situ X-ray powder diffraction, differential scanning calorimetry and UV–vis diffuse reflectance spectroscopy. The increase of the calcination temperature (up to 700 °C) and time (up to 8 h) causes only textural changes in the pure anatase, whereas a transformation of the anatase to rutile takes place, in addition, in the mixed titania (containing anatase and rutile). The textural changes observed in pure anatase samplemore » were attributed to solid state diffusion leading to an increase in the size of anatase nanocrystals, through sintering. Thus, the mean pore diameter shifts to higher values and the pore volume and specific surface area decrease. The successful application of the Johnson–Mehl–Avrami–Kolmogorov model in the kinetic data concerning the pure anatase indicates a mass transfer control of sintering process. Similar textural changes were also observed upon calcination of the sample containing anatase and rutile. In this case not only sintering but the anatase to rutile transformation contributes also to the textural changes. Kinetic analysis showed that the rutile nanocrystals in the mixed titania served as seed for by-passing the high energy barrier nucleation step allowing/facilitating thus the anatase to rutile transformation. A fine control of the anatase to rutile ratio and thus of energy-gap and the population of hetero-junctions may be obtained by adjusting the calcination temperature and time. - Graphical Abstract: Dependence of anatase content of P25 on the calcination temperature (600 °C (■), 650 °C (●), 700 °C (▲)) and time. - Highlights: • Increase of calcination temperature up to 800 °C and time up to 8 h causes only textural changes in pure anatase • Progressive transformation of anatase to rutile with time takes place in the mixed titania above 600 °C • A high activation energy barrier inhibits the solid state transformation in pure anatase • Rutile nanocrystals in mixed titania serve as seeding for favouring transformation • Calcination temperature and time allow a fine control of E{sub g} and heterojunctions population in mixed titania.« less

  8. Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration

    NASA Astrophysics Data System (ADS)

    Nicollet, Clement; Waxin, Jenny; Dupeyron, Thomas; Flura, Aurélien; Heintz, Jean-Marc; Ouweltjes, Jan Pieter; Piccardo, Paolo; Rougier, Aline; Grenier, Jean-Claude; Bassat, Jean-Marc

    2017-12-01

    This paper reports the study of the densification of 20% Gd doped ceria (Ce0.8Gd0.2O1.9 (GDC)) interlayers in SOFC cathodes through two different routes: the well-known addition of sintering elements, and an innovative densification process by infiltration. First, Li, Cu, and Zn nitrates were added to GDC powders. The effect of these additives on the densification was studied by dilatometry on pellets, and show a large decrease of the sintering temperature from 1330 °C (pure GDC), down to 1080 °C, 950 °C, and 930 °C for Zn, Cu, and Li addition, respectively. However, this promising result does not apply to screen-printed layers, which are more porous than pellets and in which the shrinkage is constrained by the substrate. The second approach consists in preparing a pre-sintered GDC layer, which is subsequently infiltrated with Ce and Gd nitrates and sintered at 1250 °C to increase its density. Such an approach results in highly dense GDC interlayers. Using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as electrode, the influence of the interlayers on the cathode performance was studied. The addition of sintering aids dramatically increases the cell resistances, most likely because the additives increase the reactivity between GDC and either Yttria Stabilized Zirconia (YSZ) or LSCF, thus losing the expected benefit related to the decrease of sintering temperatures. The interlayers prepared by infiltration do not induce additional resistances in the cell, which results in power densities of single cells 40-50% higher than those of cells prepared with commercial GDC interlayers, making this approach a valuable alternative to sintering aids.

  9. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production

    NASA Astrophysics Data System (ADS)

    Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther

    2018-04-01

    Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.

  10. SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES

    DOEpatents

    Maddock, A.G.; Booth, A.H.

    1960-09-13

    Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.

  11. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    NASA Astrophysics Data System (ADS)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  12. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.

  13. Thermal Test on Target with Pressed Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    A thorough test of the thermal performance of a target for Mo 99 production using solid Mo 100 target to produce the Mo 99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod.more » The production plant will have Mo 100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.« less

  14. Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices

    ERIC Educational Resources Information Center

    Hsu, Keng Hao

    2009-01-01

    Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…

  15. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  16. Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials

    NASA Astrophysics Data System (ADS)

    De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge

    2007-08-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.

  17. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  19. Method of preparing a sintered lithium aluminate structure for containing electrolyte

    DOEpatents

    Sim, James W.; Kinoshita, Kimio

    1981-01-01

    A porous sintered tile is formed of lithium aluminate for retaining molten lectrolyte within a fuel cell. The tile is prepared by reacting lithium hydroxide in aqueous solution with alumina particles to form beta lithium aluminate particles. The slurry is evaporated to dryness and the solids dehydrated to form a beta lithium aluminate powder. The powder is compacted into the desired shape and sintered at a temperature in excess of 1200 K. but less than 1900 K. to form a porous integral structure that is subsequently filled with molten electrolyte. A tile of this type is intended for use in containing molten alkali metal carbonates as electolyte for use in a fuel cell having porous metal or metal oxide electrodes for burning a fuel gas such as hydrogen and/or carbon monoxide with an oxidant gas containing oxygen.

  20. Silver Oxalate Ink with Low Sintering Temperature and Good Electrical Property

    NASA Astrophysics Data System (ADS)

    Yang, Wendong; Wang, Changhai; Arrighi, Valeria

    2018-02-01

    Favorable conductivity at low temperature is desirable for flexible electronics technology, where formulation of a suitable ink material is very critical. In this paper, a type of silver organic decomposable ink (10 wt.% silver content) was formulated by using as-prepared silver oxalate and butylamine, producing silver films with good uniformity and conductivity on a polyimide substrate after sintering below 130°C (15.72 μΩ cm) and even at 100°C (36.29 μΩ cm). Silver oxalate powder with good properties and an appropriate solid amine complex with lower decomposition temperature were synthesized, both differing from those reported in the literature. The influence of the factors on the electrical properties of the produced silver films such as sintering temperature and time was studied in detail and the relationship between them was demonstrated.

