Science.gov

Sample records for conventional superconducting tip

  1. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2017-02-01

    Conventional superconductors are described well by the Bardeen – Cooper – Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature Tc. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at Tc = 200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high Tc superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing Tc to room temperature are also discussed.

  2. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2016-11-01

    Conventional superconductors are described well by the Bardeen - Cooper - Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature T_c. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at T_c=200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high T_c superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing T_c to room temperature are also discussed.

  3. High-temperature superconductivity: A conventional conundrum

    SciTech Connect

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  4. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    SciTech Connect

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-07

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.

  5. Scanning Tunnelling Spectroscopy of Vortices with Normal and Superconducting tips

    NASA Astrophysics Data System (ADS)

    Rodrigo, J. G.; Suderow, H.; Vieira, S.

    Scanning tunnelling microscopy and spectroscopy (STM/S) has proved to be a powerful tool to study superconductivity down to atomic level. Vortex lattice studies require characterizing areas of enough size to contain a large number of vortices. On the other hand, it is necessary to combine this capability with high spectroscopic and microscopic resolution. This is a fundamental aspect to measure and detect the subtle changes appearing inside and around a single vortex. We report in this chapter our approach to the use of STM/S, using normal and superconducting tips, to observe the lattice of vortices in several compounds, and the information acquired inside these fascinating entities. The combination of superconducting tips and scanning tunneling spectroscopy, (ST)2S, presents advantages for the study of superconducting samples. It allows to distinguish relevant features of the sample density of states, which manifest itself as small changes in the Josephson coupling between sample and tip condensates, and it has also shown to be very efficient in the study of the ferromagnetic-superconductor transition in the re-entrant superconductor ErRh4B4.

  6. Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip

    PubMed Central

    Ge, Jun-Yi; Gladilin, Vladimir N.; Tempere, Jacques; Xue, Cun; Devreese, Jozef T.; Van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V.

    2016-01-01

    Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations. PMID:27934960

  7. Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip.

    PubMed

    Ge, Jun-Yi; Gladilin, Vladimir N; Tempere, Jacques; Xue, Cun; Devreese, Jozef T; Van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V

    2016-12-09

    Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations.

  8. Rectangular Waveguides with Two Conventional and Two Superconducting Walls

    NASA Technical Reports Server (NTRS)

    Yalamanchili, Raj; Qiu, Zheng An; Wang, Yen-Chu

    1995-01-01

    The propagation properties of transverse electric TE(sup pm) modes and their dispersion relations in rectangular waveguides with two conventional and two superconducting walls, derived by using the Meissner boundary conditions on the superconducting walls, are presented. In addition to recovering some previously known results, some novel results have been obtained: the cut-off wavelength of the dominant TE(sup 10) mode is greater than that of the conventional TE(sub 10) mode, and the tangential electric field and normal magnetic field for the dominant mode TE(sup 10) exist on the superconducting surfaces. Expressions for electromagnetic components, surface currents, attenuation coefficient, maximum transmitted power, dispersion and wave impedance are also presented.

  9. Unconventional superconductivity in low density electron systems and conventional superconductivity in hydrogen metallic alloys

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.

    2016-06-01

    In this short review, we first discuss the results, which are mainly devoted to the generalizations of the famous Kohn-Luttinger mechanism of superconductivity in purely repulsive fermion systems at low electron densities. In the context of repulsive- U Hubbard model and Shubin-Vonsovsky model we consider briefly the superconducting phase diagrams and the symmetries of the order parameter in novel strongly correlated electron systems including idealized monolayer and bilayer graphene. We stress that purely repulsive fermion systems are mainly the subject of unconventional low-temperature superconductivity. To get the high temperature superconductivity in cuprates (with T C of the order of 100 K) we should proceed to the t-J model with the van der Waals interaction potential and the competition between short-range repulsion and long-range attraction. Finally we note that to describe superconductivity in metallic hydrogen alloys under pressure (with T C of the order of 200 K) it is reasonable to reexamine more conventional mechanisms connected with electron-phonon interaction. These mechanisms arise in the attractive- U Hubbard model with static onsite or intersite attractive potential or in more realistic theories (which include retardation effects) such as Migdal-Eliashberg strong coupling theory or even Fermi-Bose mixture theory of Ranninger et al. and its generalizations.

  10. Scanning tunneling spectroscopy of the vortex state in NbSe 2 using a superconducting tip

    NASA Astrophysics Data System (ADS)

    Rodrigo, J. G.; Crespo, V.; Vieira, S.

    2008-04-01

    The vortex electronic structure in the multiband superconductor NbSe2 is studied by means of scanning tunneling spectroscopy (STS) using a superconducting tip. The use of a superconducting tip (Pb) as a probe provides an enhancement of the different features related to the DOS of NbSe2 in the tunneling conductance curves. This use allows the observation of rich patterns of electronic states in the conductance images around the vortex cores in a wide range of temperature, as well as the simultaneous acquisition of Josephson current images in the vortex state.

  11. Emergence of nanoscale inhomogeneity in the superconducting state of a homogeneously disordered conventional superconductor

    PubMed Central

    Kamlapure, Anand; Das, Tanmay; Ganguli, Somesh Chandra; Parmar, Jayesh B.; Bhattacharyya, Somnath; Raychaudhuri, Pratap

    2013-01-01

    The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking these domains as a function of temperature we observe that the superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system. PMID:24132046

  12. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    SciTech Connect

    Eltschka, Matthias Jäck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R.; Kondrashov, Oleg V.; Skvortsov, Mikhail A.; Kern, Klaus

    2015-09-21

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparing our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.

  13. Calibration of tip and sample temperature of a scanning tunneling microscope using a superconductive sample

    SciTech Connect

    Stocker, Matthias; Pfeifer, Holger; Koslowski, Berndt

    2014-05-15

    The temperature of the electrodes is a crucial parameter in virtually all tunneling experiments. The temperature not only controls the thermodynamic state of the electrodes but also causes thermal broadening, which limits the energy resolution. Unfortunately, the construction of many scanning tunneling microscopes inherits a weak thermal link between tip and sample in order to make one side movable. Such, the temperature of that electrode is badly defined. Here, the authors present a procedure to calibrate the tip temperature by very simple means. The authors use a superconducting sample (Nb) and a standard tip made from W. Due to the asymmetry in the density of states of the superconductor (SC)—normal metal (NM) tunneling junction, the SC temperature controls predominantly the density of states while the NM controls the thermal smearing. By numerically simulating the I-V curves and numerically optimizing the tip temperature and the SC gap width, the tip temperature can be accurately deduced if the sample temperature is known or measureable. In our case, the temperature dependence of the SC gap may serve as a temperature sensor, leading to an accurate NM temperature even if the SC temperature is unknown.

  14. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.

    PubMed

    Drozdov, A P; Eremets, M I; Troyan, I A; Ksenofontov, V; Shylin, S I

    2015-09-03

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  15. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

    NASA Astrophysics Data System (ADS)

    Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I.

    2015-09-01

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  16. Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system

    NASA Astrophysics Data System (ADS)

    Kokail, Christian; Heil, Christoph; Boeri, Lilia

    2016-08-01

    Motivated by the recent report of superconductivity above 200 K in ultra-dense hydrogen sulfide, we search for high-TC conventional superconductivity in the phase diagram of the binary Li-S system, using ab initio methods for crystal structure prediction and linear response calculations for the electron-phonon coupling. We find that at pressures higher than 20 GPa, several new compositions, besides the known Li2S , are stabilized; many exhibit electride-like interstitial charge localization observed in other alkali-metal compounds. Of all predicted phases, only an fcc phase of Li3S , metastable before 640 GPa, exhibits a sizable TC, in contrast to what is observed in sulfur and phosphorus hydrides, where several stoichiometries lead to high TC. We attribute this difference to 2 s -2 p hybridization and avoided core overlap, and predict similar behavior for other alkali-metal compounds.

  17. Comparison of Heparin-Coated and Conventional Split-Tip Hemodialysis Catheters

    SciTech Connect

    Clark, Timothy W. I. Jacobs, David; Charles, Hearns W.; Kovacs, Sandor; Aquino, Theresa; Erinjeri, Joseph; Benstein, Judith A.

    2009-07-15

    Catheter coatings have the potential to decrease infection and thrombosis in patients with chronic dialysis catheters. We report our midterm experience with a heparin-coated dialysis catheter. This retrospective, case-control study was approved by our Institutional Review Board. A total of 88 tunneled dialysis catheters were inserted over a 13-month period via the internal jugular vein. Thirty-eight uncoated split-tip catheters and 50 heparin-coated catheters were inserted. Primary catheter patency was compared between the two groups using the log rank test, with infection and/or thrombosis considered as catheter failures. Dialysis parameters during the first and last dialysis sessions, including pump speed, actual blood flow, and arterial port pressures, were compared using unpaired t-tests. Primary patency of the uncoated catheters was 86.0 {+-} 6.5% at 30 days and 76.1 {+-} 8.9% at 90 days. Primary patency of heparin-coated catheters was 92.0 {+-} 6.2% at 30 days and 81.6 {+-} 8.0% at 90 days (p = 0.87, log rank test). Infection requiring catheter removal occurred in four patients with uncoated catheters and two patients with heparin-coated catheters (p = 0.23). Catheter thrombosis requiring catheter replacement or thrombolysis occurred in one patient with an uncoated catheter and two patients with heparin-coated catheters (p = 0.9). No differences in catheter function during hemodialysis were seen between the two groups. In conclusion, the heparin-coated catheter did not show a significantly longer patency compared to the uncoated catheter. The flow characteristics of this device were comparable to those of the conventional uncoated catheter. A demonstrable benefit of the heparin-coated catheter in randomized trials is needed before a recommendation for routine implementation can be made.

  18. Comparison of heparin-coated and conventional split-tip hemodialysis catheters.

    PubMed

    Clark, Timothy W I; Jacobs, David; Charles, Hearns W; Kovacs, Sandor; Aquino, Theresa; Erinjeri, Joseph; Benstein, Judith A

    2009-07-01

    Catheter coatings have the potential to decrease infection and thrombosis in patients with chronic dialysis catheters. We report our midterm experience with a heparin-coated dialysis catheter. This retrospective, case-control study was approved by our Institutional Review Board. A total of 88 tunneled dialysis catheters were inserted over a 13-month period via the internal jugular vein. Thirty-eight uncoated split-tip catheters and 50 heparin-coated catheters were inserted. Primary catheter patency was compared between the two groups using the log rank test, with infection and/or thrombosis considered as catheter failures. Dialysis parameters during the first and last dialysis sessions, including pump speed, actual blood flow, and arterial port pressures, were compared using unpaired t-tests. Primary patency of the uncoated catheters was 86.0 +/- 6.5% at 30 days and 76.1 +/- 8.9% at 90 days. Primary patency of heparin-coated catheters was 92.0 +/- 6.2% at 30 days and 81.6 +/- 8.0% at 90 days (p = 0.87, log rank test). Infection requiring catheter removal occurred in four patients with uncoated catheters and two patients with heparin-coated catheters (p = 0.23). Catheter thrombosis requiring catheter replacement or thrombolysis occurred in one patient with an uncoated catheter and two patients with heparin-coated catheters (p = 0.9). No differences in catheter function during hemodialysis were seen between the two groups. In conclusion, the heparin-coated catheter did not show a significantly longer patency compared to the uncoated catheter. The flow characteristics of this device were comparable to those of the conventional uncoated catheter. A demonstrable benefit of the heparin-coated catheter in randomized trials is needed before a recommendation for routine implementation can be made.

  19. Superconductivity

    DTIC Science & Technology

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  20. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  1. Comparison between loop-tip guidewire-assisted and conventional endoscopic cannulation in high risk patients

    PubMed Central

    Masci, Enzo; Mangiavillano, Benedetto; Luigiano, Carmelo; Bizzotto, Alessandra; Limido, Eugenio; Cantù, Paolo; Manes, Gianpiero; Viaggi, Paolo; Spinzi, Giancarlo; Radaelli, Franco; Mariani, Alberto; Virgilio, Clara; Alibrandi, Angela; Testoni, Pier Alberto

    2015-01-01

    Background: The guidewire biliary cannulation (GWC) technique may increase the cannulation rate and decrease the risk for post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis. The aim of our multicenter prospective randomized controlled trial was to determine if the use of an atraumatic loop-tip guidewire reduces the rate of post-ERCP pancreatitis (PEP) compared with the standard contrast-assisted cannulation (CC) technique. Methods: From June 2012 to December 2013, a total of 320 patients who had a naïve papilla and were referred for ERCP were randomly assigned to the GWC group (n = 160) or the CC group (n = 160). GWC or CC was randomly used. In cases of failed cannulation in both arms after crossover, biliary access was attempted with alternative techniques (e. g., dual-wire technique, pancreatic duct stenting, precut). Results: The biliary cannulation rates were 81 % in the GWC group and 73 % in the CC group (P = n. s.). Following crossover, cannulation was successful in 8 % and 11 % of patients in the GWC and CC groups, respectively. With use of an alternative technique, the cannulation rates were 98 % in the GWC group and 96 % in the CC group, respectively. The rates of PEP were 5 % in the GWC group and 12 % in the CC group (P = 0.027). The post-interventional complication rates did not differ between the two groups. Conclusion: GWC with the new wire guide is associated with a lower rate of PEP in comparison with the CC technique. Clinical trial reference number: NCT01771419 PMID:26528503

  2. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  3. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.

    2016-12-01

    As a promising candidate system to realize topological superconductivity, the system of a 3D topological insulator (TI) grown on top of the s -wave superconductor has been extensively studied. To access the topological superconductivity experimentally, the 3D TI sample must be thin enough to allow for Cooper pair tunneling to the exposed surface of TI. The use of magnetically ordered dopants to break time-reversal symmetry may allow the surface of a TI to host Majorana fermion, which are believed to be a signature of topological superconductivity. In this work, we study a magnetically-doped thin film TI-superconductor hybrid system. Considering the proximity induced order parameter in thin film of TI, we analyze the gap closing points of the Hamiltonian and draw the phase diagram as a function of relevant parameters: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological superconductivity in thin film TI-superconductor hybrid systems. In addition, we further perform numerical analysis on a TI proximity coupled to an s -wave superconductor and find that, due to the spin-momentum locked nature of the surface states in TI, the induced s -wave order parameter of the surface states persists even at large magnitude of the Zeeman energy.

  4. The First Page of the Official Journal of the Constitutional Convention--Just the Tip of a Records Iceberg!

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2012-01-01

    On Monday, September 17, 1787, 39 delegates to the Federal Convention in Philadelphia signed the Constitution of the United States, along with Major William Jackson, who had served as the secretary of the Convention. That same day, Jackson received instructions to leave for New York City on Tuesday and carry the document to Congress. All of these…

  5. Comparison of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips of Nicotiana and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Giddings, T. H. Jr; Staehelin, L. A.; Sack, F. D.

    1990-01-01

    To circumvent the limitations of chemical fixation (CF) and to gain more reliable structural information about higher plant tissues, we have cryofixed root tips of Nicotiana and Arabidopsis by high pressure freezing (HPF). Whereas other freezing techniques preserve tissue to a relatively shallow depth, HPF in conjunction with freeze substitution (FS) resulted in excellent preservation of entire root tips. Compared to CF, in tissue prepared by HPF/FS: (1) the plasmalemma and all internal membranes were much smoother and often coated on the cytoplasmic side by a thin layer of stained material, (2) the plasmalemma was appressed to the cell wall, (3) organelle profiles were rounder, (4) the cytoplasmic, mitochondrial, and amyloplast matrices were denser, (5) vacuoles contained electron dense material, (6) microtubules appeared to be more numerous and straighter, with crossbridges observed between them, (7) cisternae of endoplasmic reticulum (ER) were wider and filled with material, (8) Golgi intercisternal elements were more clearly resolved and were observed between both Golgi vesicles and cisternae, and (9) larger vesicles were associated with Golgi stacks. This study demonstrates that HPF/FS can be used to successfully preserve the ultrastructure of relatively large plant tissues without the use of intracellular cryoprotectants.

  6. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  7. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  8. A direct current superconducting quantum interference device gradiometer with a digital signal processor controlled flux-locked loop and comparison with a conventional analog feedback scheme

    SciTech Connect

    Kung, P.J.; Bracht, R.R.; Flynn, E.R.; Lewis, P.S.

    1996-01-01

    A double-washer dc superconducting quantum interference device (SQUID) gradiometer with a flux-locked loop (FLL) based on a digital signal processor (DSP) has been developed for biomagnetic applications. All of the analog electronics in the conventional FLL are replaced and implemented by the DSP except for the low-noise field-effect transistor preamplifier at the front end of the signal recovery components. The DSP performs the signal demodulation by synchronously sampling the recovered signals and applying the appropriate full wave rectification. The signals are then integrated, filtered, and applied to the output. At 4.2 K, the white flux noise of the gradiometer measured in a DSP FLL mode is about 4{mu}{phi}{sub 0}/{radical}Hz and the noise at 1 Hz is 13 {mu}{phi}{sub 0}/{radical}Hz. The corresponding noise levels in the gradiometer operated by the conventional FLL are 1.8 and 3{mu}{phi}{sub 0}/{radical}Hz. The poorer system performance in the DSP FLL compared to the analog FLL is mainly caused by the ambient field noise and interference signals picked up through the connecting cables. Additional noise is also added to the overall noise floor by the instruments employed in the DSP system in the present prototype setup. Further improvement in the noise characteristics and the dynamic behavior of the DSP SQUID gradiometer is expected when a better configuration of DSP with the associated I/O devices is implemented. Additional improvements of the DSP programs are expected by incorporating higher-order integration, adaptive control, and noise reduction schemes. {copyright} {ital 1996 American Institute of Physics.}

  9. Wind-Tunnel Investigation of the Low-Speed Characteristics of a 1/8-Scale Model of the Republic XP-91 Airplane with a Vee and a Conventional Tail. Addendum - Characteristics with a Revised Conventional Tail and Drooped Wing Tips

    NASA Technical Reports Server (NTRS)

    Weiberg, James A.; Anderson, Warren E.

    1958-01-01

    Additional wind-tunnel tests were made of a 1/8-scale model of the Republic XP-91 airplane to determine its characteristics with various modifications. The modifications included a revised conventional tail, revised rocket arrangement, drooped wing tips, and revised landing gear and doors. Tests were also made to determine the effectiveness of the control surfaces of the model with the conventional tail and the effect of changing wing incidence and tail length. The revised rocket arrangement provided a considerable increase in the static directional stability contributed by the vee tail at small angles of yaw. The conventional tail provided a greater static directional stability than the vee tail without increasing the rolling moment due to sideslip. The rolling moment die to sideslip was considerable reduced by either drooped wing tips or open main landing-gear doors. The reduction in rolling moment due to sideslip resulting from the drooped tips was less with the landing-gear doors open than with the doors closed. A change in wing incidence from 0 degrees to 6 degrees reduced the elevator angle required for balance by approximately 6 degrees.

  10. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  11. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  12. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  13. Development of a Millikelvin dual-tip Josephson scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Anita

    In this thesis, I first describe the design and construction of a dual-tip millikelvin STM system. The STM is mounted on a dilution refrigerator and the setup includes vibration isolation, rf-filtered wiring, an ultra high vacuum (UHV) sample preparation chamber and sample transfer mechanism. Next I describe a novel superconducting tip fabrication technique. My technique involves dry-etching sections of 250 mum diameter Nb wire with an SF6 plasma in a reactive ion etcher. I present data taken with these tips on various samples at temperatures ranging from 30 mK to 9 K. My results demonstrate that the tips are superconducting, achieve good spectroscopic energy resolution, are mechanically robust over long time periods, and are atomically sharp. I also show data characterizing the performance of our system. This data is in the form of atomic resolution images, spectroscopy, noise spectra and simultaneous scans taken with both tips of the STM. I used these to examine the tip-sample stability, cross talk between the two tips, and to extract the effective noise temperature (˜185 mK) of the sample by fitting the spectroscopy data to a voltage noise model. Finally, I present spectroscopy data taken with a Nb tip on a Nb(100) sample at 30 mK. The enhanced spectroscopic resolution at this temperature allowed me to resolve peaks in the fluctuation-dominated supercurrent at sub-gap voltages. My analysis indicates that these peaks are due to the incoherent tunneling of Cooper pairs at resonant frequencies of the STM's electromagnetic environment. By measuring the response of the STM junction to microwaves, I identified the charge carriers in this regime as Cooper pairs with charge 2e. The amplitude of the response current scales as the square of the Bessel functions, indicating that the pair tunneling originates from photon assisted tunneling in the incoherent regime, rather than the more conventionally observed Shapiro steps in the coherent regime.

  14. Conventional magnetic superconductors

    SciTech Connect

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led to the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.

  15. Conventional magnetic superconductors

    DOE PAGES

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  16. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  17. Interface high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  18. TIP list

    SciTech Connect

    Ludwig, M E

    2006-06-22

    Subcontractors and vendors providing services, including the installation of purchased goods, are required to complete a TIP List. This list does not include every Environment, Safety, and Health (ES&H) related concern at LLNL. It is intended to highlight major concerns common to most on-site service activities.

  19. Technology Tips

    ERIC Educational Resources Information Center

    Stohl, Hollylynne; Harper, Suzanne R.

    2004-01-01

    Some of the graphing capabilities of The Geometer's Sketchpad (GSP) in the "Technology Tips" are introduced. The new graphing features of GSP allow teachers to implement the software not only in geometry classrooms but also into their algebra, precalculus and calculus classes.

  20. Technology Tips

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    2004-01-01

    A dynamic program for geometry called Cabri Geometry II is used to examine properties of figures like triangles and make connections with other mathematical ideas like ellipse. The technology tip includes directions for creating such a problem with technology and suggestions for exploring it.

  1. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  2. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  3. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  4. Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2012-01-01

    The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.

  5. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  6. Feasibility of using high temperature superconducting magnets and conventional magnetic loop antennas to attract or repel objects at the space station

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1989-01-01

    A study was undertaken to see if magnetic forces can be used at the Space Station to attract or repel spacecrafts such as the Orbital Manuevering Vehicle (OMV) or the Orbiter. A large magnet, in the form of a current loop, is assumed to be placed at the Space Station and another one on the spacecraft. The expression for the force between the two dipoles (loops) is obtained. Using a force of 15 Newtons (3.4 pounds) in order to move the spacecraft, the number of ampere-turn needed in the current loops was calculated at various distances between them. The expression for the force of attraction between a current loop and a soft magnetic material was also examined and the number of amp-turn needed to provide a force of one-tenth of a pound at various distances is also calculated. This one tenth of a pound force would be used in a life line system for the retrieval of an adrift crewman or tool at the Space Station. The feasibility of using conventional antenna on the Station and the incoming vehicle for attraction or repulsion was also examined.

  7. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  8. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  9. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  10. Tip-modulation scanned gate microscopy.

    PubMed

    Wilson, Neil R; Cobden, David H

    2008-08-01

    We introduce a technique that improves the sensitivity and resolution and eliminates the nonlocal background of scanned gate microscopy (SGM). In conventional SGM, a voltage bias is applied to the atomic force microscope tip and the sample conductance is measured as the tip is scanned. In the new technique, which we call tip-modulation SGM (tmSGM), the biased tip is oscillated and the induced oscillation of the sample conductance is measured. Applied to single-walled carbon nanotube network devices, tmSGM gives sharp, low-noise and background-free images.

  11. Tips for Daily Living

    MedlinePlus

    ... Tips and Gadgets for Daily Activities Dressing Tips Shopping Tips Modifying the Bathroom Driving After Stroke Medication ... and resources. Find a group in your area . Online Support If there is not a support group ...

  12. First Aid Tips

    MedlinePlus

    ... NEI for Kids > First Aid Tips All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  13. Superconducting Materials

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After working with Lewis Research Center and Jet Propulsion Laboratory, Superconducting Technologies, Inc. (STI) adapted NASA requirements and refined its own standard production recipe. STI uses high temperature superconducting (HTS) materials in its basic products: high quality thin films, circuits and components. Applications include microwave circuits for radar to reduce interference.

  14. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  15. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  16. Magnetic trapping of superconducting submicron particles produced by laser ablation in superfluid helium

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuta; Suzuki, Junpei; Yoneyama, Naoya; Tokawa, Yurina; Suzuki, Nobuaki; Matsushima, Fusakazu; Kumakura, Mitsutaka; Ashida, Masaaki; Moriwaki, Yoshiki

    2017-02-01

    We produced spherical superconducting submicron particles by laser ablation of their base metal tips in superfluid helium, and trapped them using a quadrupole magnetic field owing to the diamagnetism caused by the Meissner effect. We also measured their critical temperatures of superconductivity, by observing the threshold temperatures for the confinement of superconducting submicron particles in the trap.

  17. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  18. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGES

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  19. Unconventional superconductivity in heavy-fermion compounds

    NASA Astrophysics Data System (ADS)

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-07-01

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  20. The ducted tip -- A hydrofoil tip geometry with superior cavitation performance

    SciTech Connect

    Green, S.I.; Duan, S.Z.

    1995-12-01

    A novel hydrofoil design, consisting of a small diameter flow-through duct affixed to the tip, has been studied. The tip vortex cavitation inception index, {sigma}{sub i}, of this hydrofoil geometry is about a factor of 2 lower than that of a conventional rounded hydrofoil tip. This inception improvement comes with little associated performance penalty. For angles of attack greater than 8 deg the noncavitating lift-drag ratio is actually superior to that of an unducted hydrofoil of equal span, although with lower wing loadings the hydrofoil performance is diminished by application of the ducted tip. The ducted tip is effective at reducing the tip vortex inception index because, in contrast with the rounded tip, for which vorticity in the Trefftz plane is confined to a line, the ducted tip shed vorticity at the trailing edge is distributed over a line and circle. Distributing the vorticity in this fashion causes the trailing vortex to roll up less tightly, and hence have a higher core pressure and lower {sigma}{sub i}, than a conventional hydrofoil tip. It is also suspected that the interaction at the microscale level between the flow through the duct, and the flow around it, makes the vortex core size larger, and therefore {sigma}{sub i} smaller. The ducted tip design has many potential marine applications, including to ship and submarine propellers, submarine control fins, and ship rudders.

  1. Tips for Transition

    ERIC Educational Resources Information Center

    Kellems, Ryan, Comp.; Morningstar, Mary E., Comp.

    2009-01-01

    The Tips for Transition contains 134 Transition Tips submitted from all over the country by practitioners. The purpose of the Tips was to identify grassroots transition practices being used by practitioners. Tips are categorized into the following domains: (1) Transition Planning; (2) Student Involvement; (3) Family Involvement; (4) Curriculum and…

  2. Probe tip heating assembly

    SciTech Connect

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  3. Ductile superconducting copper-base alloys.

    PubMed

    Tsuei, C C

    1973-04-06

    A new class of ductile superconductors has been prepared by casting and appropriate heat treatments. These alloys superconduct between 4 degrees and 18 degrees K and contain at least 90 atom percent copper and a superconducting phase such as Nb(3)Sn or niobium. They can be processed into wires by conventional metallurgical techniques.

  4. Operational experience with superconducting synchrotron magnets

    SciTech Connect

    Martin, P.S.

    1987-03-01

    The operational experience with the Fermilab Tevatron is presented, with emphasis on reliability and failure modes. Comprisons are made between the operating efficiencies for the superconducting machine and for he conventional Main Ring.

  5. Development of 70 MW class superconducting generators

    SciTech Connect

    Ohara, T. ); Fukuda, H. ); Ogawa, T.; Shimizu, K.; Shiobara, R. ); Ohi, M. ); Veda, A. ); Itoh, K. ); Taniguchi, H. )

    1991-03-01

    The application of superconductivity technology to electric power apparatuses is very important from the viewpoint of promotion of energy saving and resource saving. Especially the superconducting generators using superconductors as the field windings have many merits compared with conventional generators. Super-GM has been researching and developing 70 MW class model machines since FY 1988 for a scheduled period of eight years, aiming at a 200 MW class superconducting generator. This paper describes the basic designs and the recent R and D situation of 70 MW superconducting generators by Super-GM.

  6. Novel methods for preparing EC STM tips

    NASA Astrophysics Data System (ADS)

    Kazinczi, R.; Szõcs, E.; Kálmán, E.; Nagy, P.

    We present a dynamic electrochemical etching technique for preparing scanning tunneling microscope (STM) tips. Current vs. potential measurements have led to the development of a dynamic technique which provides atomic resolution and which is faster and more reliable, reproducible and productive than conventional static methods. Tungsten tips are prepared in a 2M NaOH film while the electrolyte is flowing through the film, keeping concentrations and etching rate constant. In order to apply the STM in liquids, an appropriate tip insulating technique is developed so as to prevent Faradaic current. A molten thermoplastic wax film is used for reproducible insulation. The STM tips and insulated tips were characterized by optical microscopy, scanning electron microscopy, STM, and electrochemical STM. Imaging with atomic resolution was demonstrated on HOPG.

  7. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  8. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  9. Anyon Superconductivity of Sb

    NASA Astrophysics Data System (ADS)

    Maksoed, Wh-; Parengkuan, August

    2016-10-01

    In any permutatives to Pedro P. Kuczhynski from Peru, for anyon superconductivity sought EZ Kuchinskii et al.: ``Anion height dependence of Tc & d.o.s of Fe-based Superconductors'', 2010 as well as ``on the basis of electron microscopy & AFM measurements, these phenomena are quantified with focus on fractal dimension, particle perimeter & size of the side branch(tip width) in bert Stegemann et al.:Crystallization of Sb nanoparticles-Pattern Formation & Fractal Growth'', J.PhysChem B., 2004. For dendritic & dendrimer fractal characters shown further: ``antimony denrites were found to be composed of well-crystallized nanoflakes with size 20-4 nm''- Bou Zhau, et al., MaterialLetters, 59 (2005). The alkyl triisopropyl attached in TIPSb those includes in DNA, haemoglobin membrane/fixed-bed reactor for instance quotes in Dragony Fu, Nature Review Cancer, 12 (Feb 2012). Heartfelt Gratitudes to HE. Mr. Prof. Ir. Handojo.

  10. Physics at the superconducting supercollider

    SciTech Connect

    Gaillard, M.K.

    1988-05-23

    Summary of lectures presented in the Shell Seminar Series at the national convention of the National Science Teachers Association, April 7-10, 1988. Topics covered are: The Standard model, symmetry breaking, the superconducting supercollider, physics at the TEV scale, and the early universe.

  11. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  12. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  13. Controlled tip wear on high roughness surfaces yields gradual broadening and rounding of cantilever tips

    NASA Astrophysics Data System (ADS)

    Vorselen, Daan; Kooreman, Ernst S.; Wuite, Gijs J. L.; Roos, Wouter H.

    2016-11-01

    Tip size in atomic force microscopy (AFM) has a major impact on the resolution of images and on the results of nanoindentation experiments. Tip wear is therefore a key limitation in the application of AFM. Here we show, however, how wear can be turned into an advantage as it allows for directed tip shaping. We studied tip wear on high roughness polycrystalline titanium and diamond surfaces and show that tip wear on these surfaces leads to an increased tip size with a rounded shape of the apex. Next, we fitted single peaks from AFM images in order to track the changes in tip radius over time. This method is in excellent agreement with the conventional blind tip reconstruction method with the additional advantage that we could use it to demonstrate that the increase in tip size is gradual. Moreover, with our approach we can shape and control the tip size, while retaining identical chemical and cantilever properties. This significantly expands the reproducibility of AFM force spectroscopy data and is therefore expected to find a wide applicability.

  14. Controlled tip wear on high roughness surfaces yields gradual broadening and rounding of cantilever tips

    PubMed Central

    Vorselen, Daan; Kooreman, Ernst S.; Wuite, Gijs J. L.; Roos, Wouter H.

    2016-01-01

    Tip size in atomic force microscopy (AFM) has a major impact on the resolution of images and on the results of nanoindentation experiments. Tip wear is therefore a key limitation in the application of AFM. Here we show, however, how wear can be turned into an advantage as it allows for directed tip shaping. We studied tip wear on high roughness polycrystalline titanium and diamond surfaces and show that tip wear on these surfaces leads to an increased tip size with a rounded shape of the apex. Next, we fitted single peaks from AFM images in order to track the changes in tip radius over time. This method is in excellent agreement with the conventional blind tip reconstruction method with the additional advantage that we could use it to demonstrate that the increase in tip size is gradual. Moreover, with our approach we can shape and control the tip size, while retaining identical chemical and cantilever properties. This significantly expands the reproducibility of AFM force spectroscopy data and is therefore expected to find a wide applicability. PMID:27833143

  15. Slender tip laser scalpel

    DOEpatents

    Veligdan, James T.

    2004-01-06

    A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.

  16. Healthy Vision Tips

    MedlinePlus

    ... NEI for Kids > Healthy Vision Tips All About Vision About the Eye Ask a Scientist Video Series ... Links to More Information Optical Illusions Printables Healthy Vision Tips Healthy vision starts with you! Use these ...

  17. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  18. Child Transportation Safety Tips.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This document presents nine tips regarding safe infant and child transportation, each tip explained in one to two pages. The tips are as follows: (1) quick safety seat checkup; (2) where should your child ride? (3) how to protect your new baby in the car; (4) what safety seat to use for a big baby or toddler? (5) how should preschool and school…

  19. Fano fingerprints of Majoranas in Kitaev dimers of superconducting adatoms

    NASA Astrophysics Data System (ADS)

    Dessotti, F. A.; Ricco, L. S.; Marques, Y.; Machado, R. S.; Guessi, L. H.; Figueira, M. S.; de Souza, M.; Seridonio, A. C.

    2016-09-01

    We investigate theoretically a Fano interferometer composed by STM and AFM tips close to a Kitaev dimer of superconducting adatoms, in which the adatom placed under the AFM tip, encloses a pair of Majorana fermions (MFs). For the binding energy Δ of the Cooper pair delocalized into the adatoms under the tips coincident with the tunneling amplitude t between them, namely Δ=t, we find that only one MF beneath the AFM tip hybridizes with the adatom coupled to the STM tips. As a result, a gate invariance feature emerges: the Fano profile of the transmittance rises as an invariant quantity depending upon the STM tips Fermi energy, due to the symmetric swap in the gate potential of the AFM tip.

  20. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  1. Chiral magnetic superconductivity

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.

    2017-03-01

    Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this "Chiral Magnetic Superconductivity" (CMS) is thus analogous to conventional superconductivity. However the underlying physics is entirely different - the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent) quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 - 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.

  2. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  3. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  4. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  5. Helicopter blade tips

    NASA Technical Reports Server (NTRS)

    Lyothier, R.

    1983-01-01

    Methods of improving helicopter performance and vibration level by proper shaping of helicopter blade tips are considered. The principle involved consists of reducing the extent of the supersonic zone above the advancing tip and of the turbulent interaction. For stationary and advancing flight, the influence of the rotor and the problems posed by blade tips are reviewed. The theoretical methods of dealing with the two types of flight are briefly stated, and the experimental apparatus is described, including model triple and quadruple rotors. Different blade tip shapes are shown and briefly discussed. The theoretical results include an advancing speed of 309 km/H and a blade tip rotational speed of 215 m/s. The experimental values are advancing speed of 302 km/h and blade tip Mach number 0.86 for both types of rotors.

  6. Superconducting generators - Economics, technical considerations and ancillary technology

    NASA Astrophysics Data System (ADS)

    Bzura, J. J.; Abtahi, F.; Stratton, L. J.

    1981-01-01

    An economic analysis of superconducting generators was performed and compared with analyses by Westinghouse and General Electric. Superconducting generators were compared with conventional generators over a 30-year operating life using three energy sources (nuclear fuel, coal and oil), and including the effects of inflation on fuel and operating costs. The ADL analysis shows that operating cost savings of a 1200 MVA superconducting unit can be approximately 70% of the capital cost of a conventional generator driven by a coal-fired steam turbine. Principal R&D needs for superconducting generators and the limitations of ancillary technology are also discussed.

  7. Endoscopic septoplasty: Tips and pearls.

    PubMed

    Pons, Y; Champagne, C; Genestier, L; Ballivet de Régloix, S

    2015-12-01

    This article is designed to provide a step-by-step description of our endoscopic septoplasty technique and discuss its difficulties and technical tips. Endoscopic septoplasty comprises 10 steps: diagnostic endoscopy, subperichondral infiltration, left mucosal incision, dissection of the left subperichondral flap, cartilage incision (0.5 centimetre posterior to the mucosal incision), dissection of the right subperichondral flap, anterior cartilage resection, perpendicular plate dissection, dissection and resection of the maxillary crest, endoscopic revision, mucosal suture and Silastic stents. A satisfactory postoperative result was observed at 3 months in 97% of cases in this series. The main contraindication to endoscopic septoplasty is anterior columellar deviation of the nasal septum requiring a conventional procedure.

  8. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  9. Instantaneous Conventions

    PubMed Central

    Misyak, Jennifer; Noguchi, Takao; Chater, Nick

    2016-01-01

    Humans can communicate even with few existing conventions in common (e.g., when they lack a shared language). We explored what makes this phenomenon possible with a nonlinguistic experimental task requiring participants to coordinate toward a common goal. We observed participants creating new communicative conventions using the most minimal possible signals. These conventions, furthermore, changed on a trial-by-trial basis in response to shared environmental and task constraints. Strikingly, as a result, signals of the same form successfully conveyed contradictory messages from trial to trial. Such behavior is evidence for the involvement of what we term joint inference, in which social interactants spontaneously infer the most sensible communicative convention in light of the common ground between them. Joint inference may help to elucidate how communicative conventions emerge instantaneously and how they are modified and reshaped into the elaborate systems of conventions involved in human communication, including natural languages. PMID:27793986

  10. Superconducting Materials, Magnets and Electric Power Applications

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  11. Hot Weather Tips

    MedlinePlus

    ... FCA - A A + A You are here Home HOT Weather Tips Printer-friendly version We all suffer in hot weather. However, for elderly and disabled people and ... stress and following these tips for dealing with hot weather. Wear cool clothing: See that the person ...

  12. Total Telephone Tips.

    ERIC Educational Resources Information Center

    Corder, Lloyd E.; And Others

    This manual of telephone behavior tips for business and sales professionals offers ways to handle the disgruntled caller and makes suggestions on topics relevant to the telephone. The manual is divided into the following sections and subsections: (1) Common Courtesy (staff tips, answering the telephone, screening calls, transferring calls, taking…

  13. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  14. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  15. Bed Bug Tips

    EPA Pesticide Factsheets

    How to deal with bed bugs in one printable page. Ten tips include ensuring correct insect identification, reducing clutter, understand integrated pest management, using mattress and box spring encasements, and heat treatment.

  16. Tips for labor coaches

    MedlinePlus

    ... some tips for getting prepared. Before the big day Arrives Labor coaches should go to childbirth classes ... get through her labor and delivery. When the day Arrives You might be at the hospital for ...

  17. Insider conference tips

    NASA Astrophysics Data System (ADS)

    Tennant, Jill

    2012-01-01

    Attending an educator conference and its associated exhibit hall can be a rewarding experience for your brain. But if you keep in mind these insider's tips, your feet, arms, stomach, and wallet will also thank you.

  18. Tips from the Classroom.

    ERIC Educational Resources Information Center

    Epstein, Jim; Ashcraft, Nikki; Clarke, Paul M.; Wolf, Grant S.

    1999-01-01

    Four tips for use in the English-as-a-Second-Language classroom are highlighted: Mr. Bean in the Classroom; Defining Your Future; Coin Questions; Our Futures: Simple, Progressive, and Perfect. (Author/VWL)

  19. Tips for Chronic Pain

    MedlinePlus

    Patient Education Sheet Tips for Chronic Pain The SSF thanks Stuart S. Kassan, MD, FACP, Clinical Professor of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, for authoring ...

  20. Eye Drop Tips

    MedlinePlus

    ... Involved News About Us Donate In This Section Eye Drop Tips en Español email Send this article ... the reach of children. Steps For Putting In Eye Drops: Start by tilting your head backward while ...

  1. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  2. Superconductivity in the ferromagnetic semiconductor samarium nitride

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; Granville, S.; Engel, A.; Chong, S. V.; Governale, M.; Zülicke, U.; Moghaddam, A. G.; Trodahl, H. J.; Natali, F.; Vézian, S.; Ruck, B. J.

    2016-07-01

    Conventional wisdom expects that making semiconductors ferromagnetic requires doping with magnetic ions and that superconductivity cannot coexist with magnetism. However, recent concerted efforts exploring new classes of materials have established that intrinsic ferromagnetic semiconductors exist and that certain types of strongly correlated metals can be ferromagnetic and superconducting at the same time. Here we show that the trifecta of semiconducting behavior, ferromagnetism, and superconductivity can be achieved in a single material. Samarium nitride (SmN) is a well-characterized intrinsic ferromagnetic semiconductor, hosting strongly spin-ordered 4 f electrons below a Curie temperature of 27 K. We have now observed that it also hosts a superconducting phase below 4 K when doped to electron concentrations above 1021cm-3 . The large exchange splitting of the conduction band in SmN favors equal-spin triplet pairing with p -wave symmetry. Significantly, superconductivity is enhanced in superlattices of gadolinium nitride (GdN) and SmN. An analysis of the robustness of such a superconducting phase against disorder leads to the conclusion that the 4 f bands are crucial for superconductivity, making SmN a heavy-fermion-type superconductor.

  3. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  4. Intraoperative fracture of phacoemulsification tip.

    PubMed

    Angmo, Dewang; Khokhar, Sudarshan K; Ganguly, Anasua

    2014-01-01

    Phacoemulsification (phaco) is an established procedure for cataract extraction and has undergone a significant advances in techniques, machines and phaco tips. The Aspiration Bypass System (ABS) phaco tip was introduced for phacoemulsification in 1998. The ABS tip allows fluid to be drawn through the opening when the phaco tip is occluded by nuclear material. The ABS tip allowed the safe use of high vacuum and flow rates and improved chamber stability by decreasing surge and therefore reducing intraoperative complications. To date, no disadvantages of ABS tips have been reported. We report a unique case of an intraoperative break of an ABS phaco tip during routine cataract surgery.

  5. Influence of air abrasion tips and operation modes on enamel-cutting characteristics

    PubMed Central

    Peruchi, Cláudia; Santos-Pinto, Ary; Dias, Tereza Cristina; Oliveira, Ana Carolina Mascarenhas; Santos-Pinto, Lourdes

    2013-01-01

    Objective: To assess the influence of air abrasion tips and system operation modes on enamel cutting. Methods: Forty bovine teeth were abraded with the air abrasion system Mach 4.1 for 10 and 15 seconds, employing conventional and sonic tips of 0.45-mm inner diameter and a 90° angle, and 27.5-μm aluminum oxide at 5.51 bar air pressure in continuous and pulsed modes. The width and depth of the resulting cuts were measured in SEM. Results: The multivariate analysis of variances revealed that, compared to the sonic tip, the conventional tip produced shallower cuts independent of the operation mode and the application period. Conclusions: The cutting patterns observed in this study suggest that the pulsed mode produced deeper cuts when both the conventional and sonic tips were used, and that the sonic tip cut more dental tissue than the conventional one. PMID:23408157

  6. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  7. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    DOEpatents

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  8. Evolving Indications for Tips.

    PubMed

    Smith, Mitchell; Durham, Janette

    2016-03-01

    Transjugular intrahepatic portosystemic shunt creation is a well-established therapy for refractory variceal bleeding and refractory ascites in patients who do not tolerate repeated large volume paracentesis. Experience and technical improvements including covered stents have led to improved TIPS outcomes that have encouraged an expanded application. Evidence for other less frequent indications continues to accumulate, including the indications of primary prophylaxis in patients with high-risk acute variceal bleeding, gastric and ectopic variceal bleeding, primary treatment of medically refractory ascites, recurrent refractory ascites following liver transplantation, hepatic hydrothorax, hepatorenal syndrome, Budd-Chiari syndrome, and portal vein thrombosis. Treatment of patients with high-risk acute variceal bleeding with early TIPS and using transjugular intrahepatic portosystemic shunts as a primary therapy rather than large volume paracentesis for refractory ascites would likely be the 2 circumstances that permit expansion in the frequency of TIPS procedures. The remaining populations discussed above are relatively rare.

  9. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  10. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  11. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  12. Biopsy needle tips with markers--MR compatible needles for high-precision needle tip positioning.

    PubMed

    Müller-Bierl, Bernd M; Martirosian, Petros; Graf, Hansjörg; Boss, Andreas; König, Claudius; Pereira, Philippe L; Schick, Fritz

    2008-06-01

    Needle tip visualization is of high importance in magnetic resonance imaging (MRI) guided interventional procedures, for example for taking biopsies from suspicious lesions in the liver or kidney. The exact position of the needle tip is often obscured by image artifacts arising from the magnetic properties of the needle. The authors investigated two special biopsy needle tip designs using diamagnetic coatings. For common interventional MR sequences, the needle tip can be identified in the MR image by several equidistant dark spots arranged along a straight line. A dotted instead of a solid line allows for an improved control of the movement of the needle, not only if the needle is tilted toward the imaging plane, but also if the needle leaves an empty canal with signal extinction, which cannot be distinguished from the needle material itself. With the proposed design the position of the needle tip can be estimated with a precision of approximately 1 mm using conventional FLASH, FISP, and TSE sequences, as used for interventional MR. Furthermore, the size of the biopsy probe can be estimated from the artifact. In using needles with a properly designed tip coating, taking biopsies under MR control is beginning to be greatly simplified. The approach to design artifacts using diamagnetic material in combination with paramagnetic material paves the way toward new instruments and implants, suitably tailored to the needs of the interventional radiologist.

  13. Superconductivity in Medicine

    NASA Astrophysics Data System (ADS)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  14. EcoTipping Points

    ERIC Educational Resources Information Center

    Marten, Gerald G.; Matthews, Catherine E.

    2009-01-01

    Contrary to what we often hear and teach, there is good news to be found on the environmental front. Environmental success stories show us not only that sustainability is possible, but also how people have made it happen. We can make these stories and their lessons accessible to students with help from the EcoTipping Points Project, which has…

  15. Tips from the Classroom.

    ERIC Educational Resources Information Center

    Benedetti, Teresa; De Gaetano, Yvonne; Weinstein-McShane, Ruth; Paez, Doris; McCarty, Laurie; Ehlers-Zavala, Fabiola; Bakken, Jeffrey P.

    1997-01-01

    This group of classroom tips discusses the benefits of peer coaching, peer group conversation about teachers' classroom experiences, using visual displays for collegial sharing, using cultural brokers in educational settings, and the role of picture books in developing literacy skills in diverse students with disabilities. (Author/CK)

  16. Tips for Energy Savers.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    According to 1986 U.S. Department of Energy data, 48% of our residential energy is used to heat and cool our homes, 16% goes for heating water, 12% is used to refrigerators and freezers, and the remaining 24% goes into lighting, cooking, and running appliances. This booklet contains tips for saving energy, including sections on: (1) draft-proof…

  17. Newsletter Design Tips.

    ERIC Educational Resources Information Center

    Welch, Sally

    This paper presents detailed tips on newsletter design. Following an overview, it discusses effective design, anatomy of a page, type, designing tools (organizational tools, text organizers, emphasizing tools, and graphics, presented with some do's and don'ts), and a list of other items to consider. Three appendixes contain a brief glossary of…

  18. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  19. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  20. Tipping off endothelial tubes: nitric oxide drives tip cells.

    PubMed

    Priya, Mani Krishna; Sahu, Giriraj; Soto-Pantoja, David R; Goldy, Naga; Sundaresan, Abaya Meenakshi; Jadhav, Vivek; Barathkumar, T R; Saran, Uttara; Jaffar Ali, B M; Roberts, David D; Bera, Amal Kanti; Chatterjee, Suvro

    2015-04-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, is a complex process that warrants cell migration, proliferation, tip cell formation, ring formation, and finally tube formation. Angiogenesis is initiated by a single leader endothelial cell called "tip cell," followed by vessel elongation by "stalk cells." Tip cells are characterized by their long filopodial extensions and expression of vascular endothelial growth factor receptor-2 and endocan. Although nitric oxide (NO) is an important modulator of angiogenesis, its role in angiogenic sprouting and specifically in tip cell formation is poorly understood. The present study tested the role of endothelial nitric oxide synthase (eNOS)/NO/cyclic GMP (cGMP) signaling in tip cell formation. In primary endothelial cell culture, about 40% of the tip cells showed characteristic sub-cellular localization of eNOS toward the anterior progressive end of the tip cells, and eNOS became phosphorylated at serine 1177. Loss of eNOS suppressed tip cell formation. Live cell NO imaging demonstrated approximately 35% more NO in tip cells compared with stalk cells. Tip cells showed increased level of cGMP relative to stalk cells. Further, the dissection of NO downstream signaling using pharmacological inhibitors and inducers indicates that NO uses the sGC/cGMP pathway in tip cells to lead angiogenesis. Taken together, the present study confirms that eNOS/NO/cGMP signaling defines the direction of tip cell migration and thereby initiates new blood vessel formation.

  1. 14. TIP TOP MINE. TAILINGS LOCATED DIRECTLY WEST FROM TIP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. TIP TOP MINE. TAILINGS LOCATED DIRECTLY WEST FROM TIP TOP HOUSE. ID-31-C-12 WOODEN STRUCTURE IS VISIBLE IN TOP LEFT. CABLES VISIBLE LEFT AND CENTER OF TAILINGS. HOUSE IS JUST OVER APEX OF TAILINGS. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Tip Top Mine, West face Florida Mountain, approximately 150 feet below summit, Silver City, Owyhee County, ID

  2. Safety Tips: Baseball (For Parents)

    MedlinePlus

    ... by U.S.A. Little League and the American Sports Medicine Institute: 7-8 years old: 50 pitches a ... ON THIS TOPIC Signing Kids Up for Sports Sports Medicine Center Safety Tips: Hockey Safety Tips: Basketball Competitive ...

  3. Characteristics of high-stiffness superconducting bearing

    SciTech Connect

    Okano, M.; Tamada, N.; Fuchino, S.; Ishii, I.

    1996-07-01

    Magnetic bearings using a high-Tc superconductor have been studied. Generally the bearing makes use of the pinning effects to get the levitation force. The stiffness of the bearing, however, is extremely low as compared with industrial-scale conventional one. To improve the bearing stiffness the authors propose a disc-type repulsive superconducting thrust bearing with a slit for the restraint of the flux. Both theoretical and experimental evaluation on the load performance was carried out, and it is clarified that the proposed superconducting bearing has higher stiffness.