  1. Electrical and dielectric properties of ZnO and CeO{sub 2} doped ZrTi{sub 2}O{sub 6} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Aneesh; Thomas, Jijimon K.; John, Annamma

    2014-01-28

    Zirconium oxide (ZrO{sub 2}) and titanium dioxide (TiO{sub 2}) are the important catalyst supports, since it has acidic and basic properties. The intermediate phase zirconium titanate ZrTi{sub 2}O{sub 6}, which is a solid solution with Zr:Ti ratio 1:2 has outstanding dielectric properties. The effects of doping of ZnO and CeO{sub 2} on the dielectric and electrical properties of ZrTi{sub 2}O{sub 6} ceramic are investigated. On adding 0.5 wt% ZnO, the dielectric constant is increased but, on adding CeO{sub 2}, the dielectric constant is decreased. The bulk density of pure sample sintered at 1530 °C is 91% of theoretical density whilemore » that of the doped samples sintered at 1450 °C is more than 94% of theoretical density. Scanning electron micrographs reveal that the samples are well sintered with minimum porosity. The semicircle behavior in the Cole-Cole plots at room temperature reveals that the samples are good ionic conductor. The induced impedance is reduced for doped samples and this can be used as a material for electrolyte in Solid Oxide Fuel Cell.« less

  2. Effect of fabrication parameters on coating properties of tubular solid oxide fuel cell electrolyte prepared by vacuum slurry coating

    NASA Astrophysics Data System (ADS)

    Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul

    The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.

  3. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  4. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel

    2018-04-01

    Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.

  5. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  6. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, Clifford B.; Hackel, Lloyd A.

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  7. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  8. Current status of solid-state lithium batteries employing solid redox polymerization cathodes

    NASA Astrophysics Data System (ADS)

    Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.

    1991-03-01

    The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.

  9. High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling.

    PubMed

    Finsterbusch, Martin; Danner, Timo; Tsai, Chih-Long; Uhlenbruck, Sven; Latz, Arnulf; Guillon, Olivier

    2018-06-21

    The development of high-capacity, high-performance all-solid-state batteries requires the specific design and optimization of its components, especially on the positive electrode side. For the first time, we were able to produce a completely inorganic mixed positive electrode consisting only of LiCoO 2 and Ta-substituted Li 7 La 3 Zr 2 O 12 (LLZ:Ta) without the use of additional sintering aids or conducting additives, which has a high theoretical capacity density of 1 mAh/cm 2 . A true all-solid-state cell composed of a Li metal negative electrode, a LLZ:Ta garnet electrolyte, and a 25 μm thick LLZ:Ta + LiCoO 2 mixed positive electrode was manufactured and characterized. The cell shows 81% utilization of theoretical capacity upon discharging at elevated temperatures and rather high discharge rates of 0.1 mA (0.1 C). However, even though the room temperature performance is also among the highest reported so far for similar cells, it still falls far short of the theoretical values. Therefore, a 3D reconstruction of the manufactured mixed positive electrode was used for the first time as input for microstructure-resolved continuum simulations. The simulations are able to reproduce the electrochemical behavior at elevated temperature favorably, however fail completely to predict the performance loss at room temperature. Extensive parameter studies were performed to identify the limiting processes, and as a result, interface phenomena occurring at the cathode active material/solid-electrolyte interface were found to be the most probable cause for the low performance at room temperature. Furthermore, the simulations are used for a sound estimation of the optimization potential that can be realized with this type of cell, which provides important guidelines for future oxide based all-solid-state battery research and fabrication.

  10. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    NASA Astrophysics Data System (ADS)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  11. Arsenic speciation in sinter mineralization from a hydrothermal channel of El Tatio geothermal field, Chile

    NASA Astrophysics Data System (ADS)

    Alsina, Marco A.; Zanella, Luciana; Hoel, Cathleen; Pizarro, Gonzalo E.; Gaillard, Jean-François; Pasten, Pablo A.

    2014-10-01

    El Tatio geothermal field is the principal natural source of arsenic for the Loa River, the main surface water resource in the hyper-arid Atacama Desert (Antofagasta Region, Northern Chile). Prior investigations by bulk X-ray absorption spectroscopy have identified hydrous ferric oxides as the principal arsenic-containing phase in sinter material from El Tatio, suggesting sorption as the main mechanism for arsenic scavenging by the solid phases of these hot spring environments. Here we examine siliceous sinter material sampled from a hydrothermal channel using synchrotron based X-ray micro-probe techniques, including As and Fe Kα X-ray fluorescence (μ-XRF), As K-edge X-ray absorption near edge structure (μ-XANES), and X-ray diffraction (μ-XRD). Least-squares linear fitting of μ-XANES spectra shows that arsenic is predominantly present as arsenate sorbed on hydrous ferric oxides (63% molar proportion), but we also identify nodular arsenide micro-mineralizations (37% molar proportion) similar to loellingite (FeAs2), not previously detected during bulk-scale analysis of the sinter material. Presence of arsenide mineralizations indicates development of anoxic environments on the surface of the siliceous sinter, and suggests a more complex biogeochemistry for arsenic than previously observed for circum-neutral pH brine hot spring environments.