  4. Disdrometer and Tipping Bucket Rain Gauge Handbook

    SciTech Connect

    Bartholomew. MJ

    2009-12-01

    The Distromet disdrometer model RD-80 and NovaLynx tipping bucket rain gauge model 260-2500E-12 are two devices deployed a few meters apart to measure the character and amount of liquid precipitation. The main purpose of the disdrometer is to measure drop size distribution, which it does over 20 size classes from 0.3 mm to 5.4 mm. The data from both instruments can be used to determine rain rate. The disdrometer results can also be used to infer several properties including drop number density, radar reflectivity, liquid water content, and energy flux. Two coefficients, N0 and Λ, from an exponential fit between drop diameter and drop number density, are routinely calculated. Data are collected once a minute. The instruments make completely different kinds of measurements. Rain that falls on the disdrometer sensor moves a plunger on a vertical axis. The disdrometer transforms the plunger motion into electrical impulses whose strength is proportional to drop diameter. The rain gauge is the conventional tipping bucket type. Each tip collects an amount equivalent to 0.01 in. of water, and each tip is counted by a data acquisition system anchored by a Campbell CR1000 data logger.

  5. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  6. A nanoemitter based on a superconducting material

    NASA Astrophysics Data System (ADS)

    Hou, Jin-Long; Chang, Wei-Tse; Shih, Chih-Chiang; Yu, Yu-Fong; Fu, Tsu-Yi; Hwang, Ing-Shouh

    2016-06-01

    The coherence of an electron beam is crucial for the performance of electron microscopy, coherent diffractive imaging, holography, and many other advanced instrumentation methods that rely on the phase coherence of electron waves. Here we present a reliable method for preparing a niobium nanoemitter, which is thermally and chemically stable. The tip apex is a (100) facet with a lateral dimension of ˜1 nm, surrounded by four (310) facets. Adsorption of one monolayer of noble gas, particularly Xe, onto the nanoemitter greatly enhances the emission current and current stability. This electron source will probably possess both spatial and temporal coherence if the emitter is cooled below the superconducting temperature.

  7. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  8. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  9. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  10. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  11. Phonon limited superconducting correlations in metallic nanograins

    NASA Astrophysics Data System (ADS)

    Croitoru, M. D.; Shanenko, A. A.; Vagov, A.; Milošević, M. V.; Axt, V. M.; Peeters, F. M.

    2015-11-01

    Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement.

  12. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  13. Superconducting optical modulator

    NASA Astrophysics Data System (ADS)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  14. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  15. LTS Gradiometers Based-On Superconducting Imaging Surface Design

    SciTech Connect

    Matlachov, A.N.; Kraus, R.H., Jr.; Espy, M.A.

    1999-06-21

    Gradiometer-like devices can be built using a superconducting imaging surface design. Such devices behave similarly to conventional wire-wound gradiometers for nearby magnetic sources. A large gradiometer array can be built by placing SQUID magnetometers close to the surface of a large superconducting plane. The most attractive advantage of such a gradiometer array is the ability to change a baseline for all channels simultaneously by mechanically moving the superconducting imaging surface relative to the sensor array. This can easily be accomplished even when the gradiometer array is cold. We built, experimentally tested, and simulated both first- and second-order gradiometer-like devices with adjustable baseline using the superconducting imaging surface design. First-order radial gradiometer sensors were made by placing planar magnetometers parallel to and near the superconducting imaging surface. A second-order electronic gradiometer was realized by subtracting the output from two of the first-order gradiometers described above.

  16. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  17. Superconductivity in aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Goto, Hidenori; Jabuchi, Taihei; Yokoya, Takayoshi; Kambe, Takashi; Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L. T.; Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya

    2015-07-01

    'Aromatic hydrocarbon' implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc's) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors, suggesting behavior not explained by the standard BCS picture of superconductivity. In this article, we describe the present status of this research field, and discuss its future prospects.

  18. Unconventional high-Tc superconductivity in fullerides.

    PubMed

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  19. Design Optimization of Superconducting Parallel-bar Cavities

    SciTech Connect

    Delayen, Jean R.; De Silva, Payagalage Suba

    2009-11-01

    The parallel-bar structure is a new superconducting geometry [1] whose features and properties may have significant advantages over conventional superconducting deflecting and crabbing cavities for a number of applications. Jefferson Lab is in need for a 499 MHz, 11 GeV rf separator as part of its 12 GeV upgrade program. We report on design optimization studies performed to-date for this and other applications.

  20. Transport properties of ZrN superconducting films

    SciTech Connect

    Cassinese, A.; Iavarone, M.; Vaglio, R.; Grimsditch, M.; Uran, S.

    2000-12-01

    Superconductivity in nitrides presents intriguing aspects related to the role of optical phonons. In the present paper we report on high-quality superconducting zirconium nitride film preparation and characterization (including Raman scattering) as well as on both dc and microwave frequency transport properties. The high-temperature dc resistivity shows no evidence of saturation effects, possibly due to the low electron-phonon coupling. Surface impedance data can be well fitted by the standard BCS expressions. The data provide further evidence of the ''conventional'' nature of superconductivity in these compounds.

  1. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element.

  2. Superconductivity of magnesium diboride

    DOE PAGES

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  3. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  4. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  5. Retrograde dacryocystography (RDC) utilizing a round-tipped needle.

    PubMed

    Kosaka, Masaaki; Kamiishi, Hiroshi

    2001-09-01

    Because the application of conventional anterograde dacryocystography has been restricted in cases with an intact lacrimal punctum, the indications are rather limited. The authors developed a new method for retrograde dacryocystography (RDC) using a hand-made round-tipped needle inserted directly into the orifice of the nasolacrimal duct. A 60 mm long aluminum tube (3 mm in diameter) was used to prepare the round-tipped needle. The distal portion of the tube was bent to an angle of about 80 degrees. The tip was then coated with synthetic resin adhesive to make it round. Following the insertion of the round-tipped needle directly into the inferior meatus, the tip was moved back and forth to find the orifice without visual observation. The complete insertion of the tip of the needle into the nasolacrimal duct was recognized by a fixed sensation of the tip. Contrast medium was then injected, and PA radiography was carried out. In the present paper, the authors report the usefulness of RDC, which is applicable even in cases of injury or obstruction in the upper lacrimal system. In 16 of 20 patients, the quality of the RDC images was judged as excellent. RDC can be carried out within a few seconds after acquiring the technical skills, and is thought to be a useful method, especially in cases of upper lacrimal injury.

  6. Conceptual study of superconducting urban area power systems

    NASA Astrophysics Data System (ADS)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  7. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  8. Gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  9. Emergence of Dissipative Structures in Current-Carrying Superconducting Wires (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    discussed. 15. SUBJECT TERMS superconductivity, critical current density, YBa2Cu3O7-z or YBCO , spontaneous critical current spatial modulation...we will discuss the transition from superconducting to normal mode of operation in the state-of-the art YBa2Cu3O7−x YBCO coated conductors 2,3...The main advantage of YBCO coated conductors over conventional low temperature superconducting wires—high operating temperature 65–77 K—has an

  10. Superconducting cyclotron and its vacuum system

    NASA Astrophysics Data System (ADS)

    Sur, A.; Bhandari, R. K.

    2008-05-01

    A large superconducting cyclotron is under construction at this Centre and will be used to accelerate heavy ion beams to energy up to 80 MeV/A for light heavy ions and about 10 MeV/A for medium mass heavy ions. The vacuum system for this accelerator has several different aspects. The main acceleration chamber will be evacuated to a level of about 10-7 torr using both turbo molecular pumps and specially designed cryopanels. The surfaces exposed to this 'vacuum' are mostly made of OFE copper. The cryogenic transfer lines, to cool the cryopanels, are of several meters in length and they pass through RF resonators extending below the magnet. The cryostat that will house the superconducting coils has an annular vacuum chamber, which is evacuated to a level of approximately 10-5 torr using a turbo molecular pump. Cryopumping action starts once the coils are cooled to low temperatures. A differential pumping is provided below the RF liner that encloses the pole tip of the main magnet. The space that is pumped in this case contains epoxy-potted trim coils wound around the pole tips. Crucial interlocks are provided between the differential vacuum and the acceleration chamber vacuum to avoid distortion of the RF liner, which is made of thin copper sheets. The other important vacuum system provides thermal insulation for the liquid helium transfer lines. In this paper a brief description of the superconducting cyclotron will be given. Details of various vacuum aspects of the accelerator and the logistics of their operation will be presented. Introduction of some of the improved equipment now available and improved techniques are also discussed.

  11. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  12. Superconductivity in Opal-based superconducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Chang, L. J.; Kumzerov, Yu. A.; Lin, M. F.

    2015-03-01

    In this study, we investigate superconducting nanocomposites (SCNCs) to elucidate superconductivity in nanostructured type I superconductor. In, Sn and Hg are loaded into opal matrices by high pressure up to 10kbar, in which introducing superconducting metals into templates preserves their own 3D nanostructures. The opal matrices is adopted because it is a well-developed nanoconfinement and widely used in the studies of photonic crystal due to its periodically-superlatticed nanoporous structure. The SCNCs are then measured by Quantum Design MPMS 3 under different external magnetic fields reveal the field dependences of Tc and irreversibility temperature (Tirr). Next, AC susceptibility measurements of SCNCs determine grain coupling, vortex dynamics and field dependence of activation barrier (Ua) as well as Tc. Additionally, the phase diagrams of these SCNCs are analyzed to study superconductivity for a system with similar nanogeometry. Exotic phase diagrams in the opal SCNC studies reveal an enhanced upper critical field (Hc2 (0)) and curvature crossover of upper critical field line. Additionally, according to the field dependence of Ua(H), curvature crossover of the upper critical field line can occur, owing to vortex phase transition.

  13. Structures behind superconductivity

    SciTech Connect

    Rotman, D.

    1988-07-01

    The previously reported preparation and structures of superconducting materials are reviewed. The two systems, Y-Ba-Cu-O and La-Cu-O, previously reported with high transition temperatures are discussed in some detail. The new systems introduced in 1987 that were not based on a rare earth but including Bi-Sr-Cu-O are also reviewed. Superconductive materials including thallium rather than bismuth that have been reported but not thoroughly studied are discussed briefly. It is pointed out that many superconducting materials have been prepared, but good documentation of the structures and properties of these materials need much more study.

  14. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  15. The Macro - TIPS Course Package.

    ERIC Educational Resources Information Center

    Heriot-Watt Univ., Edinburgh (Scotland). Esmee Fairbairn Economics Research Centre.

    The TIPS (Teaching Information Processing System) Course Package was designed to be used with the Macro-Games Course Package (SO 011 930) in order to train college students to apply the tools of economic analysis to current problems. TIPS is used to provide feedback and individualized assignments to students, as well as information about the…

  16. Tips for Mental Health Interpretation

    ERIC Educational Resources Information Center

    Whitsett, Margaret

    2008-01-01

    This paper offers tips for working with interpreters in mental health settings. These tips include: (1) Using trained interpreters, not bilingual staff or community members; (2) Explaining "interpreting procedures" to the providers and clients; (3) Addressing the stigma associated with mental health that may influence interpreters; (4) Defining…

  17. High-temperature superconducting transformer evaluation

    SciTech Connect

    DeSteese, J.G.; Dagle, J.E.; Dirks, J.A.

    1995-04-01

    The advancing development of high-temperature superconducting (HTS) materials is encouraging the evaluation of many practical applications. This paper summarizes a study that examined the future potential of HTS power transformers in the 30-MVA to 1000-MVA capacity range. Transformer performance was characterized on the basis of potentially achievable HTS materials capabilities and dominant transformer design parameters. Life-cycle costs were estimated and compared with those of conventional transformers to evaluate the economic viability and market potential of HTS designs. HTS transformers are projected to have both capital and energy cost advantages attributable to their ability to be intrinsically smaller and lighter than conventional transformers of comparable capacity.

  18. Recent developments in superconducting receivers

    NASA Astrophysics Data System (ADS)

    Richards, Paul L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high Tc superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high Tc bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  19. Recent developments in superconducting receivers

    SciTech Connect

    Richards, P.L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high {Tc} superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high {Tc} bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  20. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  1. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  2. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  3. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  4. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  5. The Evolution of Transjugular Intrahepatic Portosystemic Shunt: Tips

    PubMed Central

    Fanelli, Fabrizio

    2014-01-01

    Since Richter's description in the literature in 1989 of the first procedure on human patients, transjugular intrahepatic portosystemic shunt (TIPS) has been worldwide considered as a noninvasive technique to manage portal hypertension complications. TIPS succeeds in lowering the hepatic sinusoidal pressure and in increasing the circulatory flow, thus reducing sodium retention, ascites recurrence, and variceal bleeding. Required several revisions of the shunt TIPS can be performed in case of different conditions such as hepatorenal syndrome, hepatichydrothorax, portal vein thrombosis, and Budd-Chiari syndrome. Most of the previous studies on TIPS procedure were based on the use of bare stents and most patients chose TIPS 2-3 years after traditional treatment, thus making TIPS appear to be not superior to endoscopy in survival rates. Bare stents were associated with higher incidence of shunt failure and consequently patients required several revisions during the follow-up. With the introduction of a dedicated e-PTFE covered stent-graft, these problems were completely solved, No more reinterventions are required with a tremendous improvement of patient's quality of life. One of the main drawbacks of the use of e-PTFE covered stent-graft is higher incidence of hepatic encephalopathy. In those cases refractory to the conventional medical therapy, a shunt reduction must be performed. PMID:27335841

  6. Low tip damage AFM technique development for nano structures characterization

    NASA Astrophysics Data System (ADS)

    Liu, Biao; Wang, Charles C.; Huang, Po-Fu; Uritsky, Yuri

    2010-06-01

    Ambient dynamic mode (tapping mode or intermittent-contact mode) AFM imaging has been used extensively for the characterization of the topography of nano structures. However, the results are beset with artifacts, because hard tapping of the AFM tip on sample surface usually causes premature tip damage. Through careful study of the cantilever amplitude and phase signals as functions of tip-to-sample distance, principle of non-contact AFM operation was discovered to enable high resolution and low tip damage AFM image acquisition [1, 2]. However, current study discovers that the conventional way of acquiring amplitude and phase versus distance curves gives erroneous non-contact operating range, because the tip gets damaged during the data acquisition process. A new technique is developed to reliably map the operating parameters of an intact tip that ensures the AFM be operated with the correct non-contact settings. Two examples are given to illustrate the successful applications of this new technique. The first example involves the size characterization of polystyrene latex (PSL) nano particles used for light scattering tool calibration. The second example is the development of robust recipes for the measurement of the depth of phase-shift mask trenches.

  7. High Temperature Superconducting Compounds.

    DTIC Science & Technology

    1999-04-02

    addition to superconducting films, non-superconducting mixed-valence manganite perovskites, which exhibit so-called colossal magnetoresistance were grown...The manganites are unique in that their charge carriers are believed to be almost 100% spin polarized. These materials were combined with the...brought about by the injection of spin polarized carriers from the manganite into the curate. This work may make possible new classes of devices based on

  8. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  9. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  10. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  11. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  12. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  13. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  14. Tipping the scales.

    PubMed

    1998-12-01

    In the US, the October 1998 murder of a physician who performed abortions was an outward manifestation of the insidious battle against legal abortion being waged by radical Christian social conservatives seeking to transform the US democracy into a theocracy. This movement has been documented in a publication entitled, "Tipping the Scales: The Christian Right's Legal Crusade Against Choice" produced as a result of a 4-year investigation conducted by The Center for Reproductive Law and Policy. This publication describes how these fundamentalists have used sophisticated legal, lobbying, and communication strategies to further their goals of challenging the separation of church and state, opposing family planning and sexuality education that is not based solely on abstinence, promoting school prayer, and restricting homosexual rights. The movement has resulted in the introduction of more than 300 anti-abortion bills in states, 50 of which have passed in 23 states. Most Christian fundamentalist groups provide free legal representation to abortion clinic terrorists, and some groups solicit women to bring specious malpractice claims against providers. Sophisticated legal tactics are used by these groups to remove the taint of extremism and mask the danger posed to US constitutional principles being posed by "a well-financed and zealous brand of radical lawyers and their supporters."

  15. Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties

    SciTech Connect

    Groll, Nickolas; Pellin, Michael J.; Zasadzinksi, John F.; Proslier, Thomas

    2015-09-15

    We describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T{sub C}) and density of states over large surface areas with size up to mm{sup 2}. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that can be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. The point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.

  16. The superconducting spin valve and triplet superconductivity

    NASA Astrophysics Data System (ADS)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  17. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    SciTech Connect

    Wang, Andrew; Butte, Manish J.

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  18. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    PubMed Central

    Wang, Andrew; Butte, Manish J.

    2014-01-01

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished. PMID:25161320

  19. Topological surface superconductivity in doped Weyl loop materials

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Nandkishore, Rahul M.

    2017-02-01

    We study surface superconductivity involving the "drumhead" surface states of (doped) Weyl loop materials. The leading weak-coupling instability in the bulk is toward a chiral superconducting order, which fully gaps the Fermi surface. In this state the surface also becomes superconducting, with p +i p symmetry. We show that the surface SC state is "topological" as long as it is fully gapped, and the system traps Majorana modes wherever a vortex line enters or exits the bulk. In contrast to true two-dimensional p +i p superconductors, these Majorana zero modes arise even in the "strong pairing" regime where the chemical potential is entirely above/below the drumhead. We also consider conventional s -wave pairing, and show that in this case the surface hosts a flat band of charge neutral Majorana fermions, whose momentum range is given by the projection of the bulk Fermi surface. Weyl loop materials thus provide access to new forms of topological superconductivity.

  20. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  1. An analytical investigation of the free-tip rotor for helicopters

    NASA Technical Reports Server (NTRS)

    Stroub, R. H.

    1982-01-01

    A rotor configuration called the free-tip rotor was analytically investigated for its potential to improve helicopter forward-flight performance characteristics. This rotor differs from a conventional rotor only in the blade tip region. In this configuration, the tip is self-adjusting in pitch with respect to the rest of the blade, in accordance with a moment balance about its pitch axis. With this self-adjusting capability, the resulting pitch motion generates a more uniform airload distribution around the azimuth. Computer math models were used to compare performance characteristics of the free tip rotor with those of a conventional rotor operation at flight speeds from 130 to 160 knots. The results of this analysis indicate that the free-tip rotor improves cruise lift-drag ratio by at least 22%.

  2. Longitudinal spin fluctuations and superconductivity in ferromagnetic ZrZn2 from Ab initio calculations.

    PubMed

    Santi, G; Dugdale, S B; Jarlborg, T

    2001-12-10

    The recent discovery of superconductivity coexisting with weak itinerant ferromagnetism in the d-electron intermetallic compound ZrZn2 strongly suggests spin-fluctuation mediated superconductivity. Ab initio electronic structure calculations of the Fermi surface and generalized susceptibilities are performed to investigate the viability of longitudinal spin-fluctuation-induced spin-triplet superconductivity in the ferromagnetic state. The critical temperature is estimated to be of the order of 1 K. Additionally, it is shown that in spite of a strong electron-phonon coupling ( lambda(ph) = 0.7), conventional s-wave superconductivity is inhibited by the presence of strong spin fluctuations.

  3. Superconductivity in the non-magnetic state of iron under pressure.

    PubMed

    Shimizu, K; Kimura, T; Furomoto, S; Takeda, K; Kontani, K; Onuki, Y; Amaya, K

    2001-07-19

    Ferromagnetism and superconductivity are thought to compete in conventional superconductors, although in principle it is possible for any metal to become a superconductor in its non-magnetic state at a sufficiently low temperature. At pressures above 10 GPa, iron is known to transform to a non-magnetic structure and the possibility of superconductivity in this state has been predicted. Here we report that iron does indeed become superconducting at temperatures below 2 K at pressures between 15 and 30 GPa. The transition to the superconducting state is confirmed by both a drop in resistivity and observation of the Meissner effect.

  4. Superconductivity on a quasiperiodic lattice: Extended-to-localized crossover of Cooper pairs

    NASA Astrophysics Data System (ADS)

    Sakai, Shiro; Takemori, Nayuta; Koga, Akihisa; Arita, Ryotaro

    2017-01-01

    We study a possible superconductivity in quasiperiodic systems by portraying the issue within the attractive Hubbard model on a Penrose lattice. Applying a real-space dynamical mean-field theory to the model consisting of 4181 sites, we find a superconducting phase at low temperatures. Reflecting the nonperiodicity of the Penrose lattice, the superconducting state exhibits an inhomogeneity. According to the type of the inhomogeneity, the superconducting phase is categorized into three different regions which cross over each other. Among them, the weak-coupling region exhibits spatially extended Cooper pairs, which are nevertheless distinct from the conventional pairing of two electrons with opposite momenta.

  5. Electrically Tunable Multiterminal SQUID-on-Tip

    NASA Astrophysics Data System (ADS)

    Uri, Aviram; Meltzer, Alexander Y.; Anahory, Yonathan; Embon, Lior; Lachman, Ella O.; Halbertal, Dorri; HR, Naren; Myasoedov, Yuri; Huber, Martin E.; Young, Andrea F.; Zeldov, Eli

    2016-11-01

    We present a new nanoscale superconducting quantum interference device (SQUID) whose interference pattern can be shifted electrically in-situ. The device consists of a nanoscale four-terminal/four-junction SQUID fabricated at the apex of a sharp pipette using a self-aligned three-step deposition of Pb. In contrast to conventional two-terminal/two-junction SQUIDs that display optimal sensitivity when flux biased to about a quarter of the flux quantum, the additional terminals and junctions allow optimal sensitivity at arbitrary applied flux, thus eliminating the magnetic field "blind spots". We demonstrate spin sensitivity of 5 to 8 $\\mu_B/\\text{Hz}^{1/2}$ over a continuous field range of 0 to 0.5 T, with promising applications for nanoscale scanning magnetic imaging.

  6. The Case for Using Blunt-Tipped Lightning Rods as Strike Receptors.

    NASA Astrophysics Data System (ADS)

    Moore, C. B.; Aulich, G. D.; Rison, William

    2003-07-01

    Conventional lightning rods used in the United States have sharp tips, a practice derived from Benjamin Franklin's discovery of a means to obtain protection from lightning. However, the virtue of sharp tips for strike reception has never been established. An examination of the relevant physics shows that very strong electric fields are required above the tips of rods in order that they function as strike receptors but that the gradients of the field strength over sharp-tipped rods are so great that, at distances of a few millimeters, the local fields are often too weak for the development of upward-going streamers. In field tests, rods with rounded tips have been found to be better strike receptors than were nearby sharp-tipped rods.

  7. Effect of inflow cannula tip design on potential parameters of blood compatibility and thrombosis.

    PubMed

    Wong, Kai Chun; Büsen, Martin; Benzinger, Carrie; Gäng, René; Bezema, Mirko; Greatrex, Nicholas; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2014-09-01

    During ventricular assist device support, a cannula acts as a bridge between the native cardiovascular system and a foreign mechanical device. Cannula tip design strongly affects the function of the cannula and its potential for blood trauma. In this study, the flow fields of five different tip geometries within the ventricle were evaluated using stereo particle image velocimetry. Inflow cannulae with conventional tip geometries (blunt, blunt with four side ports, beveled with three side ports, and cage) and a custom-designed crown tip were interposed between a mixed-flow rotary blood pump and a compressible, translucent silicone left ventricle. The contractile function of the failing ventricle and hemodynamics were reproduced in a mock circulation loop. The rotary blood pump was interfaced with the ventricle and aorta and used to fully support the failing ventricle. Among these five tip geometries, high-shear volume ( γ ˙ ≥ 2778 / s , potential parameter of platelet activation) was found to be the greatest in the blunt tip. The cage tip was observed to have the highest low-shear volume and recirculation volume ( γ ˙ ≤ 100 / s and Vz  > 0, respectively; potential parameters of thrombus formation). The crown tip, together with conventional tip geometries with side ports (blunt with four side ports and beveled with three side ports) showed no significant difference in either high-shear volume or low-shear volume. However, recirculation volume was reduced significantly in the crown tip. Despite limited generalizability to clinical situations, these transient-state measurements supported the potential mitigation of complications by changing the design of conventional cannula tip geometries.

  8. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  9. Tips to Prevent Tick Bites

    EPA Pesticide Factsheets

    Using the right insect repellent and other preventive actions can discourage ticks, mosquitoes, and other biting insects from landing on you. Tips include avoiding tick habitats and minimizing exposed skin.

  10. Tips to Prevent Mosquito Bites

    EPA Pesticide Factsheets

    Using the right insect repellent and other preventive actions can discourage mosquitoes from landing on you. Tips include removing mosquito habitats such as standing water, minimizing exposed skin, and staying indoors while mosquitoes are most active.

  11. Gardening Health and Safety Tips

    MedlinePlus

    ... Hot Weather Tips for persons with disabilities and physical activity. Talk to your health care provider if you ... for Everyone (Arthritis Foundation) Enjoy the benefits of physical activity. Gardening is an excellent way to get physical ...

  12. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    MedlinePlus

    ... ray or ultrasound equipment, a stent, and a balloon-tipped catheter are used. The equipment typically used ... the stent is in the correct position, the balloon is inflated, expanding the stent into place. The ...

  13. Try These Time Management Tips.

    ERIC Educational Resources Information Center

    Bimrose, Jack J.

    1987-01-01

    Offers 12 time management tips for harried school administrators, including using a personal calendar, calling five-minute meetings with secretaries, mail-sorting, delegating or declining certain tasks, controlling visitors, screening phone calls, streamlining meetings, and other ideas. (MLH)

  14. Tips on Writing News Articles

    ERIC Educational Resources Information Center

    White, Shannon

    1975-01-01

    The author offers journalism tips to vocational agriculture teachers involved in public relations coverage through newspaper articles. Specific suggestions cover headlines, leading paragraphs, localization of the story, organization, and format of a news release. (EA)

  15. Flu Prevention and Treatment Tips

    MedlinePlus

    Flu Prevention and Treatment Tips Expert Information from Healthcare Professionals Who Specialize in the Care of Older Adults Influenza, or the “flu,” is a contagious respiratory illness. It can cause ...