  12. A novel steam explosion sterilization improving solid-state fermentation performance.

    PubMed

    Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang

    2015-09-01

    Traditional sterilization of solid medium (SM) requires lengthy time, degrades nutrients, and even sterilizes inadequately compared with that of liquid medium due to its low thermal conductivity. A novel sterilization strategy, high-temperature and short-time steam explosion (SE), was exploited for SM sterilization in this study. Results showed that SE conditions for complete sterilization were 172 °C for 2 min and 128 °C for 5 min. Glucose and xylose contents in medium after SE sterilization increased by 157% and 93% respectively compared with those after conventional sterilization (121 °C, 20 min) while fermentation inhibitors were not detected. FTIR spectra revealed that the mild SE conditions helped to release monosaccharides from the polysaccharides. Bacillus subtilis fermentation productivity on medium after SE sterilization was 3.83 times of that after conventional sterilization. Therefore, SE shortened sterilization time and improved SM nutrition, which facilitated fermentability of SM and should promote economy of solid-state fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles: A study by conventional and DNP-enhanced 29Si solid-state NMR

    DOE PAGES

    Kobayashi, Takeshi; Singappuli-Arachchige, Dilini; Wang, Zhuoran; ...

    2016-12-23

    Solid-state NMR spectroscopy, both conventional and dynamic nuclear polarization (DNP)-enhanced, was employed to study the spatial distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles via co-condensation and grafting. The most revealing information was provided by DNP-enhanced two-dimensional 29Si– 29Si correlation measurements, which unambiguously showed that post-synthesis grafting leads to a more homogeneous dispersion of propyl and mercaptopropyl functionalities than co-condensation. Furthermore, during the anhydrous grafting process, the organosilane precursors do not self-condense and are unlikely to bond to the silica surface in close proximity (less than 4 Å) due to the limited availability of suitablymore » arranged hydroxyl groups.« less

  14. High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.

    PubMed

    Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu

    2018-06-08

    Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.

  15. Determining the environmental training needs and training preferences of tribal officials on reservations in the United States

    NASA Astrophysics Data System (ADS)

    Saxena, Jeeta Lakhani

    The problem of this research was to determine the priority environmental management training needs (drinking water, wastewater, and solid waste), classroom training system preferences and related cultural factors of Native American tribal officials with environmental responsibilities living on reservations in the United States. The researcher conducted telephone interviews with 18 tribal officials on reservations in diverse geographic areas of the United States to determine their classroom training preferences. These officials also responded to a mail/fax survey comprised of 28 statements describing their environmental responsibilities in the areas of drinking water, wastewater, and solid waste. Tribal officials indicated how important the statements were according to them on a scale of 1--5 (1 being low importance and 5 being high importance). Tribal officials also indicated their ability to perform in the stated areas on a scale of 1 to 5 (1 being low ability and 5 being high ability). It was found that tribal officials felt they needed training in the areas of: (1) Solid Waste: Awareness of conventional and alternative solid waste management strategies as well as assessing the reservation's need related to solid waste management. (2) Regional or Inter-Governmental Strategies : Working with the federal, and, state governments for enforcing and developing regulations. (3) Drinking water: Assessing the reservation's drinking water needs and awareness of conventional and alternative drinking water systems. (4) Training for environmental staff: Determining and planning training for environmental personnel is another area of need indicated by the responding tribal officials. (5) Wastewater : Assessing the reservations wastewater needs, compliance and liability issues and awareness of alternative and conventional wastewater systems. It was also found that tribal officials preferred: (1) Trainers who were knowledgeable about the subject matter and tribal culture, problems and issues related to environmental management. (2) Cooperative learning in the form of group exercises and group discussions. Activities such as field trips, case studies or role play were strongly preferred. (3) To receive relevant information from different sources. (4) To attend training within a 200-mile radius. (5) To attend training that was 2--3 days in duration. (6) To attend training sessions organized in circular or U-shaped arrangements.

  16. High calcination of ferroelectric BaTiO₃ doped Fe nanoceramics prepared by a solid-state sintering method.

    PubMed

    Samuvel, K; Ramachandran, K

    2015-07-05

    This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. High calcination of ferroelectric BaTiO3 doped Fe nanoceramics prepared by a solid-state sintering method

    NASA Astrophysics Data System (ADS)

    Samuvel, K.; Ramachandran, K.

    2015-07-01

    This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.

  18. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less

  19. Potential traceable markers of organic matter in organic and conventional dairy manure using ultraviolet–visible and solid-state 13C nuclear magnetic resonance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Organic dairy (OD) production is drawing increasing attention because of public concerns about food safety, animal welfare and the potential environmental impacts of conventional dairy (CD) systems. However, very limited information is available on how organic farming practices affect the chemical ...

  20. Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Xinge; Ohara, Satoshi; Maric, Radenka; Mukai, Kazuo; Fukui, Takehisa; Yoshida, Hiroyuki; Nishimura, Masayoshi; Inagaki, Toru; Miura, Kazuhiro

    The polarization properties and microstructure of Ni-SDC (samaria-doped ceria) cermet anodes prepared from spray pyrolysis (SP) composite powder, and element interface diffusion between the anode and a La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM) electrolyte are investigated as a function of anode sintering temperature. The anode sintered at 1250°C displays minimum anode polarization (with anode ohmic loss), while the anode prepared at 1300°C has the best electrochemical overpotential, viz., 27 mV at 300 mA cm -2 operating at 800°C. The anode ohmic loss gradually increases with increase in the sintering temperature at levels below 1300°C, and sharply increases at 1350°C. Electron micrographs show a clear grain growth at sintering temperatures higher than 1300°C. The anode microstructure appears to be optimized at 1300°C, in which nickel particles form a network with well-connected SDC particles finely distributed over the surfaces of the nickel particles. The anode sintered at 1350°C has severe grain growth and an apparent interface diffusion of nickel from the anode to the electrolyte. The nickel interface diffusion is assumed to be the main reason for the increment in ohmic loss, and the resulting loss in anode performance. The findings suggest that sintering Ni-SDC composite powder near 1250°C is the best method to prepare the anode on a LSGM electrolyte.

  1. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasankaran, S., E-mail: sivasankarangs1979@gmail.com; Sivaprasad, K., E-mail: ksp@nitt.edu; Narayanasamy, R., E-mail: narayan@nitt.edu

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrixmore » were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using various Williamson-Hall models were investigated for line profile analysis. {yields} Uniform energy density deformation model is observed to the best realistic model. {yields} The present analysis is used for understanding the stress and the strain present in the nanocomposites.« less

  2. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  3. Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.

    PubMed

    Jung, Sunshin; Chun, Su Jin; Shon, Chae-Hwa

    2016-08-10

    Cellulose-based paper is essential in everyday life, but it also has further potentials for use in low-cost, printable, disposable, and eco-friendly electronics. Here, a method is developed for the cellulose-mediated microwave sintering of Ag patterns on conventional paper, in which the paper plays a significant role both as a flexible insulating substrate for the conductive Ag pattern and as a lossy dielectric media for rapid microwave heating. The anisotropic dielectric properties of the cellulose fibers mean that a microwave electric field applied parallel to the paper substrate provides sufficient heating to produce Ag patterns with a conductivity 29-38% that of bulk Ag in a short period of time (∼1 s) at 250-300 °C. Significantly, there is little thermal degradation of the substrate during this process. The microwave-sintered Ag patterns exhibit good mechanical stability against 10 000 bending cycles and can be easily soldered with lead-free solder. Therefore, cellulose-mediated microwave sintering presents a promising means of achieving short processing times and high electrical performance in flexible paper electronics.

  4. Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Sehar, Fatima; Mustafa, Zeeshan; Awan, M. S.

    2018-01-01

    The main purpose of this research work is to develop the single domain magnetic particles of M-type barium hexaferrite (BaFe12O19) using oxide precursors employing conventional powder metallurgy technique. The phase formation and magnetic performance of the powders and magnets will be optimized by adjusting calcination and sintering temperatures. The synthesis of M-type barium hexaferrite was carried out in two sections. A series of four samples have been prepared by initial wet mixed powders calcined at different temperatures, i.e., 750, 850, 950 and 1050 °C. On the basis of structural analysis, the sample calcined at 950 °C has been selected and further divided into four parts to sintered them at 1100, 1150, 1200 and 1250 °C. The structural measurements depict the confirmation of M-type barium hexaferrite structure. SEM micrographs show the hexagonal-shaped grains. The abrupt decrease in coercivity for the sample sintered at 1250 °C has been seen which may be due to high sintering temperature, at which the particles have multi-domain properties.

  5. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management.

    PubMed

    Liu, Rui; Coffman, Reid

    2016-07-23

    More than 1.15 million cubic meters (1.5 million cubic yards) of sediment require annual removal from harbors and ports along Ohio's Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow "infiltration" based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA), and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900-1100 °C), LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.

  6. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae

    NASA Astrophysics Data System (ADS)

    Handley, Kim M.; Turner, Sue J.; Campbell, Kathleen A.; Mountain, Bruce W.

    2008-08-01

    Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.

  7. Process Simulation of Cold Pressing and Sintering of Armstrong CP-Ti Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorti, Sarma B; Sabau, Adrian S; Peter, William H

    A computational methodology is presented for the process simulation of cold pressing and sintering of Armstrong CP-Ti powders. Since the powder consolidation is governed by specific pressure-dependent constitutive equations, solution algorithms were developed for the ABAQUS user material subroutine, UMAT, for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations. Sintering was simulated using a model based on diffusional creep using the user subroutine CREEP. The initial mesh, stress, and density for the simulation of sintering were obtained from the results of the cold pressing simulation, minimizing the errorsmore » from decoupling the cold pressing and sintering simulations. Numerical simulation results are presented for the cold compaction followed by a sintering step of the Ti powders. The numerical simulation results for the relative density were compared to those measured from experiments before and after sintering, showing that the relative density can be accurately predicted. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. ACKNOWLEDGEMENTS This research was sponsored by the U.S. DOE, and carried out at ORNL, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. This research was sponsored by the U.S. DOE, EERE Industrial Technology Program Office under CPS Agreement # 17881.« less

  8. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    NASA Astrophysics Data System (ADS)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste were also tested. The final solid product was a hard dense ceramic with a density that varied from 2.12 g/cm3 for a 19% waste loading with a 1200°C sintering temperature to 3.03 g/cm 3 with a 29% waste loading and sintered at 1100°C. Differential Scanning Calorimetry and Thermal Gravimetric Analysis (DSC-TGA) of the loaded bentonite displayed mass loss steps which were consistent with water losses in pure bentonite. Water losses were complete after dehydroxylation at ˜650°C. No mass losses were evident beyond the dehydroxylation. The ceramic melts at temperatures greater than 1300°C. Light flash analysis found heat capacities of the ceramic to be comparable to those of strontium and barium feldspars as well as pollucite. Thermal conductivity improved with higher sintering temperatures, attributed to lower porosity. Porosity was minimized in 1200°C sinterings. Ceramics with waste loadings less than 25 wt% displayed slump, the lowest waste loading, 15 wt% bloated at a 1200°C sintering. Waste loading above 25 wt% produced smooth uniform ceramics when sintered >1100°C. Sintered bentonite may provide a simple alternative to vitrification and other engineered radioactive waste-forms.