  16. Health Tips for Older Adults

    MedlinePlus

    ... held weights, like soup cans, to improve your strength. The Go4Life campaign, sponsored by the National Institute on Aging (NIA), offers easy-to-use materials on health and aging. Try their tips on ...

  17. Search Tips: MedlinePlus

    MedlinePlus

    ... Tools Español You Are Here: Home → Search Tips URL of this page: https://medlineplus.gov/searchtips.html ... site by adding 'site:' and the domain or URL to your search words. For example, if you ...

  18. Spinal Cord Injury Prevention Tips

    MedlinePlus

    ... knee and elbow pads, wrist braces, and gloves. Swimming/diving prevention tips • Do not dive in water ... all rules and warning signs at water parks, swimming pools, and public beaches. • The first time you ...

  19. Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples.

    PubMed

    Precner, Marián; Fedor, Ján; Šoltýs, Ján; Cambel, Vladimír

    2015-02-06

    Standard magnetic force microscopy (MFM) is considered as a powerful tool used for magnetic field imaging at nanoscale. The method consists of two passes realized by the magnetic tip. Within the first one, the topography pass, the magnetic tip directly touches the magnetic sample. Such contact perturbs the magnetization of the sample explored. To avoid the sample touching the magnetic tip, we present a new approach to magnetic field scanning by segregating the topological and magnetic scans with two different tips located on a cut cantilever. The approach minimizes the disturbance of sample magnetization, which could be a major problem in conventional MFM images of soft magnetic samples. By cutting the cantilever in half using the focused ion beam technique, we create one sensor with two different tips--one tip is magnetized, and the other one is left non-magnetized. The non-magnetized tip is used for topography and the magnetized one for the magnetic field imaging. The method developed we call dual-tip magnetic force microscopy (DT-MFM). We describe in detail the dual-tip fabrication process. In the experiments, we show that the DT-MFM method reduces significantly the perturbations of the magnetic tip as compared to the standard MFM method. The present technique can be used to investigate microscopic magnetic domain structures in a variety of magnetic samples and is relevant in a wide range of applications, e.g., data storage and biomedicine.

  20. Induced spectral gap and pairing correlations from superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  1. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system; and, Provide a sound...technical basis for subsequent applications of superconductive power in the area of ship propulsion .

  2. Unconventional Superconductivity in YPtBi and Related Topological Semimetals.

    PubMed

    Meinert, Markus

    2016-04-01

    YPtBi, a topological semimetal with a very low carrier density, was recently found to be superconducting below T_{c}=0.77  K. In conventional theory, the nearly vanishing density of states around the Fermi level would imply a vanishing electron-phonon coupling and would, therefore, not allow for superconductivity. Based on relativistic density-functional theory calculations of the electron-phonon coupling in YPtBi, it is found that carrier concentrations of more than 10^{21}  cm^{-3} are required to explain the observed critical temperature with the conventional pairing mechanism, which is several orders of magnitude larger than experimentally observed. It is very likely that an unconventional pairing mechanism is responsible for the superconductivity in YPtBi and related topological semimetals with half-Heusler structure.

  3. Feasibility study of a superconducting motor for electrical helicopter propulsion

    NASA Astrophysics Data System (ADS)

    Simons, C. A. B. A. E.; Sanabria-Walter, C.; Polinder, H.

    2014-05-01

    During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter propulsion systems could benefit from the increased performance. This paper describes the feasibility study of a superconducting motor to be used for helicopter propulsion as part of a More Electric Aircraft (MEA). For this, the armature, field windings and cryostat are designed, aiming at meeting the difficult specifications. Since superconductors have virtually no electrical resistance when cooled down below a certain critical temperature, they can be used to build high field and low weight coils for electrical machines. Especially the possibility to not use iron can make the superconducting motor lighter with a higher power density compared with conventional Permanent Magnet (PM) motors.

  4. Superconductivity in diamond.

    PubMed

    Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M

    2004-04-01

    Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

  5. Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films.

    PubMed

    Song, Can-Li; Zhang, Hui-Min; Zhong, Yong; Hu, Xiao-Peng; Ji, Shuai-Hua; Wang, Lili; He, Ke; Ma, Xu-Cun; Xue, Qi-Kun

    2016-04-15

    We report on the emergence of two disconnected superconducting domes in alkali-metal potassium- (K-)doped FeSe ultrathin films grown on graphitized SiC(0001). The superconductivity exhibits hypersensitivity to K dosage in the lower-T_{c} dome, whereas in the heavily electron-doped higher-T_{c} dome it becomes spatially homogeneous and robust against disorder, supportive of a conventional Cooper-pairing mechanism. Furthermore, the heavily K-doped multilayer FeSe films all reveal a large superconducting gap of ∼14  meV, irrespective of film thickness, verifying the higher-T_{c} superconductivity only in the topmost FeSe layer. The unusual finding of a double-dome superconducting phase is a step towards the mechanistic understanding of superconductivity in FeSe-derived superconductors.

  6. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Torti, Richard

    1991-01-01

    The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.

  7. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  8. Nonlinear terahertz superconducting plasmonics

    NASA Astrophysics Data System (ADS)

    Wu, Jingbo; Zhang, Caihong; Liang, Lanju; Jin, Biaobing; Kawayama, Iwao; Murakami, Hironaru; Kang, Lin; Xu, Weiwei; Wang, Huabing; Chen, Jian; Tonouchi, Masayoshi; Wu, Peiheng

    2014-10-01

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  9. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  10. Superconducting Metastable Compounds.

    PubMed

    Luo, H L; Merriam, M F; Hamilton, D C

    1964-08-07

    A number of metastable phases, germanides and tellurides of gold and silver, have been prepared, analyzed by x-ray diffraction, and investigated for superconductivity. The new superconductors and their transition temperatures are AgTe(3) (2.6 degrees K), Ag(4)Ge (0.85 degrees K), Au(3)Te(5) (1.62 degrees K), and Au(1-x)Ge(x) (0.99 degrees K-1.63 degrees K) where (0.27 superconduct above 0.32 degrees K.

  11. Ceramic superconducting components

    NASA Technical Reports Server (NTRS)

    Haertling, G. H.

    1991-01-01

    An approach to the application of high-Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid conductor process (RCP), involves the mounting of a preformed, sintered, and tested superconductor material onto an appropriate, rigid substrate with an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Circuit elements such as straight conductors, coils and connectors were fabricated from YBa2Cu3O(7-x) superconducting material. Performance results are included for a low-noise low-thermal-conductivity superconducting grounding link for NASA.

  12. Turbine blade with contoured chamfered squealer tip

    SciTech Connect

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axially extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.

  13. Field-Induced Superconductivity in Electric Double Layer Transistors

    NASA Astrophysics Data System (ADS)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-03-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possible in principle but impossible in practice. However, in the past several years, this limitation has been overcome by the introduction of an electrochemical concept, and electric-field-induced superconductivity has been realized. In the electric double layer (EDL) formed at the electrochemical interfaces, an extremely high electric field is generated and hence high-density charge carriers sufficient to induce superconductivity exist and are collectively used as a charge accumulation device known as an EDL capacitor. Field-induced superconductivity has been used to establish the relationship between Tc and carrier density and can now be used to search for new superconductors. Here, we review electric-field-induced superconductivity using an FET device, with a particular focus on the latest advances in EDL transistors.

  14. Lightweight MgB2 superconducting 10 MW wind generator

    NASA Astrophysics Data System (ADS)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  15. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    SciTech Connect

    Roychowdhury, Anita; Gubrud, M. A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-04-15

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  16. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Anita; Gubrud, M. A.; Dana, R.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.; Dreyer, M.

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  17. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.

    PubMed

    Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  18. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  19. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  20. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  1. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  2. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  3. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  4. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  5. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  6. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  7. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  8. Magnetoquenched superconducting valve

    NASA Astrophysics Data System (ADS)

    Clinton, T. W.; Johnson, Mark

    1998-06-01

    A superconducting switch has been developed in a simple bilayer cross strip geometry using the magnetic fringe field of a ferromagnetic film to control the critical current in an underlying superconducting bridge. The magnetization of the ferromagnet is rotated in the plane of the film to vary the magnitude of the fringe field locally applied to the superconductor from negligible to substantial values. In the latter case, the magnetization is oriented such that the magnetic poles are along the edges of the cross strip directly above the superconductor. The large fringe field near the poles suppresses superconductivity over a length of order microns, giving rise to superconducting weak link behavior. A large modulation of the critical current is observed. The effect is demonstrated in the low Tc superconductors Pb (Tc=7.3 K) and Sn (Tc=3.9 K). Fabrication of the device involves minimal processing. Applications as a high speed switch, amplifier, nonvolatile storage cell, and controllable weak link are possible.

  9. Tipping Points in Texas Rivers

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2016-04-01

    Anticipating geomorphic tipping points requires that we learn from the past. Major geomorphic changes in coastal plain rivers of Texas resulting in river metamorphosis or regime shifts were identified, and the major driving factors determined. Nine fluvial tipping points were identified from contemporary observations, historical records, and Quaternary reconstructions. Two of the tipping points (between general aggrading and degrading valley states) are associated with reversals in a fundamental system control (sea-level). One (stable or aggrading vs. degrading channels) is associated with an abrupt change in sediment supply due to dam construction, and two others (changes from meandering to anastomosing channel patterns, and different anastomosis styles) are similarly related to changes in sediment supply and/or transport capacity, but with additional elements of historical contingency. Three tipping points are related to avulsions. One, from a regime dominated to reoccupation of former channels to one dominated by progradation into flood basins, is driven by progressive long term filling of incised valleys. Another, nodal avulsions, are driven by disturbances associated with tectonics or listric faults. The third, avulsions and related valley metamorphosis in unfilled incised valleys, is due to fundamental dynamical instabilities within the fluvial system. This synthesis and analysis suggests that geomorphic tipping points are sometimes associated with general extrinsic or intrinsic (to the fluvial system) environmental change, independent of any disturbances or instabilities. Others are associated with natural (e.g., tectonic) or human (dams) disturbances, and still others with intrinsic geomorphic instabilities. This suggests that future tipping points will be equally diverse with respect to their drivers.

  10. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    PubMed

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  11. Research With Scanning Tip Microscopy

    DTIC Science & Technology

    1991-12-31

    08ro P noiwe bae?041Le Research With Scanning Tip Microscopy AFOSR-89-0498 V AUTHOS)i Professor Dror Sarid 7. PFOUImNG 00ANIZATION NAMEIS) AND...forces and (b) surfaces. UNCLASS UNCLASS UNCLASS UL FINAL REPORT TO THE AFOSR ൱-, to J4ti. r Aat io Research in Scanning Tip Microscopy Dror Sarid Dtst...microscopy have been used to investigate (a) forces and (b) surfaces. a. Forces 1. Dror Sarid , Douglas lams, Volker Weissenberger, and L. Stephen Bell

  12. Electron-phonon superconductivity in YIn3

    NASA Astrophysics Data System (ADS)

    Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.

    2013-08-01

    First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.

  13. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    SciTech Connect

    Stępniak, A.; Caminale, M.; Leon Vanegas, A. A.; Oka, H.; Sander, D.; Kirschner, J.

    2015-01-15

    Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS) measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  14. Robust Majorana Conductance Peaks for a Superconducting Lead

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Vinkler-Aviv, Yuval; Glazman, Leonid I.; von Oppen, Felix

    2015-12-01

    Experimental evidence for Majorana bound states largely relies on measurements of the tunneling conductance. While the conductance into a Majorana state is in principle quantized to 2 e2/h , observation of this quantization has been elusive, presumably due to temperature broadening in the normal-metal lead. Here, we propose to use a superconducting lead instead, whose gap strongly suppresses thermal excitations. For a wide range of tunneling strengths and temperatures, a Majorana state is then signaled by symmetric conductance peaks at e V =±Δ of a universal height G =(4 -π )2 e2/h . For a superconducting scanning tunneling microscope tip, Majorana states appear as spatial conductance plateaus while the conductance varies with the local wave function for trivial Andreev bound states. We discuss effects of nonresonant (bulk) Andreev reflections and quasiparticle poisoning.

  15. Development of extruded polymer insulated superconducting cable

    NASA Astrophysics Data System (ADS)

    Kosaki, M.; Nagao, M.; Mizuno, Y.; Shimizu, N.; Horii, K.

    A superconducting power cable which has a structure similar to the conventional extruded polyethylene cable is proposed. The main features of the design are to exploit the excellent electrical properties of polymers at cryogenic temperatures and to separate the helium coolant from the electrical insulation. However, the most hazardous problem of this insulation system is cracking of the extruded polymer insulation during cooling. In order to examine the feasibility of the above proposal, a superconducting cable of rated voltage 20 kV and rated current 2 kA was manufactured, being suitable for the university laboratory tests. Extruded polyethylene or ethylene propylene rubber was adopted as electrical insulation. Current transmission tests up to 2.5 kA were performed with extruded polyethylene insulated superconducting cable though the insulation cracked during cooling. Voltage application tests were carried out with fair success at the liquid helium temperature with extruded ethylene propylene rubber insulated cable. This ia a breakthrough in terms of the electrical insulation design of cryogenic cables.

  16. Enhancing bulk superconductivity by engineering granular materials

    NASA Astrophysics Data System (ADS)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  17. The interface between superconductivity and magnetism: understanding and device prospects.

    PubMed

    Blamire, M G; Robinson, J W A

    2014-11-12

    Ferromagnetism and conventional singlet superconductivity can be regarded as competing ordering phenomena. A considerable body of theoretical work over the past twenty years has predicted that at interfaces between the two systems competition or coupling between superconducting and magnetic phenomena are possible. Despite the very short lengthscales over which some of the phenomena exist, many of these predictions have been experimentally realized. The aim of this topical review is to provide an overview of the experimental position and to discuss the potential developments and applications of existing results.

  18. Entangled Coherent States Generation in two Superconducting LC Circuits

    SciTech Connect

    Chen Meiyu; Zhang Weimin

    2008-11-07

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  19. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  20. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  1. A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas

    2017-04-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.

  2. Teaching Tips: Improving College Instruction.

    ERIC Educational Resources Information Center

    McGlynn, Angela Provitera

    Designed to help teachers improve instruction, this handbook provides tips gathered from focus groups of teachers and students at New Jersey's Mercer County Community College, as well as from other teaching resources. The first part focuses on the contribution of faculty-student interaction to student success, listing 21 suggestions for building…

  3. STRV Cryocooler Tip Motion Suppression

    NASA Technical Reports Server (NTRS)

    Glaser, R.; Ross, R. G., Jr.; Johnson, D. L.

    1994-01-01

    The Space Technology Research Vehicle (STRV-1b) scheduled to fly at the beginning of June 1994, has a cryocooler vibration suppression experiment aboard doing motion suppression of the tip of the coldfinger. STRV-1b is a bread box sized satellite to be launched on the next flight of the Ariane-4.

  4. Library Management Tips that Work

    ERIC Educational Resources Information Center

    Smallwood, Carol, Ed.

    2011-01-01

    There's no shortage of library management books out there--but how many of them actually tackle the little details of day-to-day management, the hard-to-categorize things that slip through the cracks of a larger handbook? "Library Management Tips that Work" does exactly that, addressing dozens of such issues facing library managers, including: (1)…

  5. 99 Tips for Safe Schools.

    ERIC Educational Resources Information Center

    Kaufer, Steve

    This pamphlet highlights 99 tips for maintaining safe schools. Areas of interest include: alarm systems and control of access, vandalism, parent education, transportation, school design, personnel training, and graffiti. The majority of the pointers deal with maintaining and implementing various forms of electronic surveillance and strategies for…

  6. Assigning Effective Homework. Classroom Tips

    ERIC Educational Resources Information Center

    American Federation of Teachers (NJ), 2010

    2010-01-01

    Each new school year brings high hopes, great expectations and challenges for both new and seasoned educators. The American Federation of Teachers (AFT) has developed a series called "Classroom Tips" to help educators start the year right and anticipate the year ahead. Over the past 40 years, most research studies on homework have found that…

  7. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  8. Blade tip timing (BTT) uncertainties

    NASA Astrophysics Data System (ADS)

    Russhard, Pete

    2016-06-01

    Blade Tip Timing (BTT) is an alternative technique for characterising blade vibration in which non-contact timing probes (e.g. capacitance or optical probes), typically mounted on the engine casing (figure 1), and are used to measure the time at which a blade passes each probe. This time is compared with the time at which the blade would have passed the probe if it had been undergoing no vibration. For a number of years the aerospace industry has been sponsoring research into Blade Tip Timing technologies that have been developed as tools to obtain rotor blade tip deflections. These have been successful in demonstrating the potential of the technology, but rarely produced quantitative data, along with a demonstration of a traceable value for measurement uncertainty. BTT technologies have been developed under a cloak of secrecy by the gas turbine OEM's due to the competitive advantages it offered if it could be shown to work. BTT measurements are sensitive to many variables and there is a need to quantify the measurement uncertainty of the complete technology and to define a set of guidelines as to how BTT should be applied to different vehicles. The data shown in figure 2 was developed from US government sponsored program that bought together four different tip timing system and a gas turbine engine test. Comparisons showed that they were just capable of obtaining measurement within a +/-25% uncertainty band when compared to strain gauges even when using the same input data sets.

  9. [Management of patients with TIPS].

    PubMed

    Dailleau, Édith; Dos Santos, Sophie; Garçon, Adrien; Russeil, Cécile; Brajon, Stéphanie

    2015-01-01

    The Transjugular Intrahepatic Portosystemic Shunt (TIPS) procedure is now performed in almost twenty hospitals in France, including Tours university hospital. The aim is to reduce portal hypertension (PHT) by diverting the portal system to the caval system within the liver. The main cause of PHT is cirrhosis, which may be of alcoholic, viral, dysmetabolic or autoimmune origin.

  10. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  11. Predicting casualties implied by TIPs

    NASA Astrophysics Data System (ADS)

    Trendafiloski, G.; Wyss, M.; Wyss, B. M.

    2009-12-01

    When an earthquake is predicted, forecast, or expected with a higher than normal probability, losses are implied. We estimated the casualties (fatalities plus injured) that should be expected if earthquakes in TIPs (locations of Temporarily Increased Probability of earthquakes) defined by Kossobokov et al. (2009) should occur. We classified the predictions of losses into the categories red (more than 400 fatalities or more than 1,000 injured), yellow (between 100 and 400 fatalities), green (fewer than 100 fatalities), and gray (undetermined). TIPs in Central Chile, the Philippines, Papua, and Taiwan are in the red class, TIPs in Southern Sumatra, Nicaragua, Vanatu, and Honshu in the yellow class, and TIPs in Tonga, Loyalty Islands, Vanatu, S. Sandwich Islands, Banda Sea, and the Kuriles, are classified as green. TIPs where the losses depend moderately on the assumed point of major energy release were classified as yellow; TIPs such as in the Talaud Islands and in Tonga, where the losses depend very strongly on the location of the epicenter, were classified as gray. The accuracy of loss estimates after earthquakes with known hypocenter and magnitude are affected by uncertainties in transmission and soil properties, the composition of the building stock, the population present, and the method by which the numbers of casualties are calculated. In the case of TIPs, uncertainties in magnitude and location are added, thus we calculate losses for a range of these two parameters. Therefore, our calculations can only be considered order of magnitude estimates. Nevertheless, our predictions can come to within a factor of two of the observed numbers, as in the case of the M7.6 earthquake of October 2005 in Pakistan that resulted in 85,000 fatalities (Wyss, 2005). In subduction zones, the geometrical relationship between the earthquake source capable of a great earthquake and the population is clear because there is only one major fault plane available, thus the epicentral

  12. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  13. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  14. Tunable superconductivity in decorated graphene

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Allain, Adrien; Marty, Laetitia; Bendiab, Nedjma; Toulemonde, Pierre; Strobel, Pierre; Coraux, Johann; Bouchiat, Vincent

    2013-03-01

    Graphene offers an exposed bidimensional gas of high mobility charge carriers with gate tunable density. Its chemical inertness offers an outstanding platform to explore exotic 2D superconductivity. Superconductivity can be induced in graphene by means of proximity effect (by depositing a set of superconducting metal clusters such as lead or tin nanoparticles). The influence of decoration material, density or particles and disorder of graphene will be discussed. In the case of disordered graphene, Tin decoration leads to a gate-tunable superconducting-to-insulator quantum phase transition. Superconductivity in graphene is also expected to occur under strong charge doping (induced either by gating or under chemical decoration, in analogy with graphite intercalated compounds). I will also show preliminary results showing the influence of Calcium intercalation of few layer graphene and progress toward the demonstration of intrinsic superconductivity in such systems. Work supported by EU GRANT FP7-NMP GRENADA.

  15. Superconducting miniaturized planar antennas

    NASA Astrophysics Data System (ADS)

    Pischke, A.; Chaloupka, H.; Klein, N.; Splitt, G.

    This contribution reports on experimental as well as theoretical investigations of superconducting 2.4 GHz microstrip antenna. Due to both a new stepped-impedance patch shape and a high permittivity substrate (LaAlO3) the size was reduced to an area of only 6x6 mm. The measured radiation efficiency of antennas fabricated from YBa2Cu3O(7-delta) is at 77 K in the order of 45 and 65 percent for a substrate height of 0.5 mm and 1 mm respectively. In contrast, a copper antenna yields an efficiency of 3 and 6 percent only. Deviations from a linear transmission behavior of the superconducting antenna can be observed at a current density of 500,000 A/sq cm. An increase in frequency bandwidth from 4 MHz to over 9 MHz results from replacing the single-patch structure by a double-patch structure (stacked patches).

  16. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  17. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  18. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  19. High temperature interface superconductivity

    SciTech Connect

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  20. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  1. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  2. Fringe Field Superconducting Switch

    DTIC Science & Technology

    1997-10-31

    superconducting smp ,ine 10, and a ferromagnet ferromagnet 14 preferably has at least two easy axes of magnetization, shown here by the double- headed arrows...magnetic field of control current **p6fCooductor- S4 ’’/ eonteol^cun 7* insulator ■O Jöpptyzcöwem supercuiKhttstog-^2 ^ FIG.^ 4 //■ r.»~r

  3. A 200 SUPERCONDUCTING RACETRACK MICROTRON,

    DTIC Science & Technology

    A race-track microtron is proposed consisting of two 180 degree magnets spaced 2.5 meters apart with a superconducting linac section between. The...MeV per turn. The electrons are injected into the microtron at about 12 MeV from a second superconducting accelerator section. The spacing between...superconducting linac sections, a beam current of 100 microamps at unity duty cycle is feasible. It is also possible to build the microtron using

  4. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  5. Superconducting Analog to Digital Converters

    DTIC Science & Technology

    1991-09-01

    superconductivity, Josephson junctions, and superconducting quantum interference devices ( SQUIDs ) are briefly described. Various techniques to perform analog-to...deployment in the 1990s may require a dynamic range in excess of 90 dB (15- bit precision) [3]. However, at the present time, A/D conversion with 16-bit...Interference Devices ( SQUIDs ). JOSEPHSON EFFECTS AND JUNCTIONS Consider a very thin, non-superconducting region separating two superconductors. In 1962

  6. Tips for Reducing Pesticide Impacts on Wildlife

    EPA Pesticide Factsheets

    This Web page provides tips for pesticide users in residential and agricultural settings, as well as tips for certified pesticide applicators for ways to protect wildlife from potentially harmful effects of pesticides.

  7. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  8. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  9. Navy superconductivity efforts

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  10. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  11. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  12. Coexistence of superconductivity and ferromagnetism in two dimensions.

    PubMed

    Dikin, D A; Mehta, M; Bark, C W; Folkman, C M; Eom, C B; Chandrasekhar, V

    2011-07-29

    Ferromagnetism is usually considered to be incompatible with conventional superconductivity, as it destroys the singlet correlations responsible for the pairing interaction. Superconductivity and ferromagnetism are known to coexist in only a few bulk rare-earth materials. Here we report evidence for their coexistence in a two-dimensional system: the interface between two bulk insulators, LaAlO(3) (LAO) and SrTiO(3) (STO), a system that has been studied intensively recently. Magnetoresistance, Hall, and electric-field dependence measurements suggest that there are two distinct bands of charge carriers that contribute to the interface conductivity. The sensitivity of properties of the interface to an electric field makes this a fascinating system for the study of the interplay between superconductivity and magnetism.

  13. Surface-resistance measurements using superconducting stripline resonators.

    PubMed

    Hafner, Daniel; Dressel, Martin; Scheffler, Marc

    2014-01-01

    We present a method to measure the absolute surface resistance of conductive samples at a set of GHz frequencies with superconducting lead stripline resonators at temperatures 1-6 K. The stripline structure can easily be applied for bulk samples and allows direct calculation of the surface resistance without the requirement of additional calibration measurements or sample reference points. We further describe a correction method to reduce experimental background on high-Q resonance modes by exploiting TEM-properties of the external cabling. We then show applications of this method to the reference materials gold, tantalum, and tin, which include the anomalous skin effect and conventional superconductivity. Furthermore, we extract the complex optical conductivity for an all-lead stripline resonator to find a coherence peak and the superconducting gap of lead.

  14. Dirac-fermion-induced parity mixing in superconducting topological insulators

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi; Yamakage, Ai; Sato, Masatoshi; Tanaka, Yukio

    2014-11-01

    We self-consistently study surface states of superconducting topological insulators. We clarify that, if a topologically trivial bulk s -wave pairing symmetry is realized, parity mixing of the pair potential near the surface is anomalously enhanced by surface Dirac fermions, opening an additional surface gap larger than the bulk one. In contrast to classical s -wave superconductors, the resulting surface density of state hosts an extra coherent peak at the induced gap besides a conventional peak at the bulk gap. We also find that no such extra peak appears for odd-parity superconductors with a cylindrical Fermi surface. Our calculation suggests that the simple U-shaped scanning tunneling microscope spectrum in CuxBi2Se3 does not originate from s -wave superconductivity, but can be explained by odd-parity superconductivity with a cylindrical Fermi surface.

  15. Economical Aspects of Superconducting Cable

    NASA Astrophysics Data System (ADS)

    Ohya, Masayoshi

    High-temperature superconducting (HTS) cables are expected to resolve technical problems with power grids because they put large-capacity, low-loss power transmission into a compact package. One problem is replacing old 275-kV oil filled (OF) cables with cross-linked polyethylene insulated vinyl sheath cables (XLPE cables). This is difficult because XLPE cable has a lower transmission capacity than OF cable. In addition, the high concentration of public infrastructure underground makes it extremely difficult to build new ones. However, if 66-kV HTS cables can be installed inside existing underground conduits and can achieve a power capacity equivalent to conventional 275-kV cables, construction costs could be significantly reduced. Moreover, if XLPE cables are used for a 1,000 MVA-class transmission line, then three circuits of nine 275-kV single-core cables would be required, which would incur a transmission loss of 90 W/m/cct. Three circuits of three 66-kV Three-in-One HTS cables, however, with an AC loss of 1 W/m/ph@3 kA, heat invasion of 2 W/m, and cooling system efficiency of 0.1, would reduce transmission loss to less than three-fifths that of XLPE cables.

  16. Superconducting linacs: some recent developments

    SciTech Connect

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  17. Superconductivity-related insulating behavior.

    PubMed

    Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D

    2004-03-12

    We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.

  18. Topological Superconductivity in Dirac Semimetals.

    PubMed

    Kobayashi, Shingo; Sato, Masatoshi

    2015-10-30

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.

  19. Tip cap for a rotor blade

    NASA Technical Reports Server (NTRS)

    Kofel, W. K.; Tuley, E. N.; Gay, C. H., Jr.; Troeger, R. E.; Sterman, A. P. (Inventor)

    1983-01-01

    A replaceable tip cap for attachment to the end of a rotor blade is described. The tip cap includes a plurality of walls defining a compartment which, if desired, can be divided into a plurality of subcompartments. The tip cap can include inlet and outlet holes in walls thereof to permit fluid communication of a cooling fluid there through. Abrasive material can be attached with the radially outer wall of the tip cap.

  20. Pseudogap in a thin film of a conventional superconductor.

    SciTech Connect

    Sacepe, B.; Chapelier, C.; Baturina, T. I.; Vinokur, V. M.; Baklanov, M. R.; Sanquer, M.

    2010-12-01

    A superconducting state is characterized by the gap in the electronic density of states, which vanishes at the superconducting transition temperature T{sub c}. It was discovered that in high-temperature superconductors, a noticeable depression in the density of states, the pseudogap, still remains even at temperatures above T{sub c}. Here, we show that a pseudogap exists in a conventional superconductor, ultrathin titanium nitride films, over a wide range of temperatures above T{sub c}. Our study reveals that this pseudogap state is induced by superconducting fluctuations and favoured by two-dimensionality and by the proximity to the transition to the insulating state. A general character of the observed phenomenon provides a powerful tool to discriminate between fluctuations as the origin of the pseudogap state and other contributions in the layered high-temperature superconductor compounds.

  1. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2

    PubMed

    Saxena; Agarwal; Ahilan; Grosche; Haselwimmer; Steiner; Pugh; Walker; Julian; Monthoux; Lonzarich; Huxley; Sheikin; Braithwaite; Flouquet

    2000-08-10

    The absence of simple examples of superconductivity adjoining itinerant-electron ferromagnetism in the phase diagram has for many years cast doubt on the validity of conventional models of magnetically mediated superconductivity. On closer examination, however, very few systems have been studied in the extreme conditions of purity, proximity to the ferromagnetic state and very low temperatures required to test the theory definitively. Here we report the observation of superconductivity on the border of ferromagnetism in a pure system, UGe2, which is known to be qualitatively similar to the classic d-electron ferromagnets. The superconductivity that we observe below 1 K, in a limited pressure range on the border of ferromagnetism, seems to arise from the same electrons that produce band magnetism. In this case, superconductivity is most naturally understood in terms of magnetic as opposed to lattice interactions, and by a spin-triplet rather than the spin-singlet pairing normally associated with nearly antiferromagnetic metals.

  2. Injector tip for an internal combustion engine

    DOEpatents

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  3. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  4. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  5. Concerning superconducting inertial guidance gyroscopes inside superconducting magnetic shields

    SciTech Connect

    Satterthwaite, J.C.; Gawlinski, E.T.

    1997-12-01

    Superconductors can in theory be used to detect rotation by Josephson interference or by detection of the London field, a magnetic induction that fills the interior of any rotating bulk superconductor. One might hope to use these properties of superconductors to build a practical inertial guidance gyroscope. A problem arises from the necessity of surrounding the device with superconducting magnetic shielding: the London field generated by a co-rotating shield eliminates the response of the superconducting device within the shield. The present article demonstrates this point more rigorously than has been done before, discussing solutions of Ampere`s law for rotating and nonrotating superconductors and paying careful attention to boundary conditions. Beginning with a supercurrent density derivable from either the Ginzburg-Landau or the London theory of superconductivity, the article shows: (1) that a superconducting device cannot distinguish between rotation and an applied magnetic field; (2) that a superconducting device surrounded by a co-rotating superconducting shield cannot detect rotation. The term `superconducting gyroscope` in this article refers only to a device whose working principle is the response of the superconductor itself to rotation, not to any device in which superconducting electronic components are used to detect some other effect. {copyright} {ital 1997 American Institute of Physics.}

  6. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  7. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  8. Classification of "multipole" superconductivity in multiorbital systems and its implications

    NASA Astrophysics Data System (ADS)

    Nomoto, T.; Hattori, K.; Ikeda, H.

    2016-11-01

    Motivated by a growing interest in multiorbital superconductors with spin-orbit interactions, we perform the group-theoretical classification of various unconventional superconductivity emerging in symmorphic O , D4, and D6 space groups. The generalized Cooper pairs, which we here call "multipole" superconductivity, possess spin-orbital coupled (multipole) degrees of freedom, instead of the conventional spin singlet/triplet in single-orbital systems. From the classification, we obtain the following key consequences, which have never been focused in the long history of research in this field: (1) A superconducting gap function with Γ9⊗Γ9 in D6 possesses nontrivial momentum dependence different from the usual spin-1/2 classification. (2) Unconventional gap structure can be realized in the BCS approximation of purely local (onsite) interactions irrespective of attraction/repulsion. It implies the emergence of an electron-phonon (e-ph) driven unconventional superconductivity. (3) Reflecting symmetry of orbital basis functions there appear not symmetry protected but inevitable line nodes/gap minima, and thus, anisotropic s -wave superconductivity can be naturally explained even in the absence of competing fluctuations.

  9. A vertical tip-tip contact silicon nanowire array for gas sensing.

    PubMed

    Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Zhou, Hongzhi; Wu, Jianmin

    2016-10-20

    Novel chemiresistive gas sensors based on a vertical tip-tip contact silicon nanowire (TTC-SiNW) array were constructed. The welding of TTC-SiNWs after joule heating treatment was confirmed by a current-voltage curve (I-V curve). The TTC-SiNW structure not only resolved the problem of electrode contact encountered in conventional nanowire sensors, but also elongated the nanowire length to increase the void space for fast gas diffusion. The TTC-SiNW sensor comprising the same two types of SiNW arrays responded to NO2 very sensitively. The LOD for the p-p and n-n contact SiNW arrays is around 150 ppb and 3 ppb (S/N = 3), respectively. Furthermore, the highly oriented nano-junction formed on the TTC structure provided solid evidence to clarify the contribution of the nanojunction to gas sensing behavior. The TTC-SiNW sensor with a p-n junction displays a significant rectification effect. The sensitive response towards NO2 (LOD is about 18 ppb) was observed at a reverse bias voltage, whereas the response at a forward bias voltage was insignificant. Finally, the mechanism of gas sensing behavior on different types of TTC structures was proposed.

  10. Superconducting MgB2 flowers: growth mechanism and their superconducting properties

    NASA Astrophysics Data System (ADS)

    Seong, Won Kyung; Ranot, Mahipal; Lee, Ji Yeong; Yang, Cheol-Woong; Lee, Jae Hak; Oh, Young Hoon; Ahn, Jae-Pyoung; Kang, Won Nam

    2016-04-01

    We report for the first time the growth and the systematic study of the growth mechanism for flower-like MgB2 structures fabricated on the substrates for solid-state electronics by the hybrid physical-chemical vapor deposition (HPCVD) technique. The MgB2 flower has a width of 30 μm and a height of 10 μm. The superconductivity of MgB2 flowers was confirmed by a magnetization measurement, and the transition temperature is 39 K, which is comparable with high-quality bulk samples. The excellent current-carrying capability was demonstrated by MgB2 flowers. To understand the nucleation and growth mechanism of MgB2 flowers a very systematic study was performed by a high-resolution transmission electron microscope (HRTEM) and atom probe (AP) microscopy. The HRTEM revealed that the seed grain of a MgB2 flower has a [101¯0] direction, and the flower is composed of micro-columnar MgB2 grains having pyramidal tips and which are grown along the (0001) plane. A clear understanding of the growth mechanism for MgB2 flowers could lead to the growth of other low-dimensional MgB2 structures for superconducting electronic devices.

  11. Coated fiber tips for optical instrumentation

    NASA Astrophysics Data System (ADS)

    Barton, John B.; Chanda, Sheetal; Locknar, Sarah A.; Carver, Gary E.

    2016-03-01

    Compact optical systems can be fabricated by integrating coatings on fiber tips. Examples include fiber lasers, fiber interferometers, fiber Raman probes, fiber based spectrometers, and anti-reflected endoscopes. These interference filters are applied to exposed tips - either connectorized or cleaved. Coatings can also be immersed within glass by depositing on one tip and connecting to another uncoated tip. This paper addresses a fiber spectrometer for multispectral imaging - useful in several fields including biomedical scanning, flow cytometry, and remote sensing. Our spectrometer integrates serial arrays of reflecting fiber tips, delay lines between these elements, and a single element detector.

  12. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    NASA Astrophysics Data System (ADS)

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-10-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field.

  13. Superconductivity in highly disordered NbN nanowires

    NASA Astrophysics Data System (ADS)

    Arutyunov, K. Yu; Ramos-Álvarez, A.; Semenov, A. V.; Korneeva, Yu P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N.

    2016-11-01

    The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c ˜ (1-T/T c)3/2. We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short ‘weak links’ with slightly reduced local critical temperature T c. Hence, one may conclude that an ‘exotic’ intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.

  14. Electric control of superconducting transition through a spin-orbit coupled interface

    PubMed Central

    Ouassou, Jabir Ali; Di Bernardo, Angelo; Robinson, Jason W. A.; Linder, Jacob

    2016-01-01

    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices. PMID:27426887

  15. Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1994-01-01

    A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.

  16. μSR and magnetometry study of superconducting 5% Pt-doped IrTe2

    DOE PAGES

    Wilson, M. N.; Medina, T.; Munsie, T. J.; ...

    2016-11-11

    In this paper, we present magnetometry and muon spin rotation ( SR) measurements of the superconducting dichalcogenide Ir0.95Pt0.05Te2. From both sets of measurements we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s-wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. Finally, we therefore see no evidence for exotic superconductivity in Ir0.95Pt0.05Te2.

  17. GaN nanowire tip for high aspect ratio nano-scale AFM metrology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Behzadirad, Mahmoud; Dawson, Noel; Nami, Mohsen; Rishinaramangalam, Ashwin K.; Feezell, Daniel F.; Busani, Tito L.

    2016-09-01

    In this study we introduce Gallium Nitride (GaN) nanowire (NW) as high aspect ratio tip with excellent durability for nano-scale metrology. GaN NWs have superior mechanical property and young modulus compare to commercial Si and Carbon tips which results in having less bending issue during measurement. The GaN NWs are prepared via two different methods: i) Catalyst-free selected area growth, using Metal Organic Chemical Vapor Deposition (MOCVD), ii) top-down approach by employing Au nanoparticles as the mask material in dry-etch process. To achieve small diameter tips, the semipolar planes of the NWs grown by MOCVD are etched using AZ400k. The diameter of the NWs fabricated using the top down process is controlled by using different size of nanoparticles and by Inductively Coupled Plasma etching. NWs with various diameters were manipulated on Si cantilevers using Focus Ion Beam (FIB) to make tips for AFM measurement. A Si (110) substrate containing nano-scale grooves with vertical 900 walls were used as a sample for inspection. AFM measurements were carried out in tapping modes for both types of nanowires (top-down and bottom-up grown nanowires) and results are compared with conventional Si and carbon nanotube tips. It is shown our fabricated tips are robust and have improved edge resolution over conventional Si tips. GaN tips made with NW's fabricated using our top down method are also shown to retain the gold nanoparticle at tip, which showed enhanced field effects in Raman spectroscopy.

  18. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  19. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  20. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  1. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  2. Parametric tip effects for conformable rotor applications

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1983-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on aeroelasticity conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and three tip designs were tested on the torsionally soft blades. The designs incorporated a systematic variation in three geometric parameters: sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. Based on the test results, tip parameter variations generated significant rotor performance and loads difference for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not correlate.

  3. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  4. Inverse dynamics of adaptive space cranes with tip point adjustment

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    The 'space crane', which resembles a conventional solid-link robot but employs truss sections in place of links and length-adjustable bars in place of torque-generating motors, is presently characterized by means of two different inverse-dynamics schemes. While in the first of these the nominal angles are maintained between the links constituting the crane, the second scheme adjusts the nominal angles as a function of time in order to always maintain the tip of the crane along the desired (nomical) trajectory. Attention is given to the second scheme, and to a tip-adjustment method which keeps the high frequency flexibility vibration within limits and ensures numerical stability.

  5. Superconductivity in a chiral nanotube

    NASA Astrophysics Data System (ADS)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  6. Superconductivity in a chiral nanotube.

    PubMed

    Qin, F; Shi, W; Ideue, T; Yoshida, M; Zak, A; Tenne, R; Kikitsu, T; Inoue, D; Hashizume, D; Iwasa, Y

    2017-02-16

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity-unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  7. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    PubMed Central

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Rüegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p  3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p  7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc  1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5  p  7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  8. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    PubMed

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 < or ~  p < or ~ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  9. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    SciTech Connect

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  10. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    DOE PAGES

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; ...

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreasesmore » upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.« less

  11. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    SciTech Connect

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  12. TOPICAL REVIEW: Superconducting bearings

    NASA Astrophysics Data System (ADS)

    Hull, John R.

    2000-02-01

    The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.

  13. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  14. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  15. Superconductivity in plutonium compounds

    NASA Astrophysics Data System (ADS)

    Sarrao, J. L.; Bauer, E. D.; Mitchell, J. N.; Tobash, P. H.; Thompson, J. D.

    2015-07-01

    Although the family of plutonium-based superconductors is relatively small, consisting of four compounds all of which crystallize in the tetragonal HoCoGa5 structure, these materials serve as an important bridge between the known Ce- and U-based heavy fermion superconductors and the high-temperature cuprate superconductors. Further, the partial localization of 5f electrons that characterizes the novel electronic properties of elemental plutonium appears to be central to the relatively high superconducting transition temperatures that are observed in PuCoGa5, PuRhGa5, PuCoIn5, and PuRhIn5.

  16. Introducing a Favourite Tip Definition and Projection with Tripod Suture in Rhinoplasty

    PubMed Central

    Motamed, Sadrollah; Niazi, Feizollah; Moosavizadeh, Seyed Mehdi; Motaghedi, Babak; Tizmaghz, Adnan

    2017-01-01

    Introduction Surgical manipulation of the lower lateral cartilages of nasal tip could cause subtle but significant responses to the manipulation. The suture-techniques almost always offer a reliable and dramatic method of tip reshaping without a need to break or interrupt the alar rim strip or even adding tip graft. Aim The aim of this study was to describe and assess outcomes of a new suture technique in rhinoplasty by using cephalic dome septal rotation suture for better tip definition. Materials and Methods All consecutive women (62 women) who attended our centre with nasal tip drooping and some degree of columellar retraction, underwent this technique from January 2005 to September 2009. Their ages ranged from 17 to 32 years old. Fifty one primary open and 11 secondary open rhinoplasties were performed using the conventional techniques and then the new suture technique was applied before closing the incisions on each patient. Results The patients were followed-up from 22 to 72 months (mean = 52.3). The projection and rotation was satisfactory in all patients and the final results persisted with only minimal changes over time. Conclusion It is important to say that this new suture is different from ‘tip rotation suture’ that was described by Tebbets. Our suture maintains the favorite tip definition with slight dorsal tip inclination. Indeed, it causes a two-point definition as the columellar lobular angle and the supra tip break definition. In addition, long-term follow-up has shown that this new suture (i.e., cephalic dome-septal rotation suture) is able to maintain optimal position of the nasal tip projection and definition. PMID:28273999

  17. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  18. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  19. Decomposing Composing Conventions.

    ERIC Educational Resources Information Center

    Beers, Terry

    Recent research has invited critiques of the authoritative descriptions of composing found in many rhetoric textbooks. The concept of "convention" may be especially useful in rethinking the teleological basis of these textbook descriptions. Conventions found in composition textbooks need to be unmasked as arbitrary concepts which serve…

  20. Inductive monopole detector employing planar high order superconducting gradiometer coils

    SciTech Connect

    Tesche, C.D.; Chi, C.C.; Tsuei, C.C.; Chaudhari, P.

    1983-08-15

    The characteristics and performance of a family of high-order planar gradiometer detectors for inductive detection of magnetic monopoles are discussed. Conventional superconducting magnetometers used for monopole detection must be operated in an extremely stable, low field environment. This places a severe restriction on the cross-sectional area of such detectors. However, planar gradiometer detectors permit the use of relatively large area detectors in coincidence without requiring a corresponding increase in the stability of the ambient field.

  1. Spin-orbit-coupled superconductivity.

    PubMed

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < T(c), the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  2. Operational Merits of Maritime Superconductivity

    NASA Astrophysics Data System (ADS)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  3. Blade Tip Rubbing Stress Prediction

    NASA Technical Reports Server (NTRS)

    Davis, Gary A.; Clough, Ray C.

    1991-01-01

    An analytical model was constructed to predict the magnitude of stresses produced by rubbing a turbine blade against its tip seal. This model used a linearized approach to the problem, after a parametric study, found that the nonlinear effects were of insignificant magnitude. The important input parameters to the model were: the arc through which rubbing occurs, the turbine rotor speed, normal force exerted on the blade, and the rubbing coefficient of friction. Since it is not possible to exactly specify some of these parameters, values were entered into the model which bracket likely values. The form of the forcing function was another variable which was impossible to specify precisely, but the assumption of a half-sine wave with a period equal to the duration of the rub was taken as a realistic assumption. The analytical model predicted resonances between harmonics of the forcing function decomposition and known harmonics of the blade. Thus, it seemed probable that blade tip rubbing could be at least a contributor to the blade-cracking phenomenon. A full-scale, full-speed test conducted on the space shuttle main engine high pressure fuel turbopump Whirligig tester was conducted at speeds between 33,000 and 28,000 RPM to confirm analytical predictions.

  4. Tipping elements in the Earth's climate system

    SciTech Connect

    Lenton, T.M.; Held, H.; Lucht, W.; Rahmstorf, S.; Kriegler, E. |; Hall, J.W.; Schellnhuber, H.J. |

    2008-02-12

    The term 'tipping point' commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here the authors introduce the term 'tipping element' to describe large-scale components of the Earth system that may pass a tipping point. They critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and they assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then the authors explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.

  5. Superconducting interfaces between insulating oxides.

    PubMed

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J

    2007-08-31

    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  6. Antiferromagnetic hedgehogs with superconducting cores

    SciTech Connect

    Goldbart, P.M.; Sheehy, D.E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  7. Antiferromagnetic hedgehogs with superconducting cores

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Sheehy, Daniel E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.

  8. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  9. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect

    Pleva, E. F.; Mehrotra, V.; Schwenterly, S W

    2010-01-01

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  10. Turbine blade tip with offset squealer

    DOEpatents

    Bunker, Ronald Scott

    2001-01-01

    An industrial turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationary shroud. The rotating blade includes a root section, an airfoil having a pressure sidewall and a suction sidewall defining an outer periphery and a tip portion having a tip cap. An offset squealer is disposed on the tip cap. The offset squealer is positioned inward from the outer periphery of the rotating blade. The offset squealer increases the flow resistance and reduces the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  11. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  12. Superconductivity in alkali-doped fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  13. Brittle superconducting magnets: an equivilent strain model

    SciTech Connect

    Barzi, E.; Danuso, M.

    2010-08-01

    To exceed fields of 10 T in accelerator magnets, brittle superconductors like A15 Nb{sub 3}Sn and Nb{sub 3}Al or ceramic High Temperature Superconductors have to be used. For such brittle superconductors it is not their maximum tensile yield stress that limits their structural resistance as much as strain values that provoke deformations in their delicate lattice, which in turn affect their superconducting properties. Work on the sensitivity of Nb{sub 3}Sn cables to strain has been conducted in a number of stress states, including uniaxial and multi-axial, producing usually different results. This has made the need of a constituent design criterion imperative for magnet builders. In conventional structural problems an equivalent stress model is typically used to verify mechanical soundness. In the superconducting community a simple scalar equivalent strain to be used in place of an equivalent stress would be an extremely useful tool. As is well known in fundamental mechanics, there is not one single way to reduce a multiaxial strain state as represented by a 2nd order tensor to a scalar. The conceptual experiment proposed here will help determine the best scalar representation to use in the identification of an equivalent strain model.

  14. Superconducting qubits with semiconductor nanowire Josephson junctions

    NASA Astrophysics Data System (ADS)

    Petersson, K. D.; Larsen, T. W.; Kuemmeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M.

    2015-03-01

    Superconducting transmon qubits are a promising basis for a scalable quantum information processor. The recent development of semiconducting InAs nanowires with in situ molecular beam epitaxy-grown Al contacts presents new possibilities for building hybrid superconductor/semiconductor devices using precise bottom up fabrication techniques. Here, we take advantage of these high quality materials to develop superconducting qubits with superconductor-normal-superconductor Josephson junctions (JJs) where the normal element is an InAs semiconductor nanowire. We have fabricated transmon qubits in which the conventional Al-Al2O3-Al JJs are replaced by a single gate-tunable nanowire JJ. Using spectroscopy to probe the qubit we observe fluctuations in its level splitting with gate voltage that are consistent with universal conductance fluctuations in the nanowire's normal state conductance. Our gate-tunable nanowire transmons may enable new means of control for large scale qubit architectures and hybrid topological quantum computing schemes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation and the European Commission.

  15. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  16. Superconducting electromagnetic thruster

    SciTech Connect

    Meng, J.

    1993-02-11

    An electromagnetic thruster for marine vehicles using a jet of water driven by the interaction of a mutually perpendicular intensified magnetic field and an intensified electric field is disclosed. The intensified magnetic field is produced by superconducting coils cooled by a coolant such as liquid helium. An intensified electric field is produced by passing high amperage current across the seawater jet. These interacting fields produce a Lorentz force perpendicular to mutually perpendicular electric and magnetic field vectors which is used to drive the seawater jet. In some embodiments, the force may also be used to draw water into the jet from the boundary layer flow around the vehicle thereby reducing boundary layer turbulence and associated radiated noise.

  17. Super-Hard Superconductivity

    NASA Astrophysics Data System (ADS)

    Adams, Philip; Prozorov, Ruslan

    2005-03-01

    We present the magnetic response of Type-II superconductivity in the extreme pinning limit, where screening currents within an order of magnitude of the Ginzburg-Landau depairing critical current density develop upon the application of a magnetic field. We show that this ``super-hard'' limit is well approximated in highly disordered, cold drawn, Nb wire whose magnetization response is characterized by a cascade of Meissner-like phases, each terminated by a catastrophic collapse of the magnetization. Direct magneto-optic measurements of the flux penetration depth in the virgin magnetization branch are in excellent agreement with the exponential model in which Jc(B)=Jco(-B/Bo), where Jco˜5x10^6 A/cm^2 for Nb. The implications for the fundamental limiting hardness of a superconductor will be discussed.

  18. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  19. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  20. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  1. Superconducting magnetic energy storage

    SciTech Connect

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  2. Superconductivity in Cuprate Superlattices

    NASA Astrophysics Data System (ADS)

    Bozovic, Ivan; Eckstein, J. N.

    The following sections are included: * Introduction * YBCO/DBCO superlattices: the commencement * YBCO/PBCO superlattices: conjectures * Bi-2212:2201 superlattices: Q2D superconductivity * YBCO/(Pr,Y,Ca)BCO superlattices: clarification * More Bi-2212 superlattices: afterthoughts * Positive proximity effect in Dy-doped 2212 * Long-range proximity effect in 2201 * HTS in one-unit-cell thick 2212 layer * Inelastic hopping via localized states * Materials and layering * Integrity of ultrathin layers * Thickness dependence of the barrier resistance * Temperature dependence of the barrier resistance * Voltage dependence of current through the barrier * Interpretation: multiple inelastic hopping * Negative proximity effect on 2212 * Interlayer coupling in HTS superlattices: conclusions * The science and technology of HTS superlattices * Vortex dynamics * Critical current scaling law * Thermal activation of vortex motion * Superlattice phonons * Atomic-layer engineering of artificial HTS materials * Technological applications of HTS superlattices * Summary * Intercell coupling in HTS superlattices * Vortex dynamics * Phonon spectra * Atomic-layer engineering of artificial HTS materials * Applications * Acknowledgments * References

  3. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  4. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  5. Superconducting combined function magnets

    SciTech Connect

    Hahn, H.; Fernow, R.C.