  9. Microstructure and Mechanical Behavior of Porous Ti–6Al–4V Processed by Spherical Powder Sintering

    PubMed Central

    Reig, Lucía; Tojal, Concepción; Busquets, David J.; Amigó, Vicente

    2013-01-01

    Reducing the stiffness of titanium is an important issue to improve the behavior of this material when working together with bone, which can be achieved by generating a porous structure. The aim of this research was to analyze the porosity and mechanical behavior of Ti–6Al–4V porous samples developed by spherical powder sintering. Four different microsphere sizes were sintered at temperatures ranging from 1300 to 1400 °C for 2, 4 and 8 h. An open, interconnected porosity was obtained, with mean pore sizes ranging from 54.6 to 140 µm. The stiffness of the samples diminished by as much as 40% when compared to that of solid material and the mechanical properties were affected mainly by powder particles size. Bending strengths ranging from 48 to 320 MPa and compressive strengths from 51 to 255 MPa were obtained. PMID:28788365

  10. Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering.

    PubMed

    Reig, Lucía; Tojal, Concepción; Busquets, David J; Amigó, Vicente

    2013-10-23

    Reducing the stiffness of titanium is an important issue to improve the behavior of this material when working together with bone, which can be achieved by generating a porous structure. The aim of this research was to analyze the porosity and mechanical behavior of Ti-6Al-4V porous samples developed by spherical powder sintering. Four different microsphere sizes were sintered at temperatures ranging from 1300 to 1400 °C for 2, 4 and 8 h. An open, interconnected porosity was obtained, with mean pore sizes ranging from 54.6 to 140 µm. The stiffness of the samples diminished by as much as 40% when compared to that of solid material and the mechanical properties were affected mainly by powder particles size. Bending strengths ranging from 48 to 320 MPa and compressive strengths from 51 to 255 MPa were obtained.

  11. Effect of sintering in a hydrogen atmosphere on the density and coercivity of (Sm,Zr)(Co,Cu,Fe)Z permanent magnets

    NASA Astrophysics Data System (ADS)

    Burkhanov, G. S.; Dormidontov, N. A.; Kolchugina, N. B.; Dormidontov, A. G.

    2018-04-01

    The effect of heat treatments in manufacturing (Sm,Zr)(Co,Cu,Fe)Z-based permanent magnets sintered in a hydrogen atmosphere on their properties has been studied. It was shown that the dynamics of the magnetic hardening of the studied magnets during heat treatments, in whole, corresponds to available concepts of phase transformations in five-component precipitation-hardened SmCo-based alloys. Peculiarities of the studied compositions consist in the fact that the coercive force magnitude of magnets quenched from the isothermal aging temperature is higher by an order of magnitude than those available in the literature. It was noted that, in using the selected manufacturing procedure, the increase in the density of samples does not finish at the sintering stage but continues in the course of solid-solution heat treatment.

  12. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Phillips, Cynthia B.; Meirion-Griffith, Gareth

    2017-10-01

    The planned exploration of Europa by NASA’s Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa’s landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a “neck” between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa’s subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts.Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa’s surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa’s surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  13. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    NASA Astrophysics Data System (ADS)

    Wada, S.; Mase, Y.; Shimizu, S.; Maeda, K.; Fujii, I.; Nakashima, K.; Pulpan, P.; Miyajima, N.

    2011-10-01

    Porous potassium niobate (KNbO3, KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  14. Multielement mapping of alpha-SiC by scanning Auger microscopy

    NASA Technical Reports Server (NTRS)

    Browning, Ray; Smialek, James L.; Jacobson, Nathan S.

    1987-01-01

    Fine second-phase particles, numerous in sintered alpha-SiC, were analyzed by scanning Auger microscopy and conventional techniques. The Auger analysis utilized computer-controlled data acquisition, multielement correlation diagrams, and a high spatial resolution of 100 nm. This procedure enabled construction of false color maps and the detection of fine compositional details within these particles. Carbon, silicon oxide, and boron-rich particles (qualitatively as BN or B4C) predominated. The BN particles, sometimes having a carbon core, are believed to result from reaction between B4C additives and nitrogen sintering atmospheres.

  15. Oxygen-vacancy-related dielectric relaxation in SrBi2Ta1.8V0.2O9 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wu, Yun; Forbess, Mike J.; Seraji, Seana; Limmer, Steven J.; Chou, Tammy P.; Cao, Guozhong

    2001-05-01

    The strontium bismuth tantalate vanadate, SrBi2Ta1.8V0.2O9, (SBTV) layered perovskite ferroelectrics were made by solid state powder sintering. It was found that the SBTV ferroelectrics had the same crystal structure as that of strontium bismuth tantalate, SrBi2Ta2O9 (SBT), but an increased paraferroelectric transition temperature at ˜360 °C as compared to 305 °C for SBT. In addition, SBTV ferroelectrics showed a frequency dispersion at low frequencies and broadened dielectric peaks at the paraferroelectric transition temperature that shifted to a higher temperature with a reduced frequency. However, after a postsintering annealing at 850 °C in air for 60 h, SBTV ferroelectrics showed reduced dielectric constants and tangent loss, particularly at high temperatures. In addition, no frequency dependence of paraferroelectric transition was found in the annealed SBTV ferroelectrics. Furthermore, there was a significant reduction in dc conductivity with annealing. The prior results implied that the dielectric relaxation in the as-sintered SBTV ferroelectrics was most likely due to the oxygen-vacancy-related dielectric relaxation instead of relaxor ferroelectric behavior.

  16. Transport, electronic, and structural properties of nanocrystalline CuAlO2 delafossites

    NASA Astrophysics Data System (ADS)

    Durá, O. J.; Boada, R.; Rivera-Calzada, A.; León, C.; Bauer, E.; de la Torre, M. A. López; Chaboy, J.

    2011-01-01

    This work reports on the effect of grain size on the electrical, thermal, and structural properties of CuAlO2 samples obtained by solid-state reaction combined with ball milling. Electrical characterization made in microcrystalline and nanocrystalline samples shows that the electrical conductivity decreases several orders of magnitude for the nanocrystalline samples, and, in addition, there is a large discrepancy between the activation energies associated to thermoelectric power ES. The study of the Cu K-edge x-ray absorption spectra of the CuAlO2 samples shows that the local structure around Cu is preserved after the sintering process, indicating that the observed behavior of the electrical conductivity is of intrinsic origin. Complex conductivity measurements as a function of frequency allow us to discard grain-boundaries effects on the electrical transport. Thus, the changes in σ(T) and S(T) are interpreted in terms of charge localization in the framework of small polarons. This is in agreement with the analysis of the near-edge region of the absorption spectra, which indicates that sintering favors the Cu-O hybridization. As a consequence, oxygen atoms progressively lose their capability of trapping holes, and the electrical conductivity is also enhanced.

  17. 'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parthasarathy, Meera; Pillai, Vijayamohanan K.; Mulla, Imtiaz S.

    2007-12-07

    Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped proteinmore » is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.« less

  18. Effect of the powder characteristics of Sisub3Nsub4 on the microstructure of sintered bodies

    NASA Technical Reports Server (NTRS)

    Woetting, G.; Hausner, H.

    1981-01-01

    Silicon nitride powders sintered with the addition of 2 wt% Mg0 to 95% theoretical density after attrition milling and subsequent purification were evaluated. Preparation of the powders is described. The powder characteristics (specific surfaces, iron concentration, and oxygen content), and density, weight loss, and phase state of the sinter bodies as a function of powder preparation are presented.

  19. Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach.

    PubMed

    Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang

    2017-03-22

    All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.

  20. Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof

    NASA Technical Reports Server (NTRS)

    Schroeder, James E. (Inventor); Anderson, Harlan U. (Inventor)

    1990-01-01

    An unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape.

  1. Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E. (Inventor); Anderson, Harlan U. (Inventor)

    1991-01-01

    A unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape.

  2. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    PubMed

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  3. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: A comparative in vitro study.

    PubMed

    Ullattuthodi, Sujana; Cherian, Kandathil Phillip; Anandkumar, R; Nambiar, M Sreedevi

    2017-01-01

    This in vitro study seeks to evaluate and compare the marginal and internal fit of cobalt-chromium copings fabricated using the conventional and direct metal laser sintering (DMLS) techniques. A master model of a prepared molar tooth was made using cobalt-chromium alloy. Silicone impression of the master model was made and thirty standardized working models were then produced; twenty working models for conventional lost-wax technique and ten working models for DMLS technique. A total of twenty metal copings were fabricated using two different production techniques: conventional lost-wax method and DMLS; ten samples in each group. The conventional and DMLS copings were cemented to the working models using glass ionomer cement. Marginal gap of the copings were measured at predetermined four points. The die with the cemented copings are standardized-sectioned with a heavy duty lathe. Then, each sectioned samples were analyzed for the internal gap between the die and the metal coping using a metallurgical microscope. Digital photographs were taken at ×50 magnification and analyzed using measurement software. Statistical analysis was done by unpaired t -test and analysis of variance (ANOVA). The results of this study reveal that no significant difference was present in the marginal gap of conventional and DMLS copings ( P > 0.05) by means of ANOVA. The mean values of internal gap of DMLS copings were significantly greater than that of conventional copings ( P < 0.05). Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.

  4. Electrical characterization of Mn doped-(Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, A.; Materials Research Laboratory, Institute of Physics & Electronics, University of Peshawar, 25120; Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD

    2015-12-15

    Highlights: • Solid state processing of the (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. • Mn incorporated on the Ti-site into the host lattice of (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3}. • NTCR behavior was observed in the sintered samples. - Abstract: (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} (x = 0.00, 0.013, 0.015 and 0.05) ceramics were prepared by solid state sintering route at the 1500 °C for 6 h in air. Effect of Mn substitution on the structure of Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} perovskite was investigated systematically. Dielectric and impedancemore » spectroscopic studies were conducted to understand the electronic microstructure of the Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. Sample with x = 0.05 showed the highest dielectric constant (ϵ{sub r} = 1826) and low dielectric loss (tanδ = 0.001) at 10 kHz, around the room temperature, while the sample with x = 0.00 showed good microwave (MW) dielectric properties (Qf{sub o} = 838 and ϵ{sub r} = 550). The impedance spectroscopic analysis confirmed the electrical homogeneity of the samples with x = 0.013, 0.015 and 0.05, where grain boundaries dominated the conduction mechanism. Similarly, the sample with x = 0.00 was found to possess both grain boundary and bulk resistive contributions.« less

  5. Fabrication of 10 μm-scale conductive Cu patterns by selective laser sintering of Cu complex ink

    NASA Astrophysics Data System (ADS)

    Min, Hyungsuk; Lee, Byoungyoon; Jeong, Sooncheol; Lee, Myeongkyu

    2017-02-01

    A Cu complex ink was synthesized using copper formate as a precursor and its potential for laser patterning was investigated. The Cu ink was spin-coated onto a substrate and the coated film was space-selectively sintered using a nanosecond-pulsed ultraviolet laser. The unexposed Cu ink could be removed from the film by rinsing it with the dispersing agent used to synthesize the ink, disclosing a conductive Cu pattern. A minimum resistivity of 8.46×10-5 Ω cm was obtained for the Cu lines with 10-20 μm widths. The feasibility of this method for metallization was demonstrated by fabricating a complex Cu electric circuit on an indium tin oxide-coated glass substrate. The selective laser sintering approach provides a simple, cost-effective alternative to conventional lithography for the production of electrode or metallization patterns.

  6. Vacuum-sintered body of a novel apatite for artificial bone

    NASA Astrophysics Data System (ADS)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high biocompatibility of the TMA implant. TMA vacuum-sintered bodies are promising biomaterials for use as artificial bone materials to regenerate bone parts and produce bone reinforcement structures that are used for bone junctions in dental and orthopedic surgery.