    1983-01-01

    Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

  6. A Quiet Convention.

    ERIC Educational Resources Information Center

    Suggs, Welch

    2003-01-01

    Describes how discussion of governance and academic standards dominated the proceedings at the first NCAA convention of Myles Brand's presidency. The new president also offered a qualified endorsement of Title IX. (EV)

  7. Minamata Convention on Mercury

    EPA Pesticide Factsheets

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  8. Superconductivity and the environment: a Roadmap

    NASA Astrophysics Data System (ADS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    gas emissions according to the Kyoto Protocol (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). New technologies would include superconducting energy storage systems to effectively store power generation from renewable sources as well as high-temperature superconducting systems used in generators, transformers and synchronous motors in power stations and heavy-industry facilities. However, to be effective, these systems must be superior to conventional systems and, in reality, market penetration will occur as existing electrical machinery is written off. At current write-off rates, to achieve a 50% transfer to superconducting systems will take 20 years (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). The Roadmap next considers dc transmission of green power with a section by Eckroad and Marian who provide an update on the development of superconducting power transmission lines in view of recent sustainability studies. The potential of magnetic energy storage is then presented by Coi and Kim, who argue that a successful transition to wind and solar power generation must be harmonized with the conventional electrical network, which requires a storage technology with a fast response and long backup times. Transport. Superconducting Maglev trains and motors for international shipping have the potential to considerably reduce the emissions that contribute to greenhouse gases while improving their economic viability by reducing losses and improving efficiencies. International shipping, alone, contributes 3% of the greenhouse gas emissions. Three sections of the Roadmap identify how high-speed rail can be a major solution to providing fast, low energy, environmentally-friendly transport enabling reduction in automobile and aircraft travel by offering an alternative that is very competitive. With maritime international environmental regulations tightening, HTS motors with the characteristics of high torque and compactness will become important devices for

  9. Superconductivity in a chiral nanotube

    PubMed Central

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-01-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity—unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures. PMID:28205518

  10. Search for Superconductivity in Micrometeorites

    NASA Astrophysics Data System (ADS)

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  11. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  12. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  13. Mixed-mu superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  14. Mixed-mu superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  15. Superconductivity: A celebration of pairs

    NASA Astrophysics Data System (ADS)

    Norman, Michael R.

    2007-12-01

    It is fifty years since John Bardeen, Leon Cooper and Bob Schrieffer presented the microscopic theory of superconductivity. At a wonderful conference in Urbana the 'good old days' were remembered, and the challenges ahead surveyed.

  16. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  17. Search for superconductivity in micrometeorites.

    PubMed

    Guénon, S; Ramírez, J G; Basaran, Ali C; Wampler, J; Thiemens, M; Taylor, S; Schuller, Ivan K

    2014-12-05

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10(-12) cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  18. Transition-Metal Oxide Superconductivity

    DTIC Science & Technology

    1988-04-20

    pyramidally coordinated complexes of the 02"- deficient compounds, and (iii) that ordering of the sources that produce the mixed-valence Cu2+ɛ+) ions in...With the strong antiferromagnetic exchange coupling of the Fe2+(3+) pairs in ferrites , no superconducting cells should be anticipated and only normal...I couplings dictate significant antiferromagnetic ordering and little chance of superconductivity. This group includes the common ferrite conduction

  19. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  20. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  1. Y-Ba Superconducting Ceramics

    NASA Astrophysics Data System (ADS)

    Shunbao, Tian; Xiaofei, Li; Tinglian, Wen; Zuxiang, Lin; Shichun, Li; Huijun, Yu

    Polycrystalline Y-Ba-Cu-O superconducting materials have been studied. It was found that chemical composition and processing condition may play an important role in the final structure and superconducting properties. The density has been determined and compared with the calculated value according to the structure model reported by Bell Labs. The grain size and the morphology of the materials were observed by SEM.

  2. Development of Concepts in Superconductivity

    NASA Astrophysics Data System (ADS)

    Bardeen, John

    This is an excerpt from a talk that John Bardeen gave on the development of the theory of superconductivity in London, England on September 17, 1962 when he received the Fritz London award for his work developing the BCS theory of superconductivity. The talk was given at the Eighth International Conference on Low Temperature Physics at Queen Mary College in London and was reprinted in Physics Today in January of 1963.

  3. Heat Generation and Efficiency of a New Modified Phaco Tip and Sleeve

    PubMed Central

    Tchah, Hungwon; Kim, Myoung Joon

    2016-01-01

    Purpose To compare a modified phacoemulsification tip with the established micro tip, in terms of temperature at the corneal wound, efficiency, and chatter events, using the Centurion® Vision system. Methods Eighty porcine eyes were randomized into 4 groups: 1)sleeveless conventional 45D MiniFlared ABS® Kelman tip (1.1-mm incision); 2)sleeveless new modified 45D ABS® INTREPID® balanced tip(1.1-mm incision); 3) Kelman tip with own sleeve (2.2-mm incision); 4)Balanced tip with modified 4-rib sleeve (2.2-mm incision). Measurements were taken with 2 settings: longitudinal(power 40% and 70%) and torsional mode (power 40% and 100%). Peak temperatures were measured 0, 10, 30, and 60 seconds after continuous ultrasound power. For the efficiency test, porcine lens nuclei were formalin soaked and cut into 2.0 mm3 cubes. Efficiency and chatter were examined. Results In all longitudinal settings, the sleeveless groups(1 and 2) showed lower temperatures than the sleeved groups(3 and 4) (P = 0.003). In 100% torsional mode, groups 3 and 4 produced significantly different temperatures(37.13 ± 1.44 and 35.14 ± 0.54, respectively; P = 0.007).The efficiency, in a 100% power torsional setting, was13.52 ± 2.60 sec for group 4, and 44.45± 14.75 sec for group 3 (P<0.001). Conclusions The two different bare tips show no significant differences in thermogenesis. However, the balanced tip with sleeve produces lower temperaturesat100% torsional power and better efficiency than the Kelman tip. PMID:27487206

  4. Surface superconductivity of short coherence length superconductors

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Yang, T. J.

    1994-09-01

    Based on the theory of Valls et al. for short coherence length superconductors, de Gennes' boundary theory for conventional superconductors with ξ 0≫ K-1F may be modified. We solve the G-L equation exactly under zero magnetic field for various temperatures. The order parameter Ψ( x) is not depleted but enhanced near the surface. We also obtain some interesting results: Tc will be enhanced by contracting of the thickness of a superconducting film. The nucleation field Hc3 ( T)∝( Tcb- T) near Tcb; and H c3(T)∝(T c-T) {1}/{2} near Tc. The critical current in SIS Josephson junctions Jc( T)∝( Tc- T)+√ 2 τ0( T0- T) for T< Tcb; and Jc( T)∝( Tc- T) for Tcb≤ T< Tc.

  5. Spin fluctuations and superconductivity in UPt3

    NASA Astrophysics Data System (ADS)

    Fay, D.; Appel, J.

    1985-11-01

    We attempt to assess the importance of spin fluctuations in the heavy-fermion system UPt3, the most unambiguous evidence for which is the T3 lnT term in the specific heat. We investigate whether other contributions, such as that from a peak in the electronic density of states or from the electron-phonon interaction, could account for the experimental data. We conclude that they cannot although the data are consistent with the presence of both a T3 lnT term and a density-of-states peak of width greater than about 60 K. We determine the input parameters for the paramagnon theory with a self-consistent method developed by Boring, Albers, Stewart, and Koelling for UAl2 and we calculate the s- and p-wave pairing interactions. A one-band model favors p-wave pairing, while a two-band model leads to conventional s-wave superconductivity.

  6. Process for producing clad superconductive materials

    DOEpatents

    Cass, Richard B.; Ott, Kevin C.; Peterson, Dean E.

    1992-01-01

    A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.

  7. Momentum of superconducting electrons and the explanation of the Meissner effect

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2017-01-01

    Momentum and energy conservation are fundamental tenets of physics, which valid physical theories have to satisfy. In the reversible transformation between superconducting and normal phases in the presence of a magnetic field, the mechanical momentum of the supercurrent has to be transferred to the body as a whole and vice versa, the kinetic energy of the supercurrent stays in the electronic degrees of freedom, and no energy is dissipated nor entropy is generated in the process. We argue on general grounds that to explain these processes it is necessary that the electromagnetic field mediates the transfer of momentum between electrons and the body as a whole, and this requires that when the phase boundary between normal and superconducting phases is displaced, a flow and counterflow of charge occurs in a direction perpendicular to the phase boundary. This flow and counterflow does not occur according to the conventional BCS-London theory of superconductivity, therefore we argue that within BCS-London theory the Meissner transition is a "forbidden transition." Furthermore, to explain the phase transformation in a way that is consistent with the experimental observations, requires that (i) the wave function and charge distribution of superconducting electrons near the phase boundary extend into the normal phase, and (ii) that the charge carriers in the normal state have holelike character. The conventional theory of superconductivity does not have these physical elements, the theory of hole superconductivity does.

  8. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit.

    PubMed

    Dixson, Ronald G; Orji, Ndubuisi G; Goldband, Ryan S

    2016-01-25

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm

  9. Crystal growth and annealing study of fragile, non-bulk superconductivity in YFe2Ge 2

    DOE PAGES

    Kim, H.; Ran, S.; Mun, E. D.; ...

    2015-02-05

    In this study, we investigated the occurrence and nature of superconductivity in single crystals of YFe2Ge2 grown out of Sn flux by employing X-ray diffraction, electrical resistivity and specific heat measurements. We found that the residual resistivity ratio (RRR) of single crystals can be greatly improved, reaching as high as ~60, by decanting the crystals from the molten Sn at ~350°C and/or by annealing at temperatures between 550°C and 600°C. We found that the samples with RRR ≳ 34 showed resistive signatures of superconductivity with the onset of the superconducting transition Tc ≈ 1.4K. RRR values vary between 35 andmore » 65 with, on average, no systematic change in value Tc, indicating that the systematic changes in RRR do not lead to comparable changes in Tc. Specific heat measurements on samples that showed the clear resistive signatures of a superconducting transition did not show any signature of a superconducting phase transition, which suggests that the superconductivity observed in this compound is either some sort of filamentary, strain-stabilized superconductivity associated with small amounts of stressed YFe2Ge2 (perhaps at twin boundaries or dislocations) or is a second crystallographic phase that is present at level below detection capability of conventional powder X-ray techniques.« less

  10. Single-gap superconductivity in β -B i2Pd

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Pribulová, Z.; Samuely, T.; Szabó, P.; Cambel, V.; Šoltýs, J.; Herrera, E.; Suderow, H.; Correa-Orellana, A.; Prabhakaran, D.; Samuely, P.

    2016-04-01

    The β -B i2Pd compound has been proposed as another example of a multigap superconductor [Imai et al., J. Phys. Soc. Jpn. 81, 113708 (2012), 10.1143/JPSJ.81.113708]. Here, we report on measurements of several important physical quantities capable of showing a presence of multiple energy gaps on our superconducting single crystals of β -B i2Pd with the critical temperature Tc close to 5 K. The calorimetric study via a sensitive ac technique shows a sharp anomaly at the superconducting transition, however only a single energy gap is detected. Also other characteristics inferred from calorimetric measurements as the field dependence of the Sommerfeld coefficient and the temperature and angular dependence of the upper critical magnetic field point unequivocally to standard single s -wave gap superconductivity. The Hall-probe magnetometry provides the same result from the analysis of the temperature dependence of the lower critical field. A single-gapped BCS density of states is detected by the scanning tunneling spectroscopy measurements. Then, the bulk as well as the surface sensitive probes evidence a standard conventional superconductivity in this system where the topologically protected surface states have been recently detected by angle-resolved photoemission spectroscopy [Sakano et al., Nat. Commun. 6, 8595 (2015)., 10.1038/ncomms9595].

  11. Possible Unconventional superconductivity in YCo0.7C2

    NASA Astrophysics Data System (ADS)

    Cigarroa, Orlando; Ferrari Rosa, Priscila; Eleno, Luiz Tadeu; Fisk, Zachary; da Silva Machado, Antonio Jefferson

    Non-centrosymmetric superconductors as CePt3Si [1 2] and sequicarbides (La,Y)2C3 [3] are remarkable examples of unusual properties displayed associated to unconventional pairing due to an antisymmetric spin-orbit coupling. Another interesting case is the family of compounds belonging to the CeNiC2 type structure, in which more than thirty stable compounds have found to crystallize in this structure. Here we report magnetization, resistivity, and heat capacity measurements on poly-crystalline samples of non-centrosymmetric YCo0.7C2, showing clear evidence of bulk superconductivity with a critical temperature of Tc = 4 K. Interestingly the specific heat of the superconducting state deviates from conventional exponential temperature dependence, which is suggestive of possible unconventional superconducting behavior in YCo0.7C2, similar to that seen in the isostructural and isoelectronic superconductor LaNiC2 [4]. Besides, these results strongly suggest that this material is a strong candidate of multiband superconductivity. References: [1] E. Bauer, G. Hilscher, H. Michor, C. Paul and P. Rogl, Phys. Rev. Lett. 92 (2004) 027003.

  12. Emergence of superconductivity in heavy-electron materials.

    PubMed

    Yang, Yi-feng; Pines, David

    2014-12-23

    Although the pairing glue for the attractive quasiparticle interaction responsible for unconventional superconductivity in heavy-electron materials has been identified as the spin fluctuations that arise from their proximity to a magnetic quantum critical point, there has been no model to describe their superconducting transition at temperature Tc that is comparable to that found by Bardeen, Cooper, and Schrieffer (BCS) for conventional superconductors, where phonons provide the pairing glue. Here we propose such a model: a phenomenological BCS-like expression for Tc in heavy-electron materials that is based on a simple model for the effective range and strength of the spin-fluctuation-induced quasiparticle interaction and reflects the unusual properties of the heavy-electron normal state from which superconductivity emerges. We show that it provides a quantitative understanding of the pressure-induced variation of Tc in the "hydrogen atoms" of unconventional superconductivity, CeCoIn5 and CeRhIn5, predicts scaling behavior and a dome-like structure for Tc in all heavy-electron quantum critical superconductors, provides unexpected connections between members of this family, and quantifies their variations in Tc with a single parameter.

  13. Route to Topological Superconductivity via Magnetic Field Rotation.

    PubMed

    Loder, Florian; Kampf, Arno P; Kopp, Thilo

    2015-10-19

    The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H(c2), which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor.

  14. Superconductivity in the splat-cooled UMo alloys

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Sowa, S.; Krupska, M.; Paukov, M.; Tkach, I.; Havela, L.

    2015-03-01

    We have investigated the superconductivity in splat-cooled UMo alloys by low-temperature resistivity and specific-heat measurements down to 0.4 K. The γ-U materials, such as U-Mo15 (with 15 at.% Mo doping), exhibit a conventional BCS superconductivity with Tc = 2.1 K and upper critical field exceeding 5 T, much higher than that for α-U materials. The alloys with <10 at.% Mo doping consist of a mixed γ + α-U phase. The superconducting transition in the U-Mo6 revealed by a smooth decrease below 1.5 K and a sharp drop at 0.6 K in the resistivity indicating that γ-U grains are embedded in the α-U matrix. The superconductivity transition was revealed by λ-type peak at Tc in the C(T) curve only for U-Mo15, while only one broad peak at Tc in the C(T) curves were observed for other UMo splats. With applying the magnetic fields, the resistivity jumps and specific-heat peaks move to lower temperatures. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  15. Emergence of superconductivity in heavy-electron materials

    PubMed Central

    Yang, Yi-feng; Pines, David

    2014-01-01

    Although the pairing glue for the attractive quasiparticle interaction responsible for unconventional superconductivity in heavy-electron materials has been identified as the spin fluctuations that arise from their proximity to a magnetic quantum critical point, there has been no model to describe their superconducting transition at temperature Tc that is comparable to that found by Bardeen, Cooper, and Schrieffer (BCS) for conventional superconductors, where phonons provide the pairing glue. Here we propose such a model: a phenomenological BCS-like expression for Tc in heavy-electron materials that is based on a simple model for the effective range and strength of the spin-fluctuation-induced quasiparticle interaction and reflects the unusual properties of the heavy-electron normal state from which superconductivity emerges. We show that it provides a quantitative understanding of the pressure-induced variation of Tc in the “hydrogen atoms” of unconventional superconductivity, CeCoIn5 and CeRhIn5, predicts scaling behavior and a dome-like structure for Tc in all heavy-electron quantum critical superconductors, provides unexpected connections between members of this family, and quantifies their variations in Tc with a single parameter. PMID:25489102

  16. Unconventional superconductivity from magnetism in transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Rahimi, M. A.; Moghaddam, A. G.; Dykstra, C.; Governale, M.; Zülicke, U.

    2017-03-01

    We investigate proximity-induced superconductivity in monolayers of transition-metal dichalcogenides (TMDs) in the presence of an externally generated exchange field. A variety of superconducting order parameters is found to emerge from the interplay of magnetism and superconductivity, covering the entire spectrum of possibilities to be symmetric or antisymmetric with respect to the valley and spin degrees of freedom, as well as even or odd in frequency. More specifically, when a conventional s -wave superconductor with singlet Cooper pairs is tunnel-coupled to the TMD layer, both spin-singlet and triplet pairings between electrons from the same and opposite valleys arise due to the combined effects of intrinsic spin-orbit coupling and a magnetic-substrate-induced exchange field. As a key finding, we reveal the existence of an exotic even-frequency triplet pairing between equal-spin electrons from different valleys, which arises whenever the spin orientations in the two valleys are noncollinear. All types of superconducting order turn out to be highly tunable via straightforward manipulation of the external exchange field.

  17. Effect of sweep angle on the pressure distributions and effectiveness of the ogee tip in diffusing a line vortex

    NASA Technical Reports Server (NTRS)

    Balcerak, J. C.; Feller, R. F.

    1973-01-01

    Low-speed wind tunnel tests were conducted to study the influence of sweep angle on the pressure distributions of an ogee-tip configuration with relation to the effectiveness of the ogee tip in diffusing a line vortex. In addition to the pressure data, performance and flow-visualization data were obtained in the wind tunnel tests to evaluate the application of the ogee tip to aircraft configurations. The effect of sweep angle on the performance characteristics of a conventional-tip model, having equivalent planform area, was also investigated for comparison with the ogee-tip configuration. Results of the investigation generally indicate that sweep angle has little effect on the characteristics of the ogee in diffusing a line vortex.

  18. British Columbia Transfer TIPS. Second Edition Revised

    ERIC Educational Resources Information Center

    Finlay, Finola, Ed.; Karlinski, Jean, Ed.

    2005-01-01

    BCTransfer TIPS is a user friendly document outlining how transfer between British Columbia (BC) post-secondary institutions works. It includes tips, student quotes, scenarios, a personal plan and checklist. Information in this document can only be reproduced with permission from the British Columbia Council on Admissions and Transfer (BCCAT.)

  19. Economics of tipping the climate dominoes

    NASA Astrophysics Data System (ADS)

    Lemoine, Derek; Traeger, Christian P.

    2016-05-01

    Greenhouse gas emissions can trigger irreversible regime shifts in the climate system, known as tipping points. Multiple tipping points affect each other’s probability of occurrence, potentially causing a `domino effect’. We analyse climate policy in the presence of a potential domino effect. We incorporate three different tipping points occurring at unknown thresholds into an integrated climate-economy model. The optimal emission policy considers all possible thresholds and the resulting interactions between tipping points, economic activity, and policy responses into the indefinite future. We quantify the cost of delaying optimal emission controls in the presence of uncertain tipping points and also the benefit of detecting when individual tipping points have been triggered. We show that the presence of these tipping points nearly doubles today’s optimal carbon tax and reduces peak warming along the optimal path by approximately 1 °C. The presence of these tipping points increases the cost of delaying optimal policy until mid-century by nearly 150%.

  20. News: Tripping over tipping points/elements

    EPA Science Inventory

    The term “tipping point” has been used to identify a critical threshold susceptible to a tiny perturbation that can qualitatively alter the state or development of a system. “Tipping element” has been introduced to describe large-scale components of the Earth system that may pass...

  1. Cryopreservation of in vitro grown shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter in Plant Cell Culture, Development and Biotechnology describes student laboratory exercises for cryopreservation of the growing shoot tips of plants in liquid nitrogen. It includes two exercises involving step by step protocols for use with shoot tips. Vitrification (fast freezing) an...

  2. Schools That Quit "Tipping" in Mississippi.

    ERIC Educational Resources Information Center

    Munford, Luther

    As described by some observers, white flight rapidly and irreversibly leads to black or nearly all black schools, once the ratio of blacks to whites in a school reaches a tipping point. Research in Mississippi, however, has uncovered school districts where tipping has not only stopped, in some cases it has even reversed. Events there call into…

  3. Ten Tips for Better Washroom Design.

    ERIC Educational Resources Information Center

    Bigger, Alan S.; Bigger, Linda B.

    1998-01-01

    Offers 10 tips for renovating or building school washrooms that enhance user satisfaction while making them easier to maintain. Tips cover all aspects of school washroom design and highlights the following elements of effective washroom design development: user input; ease of maintenance; accessibility; and functionality. (GR)

  4. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure.

    PubMed

    Prakash, Om; Kumar, Anil; Thamizhavel, A; Ramakrishnan, S

    2017-01-06

    At ambient pressure, bulk rhombohedral bismuth is a semimetal that remains in the normal state down to at least 10 millikelvin. Superconductivity in bulk bismuth is thought to be unlikely because of the extremely low carrier density. We observed bulk superconductivity in pure bismuth single crystals below 0.53 millikelvin at ambient pressure, with an estimated critical magnetic field of 5.2 microteslas at 0 kelvin. Superconductivity in bismuth cannot be explained by the conventional Bardeen-Cooper-Schrieffer theory because its adiabatic approximation does not hold true for bismuth. Future theoretical work will be needed to understand superconductivity in the nonadiabatic limit in systems with low carrier densities and unusual band structures, such as bismuth.

  5. Magnetically dependent superconducting transport in oxide heterostructures with an antiferromagnetic layer

    NASA Astrophysics Data System (ADS)

    Kislinskii, Y. V.; Konstantinian, K. Y.; Ovsyannikov, G. A.; Komissinskiy, P. V.; Borisenko, I. V.; Shadrin, A. V.

    2008-04-01

    The superconducting current in hybrid superconducting structures Nb/Au/Ca1- x Sr x CuO2/YBa2Cu3O7- δ with an antiferromagnetic layer is experimentally shown to have a Josephson nature, and the deviation from the sinusoidal dependence of the superconducting current on the phase difference between superconducting electrodes is about 20% of the second harmonic. These heterostructures are found to have sensitivity to an applied magnetic field that is much higher than that of conventional Josephson junctions. The experimental shape of the magnetic-field dependence of the critical current in the heterostructures differs from the usual Fraunhofer shape by oscillation with a significantly smaller period along a magnetic field.

  6. Scanning SQUID Measurements of Superconducting Proximity Effect in Bi2 Se3 -Nb Heterojunctions

    NASA Astrophysics Data System (ADS)

    Kratz, Philip; Sochnikov, Ilya; Wu, Phillip; Yu, Jung Ho; Koski, Kristie; Cui, Yi; Hammond, Robert; Beasley, Malcolm R.; Kirtley, John R.; Moler, Kathryn A.

    2014-03-01

    In superconductivity induced on the surface of a 3D topological insulator, in contrast to conventional s-wave superconductivity, each vortex core theoretically carries a nondegenerate zero energy state with the properties of a Majorana fermion. The local superfluid density and its characteristic magnetic field penetration depth, critical current and temperature are sensitive metrics for placing limits on the relative contributions of the bulk and surface to a proximitized supercurrent in a topological insulator. Using a scanning SQUID microscope integrated with a quartz tuning fork sensor in a force-sensitive phase-locked loop for simultaneous topography characterization, we study the local superfluid density in Sb-doped Bi2Se3-Nb heterojunctions, prepared by Nb growth through molecular beam epitaxy on solvothermally synthesized Bi2Se3 nanoplates. We observe a suppression of the superconducting diamagnetic susceptibility, consistent with a superconducting proximity effect. We also explore the dependence of the local superfluid density on back gate voltage and temperature.

  7. 'Oxide-free' tip for scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Colton, R. J.; Baker, S. M.; Baldeschwieler, J. D.; Kaiser, W. J.

    1987-01-01

    A new tip for scanning tunneling microscopy and a tip repair procedure that allows one to reproducibly obtain atomic images of highly oriented pyrolytic graphite with previously inoperable tips are reported. The tips are shown to be relatively oxide-free and highly resistant to oxidation. The tips are fabricated with graphite by two distinct methods.

  8. Fractal superconductivity near localization threshold

    SciTech Connect

    Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.