  7. Rheological changes of polyamide 12 under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Mielicki, C.; Gronhoff, B.; Wortberg, J.

    2014-05-01

    Changes in material properties as well as process deviation prevent Laser Sintering (LS) technology from manufacturing of quality assured parts in a series production. In this context, the viscosity of Polyamide 12 (PA12) is assumed to possess the most significant influence, as it determines the sintering velocity, the resistance towards melt formation and the bonding strength of sintered layers. Moreover, the viscosity is directly related to the structure of the molten polymer. In particular, it has been recently reported that LS process conditions lead to structural changes of PA12 affecting viscosity and coalescence of adjacent polymer particles, i.e. melt formation significantly. Structural change of PA12 was understood as a post condensation. Its influence on viscosity was described by a time and temperature depending rheological model whereas time dependence was considered by a novel structural change shift factor which was derived from melt volume rate data. In combination with process data that was recorded using online thermal imaging, the model is suitable to control the viscosity (processability of the material) as result of material and process properties. However, as soon as laser energy is exposed to the powder bed PA12 undergoes a phase transition from solid to molten state. Above the melting point, structural change is expected to occur faster due to a higher kinetic energy and free volume of the molten polymer. Oscillatory shear results were used to study the influence of aging time and for validation of the novel structural change shift factor and its model parameters which were calibrated based on LS processing condition.

  8. The Influence of Interstitial Ga and Interfacial Au (sub 2)P (sub 3) on the Electrical and Metallurgical Behavior of Au-Contacted III-V Semiconductors

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1991-01-01

    The introduction of a very small amount of Ga into Au contact metallization on InP is shown to have a significant effect on both the metallurgical and electrical behavior of that contact system. Ga atoms in the interstices of the Au lattice are shown to be effective in preventing the solid state reactions that normally take place between Au and InP during contact sintering. In addition to suppressing the metallurgical interaction, the presence of small amounts of Ga is shown to cause an order of magnitude reduction in the specific contact resistivity. Evidence is presented that the reactions of GaP and GaAs with Au contacts are also drastically affected by the presence of Ga. The sintering behavior of the Au-GaP and the Au-GaAs systems (as contrasted with that of the Au-InP system) is explained as due to the presence of interstitial Ga in the contact metallization. Finally the large, two-to-three order of magnitude drop in the contact resistance that occurs in the Au-InP system upon sintering at 400 degrees Centigrade is shown to be a result of the formation of an Au (sub 2) P (sub 3) layer at the metal-semiconductor interface. Contact resistivities in the 10 (sup -6) ohm square centimeter range are obtained for as-deposited Au on InP when a thin (20 Angstrom) layer of Au (sub 2) P (sub 3) is introduced between the InP and the Au contacts.

  9. Fabrication of Lead-free (K0.5Na0.5)1- x Ag x NbO3 Ferroelectric Ceramics and Their Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Byun, Jaeduk; Hyun, June Won; Kim, Yeon Jung; Bobor, Kristóf

    2018-03-01

    In this study, lead-free (K0.5Na0.5)1- x Ag x NbO3 ( x = 0.00, 0.10, 0.15, 0.20, 0.25, and 0.30) ferroelectric ceramics were fabricated using solid-state synthesis without A-site and B-site manufacturing step. The (K0.5Na0.5)1- x Ag x NbO3 ceramics were sintered at 1110 °C for 4 h after calcination at 800 °C for 3 h. The sintered sample was dense, and the grain size was 1.02 7.8 μm. For x ≤ 0.2, the sintered ceramic samples had a single perovskite structure. The temperature dependence of the dielectric constant in the (K0.5Na0.5)1- x Ag x NbO3 was measured at 1 kHz using an LCR meter. The high dielectric constant properties could be obtained in (K0.5Na0.5)1- x Ag x NbO3 ceramics. The orthorhombic-to-tetragonal phase transition temperature and ferroelectric Curie temperature decreased linearly with increasing mole fraction of the Ag content. The Curie temperature shifted from 393 °C for (K0.5Na0.5)NbO3 ceramics to 317 °C for (K0.5Na0.5)0.7Ag0.3NbO3 ceramics. The maximum dielectric constant was 8930 at 330 °C in the (K0.5Na0.5)0.8Ag0.2NbO3 ceramics.

  10. Ferroelectric and optical properties of `Ba-doped' new double perovskites

    NASA Astrophysics Data System (ADS)

    Parida, B. N.; Panda, Niranjan; Padhee, R.; Parida, R. K.

    2018-06-01

    Solid solution of Pb1.5Ba0.5BiNbO6 ceramic is explored here to obtain its ferroelectric and optical properties. The polycrystalline sample was prepared by a standard solid state reaction route. Room temperature XRD and FTIR spectra of the compound exhibit an appreciable change in its crystal structure of Pb2BiNbO6 on addition of 'Ba' in A site. The surface morphology of the gold-plated sintered pellet sample recorded by SEM exhibits a uniform distribution of small grains with well-defined grain boundaries. Detailed studies on the nature of polarization and variation of dielectric constant, tangent loss with temperature as well as frequency indicate the existence of Ferro-electricity in the sample. Using UV-Vis spectroscopy, the optical band gap of the studied sample has been estimated as 2.1 eV, which is useful for photo catalytic devices. Photoluminescence analysis of the powder sample shows a strong red photoluminescence with blue excitation, which is basically useful for LED.

  11. Method Using Water-Based Solvent to Prepare Li7La3Zr2O12 Solid Electrolytes.

    PubMed

    Huang, Xiao; Lu, Yang; Jin, Jun; Gu, Sui; Xiu, Tongping; Song, Zhen; Badding, Michael E; Wen, Zhaoyin

    2018-05-09

    Li-garnet Li 7 La 3 Zr 2 O 12 (LLZO) is a promising candidate of solid electrolytes for high-safety solid-state Li + ion batteries. However, because of its high reactivity to water, the preparation of LLZO powders and ceramics is not easy for large-scale amounts. Herein, a method applying water-based solvent is proposed to demonstrate a possible solution. Ta-doped LLZO, that is, Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO), and its LLZTO/MgO composite ceramics are made by attrition milling, followed by a spray-drying process using water-based slurries. The impacts of parameters of the method on the structure and properties of green and sintered pellets are studied. A relative density of ∼95%, a Li-ion conductivity of ∼3.5 × 10 -4 S/cm, and uniform grain size LLZTO/MgO garnet composite ceramics are obtained with an attrition-milled LLZTO/MgO slurry that contains 40 wt % solids and 2 wt % polyvinyl alcohol binder. Li-sulfur batteries based on these ceramics are fabricated and work under 25 °C for 20 cycles with a Coulombic efficiency of 100%. This research demonstrates a promising mass production method for the preparation of Li-garnet ceramics.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  13. Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth.

    PubMed

    Cheng, Alice; Cohen, David J; Kahn, Adrian; Clohessy, Ryan M; Sahingur, Kaan; Newton, Joseph B; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2017-08-01

    The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm 3 vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.

  14. Dense garnet-like Li5La3Nb2O12 solid electrolyte prepared by self-consolidation method

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Xiang, Yu; Xu, Yan; Wen, Yuehua; Zhang, Wenfeng; Zhu, Xiayu; Li, Meng; Zhang, Sontong; Ming, Hai; Jin, Zhaoqing; Cao, Gaoping

    2018-06-01

    Li5La3Nb2O12 (LLNO) is a typical garnet-like solid electrolyte with solitary cubic structure. However, its ionic conductivity is relatively low due to the low relative density when prepared by cold isostatic pressing method, which usually involves high-pressure machines, poor productivity, tedious pressing operations, and low density. In this paper, self-consolidation method is developed to sinter dense LLNO electrolyte. Although not any pressing operations are employed in the entire process, the relative density of LLNO is promoted up to 95%, which is much higher than the reported values of 45-80%. SEM images reveal that the sample is built by huge particles in size of 80 μm indicating that there are few boundaries in the sample. Moreover, a rich content of Li-Al-O compounds is detected out in the boundary areas, which may act as sintering aids for the sample to consolidate automatically. According to the highest density, the bulk ionic conductivity of LLNO sample reaches up to 1.61 × 10-4 S cm-1 at 30 °C, which is in the same order of magnitude as the value of cubic Li7La3Zr2O12 electrolyte. This work verifies the self-consolidation mechanism for the sintering of ceramic electrolytes and could significantly facilitate the development of LLNO membrane technology.

  15. Dielectric and magnetic studies of BaTi0.5Fe0.5O3 ceramic materials, synthesized by solid state sintering.

    PubMed

    Samuvel, K; Ramachandran, K

    2015-02-05

    A comparative study of the surface morphology, dielectric and magnetic properties of the BaTi0.5Fe0.5O3 (BTFO) ceramics materials. This has been carried out by synthesizing the samples in different routes. BTFO samples have shown single phased 12R type hexagonal structure with R3m, P4mm space group. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. It has been identified that huge dielectric constant (10(3)-10(6)) at lower frequencies is largely contributed by the heterogeneous electronic microstructure at the interfaces of grains. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in chemical routed samples. The order of grain boundary resistivity suggests the semiconductor/insulator class of the material. The grain boundary resistivity of the mechanical alloyed samples is remarkably lower than the solid state and chemical routed samples. Few samples have of the samples have exhibited signature of ferromagnetism at the room temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti-6Al-4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model.

    PubMed

    Hyzy, Sharon L; Cheng, Alice; Cohen, David J; Yatzkaier, Gustavo; Whitehead, Alexander J; Clohessy, Ryan M; Gittens, Rolando A; Boyan, Barbara D; Schwartz, Zvi

    2016-08-01

    The purpose of this study was to compare the biological effects in vivo of hierarchical surface roughness on laser sintered titanium-aluminum-vanadium (Ti-6Al-4V) implants to those of conventionally machined implants on osteoblast response in vitro and osseointegration. Laser sintered disks were fabricated to have micro-/nano-roughness and wettability. Control disks were computer numerical control (CNC) milled and then polished to be smooth (CNC-M). Laser sintered disks were polished smooth (LST-M), grit blasted (LST-B), or blasted and acid etched (LST-BE). LST-BE implants or implants manufactured by CNC milling and grit blasted (CNC-B) were implanted in the femurs of male New Zealand white rabbits. Most osteoblast differentiation markers and local factors were enhanced on rough LST-B and LST-BE surfaces in comparison to smooth CNC-M or LST-M surfaces for MG63 and normal human osteoblast cells. To determine if LST-BE implants were osteogenic in vivo, we compared them to implant surfaces used clinically. LST-BE implants had a unique surface with combined micro-/nano-roughness and higher wettability than conventional CNC-B implants. Histomorphometric analysis demonstrated a significant improvement in cortical bone-implant contact of LST-BE implants compared to CNC-B implants after 3 and 6 weeks. However, mechanical testing revealed no differences between implant pullout forces at those time points. LST surfaces enhanced osteoblast differentiation and production of local factors in vitro and improved the osseointegration process in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2086-2098, 2016. © 2016 Wiley Periodicals, Inc.

  17. ZrB 2-HfB 2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-11-09

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  18. Selective laser sintering in biomedical engineering.

    PubMed

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  19. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene—The Influence of Spark Plasma Texturing Process

    PubMed Central

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-01-01

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2–15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime. PMID:28796172

  20. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.

    PubMed

    Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

Top