    2010-07-15

    We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk 'poor conductors' in which Fermi energy E{sub F} is located in the region of localized states not so far from the Anderson mobility edge E{sub c}. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at E{sub F} = E{sub c}, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at E{sub F} still deeper inside a localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap {Delta}, that is due to many-body correlations and a new 'pseudo-gap' energy scale {Delta}{sub P} which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive T{sub c}. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical

  9. Helicopter Rotor Blade With Free Tip

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.; Young, Larry; Cawthorne, Matthew; Keys, Charles

    1992-01-01

    Free-tip rotor blades improve fuel efficiency and performance characteristics of helicopters. Outermost portion of blade pivots independently with respect to inboard portion about pitch axis parallel to blade axis, located forward of aerodynamic center. Centrifugal force acts on tension/torsion strap and biases tip nose-up. Airstream turns tip nose-down, other torques cause tip to "weathervane" to intermediate angular position resulting in net lift. Reduces fluctuations in lift, with two effects: flapwise vibratory loads on blade and vibratory loads on pitch-control mechanism reduced; negative lift produced by advancing fixed tip eliminated, reducing power required to achieve same overall lift. Applies to tilt rotors and tail rotors as well.

  10. Molecular Mechanics of Tip-Link Cadherins

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P.

    2011-11-01

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is likely composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their complete molecular structure, elasticity, and deafness-related structural defects remain largely unknown. We present crystal structures of extracellular (EC) tip-link cadherin repeats involved in hereditary deafness and tip link formation. In addition, we show that the deafness mutation D101G, in the linker region between the repeats EC1 and EC2 of cadherin-23, causes a slight bend between repeats and decreases Ca2+ affinity. Molecular dynamics simulations suggest that tip-link cadherin repeats are stiff and that either removing Ca2+ or mutating Ca2+-binding residues reduces rigidity and unfolding strength. The structures and simulations also suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with protocadherin-15 to form the tip link.

  11. Tip cap for a turbine rotor blade

    DOEpatents

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  12. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.

    PubMed

    Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A

    2015-09-21

    We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible.

  13. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    PubMed

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips.

  14. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  15. What superconducts in sulfur hydrides under pressure and why

    NASA Astrophysics Data System (ADS)

    Bernstein, N.; Hellberg, C. Stephen; Johannes, M. D.; Mazin, I. I.; Mehl, M. J.

    2015-02-01

    The recent discovery of superconductivity at 190 K in highly compressed H2S is spectacular not only because it sets a record high critical temperature, but because it does so in a material that appears to be, and we argue here that it is, a conventional strong-coupling BCS superconductor. Intriguingly, superconductivity in the observed pressure and temperature range was predicted theoretically in a similar compound, H3S . Several important questions about this remarkable result, however, are left unanswered: (1) Does the stoichiometry of the superconducting compound differ from the nominal composition, and could it be the predicted H3S compound? (2) Is the physical origin of the anomalously high critical temperature related only to the high H phonon frequencies, or does strong electron-ion coupling play a role? We show that at experimentally relevant pressures H2S is unstable, decomposing into H3S and S, and that H3S has a record high Tc due to its covalent bonds driven metallic, which make this compound rather similar to MgB2, but unlike most other good conventional superconductors.

  16. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  17. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  18. High temperature superconducting compounds

    NASA Astrophysics Data System (ADS)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  19. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  20. Superconducting wire manufactured

    NASA Astrophysics Data System (ADS)

    Fu, Yuexian; Sun, Yue; Xu, Shiming; Peng, Ying

    1985-10-01

    The MF Nb/Cu Extrusion Tube Method was used to manufacture 3 kg of stable practical MF Nb2Sn composite superconducting wire containing pure Cu(RRR approx. 200)/Ta. The draw state composite wire diameter was 0.56 mm, it contained 11,448 x 2.6 micron Nb core, and the twist distance was 1.5 cm. The composite wire cross-section was pure Cu/Ta/11,448 Nb core/Cu/ 91Sn-Cu; containing 22.8 v. % pure Cu, 13.3 v. % Ta; within the Ta layer to prevent Sn diffusion. The wire was sheathed in nonalkaline glass fiber as an insulating layer. A section of wire weighing 160 g was cut off and coiled it into a small solenoid. After reaction diffusion processing at 675 C/30 and curing by vacuum dipping in paraffin, it was measured in a Nb-Ti backfield of 7.2 T intensity, a current of 129 A was passed through the Nb3Sn solenoid and produced a strength of 2.5 T, the overall magnetic field intensity of the composite magnet reached 9.7 T. At this time, the wire full current density J sub c.w. = 5.2 x 10 to the 4th power A/sq cm; the effective current density J sub c (Nb + Sn - Cu) = 8.2 x 10 to the 4th power A/sq cm.

  1. Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory.

    PubMed

    Sigdel, Krishna P; Grayer, Justin S; King, Gavin M

    2013-11-13

    The prospect of a robust three-dimensional atomic force microscope (AFM) holds significant promise in nanoscience. Yet, in conventional AFM, the tip-sample interaction force vector is not directly accessible. We scatter a focused laser directly off an AFM tip apex to rapidly and precisely measure the tapping tip trajectory in three-dimensional space. This data also yields three-dimensional cantilever spring constants, effective masses, and hence, the tip-sample interaction force components via Newton's second law. Significant lateral forces representing 49 and 13% of the normal force (Fz = 152 ± 17 pN) were observed in common tapping mode conditions as a silicon tip intermittently contacted a glass substrate in aqueous solution; as a consequence, the direction of the force vector tilted considerably more than expected. When addressing the surface of a lipid bilayer, the behavior of the force components differed significantly from that observed on glass. This is attributed to the lateral mobility of the lipid membrane coupled with its elastic properties. Direct access to interaction components Fx, Fy, and Fz provides a more complete view of tip dynamics that underlie force microscope operation and can form the foundation of a three-dimensional AFM in a plurality of conditions.

  2. Convention Problems - 1787.

    ERIC Educational Resources Information Center

    Hanson, Deroy L.

    Designed to motivate eighth-grade civics students in the study of the United States Constitution, this game is intended to simulate the basic problems faced by the delegates to the Philadelphia Convention of 1787. The four parts of the game introduce the governmental concepts of the bicameral legislature, the executive branch, the judicial branch,…

  3. The Superconducting Bird: A Didactical Toy.

    ERIC Educational Resources Information Center

    Guarner, E.; Sanchez, A. M.

    1992-01-01

    Describes the design of the superconducting bird, a device to demonstrate the phenomenon of superconductivity. Discusses the utilization of the device as an example of a motor and compares it to the toy called the drinking bird. (MDH)

  4. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    SciTech Connect

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  5. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  6. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  7. Interplay Between Ferromagnetism and Superconductivity

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Sudbø, Asle

    This chapter presents results on transport properties of hybrid structures where the interplay between ferromagnetism and superconductivity plays a central role. In particular, the appearance of so-called odd-frequency pairing in such structures is investigated in detail. The basic physics of superconductivity in such structures is presented, and the quasiclassical theory of Greens functions with appropriate boundary conditions is given. Results for superconductor∣ferromagnet bilayers as well as magnetic Josephson junctions and spin valves are presented. Further phenomena that are studied include transport in the presence of inhomogenous magnetic textures, spin-Josephon effect, and crossed Andreev reflection. We also investigate the possibility of intrinsic coexistence of ferromagnetism and superconductivity, as reported in a series of uranium-based heavy-fermion compounds. The nature of such a coexistence and the resulting superconducting order parameter is discussed along with relevant experimental results. We present a thermodynamic treatment for a model of a ferromagnetic supercondcutor and moreover suggest ways to experimentally determine the pairing symmetry of the superconducting gap, in particular by means of conductance spectroscopy.

  8. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  9. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  10. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate

    NASA Astrophysics Data System (ADS)

    Jarzembski, Amun; Park, Keunhan

    2017-04-01

    Recent experimental studies have measured the infrared (IR) spectrum of tip-scattered near-field thermal radiation for a SiC substrate and observed up to a 50cm-1 redshift of the surface phonon polariton (SPhP) resonance peak [1,2]. However, the observed spectral redshift cannot be explained by the conventional near-field thermal radiation model based on the point dipole approximation. In the present work, a heated tip is modeled as randomly fluctuating point charges (or fluctuating finite dipoles) aligned along the primary axis of a prolate spheroid, and quasistatic tip-substrate charge interactions are considered to formulate the effective polarizability and self-interaction Green's function. The finite dipole model (FDM), combined with fluctuational electrodynamics, allows the computation of tip-plane thermal radiation in the extreme near-field (i.e., H / R ≲ 1 , where H is the tip-substrate gap distance and R is the tip radius), which cannot be calculated with the point dipole approximation. The FDM provides the underlying physics on the spectral redshift of tip-scattered near-field thermal radiation as observed in experiments. In addition, the SPhP peak in the near-field thermal radiation spectrum may split into two peaks as the gap distance decreases into the extreme near-field regime. This observation suggests that scattering-type spectroscopic measurements may not convey the full spectral features of tip-plane extreme near-field thermal radiation.

  11. Superconducting PM undiffused machines with stationary superconducting coils

    DOEpatents

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  12. 4. MESOSCOPIC SUPERCONDUCTIVITY: Proximity Action theory of superconductive nanostructures

    NASA Astrophysics Data System (ADS)

    Skvortsov, M. A.; Larkin, A. I.; Feigel'man, M. V.

    2001-10-01

    We review a novel approach to the superconductive proximity effect in disordered normal-superconducting (N-S) structures. The method is based on the multicharge Keldysh action and is suitable for the treatment of interaction and fluctuation effects. As an application of the formalism, we study the subgap conductance and noise in two-dimensional N-S systems in the presence of the electron-electron interaction in the Cooper channel. It is shown that singular nature of the interaction correction at large scales leads to a nonmonotonuos temperature, voltage and magnetic field dependence of the Andreev conductance.

  13. Enhanced antiferromagnetic exchange between magnetic impurities in a superconducting host.

    PubMed

    Yao, N Y; Glazman, L I; Demler, E A; Lukin, M D; Sau, J D

    2014-08-22

    It is generally believed that superconductivity only weakly affects the indirect exchange between magnetic impurities. If the distance r between impurities is smaller than the superconducting coherence length (r ≲ ξ), this exchange is thought to be dominated by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, identical to the those in a normal metallic host. This perception is based on a perturbative treatment of the exchange interaction. Here, we provide a nonperturbative analysis and demonstrate that the presence of Yu-Shiba-Rusinov bound states induces a strong 1/r(2) antiferromagnetic interaction that can dominate over conventional RKKY even at distances significantly smaller than the coherence length (r ≪ ξ). Experimental signatures, implications, and applications are discussed.

  14. Ideal of the perfect magnet-superconducting systems

    SciTech Connect

    Shoaee, H.; Spencer, J.E.

    1983-04-01

    In this report, we study an iron-free, superconducting, elliptical coil quadrupole which has been proposed by General Atomics for use in the SLC final focus system. Beth has shown that such coils might provide a pure quadrupole field ignoring 3-D effects. Similarly, recent studies of rare earth permanent magnets have shown that, at least in principle, these magnets can also be made arbitrarily pure. Since similar claims can be made for conventional iron-core electromagnets either by demanding pure hyperbolic pole contours or using tricks, it is interesting to consider just how wide the gulf between principle and practice really is for each type of magnet and what it takes to bridge it (and where one is most likely to fall off). Here we consider only the superconducting option because its greater strength, variability and linearity make it potentially useful for the SLC and the low-beta insertions of the high energy storage rings such as PEP.

  15. Development of a cooling system for superconducting wind turbine generator

    NASA Astrophysics Data System (ADS)

    Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Natori, Naotake; Yamasaki, Hirofumi

    2016-12-01

    This paper deals with the cooling system for high-Tc superconducting (HTS) generators for large capacity wind turbines. We have proposed a cooling system with a heat exchanger and circulation pumps to cool HTS field windings designed for 10 MW-class superconducting generators. In the cooling system, the refrigerants in the stationary and rotational systems are completely separated; heat between the two systems exchanges using a rotational-stationary heat exchanger. The refrigerant in rotational system is circulated by highly reliable pumps. We designed the rotational-stationary heat exchanger based on a conventional shell-and tube type heat exchanger. We also demonstrated that heat exchange in cryogenic temperature is possible with a commercially available heat exchanger. We devised a novel and highly reliable cryogenic helium circulation pump with magnetic reciprocating rotation system and verified its underlying principle with a small-scale model.

  16. Space applications of superconductivity - Digital electronics

    NASA Technical Reports Server (NTRS)

    Harris, R. E.

    1980-01-01

    Superconducting electronics offers a variety of remarkable properties including high speed and low dissipation. The paper discusses fundamental considerations which appear to suggest that superconducting (cryogenic) technology will offer significant advantages for future digital devices. It shows how the active element in superconducting electronics, the Josephson junction, works and discusses the technology for fabricating the devices. The characteristics of published circuits are briefly reviewed, and the capabilities of future superconducting computers and instruments are projected.

  17. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  18. A novel optical lithography implement utilizing third harmonic generation via metallic tip enhanced near field

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhu, Ning; Mei, Ting; He, Miao; Li, Hao; Chen, Zhenshi

    2017-01-01

    A novel scheme for near-field optical lithography utilizing a metallic tip illuminated by femtosecond laser pulses with proper polarization has been presented. The strongly enhanced near field at the metallic tip offers a localized excitation source for the third harmonic generation in the nonlinear material. The generated third harmonic via excitation of nonlinear photoresist provides good exposure contrast due to the cubic intensity dependence. The spatial resolution of this novel lithography scheme is shown to be better than that of the conventional lithography technique.

  19. Oxygen-Free Welding Contact Tips

    NASA Technical Reports Server (NTRS)

    Pike, James F.

    1993-01-01

    Contact tips for gas/metal arc welding (GMAW) fabricated from oxygen-free copper. Prototype tips tested in robotic welding, for which application intended. Reduces electrical erosion, increases electrical conductivity, and reduces mechanical wear. Productivity of robotic welding increases while time during welding interrupted for removal and replacement of contact tips minimal. Improves alignment of joints and filler metal, reducing rate of rejection and repair of unacceptable weldments. Utility extends beyond aerospace industry to mass production of various types of hardware, including heavy off-highway construction equipment.

  20. CFD analysis of cloud cavitation on three tip-modified propellers with systematically varied tip geometry

    NASA Astrophysics Data System (ADS)

    Shin, K. W.; Andersen, P.

    2015-12-01

    The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used as the reference propeller. For the reference propeller, sheet cavitation extends over a whole chord length in the hull wake peak. As the blade gets out of the wake peak, the rear part of sheet cavity is detached in a form of cloud cavitation. For the reference propeller, the tip pitch reduction from the maximum is about 35%. When decreasing the tip pitch reduction to 10%, tip vortex cavitation is formed and cloud cavitation is significantly weakened. When increasing the tip pitch reduction to 60%, sheet cavitation slightly moves to inner radii and cloud cavitation grows larger.

  1. Combination of DC Vaccine and Conventional Chemotherapeutics.

    PubMed

    Dong, Wei; Wei, Ran; Shen, Hongchang; Ni, Yang; Meng, Long; Du, Jiajun

    2016-01-01

    Recently mutual interactions of chemotherapy and immunotherapy have been widely accepted, and several synergistic mechanisms have been elucidated as well. Although much attention has focused on the combination of DC vaccine and chemotherapy, there are still many problems remaining to be resolved, including the optimal treatment schedule of the novel strategy. In this article, we methodically examined literature about the combination strategy of DC vaccine and conventional chemotherapy. Based on the published preclinical and clinical trials, treatment schedules of the combinational strategy can be classified as three modalities: chemotherapy with subsequent DC vaccine (post-DC therapy); DC vaccine followed by chemotherapy (pre-DC therapy); concurrent DC vaccine with chemotherapy (con-DC therapy).The safety and efficacy of this combinatorial immunotherapy strategy and its potential mechanisms are discussed. Although we could not draw conclusions on optimal treatment schedule, we summarize some tips which may be beneficial to trial design in the future.

  2. A graduated method of tip graft fixation in rhinoplasty.

    PubMed

    Papel, I D

    1995-06-01

    Projection of the nasal tip has gained increased recognition as a measurable and visual characteristic that has an impact on the results of aesthetic rhinoplasty. Autologous cartilage tip grafts have been used in many techniques to increase tip projection and contour the tip during rhinoplasty. This article introduces a graduated method of tip graft fixation correlated with specific clinical measurements related to tip projection. After careful analysis of tip projection and contour, a predictable graft fixation technique can be selected to obtain the desired degree of nasal tip projection and sculpting.

  3. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  4. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  5. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  6. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  7. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, Douglas K.; Miller, Theodore A.; Ostenson, Jerome E.; Schwartzkopf, Louis A.; Sanders, Steven C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  8. Superconducting Storage Cavity for RHIC

    SciTech Connect

    Ben-Zvi,I.

    2009-01-02

    This document provides a top-level description of a superconducting cavity designed to store hadron beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It refers to more detailed documents covering the various issues in designing, constructing and operating this cavity. The superconducting storage cavity is designed to operate at a harmonic of the bunch frequency of RHIC at a relatively low frequency of 56 MHz. The current storage cavities of RHIC operate at 197 MHz and are normal-conducting. The use of a superconducting cavity allows for a high gap voltage, over 2 MV. The combination of a high voltage and low frequency provides various advantages stemming from the resulting large longitudinal acceptance bucket.

  9. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  10. Sensing with superconducting point contacts.

    PubMed

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  11. Intermediate superconductive magnetic energy storage

    SciTech Connect

    Masuda, M.; Fujino, H.; Iwamoto, M.; Murakomi, M.; Shintomi, T.; Veda, K.

    1983-05-01

    In the past decade, the superconducting magnetic energy storage (SMES) for application to peak shaving in utility has been investigated in a manner to construct the huge superconducting coil in bed rock. To confine the strong electromagnetic forces accompanied with the high magnetic field, megaton structures, no matter how they will be constructed in a liquid helium temperature, are needed. To meet such a requirement, the revolutionary idea was proposed that the superconducting coil would be constructed on the underground bed rock. Here presented is a 10 MWh unit as an intermediate SMES that is a milestone along the distant way of RandD of SMES against 1,000 - 10,000 MWh unit which advocate the replacement of the hydro-pumped station. Therefore, even if the 10 MWh unit would not function as a storage in the utility network, its design should also consider the same situation.

  12. Conventional Strategic Deterrence

    SciTech Connect

    Latter, A.L.; Martinelli, E.A.; Speed, R.D.

    1992-08-01

    The Bush Administration argues that the US, as the world's only remaining superpower, must be prepared to intervene militarily in regional conflicts. However, the traditional American way of fighting-relying on ground forces with heavy equipment, supported by naval and air forces--could prove too expensive, both monetarily and in terms of expected American casualties, to garner the support of the American public or Congress. This paper argues that the revolution in conventional weaponry demonstrated in the Persian Gulf War opens up the possibility of a new strategy--called Conventional Strategic Deterrence--that could reduce both financial costs and casualties (if it were necessary to implement the strategy) while still being a strong and credible deterrent to regional conflict.

  13. External Q studies for APT superconducting cavity couplers

    SciTech Connect

    Balleyguier, P.

    1998-12-31

    Coupling coefficients for the APT superconducting cavity couplers have been predicted using an improvement of the method previously developed for the French Trispal project. The authors here present the method and a proof of the formula used to compute the external Q. Measurements on a single-cell copper cold model exhibited a very good agreement against simulation. Then, they established that the original coupler design lead to an insufficient coupling in {beta} = 0.64 cavities. Different solutions were proposed to fix this problem, like combining impedance discontinuities in the line and an off-centered disc end tip. Finally, it was decided to increase the beam tube diameter though it has some influence on the cavity end-cell performance.

  14. Searching for Superconductivity in Micrometeorites

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Guenon, S.; Ramirez, J. G.; Basaran, A. C.; Taylor, S.; Schuller, I.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening natural materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cm3of a superconductor embedded in a non-superconducting matrix. We applied our technique to search for superconductivity in micrometeorites, small extraterrestrial (ET) particles that add most of the ET mass to the present day Earth. We measured approximately 65 micrometeorites and compared their spectra with those of eight reference materials.Micrometeorites (MMs) are ideal samples with which to test our highly sensitive superconductivity probe, as individual MMs weigh 10-5 g and the large number of micrometeorites arriving on Earth, suggests some contain minerals formed under conditions that cannot be replicated in the laboratory. Minerals in meteorites formed during planetary processes associated with accretion/condensation, planetary differentiation, and segregation. Other components such as pre-solar grains, SiC, diamonds, graphite, Si3N4, and deuterium enriched organics formed under some of the most intense physical-chemical environments in the Universe, including supernovae and stellar outflows. It is during such severe processes that exotic superconducting species may have been created.The research presented here established the methodology and proved the ultrahigh sensitivity of the technique by detecting the presence of the Verwey-transition of the magnetite present in these micrometeorites. The investigated micrometeorites contained no superconducting phases. This work was supported by an AFOSR MURI grant no. F49550-09-1-0577.

  15. Laparoscopic versus conventional appendectomy.

    PubMed Central

    Vallina, V L; Velasco, J M; McCulloch, C S

    1993-01-01

    OBJECTIVE: The goal of this study was to prospectively define the impact of laparoscopy on the management of patients with a presumed diagnosis of appendicitis. SUMMARY BACKGROUND DATA: While the role of laparoscopy in the management of cholelithiasis is well established, its impact on the management of acute appendicitis needs to be objectively defined and compared to that of conventional management. Several authors have predicted that laparoscopic appendectomy will become the preferred treatment for appendicitis. METHODS: Two groups of consecutive patients with similar clinical characteristics of acute appendicitis were compared. Data on the laparoscopic group were compiled prospectively on standardized forms; data on the conventional group were collected retrospectively. Operative time, hospital stay, analgesia, cost, and return to normal activities were noted. RESULTS: Seventeen consecutive patients who underwent appendectomy were compared to 18 consecutive patients who underwent laparoscopy (16 of these 18 had laparoscopic appendectomy). There was no significant difference between the two groups in terms of clinical characteristics and appendiceal histopathology. The mean operative times were 61 +/- 4.1 minutes and 46 +/- 2.9 minutes for the laparoscopy and conventional groups, respectively (p < 0.01). Hospital stay was significantly shorter in the laparoscopic appendectomy group, with 81% of patients being discharged on their first postoperative day (p < 0.001). The laparoscopic appendectomy patients required significantly less narcotic analgesia (p < 0.02). Return to normal activity was not significantly different between the two groups. The average total cost of laparoscopic appendectomy was 30% greater than that of conventional appendectomy. CONCLUSIONS: Laparoscopy is a useful adjunct to the management of patients with a presumed clinical diagnosis of acute appendicitis. PMID:8239785

  16. IERS Conventions (2003)

    DTIC Science & Technology

    2004-01-01

    3), are the respective resonance frequencies associated with the Chandler wobble (CW), the retrograde free core nutation (FCN), and the pro- grade...Soc., 64, pp. 747–765. Zschau, J., 1983, “Rheology of the Earth’s mantle at tidal and Chandler Wobble periods,” Proc. Ninth Int. Symp. Earth Tides, New...Reference Frame CTRS Conventional Terrestrial Reference System CW Chandler Wobble DOMES Directory Of MERIT Sites DORIS Doppler Orbit determination

  17. Convention, Confirmation, and Credibility

    DTIC Science & Technology

    1989-01-01

    4 It was Pierre Duhem , a physicist, who made the strongest claim regarding the conventionality of what most people think of as empirical theory near...Mach, op. cit. p. 306. 5. Pierre Duhem , The Aim and Structure of Physical Theory Princeton University Press, Princeton, 1954. In French, it appeared as...examine in detail the ideas of Mach, Poincare, and Duhem . That they had the idea that it could be philosophically respectable to regard scientific

  18. [Neonatal conventional ventilation guidelines].

    PubMed

    2001-09-01

    Respiratory pathology is a frequent problem in Neonatal Intensive Care Units; the last few years, our knowledge about its management has improved enormously. Conventional Ventilatory support is a high-specialized technique that maintains a correct alveolar gas exchange while the primary aetiology is to present some clinical guidelines for every professional working with newborns who have respiratory failure improves. The aim of this document is to present some clinical guidelines for every professional working with newborns who have respiratory pathology

  19. Four-junction superconducting circuit

    NASA Astrophysics Data System (ADS)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-06-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  20. Superconductivity: Anatomy of a Discovery

    NASA Astrophysics Data System (ADS)

    Pesic, Peter

    2011-04-01

    The discovery of superconductivity in 1911 by Heike Kamerlingh Onnes and his collaborators, though unexpected, rested on thirty years of prior work perfecting and applying the techniques of low temperature physics. His achievements reflected both his experimental skill and his close study of theory. The comparison with his competitors (especially James Dewar) reveals the effects of personal style, awareness of human nature, and organizational skill. That the actual first detection of superconductivity was made by a young assistant, Gilles Holst, raise deep questions of authorship, priority, and recognition.

  1. Stripes and superconductivity in cuprates

    NASA Astrophysics Data System (ADS)

    Tranquada, John M.

    2012-06-01

    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  2. Freely oriented portable superconducting magnet

    DOEpatents

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  3. Exploring Novel Forms of Superconductivity

    DTIC Science & Technology

    2012-10-19

    REPORT FINALPROJECT REPORT: W911NF-08-1-0196 “EXPLORING NOVEL FORMS OF SUPERCONDUCTIVITY ....” 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Novel...Rev 8/98) Prescribed by ANSI Std. Z39.18 - 30-Jun-2011 FINALPROJECT REPORT: W911NF-08-1-0196 “EXPLORING NOVEL FORMS OF SUPERCONDUCTIVITY ...publications (other than abstracts): Received Paper 12/24/2009 1.00 Jian Liu, M. Kareev, S. Prosandeev, B. Gray, P. Ryan, J.W. Freeland, J. Chakhalian. Effect

  4. Brain Injury Safety Tips and Prevention

    MedlinePlus

    ... Address What's this? Submit What's this? Submit Button Brain Injury Safety Tips and Prevention Recommend on Facebook ... not grass or dirt. More HEADS UP Video: Brain Injury Safety and Prevention frame support disabled and/ ...

  5. Helping Your Child: Tips for Parents

    MedlinePlus

    ... parents watching your children play outside. Consider other influences Your children's friends and the media can also ... inactive computer and video games, or listening to music on hand-held devices while sitting down. Tips ...

  6. Tips for Getting a Good Night's Sleep

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Sleep Disorders Tips for Getting A Good Night's Sleep Past ... in bed at night, you may have a sleep disorder. Your family healthcare provider or a sleep specialist ...

  7. Children Health Tips in Other Languages

    EPA Pesticide Factsheets

    These tips for protecting children from environmental risks/exposures are available in spanish, chinese, vietnamese, and korean. They cover topics such as lead, pesticides, carbon monoxide, air pollution, drinking water contaminants, and radon.

  8. Teamcenter community : administration tips and tricks

    NASA Technical Reports Server (NTRS)

    Rangel, Gabriel

    2005-01-01

    This presentation covers what areas of prerequisites are important to understand and how one can improve performance and maintenance of an existing implementation. It will also cover tips and tricks for site migration and how to plan for upgrades.

  9. Can't sleep? Try these tips

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000853.htm Can't sleep? Try these tips To use the sharing features ... this page, please enable JavaScript. Everyone has trouble sleeping some of the time. But if it happens ...

  10. Compressor airfoil tip clearance optimization system

    DOEpatents

    Little, David A.; Pu, Zhengxiang

    2015-08-18

    A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.

  11. Next Stop Adulthood: Tips for Parents

    MedlinePlus

    ... Pediatrician Ages & Stages Prenatal Baby Toddler Preschool Gradeschool Teen Dating & Sex Fitness Nutrition Driving Safety School Substance Abuse Young Adult Healthy Children > Ages & Stages > Teen > Next Stop Adulthood: Tips For Parents Ages & Stages ...

  12. Alzheimer's: 7 Tips for Medical Visits

    MedlinePlus

    ... Regular medical care is an important part of Alzheimer's treatment. Use these seven tips to stay on ... Clinic staff People who have dementia due to Alzheimer's disease need regular medical care to address a ...

  13. Tips to Help You Get Active

    MedlinePlus

    ... Alternate Language URL Tips to Help You Get Active Page Content Introduction Why should I be physically ... of this brochure. Why should I be physically active? ​Regular physical activity may improve your health in ...

  14. Five Tips to Help Prevent Infections

    MedlinePlus

    ... Form Controls NCBDDD Cancel Submit Search The CDC Sickle Cell Disease (SCD) Note: Javascript is disabled or is ... gov . SCD Homepage Facts Quiz Pregnancy Complications & Treatment Sickle Cell Trait Sickle Cell Trait Toolkit Tips for Healthy ...

  15. Tips for Teens with Diabetes: About Diabetes

    ERIC Educational Resources Information Center

    National Diabetes Education Program (NDEP), 2010

    2010-01-01

    Diabetes is a serious disease. It means that one's blood glucose, also called blood sugar, is too high. Having too much glucose in a person's blood is not healthy. This paper offers tips for managing diabetes.

  16. Quick Tips Guide for Small Manufacturing Businesses

    EPA Pesticide Factsheets

    Small manufacturing businesses can use this Quick Tips Guide to be better prepared for future extreme weather events. This guide discusses keeping good records, improving housekeeping procedures, and training employees.

  17. Forward-Thinking Tips for Back Pain

    MedlinePlus

    ... news/fullstory_163118.html Forward-Thinking Tips for Back Pain Certain behaviors can reduce your risk, doctor says ... 19, 2017 WEDNESDAY, Jan. 18, 2017 (HealthDay News) -- Back pain is common but not inevitable, an orthopedist says. ...

  18. MEMS microgrippers with thin gripping tips

    NASA Astrophysics Data System (ADS)

    Chen, Brandon K.; Zhang, Yong; Perovic, Doug D.; Sun, Yu

    2011-10-01

    Gripping small objects requires tool tips of comparable dimensions. Current methods for miniaturizing an MEMS tool entirely down to sub-micrometer in dimensions, however, come with significant tradeoffs in device performance. This paper presents a microfabrication approach to selectively miniaturize gripping tips only to sub-micrometers in thickness. The process involves using the thin buried SiO2 layer of a standard silicon-on-insulator wafer to form gripping tips, and using the thick device silicon layer to construct high-aspect-ratio structures for structural, sensing, and actuation functions. The microgrippers with thin gripping tips (i.e. finger-nail-like) were experimentally characterized and applied to gripping 100 nm gold spheres inside a scanning electron microscope.

  19. 12 Tips for the Online Teacher

    ERIC Educational Resources Information Center

    Quinlan, Audrey M.

    2011-01-01

    This article provides 12 tips for teachers to help make online teaching successful. Included are suggestions with examples, a scoring rubric for assessing student responses in threaded discussions, and examples of student comments. (Contains 1 figure.)

  20. Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing.

    PubMed

    Fletcher, Patrick C; Felts, Jonathan R; Dai, Zhenting; Jacobs, Tevis D; Zeng, Hongjun; Lee, Woo; Sheehan, Paul E; Carlisle, John A; Carpick, Robert W; King, William P

    2010-06-22

    We report exceptional nanoscale wear and fouling resistance of ultrananocrystalline diamond (UNCD) tips integrated with doped silicon atomic force microscope (AFM) cantilevers. The resistively heated probe can reach temperatures above 600 degrees C. The batch fabrication process produces UNCD tips with radii as small as 15 nm, with average radius 50 nm across the entire wafer. Wear tests were performed on substrates of quartz, silicon carbide, silicon, or UNCD. Tips were scanned for more than 1 m at a scan speed of 25 mum s(-1) at temperatures ranging from 25 to 400 degrees C under loads up to 200 nN. Under these conditions, silicon tips are partially or completely destroyed, while the UNCD tips exhibit little or no wear, no signs of delamination, and exceptional fouling resistance. We demonstrate nanomanufacturing of more than 5000 polymer nanostructures with no deterioration in the tip.

  1. Scanning Tip Microscopy With Applications To Biology

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Thall, Edmond H.; Iams, Douglas A.; Ingle, Jeffery T.; Henson, Tammy D.; Lee, Y. C.; Bell, L. Stephen

    1989-06-01

    Scanning tunneling microscopy and atomic force microscopy, denoted here scanning tip microscopy, are two powerful novel techniques for imaging surfaces with atomic resolution. We describe the underlying principles of these two techniques with special emphasis on an instrument developed in our laboratory that uses a laser diode to detect minute deflections of a tip as it raster scans the surface of a sample. Applications of these techniques to research in biology are assessed and their relative merits discussed.

  2. Superconductivity in MgB 2

    NASA Astrophysics Data System (ADS)

    Akimitsu, Jun; Muranaka, Takahiro

    2003-05-01

    We recently discovered that the intermetallic compound magnesium diboride (MgB2) exhibits the highest superconducting transition temperature (Tc=39 K) of all the metallic superconductors. In this paper we report on the basic superconducting characteristics of MgB2 and the current status of the research for the unanswered problem in this superconductivity. Especially, we review the several reports for the superconducting gap (Δ) by the spectroscopic measurements. Moreover we introduce the research into its anisotropic parameter (γ), which is important for the understanding of this superconducting states in this material.

  3. Free-standing oxide superconducting articles

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  4. Status of superconducting power transformer development

    SciTech Connect

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P.

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  5. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  6. Energy distributions of field emitted electrons from carbide tips and tungsten tips with diamondlike carbon coatings

    SciTech Connect

    Yu, M.L. |; Kim, H.; Hussey, B.W.; Chang, T.H.; Mackie, W.A.

    1996-11-01

    We have measured the energy distributions of electrons field emitted from tungsten carbide, HfC{l_angle}100{r_angle}, and ZrC{l_angle}100{r_angle} tips, and tungsten field emitters with diamondlike carbon coatings. Multiple-peaked energy distributions were observed from instability induced emission sites on the carbide tips. Energy distributions of electrons field emitted from the diamondlike carbon coated tungsten tips were broader than those from metal tips. They also showed a shift towards lower energies with increases in the emission current. {copyright} {ital 1996 American Vacuum Society}

  7. Discovery of superconductivity in KTaO₃ by electrostatic carrier doping.

    PubMed

    Ueno, K; Nakamura, S; Shimotani, H; Yuan, H T; Kimura, N; Nojima, T; Aoki, H; Iwasa, Y; Kawasaki, M

    2011-05-22

    Superconductivity at interfaces has been investigated since the first demonstration of electric-field-tunable superconductivity in ultrathin films in 1960(1). So far, research on interface superconductivity has focused on materials that are known to be superconductors in bulk. Here, we show that electrostatic carrier doping can induce superconductivity in KTaO(3), a material in which superconductivity has not been observed before. Taking advantage of the large capacitance of the self-organized electric double layer that forms at the interface between an ionic liquid and KTaO(3) (ref. 12), we achieve a charge carrier density that is an order of magnitude larger than the density that can be achieved with conventional chemical doping. Superconductivity emerges in KTaO(3) at 50 mK for two-dimensional carrier densities in the range 2.3 × 10(14) to 3.7 × 10(14) cm(-2). The present result clearly shows that electrostatic carrier doping can lead to new states of matter at nanoscale interfaces.

  8. A hidden pseudogap under the 'dome' of superconductivity in electron-doped high-temperature superconductors.

    PubMed

    Alff, L; Krockenberger, Y; Welter, B; Schonecke, M; Gross, R; Manske, D; Naito, M

    2003-04-17

    The ground state of superconductors is characterized by the long-range order of condensed Cooper pairs: this is the only order present in conventional superconductors. The high-transition-temperature (high-T(c)) superconductors, in contrast, exhibit more complex phase behaviour, which might indicate the presence of other competing ground states. For example, the pseudogap--a suppression of the accessible electronic states at the Fermi level in the normal state of high-T(c) superconductors-has been interpreted as either a precursor to superconductivity or as tracer of a nearby ground state that can be separated from the superconducting state by a quantum critical point. Here we report the existence of a second order parameter hidden within the superconducting phase of the underdoped (electron-doped) high-T(c) superconductor Pr2-xCe(x)CuO4-y and the newly synthesized electron-doped material La2-xCe(x)CuO4-y (ref. 8). The existence of a pseudogap when superconductivity is suppressed excludes precursor superconductivity as its origin. Our observation is consistent with the presence of a (quantum) phase transition at T = 0, which may be a key to understanding high-T(c) superconductivity. This supports the picture that the physics of high-T(c) superconductors is determined by the interplay between competing and coexisting ground states.

  9. Investigation on spectral response of micro-cavity structure by symmetrical tapered fiber tips

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2016-06-01

    We proposed and experimentally demonstrated a micro-cavity structure made of symmetrical tapered fiber tips. The waist of a conventional fiber taper fabricated from heating and stretching technique is symmetrically cleaved, and the aligned fiber tips with air gap constitute a Fabry-Perot micro-cavity due to the reflection at the tip facet. The spectral responses of such micro-cavity structure have been investigated both in beam propagation models and experiments. The multibeam interference in the micro-cavity and the impact of the waist diameter and cavity length on the spectral response has been successfully demonstrated. And a micro-cavity structure with 45 μm waist diameter was experimentally achieved, the measured spectra agree well with the simulation ones, indicating that the spectral response of the micro-cavity structure is contributed by both the multibeam interference and the Fabry-Perot micro-cavity.

  10. Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips

    SciTech Connect

    Khan, Yasser; Al-Falih, Hisham; Zhang Yaping; Ng, Tien Khee; Ooi, Boon S.

    2012-06-15

    Dynamic electrochemical etching technique is optimized to produce tungsten tips with controllable shape and radius of curvature of less than 10 nm. Nascent features such as 'dynamic electrochemical etching' and reverse biasing after 'drop-off' are utilized, and 'two-step dynamic electrochemical etching' is introduced to produce extremely sharp tips with controllable aspect ratio. Electronic current shut-off time for conventional dc 'drop-off' technique is reduced to {approx}36 ns using high speed analog electronics. Undesirable variability in tip shape, which is innate to static dc electrochemical etching, is mitigated with novel 'dynamic electrochemical etching.' Overall, we present a facile and robust approach, whereby using a novel etchant level adjustment mechanism, 30 Degree-Sign variability in cone angle and 1.5 mm controllability in cone length were achieved, while routinely producing ultra-sharp probes.

  11. A modular and cost-effective superconducting generator design for offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Keysan, Ozan; Mueller, Markus

    2015-03-01

    Superconducting generators have the potential to reduce the tower head mass for large (∼10 MW) offshore wind turbines. However, a high temperature superconductor generator should be as reliable as conventional generators for successful entry into the market. Most of the proposed designs use the superconducting synchronous generator concept, which has a higher cost than conventional generators and suffers from reliability issues. In this paper, a novel claw pole type of superconducting machine is presented. The design has a stationary superconducting field winding, which simplifies the design and increases the reliability. The machine can be operated in independent modules; thus even if one of the sections fails, the rest can operate until the next planned maintenance. Another advantage of the design is the very low superconducting wire requirement; a 10 MW, 10 rpm design is presented which uses 13 km of MgB2 wire at 30 K. The outer diameter of the machine is 6.63 m and it weighs 184 tonnes including the structural mass. The design is thought to be a good candidate for entering the renewable energy market, with its low cost and robust structure.

  12. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  13. Phase slips in superconducting weak links

    SciTech Connect

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.

  14. Fireballs from superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Gruzinov, Andrei; Vilenkin, Alexander

    2017-01-01

    Thermalized fireballs should be created by cusp events on superconducting cosmic strings. This simple notion allows to reliably estimate particle emission from the cusps in a given background magnetic field. With plausible assumptions about intergalactic magnetic fields, the cusp events can produce observable fluxes of high-energy photons and neutrinos with unique signatures.

  15. Superconducting microphone for photoacoustic spectroscopy

    SciTech Connect

    Costa Ribeiro, P.; Labrunie, M.; Von der Weid, J.P.; Symko, O.G.

    1982-11-01

    A superconducting microphone has been developed for photoacoustic spectroscopy at low temperatures. The microphone consists of a thin mylar membrane coated with a film of lead whose motion is detected by SQUID magnetometer. For the simple set-up presented here, the limiting pressure sensitivity is 7.5 x 10/sup -14/ atmospheres/Hz/sup 1/2/.

  16. Nonlinear diffusion and superconducting hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  17. Demonstration of superconducting micromachined cavities

    SciTech Connect

    Brecht, T. Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  18. Sandia 1993 Superconducting Technology Program

    NASA Astrophysics Data System (ADS)

    Roth, E. P.

    1994-05-01

    Sandia's STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

  19. TIPS Evaluation Project Retrospective Study: Wave 1 and 2.

    ERIC Educational Resources Information Center

    Hubbard, Susan M.; Mulvey, Kevin P.

    2003-01-01

    Measured substance abuse treatment professionals' knowledge, attitudes, and practices regarding the Treatment Improvement Protocol (TIP) series and the 28 TIPs. Results for 3,267 respondents in wave 1 and 1,028 in wave 2 indicate that almost half of all professionals were aware of the TIPs. Attitudes toward TIPs were positive, but professionals…

  20. 29 CFR 531.59 - The tip wage credit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false The tip wage credit. 531.59 Section 531.59 Labor... PAYMENTS UNDER THE FAIR LABOR STANDARDS ACT OF 1938 Tipped Employees § 531.59 The tip wage credit. (a) In...), provided that the employer satisfies all the requirements of section 3(m). This tip credit is in...

  1. 29 CFR 531.59 - The tip wage credit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false The tip wage credit. 531.59 Section 531.59 Labor... PAYMENTS UNDER THE FAIR LABOR STANDARDS ACT OF 1938 Tipped Employees § 531.59 The tip wage credit. (a) In...), provided that the employer satisfies all the requirements of section 3(m). This tip credit is in...

  2. MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).

    SciTech Connect

    ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.

    2001-07-12

    Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron

  3. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  4. Axial compressor blade design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Erler, Engin

    Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this

  5. Understanding the plasmonics of nanostructured atomic force microscopy tips

    NASA Astrophysics Data System (ADS)

    Sanders, A.; Bowman, R. W.; Zhang, L.; Turek, V.; Sigle, D. O.; Lombardi, A.; Weller, L.; Baumberg, J. J.

    2016-10-01

    Structured metallic tips are increasingly important for optical spectroscopies such as tip-enhanced Raman spectroscopy, with plasmonic resonances frequently cited as a mechanism for electric field enhancement. We probe the local optical response of sharp and spherical-tipped atomic force microscopy (AFM) tips using a scanning hyperspectral imaging technique to identify the plasmonic behaviour. Localised surface plasmon resonances which radiatively couple with far-field light are found only for spherical AFM tips, with little response for sharp AFM tips, in agreement with numerical simulations of the near-field response. The precise tip geometry is thus crucial for plasmon-enhanced spectroscopies, and the typical sharp cones are not preferred.

  6. Compilation of NRL Publications on High Temperature Superconductivity.

    DTIC Science & Technology

    1987-01-01

    Gubser, and S.A, Wolf (to be published in Proceedings of Novel Mechanisms Conf.) , Suprconducting Phase Transitions in the La-M-Cu-O Layered...Wolf, C.S. Pande, A.K. Singh, E.F. Skelton and B.A. Bender (to be published in Novel Mechanisms Conf. Evidence of conventional superconductivity in I...165 V.Z. Kresin and S.A. Wolf (to be published in Novel Mechanisms Conf.) iv Complex Hamiltonians: Common Features of Mechanisms for High

  7. Design considerations of superconductive input multiplexers for satellite applications

    SciTech Connect

    Mansour, R.R.; Ye, S.; Dokas, V.; Jolley, B.; Thomson, G.; Tang, W.C.; Kudsia, C.M.

    1996-07-01

    This paper describes the evolution and development of low power superconductive filters and multiplexers for satellite applications under the HTSSE-II program. Experimental results and tradeoffs are presented for thin film and dielectric loaded HTS multiplexer configurations, leading to the development and implementation of a fully integrated four-channel C-band HTS input multiplexer. Measured data shows performance comparable to conventional technology and promise of large reduction in mass and volume of such equipment. The multiplexer is scheduled to fly as part of the HTSSE-II package on the ARGOS satellite in 1996.

  8. Topological Superconducting State of Lead Nanowires in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Rodrigo, J. G.; Crespo, V.; Suderow, H.; Vieira, S.; Guinea, F.

    2012-12-01

    Superconductors with an odd number of bands crossing the Fermi energy have topologically protected Andreev states at interfaces, including Majorana states in one-dimensional geometries. We propose here that repeated indentation of a Pb tip on a Pb substrate can lead to nanowires such that the resulting superconducting system has novel topological properties. We have analyzed a number of conductance curves obtained in different nanowires, and observe, in a few cases, very peculiar dependence of the critical current on magnetic field. In these cases, the form of multiple Andreev reflections observed at finite voltages are compatible with topological superconductivity. The nanowires give a low number of 1D channels, large spin orbit coupling, and a sizable Zeeman energy, provided that the applied magnetic field is higher than the Pb bulk critical field.

  9. Biodiesel from conventional feedstocks.

    PubMed

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted.

  10. Unconventional superconductivity in PuCoGa5.

    PubMed

    Curro, N J; Caldwell, T; Bauer, E D; Morales, L A; Graf, M J; Bang, Y; Balatsky, A V; Thompson, J D; Sarrao, J L

    2005-03-31

    In the Bardeen-Cooper-Schrieffer theory of superconductivity, electrons form (Cooper) pairs through an interaction mediated by vibrations in the underlying crystal structure. Like lattice vibrations, antiferromagnetic fluctuations can also produce an attractive interaction creating Cooper pairs, though with spin and angular momentum properties different from those of conventional superconductors. Such interactions have been implicated for two disparate classes of materials--the copper oxides and a set of Ce- and U-based compounds. But because their transition temperatures differ by nearly two orders of magnitude, this raises the question of whether a common pairing mechanism applies. PuCoGa5 has a transition temperature intermediate between those classes and therefore may bridge these extremes. Here we report measurements of the nuclear spin-lattice relaxation rate and Knight shift in PuCoGa5, which demonstrate that it is an unconventional superconductor with properties as expected for antiferromagnetically mediated superconductivity. Scaling of the relaxation rates among all of these materials (a feature not exhibited by their Knight shifts) establishes antiferromagnetic fluctuations as a likely mechanism for their unconventional superconductivity and suggests that related classes of exotic superconductors may yet be discovered.

  11. Entanglement and Quantum Error Correction with Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  12. Acoustic plane wave preferential orientation of metal oxide superconducting materials

    DOEpatents

    Tolt, Thomas L.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. With the superconducting metal oxide in the form of a ceramic slip which has not yet set, orientation of the crystal basal planes parallel with the direction of desired current flow is accomplished by an applied acoustic plane wave in the acoustic or ultrasonic frequency range (either progressive or standing) in applying a torque to each crystal particle. The ceramic slip is then set and fired by conventional methods to produce a conductor with preferentially oriented grains and substantially enhanced current carrying capacity.

  13. Superconducting gravity gradiometer for space and terrestrial applications

    SciTech Connect

    Moody, M.V.; Chan, H.A.; Paik, H.J.

    1986-12-15

    A three-axis superconducting gravity gradiometer with a potential sensitivity better than 10/sup -3/ Eoetvoes Hz/sup -1//sup ///sup 2/ is currently under development for applications in space. Although such a high sensitivity may be needed for only a limited number of terrestrial applications, superconductivity offers many extraordinary effects which can be used to obtain a gravity gradiometer with other characteristics necessary for operation in a hostile moving-base environment. Utilizing a number of recently devised techniques which rely on certain properties of superconductors, we have produced a design for a sensitive yet rugged gravity gradiometer with a high degree of stability and a common-mode rejection ratio greater than 10/sup 9/. With a base line of 0.11 m, a sensitivity of 0.1 Eoetvoes Hz/sup -1//sup ///sup 2/ is expected in an environment monitored to a level of 10/sup -2/ m s/sup -2/ Hz/sup -1//sup ///sup 2/ for linear vibration and 7 x 10/sup -6/ rad s/sup -1/ Hz/sup -1//sup ///sup 2/ for angular vibration. A conventional stabilized platform can be used at this level. The intrinsic noise level, which is two orders of magnitude lower, could be achieved by monitoring the attitude with a superconducting angular accelerometer which is under development. In addition, the new gradiometer design has the versatility of adapting the instrument to different gravity biases by adjusting stored dc currents.

  14. Superconducting gravity gradiometer for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Chan, H. A.; Paik, H. J.

    1986-01-01

    A three-axis superconducting gravity gradiometer with a potential sensitivity better than Eotvos per sq root Hz is currently under development for applications in space. Although such a high sensitivity may be needed for only a limited number of terrestrial applications, superconductivity offers many extraordinary effects which can be used to obtain a gravity gradiometer with other characteristics necessary for operation in a hostile moving-base environment. Utilizing a number of recently devised techniques which rely on certain properties of superconductors, a design for a sensitive yet rugged gravity gradiometer with a high degree of stability and a common-mode rejection ratio greater than 10 to the 9th is produced. With a base line of 0.11 m, a sensitivity of 0.1 Eotvos per sq root Hz is expected in an environment monitored to a level of 0.01 m/sq sec sq root Hz for linear vibration and 7 x 10 to the -6th rad/s sq root Hz for angular vibration. A conventional stabilized platform can be used at this level. The intrinsic noise level, which is two orders of magnitude lower, could be achieved by monitoring the attitude with a superconducting angular accelerometer which is under development. In addition, the new gradiometer design has the versatility of adapting the instrument to different gravity biases by adjusting stored dc currents.

  15. Noise analysis of DC SQUIDs with damped superconducting flux transformers

    NASA Astrophysics Data System (ADS)

    Faley, M. I.; Poppe, U.; Urban, K.; Fagaly, R. L.

    2010-06-01

    An analysis was performed of intrinsic noise for high-Tc DC SQUID with superconducting flux transformer (FT) containing resistive elements. For a SQUID with a loop inductance of about 40 pH we observed voltage swings of ~55 μV and a flux noise of ~4 μΦ0/√Hz at 77 K. Inductive coupling of an 8-mm multilayer superconducting FT to the SQUID increased voltage swings to ~70 μV due to effective reduction of the SQUID loop inductance. This also increased the flux noise to ~6μΦ0/√Hz, corresponding to a field resolution of ~18 fT/√Hz at 77 K with a white noise spectrum down to frequency ~10 Hz. The main sources of white flux noise were the Nyquist noise in the Josephson junctions and the FT, as well as the suppression of the DC SQUID voltage swings caused by parasitic capacitance between the FT and the SQUID. An ultra-low-ohmic resistor with resistance value between the flux-creep-induced resistances of superconductors (below ~0.1 nΩ) and resistances of conventional resistors (above ~0.1 mΩ) was developed. An RL-circuit based high-pass filter (HPF) with time constant ~7 sec was realized and integrated in the superconducting FT. The contribution of the HPF to the noise of the sensors was measured and compared with calculated values.

  16. Development of a superconducting bulk magnet for NMR and MRI

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)3 voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device.

  17. 75 FR 11226 - Proposed Collection; Comment Request for Tip Reporting Alternative Tip Agreement Used in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Used in the Cosmetology and Barber Industry AGENCY: Internal Revenue Service (IRS), Treasury. ACTION..., the IRS is soliciting comments concerning Tip Reporting Alternative Commitment used in the Cosmetology...: Tip Reporting Alternative Commitment Agreement used in the Cosmetology and Barber Industry. OMB...

  18. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-25

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  19. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  20. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115